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Microscopic aspects of magnetic lattice demagnetizing factors
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The demagnetizing factor N is of both conceptual interest and practical importance. Considering localized
magnetic moments on a lattice, we show that for nonellipsoidal samples, N depends on the spin dimensionality
(Ising, XY, or Heisenberg) and orientation, as well as the sample shape and susceptibility. The generality
of this result is demonstrated by means of a recursive analytic calculation as well as detailed Monte Carlo
simulations of realistic model spin Hamiltonians. As an important check and application, we also make an
accurate experimental determination of N for a representative collective paramagnet (i.e., the Dy2Ti2O7 spin ice
compound) and show that the temperature dependence of the experimentally determined N agrees closely with
our theoretical calculations. Our conclusion is that the well-established practice of approximating the true sample
shape with “corresponding ellipsoids” for systems with long-range interactions will in many cases overlook
important effects stemming from the microscopic aspects of the system under consideration.
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I. INTRODUCTION

Long-range interactions are important in many areas of
science, from cosmology, through the gravitational interaction,
to biology, through Coulomb’s law. A long-range interaction
may be defined in d spatial dimensions by its two-body
potential V (r) scaling with distance r as r−α where α � d [1].
The paramount problem in such systems is how to integrate
V (r) over an extended system. Following Newton and Euler,
the analysis of general systems has been largely based on
the exact solutions for spheres and ellipsoids [2–6]. This
raises the question of whether approximating other shapes
to “corresponding ellipsoids” [7] just neglects uninteresting
details or whether there are crucial properties that are lost in
the approximation. The demagnetizing problem in magnetic
systems is a natural setting for exploring this question since it
is accessible and of intrinsic importance in experiments, and
constitutes a paragon for exploring the thermodynamics of
long-range interacting systems [1]. Demagnetizing effects are
also important in superconductors, while analogs occur, for
example, in electric systems [8] (depolarizing factor), in the
problem of strain fields around inclusions [9], and in the treat-
ment of avalanching systems in confined geometries [10–12].

In an applied magnetic field Hext = Bext/μ0, the thermo-
dynamic energy of an ellipsoid of volume V and magnetic
moment m acquires a contribution Emag = (μ0/2)Nm2/V ,
where N is the demagnetizing factor. After subtracting Emag

from the total energy, differentiation with respect to the
magnetization, M ≡ m/V , defines the internal field Hint ≡
Hext + Hd, where Hd = −NM is the demagnetizing field. The
intrinsic magnetic susceptibility χint = ∂M/∂Hint is a shape-
independent material property derived from the experimentally
determined susceptibility χexp ≡ ∂M/∂Hext through

1

χint
= 1

χexp
− N. (1)

The determination of N is a fundamental problem that dates
back to the work of Poisson and Maxwell [13]. In the 1940s,
Osborn [2] and Stoner [3] tabulated N for general ellipsoids,
while more recently, Aharoni [7] treated cuboids in the χint →0
limit. These highly cited papers bear witness to the importance
of accurately computable and easily accessible demagnetizing
factors. Given that (i) it was realized already in the 1920s that
N for a nonellipsoidal sample is a function not only of the
sample shape but also of χint itself [14,15], and that (ii) many
experiments are routinely performed not on ellipsoids but on
cuboids [16,17], it is perhaps remarkable that it was only very
recently that the χ dependence of N was calculated for cuboids
away from the χint →0 limit [18,19].

The existence of demagnetizing factors for cuboids sug-
gests that their thermodynamics may be formulated in terms
of an internal field, with corrections that become dependent on
both shape and temperature [18] (through χint). In this work,
we have found that, for magnetic lattices, the demagnetizing
factor of cuboids depends also on the local spin symmetry
and allowed orientations of the magnetic moments. With
reference to the question posed at the very beginning, our result
illustrates a case where a long-range interaction integrates in a
qualitatively different way for a cuboid and an ellipsoid, such
that the discrete microscopic nature of the system matters in
the former case but not in the latter. We are aware of only a
few previous studies where effects of such discreteness have
been discussed [8,20–22]. Our interest in this problem was
spurred by the recent experimental observation of anomalous
demagnetizing effects in the spin ice material Dy2Ti2O7 [23].

One may ask whether small differences in the estimated
N really matter for exposing important physics. The answer
is found in Eq. (1). If χexp � 1, then χint is insensitive to
the precise value of N . However, in many physical systems
that display unusual and interesting magnetic phenomena,
χexp is large, and χint becomes a sensitive function of
N . Examples include the spin ice materials Dy2Ti2O7 and
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Ho2Ti2O7, which support magnetic monopole excitations [24],
and LiHo1−xYxF4 which displays ultraslow relaxation [25].
Important demagnetizing effects are manifest when an ac-
curately directed field is required: for example in experi-
ments on the elusive Kasteleyn transition [26], sublattice
pinning [17,27–29], and multiple field-driven transitions [30];
or else for disentangling the in- and out-of-phase frequency
response [31]. In such cases, quantitative conclusions and
accurate tests of theory depend, through χint, on an accurate
knowledge of N . Our work illustrates how this may be
achieved.

The rest of the paper is organized as follows. In Sec. II
we discuss how to determine N experimentally. In Sec. III
we introduce an iterative method for obtaining N , and
we consider in Sec. IV a Monte Carlo calculation of N .
Finally, we close the paper with a discussion in Sec. V. For
details regarding the experimental and numerical procedures
we refer the reader to Appendices A–D. The effects of
short-range interactions are considered in some detail in
Appendix E.

II. EXPERIMENTAL DETERMINATION OF N

To illustrate the importance of the demagnetizing correc-
tion, and to test the theory presented below, we first present
the experimental determination of N for a particular case.
The localized-moment paramagnet Dy2Ti2O7 (a spin ice) is
well suited to this purpose as it has a large susceptibility, is
crystallographically well defined (in the cubic space group
Fd3̄m) with no evidence of crystal distortion [32], and can
be accurately cut into high-quality single-crystal samples
of different shape. Since its spin Hamiltonian has been
established in great detail [33,34], it is convenient to adopt
Dy2Ti2O7 as a model system for studying the demagnetizing
factor.

A sphere of diameter 4 mm and a cube of dimensions
2 × 2 × 2 mm3, with edges precisely oriented along the
cubic crystallographic axes [100], [010], and [001] directions,
were commercially hand cut from different larger crystals of
Dy2Ti2O7 provided by D. Prabhakaran [35] (see Ref. [23]).
The cube was epipolished on all sides [36]. Crystal shape,
orientation, and experimental conditions were carefully con-
trolled to minimize measurement errors; see Appendix A. The
experimental susceptibilities of both the sphere and the cube
(χ sphere

exp , χ cube
exp ) were determined from measurements of the

magnetic moment.
Setting the demagnetizing factor of the sphere to Nsphere =

1/3, that of the cube was determined through Eq. (1), i.e.,
Ncube = 1/χ cube

exp − 1/χ
sphere
exp + Nsphere. In order to match the

susceptibility of the cube and sphere in the high-T limit,
χ cube

exp was shifted by about 1% (χ cube
exp → χ cube

exp /1.0074) before
calculating Ncube. Figure 1 shows how the experimental Ncube

departs significantly from the 1/3 value when χ � 1. This
is the main experimental result of our study. The inset of
the figure compares the uncorrected susceptibility data and
the data derived from assuming N = 1/3 for both samples.
The predicted theoretical continuation of the experimental data
below 2 K (dashed curves) is based on a generalized version
of the dipolar spin ice model [33,34].

(K)

(K)

FIG. 1. Experimentally determined demagnetizing factor for a
cube, Ncube, as a function of temperature, T , for Dy2Ti2O7 (blue open
circles) compared to our parameter-free theory (red line). The dashed
black line shows the Nsphere = 1/3 exact result [2]. Inset: The lower
solid curves show the susceptibility measured for spherical (green)
and cubic samples (blue), from which Ncube was derived in this work.
The upper curves correspond to data transformed with N = 1/3 [7],
which is incorrect for the cube (upper blue line), but yields the correct
intrinsic susceptibility for the sphere (upper green line). The dashed
lines show the predicted theoretical continuation of the experimental
data.

III. DETERMINATION OF N VIA
AN ITERATIVE METHOD

In this section we introduce an iterative method to cal-
culate the on-site field distribution inside a linear magnetic
material placed in a uniform magnetic field. In the iterative
algorithm we first assume that Hint equals Hext and calculate
the induced local magnetization for an assumed χint. This
magnetization generates a demagnetizing field that, in turn,
modifies Hint. The resulting field-magnetization equations
are iterated until convergence. With the converged field
and magnetization distributions in hand, one then computes
N .

To proceed, we consider a sample of volume V with N
magnetic moments. As a first case, we focus on Ising moments
mi = miμB ı̂, where ı̂ is the unit vector in the local Ising
direction at site i, and mi is dimensionless. We first determine
the component of the local field along the Ising moment at site
i, B

‖
i = Bi · ı̂, which is the sum of three contributions:

B
‖
i = B

‖,dip
i + B

‖,ext
i + B

‖,self
i , (2)

which we now discuss one by one.
First, the dipolar field at site i produced by all the other

point magnetic dipoles within the sample, B
‖,dip
i ≡ Bdip

i · ı̂, is
given by the familiar form [37]

B
‖,dip
i = μ0μB

4π

∑
j �=i

(
3(ĵ · r̂ ij )(ı̂ · r̂ ij ) − ĵ · ı̂

r3
ij

)
mj . (3)

Second, we consider an external field in the global
ẑ direction, Bext = Bext ẑ, with B

‖,ext
i = Bext cos θi , where
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cos θi ≡ ẑ · ı̂, the angle between the direction of the Ising axis
at site i and the direction of Bext.

Third is the contribution from the self-field, B
‖,self
i . In

the classic case of a single point dipole [37,38], a term
2
3μ0μBδ(r) must be added to ensure that the average magnetic
field in a sphere containing the dipole gives the correct
macroscopic field. Similarly, we add a self-field to ensure
that the internal magnetic field in a uniformly magnetized
sample has the expected value, for example B = 2

3μ0 M for
a uniformly magnetized sphere or cube [19]. Note that one
should, in general, treat the limit of a uniformly magnetized
nonellipsoidal sample with some care. In this work, we are
primarily concerned with paramagnetic samples in the linear
response regime, where a weak magnetic field induces a
magnetization proportional to it, as in a typical χ measurement.
For a nonellipsoidal sample, the induced magnetization is in
general nonuniform, except in the χ →0 limit. In this limit,
Hd vanishes and, as a consequence, Hint and M are uniform.
Our goal is therefore to determine the self-field so that the
magnetic field has the expected value in the χ →0 limit. We
demonstrate the basic idea with two examples.

We first take a cubic sample with all moments aligned
in the global ẑ direction. In this case B, M, and H are
all aligned with the ẑ direction for which the field equation
B =μ0(M + H) reduces to Bz =μ0(Mz − N0M

z)= 2
3μ0M

z,
where N0 = 1

3 is the χ →0 limit of N for a cube [19]. If we
consider a simple cubic lattice, it is well known that the lattice
sum vanishes [39]. This implies that Bz,self = 2

3μ0M
z must be

incorporated to ensure the expected net B‖ field value.
As a second example, we consider the case of a lattice

where all the Ising axes are tilted by the same angle θi = θ

with respect to the z axis, with half the spins tilted to the right
and half to the left so that there is no net magnetization in the x̂
or ŷ directions. The total B, M, and H fields are again in the ẑ
direction, but what should the B‖ field parallel to the magnetic
moments be? From B =μ0(M + H), it follows that B is
generated by two terms, which we discuss separately. We begin
with the term generated directly by M, namely B1 =μ0 M, or
B1,z =μ0M

z =μ0M
‖ cos θ , where M‖ is the magnetization in

the local Ising directions, M‖ =V −1 ∑N
i=1 mi · ı̂. This equation

is satisfied by B1,‖ =μ0M
‖. The second term, B2,z =μ0H

z =
−μ0N0M

z =−μ0N0M
‖ cos θ , is generated by Hd. The field

along the magnetic moment is thus B2,‖ =−μ0N0M
‖ cos2 θ ,

and the net self-field becomes

B
‖,self
i = B1,‖ + B2,‖ = μ0μB

N
V

[1 − N0 cos2 θ ]mi, (4)

which is valid when the dipolar lattice sum, Eq. (3), vanishes
and when the average M is along Bext. For the case in
which the lattice sum does not vanish, it must be subtracted
from the self-field in order to ensure the expected net field
value.

Equations (2)–(4) give the local field in terms of the set of
local magnetizations, {mi}. With the local fields available we
next consider the reverse relation that yields the {mi} induced
by B

‖
i . Using M =χ H (linear media), we get B =μ0(M +

M/χ )=μ0
χ+1
χ

M, leading to

mi = V

N

(
χloc

χloc + 1

)
B

‖
i

μ0μB

, (5)

FIG. 2. N as a function of χint for cubic samples of various lattices
(see main text). Lines show the results from the iterative calculations,
while symbols are Monte Carlo check points. Blue squares are from
Chen et al. [19]. Maroon circles indicate the results of an iterative
calculation for isotropic (Heisenberg) spins on an sc lattice. The
cosine of the angle θ between the applied field and the local Ising
axes is indicated for each set.

where χloc is the local susceptibility in the ı̂ direction,
M‖ = χlocH

‖.
We can now proceed to iterate the expressions for B

‖
i in

Eq. (2) and mi in Eq. (5) until convergence, and then calculate
N from Eq. (1), where χexp is given by

χexp = χzz
exp =

(
∂Mz

∂Hz
ext

)
T

= μ0μB

V Bext

N∑
i=1

mi cos θ, (6)

where we are still considering site independent tilt angles, θi =
θ . The intrinsic susceptibility, χint, expresses the relation be-
tween Bext and induced M under “Ewald,” or “tin foil,” bound-
ary conditions [40], which eliminate demagnetizing fields and
correspond to the N =0 limit. As a result, both χint and χloc are
responses to an internal field. While χint measures the response
in the direction of Hext, χloc measures the response along
the local Ising axis ı̂. With ẑ · ı̂ = cos θ,Hz

ext cos θ induces
a magnetization M‖ = χlocH

z
ext cos θ . This magnetization, in

turn, has a component Mz = M‖ cos θ = χlocH
z
ext cos2 θ along

ẑ, and therefore χint = χloc cos2 θ .
To sum up, once the converged B

‖
i and mi distributions

have been determined, N is calculated using Eq. (1),

N =
[

μ0μB

V Bext

N∑
i=1

mi cos θ

]−1

− 1

χloc cos2 θ
. (7)

In Fig. 1, we include N calculated for the pyrochlore
lattice using the iterative method (red line), and the main
theoretical result is shown in Fig. 2, where N is displayed
as a function of χint for cubic samples of the simple cubic
(sc) and body-centered cubic (bcc) lattices with the Ising
direction parallel to Bext(cos θ = 1). Results (not shown) for
a tetragonal lattice, relevant to LiHoF4 [41], are found to be
identical to the sc case. We also display results for a bcc
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lattice with spins pointing in the [101] and [1̄01] directions
(cos θ = 1/

√
2), and a pyrochlore lattice (cos θ = 1/

√
3) built

from the conventional cubic unit cell [42]. Finally, we include
results for the dipolar model with spherically symmetric
Heisenberg spins on an sc lattice.

IV. DETERMINATION OF N VIA MONTE CARLO
SIMULATIONS

With the iterative method, we are able to reach relatively
large system sizes of O(106) spins. To verify that this method,
which is mean-field like and does not include fluctuations in
the mi’s, gives the same result as a full statistical calculation
for a given spin Hamiltonian, we have also calculated N using
Monte Carlo (MC) simulations for several representative cases
(see Fig. 2). For a single data point, the MC approach requires
O(105) core hours [43] to reach the necessary precision for
O(104) moments. Since the iterative formulation contains an
internal susceptibility, but no explicit temperature, T , it is
necessary to tune either the MC T , or the iterative method χint,
so that the MC susceptibility calculated using Ewald boundary
conditions, χMC

int , matches the susceptibility from the iterative
calculation. We have chosen to adjust the MC temperature, T ,
in order to tune χint to the desired value. In other words, and
to emphasize, we do not compare a temperature-dependent
mean-field theory calculation with a MC calculation at the
same nominal temperature, a calculation which would not
generally yield the same N in the thermodynamic limit. For
details concerning the numerical methods, we refer the reader
to Appendices B–D.

For definitiveness, we use the magnetostatic dipolar Hamil-
tonian

H = μ0μ
2

4π

∑
i>j

�ijσiσj , (8)

where σi = ±1, μ is the magnetic moment, �ij =
[(ı̂ · ĵ ) − 3(ı̂ · r̂ ij )(ĵ · r̂ ij )]/r3

ij , and χzz, in zero field, is
determined according to

χzz = ∂Mz

∂Hz
= μ0μ

2

kBT V

〈( N∑
i=1

σi cos θ

)2〉
. (9)

Using Ewald boundary conditions, we obtain χMC
int , while

open boundary conditions yield χMC
exp , with N obtained from

Eq. (1).
Results for the MC method are shown in Fig. 2. All MC

and iterative results have been extrapolated to infinite system
size and, in Fig. 3, we compare the system-size dependence
of the iterative and MC methods. Results for open boundary
conditions are extrapolated using the form a + b/L + c/L2

where the leading 1/L term represents a surface to volume
ratio effect, while we use a + b/L3 + c/L6 for periodic
boundary conditions, with the leading 1/L3-term representing
the inverse volume of the system. These functions yield the
best fit to the data, but we find that the extrapolated value
of N is rather insensitive to the precise fitting function; see
Appendix D.

FIG. 3. N as a function of inverse linear system size, 1/L, for
a cubic sample of an sc lattice with the Ising axes oriented in the ẑ
direction. Shown are χint = 1.00 (black), 1.82 (red), and 7.53 (blue)
for the iterative method (circles), and Monte Carlo method (squares).
The lines show the extrapolation to the thermodynamic limit using
the mathematical expressions described in the main text.

V. DISCUSSION

The key results of this study are threefold. First, we find
quantitative agreement between two theoretical methods—
iterative and MC (Fig. 2)—and experiment (Fig. 1), demon-
strating that our methods are sound. Second, the explicit
T dependence of N for a cuboid has been verified for a
real material (Fig. 1). Finally, N is found to depend on the
symmetry and direction of the moments (Fig. 2). The sc, bcc,
and LiHoF4 lattices with collinear Ising spins yield the same
N , indicating that N is not directly sensitive to the lattice.
However, turning the local Ising axes away from Bext causes a
more rapid decrease of N with increasing χint. The pyrochlore
lattice with tilt angle cos θ = 1/

√
3 yields a smaller N than

the bcc lattice with cos θ = 1/
√

2 for χint > 0. The spin ice
pyrochlore lattice and the dipolar model with Heisenberg
spins yield the same result as the continuum method of Chen
et al. [19], and we conjecture that models with isotropic χ will
generally follow this behavior [19].

Exchange interactions, even when known in detail (e.g., for
Dy2Ti2O7 [33,34]), have not been included in our theoretical
models. This is because demagnetizing fields arise solely from
the long-range dipolar interactions. The thermodynamic limit
for short-range models is well defined [44–46], and inclusion
of short-range interactions does not alter the thermodynamic
limit results for N ; see Appendix E. Thermal fluctuations
also appear irrelevant in this limit. For ellipsoids, N is
calculated from averaged macroscopic fields that do not
include thermal fluctuations and, similarly, our mean-field-like
iterative method captures the essential demagnetizing effects
also for cuboids. However, in the nonuniversal approach to
the thermodynamic limit (Fig. 3), there is an expected and
significant finite-size difference between the iterative and the
MC methods.

What are the experimental implications of our results? If an
accurate measurement of χint is required, then the corrections
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to N (χ →0) identified here may be dramatic for χ � N . For
example, in the case of Dy2Ti2O7, T χint(T ) features a peak,
which is easily shifted outside the experimental temperature
window by application of the ordinary χ =0 demagnetizing
correction (see Fig. 1 and Ref. [23]). More generally, while
the demagnetizing correction is readily controlled for needles
or ellipsoids, it is not always easy to prepare real samples with
these ideal shapes. This is particularly true of nonmetallic and
often brittle samples—e.g., spin ice [47] and LiHoF4 [41]—
which have become of significant interest in recent years.
Therefore, insofar as cuboidal samples are often the most
practical to prepare and control, the best approach may be
to use them alongside the theoretical corrections identified in
this work. Our methods are general and valid for localized-
moment magnets independently of details like interaction
range and spin dimensionality, and the iterative method can
be generalized to noncuboids. The iterative method could also
prove useful for calculating demagnetizing effects in aggregate
systems, such as biomedically relevant dispersions of magnetic
nanoparticles [48].

In conclusion, considering the demagnetizing problem as a
paradigm for the study of long-range interactions, our results
confirm that N may be defined for cuboids such that their free
energy includes a term Fmag = (μ0/2)V N (T )M2 [49] where
M is thermodynamically conjugate to Hint. By going beyond
Maxwell’s continuum theory, we show that N depends not
only on sample shape and χ , but also on microscopic factors:
the spin dimensionality and local spin anisotropy. Given that
microscopic details affect even such a fundamental and well-
studied macroscopic property as N , it is interesting to ask
how they could affect the thermodynamics of more general
long-range interacting systems.
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APPENDIX A: SUSCEPTIBILITY MEASUREMENT

The magnetic susceptibility was measured using a Quantum
Design SQUID magnetometer and the crystals were positioned
in a cylindrical plastic tube to ensure a uniform magnetic
environment. Measurements were performed in the RSO

(reciprocating sample option) operating mode to achieve better
sensitivity by eliminating low-frequency noise. The position of
the sample was carefully optimized to minimize misalignment
with respect to the applied magnetic field. In particular, the
sphere was measured at different positions and orientations in
order to confirm the isotropic response and to fully reproduce
the results of [23]. Similarly, the cube, with edges cut along
[001], [010], and [001], was measured with the field aligned
along all three orientations giving equivalent results, as would
be expected.

Different measurements were made on each sample and
orientation: low-field susceptibility (at μ0H0 = 0.0025, 0.005,
and 0.01 T) in field-cooled (FC) versus zero-field-cooled
(ZFC) protocol. In addition, magnetic field sweeps at fixed
temperature were performed in order to evaluate the suscep-
tibility accurately and confirm the low-field linear response
approximation. The FC versus ZFC susceptibility measure-
ments involved cooling the sample to 1.8 K in zero field,
applying the weak magnetic field, measuring the susceptibility
while warming up to 350 K, cooling to 1.8 K again, and
finally remeasuring the susceptibility while warming. Before
switching the magnetic field off, field scans with small steps
were performed in order to estimate the absolute susceptibili-
ties. As expected, and previously reported [50], no difference
between field-cooled and zero-field-cooled magnetization was
observed in this temperature range. The magnetization of each
sample was averaged over all six repetitions (three fields, two
scans each) to minimize the influence of noise.

APPENDIX B: ITERATIVE METHOD

The iterative method was implemented using a form
of “trivial parallelization,” in which the local field at all
sites is calculated in parallel for a given magnetic moment
distribution. An MPI ALLGATHER call [51] is used in order
to achieve good strong scaling [52] when run on many
processors, a necessity in order to reach O(106) spins used
in this study. The number of iterative steps required to reach
convergence increases with increasing susceptibility but is
O(102) regardless of the number of spins. Therefore, internode
communication is not a bottleneck even though we gather and
broadcast a vector equal to the length of the number of spins
at every iterative step. A typical run for the largest system
sizes (2 × 106 spins) and 1024 cores [43] takes around 6 hours
and requires roughly 400 communications when the intrinsic
susceptibility χint ∼ 10.

APPENDIX C: MONTE CARLO METHOD

The Monte Carlo (MC) method used in this study is
mostly based on the Metropolis-Hastings single-spin-flip
algorithm [53] applied to Ising spins. The exception is a
loop algorithm [54], which we applied to the dipolar spin
ice Hamiltonian in addition to the single-spin-flip algorithm.

APPENDIX D: EXTRAPOLATION TO INFINITE
SYSTEM SIZE

The approach to the infinite system size limit of the
demagnetizing factor N in the iterative and MC methods is
illustrated in Fig. 3 in the main text. Figure 3 was generated by
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TABLE I. RMS error and extrapolated N for various fitting
functions applied to the MC susceptibility calculated with open
boundary conditions for χint = 1.82 (red squares in Fig. 3 in the
main text). The data points for the seven largest system sizes are
included in the fit.

Function RMSE (10−6) N

a + b/L1 + c/L2 4.87 0.3238
a + b/L2 + c/L3 9.63 0.3203
a + b/L3 + c/L6 83.1 0.3177
a + b/L3 + c/L4 23.1 0.3187
a + b/L3 + c/L5 28.9 0.3184
a + b/L2 + c/L4 13.1 0.3198
a + b/L1 + c/L3 4.92 0.3235

selecting three MC temperatures (16 K, 10 K, and 3.5 K), and
calculating the susceptibilities extrapolated to infinite system
size for these temperatures (χMC

int = 1.00, 1.82, and 7.53).
The iterative-method calculations were performed with these
susceptibility values for all system sizes, and the MC T was
also kept the same for all system sizes.

The functional forms used for the extrapolation also deserve
further comments. For the open boundary case, the leading
term is of the form 1/L, the surface to volume ratio. This
is numerically confirmed in Table I, where the first column
gives the fitting function, the second the root-mean-square
error (RMSE), and the third column the extrapolated value of
N . The MC susceptibility is calculated with open boundary
conditions for χint = 1.82 (red squares in Fig. 3 in the main
text). The smallest RMSE is found in the first and last row
of Table I, both with a leading 1/L term. All data for open
boundary conditions in this study have been transformed using
the form a + b/L1 + c/L2, given in the first row in Table I.

In Table II, the corresponding data for periodic boundary
conditions are shown, and we note that the RMSE and
extrapolated N are not very sensitive to the precise form
of the extrapolation function, but the minimum RMSE is
found for the function a + b/L3 + c/L6, which represents
an expansion in inverse volume of the surface-free system.
All data for periodic boundary conditions in this study have
been transformed using the form a + b/L3 + c/L6, given in
the third row in Table II.

TABLE II. RMS error and calculated N for various fitting
functions applied to the MC susceptibility calculated with periodic
boundary conditions for χint = 1.82 (red squares in Fig. 3 in the main
text). The data points for the seven largest system sizes are included
in the fit.

Function RMSE (10−6) N

a + b/L1 + c/L2 7.60 0.3235
a + b/L2 + c/L3 3.87 0.3238
a + b/L3 + c/L6 3.68 0.3238
a + b/L3 + c/L4 3.76 0.3238
a + b/L3 + c/L5 3.72 0.3238
a + b/L2 + c/L4 4.02 0.3242
a + b/L1 + c/L3 3.93 0.3238

FIG. 4. Demagnetizing factor as a function of inverse linear
system size, 1/L, for a dipolar spin ice model containing dipolar
terms only and a model containing both dipolar and exchange terms.

APPENDIX E: SHORT-RANGE EXCHANGE
INTERACTIONS

As discussed in the main text, models with short-range
interactions have a well-defined shape-independent thermo-
dynamic limit and adding exchange interactions to the dipolar
Hamiltonian does not alter the demagnetizing factor. We
illustrate this explicitly by a numerical MC simulation of the
so-called dipolar spin ice model, which has been found to re-
produce a number of properties of the Dy2Ti2O7 and Ho2Ti2O7

dipolar spin ice materials [33,34,55,56]. The Hamiltonian for
this model consists of the dipolar term defined in Eq. (8) and
an exchange term of the form

Hexchange =
∑
i>j

Jij ı̂ · ĵ σiσj , (E1)

FIG. 5. Susceptibility as a function of inverse linear system
size, 1/L, for a model containing dipolar terms only and a model
containing both dipolar and exchange terms. For both models the
respective results for open and periodic boundary conditions are
shown.
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where the strength of the dipolar interaction is given
by D = μ0μ

2/4πr3
nnkB with rnn being the nearest-

neighbor distance and kB the Boltzmann constant. The
matrix Jij is the exchange interaction strength be-
tween particle i and j . Here we consider first- (J1),
second- (J2), and third-nearest-neighbor (J3) exchange
interactions.

In Fig. 4 we show the demagnetizing factor for this model
with parameters D = 1.3224 K, J1 = 3.41 K, J2 = −0.14 K,

and J3 = 0.025 K (see Ref. [33]) and the same model with
no exchange interaction (D = 1.3224 K, J1 = J2 = J3 = 0
K). We expect the infinite system size susceptibility to be
dependent on boundary conditions, as shown in Fig. 5, while
the difference of the inverse susceptibilities (demagnetizing
factor N ) is independent of boundary conditions, as shown in
Fig. 4. Hence, we expect no entangling between the dipolar part
and the exchange part for the determination of N when both are
present.
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