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GENERALIZED INSTRUMENTAL VARIABLE MODELS

BY ANDREW CHESHER AND ADAM M. ROSEN1

This paper develops characterizations of identified sets of structures and structural
features for complete and incomplete models involving continuous or discrete vari-
ables. Multiple values of unobserved variables can be associated with particular combi-
nations of observed variables. This can arise when there are multiple sources of het-
erogeneity, censored or discrete endogenous variables, or inequality restrictions on
functions of observed and unobserved variables. The models generalize the class of
incomplete instrumental variable (IV) models in which unobserved variables are single-
valued functions of observed variables. Thus the models are referred to as generalized
IV (GIV) models, but there are important cases in which instrumental variable restric-
tions play no significant role. Building on a definition of observational equivalence for
incomplete models the development uses results from random set theory that guaran-
tee that the characterizations deliver sharp bounds, thereby dispensing with the need
for case-by-case proofs of sharpness. The use of random sets defined on the space of
unobserved variables allows identification analysis under mean and quantile indepen-
dence restrictions on the distributions of unobserved variables conditional on exoge-
nous variables as well as under a full independence restriction. The results are used
to develop sharp bounds on the distribution of valuations in an incomplete model of
English auctions, improving on the pointwise bounds available until now. Application
of many of the results of the paper requires no familiarity with random set theory.

KEYWORDS: Instrumental variables, endogeneity, excess heterogeneity, limited in-
formation, partial identification, random sets, incomplete models, English auctions.

1. INTRODUCTION

THIS PAPER DEVELOPS CHARACTERIZATIONS OF IDENTIFIED SETS—equivalently sharp
bounds—for a wide class of complete and incomplete structural models admitting general
forms of unobserved heterogeneity.2 To demonstrate the power of these results we apply
them to the incomplete model of English auctions introduced in Haile and Tamer (2003)
and characterize sharp bounds on the distribution of valuations, tightening the pointwise
bounds derived in that paper.

In the models we study multiple values of unobserved variables can be associated with
a particular combination of values of observed endogenous and exogenous variables. This
occurs in models admitting multiple sources of heterogeneity such as random coefficients,
in models with discrete or censored outcomes, and in models in which observed and un-
observed variables are constrained by inequality restrictions.

1We thank the co-editor and three anonymous reviewers for helpful suggestions and feedback that helped
to improve the paper. We are grateful to Federico Bugni, Matt Masten, and Francesca Molinari for detailed
comments and discussion. We have benefitted from discussion with participants at seminar and conference
presentations given at UvA Amsterdam, Boston College, Boston University, Cornell, Chicago, Paris School of
Economics, Vanderbilt, the April 2013 Conference on Mathematical Statistics of Partially Identified Objects at
Oberwolfach, the 2013 Cowles Summer Econometrics Conference, the 2014 Asia Meeting of the Econometric
Society in Taipei, the 2014 China Meeting of the Econometric Society in Xiamen, the Harvard-MIT Econo-
metrics Workshop, Yale, Virginia, Georgetown, Maryland, Johns Hopkins, Toulouse School of Economics,
Oxford, Duke, UIUC, Reading, NUS Singapore, and Surrey. Both authors gratefully acknowledge financial
support from the UK Economic and Social Research Council through a Grant (Grant RES-589-28-0001) to
the ESRC Centre for Microdata Methods and Practice (CeMMAP). Adam Rosen gratefully acknowledges
financial support from a British Academy Mid-Career Fellowship, and from the European Research Council
(ERC) Grants ERC-2009-StG-240910-ROMETA and ERC-2012-StG-312474. The usual disclaimer applies.

2The terms “sharp bounds” and “identified sets” are used interchangeably throughout.
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Leading examples of the models we study are classical single equation instrumental
variable (IV) models such as the linear model (e.g., Wright (1928), Theil (1953), Basmann
(1959)), semiparametric and nonparametric IV models (e.g., Newey and Powell (1989,
2003), and Chernozhukov and Hansen (2005)), and extensions of these models allowing
random coefficients and discrete or censored outcomes. In these IV models there are
restrictions on the influence of certain exogenous variables on the determination of out-
comes and restrictions on the extent of dependence between observed exogenous and
unobserved variables. We use the catch-all descriptor generalized instrumental variable
(GIV) models to describe the class of models studied in this paper.

The results can also be applied to models in which instrumental variables may play
no significant role. The incomplete model of English auctions employed in the leading
example is of this type.

Let Y and Z denote, respectively, observed endogenous and exogenous variables, and
let U denote unobserved heterogeneity. Lowercase y , z, and u denote realizations of
these random vectors that may be continuous, discrete, or mixed continuous–discrete.
The models studied in this paper place restrictions on a structural function h(y� z�u)
mapping the joint support of Y , Z, and U onto the real line. The structural function
defines the combinations of values of Y , Z, and U that may occur through the restriction
that h(Y�Z�U)= 0 almost surely. For example, a classical linear IV model in which Y1 =
αY2 +Zβ+U has h(y� z�u)= y1 −αy2 − zβ−u. More examples are given in Section 2.2.

The prime focus of this paper is on identification of structures. A structure (h�GU |Z)
comprises a structural function h coupled with a family of conditional distributions of U
given Z,

GU |Z ≡ {
GU |Z(·|z) : z ∈RZ

}
�

where GU |Z(S|z) is the probability that U belongs to set S given Z = z, and RZ is the
support of exogenous Z. Identified sets for structural features, for example, a structural
function or some functional of it, are obtained as projections of identified sets of struc-
tures.

Level sets of the structural function h(y� z�u) play a central role in the development.
Let RU and RY denote the support of U and Y , respectively. The random set

U(Y�Z;h)≡ {
u ∈RU : h(Y�Z�u)= 0

}
(1.1)

has realizations U(y� z;h) that contain all values of U that can give rise to Y = y when
Z = z according to structural function h. The random set

Y(U�Z;h)≡ {
y ∈RY : h(y�Z�U)= 0

}
(1.2)

has realizations Y(u� z;h) that contain all values of Y that can occur when U = u and
Z = z according to the structural function h. Complete models require Y(U�Z;h) to be
a singleton with probability 1 for all admissible h. Incomplete models admit structural
functions h such that Y(U�Z;h) can have cardinality greater than 1.3 Models with multi-
ple sources of heterogeneity, discrete or censored outcomes, or observed and unobserved
variables restricted by inequality constraints have sets U(Y�Z;h) with realizations that

3In Chesher and Rosen (2012) we specialize our approach for identification analysis to simultaneous dis-
crete outcome models. There we define incoherent models in which Y(U�Z;h) can be empty and we discuss
several ways in which incoherence can be addressed, with references to the literature on simultaneous discrete
outcome models.



GENERALIZED INSTRUMENTAL VARIABLE MODELS 961

may not be singleton sets. The GIV models studied here require neither of these sets to
be singleton and they are generally partially identifying.

This paper provides characterizations of identified sets of structures delivered by GIV
models given distributions of observable variables. Previously in this class of models the
question of whether sharp bounds are obtained has been primarily handled on a case-
by-case basis. The usual approach to proving sharpness is constructive; see, for example,
Chesher (2010, 2013) and Rosen (2012). This approach requires one to show that every
structure in the identified set can deliver the distribution of observed variables. This is
often difficult to accomplish and sometimes, as in the auction model of Haile and Tamer
(2003), it is infeasible. The methodology introduced here is shown to always deliver char-
acterizations of sharp bounds. It is shown that these sets can be expressed as systems of
moment inequalities and equalities to which recently developed inferential procedures
are applicable. See, for example, Chesher and Rosen (2013) and Aradillas-Lopez and
Rosen (2013) for empirical applications using treatment effect and simultaneous ordered
response models.

The results of this paper are obtained using results from random set theory, reviewed in
Molchanov (2005) and introduced into econometric identification analysis by Beresteanu,
Molchanov, and Molinari (2011), henceforth BMM11. The analysis there employs the
random set Y(U�Z;h) in models where the identified set can be characterized through
a finite number of conditional moment inequalities involving an unobservable and possi-
bly infinite-dimensional nuisance function, such as an equilibrium selection mechanism in
econometric models of games. Galichon and Henry (2011) take an alternative approach
using optimal transportation theory to characterize sharp parameter bounds in paramet-
rically specified incomplete models.

Instead of using the random Y -level set Y(U�Z;h), the approach taken in this paper
uses the random U-level sets U(Y�Z;h) to characterize identified sets for (h�GU |Z) in
structural econometric models. The analysis does not require the existence of a repre-
sentation of the identified set through a finite number of conditional moment equalities
involving an unknown nuisance function as required in BMM11. This allows treatment
of models with continuous endogenous variables and independence restrictions on the
joint distribution of U and Z. The analysis here does not require parametric specification
for the structural function or the conditional distributions of unobserved heterogeneity
as required in Galichon and Henry (2011). The use of random U-level sets allows con-
sideration of a variety of restrictions on unobserved heterogeneity common in structural
econometrics, including stochastic independence, conditional mean, conditional quantile,
and parametric restrictions. Our earlier papers Chesher, Rosen, and Smolinski (2013) and
Chesher and Rosen (2012) also used U-level sets for identification analysis in models in
which outcome variables were required to be discrete, and with U and Z required to be
independently distributed. In this paper, usingU-level sets allows identification analysis in
a much broader class of models in which each of the components of endogenous Y can be
continuous, discrete, or mixed, and in which the aforementioned alternative restrictions
on the joint distribution of U and Z may be imposed.

The main result of this paper is as follows. Let θ be a structure. This is an object with
components that are a structural function h and a collection of conditional distributions
GU |Z . Let FY |Z(·|z) denote a conditional distribution of endogenous variables given Z = z.
A random set U(Y�Z;h) is characterized by the collection of random variables that al-
most surely lie in the random set. These random variables are called measurable selections
of the random set.4 It is shown that the identified set of structures delivered by a model

4See Definition 1 and Molchanov (2005) for further details.
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given distributions FY |Z(·|z), z ∈ RZ , comprises all θ admitted by the model such that
for almost every z ∈ RZ , GU |Z(·|z) ∈ GU |Z is the distribution of one of the measurable
selections of U(Y�Z;h) when Y given Z = z has distribution FY |Z(·|z).

Alternative characterizations of this selectionability property deliver alternative char-
acterizations of the identified set. One such alternative is delivered by Artstein’s (1983)
inequality, characterizing the identified set as those θ admitted by the model such that the
inequality

GU |Z(S|z)≥ P
[
U(Y�Z;h)⊆ S|Z = z] (1.3)

holds for all closed sets S ⊆ RU and almost every z ∈ RZ . On the left hand side is the
probability thatU has a realization in set S given Z = z. On the right hand side is the con-
ditional probability of the occurrence of one of the values of Y such that U(Y�Z;h)⊆ S ,
under structural function h. These are the values of Y that only occur when U ∈ S . A def-
inition of collections of core determining sets Q(h� z) is provided such that if (1.3) holds
for all sets S ∈ Q(h� z), then it holds for all closed S ⊆ RU , thereby reducing the collec-
tion of inequalities sufficient to characterize the identified set. Conditions are also given
under which certain inequalities in (1.3) can be replaced by equalities.5 Characterizations
employing the Aumann expectation of the random set U(Y�Z;h) are also provided.

This result relies on a definition of observational equivalence for models that may ad-
mit incomplete structures. This extends the classical definition of observational equiva-
lence for complete models; see, for example, Koopmans (1949), Koopmans and Reiersøl
(1950), Hurwicz (1950), Rothenberg (1971), Bowden (1973), and Matzkin (2007, 2008).
Structures admitted by incomplete models can generate multiple distributions of out-
comes; hence our definition of observational equivalence is in terms of random outcome
sets Y(U�Z;h).

The traction we obtain on characterizing identified sets for structural econometric
models relies on a key duality result concerning the random level sets Y(U�Z;h) and
U(Y�Z;h). This allows the development of characterizations of observational equiv-
alence in terms of properties of residual sets U(Y�Z;h) rather than outcome sets
Y(U�Z;h). This is what enables characterization of identified sets in models employ-
ing alternative restrictions on the distribution of U and Z such as arise in many structural
econometric models.

The results of this paper greatly extend the application of structural models embodying
IV exclusion and independence restrictions. IV models with discrete or censored as well
as continuous outcomes and with multiple sources of heterogeneity can now be employed.
Models that impose inequality restrictions on observed and unobserved variables such as
Haile and Tamer’s (2003) incomplete model of English auctions are also included in the
scope of application as shown in Section 6.

1.1. Plan

Section 2 formalizes the GIV model restrictions and provides some leading examples
of GIV models. Section 3 provides our generalization of the classical notion of observa-
tional equivalence, our duality result, and some accompanying formal set identification
characterizations, including a widely applicable construction written in terms of condi-
tional moment inequalities. Section 4 shows how to use the notion of core-determining

5We extend the use of core determining sets introduced in Galichon and Henry (2011), defining such sets
on the support of unobservables instead of the support of endogenous outcomes, and allowing them to depend
on the structural function h and the value of exogenous Z.
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sets to exploit the geometric structure of the random sets U(Y�Z;h) to reduce the collec-
tion of conditional moment inequalities without losing identifying power. Section 5 shows
how restrictions on unobserved heterogeneity and exogenous variables, such as indepen-
dence, conditional mean, conditional quantile, and parametric restrictions, can be incor-
porated to further refine characterization of the identified set. Section 6 demonstrates
how the application of our results to an incomplete model of English auctions featuring
multivariate unobserved heterogeneity delivers a novel and previously unavailable char-
acterization of sharp bounds on the distribution of bidder valuations. Section 7 concludes.
All proofs are provided in the Appendix.

1.2. Notation

Capital A denotes a point-valued random vector and lowercase letters a denote par-
ticular point-valued realizations. For probability measure P, P(·|a) is used to denote the
conditional probability measure given A = a; RA1···Am denotes the joint support of ran-
dom vectors A1� � � � �Am; RA1|a2 denotes the support of random vector A1 conditional on
A2 = a2; qA|B(τ|b) denotes the τ conditional quantile ofA given B= b; F(RA) and K(RA)
denote the collections of all closed and compact subsets, respectively, of the support ofA;
A⊥⊥ Bmeans that random vectorsA and B are stochastically independent; ∅ denotes the
empty set; and ∧ denotes the logical “and” operator. The calligraphic font (S) is reserved
for sets, and the sans serif font (S) is reserved for collections of sets. The symbol ⊆ in-
dicates nonstrict set inclusion, cl(A) denotes the closure of A, ∂A denotes the boundary
of A, and Ch(S|z) denotes the containment functional of random set U(Y�Z;h) condi-
tional on Z = z, defined in Section 3.2. The notation F �A indicates that the distribution
F of a random vector is selectionable with respect to the distribution of random set A, and
A ∈ Sel(A) indicates that random variable A is a measurable selection of random set A,
both as defined in Section 3.1. The term E[A] refers to the Aumann expectation of A,
defined in Section 5.2; 1[E] denotes the indicator function, taking the value 1 if the event
E occurs and 0 otherwise; Rm denotes m-dimensional Euclidean space; R1 is abbreviated
to R and for any vector v ∈ R

m; ‖v‖ indicates the Euclidean norm, ‖v‖ = √
v2

1 + · · · + v2
m.

So as to deal with sets of measure zero and conditions required to hold almost every-
where, we use the sup and inf operators to denote “essential supremum” and “essen-
tial infimum” with respect to the underlying measure when these operators are applied
to functions of random variables (e.g., conditional probabilities, expectations, or quan-
tiles). Thus supz∈Z f (z) denotes the smallest value of c ∈R such that P[f (Z) > c] = 0 and
infz∈Z f (z) denotes the largest value of c ∈R such that P[f (Z) < c] = 0.

2. GIV MODELS

First there is a formal statement of the restrictions comprising GIV models. Then ex-
amples of GIV models are provided.

2.1. GIV Models

At various points in the development, the following restrictions are employed.

RESTRICTION A1: The variables (Y�Z�U) are random vectors defined on a probability
space (Ω�L�P), endowed with the Borel sets on Ω. The support of (Y�Z�U) is a subset
of a finite-dimensional Euclidean space.
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RESTRICTION A2: A collection of conditional distributions

FY |Z ≡ {
FY |Z(·|z) : z ∈RZ

}
is identified by the sampling process, where for all T ⊆RY |z , FY |Z(T |z)≡ P[Y ∈ T |z].

RESTRICTION A3: There is an L-measurable function h(·� ·� ·) :RYZU → R such that

P
[
h(Y�Z�U)= 0

] = 1�

and there is a collection of conditional distributions

GU |Z ≡ {
GU |Z(·|z) : z ∈RZ

}
�

where for all S ⊆RU |z , GU |Z(S|z)≡ P[U ∈ S|z].
RESTRICTION A4: The pair (h�GU |Z) belongs to a known set of admissible struc-

tures M.

RESTRICTION A5: The random set U(Y�Z;h) is closed almost surely P[·|z], each
z ∈RZ .

RESTRICTION A6: The random set Y(Z�U;h) is closed almost surely P[·|z], each
z ∈RZ .

Restriction A1 defines the probability space on which (Y�Z�U) reside and restricts
their support to Euclidean space.6 Restriction A2 requires that for each z ∈RZ , FY |Z(·|z)
is identified. Restriction A3 posits the existence of structural relation h, and provides
notation for the collection of conditional distributions GU |Z of U given Z.

Restriction A4 imposes model M, the collection of admissible structures (h�GU |Z).
Unlike the previous restrictions, it is refutable based on knowledge of FY |Z in that it is
possible that there is no (h�GU |Z) ∈M such that P[h(Y�Z�U)= 0] = 1. In such cases the
identified set of structures is empty, indicating model misspecification.

Restrictions A5 and A6 restrict U(Y�Z;h) and Y(Z�U;h) to be random closed sets.
The purpose of these restrictions is to enable use of results from random set theory char-
acterizing the distributions of measurable selections of random closed sets.7 These restric-
tions are satisfied, for example, if M specifies that all admissible h are continuous in their
first and third arguments, respectively, but can also hold more generally. A given econo-
metric model can generally be represented through a variety of different but substantively
equivalent structural functions h, and judicious choice of this function can often be made
to ensure these requirements are satisfied. See Section 2.2 for examples.8

6The restriction of the support of unobserved heterogeneity to a subset of Euclidean space is convenient,
but not required for our identification analysis. What is essential for our use of random set theory is that the
support of U is a locally compact Hausdorff second countable topological space. Euclidean space fulfills this
requirement. For further details we refer to Molchanov (2005).

7The definition of a measurable selection of a random set is provided in Section 3.
8Importantly, the realizations of Y(Z�U;h) and U(Y�Z;h) may be unbounded, as closedness merely re-

quires that they contain their limit points. Moreover, whether these sets are closed depends on the underlying
topological space. We use the Euclidean topology on R

d throughout, but in some cases other topological spaces
could be used to establish closedness. For instance, if U(Y�Z;h) can take only a finite number of realizations,
then this set is closed in the discrete topology on {U(Y�z;h) : z ∈ RZ}; see, for example, Sutherland (2009,
p. 94, Exercise 9.1).
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Collections of admissible structural functions and families of collections of distributions
GU |Z are defined as the following projections of the model M:

H ≡ {
h : (h�GU |Z) ∈M for some GU |Z

}
�

GU |Z ≡ {
GU |Z : (h�GU |Z) ∈M for some h

}
�

A model comprises restrictions on structural functions and on the joint distribution of
(U�Z), imposed by specification of admissible structures M in Restriction A4. Structural
functions can be required to belong to a parametric family; there may be semiparametric
restrictions, as in index models; there may be a purely nonparametric specification, per-
haps with monotonicity or shape restrictions. Admissible collections of conditional distri-
butions GU |Z may be restricted to parametric families but there may be far less restrictive
specifications. Many models of interest will impose restrictions on the dependence of U
and Z such as mean, quantile, or complete stochastic independence. Our results allow the
impact on identification of all these types of restrictions to be studied. Various types of
restrictions on GU |Z are considered in Section 5 and the auction model example demon-
strates the way in which restrictions are incorporated in structural functions.

The identifying power of a model in the context of a particular process depends not
only on the restrictions of the model, but also on the identified joint distribution of ob-
servable (Y�Z) delivered by the process. If the distribution of (Y�Z) satisfies certain
conditions, then a model may point identify certain structural features. Examples include
the rank and completeness conditions that appear when using, respectively, linear simul-
taneous equations models and nonparametric IV models. In this paper we focus on the
characterization of identified sets delivered by general classes of models and we do not
consider conditions under which particular models have point identifying power. Conse-
quently there is no consideration here of the impact on identification of alternative forms
of the joint distribution of (Y�Z).

2.2. Examples

2.2.1. A Model of English Auctions

A key application worked through in detail in Section 6 is the incomplete model of
English auctions introduced in Haile and Tamer (2003). There are M bidders with con-
tinuously and independently distributed valuations with common distribution function
Az(·) conditional on auction characteristics Z = z. Random variables V = (V1� � � � � VM)
and Y ≡ (Y1� � � � �YM) denote, respectively, ordered valuations and ordered final bids.9
There are restrictions Ym ≤ Vm for all m ∈ {1� � � � �M} and VM−1 ≤ YM , expressing the idea
that no person bids more than his/her valuation and no person lets another win at a price
he/she is willing to beat.

It is convenient to construct the model in terms of uniform order statistics, U =
(U1� � � � �UM), that is, ordered identically and independently distributed uniform random
variables each with support on [0�1]. A structural function that captures the restrictions
on bidder behavior is

h(y� z�u)= max
{
uM−1 −Az(yM)�0

}
+

M∑
m=1

max
{
Az(ym)− um�0

}
� y1 ≤ · · · ≤ yM�u1 ≤ · · · ≤ uM�

9In ordered lists, higher indices indicate larger values and inequalities in random variables hold almost
surely.



966 A. CHESHER AND A. M. ROSEN

where Vm =A−1
z (Um) has been employed andA−1

z is the quantile function associated with
the distribution functionAz . Let RU denote the orthoscheme of the unitM-cube in which
u1 ≤ u2 ≤ · · · ≤ uM . The U-level set delivered by the structural function is

U(y� z;h)=
{
u ∈RU : (Az(yM)≥ uM−1

) ∧
(

M∧
m=1

(
Az(ym)≤ um

))}
(2.1)

with the Y -level set defined similarly.10

2.2.2. IV Models With Set-Valued Residuals

An important class of models in the broad class of models covered here are those in
which instrumental variable exclusion and independence restrictions play a central role
and unobservable variables may be set-valued functions of observed endogenous and ex-
ogenous variables. Examples include the binary outcome threshold crossing IV model
studied in Chesher (2010) and Chesher and Rosen (2013), the ordered outcome IV model
studied in Chesher and Smolinski (2012), and the multiple discrete choice model with
endogenous explanatory variables and IV restrictions studied in Chesher, Rosen, and
Smolinski (2013). This paper develops results that apply not only in these cases where the
outcome variables of interest are discrete, but also to cases with continuous outcomes.

Here are two examples of IV models with set-valued residuals in which outcomes are
continuous.

EXAMPLE 1—Random coefficients model with endogenous explanatory variable:
A continuous outcome random coefficients model has structural function

h(y� z�u)= y1 − z1γ− (β2 + u2)y2 − (β1 + u1)� (2.2)

The random coefficients are (β1 +U1) and (β2 +U2), with means β1 and β2, respectively.
The coefficient γ multiplying exogenous variables in h could also be random. The level
sets are

Y(u� z;h)= {(
z1γ+ (β2 + u2)y2 + (β1 + u1)� y2

) : y2 ∈RY2

}
�

(2.3)
U(y� z;h)= {u ∈RU : u1 = y1 − z1γ−β1 −β2y2 − u2y2}�

This is an incomplete limited information single equation instrumental variable model,
in contrast to the complete simultaneous equations random coefficient model studied
by Masten (2014), in which were established conditions for point identification of the
marginal distributions of the random coefficients.

EXAMPLE 2—Interval censored endogenous explanatory variables: This model extends
one of the cases studied in Manski and Tamer (2002) in which an exogenous explanatory
variable is censored to situations in which the censored explanatory variable is endoge-
nous. Let g(·� ·� ·) :R×R

k×R→ R be increasing in its first argument and strictly increas-
ing and continuous in its third argument such that

Y1 = g(Y ∗
2 �Z1�U

)
�

10For Y(u� z;h) replace u ∈ RU with y ∈ RY in (2.1), where RY is the support of the distribution of ordered
final bids.
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where endogenous variable Y ∗
2 ∈ R is interval censored with P[Y2l ≤ Y ∗

2 ≤ Y2u] = 1 for
observed variables Y2l�Y2u. No further restriction is placed on the process determining
the realizations of Y2l�Y2u. The structural function is

h(y� z�u)= max
{
y1 − g(y2u� z1�u)�0

} + max
{
g(y2l� z1�u)− y1�0

}
�

with y ≡ (y1� y2l� y2u) and y2l ≤ y2u. The resulting level sets are

Y(u� z;h)= {
y ∈RY : g(y2l� z1�u)≤ y1 ≤ g(y2u� z1�u)∧ y2l ≤ y2u

}
,

U(y� z;h)= [
g−1(y2u� z1� y1)�g

−1(y2l� z1� y1)
]
�

where the function g−1(·� ·� ·) is the inverse of g(·� ·� ·) with respect to its third argument,
so that for all y2, z1, and u, g−1(y2� z1� g(y2� z1�u))= u.

Characterizations of identified sets for both these models are given in the working
paper Chesher and Rosen (2015), where there are also examples of a model with en-
dogenous censoring and a model with endogenous variables measured with error. The
methods of this paper also apply to simultaneous equations and triangular models; see,
for instance, Chesher and Rosen (2012) for some examples involving incomplete models
with discrete endogenous variables.

3. OBSERVATIONAL EQUIVALENCE

3.1. Observational Equivalence and Selectionability in Outcome Space

The conventional definition of observational equivalence found in the econometrics
literature applies when each structure, m ∈ M, delivers a single collection of conditional
distributions,

PY |Z(m)≡ {
PY |Z(·|z;m) : z ∈RZ

}
�

where PY |Z(·|z;m) is the conditional distribution of Y given Z = z delivered by struc-
ture m.11 In such complete models structures m and m′ are observationally equivalent if
PY |Z(m)=PY |Z(m′) almost surely.

Structures admitted by incomplete models may generate more than one collection of
conditional distributions. Let PY |Z(m) denote the set of collections of conditional dis-
tributions that can be generated by a structure m. Considering two structures m and
m′ there may be a collection of conditional distributions F ∗

Y |Z that lies in both PY |Z(m)
and PY |Z(m′) and a collection F ∗∗

Y |Z that lies in only one of the collections PY |Z(m) and
PY |Z(m′). Structures m and m′ are observationally equivalent in identification analysis
employing F ∗

Y |Z but not in identification analysis employing F ∗∗
Y |Z .

When we work with incomplete models, as in this paper, observational equivalence is
defined with respect to the collection of distributions FY |Z under consideration.12 The

11See, for example, Koopmans and Reiersøl (1950), Hurwicz (1950), Rothenberg (1971), Bowden (1973),
and Matzkin (2007, 2008).

12In our formulation of observational equivalence and characterizations of identified sets, we continue to
work with conditional distributions of endogenous and latent variables, FY |Z(·|z) and GU |Z(·|z), respectively,
for almost every z ∈ RZ . Knowledge of the distribution of Z combined with FY |Z(·|z) or GU |Z(·|z) a.e. z ∈ RZ

is equivalent to knowledge of the joint distribution of (Y�Z), denoted FYZ , or that of (U�Z), denoted GUZ ,
respectively. It is formally shown in Appendix B of Chesher and Rosen (2015) that our characterizations using
selectionability conditional on Z = z, almost everywhere (a.e.) z ∈ RZ , are equivalent to using analogous
selectionability criteria for the joint distributions FYZ or GUZ .
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definition of observational equivalence uses random set theory constructs, specifically
measurable selections of a random set and selectionability of probability distributions with
respect to the distribution of a random set, which are defined now.13

DEFINITION 1: Let W and W denote a random vector and random set defined on the
same probability space. The random vector W is a measurable selection of W , denoted
W ∈ Sel(W), if W ∈W with probability 1. The distribution FW of random vector W is se-
lectionable with respect to the distribution of random set W , abbreviated FW �W , if there
exists a random vector W̃ distributed FW and a random set W̃ with the same distribution
as W such that W̃ ∈ Sel(W̃).

In the context of this paper a structure (h�GU |Z) induces a distribution for the random
outcome set Y(U�Z;h) conditional on Z = z, for all z ∈ RZ . The distributions of Y
given Z = z that are selectionable with respect to the distribution of Y(U�Z;h) given
Z = z for almost every z ∈RZ are precisely those distributions for which h(Y�Z�U)= 0
can hold with probability 1 for the given structure (h�GU |Z). This leads to the following
definitions.14

DEFINITION 2: Under Restrictions A1–A3, two structures (h�GU |Z) and (h′�G ′
U |Z)

are observationally equivalent with respect to a given collection of conditional distribu-
tions {FY |Z(·|z) : z ∈ RZ}, if FY |Z(·|z) � Y(U�z;h) when U ∼GU |Z(·|z) and FY |Z(·|z) �
Y(U�z;h′) when U ∼G′

U |Z(·|z) for almost every z ∈RZ .

DEFINITION 3: Under Restrictions A1–A4, the identified set of structures (h�GU |Z) with
respect to the collection of distributions FY |Z are those admissible structures such that the
conditional distributions FY |Z(·|z) ∈FY |Z are selectionable with respect to the conditional
distributions of random set Y(U�z;h) when U ∼GU |Z(·|z), a.e. z ∈RZ :

M∗ ≡ {
(h�GU |Z) ∈M : FY |Z(·|z)� Y(U�z;h) when U ∼GU |Z(·|z), a.e. z ∈RZ

}
� (3.1)

A definition of set identification of structural features follows directly from Definition 3.
Any functional,ψ(h�GU |Z), of a structure (h�GU |Z) is a structural feature and its identified
set is a projection of the set M∗.15

DEFINITION 4: The identified set of structural features ψ(·� ·) under Restrictions A1–A4
is the projection of M∗:

Ψ ≡ {
ψ(h�GU |Z) : (h�GU |Z) ∈M∗}�

The structural features of interest depend on the circumstances encountered. In this
paper the focus is on the identified set of structures M∗ from which identified sets of
structural features are obtained by projection.

13See Molchanov (2005). These definitions are Definition 2.2 on page 26 and Definition 2.19 on page 34.
14The identified set M∗ in Definition 3 depends on the collection of conditional distributions FY |Z , although

we do not make this dependence explicit in our notation.
15The identified set of structural features Ψ depends on both M and the conditional distributions FY |Z , but

for ease of notation we suppress this dependence.
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3.2. Observational Equivalence and Selectionability in U-Space

In this section we set out an equivalent, and in many cases more useful, characterization
of observational equivalence in terms of (a) random sets U(Y�Z;h) whose distribution
is determined by the structural function, h, and a collection of conditional distributions
of outcomes FY |Z and (b) selectionability of the distributions of unobservables, GU |Z , with
respect to the distributions of these randomU-level sets. This alternative characterization
follows directly from a simple duality property of the two types of level sets of structural
functions, namely that for all h and z,

u∗ ∈ U
(
y∗� z;h) ⇐⇒ y∗ ∈Y

(
u∗� z;h)

�

which is so because each inclusion holds if and only if h(y∗� z�u∗)= 0.
The advantage of this new characterization is that it allows direct imposition of restric-

tions on the collection of distributions GU |Z admitted by the model M. Such restrictions—
for example, mean, quantile, full independence, and parametric restrictions—are the
bread and butter of econometrics. The characterization is set out in the following two
theorems.

THEOREM 1: Let Restrictions A1–A3 hold. Then for any z ∈RZ , FY |Z(·|z) is selectionable
with respect to the conditional distribution of Y(U�Z;h) given Z = z when U ∼GU |Z(·|z) if
and only ifGU |Z(·|z) is selectionable with respect to the conditional distribution of U(Y�Z;h)
given Z = z when Y ∼ FY |Z(·|z).

THEOREM 2: Let Restrictions A1–A3 hold. Then (i) structures (h�GU |Z) and (h∗�G∗
U |Z)

are observationally equivalent with respect to FY |Z if and only if GU |Z(·|z) and G∗
U |Z(·|z)

are selectionable with respect to the conditional (on Z = z) distributions of random sets
U(Y�Z;h) and U(Y�Z;h∗), respectively, a.e. z ∈ RZ , where the conditional distributions
of these random sets are delivered by the collection of distributions FY |Z , and (ii) if addition-
ally Restriction A4 holds, then the identified set of structures (h�GU |Z) are those elements of
M such thatGU |Z(·|z) is selectionable with respect to the conditional (on Z = z) distribution
of U(Y�Z;h) a.e. z ∈RZ , where the conditional distributions of U(Y�Z;h) are delivered by
FY |Z .

Theorem 2 expresses observational equivalence and the characterization of the identi-
fied set of structures (h�GU |Z) in terms of selectionability of members of GU |Z relative to
the conditional distribution of the random residual set U(Y�Z;h). Any characterization
of the selectionability condition in Theorem 2 delivers a characterization of the identified
set.

One such characterization that applies when U(Y�Z;h) is a random closed set, given in
Corollary 1, uses Artstein’s inequality characterization of selectionability; see, for exam-
ple, Artstein (1983), Norberg (1992), and Molchanov (2005, Section 1.4.8). This employs
the conditional containment functional of U(Y�Z;h), defined as

Ch(S|z)≡ P
[
U(Y�Z;h)⊆ S|z]�

COROLLARY 1: Under Restrictions A1–A5, the identified set can be written

M∗ ≡ {
(h�GU |Z) ∈M : ∀S ∈ F(RU)�Ch(S|z)≤GU |Z(S|z)� a.e. z ∈RZ

}
� (3.2)

where F(RU) denotes the collection of all closed subsets of RU .
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There are inequalities in this characterization for almost every value of the instrument
z ∈ RZ and for all closed subsets of RU . So the results in the next section showing how
the collection of sets of values of U defining the characterization of M∗ can be reduced
are crucial.

4. CORE-DETERMINING TEST SETS

A collection Q(h� z) of core-determining test sets S is characterized for any h and any
z ∈RZ , such that if, for all S in Q(h� z),

Ch(S|z)≤GU |Z(S|z)� (4.1)

then the same inequality holds for all closed sets S ⊆ RU .16 Consequently, the charac-
terization of M∗ in (3.2) can be written with Q(h� z) replacing F(RU).17 The following
definitions are employed.

DEFINITION 5: The conditional support of random set U(Y�Z;h) given Z = z is
U(h� z):

U(h� z)≡ {
U ⊆RU : ∃y ∈RY |z such that U = U(y� z;h)}.

The collection of sets U∗(h� z) comprises all sets that are unions of elements of U(h� z),

U∗(h� z)≡ {
U ⊆RU : ∃Y ⊆RY |z such that U = U(Y� z;h)},

where

U(Y� z;h)≡
⋃
y∈Y

U(y� z;h)�

For any S ⊆RU , h, and z define the subcollection US(h� z) of U(h� z) as

US(h� z)≡ {
U ∈ U(h� z) : U ⊆ S

}
�

Lemma 1 establishes that, for any (h�GU |Z) and z, if the inequality (4.1) holds for all
sets S in the collection of unions U∗(h� z), then it holds for all S ⊆RU . Theorem 3 defines
a collection of core-determining test sets Q(h� z), which is a refinement of U∗(h� z).

LEMMA 1: Let Restrictions A1–A3 hold. Let z ∈ RZ , h ∈ H, and S ⊆ RU . Let US(h� z)
denote the union of all sets in US(h� z):

US(h� z)≡
⋃

U∈US (h�z)

U � (4.2)

If Ch(US(h� z)|z)≤GU |Z(US(h� z)|z), then Ch(S|z)≤GU |Z(S|z).

16Core-determining sets may also be dependent on GU |Z(·|z) as set out in Theorem 3 below, but this is not
made explicit in the notation.

17Galichon and Henry (2011) introduced core-determining sets for identification analysis considering sets
in outcome space and characterizing core-determining sets for incomplete models that satisfy a certain mono-
tonicity requirement. Here no monotonicity condition is imposed and their definition is extended by intro-
ducing core-determining sets for the characterizations in U -space developed in Section 3, and by allowing
core-determining sets to be specific to the structural relation h and covariate value z.
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THEOREM 3: Let Restrictions A1–A3 hold. For any (h� z) ∈ H × RZ , let Q(h� z) ⊆
U∗(h� z), such that for any S ∈ U∗(h� z) with S /∈ Q(h� z), there exist nonempty collections
S1�S2 ⊆ US(h� z) with S1 ∪ S2 = US(h� z) such that

S1 ≡
⋃
T ∈S1

T � S2 ≡
⋃
T ∈S2

T � and GU |Z(S1 ∩ S2|z)= 0� (4.3)

with S1�S2 ∈ Q(h� z). Then Ch(S|z)≤GU |Z(S|z) for all S ∈ Q(h� z) implies that Ch(S|z)≤
GU |Z(S|z) holds for all closed S ⊆ RU , so that the collection of sets Q(h� z) is core-
determining.

This theorem implies, for example, that if h is such that all level sets U(y� z;h) are
connected, then sets S that can only be written as unions of disjoint sets in U(h� z) can
be excluded from consideration. Corollary 2 gives cases in which certain containment
functional inequalities can be replaced by equalities.

COROLLARY 2: Let ∂S denote the boundary of set S . Define

QE(h� z)≡ {
S ∈ Q(h� z) :GU |Z(∂S|z)= 0 and

∀y ∈RY either U(y� z;h)⊆ S or U(y� z;h)⊆ cl
(
Sc

)}
�

Under the conditions of Theorem 3, the collection of equalities and inequalities

Ch(S|z)=GU |Z(S|z)� all S ∈ QE(h� z)�

Ch(S|z) ≤GU |Z(S|z)� all S ∈ QI(h� z)≡ Q(h� z) \ QE(h� z)

holds if and only if Ch(S|z)≤GU |Z(S|z) for all S ∈ Q(h� z).

There are two classes of models in which all members of Q(h� z) belong to QE(h� z), so
that the identified set may be characterized by only conditional moment equalities.

– Models where U(Y�Z;h) is a singleton set with probability 1. This includes models with
an additive unobservable as in the classical linear IV model, the nonparametric IV model
of Newey and Powell (2003), and the quantile IV model of Chernozhukov and Hansen
(2005).

– Complete models for which Y(U�Z;h) is a singleton set with probability 1. In such
models for any z and any y �= y ′ the sets U(y� z;h) and U(y ′� z;h) have measure zero
intersection. Since Q(h� z) is a collection of sets that are unions of sets on the support of
U(Y�Z;h), for all (y� z), any h, and all S ∈ Q(h� z), either U(y� z;h)⊆ S or U(y� z;h)⊆
cl(Sc).

In models in which all endogenous variables are discrete with finite support, the collec-
tion of core-determining sets is finite and it is possible to enumerate them all. An algo-
rithm for doing this is provided in Chesher and Rosen (2012). In models with continuous
endogenous variables such as the auction model, there is typically an uncountable infinity
of core-determining sets and in applications a selection must be made. This is discussed
further in Sections 6 and 7. 18

18The working paper Chesher and Rosen (2015) additionally explains how particular selections are made in
numerical illustrations of identified sets for Examples 1 and 2 in Section 2.2 in which endogenous variables are
continuous.
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5. IDENTIFIED SETS UNDER RESTRICTIONS ON THE DISTRIBUTION OF (U�Z)

Theorem 2 provides a characterization of the structures (h�GU |Z) contained in the iden-
tified set delivered by a model M and a collection of distributions FY |Z . A key element
of econometric models is restrictions on the conditional distributions of unobserved vari-
ables. In this section we show how some commonly employed restrictions on admissible
collections of conditional distributions GU |Z refine the characterization of an identified
set. The restrictions considered are full stochastic independence, conditional mean, and
conditional quantile independence.

5.1. Stochastic Independence

RESTRICTION SI—Stochastic Independence: For all collections GU |Z of conditional
distributions admitted by M, U and Z are stochastically independent.

Under Restriction SI conditional distributions GU |Z(·|z) cannot vary with z and we
write GU in place of the collection GU |Z , where for all z, GU(·)=GU |Z(·|z).

It follows from Theorem 2 that a structure (h�GU) ∈ M belongs to M∗ if and only
if GU is selectionable with respect to the conditional distribution of the random set
U(Y�Z;h) induced by FY |Z(·|z) a.e. z ∈ RZ . Four characterizations of such structures
are set out in Theorem 4.

THEOREM 4: Let Restrictions A1–A5 and SI hold. Then

M∗ = {
(h�GU) ∈M :GU(·)� U(Y�z;h) when Y ∼ FY |Z(·|z)�a.e. z ∈RZ

}
(5.1)

=
{

(h�GU) ∈M : ∀SI ∈ QI(h� z)�∀SE ∈ QE(h� z)�
Ch(SI |z)≤GU(SI)�Ch(SE|z)=GU(SE)� a.e. z ∈RZ

}
� (5.2)

If Restriction A6 also holds, then, equivalently,

M∗ = {
(h�GU) ∈M : FY |Z(·|z)� Y(U�z;h) when U ∼GU(·)� a.e. z ∈RZ

}
� (5.3)

=
{
(h�GU) ∈M : ∀K ∈ K(RY )�
FY |Z(K|z)≤GU

{
Y(U�z;h)∩K �= ∅}

� a.e. z ∈RZ

}
� (5.4)

where K(RY ) denotes the collection of compact sets in RY .

Theorem 4 presents alternative representations of the identified set under Restric-
tion SI. Characterizations (5.3) and (5.1) arise directly on application of the restriction
to Definition 3.1 and Theorem 2, respectively. The characterization (5.2) applies Theo-
rem 3 and Corollary 2 to define the identified set in terms of the conditional containment
functional of the random set U(Y�Z;h). This representation employs core-determining
sets to reduce the number of moment conditions in the characterization, and distinguishes
which ones hold as equalities and which hold as inequalities.

The characterization (5.4) defines the identified set through conditional moment in-
equalities involving the capacity functional of Y(U�Z;h). This delivers the characteri-
zations provided in Appendix D.2 of BMM11 and in Galichon and Henry (2011) when
applied to incomplete models of games. In general this characterization using random
sets in Y -space, RY , requires the inequalities to hold for all compact sets K ⊂ RY . Sim-
plification is sometimes possible: Galichon and Henry (2011) provides core-determining
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sets in RY when a certain monotonicity condition holds; BMM11 Appendix D.3 provides
alternative conditions under which some inequalities are redundant.

In many cases, the representation (5.2) will be the simplest to use. This characterization
uses the containment functional of the random set U(Y�Z;h), which has support in U-
space. This allows the use of core-determining sets on RU given by Theorem 3, which is in
general a smaller collection of sets than all compact sets in Y -space. The ability to exploit
the structure of sets U(Y�Z;h) for this purpose is a benefit of working in the space of
unobserved heterogeneity. Our construction is based on core-determining sets specific
to each (h� z) pair, while the collections of core-determining sets working in Y -space
characterized by Galichon and Henry (2011) under monotonicity are not.

A further difference between characterizations (5.2) and (5.4) is the way in which they
incorporate restrictions on the distribution of unobserved heterogeneity. Given an admis-
sible distributionGU , use of characterization (5.4) requires computation of the probability
that Y(U�z;h) hits K for each compact set K. This has typically been achieved by means
of simulation from each conjectured distribution GU ; see, for example, Appendix D.2 of
BMM11 and Henry, Meango, and Queyranne (2015).

The characterization (5.2) in U-space shows that there is an alternative to simulating
draws from the distribution of unobservables. Computation using (5.2) requires com-
putation of GU(S) for each conjectured distribution GU and each core-determining
set S , which can be done either by simulation or by numerical integration. Regarding
P[U(Y�Z;h)⊆ S|z], there is the equivalence

P
[
U(Y�Z;h)⊆ S|z] = P

[
Y ∈A(S�Z;h)|z]�

where

A(S�Z;h)≡ {
y ∈RY : U(y�Z;h)⊆ S

}
is the set of values of y that can occur only if U(y�Z;h)⊆ S . Thus P[U(Y�Z;h)⊆ S|z]
is the probability of an event concerning the observed variables (Y�Z), which, for any
structural function h, is point-identified and can be computed directly as a function of
FY |Z(·|z). For instance, an analog estimator using the empirical distribution of (Y�Z)
based on n observations with discrete Z is the sample average

P̂n
[
U(Y�Z;h)⊆ S|z] ≡ 1

nz

n∑
i=1

1
[
yi ∈A(S� z;h)∧ zi = z

]
,

with nz = ∑n

i=1 1[zi = z]. With continuous Z, a kernel estimator could be used for
P̂n[U(Y�Z;h) ⊆ S|z]. The particular form of this probability depends of course on the
structural functions, h, admitted by the model under consideration.19

The characterization of identified sets employing random sets in U-space leads directly
to Corollary 3, which characterizes bounds on the structural function h under Restric-
tion SI, without explicit reference to GU .

19For explicit examples of the form of P[U(Y�Z;h)⊆ S|z] in terms of events involving observable variables,
see expressions (6.6), (6.7), and (6.8) in the analysis of the auction model in Section 6, and also the containment
functional inequalities in Section 6.2 and Supplementary Appendix C of the working paper version (Chesher
and Rosen (2015)).
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COROLLARY 3: If Restrictions A1–A5 and SI hold, and GU |Z is otherwise unrestricted, the
set

H∗ =
{
h ∈H : ∀S ∈ S� sup

z∈RZ

Ch(S|z)≤ inf
z∈RZ

(
1 −Ch

(
Sc|z))} (5.5)

comprises bounds on h, such that H∗ ⊆ H∗ for any collection of test sets S. If, in addi-
tion, GU(∂S) = 0, then (5.5) may be strengthened to supz∈RZ

Ch(cl(S)|z) ≤ infz∈RZ
(1 −

Ch(cl(Sc)|z)).

In (5.5), 1 − Ch(Sc|z)= P[U(Y�Z;h) ∩ S �= ∅|Z = z] is the conditional capacity func-
tional of U(Y�Z;h) given Z = z. The result is obtained using an upper bound on GU(S)
produced by applying the containment functional inequalities in Theorem 4 to Sc , the
complement of S , in conjunction with the containment functional inequality (4.1). This
simple projection result is useful in situations in which GU is not parametrically specified,
characterizing bounds on the structural function without the need to explicitly posit distri-
butions of unobserved U that, coupled with these structural functions, could have deliv-
ered the data. The conditionGU(∂S)= 0 holds in many instances, for example, when sets
S are convex and GU is restricted to be absolutely continuous with respect to Lebesgue
measure by Theorem 1 of Lang (1986). The continuity restriction rules out, for example,
the possibility of unobservable random variables having point mass at threshold values in
discrete outcome models, in which case the strengthened version of inequalities can be
tighter.

5.2. Mean Independence

RESTRICTION MI—Mean Independence: Let GU |Z comprise all collections GU |Z of
conditional distributions for U given Z satisfying E[U |z] = c, a.e. z ∈RZ , for some fixed,
finite c belonging to a known set C ⊆RU .

This restriction limits the collection GU |Z to those containing conditional distributions
GU |Z(·|z) such that E[U |z] is equal to a constant c that does not vary with z. This covers
cases where numerical values are provided for some components of c but not for others.
For instance, in a model with bivariateU , Restriction MI with C = {(c1� c2) : c1 = 0� c2 ∈R}
restricts E[U1|z] = 0, which could be a normalization, and restricts E[U2|z] to be invariant
with respect to z.

Under Restriction MI it is convenient to characterize the selectionability criterion of
Theorem 2 using the Aumann expectation.20

DEFINITION 6: The Aumann expectation of random set A is

E[A] ≡ cl
{
E[A] :A ∈ Sel(A) and E[A]<∞}

Molchanov (2005, p. 151). The Aumann expectation of random set A conditional on B=
b is

E[A|b] ≡ cl
{
E[A|b] :A ∈ Sel(A) and E[A|b]<∞}

�

20For random sets defined on finite-dimensional spaces, such as those considered under Restriction A3,
application of the closure operator in Definition 6 is not necessary; see, for example, Nguyen (2006, p. 184).
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A characterization of the identified sets for structural function h and for the structure
(h�GU |Z) under Restriction MI is given in the following theorem.

THEOREM 5: Let Restrictions A1–A5 and MI hold and suppose that (Ω�L�P) is
nonatomic. Then the identified set for structural function h comprises those functions h
such that some c ∈ C is an element of the Aumann expectation of U(Y�Z;h) conditional on
Z = z a.e. z ∈RZ :

H∗ = {
h ∈H : ∃c ∈ C s.t. for almost every z ∈RZ� c ∈ E

[
U(Y�Z;h)|z]}�

The identified set for (h�GU |Z) is

M∗ = {
(h�GU |Z) ∈M : h ∈H∗ and GU |Z(·|z)� U(Y�Z;h)

conditional on Z = z� a.e. z ∈RZ

}
�

where by virtue of Restriction MI all structures (h�GU |Z) ∈ M∗ ⊆ M are such that for some
c ∈ C, E[U |z] = c a.e. z ∈RZ .

Knowledge of properties of the random set U(Y�Z;h) can be helpful in characteriz-
ing its Aumann expectation and, consequently, in determining whether any particular h
is in H∗. For example, if U(Y�Z;h) is integrable, then from Molchanov (2005, Theo-
rem 2.1.47-iv, p. 171), c ∈ E[U(Y�Z;h)|z] if and only if

inf
v∈RU :‖v‖=1

{
E

[
m

(
v�U(Y�Z;h))|z] − v′c

} ≥ 0� (5.6)

where for any set S ,

m(v�S)≡ sup{v · s : s ∈ S}
denotes the support function of S evaluated at v.21 BMM11 employed Theorem 2.1.47-iv
of Molchanov (2005, p. 171) when using the conditional Aumann expectation of random
outcome set Y(Z�U;h) to characterize its measurable selections. As was the case in their
analysis, use of the support function inequality (5.6) can provide computational tractabil-
ity. This is particularly so when the dimension of RU exceeds 1, as it can be used to
circumvent explicit computation of the Aumann expectation for the purpose of verifying
whether c ∈ E[U(Y�Z;h)|z] for some c ∈ C.

In comparison to the sharp bound characterizations of BMM11, if the structural func-
tion h is additively separable in Y , the two representations are equivalent, differing only
by a trivial location shift. On the other hand, if h is not additively separable in U , the con-
ditional mean restriction MI cannot generally be written as a conditional mean restriction
onY , and previous identification results using the Aumann expectation in Y -space appear
inapplicable. Theorem 5 provides a characterization for the identified set in such cases.
The insight of BMM11 that the support function can be used to bypass explicit computa-
tion of the Aumann expectation of a multivariate random set remains applicable.

Theorem 5 can be generalized to characterize H∗ under more general forms of condi-
tional mean restrictions as expressed in Restriction MI∗.

21A random set is integrable if it has at least one measurable selection with finite L1 norm; see Molchanov
(2005, Definition 1.1, p. 146, and Definition 1.11(ii) pp. 150–151).
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RESTRICTION MI∗: Let GU |Z comprise all collections GU |Z of conditional distribu-
tions for U given Z such that for some known function d(·� ·) : RU × RZ → R

kd ,
E[d(U�Z)|z] = c a.e. z ∈ RZ , for some fixed c belonging to a known set C ⊆ R

kd , where
d(u�z) is continuous in u for all z ∈RZ .

Restriction MI∗ requires that the conditional mean given Z = z of some function
d(U�Z) taking values in R

kd does not vary with respect to z. This restriction can ac-
commodate models that impose conditional mean restrictions on functions of unobserv-
ables U , for example, homoskedasticity restrictions or restrictions on covariances of ele-
ments of U . To express the identified set delivered under restriction MI∗ define

D(y� z;h)≡ {
d(u�z) : u ∈ U(y� z;h)}�

Then D(Y�Z;h) is a random set of feasible values for d(U�Z) given observed (Y�Z).
This set is closed under the requirement of Restriction MI∗ that d(·� z) is continuous for
each z. The arguments that deliver Theorem 5 yield the following result.

COROLLARY 4: Let Restrictions A1–A5 and MI∗ hold and suppose that (Ω�L�P) is
nonatomic. Then the identified set for structural function h are those h such that there exists
at least one c ∈ C that is an element of the Aumann expectation of D(Y�Z;h) conditional
on Z = z a.e. z ∈RZ :

H∗ = {
h ∈H : ∃c ∈ C s.t. for almost every z ∈RZ� c ∈ E

[
D(Y�Z;h)|z]}�

The identified set for (h�GU |Z) is

M∗ = {
(h�GU |Z) ∈M : h ∈H∗ and GU |Z(·|z)� U(Y�Z;h)

conditional on Z = z� a.e. z ∈RZ

}
�

where, by Restriction MI∗, all structures (h�GU |Z) ∈ M∗ ⊆ M are such that for some c ∈ C,
E[d(U�Z)|z] = c a.e. z ∈RZ .

As before, the support function can be useful for computation because it can be used to
verify whether c ∈ E[D(Y�Z;h)|z] by use of (5.6) with D(Y�Z;h) in place of U(Y�Z;h)
as long as D(Y�Z;h) is integrable.

5.3. Quantile Independence

Conditional quantile restrictions on the distribution of unobserved U can also be ac-
commodated. This is illustrated in a simple setting under Restriction IS.

RESTRICTION IS—Interval Support: Let RU ⊆ R and for all (y� z) ∈RYZ ,

U(y� z;h)= [
u(y� z;h)�u(y� z;h)]� (5.7)

where possibly u(y� z;h) = −∞ or u(y� z;h) = +∞, in which case the corresponding
endpoint of the interval (5.7) is open.

The conditional quantile restriction is as follows.
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RESTRICTION QI—Quantile Independence: For some known τ ∈ (0�1) and some
known set C ⊆ R, GU |Z comprises all collections GU |Z of conditional distributions for U
given Z that satisfy qU |Z(τ|z)= c , a.e. z ∈RZ for some c ∈ C.

THEOREM 6: Let Restrictions A1–A5, IS, and QI hold. Then (i) the identified set for
structural function h is

H∗ =
{
h ∈H : ∃c ∈ C s.t.

(5.8)
sup
z∈RZ

P
[
u(Y�Z;h) < c|z] ≤ τ ≤ inf

z∈RZ

P
[
u(Y�Z;h)≤ c|z]}�

(ii) If u(Y�Z;h) and u(Y�Z;h) are continuously distributed conditional on Z = z, a.e.
z ∈RZ , then an equivalent formulation of H∗ is given by

H∗ =
{
h ∈H : ∃c ∈ C s.t. sup

z∈RZ

q(τ� z;h)≤ c ≤ inf
z∈RZ

q(τ� z;h)
}

, (5.9)

where q(τ� z;h) and q(τ� z;h) are the τ-quantiles of, respectively, u(Y�Z;h) and u(Y�
Z;h).

(iii) The identified set for (h�GU |Z) is

M∗ = {
(h�GU |Z) ∈M : h ∈H∗ and GU |Z(·|z)� U(Y�Z;h)

conditional on Z = z, a.e. z ∈RZ

}
,

where following from Restriction QI, all structures (h�GU |Z) ∈ M∗ ⊆ M are such that for
some c ∈ C, qU |Z(τ|z)= c, a.e. z ∈RZ .

Under Restriction QI both GU |Z((−∞� c]|z) ≥ τ and GU |Z((−∞� c)|z) ≤ τ hold, and
the inequalities comprising (5.8) then follow from u(Y�Z;h) ≤ U ≤ u(Y�Z;h) and
use of the conditional containment inequality Ch(S|z) ≤ GU |Z(S|z) applied to test sets
S = (−∞� c) and S = (c�∞). In the proof of Theorem 6 it is shown that for any h and
any c, if the containment functional inequalities hold for these two test sets, then a ran-
dom variable Ũ can be found with admissible conditional distributions GU |Z such that the
containment functional inequalities hold for all closed test sets in RU . From Corollary 1
it follows that the characterization (5.8) is sharp.

The second part of Theorem 6 follows because when u(Y�Z;h) and u(Y�Z;h) are
continuous, the lower bound in (5.8) is equivalent to P[u(Y�Z;h) ≤ c|z], and both in-
equalities in (5.8) involving cumulative distributions of u(Y�Z;h) and u(Y�Z;h)may be
inverted. Then H∗ may be equivalently expressed as inequalities involving the lower and
upper envelopes, q(τ� z;h) and q(τ� z;h), respectively, of conditional quantile functions
for measurable selections of U(Y�Z;h). The third part of Theorem 6 states that the iden-
tified set of structures (h�GU |Z) are elements of H∗ paired with distributions GU |Z(·|z)
that are selectionable with respect to the conditional distribution of U(Y�Z;h) given
Z = z, a.e. z ∈RZ .

These results can be applied, for instance, to single equation regression models with
censored variables and quantile restrictions, such as those of Hong and Tamer (2003), and
Khan, Ponomareva, and Tamer (2011), as well as the model of Example 2 in Section 2.2
in which the endogenous variable is censored.22

22See Appendix C of the working paper Chesher and Rosen (2015) for the characterization delivered by
models with structural function as described in Example 2.
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6. AN INCOMPLETE MODEL OF AUCTIONS

This section demonstrates the power of our approach in delivering characterizations
of identified sets by resolving the question posed in Haile and Tamer (2003) (henceforth
HT) regarding the sharpness of the bounds on valuation distributions in English auc-
tions developed in that paper. Our new characterization of the identified set includes the
pointwise lower and upper bounds on valuation distribution functions derived in HT and
refines these bounds with additional inequalities that restrict the shape of the valuation
distribution function as it passes between the HT bounds. Our approach obviates the need
for a constructive proof of sharpness, which, as noted in HT, is difficult to produce in the
auction model.

We study the HT model in which a known number, M , of bidders have valuations that
are independent realizations drawn from a common conditional distribution of valuations
given observed auction characteristics Z = z, denoted Az(v)≡ P[V ≤ v|Z = z]. Bidders
engage in an open outcry ascending English auction. HT develops pointwise bounds on
Az(v) that hold at each value v. To simplify the exposition there is no minimum reserve
price or minimum bid increment.23

We first set the auction model in the framework introduced in Section 2, defining a
structural function for the auction model and its U-level sets. We then apply Theorem 4
and the results in Section 4 on core-determining sets to deliver a characterization of sharp
bounds on valuation distributions supported by the HT model.

As in HT we consider the information contained in the joint distribution of ordered final
bids, Y = (Y1� � � � �YM). Here and later, inM-element ordered lists, indexM identifies the
highest value. Realizations of V = (V1� � � � � VM) are ordered, continuously distributed val-
uations of the bidders. Let Ũ ∈ [0�1]M be M mutually independent uniform random vari-
ables with Ũ ‖ Z and with order statistics U ≡ (U1� � � � �UM). Ordered valuations can be
expressed as functions of these uniform order statistics as Vm =A−1

z (Um),m ∈ {1� � � � �M},
where A−1

z is the quantile function associated with the distribution function Az .
The HT model includes the restrictions that (i) no one bids more than their valuation,

which implies that the inequality in order statistics Vm ≥ Ym holds for all m, and (ii) no
one allows an opponent to win at a price they are willing to beat, which requires the
second highest valuation to be no larger than the winning bid, YM ≥ VM−1.24�25 Applying
the strictly monotone function Az to both sides of these inequalities gives

Az(YM)≥UM−1 ∀m :Az(Ym)≤Um�

which leads to a structural function for the HT model:

h(y� z�u)= max
{
uM−1 −Az(yM)�0

}
(6.1)

+
M∑
m=1

max
{
Az(ym)− um�0

}
� y1 ≤ · · · ≤ yM�u1 ≤ · · · ≤ uM�

The vector of M uniform order statistics, U , has constant density function equal to M!
supported on RU , which is the orthoscheme of the unit M-cube in which U1 ≤ · · · ≤UM ;

23With a known reserve price r our analysis delivers the identified set for the distribution of valuations
truncated below at r. A simple adjustment to accommodate a nonzero minimum bid increment is indicated
below.

24As before, inequalities in random variables are required to hold almost surely.
25With a minimum bid increment of Δ this inequality is YM +Δ≥ VM−1.
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see David and Nagaraja (2003). Let GU(S) denote the probability mass placed by this
distribution on a set S ⊆RU . Structures in this model are pairs (h�GU), where h is the
structural function given in (6.1) andGU is the known distribution of uniform order statis-
tics. The U-level sets of the structural function (6.1) are

U(y� z;h)=
{
u ∈RU : (Az(yM)≥ uM−1

) ∧
M∧
m=1

(
Az(ym)≤ um

)}
� (6.2)

Lemma 1 states that core-determining test sets that characterize the identified set for
Az(·) are unions of these U-level sets. There is an uncountable infinity of such unions, so
we study a selection of unions of U-level sets, S(y ′� y ′′

M�z;h), defined as

S
(
y ′� y ′′

M�z;h
) ≡

⋃
yM∈[y′M�y′′M ]

U
((
y ′

1� y
′
2� � � � � y

′
M−1� yM

)
� z;h)

� y ′′
M ≥ y ′

M ≥ · · · ≥ y ′
1� (6.3)

The part of RU occupied by such a contiguous union is

S
(
y ′� y ′′

M�z;h
) =

{
u : (Az

(
y ′′
M

) ≥ uM−1

) ∧
(

M∧
m=1

(
um ≥Az

(
y ′
m

)))}
� (6.4)

These are termed contiguous unions because they are unions ofU-sets that are contiguous
along a sequence determined by an interval of values [y ′

M�y
′′
M] of the largest ordered bid.

Contiguous unions of U-level sets and unions of such contiguous unions comprise a core-
determining collection of sets.

Applied to contiguous unions the containment functional inequality given in (5.2) in
Theorem 4 requires that for each z, all valuation distributions, Az , in the identified set
satisfy

GU

(
S

(
y ′� y ′′

M�z;h
)) ≥ P

[
U(Y�Z;h)⊆ S

(
y ′� y ′′

M�z;h
)|z] (6.5)

for all M , and y ′ and y ′′
M such that y ′′

M ≥ y ′
M ≥ · · · ≥ y ′

1. If a model restricts the valuation
distribution to a parametric family, these inequalities place restrictions on parameter val-
ues.

On the left hand side of (6.5) there is the probability

GU

(
S

(
y ′� y ′′

M�z;h
))

=M!
∫ 1

Az(y
′
M)

∫ min(uM�Az(y′′M))

Az(y
′
M−1)

∫ uM−1

Az(y
′
M−2)

· · ·
∫ u2

Az(y
′
1)

duM duM−1 duM−2 · · · du1�

which follows directly from (6.4) and the known uniform distribution of the uniform order
statistics U on the orthoscheme RU . This is a degree-M polynomial function of the con-
ditional distribution function of valuations evaluated at y ′′

M ≥ y ′
M ≥ · · · ≥ y ′

1, which may be,
but need not be, M + 1 distinct values. It does not depend on the probability distribution
of final bids and in estimation of the identified set it can be calculated without reference
to data.
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On the right hand side of (6.5) is the containment functional of S(y ′� y ′′
M�z;h):26

P
[
U(Y�Z;h)⊆ S

(
y ′� y ′′

M�z;h
)|z] = P

[(
y ′′
M ≥ YM ≥ y ′

M

) ∧
(
M−1∧
m=1

(
Ym ≥ y ′

m

))∣∣∣z]� (6.6)

This does not depend on the distribution Az . It is entirely determined by the joint distri-
bution of ordered bids and in estimation of the identified set it can be calculated once and
for all at the start of the search for the identified set of valuation distributions.

Particular choices of y ′ and y ′′
M deliver the pointwise bounds in HT as follows. Plugging

y ′′
M = +∞, y ′

m = −∞ for m< n, and y ′
m = v for m≥ n into (6.5) delivers the inequality

P
[
Un ≥Az(v)|Z = z] ≥ P[Yn ≥ v|z]� (6.7)

The marginal distribution of Un, the nth ofM uniform order statistics, is Beta(n�M+ 1 −
n). Let Q(·� n�M) denote the quantile function of this distribution. Transforming both
sides of (6.7) expressed in terms of distribution functions using this quantile function
gives

Az(v)≤Q(
P[Yn ≤ v|z]� n�M)

�

which holds for all n, leading to

Az(v)≤ inf
n∈{1�����M}

Q
(
P[Yn ≤ v|z]� n�M)

�

which is the pointwise upper bound in Theorem 1 of HT.
Plugging y ′′

M = v and y ′ = (−∞� � � � �−∞) into (6.5) delivers, after a similar manipula-
tion, the inequality

Az(v)≥Q(
P[YM ≤ v|z]�M − 1�M

)
�

which is the pointwise lower bound in Theorem 3 of HT.
These M + 1 contiguous unions are the only sets in the list of core-determining sets

that are determined by a single value of Y . Choices of y ′ and y ′′
M determined by more than

one value of Y lead to inequalities that restrict values of Az(·) at more than one value
of its argument. These inequalities restrict the path taken by the distribution function
Az(·) as it passes between the HT pointwise bounds. For example, plugging y ′′

M = v3 and
y ′ = (−∞� � � � �−∞� v1� v2) into (6.5) delivers the inequality

M
(
1 −Az(v3)

)(
Az(v3)

M−1 −Az(v1)
M−1

)
−MAz(v1)

M−1
(
Az(v3)−Az(v2)

) + (
Az(v3)

M −Az(v2)
M

)
(6.8)

≥ P[v3 ≥ YM ≥ v2 ∧YM−1 ≥ v1|z]�
which, for any z, holds for all valuation distributions Az in the identified set for all v1 ≤
v2 ≤ v3.

To demonstrate that the new inequalities can be informative we consider a population
of two bidder auctions in which the valuation distribution is an equally weighted mixture
of normal distributions, N(10�1) and N(12�5�0�52), truncated below at zero. The final

26The inequalities in Y on the right hand side follow directly from inspection of (6.2) and (6.4) once they
are written in terms of Az(y) and Az(Y), which is valid since Az is strictly monotone increasing.
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FIGURE 1.—Values of valuation distribution functions φ = (Az(11�5)�Az(12�5)) for a particular distribu-
tion of ordered final bids. The straight light solid line is the 45◦ line. The rectangular box shows the HT point-
wise bounds. The solid curved and dashed lines are delivered by the new inequalities. Values of φ above the
solid curved line, below the dashed line, or outside the HT box cannot lie on valuation distribution functions
in the identified set.

bid of a low valuation bidder is their valuation minus an amount that is the absolute value
of an independent realization of a standard normal variable.27 The final bid of a high
valuation bidder is a weighted average of the low and high valuations with the weight
given by a realization of a uniform variate with support on [0�1]. For the purpose of
illustration, containment functional probabilities (6.6) are approximated using the result
of 106 simulated independent auctions from this population.

Figure 1 shows combinations of values of the valuation distribution function Az(v)
at v ∈ (11�5�12�5) with Az(11�5) plotted horizontally. The boundaries of the rectan-
gular region in Figure 1 shows the upper and lower HT pointwise bounds on φ ≡
(Az(11�5)�Az(12�5)) obtained with the distribution of ordered final bids just described.
The valuation distribution function is monotone increasing so the HT pointwise bounds
admit only values of φ inside the rectangular region and above the 45◦ line. The curved
lines show the bounds delivered using (6.8) with (v1� v2� v3)= (11�5�12�5�∞) (solid) and
(v1� v2� v3)= (11�5�11�5�12�5) (dashed). Only values of φ lying below the solid curve and
above the dashed curve and in the rectangular box are feasible values of valuation distri-
bution functions that reside in the identified set. There are similar results at other choices

27Zero in the unlikely event this calculation delivers a negative number.
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of values of V . The impact of the new restrictions on the identified set will depend on the
distribution of ordered final bids.

Considering all possible choices for y ′ and y ′′
M in the contiguous unions of U-level sets

(6.3) yields, via (6.5), a dense system of inequalities involving values of the conditional
distribution function of valuations at all choices of up to M + 1 values of its arguments.
A complete characterization of the identified set of valuation distributions also involves
consideration of an uncountable infinity of unions of contiguous unions so there is no
limit to the number of coordinates of valuation distributions simultaneously constrained
by the HT model.

This auction model example highlights two major advantages of the method we advance
in this paper. First, our method can deliver the entire system of inequalities defining an
identified set, many of which are not plain to see. Of course in computations with finite
amounts of data and computing resources, a selection of inequalities must be made and
research is needed on the design of such selections and, if design is data driven, on its
impact on estimation and inference. Second, our method necessarily delivers a character-
ization of the sharp identified set, obviating the need for constructive proof of sharpness,
which is difficult to obtain for the HT model and, indeed, for many other models.

7. CONCLUSION

This paper provides characterizations of identified sets of structures and structural fea-
tures for a very broad class of models. It delivers results for complete and incomplete
models and for partially and point identifying models. The results apply to models in
which the inverse of the structural mapping from unobserved heterogeneity to observed
endogenous variables may not be uniquely valued. Models with discrete and censored
endogenous variables fall under this heading, as do models permitting general forms of
multivariate unobserved heterogeneity, such as random coefficient models and models
placing inequality constraints on unobserved and endogenous variables.

The results extend the scope of application of instrumental variables for use in struc-
tural econometric models, in view of which we have described the class of models covered
here as generalized instrumental variable models. It is straightforward to incorporate in-
strumental variable restrictions involving conditional mean or quantile independence of
unobserved variables and instruments as well as full stochastic independence. However,
the coverage of the results is wider because in some of the models to which the results
apply instrumental variable restrictions play no significant role. The incomplete model of
English auctions studied in Section 6 is one such model.

The characterizations developed here always deliver sharp bounds, removing the need
for case-by-case constructive proofs of sharpness. This is a great benefit since it is often
difficult to formulate such proofs as, for example, is the case in the incomplete model of
English auctions.

All of the characterizations of identified sets presented in this paper can be expressed
as systems of conditional moment inequalities and equalities. These can be employed
for estimation and inference using a variety of approaches from the recent literature.
With discrete conditioning variables, identified sets can be expressed using unconditional
moment inequalities, and inference may be conducted as in Chernozhukov, Hong, and
Tamer (2007), Beresteanu and Molinari (2008), Romano and Shaikh (2008, 2010), Rosen
(2008), Andrews and Guggenberger (2009), Andrews and Soares (2010), Andrews and
Jia-Barwick (2010), Bugni (2010), Canay (2010), or Romano, Shaikh, and Wolf (2014).
With continuous conditioning variables inference using conditional moment inequalities
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can be performed; see, for example, Andrews and Shi (2013, 2014), Chernozhukov, Lee,
and Rosen (2013), Lee, Song, and Whang (2013b, 2013a), Armstrong (2014, 2015), and
Chetverikov (2011).

In some models the number of inequality restrictions fully characterizing an identified
set can be large relative to the sample size. This is a problem that arises more generally
and it is the subject of current research; see, for example, Menzel (2009), Chernozhukov,
Chetverikov, and Kato (2013), and Andrews and Shi (2017).

The complexity of the characterizations that can arise when using the results of this
paper are simply the consequence of using complete characterizations of identified sets,
which the methods of this paper always deliver. Compare, for example, the simplicity
of the pointwise bounds on valuation distributions in the English auction model of Sec-
tion 6 and the complexity of the complete characterization of the identified set of valua-
tion distributions obtained using the results of this paper. The additional inequalities af-
forded by the sharp characterization will generally deliver tighter bounds, and so their use
can be beneficial. In practice, the benefit of incorporating additional inequalities must be
weighed against computational cost and the quality of inference must be considered too.
In the working paper Chesher and Rosen (2015) we demonstrate approaches for selecting
finite collections of inequalities from the uncountable infinity of inequalities characteriz-
ing the identified set in some continuous outcome models. There is a need for research
into optimal inequality selection procedures that take into account the error in approx-
imating the identified set when using a particular finite selection of inequalities and the
quality of inference, which may decline as more inequalities are considered.

APPENDIX: PROOFS

PROOF OF THEOREM 1: Fix z ∈ RZ and suppose that FY |Z(·|z) is selectionable with
respect to the conditional distribution of Y(U�Z;h) given Z = z. By Restriction A3, U
is conditionally distributed GU |Z(·|z) given Z = z, and thus selectionability implies that
there exist random variables Ỹ and Ũ such that

(i) Ỹ |Z = z ∼ FY |Z(·|z),
(ii) Ũ |Z = z ∼GU |Z(·|z),

(iii) P[Ỹ ∈Y(Ũ�Z;h)|Z = z] = 1.
By Restriction A3, Ỹ ∈ Y(Ũ�Z;h) if and only if h(Ỹ �Z� Ũ) = 0; equivalently, Ũ ∈

U(Ỹ �Z;h). Condition (iii) is therefore equivalent to

P
[
Ũ ∈ U(Ỹ �Z;h)|Z = z] = 1. (A.1)

Thus there exist random variables Ỹ and Ũ satisfying (i) and (ii) such that (A.1) holds,
and, equivalently, such that GU |Z(·|z) is selectionable with respect to the conditional dis-
tribution of U(Y�Z;h) given Z = z. The choice of z was arbitrary, and the argument thus
follows for all z ∈RZ . Q.E.D.

The proof of Theorem 2 follows directly from application of Theorem 1 to Definitions
2 and 3.

PROOF OF COROLLARY 1: From the selectionability characterization of M∗ inU-space
in Theorem 2, we have that

M∗ = {
(h�GU) ∈M :GU(·|z)� U(Y�z;h) when Y ∼ FY |Z(·|z), a.e. z ∈RZ

}
�
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Fix z ∈ RZ and suppose Y ∼ FY |Z(·|z). From Artstein’s inequality (see Artstein (1983),
Norberg (1992), or Molchanov (2005, Section 1.4.8.)), GU(·|z)� U(Y�z;h) if and only if

∀K ∈ K(RU)� GU(K|z)≤ FY |Z
[
U(Y�z;h)∩K �= ∅|z],

where K(RZ) denotes the collection of all compact sets on RU . By Corollary 1.4.44 of
Molchanov (2005) this is equivalent to

∀S ∈ O(RU)� GU(S|z)≤ FY |Z
[
U(Y�z;h)∩ S �= ∅|z],

where O(RU) is the collection of all open subsets of RU . Because GU(S|z) = 1 −
GU(Sc|z) and

FY |Z
[
U(Y�z;h)⊆ Sc|z] = 1 − FY |Z

[
U(Y�z;h)∩ S �= ∅|z],

this is equivalent to

∀S ∈ O(RU)� FY |Z
[
U(Y�z;h)⊆ Sc|z] ≤GU

(
Sc|z).

The collection of Sc such that S ∈ O(RU) is precisely the collection of closed sets on RU ,
F(RU), completing the proof. Q.E.D.

PROOF OF LEMMA 1: The set US(h� z) is a union of sets contained in S , so that
US(h� z)⊆ S and

GU |Z
(
US(h� z)|z

) ≤GU |Z(S|z)� (A.2)

By supposition we have

Ch
(
US(h� z)|z

) ≤GU |Z
(
US(h� z)|z

)
� (A.3)

The result then holds because Ch(S|z)= Ch(US(h� z)|z), since

Ch
(
US(h� z)|z

) ≡ P
[
U(Y�Z;h)⊆ US(h� z)|Z = z]

=
∫
y∈RY |z

1
[
U(y� z;h)⊆ US(h� z)

]
dF∗

Y |Z(y|z)

=
∫
y∈RY |z

1
[
U(y� z;h)⊆ S

]
dF∗

Y |Z(y|z)

= Ch(S|z)�
where F∗

Y |Z denotes the conditional cumulative distribution function of Y given Z. The
second line follows by the law of total probability, and the third line follows by definition
of US(h� z)in (4.2). Combining Ch(US(h� z)|z)= Ch(S|z) with (A.2) and (A.3) completes
the proof. Q.E.D.

PROOF OF THEOREM 3: Fix (h� z). Suppose that

∀U ∈ Q(h� z)� Ch(U |z)≤GU |Z(U |z)� (A.4)
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Let S ∈ U∗(h� z) and S /∈ Q(h� z). Since S /∈ Q(h� z) there exist nonempty collections of
sets S1�S2 ∈ US(h� z) with S1 ∪ S2 = US(h� z) such that

S1 ≡
⋃
T ∈S1

T ∈ Q(h� z)� S2 ≡
⋃
T ∈S2

T ∈ Q(h� z)

and

GU |Z(S1 ∩ S2|z)= 0� (A.5)

Since S1�S2 ∈ Q(h� z) we also have that

Ch(S1|z)≤GU |Z(S1|z) and Ch(S2|z)≤GU |Z(S2|z). (A.6)

Because S1 ∪ S2 = US(h� z),

U(Y�z;h)⊆ S ⇒ {
U(Y�z;h)⊆ S1 or U(Y�z;h)⊆ S2

}
� (A.7)

Using (A.7), (A.6), and (A.5) in sequence we then have

Ch(S|z)≤ Ch(S1|z)+Ch(S2|z)≤GU |Z(S1|z)+GU |Z(S2|z)=GU |Z(S|z).
Combined with (A.4) this implies Ch(S|z)≤GU |Z(S|z) for all S ∈ U∗(h� z) and hence all
S ⊆RU by Lemma 1, completing the proof. Q.E.D.

PROOF OF COROLLARY 2: Consider any S ∈ QE(h� z). Then for all y ∈ Y , either
U(y� z;h)⊆ S or U(y� z;h)⊆ cl(Sc). Thus

Ch(S|z)+Ch
(
cl

(
Sc

)|z) = P
[
U(Y�Z;h)⊆ S|z] + P

[
U(Y�Z;h)⊆ cl

(
Sc

)|z] = 1. (A.8)

The inequalities of Theorem 3 imply that

GU |Z(S|z)≥ Ch(S|z) and GU |Z
(
cl

(
Sc

)|z) ≥ Ch
(
cl

(
Sc

)|z).

Then GU |Z(∂S|z) = 0 implies that GU |Z(S|z) + GU |Z(cl(Sc)|z) = 1, which taken with
(A.8) implies that both inequalities hold with equality. Q.E.D.

PROOF OF THEOREM 4: By Restriction SI, GU |Z(·|z) =GU(·) a.e. z ∈ RZ . Equations
(5.3) and (5.1) follow from (3.1) and Theorem 2, respectively, upon substitutingGU(·) for
GU |Z(·|z). Equation (5.2) follows by Corollary 2, again replacing GU |Z(·|z) with GU(·).
Equivalence of (5.1) and (5.4) with GU |Z(·|z)=GU(·) holds by Artstein’s inequality; see,
for example, Molchanov (2005, Corollary 4.44, pp. 69–70). Q.E.D.

PROOF OF COROLLARY 3: For any (h�GU) ∈ M∗ we have that for any S and a.e. z ∈
RZ , both Ch(Sc|z)≤GU(Sc) and Ch(S|z)≤GU(S). Then since GU(Sc)= 1 −GU(S),

Ch(S|z)≤GU(S)= 1 −GU

(
Sc

) ≤ 1 −Ch
(
Sc|z). (A.9)

If in addition GU(∂S) = 0, then GU(Sc) = GU(cl(Sc)) and GU(S) = GU(cl(S)). Since
Ch(cl(Sc)|z)≤GU(cl(Sc)), then

Ch
(
cl(S)|z) ≤GU

(
cl(S)

) =GU(S)= 1 −GU

(
cl

(
Sc

)) ≤ 1 −Ch
(
cl

(
Sc

)|z). (A.10)

Since (A.9) and (A.10) hold for a.e. z ∈RZ , this completes the proof. Q.E.D.
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PROOF OF THEOREM 5: Restrictions A3 and A5 guarantee that U(Y�Z;h) is in-
tegrable and closed. In particular integrability holds because by Restriction A3 first
GU |Z(S|z)≡ P[U ∈ S|z] so that, for some finite c ∈ C, E[U |z] = c a.e. z ∈RZ , and second
P[h(Y�Z�U)= 0] = 1 so that

U ∈ U(Y�Z;h)≡ {
u ∈RU : h(Y�Z�u)= 0

}
,

implying that U(Y�Z;h) has an integrable selection, namely U . From Definition 6, c ∈
E[U(Y�Z;h)|z] a.e. z ∈ RZ therefore holds if and only if there exists a random variable
Ũ ∈ Sel(U(Y �Z;h)) such that E[Ũ |z] = c a.e. z ∈ RZ , and hence H∗ is the identified set
for h. The representation of the identified set of structures M∗ then follows directly from
Theorem 2. Q.E.D.

PROOF OF COROLLARY 4: Restrictions A3 and A5 and the continuity requirement of
Restriction MI∗ guarantee that D(Y�Z;h) is integrable and closed. From Definition 6,
for any c ∈ C, c ∈ E[D(Y�Z;h)|z] a.e. z ∈ RZ therefore holds if and only if there exists
a random variable D�D(Y�Z;h) such that E[D|z] = c a.e. z ∈ RZ . The condition D�
D(Y�Z;h) ensures that

P
[
D ∈D(Y�Z;h)|z] = 1� a.e. z ∈RZ .

Define

Ũ(D�Y�Z;h)≡ {
u ∈ U(Y�Z;h) :D= d(u�Z)}.

By the definition of D(Y�Z;h), D ∈D(Y�Z;h) implies that Ũ(D�Y�Z;h) is nonempty.
Hence there exists a random variable Ũ such that with probability 1, Ũ ∈ Ũ(D�Y�Z;h)⊆
U(Y�Z;h), where D = d(Ũ�Z). Thus Ũ is a measurable selection of U(Y�Z;h) and
E[d(Ũ�Z)|z] = c a.e. z ∈ RZ . Therefore H∗ is the identified set for h, and the given
characterization of M∗ follows. Q.E.D.

PROOF OF THEOREM 6: Using Corollary 1 and Definition 4 with ψ(h�GU |Z) = h, the
identified set of structural functions h is

H∗∗ = {
h ∈H : ∃GU |Z ∈ GU |Z s.t. ∀S ∈ F(RU), Ch(S|z)≤GU |Z(S|z) a.e. z ∈RZ

}
. (A.11)

We begin by considering claim (i) of the theorem. Consider any h ∈ H∗∗. We first seek
to show that h ∈H∗. Since h ∈H∗∗ there exists c ∈ C and GU |Z such that qU |Z(τ|z)= c a.e.
z ∈RZ . Fix z ∈RZ . Then from Ch(S|z)≤GU |Z(S|z) in (A.11),28

Ch
(
(−∞� c)|z) ≤GU |Z

(
(−∞� c)|z) ≤ τ, (A.12)

where the second inequality holds because qU |Z(τ|z)= c, and because of Restriction IS,
U(Y�Z;h)= [u(Y�Z;h)�u(Y�Z;h)],

Ch
(
(−∞� c)|z) = P

[
u(Y�Z;h) < c|z]. (A.13)

Similarly, for S = (c�∞) it follows that

Ch
(
(c�∞)|z) ≤GU |Z

(
(c�∞)|z) ≤ 1 − τ, (A.14)

28Note that if Ch(S|z) ≤ GU |Z(S|z) holds for all closed S , then it also holds for all open S by the same
reasoning as in Corollary 1.
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and again using Restriction IS,

Ch
(
(c�∞)|z) = 1 − P

[
u(Y�Z;h)≤ c|z]. (A.15)

Combining this with (A.14) and also using (A.12) and (A.13) above gives

P
[
u(Y�Z;h) < c|z] ≤ τ ≤ P

[
u(Y�Z;h)≤ c|z]. (A.16)

The choice of z was arbitrary, so the above holds a.e. z ∈RZ , implying that h ∈H∗.
Now consider any h ∈H∗. We wish to show that h ∈H∗∗. It suffices to show that for any

such h under consideration there exists a collection of conditional distributions GU |Z such
that for almost every z ∈RZ , (a)GU |Z(·|z) has τ-quantile equal to c, and (b) ∀S ∈ F(RU),
Ch(S|z)≤GU |Z(S|z).

To do so we fix an arbitrary z ∈ RZ and verify the existence of a random variable Ũ
distributed GU |Z(·|z) such that (a) and (b) hold. One such is

Ũ ≡D · u(Y�Z;h)+ (1 −D) · u(Y�Z;h),
where D is a Bernoulli random variable defined on (Ω�L�P) with parameter λ(z) =
P[D= 1|z], which is independent of (Y�Z), and where λ(z) solves

λ(z)
(
P
[
u(Y�Z;h)≤ c|z] − P

[
u(Y�Z;h) < c|z]) = τ− P

[
u(Y�Z;h) < c|z]. (A.17)

It follows that P[Ũ ≤ c|z] = τ so that (a) holds.29 To verify (b) note that for any S ∈ F(RU),

GU |Z(S|z)= P[Ũ ∈ S|z] ≥ P
[[
u(Y�Z;h)�u(Y�Z;h)] ⊆ S|z] = Ch(S|z),

where the inequality holds because[
u(Y�Z;h)�u(Y�Z;h)] ⊆ S ⇒ Ũ ∈ S .

Thus (b) holds, and since the choice z was arbitrary, h ∈ H∗∗ as desired. This verifies
claim (i).

Claim (ii) holds because with u(Y�Z;h) and u(Y�Z;h) continuously distributed given
Z = z, a.e. z ∈ RZ , their conditional cumulative distribution functions are invertible at c
and the lower bound in (A.16) is equal to P[u(Y�Z;h)≤ c|z]. Thus for any z ∈RZ ,

q(τ� z;h)≤ c ≤ q(τ� z;h) ⇔ P
[
u(Y�Z;h)≤ c|z] ≤ τ ≤ P

[
u(Y�Z;h)≤ c|z]�

Claim (iii) follows directly from Theorem 2. Q.E.D.
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