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ABSTRACT 

 

This study considers probability models as tools for both making informal 

statistical inferences and building stronger conceptual connections between data and 

chance topics in teaching statistics. In this paper, we aim to explore pre-service 

mathematics teachers’ use of probability models for a chance game, where the sum of 

two dice matters in winning the game. We report on an interview with a group of three 

pre-service teachers as they engaged in predicting and conducting experiments and 

computer simulations as an attempt to develop a winning strategy. This paper focuses 

on how the participants came to use the theoretical model of the sum of two dice as 

they tried to coordinate the combinatorial analysis and the use of data as evidence in 

their predictions.  

 

Keywords: Statistics education research; Probability model; Informal statistical 

inference; Technology 
 

1. INTRODUCTION 

 

We think that the [blue counters] have a wider spectrum to cross therefore they have 

more of an advantage. But according to average, the [yellow counters] have a more 

chance of winning because the average 7.2 and is a high chance of winning. It is a 50-

50 chance of them both winning. (Chris, Jacob, Harry, 26.03.2013, Exeter, UK) 

 

The above quote is from three 11–year–old boys when they wrote their initial 

hypothesis about the River Crossing Game (Canada & Goering, 2008) that they were about 

to explore: “Two players take turns rolling a pair of dice. If either player has any counters 

on the space corresponding to the sum of the dice, one of these counters can ‘cross the 

river’ and be removed from the board. The first player to remove all 12 counters on his or 

her side wins the game, but tied games are sometimes possible. Which arrangement do you 

think would win most of the time? Explain”.  The two given arrangements are displayed in 

Figure 1. In the quote above we see two competing ways of reasoning used when students 

made a prediction. On the one hand, the children considered the spread of counters as 

relevant to win the game and thought this gave the blue counters an advantage. On the other 

hand, they rolled the dice ten times to collect data and recognised that the average sum of 

the two dice (7.2 in their case) suggested the yellow counters had an advantage. They were 

unable to coordinate these conflicting pieces of evidence and so called it “50-50”. In fact, 

a winning strategy for the game is not clear and the boys’ intuitive approach raises a 

question about what the best arrangement would be. Another strategy might be to start with 
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an arrangement that resembles the theoretical distribution of the sum of two dice as closely 

as possible. According to Goering and Canada (2007), the best arrangement may not 

necessarily be the one that resembles the probability model. A large number of computer 

simulations conducted by Goering and Canada showed that arrangements with more 

counters piled in the middle sums (6, 7 and 8) consistently beat the probability distribution 

of the two dice sums. For example, they experimentally found that the number of rolls 

needed for arrangement X={3,43,54,66,78,86,94,103,11}1 to win was about 70 while that for 

the probability distribution arrangement Y={2,32,43,54,65,76,85,94,103,112,12} to win was 

around 81 (p. 5). Hence, there is a complexity to the game that suggests studying solution 

strategies might reveal subjects’ informal inferential reasoning about probabilistic models. 

 

 
Figure 1. Initial arrangement for the River Crossing Game (blue counters at the top and 

yellow counters at the bottom) 

 

In this study, we aim at researching how pre-service mathematics teachers use the 

probability model of the sum of two dice and what other resources they use as evidence 

when making informal statistical inferences in the context of the River Crossing Game. 

During the task, two dice and graph sheets were made available for use in the material 

game while TinkerPlots software (Konold & Miller, 2011) was on hand for creating 

probability models and executing them as computer simulations. Our assumption was that 

reasoning with models would also be influenced by the nature of the data, and the 

modelling and simulation capabilities of TinkerPlots.   

 

2. EMPIRICAL BACKGROUND  

 

The importance of developing students’ informal statistical inference has been 

increasingly recognized in the statistics education community. The concept of informal 

statistical inference is typically used for “the way in which students use their informal 

statistical knowledge to make arguments to support inferences about unknown populations 

based on observed samples” (Zieffler, Garfield, delMas, & Reading, 2008, p. 44). It entails 

a process called informal inferential reasoning with data, which involves three components 

(Makar & Rubin, 2009): (1) making a generalization beyond the given data; (2) using the 

data as evidence to support the generalization; and (3) using probabilistic language to 

acknowledge uncertainty in describing the generalization. This implies that developing the 

language and understanding of probability is essential in informal inferential reasoning. 

The role of probability in statistics is however not limited to the use of probabilistic 

language in reasoning about uncertainty. It is also used in more mathematical situations. 

As pointed out by Franklin et al. (2007), probability is a key tool in mathematical 

modelling. For instance, when we are asked, “How many heads are we likely to get if we 

flip a ‘fair’ coin four times?”, it is a mathematical probability question, which leads to a 

                                                      
1 As in Goering and Canada (2007), this set notation is used to show how the counters are arranged 

on the sums of two dice: “3” means one counter on sum 3, “43” means three counters on sum 4, “54” 

means four counters on sum 5 and so on. 
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probability model. “You take a coin; is it a fair coin?” is, however, a statistical question in 

nature and one can use the probability model obtained from solving the previous problem 

as a tool for arriving at an answer by comparing the experimental results with the expected 

outcomes from the mathematical model for a fair coin (Franklin et al., 2007). Rossman 

(2008) also pointed out that a probability model is needed in making a statistical inference. 

Thus, it is important to recognize the role of probability models in developing informal 

inferential reasoning as seen in previous studies with young students (Fielding-Wells & 

Makar, 2015) as well as teachers (Zapata-Cardona, 2015). 

When the Exploratory Data Analysis [EDA] approach (Tukey, 1977) became the basis 

for the data strand in mathematics curricula (Biehler, 1986; Shaughnessy, Garfield, & 

Greer, 1996), the emphasis in instruction tended to be on “open-ended data exploration by 

students, aided by basic concepts of descriptive statistics, foregrounding data and making 

the mathematical model, probability, subsidiary” (Ainley & Pratt, 2001, p. 7). In this EDA 

approach, basic statistical ideas can be used without emphasising probability. Consequently 

probability and statistics are superficially treated as separate and independent topics in 

school curricula using the EDA approach in which the notion of probability is typically 

removed.  

One approach to integrate these two connected topics involves both encouraging 

students to make informal conclusions based on data (Moore, 1990) and focusing on 

modelling simple random outcomes and using the models to interpret the distribution of 

empirical outcomes (Konold & Kazak, 2008). From this perspective, modelling can be 

viewed as a process in which “a student selects a probability generator whose sample space 

outcomes and their probabilities can be matched with the corresponding outcomes and 

probabilities of the contextual problem” (Benson & Jones, 1999, p. 2).  Then a model is a 

representation of objects and functional relations observed in the real problem situation 

(Doerr & Pratt, 2008). When analysing random events, a simulation can be referred to as a 

“pseudoconcrete model” (Batanero, Henry, & Parzysz, 2005, p. 31) that provides a bridge 

between the probability model and reality. More specifically, this idea of pseudoconcrete 

model is considered as an educational tool that “can serve to improve students’ probabilistic 

intuition, to teach them the different steps in the work of modeling, and to help them 

discriminate between model and reality” (Batanero, et al., 2005, p. 31). 

Several previous studies have emphasized the role of models in developing young 

learners’ fundamental probabilistic and statistical ideas. For instance, Horvath and Lehrer 

(1998) studied children’s development of model-based reasoning about chance events. The 

study suggests the use of a sample space model as an ideal against which students can 

interpret the empirical results from experiments with dice. For example, constructing a 

model of sample space for the sum of two dice and recording their experimental results 

using bar graph notations encouraged second and fourth/fifth grade students to see the 

relationship between the number of possible outcomes and the distribution of actual 

outcomes. With the support of using notational representations and discussing the sample 

space model in class, students, in particular older ones, began to base their predictions on 

a model, rather than their previous experiences that they tended to use initially. 

In Nilsson (2007), 12-13 year-olds were given pairs of unusual dice with only two 

different numbers on all sides, such as “111222 and 111222”, “222444 and 333555”, 

“111122 and 111122” or “222244 and 333355”. The game task required them to place 24 

markers (based on the sum of two dice) on the game board with numbers from 1 to 12 in 

line before they played the game with these pairs of dice. In the game, a marker was to be 

removed if it was on the sum rolled and the players needed to remove all their markers to 

win the game. The study showed that students tended to base their decision about the 

distribution of markers on what they thought the sample space was. When they ignored the 
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order of outcomes in rolling two dice, their incomplete sample space configuration 

however provided a limited model for students’ predictions. The resulting distribution of 

outcomes after playing each game provided students with additional information to revise 

their initial model.  

Konold and Kazak (2008) identified four main ideas used to form their activities 

connecting data and chance topics: model fit, distribution, signal-noise, and the law of large 

numbers. Model fit was one of the underpinning ideas for supporting middle school 

students’ informal inference in the tasks involving explorations of data in chance through 

the use of modelling capabilities built in TinkerPlots. To make claims based on data, it is 

common to look at data with a model in mind, including our prediction or (personal or 

theoretical) expectation, and evaluate them with respect to that model (Konold & Kazak, 

2008). TinkerPlots’ probability simulation/modelling tool facilitates this model fit 

approach by enabling students to build models of random phenomena using a variety of 

devices and to carry out a large number of trials quickly (Konold & Kazak, 2008). As noted 

by Hawkins (1997), it is essential for students to construct probability models and be able 

to use them to understand the conceptual link between the physical experience and its 

formal symbolic version.  

In order to implement a modelling approach to teaching of data and chance topics as 

seen in previous studies with children, teachers need to have strong content knowledge as 

well as knowledge of specific teaching strategies and effective use of technology tools. 

Although research on statistical knowledge of teachers has recently been growing 

(Batanero, Burrill, & Reading, 2011; Eichler & Zapata-Cardona, 2016), there is still not 

enough information about whether teachers are adequately equipped in these areas. 

Hannigan, Gill, and Leavy’s (2013) study with 134 prospective secondary mathematics 

teachers showed that the prospective teachers tended to have poor conceptual 

understanding of certain statistical topics relevant to inference, such as sampling, 

population, randomization, and extrapolating from a regression model, on a standard test. 

Studying 15 elementary and 28 secondary school teachers’ responses on a profile 

instrument, Watson (2001) reported teachers’ difficulties and lack of confidence about 

teaching topics related to probability in particular and mostly at the elementary school 

level. Watson’s findings indicated that some secondary school teachers also were not 

inclined to plan activity-based chance and data lessons including simulation or actual 

sampling. According to Steinbring (1991), however, in the teaching of probability 

theoretical knowledge, including signs and representations, should be mediated by the use 

of activities, such as experimentation and simulation. Therefore, teachers need to be 

familiar with developing and implementing such tasks that focus on the relationship 

between empirical situation and its mathematical model.  

While our study with pre-service middle school mathematics teachers adds to our 

understanding of teacher knowledge in statistics and probability, it also has various aspects 

that address this issue raised by Steinbring. The task used in the study involves an 

experimental rather than abstract approach to probability. The chance game given in the 

task is challenging in a way that it engages pre-service teachers in a meaningful problem-

solving situation to come up with a winning strategy. It also brings a modelling aspect and 

the idea of distribution for thinking about probability into the context of making informal 

inferences.   

 

 

3. METHOD 

 

3.1. RESEARCH CONTEXT AND PARTICIPANTS 
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Within the empirical background presented above, we report on a study investigating 

pre-service middle school mathematics teachers’ spontaneous inferences based on their 

emerging model. Our main aim in this study was to explore how a group of pre-service 

mathematics teachers began to use a probability model when making informal inferences 

about winning strategies in a chance game, namely the River Crossing Game described in 

the Introduction section. The research questions were as follows: 

1. In what ways does the group of pre-service teachers use the probability model 

of the sum of two dice for their winning strategy? 

2. What other strategies do they develop as they explore and play the game with 

various numbers of counters on each side of the river? 

3. To what extent does conducting a simulation of rolling two dice in TinkerPlots 

help them to develop a winning strategy in the game? 

To address these research questions, we conducted a case study with a sample of pre-

service mathematics teachers (6 females and 6 males) who were undergraduates in their 

third year in a four-year mathematics education programme at Pamukkale University, 

Turkey. The participants had already completed an introductory statistics course, which 

was compulsory in the degree programme and taught four hours a week during the fall 

semester. The course, taught by the first author, was tailored for pre-service mathematics 

teachers to support conceptual understanding and to develop an integrated set of 

probabilistic and statistical ideas in the context of model-based reasoning and making 

statistical inferences through the use of TinkerPlots. The idea of distribution was an 

overarching notion throughout this course. Students began with sorting and describing 

different (one variable) distributions by their shapes. This was a novel experience for these 

students because in school mathematics they only learned procedures and computations 

with small data sets. Statistical concepts and tools, including measures of centre and 

variability (mean, median, mode, range, mean absolute deviation, standard deviation, inter 

quartile range), graphical representations (dot plot, histogram, boxplot, scatter plot), 

regression (line of best fit), and sample and sampling, were introduced as ways of 

collecting, organising, describing, modelling and comparing distributions in the context of 

informal statistical inference. Probability topics included the idea of randomness, random 

variable, probability distributions (binomial, geometric and normal) and modelling random 

events. Students worked with various authentic data sets, some of which were collected in 

class, using Fathom software (Finzer, 2001) and conducted simulations of random events 

(i.e. coin flipping, dice rolling, and situations involving binomial and geometric probability 

distributions) using TinkerPlots software. They were also encouraged to work in small 

groups during in-class activities and in given assignments and projects. 

 

3.2. TASK AND PROCEDURES 

 

In this exploratory study, four groups of three students2 were interviewed while 

engaging in the adapted version of the River Crossing Game (Canada & Goering, 2008). 

Each session lasted about 100–120 minutes. The interviewer (the course instructor) first 

showed the sheet that had the initial arrangements of 12 yellow and 12 blue counters on 

each side of the river (as seen in Figure 1) and began to describe the task orally:  

12 counters are placed on each side of a river by two players and one of these can ‘cross 

the river’ (i.e. be removed from the board) if there is any counter on the space 

corresponding to the sum of the two dice rolled by the player. The first player to remove 

                                                      
2 In the rest of the paper we use ‘students’ to refer to ‘pre-service mathematics teachers’ who are the 

participants of this study. 
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all his or her counters wins the game. What would be the best arrangement to win the 

game? Do you have any question about the game?  

The game describes a situation in which the probability model of the sum of two dice 

can be used to make a decision under uncertainty in connection with the empirical results. 

After describing the game, students were asked to decide together which arrangement 

in Figure 1, blue or yellow, they would expect to win the game and to explain their reasons. 

Then they were introduced to a scale from 0 [“not sure at all”] to 10 [“definitely sure”] on 

which they could mark the level of their confidence in their choice on the given sheet. After 

the predictions, students played the game with two dice and made a dot plot of the results 

on the graph sheet provided. They were again asked to evaluate the level of their confidence 

in their choice after playing Game 1 with an explanation. During the interview the students 

were expected to discuss and make decisions together while working on the task as a group, 

similar to what they had done in group work during the course described above. The role 

of the interviewer was to give them the questions to discuss and ask for explanations and 

some clarifications if needed. She did not interrupt or help them while they were discussing 

together.  

The same procedure was repeated for Game 2. Before Game 3, they were asked to 

come up with a better arrangement of 12 counters to be more confident about winning 

against the other arrangement given (blue or yellow). In this phase, the interviewer asked 

the following question: “Can you built a model for the game using TinkerPlots to see which 

arrangement will win in the next game?” Then each group decided to model rolling two 

dice in TinkerPlots and simulated the game results (i.e., sum of two dice rolled) for their 

choice of number of trials without any guidance. Again they evaluated the level of 

confidence before and after playing the game. They were also asked what they would do 

to be “more sure” after Game 3. Later, they were given a game sheet as seen in Figure 1 

but with no counters on either side of the river and asked to suggest the best arrangement 

if they played the game with 36 counters. Once they decided about their arrangement on 

one side of the river on the given sheet, an alternative was presented on the opposite side 

by the interviewer. One alternative was a distribution of 36 counters based on the 

probability model of dice sums, if not suggested. Otherwise, another possible arrangement 

was {3,43,54,66,78,86,94,103,11}, which won 60% of the games against the probability 

model according to the large number of simulations by Canada and Goering (2008). Game 

3 had required the students to state their level of confidence, first after making a prediction 

and then after playing the game. The same procedure was followed for Game 4 and Game 

5. After Game 4, students were again allowed to revise their initial arrangement (for the 36 

counters).  

Finally, a follow-up question for arranging 360 counters and 360000 counters was 

asked to elaborate more on the participants’ reasoning about the probability model without 

actually playing the game. They were only expected to give the number of counters they 

would place on each sum to win the game most of the time. The computer simulations of 

the number of rolls required for different arrangements of 36 or less counters to win the 

game are somewhat misleading. Goering and Canada’s (2007) simulations showed that 

placing any counters on sums 2 and 12 was actually not the best strategy for games 

involving 36 or less counters. For example, when they conducted a simulation of 10000 

games for arrangement A={2,32,43,54,65,76,85,94,103,112,12} vs. arrangement 

B={3,43,54,66,78,86,94,103,11}, they found that arrangement A (proportional to the 

probability distribution of sum of two dice) did not have the smallest expected duration for 

the number of rolls and arrangement B was superior in terms of the number of games won. 

Moreover, they experimentally found a unique optimal arrangement for each case 

involving the number of counters (n) greater than or equal to 1 and less than or equal to 12, 
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such as {7}, {6,7}, {5,6,7,8}, {5,6,7,8,9} and so on for n=1, 2, 3 and 4 respectively. For 

n=12, arrangement {4,52,62,73,82,9,10} was the optimal one without any counters on sums 

2, 3, 11 and 12. Therefore, one needs to adopt a different perspective involving reasoning 

about the probability model as the number of trials goes to infinity because the law of large 

numbers suggests that the empirical distribution of the sum of two dice will converge to 

the theoretical distribution as n gets larger and larger. However, this part is left as a question 

for the readers in Goering and Canada (2007, p.11). They did not explore what would 

happen with more counters since it was not possible to conduct simulations for large values 

of n in their computer programme. Thus we wanted to further explore students’ reasoning 

about the cases of 360 counters and 360000 counters in this study. 

 

3.3. DATA COLLECTION AND ANALYSIS  

 

Data collection included the video recording of interview sessions with each group of 

students working together on the task described above. Other data for the task involved 

computer simulations and written artefacts (game sheets and graphs) generated by the 

students during the interview. Students’ work on the computer in all sessions was recorded 

by Camtasia software (www.techsmith.com).  

The initial data analysis of each group work involved identifying key moments that 

might provide insight into students’ ways of informal inferential reasoning and building 

probabilistic models of the results from a game. The fırst author watched the video 

recordings of each group interview with written artefacts collected at hand and took notes 

(in English) detailing students’ responses, group discussions, arguments, explanations and 

game results obtained during each phase, i.e., predicting, stating confidence level, playing 

game (simulation) and stating confidence level again. Each author analysed these 

documents to identify any key ideas regarding probabilistic reasoning, modelling, informal 

inference, and strategies used by the participants. Then, a selection of episodes transcribed 

by the first author and student artefacts provided the basis for further analysis. Independent 

content analyses by the authors for each case, i.e., each group of three students working 

together on the task, centred around the following themes: participants’ construction of a 

model with regard to which empirical data were evaluated, reasoning about the probability 

model based on sample space, and the way they used this model to make inferences about 

the best arrangement of counters to win the game. These detailed analyses for each case 

were then compared by searching for commonalities and disparities, i.e. What was common 

across cases? What was special about a particular case? The two authors shared their 

interpretations to reach a common understanding of the data.  

 

4. RESULTS 

 

After our qualitative analyses of data described above, we saw several commonalities 

as well as some disparities in the ways the four groups of participants came to use a 

probability model when making informal inferences about winning strategies in the River 

Crossing game. The groups began to list the possible configurations of two dice in the 

sample space at the very beginning and used this list to make their predictions about the 

arrangements of 12 counters. All groups tended to use this list as their model in conjunction 

with the empirical data obtained from the actual games while making their decisions 

throughout the task. Moreover, building a model of rolling two dice in TinkerPlots and 

watching the resulting distribution of the sum of two dice for a large number of trials helped 

them justify their predictions. While three groups simulated 1000 rolls at most, one group 

(group 4) did 10000 repetitions in TinkerPlots. It seemed that simulating 10000 trials was 

http://www.techsmith.com/
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more effective since it gave a “perfect” triangular shape while the other groups had to deal 

with the variability in the outcomes of 1000 trials. In addition to the use of empirical data 

and the probability model to make predictions, groups used various other strategies to win 

the game. For example, three of the groups tended to avoid placing counters on the extreme 

sums, such as 2 and 12. Two of these also used a strategy of balancing the number of 

counters on each side of the river, e.g., H: “If we don’t put any on these [sums of 6 and 8], 

when six is rolled, this guy [blue arrangement] will be ahead again. So we need to put one 

or two counters on six and eight” (Group 2, predicting arrangement 2 (12 counters) after 

Game 2). On the other hand, the fourth group had a unique strategy that we called 

“minimising wasted rolls”, which then shifted to a “minimising waiting time” strategy to 

win the game. Based on these analyses, we decided to focus on a single case that stood out 

from among the four groups in order to give more in-depth analysis of this particular group. 

We focus on the analyses of strategies used in the game task by the group comprised of 

Beril, Ezgi and Filiz. They used a unique approach for understanding the role of the 

probability model in developing a winning strategy for a complex game situation. 

 

4.1. ARRANGEMENTS FOR 12 COUNTERS  

 

Initial prediction for arrangement with 12 counters The group began to discuss 

whether they should choose blue or yellow counters in arrangement 1 given to them 

initially (see Figure 1) to win the game. First Ezgi suggested that they could remove the 

blue counters faster because whatever sum they would roll, they could remove a blue 

counter. After Beril challenged her idea by saying “Here [blue counters] there is one on 6. 

The other rolls of 6 will be wasted”, and Ezgi seemed to agree with her. Then Filiz pointed 

out the likelihood of each sum of two dice: “Here [for sum 12 on the game board] only 

one-one can be rolled, there is no other possibility. But it seems like this middle part there 

are more [ways]. For example for [sum of] six, there can be three-three, two-four, I mean it 

has more probability”. This led students to write down the possibilities for each sum (see 

Figure 2). As seen in Figure 2, they did not however consider different orders, such as 1-3 

and 3-1, and thus their list showed 21 possible outcomes rather than 36. 

 
Figure 2. Group’s initial list of (incomplete) sample space (n=21) 

 

By focussing on the number of ways to roll sums 6, 7 and 8 in their incomplete list, 

Ezgi, Filiz and Beril began to talk about “wasted rolls” for both blue and yellow counters 

as arranged in Figure 1. They debated between choosing blue or yellow counters. 

 

Beril: For example if one-one is rolled, it will be wasted here [yellow counter]. If we 

count the wasted rolls here, 

Filiz: Four. And four more here. Eight of them would be wasted, I mean these 

[showing the sums where there is no yellow counter, such as 2, 3, 4, 5, 9, 10, 

11, 12] 

Beril: If we roll more, more will be wasted 

Filiz: Eight or more 

Ezgi: But in the above [blue counters] we can remove at least one in every roll. 

Beril: Yes, I think the same way, but would at least one of each be rolled? None of 

them might be rolled also. 
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Ezgi: Yes, alternatively none of them might occur. In order for the one below [the 

yellow counters] to win, seven, those whose sum is seven, should be rolled 

several times, or, you see, one [sum of] six, one [sum of] seven should be rolled 

so that we can remove sevens. Otherwise, it will be wasted. But in the above 

one [the blue counters], for example if anything, their sum anything from two 

to twelve, is rolled, we will remove that in the above one. But there is a problem 

there too. For example, [a sum of] two is rolled and we remove the two [the 

counter on sum 2]. When the next [sum of] two is rolled, it will be wasted. 

There is that too. 

Filiz: In any case, it would be wasted in this one [the yellow counters] too. 

 

It seemed that students did not use the likelihood of rolling specific sums from their 

theoretical model (Figure 2). Instead they focussed their attention on whether they would 

waste more rolls for the blue or the yellow counters by counting the number of unique 

configurations in their sample space. In the rest of the discussion, Ezgi pointed out “Nine 

would not be wasted. We will have twenty-one rolls. In other words twelve of those will 

be wasted. Because we have twenty-one possibilities, we have counters for nine of these 

[counting possible outcomes to get sums of 6, 7, 8]”. More specifically, if they were to 

choose the yellow counters, they thought that they would be more likely to waste rolls (12 

rolls according to their incomplete sample space). However, if they were to choose blue 

counters, then they thought only 5 rolls (counting two extra possible ways of getting sum 

6, one extra possible way of getting sum 7 and two extra possible ways of getting sum 8 in 

their list, see Figure 2) would be wasted in total. After that, they chose to base their decision 

for blue counters on their idea of “minimising wasted rolls”. Before playing the actual 

game, the level of their confidence was recorded as 6 because they thought that the chances 

of the blue or the yellow counters winning were close to each other but the blue counters 

had some advantage. 

 

Playing games and predictions for arrangement with 12 counters After a total of 28 

throws, the game ended when all the yellow counters had been removed and there remained 

blue counters on totals of 3, 10 and 11. After the group, who had favoured the blue counters, 

lost in the first game, they were asked to analyse the game results seen in Figure 3. They 

paid attention to the most frequent outcomes (sums 5, 7, 8, 9) in the graph. Beril was 

surprised that all the yellow counters on 7 were removed because they thought that each 

sum of 6, 7 and 8 had an equal number of possibilities according to their initial model 

(Figure 2). In other words, since there were more counters initially on 7 than either 6 or 8, 

it was reasonable for her, given her supposition about the distribution, to think that 

removing the counters on 7 would take longer. Yet, this result did not lead to any change 

in their theoretical model. When they made their next prediction, they chose the yellow 

counters because they thought it was more likely to roll the sums 6, 7 and 8 based on the 

game results. 

 

                

  Figure 3. The graph of results after playing the game physically (on the left) and the 

removed counters marked on the game sheet (on the right) 
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After this analysis, they were asked to mark their level of confidence before playing 

the game again. Their discussion led to a different insight about their winning strategy. 

 

Intv: Before you play the game, if you choose yellow [counters], how confident are 

you that the yellow will win? Can you mark it here? 

Filiz: This time it is a bit higher because there were several repeated sums [Figure 3] 

but sevens were rolled more quickly. 

Ezgi: What do we say is the probability of yellow winning? 

Filiz: There were many instances where the rolls were wasted in both, but when we 

look at the wasted rolls, we waited for these more [showing the smaller, such 

as 2, 3, 4, and bigger, such as 10, 11, 12, sums for the blue counters], we needed 

to roll the dice more. 

Beril: Also in the end we couldn’t roll the three sums [3, 10, 11] in this one [the blue 

counters]. 

Filiz: Exactly. 

 

In this exchange between students, there appeared to be a shift from a “minimising 

wasted rolls” perspective to a “minimising waiting time” perspective. While playing the 

game, they realised that the sums on the lower and higher ends of the totals from 2 to 12 

were less likely to be rolled because they had to wait longer to remove the counters on 

those sums. Hence, the waiting time became more salient to them after the actual game. As 

a result they seemed to feel more confident about their prediction, rating their level of 

confidence as 8.  

In the second game, after a total of 45 throws, the yellow counters had all been removed 

whereas there remained a blue counter on 12 (see Figure 4). After these results, the students 

began to discuss the probability of winning if they were to choose the yellow counters. 

They agreed that the sums 6, 7 and 8 had more chance to be rolled and confirmed this by 

emphasizing the piling up on 6, 7 and 8 in the results graph. Beril also noted that there was 

one yellow counter on the total 7 and one blue counter on the total 12 before the game was 

over. They came to a conclusion that it was more difficult to roll 12 because there was only 

one way to roll a sum of 12 (six and six) and that 7 would occur more easily. Then they 

changed their confidence level from 8 to 9, but not 10 because they thought there could be 

still a chance to roll 12 before 7. 

 

                      
   

Figure 4. The graph of results after playing the game a second time (on the left) and 

the removed counters marked on the game sheet (on the right) 

  

 TP simulation and revised theoretical model After game 2, the students were 

encouraged to model rolling two dice and simulate the game results using TinkerPlots. As 

they were used to making this kind of simulation in TinkerPlots during their statistics 

course, they quickly built the model of rolling two dice and ran 1000 trials (Figure 5). Beril 

noticed that the frequencies for 4 and 5 were about equal (see graph on the left in Figure 
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6). They wanted to increase the number of trials to see if the resulting distribution would 

change and did another 10000 trials. When they saw the graph on the right in Figure 6, 

Ezgi called this an “exact normal distribution”. This led them to rethink their initial 

theoretical model for the sum of two dice, which had only 21 possible outcomes because 

they did not consider the order.  

 

      

Figure 5. Computer model of rolling two dice built by Group 4 in TinkerPlots and its 

outcomes, including the sum (“toplam” in Turkish) variable in the table 

 

 

 

                 

Figure 6. TinkerPlots simulation results for N=1000 (on the left) and for N=10000 

(on the right) 

 

 They first focussed on the middle sums (6, 7 and 8). These were still the most likely 

outcomes according to the simulation results, yet Beril pointed out that they had found 

them equally likely when they had listed all possible outcomes for each sum (Figure 2). 

Ezgi then added “but when we increased the number of trials, seven has occurred more 

often”. They all were surprised by this observation that led them to notice that they had not 

counted different orders in their initial list of outcomes. Once they revised their model to 

the triangular distribution with 36 possible outcomes, the simulation results made more 

sense to them. Their new model also helped them realise why the sum of 7 was rolled more 

often (or “easily” in their terms). Their level of confidence had already reached 9 out of 10 

earlier but the students now felt even more confident because of the theoretical explanation 

of why rolling a 7 is more likely, including recognising the importance of order, as seen in 

the following excerpt: 

 

Beril: Actually after this one [TinkerPlots simulation result for n=10000] we became 

more confident. After we realised why seven was easily rolled. 

Filiz: We are more sure now. We also realised the importance of order. 
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Even though they realised there was some possibility of losing, they expressed their 

increased confidence as 100%, which we take to mean as even higher than 9 out of 10. 

 

4.2. ARRANGEMENTS FOR 36 COUNTERS  

 

In this phase, students were asked to suggest the best arrangement for winning if the 

game was played with 36 counters. Initially they tended to pile the counters in the middle 

(see Figure 7, arrangement on the left) because of the theoretical distribution so that they 

could remove those more quickly. At the same time they did not want to waste any roll so 

they placed one on each less likely sum on both ends. Beril thought that they would need 

to roll the dice more because they had 36 counters to remove and thus it would be likely to 

get the sums 2, 3, 4, 10, 11 and 12. Once they all decided on their arrangement of 36 

counters, the interviewer arranged the counters on the opposite side based on the theoretical 

distribution (the triangular distribution). When they were asked to evaluate the level of their 

confidence about winning against the theoretical model, they agreed on 8. They seemed to 

be pretty confident about winning with their arrangement based on an emerging idea from 

the tension between the two strategies: “minimising the wasted rolls” and “minimising the 

waiting time”. 

 

             
 

Figure 7. Group’s 1st arrangement of 36 counters (on the left) and 2nd arrangement of 

36 counters (on the right) 

 

They played the game with two dice and won. Only one counter on the sum 10 was left 

in the opposing side (theoretical distribution). Looking at their results they recorded during 

dice rolling, they noted that the sum 7 occurred the most and a lot more than 6 and 8. This 

led them to think that even though they had more counters on 7, they could still win the 

game. They also mentioned that they had to wait for the sum 8 for a long time. Hence, the 

experience of playing the actual game helped them increase their confidence level to 9 this 

time.  

After analysing the game results, students were asked whether they would change their 

initial arrangement of 36 counters in any way to become more confident about winning 

against the theoretical distribution. While revising their arrangement, they seemed to use 

the data from the game results as the basis for their decisions. For example, since they had 

to wait for rolling the sum 8 in the last game, they decided to move some of the counters 

on 8 to 7. Eventually, they all agreed on having more counters on the sum 7 and less on the 

sums 6 and 8 and kept the symmetry (see the distribution on the right in Figure 7). They 

kept the counters on the tails as they were before. Hence, once more their strategy emerged 

from the tension between “minimising the wasted rolls” and “minimising the waiting time”. 

Their level of confidence remained unchanged even though they made some revisions to 

their original arrangement.   

In the next game, the students again won against the theoretical distribution. This time 

one counter was left on the sum 11. After the game, the students moved to analysing the 
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game results. They noticed that the resulting graph was changed slightly, but the sum 7 had 

still the highest frequency. Also, Filiz shared an observation that before they rolled any 

sum of 8, they still had many counters to remove from the sum 7, but they could remove 

those counters faster than removing the counters on 8. So their focus began to shift to the 

most likely outcomes in terms of minimizing the wait time for any particular sum. Perhaps 

because there was no unexpected insight from playing the game the second time, their level 

of confidence did not change. 

 

4.3. ARRANGEMENTS FOR 360 COUNTERS  

 

Like all the other groups, Beril, Filiz and Ezgi did not spontaneously consider the 

theoretical distribution as the optimum arrangement for 36 counters to win the game. In 

order to test whether their emerging strategy in the previous games would ever need to be 

reconsidered when the conditions changed, such as the number of counters used in the 

game, we asked the students how they would arrange the counters if they were to play with 

360 of them. They began with the last game results and Filiz pointed out the relevance of 

number of rolls needed: “here we had 87 rolls but before we did 10000 [referring to their 

TinkerPlots simulations earlier] and that looked like normal distribution. As the number of 

rolls increases, it is more like normal”. Filiz first noted the number of rolls (87) they needed 

to remove all 36 counters in their arrangement (second arrangement in Figure 7) in the last 

game against the theoretical distribution. Others agreed with her idea since they thought 

they would need to roll the dice a lot more to remove all 360 counters than to remove the 

36 counters they had previously experienced. Since their simulation was only about rolling 

two dice and showing the sums, students needed to relate the number of rolls to generate a 

large sample for the outcomes of two dice (i.e., n=10000) to the number of rolls to win the 

game when the number of counters involved in the game was increased. Using the idea of 

the law of large numbers (discussed in the statistics course that they had taken), they came 

up with a distribution of 360 counters proportional to the theoretical distribution: 

{210,320,430,540,650,760,850,940,1030,1120,1210}. Hence they were able to coordinate the 

combinatorial analysis of sum of two dice and the use of simulation data in their last 

prediction with a confidence level of 9.5 with a very small level of uncertainty.  

 

 

5. DISCUSSION AND CONCLUSION 

 

The paper began with a vignette of three 11–year–old boys as they were deciding which 

counters, blue or yellow, in Figure 1 to choose in order to win the River Crossing Game. 

Since there was no easy way to see a winning strategy for the game, the children had an 

intuitive approach that led them to consider both the spread of the counters and the 

expectation for the most likely outcome based on data by rolling two dice. However, they 

were not able to coordinate these two ideas that were in conflict with each other, nor did 

they consider the theoretical distribution of the sum of two dice as a model. Therefore, we 

aimed to explore how students begin to use a probability model when making inferences 

about winning strategies in this particular chance game. To do so, we worked with pre-

service mathematics teachers who had completed an introductory statistics course for 

teachers. In the study, we focussed on the following research questions: 

1. In what ways does the group of pre-service teachers use the probability model of 

the sum of two dice for their winning strategy? 

2. What other strategies do they develop as they explore and play the game with 

various numbers of counters on each side of the river? 
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3. To what extent does conducting a simulation of rolling two dice in TinkerPlots 

help them to develop a winning strategy in the game? 

As in children’s case, the students in our study were also initially struck by the spread 

and the expected outcomes in the given arrangements; but they began to use a model that 

they thought represented the distribution of sum of two dice. In particular, their initial 

model was based on an incomplete sample space. Instead of 36 possible outcomes, they 

generated 21 possibilities (Figure 2) when they ignored the order of outcomes of rolling 

two dice for getting the sums. Students’ difficulties in considering the order important in 

rolling two dice seemed to be persistent across age levels as seen in other studies with 

school students (e.g., Fischbein, Nello, & Marino, 1991; Horvath & Lehrer, 1998; Nilsson, 

2007). In fact, in their study with 9-14 year olds Fischbein et al. (1991) concluded that it 

does not naturally occur to students that possible simple outcomes constituting the 

compound results should be distinguished and counted separately when constructing the 

sample space.  

By generating 21 possible outcomes for the sum of two dice initially, the students 

looked at the given arrangements of blue and yellow counters with this model to make their 

first prediction about which counters to choose in order to win the game. Instead of using 

the likelihood of each sum occurring based on this sample space (e.g., it is more likely to 

roll totals 6, 7 and 8 because there are more possible ways to get these sums), they focussed 

on “wasted rolls” in each arrangement by counting the possible outcomes for the sums only 

where there was no counter. Hence, they found that there were 12 possibilities to waste if 

they were to choose yellow counters. In the case of blue counters, however, they counted 

any additional possible pair of dice for the sums with respect to the number of counters on 

each sum and thought that only 9 rolls would be wasted. We called this the “minimising 

wasted rolls” strategy. At this stage they did not seem to note the relationship between the 

number of possible outcomes for each sum and the distribution of empirical results in the 

sense that young students were encouraged to make predictions about the outcomes of 

rolling two dice in Horvath and Lehrer (1998) study. In other words, they did not yet appear 

to have any expectation for the empirical distribution of totals in rolling two dice. The 

complex nature of the problem could have made that connection difficult because students 

tried to use the probability distribution for the random variable “X= The sum of two dice” 

to decide the arrangements of counters while their strategy to win the game focussed mainly 

on a very complex random variable “Y= Waiting time until all sums have been rolled to 

remove all counters” which they did/could not simulate in TinkerPlots. 

Our analysis showed that playing the actual game physically and examining the 

distribution of empirical data helped students to revise their strategy to win the game. From 

the results of playing the first game the students made some changes in their strategy based 

on data and their observations during the game. The graph of results (Figure 3) led them to 

think that the sums 6, 7 and 8 were more likely to be rolled because of their high frequency 

of occurrence. Rolling the actual dice to play the game helped students realise how long 

they had to wait until they rolled a certain sum while their TinkerPlots model for very large 

number of rolls was set to generate all 10000 rolls at once very fast. For example, since 

they had to wait for the sum 8 for a long time in game 3, they decided to move some of 

their counters on 8 to 7 before the next game. They also took the observation of rolling 7 

“more quickly” than the others into consideration. Hence, they began to shift their 

perspective from “minimising wasted rolls” to “minimising waiting time”. They realised 

that the smaller (2, 3, 4) and bigger (10, 11, 12) sums were less likely to occur since it took 

longer time to remove the counters on these sums. At this point, they still did not relate the 

likelihood of outcomes to the number of possibilities in the sample space. Neither did they 

realise the limitation of their model based on an incomplete sample space until they ran 
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large amount of trials using the TinkerPlots simulation tool and saw the triangular shape, 

which they called the “normal distribution” (Figure 6). As suggested by previous findings 

the need to consider all possible equally-likely outcomes that make up an event is not 

intuitive and can pose a challenge for the students before evaluating the likelihood of events 

(e.g., Fischbein, et al., 1991; Horvath & Lehrer, 1998; Nilsson, 2007; Zapata-Cardona, 

2015). Our analysis of this case study shows that even though the students considered 

possible outcomes initially, in their predictions they did not link these possibilities with the 

probability of obtaining these sums. 

The students in our study tended to use the data they collected through playing actual 

games as evidence not only to revise their model used to make predictions similarly to 

findings in Nilsson (2007), but also to express their level of confidence. The level of the 

uncertainty in their predictions increased according to their belief about how much support 

the data provided. It seems as if through the analysis the students were heavily influenced 

by the data that they observed in practice. When they were asked to make a prediction 

about the arrangement of 360 counters in the last interview question, there were no data 

and theory came to the fore. Through the use of the law of large numbers they could relate 

the probability distribution to the expected outcomes of the game. Making this link was a 

breakthrough for the students and supported by the use of simulation tool to gather more 

data as seen in previous studies using TinkerPlots (Konold & Kazak, 2008). 

In conclusion, the chance context described in this paper provided opportunities for the 

students to make inferences based on data in a task context that placed emphasis on an 

underlying model. As a result, model-based reasoning was facilitated. This process was 

also supported by the use of technology tools for computer-based simulations and data 

visualisation. The existing studies focusing on models and modelling in probability 

situations (e.g., Horvath & Lehrer, 1998; Nilsson, 2003) do not necessarily take an 

inferential reasoning perspective, which is key to bridging data and chance concepts. In 

terms of students’ engagement in the task, we saw an emerging strategy based on the 

tension between seeking to have sufficient spread to avoid throws which missed all 

remaining counters and having enough counters at the centre which occurred most 

frequently. This strategy emerged from their attempt to coordinate the combinatorial 

analysis and the use of data as evidence in their predictions. Eventually, acknowledgement 

of the law of large numbers seemed to be the key to their reasoning about the probability 

model for winning the game in the long run. 

The findings from our study add to the body of research on pre-service mathematics 

teachers’ knowledge about chance and data topics. While other studies (e.g., Hannigan et 

al., 2013; Watson, 2001) pointed out the difficulties that teachers had in relation to 

probability and statistics topics, this study presented insights about engagement of a group 

of pre-service teachers, who had prior experience with both experimental and modelling 

approaches to probability supported with data explorations and computer simulations, in a 

complex problem-solving situation involving uncertainty. The given task provided them 

with opportunities to use both their theoretical knowledge about probability and empirical 

results from the actual games and simulations in developing strategies to win the game. 

Their focus on distribution shape (emphasised in the course) seemed also to be critical in 

their thinking about probabilities of chance outcomes (i.e., seeing the distribution of sum 

of two dice as a whole as the number of rolls increased). In addition, this study contributes 

to the issue of addressing the theoretical nature of probability in teaching mathematics as 

Steinbring (1991) suggested by showing the importance of future teachers’ familiarity with 

developing and implementing tasks focussing on the relationship between empirical 

situation and its mathematical model. Moreover, developing, using, and evaluating 

probability models in exploring chance processes are becoming a part of mainstream school 



16 

 

curriculum. For example, the seventh grade Statistics and Probability domain in the 

Common Core State Standards for Mathematics (National Governors Association Center 

for Best Practices, Council of Chief State School Officers, 2010) prescribes developing a 

probability model for finding probability of a chance event and comparing probabilities 

based on a model with those from observed frequencies. In Turkey and other countries, 

teacher education courses emphasise procedures, formulas and methods, rather than 

providing opportunities for informal inference in learning statistics and probability. In this 

study, we illustrate how informal inference can be facilitated through experimentation in a 

situation where model-based reasoning is encouraged.  
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