

Algal richness and life-history strategies are influenced by hydrology and phosphorus in two major subtropical wetlands

	1
Journal:	Freshwater Biology
Manuscript ID	FWB-P-Jun-16-0277.R3
Manuscript Type:	Standard Paper
Date Submitted by the Author:	11-Oct-2016
Complete List of Authors:	Marazzi, Luca; Florida International University, Biological Sciences Gaiser, Evelyn; Florida International University, Biological Sciences Jones, Vivienne; University College London, Geography Tobias, Franco; Florida International University, Biological Sciences Mackay, Anson; UCL, Geography
Keywords:	Floodplains < Habitat, Microalgae < Taxonomic Group / Assemblage, Hydrology < Process / Approach / Methods, Community < Level of Organisation, Wetlands / mires / bogs / marshes < Habitat, Taxonomy < Process / Approach / Methods, Conservation / biodiversity < Applied Issues

Freshwater Biology

1	Running head: Algal richness in subtropical wetlands
2	
3	Title: Algal richness and life-history strategies are influenced by hydrology
4	and phosphorus in two major subtropical wetlands
6	L. Marazzi ^{1,2,3} , E.E. Gaiser ¹ , V.J. Jones ² , F.A.C. Tobias ¹ , A.W. Mackay ²
7	
8	Author affiliations:
9	1. Department of Biological Sciences, Florida International University, OE-148,
10	11200 SW 8 th Street Miami, FL 33199, USA
11	2. ECRC, Department of Geography, University College London, Gower Street
12	London WC1E 6BT, UK
13	
14	
15	
16	Kay words: Algae Biodiversity Subtropical Wetlands Hydrology Phosphorus
10	Key words. Algae, Blourversity, Subtropical wettands, Hydrology, Hiosphords
17	
18	
19	
20	³ Corresponding author:
21	Luca Marazzi
22	lmarazzi@fiu.edu
23	305-348-1592 (phone)

24 Summary

1. We explored controls of algal taxon richness (hereafter richness) in complex and hydrologically dynamic flood-pulsed wetlands by comparing results from independent studies in two globally important subtropical wetlands: the Okavango Delta (Botswana) and the Florida Everglades (USA). In both wetlands, the flood pulse hydrology is regulated by distinct wet and dry seasons, and creates floodplain landscapes with heterogeneous habitats; algal growth is limited by phosphorus (P); and water uses threaten ecosystem function. To inform future comparisons of algal richness and distribution patterns, we assessed the role of hydrology and P as key controls of richness, and identified indicator taxa of desiccation disturbance and P scarcity in these wetlands under increasing hydrological, nutrient and habitat changes. 2. We used the intermediate disturbance hypothesis, and the species-energy theory to explain algal richness patterns, and the competitive, stress-tolerant, ruderal (CSR) framework to classify indicator taxa. We collected algal samples, environmental data and information expected to influence community structure (water depth, relative depth change, P concentrations, hydroperiod, and habitat type) over several years at sites representing a broad range of environmental characteristics. To account for sample size differences, we estimated algal richness by determining the asymptote of taxon accumulation curves. Using multiple regression analysis, we assessed if and how water depth, depth change, P, hydroperiod, and habitat type influence richness within each wetland. We then compared the strength of the relationships between these controlling features and richness between wetlands. Using indicator species analysis on relative abundance data, we classified C, S and R indicator taxa with shorter/longer hydroperiod, and lower/higher P concentrations. 3. In either wetland, we did not observe the negative unimodal relationship between site-

48 specific richness and water depth change that was expected following the intermediate

Page 3 of 64

Freshwater Biology

2	
3	
4	
5	
6	
7	
, R	
0	
3	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24	
20	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
00 57	
5/	
58	
59	
60	

49	disturbance hypothesis. It is possible that this relationship exists at more highly resolved
50	temporal scales than the semi-annual to annual scales hypothesized here. However, as
51	nutrient flows and algal habitats depend on these wetlands' flood pulse, maintaining the
52	Okavango's natural pulse, and increasing freshwater flow in the Everglades would help
53	protect these wetlands' algal diversity. Chlorophyta richness (Okavango), and total,
54	Bacillariophyta, Chlorophyta and cyanobacteria richness (Everglades) increased with higher
55	P concentrations, as per species-energy theory. In the Okavango, we classified 6 C and 49 R
56	indicator taxa (e.g. many planktonic Chlorophyta), and, in the Everglades, 15 C, 1 S, and 9 R
57	taxa (e.g. benthic Bacillariophyta and planktonic/benthic Chlorophyta), and 1 stress- and
58	disturbance-tolerant cyanobacterium species.
59	4. Our results offer baseline information for future comparisons of richness, and abundance
60	of C, S, and R indicator taxa in subtropical wetlands; this can be used to quantify how algal
61	communities may respond to potential changes in hydrology and P due to water diversion,
62	anthropogenic nutrient loads, and climate change. Examining microhabitat heterogeneity,
63	nitrogen and light availability, and grazing pressure in such wetlands would illuminate patch-
64	scale controls of richness and life-history strategy distribution in algal communities.
65	
66	
67	
68	
69	
70	

74	Introduction
----	--------------

75	Higher biological diversity is thought to increase ecosystem functions (Cardinale et al.,
76	2011); for example, different species may use resources complementarily in space or time, or
77	facilitate each other, thus increasing biomass production efficiency (Cardinale et al., 2009).
78	As the loss of biodiversity threatens ecosystem functioning (Ptacnik et al., 2008; Cardinale et
79	al., 2011), fundamental research is needed to identify factors that increase and/or maintain the
80	diversity of biological communities. Freshwater ecosystems, especially wetlands, are facing a
81	severe and global loss of species (Strayer & Dudgeon, 2010), and are among the most
82	vulnerable ecosystems to climate change, due to their sensitivity to alterations of the
83	hydrologic cycle (Erwin, 2009). Subtropical, including many flood-pulsed, wetlands are
84	increasingly threatened reservoirs of freshwater biodiversity (Junk et al., 2002), thus
85	understanding major controls of richness and diversity of primary producers at the base of
86	their food webs is a key task for freshwater ecologists (de Tezanos Pinto et al., 2015).
87	In flood-pulsed wetlands, the alternation of wet and dry seasons determines nutrient
88	release upon rewetting, and generates a dynamic mosaic of aquatic and terrestrial
89	environments with high habitat heterogeneity (Junk, Bayley & Sparks, 1989). Hydrology,
90	nutrients, and habitat type in turn influence the richness of algae, effective ecological
91	indicators of water quantity/quality, and nutrient loads (McCormick & Cairns, 1994; Gaiser
92	et al., 2011; Mackay et al., 2012; Lee et al., 2013; de Tezanos Pinto et al., 2015). In the
93	Okavango, algae live in open waters, or are attached to plant substrates and silica-rich
94	sediments (Cronberg et al., 1996); in the Everglades, abundant periphyton mats dominated by
95	benthic algae form in the limestone-rich sediments (Ding et al., 2014). To test the effects of
96	hydrological variability (Reynolds, Padisák & Sommer, 1993; Paidere et al., 2007), and
97	available energy (e.g. nutrients and light; Passy, 2008) on algal richness in the Okavango and
98	Everglades, we bring together the intermediate disturbance hypothesis (Connell, 1978), and

Page 5 of 64

Freshwater Biology

1	
2	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
1Q	
10	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
25	
30	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40	
4/	
48	
49	
50	
51	
50	
52	
53	
54	
55	
56	
57	
50	
50	
59	
60	

99	the species-energy theory (Wright, 1983; Hubbell, 2001). Moreover, we explore the potential
100	importance of habitat complexity on richness. We recognize that other factors influence algal
101	richness, such as water ionic content (Potapova & Charles, 2003), abundance of macrophytes
102	(Borics et al., 2003), and degree of grazing (Liess et al., 2009). To test key hypotheses, we
103	study the effects of hydrology, phosphorus (P), a growth-limiting nutrient in both wetlands,
104	on algal richness, and on how hydrology and P influence algal life-history strategies.
105	The intermediate disturbance hypothesis states that highest species richness is reached
106	with intermediate frequency/size of, or time since, disturbances, such as flooding, hurricanes
107	and fire (Connell, 1978; Reynolds et al., 1993). Here we focus on site-specific hydrological
108	disturbance, defined as: i) mean water depth change in recent years (2006-2010 in the
109	Okavango, and 2005-2011 in the Everglades); ii) mean hydroperiod, whereby shorter
110	hydroperiod causes higher desiccation disturbance for algae. The species-energy theory
111	(Wright, 1983; Hubbell, 2001) posits that energy supply, i.e. resource quantity, controls and
112	limits species richness. In the Okavango, P limits algal growth, especially during high floods
113	(Ramberg et al., 2010), or is co-limiting with nitrogen (N; Mackay et al., 2011); in the
114	Everglades, natural P supply is extremely low, and so N concentrations are rarely regulatory
115	(Noe, Childers & Jones, 2001). Thus, here we focus exclusively on P, and we expect richness
116	to increase with higher P, as observed in previous research in the Everglades (Gaiser et al.,
117	2011), and other subtropical wetlands (e.g. Rodrigues & Bicudo, 2001b in Rodrigues &
118	Bicudo, 2001a; Izaguirre et al., 2004). Moreover, shallower habitats tend to have higher algal
119	richness due to abundant macrophytes providing substrata for attachment in floodplain
120	landscapes (Borics et al., 2003; Rodrigues & Bicudo, 2004 in Murakami, Bicudo &
121	Rodrigues, 2009). Thus, we expect higher richness in shallower habitats.
122	Algae are often classified in morphological (Kruk et al., 2010), and functional groups (e.g.
123	diatom guilds; Passy, 2007). Thus, to provide comprehensive ecological interpretations of

124	community structure beyond richness, we analyse the distribution of algae with different life-
125	history strategies in relation to desiccation disturbance, and P scarcity. To this end, we use the
126	well established competitive/opportunistic colonist (C), stress-tolerant (S), and ruderal or
127	disturbance-tolerant (R) framework on life-history strategies (CSR; Grime, 1977) applied to
128	algae (Biggs, Stevenson & Lowe, 1998; Reynolds, 2006; Salmaso, Naselli-Flores & Padisák,
129	2015). The CSR framework has the potential to contribute to biodiversity and ecosystem
130	functioning research via linking the distribution of traits and ecosystem function (Fry, Power
131	& Manning, 2014).
132	The aims of this paper are to identify and compare: i) the roles of hydrological disturbance
133	(mean water depth change, and desiccation risk in shorter hydroperiod sites), resources (P),
134	and habitat type as controls of mean site-specific algal richness in the Okavango and
135	Everglades; ii) indicator taxa of shorter/longer hydroperiod, and lower/higher P
136	concentrations in each wetland. To address these aims, we hypothesise that:
137	a) estimated algal richness is highest in regions with intermediate water depth changes
138	over recent years, as predicted by the intermediate disturbance hypothesis;
139	b) estimated algal richness increases with higher limiting resource (P) provision, as
140	predicted by the species-energy theory;
141	c) estimated algal richness increases in shallower habitats due to the often observed
142	higher spatial complexity of benthic habitats;
143	d) more R taxa are classified in the Okavango due to shorter mean hydroperiods, and
144	benthic C algae are larger, while planktonic C algae are smaller than S, and R taxa in
145	both wetlands.
146	
147	
148	
	6

150

Methods

Study regions

Freshwater Biology

1	
2	
3	
4	
5	
5	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30 20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
20 57	
5/	
58	
59	
60	

151	The Okavango Delta (hereafter Okavango), and the Everglades are subtropical, flood-pulse
152	wetlands with a low-gradient topography, and mean flood pulse amplitude of 1.85 m and 0.5-
153	1 m, respectively (Junk et al., 2006). Both are World Heritage Sites, and so recognized as
154	globally important ecosystems. Whereas the Okavango is a vast inland wetland bound by
155	geological faults, and fed by alluvial deposits carried by the Okavango River (McCarthy et
156	al., 2003), the Everglades is a rainfall-dependent 'river of grass' (Douglas, 1947) flowing
157	from Lake Okeechobee to the Gulf of Mexico and Florida Bay (Lodge, 2010). The Okavango
158	is a largely pristine wetland with minimal technological alteration of water flow (Ramberg et
159	al., 2006). The Everglades however, is a highly regulated system due to agricultural and
160	urban development, but is undergoing a vast restoration program to enhance its water flow
161	and quality (www.evergladesrestoration.gov). In common with other large, flood-pulse
162	systems, their ecosystem functioning faces many challenges, now and into the future, from
163	both changing climate and management of environmental flows (Milzow et al., 2009;
164	Estenoz & Bush, 2015). These potential threats are likely to impact their biological
165	communities, including algae (Lee, Gaiser & Trexler, 2013), leading to uncertainties in future
166	ecosystem functioning. In biofilms, algae, together with bacteria, fungi and protozoa, enhance
167	ecosystem functions, such as the retention of nutrients and water (Battin et al., 2003; Gaiser
168	et al., 2011). Thus, comparing the controls of algal richness between wetlands with similar
169	natural features, but different anthropogenic impact histories, can inform management
170	strategies to enhance their ecosystem resilience (Folke et al., 2004; Rojo et al., 2012).
171	
172	
173	

174 Field and sampling protocols

175 Okavango Delta

To determine spatial patterns of algal richness in the Okavango, we collected 130 algal samples from 46 sites in five regions spanning most of the 28,000 km² total area of the Delta (Upper Panhandle, UPH; Lower Panhandle, LPH; Xakanaxa, XAK; Boro, BOR; Santantadibe, SAN; see Table 1 and Fig. 1a). The sampling sites represent the hydrological (permanently, seasonally, and occasionally flooded sites), and nutrient gradients from upstream to downstream areas, and habitats with different water depths (see Marazzi, 2014). The methods were different between Campaign 1 (Mackay et al., 2011, 2012), and Campaign 2 (Siziba et al., 2011, 2012). In Campaign 1, we collected 61 samples in 38 sites using 1.5 L PVC bottles filled at ~ 30 cm below surface in September 2006 (flood recession), April/May 2007 (flood expansion), and July/August 2007 (high water; Mackay et al., 2012), whereas no samples were available for the 'low water' phase (Marazzi, 2014). In Campaign 2, we took 69 samples in 8 seasonally and occasionally flooded floodplains in the distal reaches (BOR and SAN) by pushing a plexiglass tube (6 cm in diameter, 0.5 m in length) through the macrophytes or water column in May 2009 (flood expansion), July/August 2009 (high water), October 2009 (flood recession) and February 2010 (low water). We preserved all the samples in Lugol's iodine solution in 30 mL (Campaign 1) and 50 mL (Campaign 2) tubes, transported them back to the laboratory, and stored them in a refrigerator until analysis. We measured water depth (cm) using a graduated metal pole (Campaign 1; Mackay *et al.*, 2011), and a stadia rod (Campaign 2; Siziba et al., 2011). The Okavango P data were volumetric water concentrations. In Campaign 1, we analysed TP (μ g L⁻¹) at the Okavango Research Institute in unfiltered samples using an air segmented flow analyser after persulphate digestion (Mackay et al., 2011). In Campaign 2, we analysed total dissolved phosphorus (TDP: ug L⁻¹) in samples filtered with GF/C paper, using the ascorbic acid procedure (APHA,

Page 9 of 64

Freshwater Biology

199	1998). These P measurements were made for different purposes; TP was measured to identify
200	controls of diatom abundance (Mackay et al., 2012), and of diversity, biomass and abundance
201	of algae (Marazzi, 2014), and TDP to assess the response of microinvertebrates to flooding
202	(Siziba <i>et al.</i> , 2011; 2012).
203	
204	Everglades
205	To determine spatial patterns of algal richness in the Everglades, between September and
206	December 2005-2011 we collected 947 algal samples from 165 sites in four main regions,
207	representative of the 5,000 km ² area of this wetland: 1. LKO: Lake Okeechobee; 2. LOX: the
208	Arthur R. Marshall Loxahatchee National Wildlife Refuge (Water Conservation Area 1,
209	WCA 1) and Pal Mar (PAL); 3. the Everglades National Park (ENP): Pennsuco (PEN),
210	Lostman's Creek (LMC), the 'Oligohaline' area (OLG), Southern Marl Prairie (SMP), Shark
211	River Slough (SRS) and Taylor Slough (TSL); 4. Out_ENP: Holey Land Wildlife
212	Management Area (HOL), Water Conservation Areas (WCAs) 2 and 3 (Table 1; Fig. 1b).
213	Using generalized random-tessellation stratification (Stevens & Olsen 2004), we chose a
214	representative set of locations (800 m x 800 m principal sampling units, PSU), within which
215	we sampled three sites in a habitat drawn from a pool of GPS coordinates (Philippi, 2005). At
216	sites where depth was < 1 m, and vegetation not too dense to hamper the formation of
217	periphyton, and our movement in the field, we threw a 1 m ³ enclosure, open both at the top
218	and bottom (Gunderson, 1994), and collected samples of periphytic algae with a 120 mL
219	plastic beaker from floating or benthic periphyton mats, depending on the depth (Jordan,
220	Coyne & Trexler, 1997). Where no mats were present, we took flocculent detritus from the
221	benthos, as this also hosts algae (Pisani, Yamashita & Jaffé, 2011); we then transported the
222	samples back to the laboratory and froze them until analysis. We measured water depth (cm)
223	with a metal ruler, and TP concentrations in the periphyton ($\mu g g^{-1}$ dry weight) by means of
	 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 218 219 220 221 221 221 221 221 222 223

224	colorimetry after dry combustion (EPA, 1983) because water column concentrations are often
225	below detection in this extremely oligotrophic wetland (Gaiser et al., 2004).
226	
227	Site classification
228	To assess algal richness patterns across the major hydrological gradient present in each
229	wetland, we classified each site by hydroperiod (flooding duration). Using information from
230	Murray-Hudson et al. (2015) based on a 1989-2007 data series for the Okavango, and mean
231	annual hydroperiod data from the Everglades Depth Estimation Network (EDEN;
232	http://sofia.usgs.gov/eden/) for the Everglades, we grouped sites in three hydroperiod classes
233	of flooding duration: 1) < 90 days, 2): 90-240 days, and 3): 240-365 days. In the Okavango,
234	we sampled open water, marginal vegetation or floodplain; in the Everglades, open water,
235	freshwater marsh/prairie or shrubland (groups derived from vegetation classes; Pearlstine et
236	al., 2002). In the Okavango, we collected 25% of the algal samples from sites with
237	hydroperiod class 1 (HP 1; mean depth=71 cm), 50% from HP 2 (mean depth=107 cm), and
238	25 % from HP 3 sites (mean depth=229 cm); in the Everglades, we took 4% of the samples
239	from HP 1 sites (mean depth=25 cm), 41% from HP 2 (mean depth=28 cm), 44% from HP 3
240	sites (mean depth=57 cm), while hydroperiod data was not available in the rest of the sites. In
241	the Okavango, we took 32% of the samples from open waters, 14% from marginal vegetation
242	sites, and 54% from floodplains; in the Everglades, we took 7% of the samples from open
243	waters, 75% from marsh/prairie sites, and 15% from shrublands (Table 1).
244	
245	Algal analyses
246	Okavango Delta
247	Prior to microscopy, we resuspended algae by shaking the tubes for 2 minutes. We then filled
248	chambers of 5, 10 or 15 mL volume (depending on cell density) and let them settle for at least

Freshwater Biology

249	8 to 12 hours to obtain a random distribution of the algal units (i.e. cells, coenobia, colonies,
250	and filaments; European Standard, 2005). One of us (LM) identified and counted at least 400
251	algal units at 100x and 400x magnification using an inverted microscope (Utermöhl, 1958),
252	scanning the chamber in random fields of view. We identified taxa to the lowest possible
253	taxonomic unit (genus, species or variety) using John, Whitton & Brook (2002), Cronberg et
254	al. (1996), Coesel & Van Geest (2008; 2009), and other sources (see Marazzi, 2014).
255	

256 Everglades

We modified standard methods for preparing wet mounts for counting algae (APHA et al., 2005) for periphyton from frozen samples (Stevenson & Bahls, 1999). We homogenized thawed samples with a hand blender, and dried samples onto a cover glass. When $CaCO_3$ crystals were noticeable on the slide, we added a solution of 0.01 mL 10% HCl, dried the cover slip, and inverted it onto a microscope slide in 0.02 ml of water, then sealed it by ringing the glass with fingernail polish (Stevenson, McCormick & Frydenborg, 2002). One of us (FACT) counted at least 500 algal units (i.e. cells, coenobia, colonies, and filaments of 100µm) at 1000x magnification, using a compound light microscope, and identified them to the lowest possible taxonomic unit (genus, species, or variety) using Prescott (1962), Komárek & Hindak (1975) and Komárek & Anagnostidis (1986, 1989, 1999).

268 Statistical methods

To determine whether the algae observed were planktonic, benthic or planktonic/benthic (not clearly classifiable as either planktonic or benthic; Fig. 2), we used Wehr, Sheath & Kociolek (2015). To standardize comparisons among sites within wetlands, we estimated richness as the value of the asymptote of the species accumulation curve, using abundances of taxa identified at variety, species, genus, or higher levels. We used the Chao 1 estimator (Chao,

(1)

2		
3	274	1984; Equation 1), a non-parametric estimator appropriate for analysis of microorganisms,
4 5 6	275	using the R package iNEXT (available online at: <u>https://chao.shinyapps.io/iNEXT/</u>).
7	276	
8 9	277	$_{\text{Chao1}} = \mathbf{S}_{\text{obs}} + \left(\frac{-}{(-)}\right) \frac{(-)}{(-+)} \tag{1}$
10	278	
12 13	279	where F1 is the number of taxa that have exactly 1 individual when all samples are pooled
14 15	280	(singletons or uniques), and F2 is the number of taxa with two individuals (doubletons or
16 17 18	281	duplicates). We used the results of our estimates to compare the controls of algal richness in
19 20	282	the Okavango and the Everglades.
21 22	283	To identify significant differences between estimated algal richness among sites in
23 24 25	284	different regions and habitats, and with different hydroperiod class within each wetland (see
25 26 27	285	'Site classification'), we used the parametric One-Way ANOVA and Tukey HSD tests when
28 29	286	variables were normally distributed, and with homogeneous variance (assessed via the
30 31	287	Kolmogorov-Smirnov test), and the non-parametric Kruskal-Wallis (K.W.) and Mann
32 33	288	Whitney-U (M.W.U.) tests, when variables were either not normal and/or had non-
34 35 36	289	homogeneous variance (p-value=0.05).
37 38	290	To identify statistically significant predictors of mean estimated algal richness (i.e. the
39 40	291	total number of taxa, and the richness of each major phylum) among the continuous
41 42	292	environmental variables (no multicollinearity observed) over the sampling period (depth, %
43 44	293	depth change, and P), and the categorical variables hydroperiod class and habitat, we
45 46 47	294	undertook multiple linear regression analysis with stepwise selection (p-value=0.05). To
48 49	295	explain variations of richness across space, we used the mean values of estimated richness,
50 51	296	and environmental conditions by site over the sampling years. To account for the different
52 53	297	length of the environmental gradients (continuous variables) in the wetlands, we used the
54 55 56 57	298	deviations from the respective means (i.e. Z-scores; log- or square-root transformed if not
58		
59 60		1
0.0		

1

Freshwater Biology

2
3
4
5
6
7
8
0 0
3
10
11
12
13
14
15
16
17
18
19
20
20
∠ I 22
22
23
24
25
26
27
28
29
30
31
20
3Z
33
34
35
36
37
38
39
40
41
42
12
44
40
46
47
48
49
50
51
52
53
54
55
55
0C
5/
58
59

60

normally distributed). We used SPSS[®] (version 17) for statistical tests, regressions, and for
Fig. 3; ArcGis[®] (version 10.3) for the maps, and Excel[®] for the other figures (version 2013).

302 Indicator species analysis

303 To inform future comparisons of algal community structure beyond richness, we used 304 indicator species analysis to classify the algal taxa observed in relation to their relative 305 abundance and site-specific P concentrations and hydroperiod, according to the CSR 306 framework applied to periphytic (Biggs *et al.*, 1998) and planktonic algae (Reynolds, 2006). 307 Indicator species analysis combines information on species relative abundance in preassigned 308 groups, and the faithfulness of occurrence of species in these groups. Following Dufrêne & 309 Legendre (1997), we produced indicator values for algal taxa (varieties, species, genera and higher taxonomic levels), and tested their statistical significance using a Monte Carlo 310 311 technique (p-value=0.05).

312 We aggregated sites in four metagroups using PC-ORD 6 (McCune & Mefford, 2011), 313 according to their hydroperiod and P conditions (to which algal life-history strategies respond): C = low desiccation disturbance (longer hydroperiod, i.e. >240 days, equivalent to 314 315 hydroperiod class 3 in both wetlands; Table 1), low nutrient stress (higher P); S = high 316 disturbance (shorter hydroperiod, i.e. < 240 days, equivalent to hydroperiod classes 1 and 2 in 317 the Okavango, and 2 in the Everglades; Table 1), high stress (lower P); R = high disturbance 318 (shorter hydroperiod), low stress (higher P; see Table 2). In the Okavango, P was below upper limits for oligotrophy in water (TP $< 10-15 \ \mu g \ L^{-1}$) only in a few sites, thus we 319 classified sites as mesotrophic (TP < 47 μ g L⁻¹) and eutrophic (TP >= 47 μ g L⁻¹; South 320 African "Trophic Status Assessment"; Van Ginkel, 2002). We classified 16 sites in Campaign 321 2 as eutrophic with certainty as their TDP concentrations were $\geq 47 \ \mu g \ L^{-1}$. However, 24 322 sites had mean TDP <47 μ g L⁻¹ over the sampling period (mean 30 μ g L⁻¹); we classified 323

Page 14 of 64

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
20	
29	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
40	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

348

324	these as mesotrophic, under the conservative assumption that the unmeasured Particulate
325	Phosphorus (PP) concentrations would not have been sufficiently high to make these sites fall
326	into the eutrophic category. For the Everglades, we set the 'lower/higher' periphyton P limit
327	following Gaiser (2009): TP < 250 μ g g ⁻¹ and 'higher P' as TP >= 250 μ g g ⁻¹ . This was done
328	to statistically identify CSR indicator taxa for nutrient stress (P scarcity) and desiccation
329	disturbance (i.e. shorter hydroperiods mean higher desiccation risk for algae).
330	To consolidate our preliminary list of CSR taxa, we cross-checked it with information on
331	the typical cell size of C, S, and R algae in the periphyton (Biggs et al., 1998), and
332	phytoplankton (Reynolds, 2006). Cell size is a basic morphological information with
333	ecological value, as smaller/larger algae tend to grow faster/slower (Reynolds, 2006). Other
334	important features were only present in one source, e.g. mode of attachment, growth form,
335	reproduction type (Biggs et al., 1998), and dispersal (Reynolds, 2006), and thus were not
336	used. Among benthic taxa, we retained: i) for S and R taxa, algae with comparably small cells
337	to those listed by Biggs et al. (1998; Fig. 2); ii) in the C group, algae with medium to large
338	cells (Biggs et al., 1998). Among planktonic taxa, using our biovolume data, and following
339	Reynolds (2006; Box 5.1), we retained small algae (biovolume of the algal units, i.e., cells,
340	coenobia, colonies, or filaments: 10^{-1} - $10^3 \mu m^3$) in the C group, and medium-large algae
341	(biovolume of the algal units: 10^3 - $10^5 \mu m^3$) in the S and R groups. We retained all the
342	planktonic/benthic taxa identified, as applying either cell size criterion would be arbitrary.
343	To test hypotheses a, b, and c, we used estimated algal richness, depth, depth change, TP
344	concentrations, hydroperiod class, and habitat type. To test hypothesis d, we used algal
345	relative abundance data, hydroperiod and TP, as well as information from prior work on the
346	CSR framework (Biggs et al., 1998; Reynolds, 2006).
347	

Freshwater Biology

3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
24
20
26
27
28
29
30
31
32
32
33
34
35
36
37
38
39
40
40
41
42
43
44
45
46
47
48
10
43 50
ວບ
51
52
53
54
55
56
57
57
20
59
60

349	Results
350	In the Okavango, the algae observed were a mix of planktonic and planktonic/benthic algae,
351	dominated by Chlorophyta (Fig. 2a; Table S1). By contrast, in the Everglades, benthic algal
352	richness was highest, dominated by Bacillariophyta ("Observed richness" in Fig. 2b, Tables
353	S2), which also comprised the largest proportion of benthic algal richness in the Okavango
354	(Fig. 2a). The mean site-specific algal richness estimated using the Chao 1 estimator
355	("Estimated richness" in Fig. 3, 4, and 5; see "Statistical methods") was 76 in the Okavango
356	and 21 in the Everglades; Kruskal Wallis, K.W.: χ^2 : 109.77, Mann-Whitney U, M.W.U.:
357	p<0.001). In the Okavango, algal richness was higher in BOR and SAN (shorther
358	hydroperiod) than in UPH, LPH (longer hydroperiod), and in XAK than LPH (One-Way
359	ANOVA: F=8.225; p<0.001; Tukey HSD: p<0.005; Fig. 1a, Table 3, and Fig. 4a). In the
360	Everglades, richness was significantly higher in sites with higher TP in LOX than LKO,
361	Out_ENP, and ENP, and in Out_ENP than in sites with lower TP in ENP (One-Way
362	ANOVA: F=29.193; p<0.001; Tukey HSD: p<0.005; Fig. 1b, Table 3, and Fig. 4b). The site-
363	specific coefficients of variation of water depth change were not statistically significantly
364	different between wetlands (Kruskal-Wallis test: $\chi^2=0.544$; p=0.461). In the Okavango, mean
365	water TP was 39 μ g L ⁻¹ in 2006-2007 from UPH, LPH, XAK, BOR, and SAN, and TDP=48
366	μ g L ⁻¹ in 2009-2010 from BOR, and SAN); in the Everglades, mean periphyton TP was 615
367	$\mu g g^{-1}$ (Table 3).
368	Site-specific algal richness was not significantly predicted by water depth change in either

wetland (Table 4), and did not exhibit the expected negative unimodal relationship posited by the intermediate disturbance hypothesis (Fig. 3). Regression analyses showed that, among the tested variables, water depth (negative relationship) and TP (positive relationship) were the most important controls of richness in the Okavango and Everglades, respectively. In the Okavango, total richness and Chlorophyta richness increased in shallower sites, while

2
3
4
5
5
6
7
8
à
10
10
11
12
13
10
14
15
16
17
10
10
19
20
21
22
22
23
24
25
20
20
27
28
29
20
30
31
32
33
24
34
35
36
37
20
30
39
40
41
12
42
43
44
45
46
40
41
48
49
50
50
51
52
53
54
55
55
56
57
58
50
59
0.0

374	Bacillariophyta richness decreased with higher P at whole-wetland scale (Table 4); in BOR,
375	Bacillariophyta and Chlorophyta richness decreased and increased with higher P, respectively
376	(Table 4). In the Everglades, total richness increased with higher TP at whole-wetland scale,
377	and within Out_ENP and ENP; richness of Bacillariophyta, and Chlorophyta in LOX and
378	ENP increased in deeper sites, and cyanobacteria richness increased with hydroperiod class in
379	LOX (Table 4). TP in LKO was about six times higher than in the other Everglades regions
380	(Table 3), but it did not significantly predict algal richness in this region (Table 4). Richness
381	was not statistically significantly different across habitats in either wetland (Fig. 5). However,
382	in the Okavango, seasonal floodplains of intermediate depth had the highest algal richness
383	(97 taxa); here vascular plant richness was estimated to be higher (240 species) than in deeper
384	permanently flooded sites (205 species), and in less frequently flooded, shallower grasslands
385	(213 species; see Table 3 in Ramberg et al., 2006); the latter two groups of sites also had
386	fewer algal taxa (Fig. 5). In the Everglades, algal richness was the same (22 taxa) in deeper
387	habitats (open waters) that have, on average, 3.2 macrophyte taxa, as in shallower
388	(marshes/prairies, and shrublands) habitats, with 3.6 macrophyte taxa (Joel Trexler,
389	unpublished data).
390	We pre-classified 84 CSR taxa in the Okavango, of which 9 competitive (C), no stress-
391	tolerant (S), and 75 ruderal (R), and 45 in the Everglades (15 C, 1 S and 1 stress-disturbance
392	tolerant), and 28 R (Table S3). Of these taxa, 65% in the Okavango (55) and 58% in the
393	Everglades (26) met the expectations on their cell size for benthic (Biggs et al., 1998) and
394	planktonic algae (Reynolds, 2006), and were thus included in the final list (Table 5): 6 C, 0 S,
395	and 49 R taxa in the Okavango, and 15 C, 1 S, 1 stress-disturbance tolerant, and 9 R taxa in
396	the Everglades (Fig. 6 a and b). Also, in the Okavango, the share of R desiccation-resistant
397	indicator taxa was much higher (89%) than in the Everglades (35%), where hydroperiod
398	tends to be longer (Table 5). In the Okavango, we classified species of larger diatoms

Page 17 of 64

Freshwater Biology

(Eunotia, Frustulia, and Stauroneis), and a Micrasterias species as C taxa indicating longer hydroperiod and higher P (low desiccation disturbance, and low P scarcity stress); species of coenobial green algae, such as *Pediastrum* and *Scenedesmus*, and of desmids (e.g. *Cosmarium*, and *Staurastrum*), but also Euglenophyta, Cryptophyta, cyanobacteria, Pyrrophyta, and Xanthophyta, as R taxa indicating shorter hydroperiod and higher P; whereas no stress-tolerant taxa emerged from our analysis (Table 5). In the Everglades, we classified two large diatom species, and various green algae (particularly desmids), as C taxa that indicate low desiccation disturbance and low P scarcity stress; small diatoms (e.g. species of *Encrophysis, Eunotia, and Nitzschia)*, two desmids (*Cosmarium* and *Micrasterias*), and the cyanobacterium *Johannesbaptistia*, as R taxa that indicate high desiccation disturbance and low P scarcity stress; Scytonema emerged as a stress/disturbance tolerant taxon (Table 5). Discussion Hydrology Comparisons of algal richness controls across the two wetlands revealed that mean site-specific richness did not follow the negative unimodal relationship predicted by intermediate disturbance hypothesis (Connell, 1978). Water depth changes were higher in the Okavango than in the Everglades, which is likely due to the much more heavily managed water flows (Estenoz & Bush, 2015), and smaller flood amplitude (Junk et al., 2006) in the latter. Depth change did not significantly predict algal richness, and depth was a weak predictor of richness in the Okavango (Table 4). Contrary to our hypothesis, algal richness was not highest in sites where water depth change over recent years (a proxy for hydrological disturbance) was intermediate in the Okavango or in the Everglades (Fig. 3). Our data do not concur with observations of higher algal richness or diversity with intermediate water depth changes in temperate floodplain lakes, measured, for example, as rate of daily water level

424	change (Paidere et al., 2007) or amplitude of water level fluctuations (Gruberts et al., 2005);
425	in subtropical floodplain systems, species richness was also associated with flood pulse
426	disturbances (Rodrigues & Bicudo, 2001a; O'Farrell et al., 2003). Expectations of the
427	intermediate disturbance hypothesis were however not met, for example, in a hypertrophic
428	lake in Spain, where hydrological disturbance was measured as frequency and intensity of
429	mixing events (Rojo & Alvares-Cobelas, 1993); other studies only found partial support, for
430	example, in lakes in Germany where disturbance was measured as mixing events (Sommer,
431	1993), and Texas, where rainfall, inflow, and water level change corresponded to disturbance
432	(Grover & Chrzanowski, 2004). Environmental and ecological complexity, and the
433	consequent methodological challenges of measuring disturbance most likely impact the shape
434	of the relationships observed. Although we did not find support for the intermediate
435	disturbance hypothesis with the sampling frequency used (4 times a year over 4 years in the
436	Okavango, and once a year over 7 years in the Everglades), processes occurring at finer
437	temporal scales may determine highest richness with intermediate hydrological disturbance.
438	Therefore, collecting algal samples weekly or bi-weekly over several years as
439	recommended by Sommer et al. (1993) would enable us to assess with higher temporal
440	resolution the extent to which algal richness depends on water level fluctuations in these
441	flood pulsed wetlands; such sampling could be undertaken at key sites where biological and
442	environmental variables are already monitored. Although algal richness shows only a weak
443	increase with mean water depth in the Okavango, and no increase with mean water depth in
444	the Everglades, maintaining and restoring the flood pulse of these wetlands, respectively
445	(which vital nutrient flows and habitats depend on) is likely important for the preservation of
446	their algal diversity.
447	
448	

Freshwater Biology

3
4
5
6
7
פ
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
21
20
29
30
31
32
33
34
35
36
27
20
38
39
40
41
42
43
44
45
46
Δ7
71 10
40 40
49
50
51
52
53
54
55
56
57
57
20
59
60

449	Phosphorus
450	Algal richness was mostly controlled by water depth in the Okavango, and by TP in the
451	Everglades. In the Okavango, higher P concentrations increased Chlorophyta richness in the
452	BOR region; this is likely due to nutrient mobilization via flooding which indirectly increases
453	productivity, and thus richness (Davidson et al., 2012). In the Everglades, richness increased
454	with higher periphyton TP, which accurately reflects P availability to algae that rapidly
455	uptake it from the water (Gaiser et al., 2004). Here, P loads from agricultural sources tend to
456	cause a replacement of cohesive periphyton mats dominated by cyanobacteria with floating
457	mats with more Chlorophyta, and higher richness (Pan et al., 2000; Stevenson et al., 2008;
458	Gaiser et al., 2011). Therefore, our results meet the expectations of species-energy theory, i.e.
459	higher richness with higher resource provision (Wright, 1983). The key underpinning
460	ecological mechanism may be that abundant nutrients allow the formation of complex
461	biofilms with understory and overstory benthic algae (Passy, 2008), where large filamentous
462	algae provide attachement substrata for other species (Hillebrand, 2003).
463	The patterns we observed concur with a study in a floodplain wetland in the Upper Paraná
464	River basin (Rodrigues & Bicudo, 2001b in Rodrigues & Bicudo, 2001a). Algal richness was
465	shown to increase with low N in the N-limited Otamendi wetland (Argentina; deTezanos
466	Pinto et al., 2015); thus collecting algal richness, and nutrient data (TN and TP, but also
467	dissolved forms of P and N), in subtropical wetlands with different nutrient limitation can
468	help expand our comparisons. We demonstrated that higher P increases total algal richness in
469	the Everglades, and Chlorophyta richness in the Okavango (Table 4); however, high
470	agricultural P loads continue to threaten the Everglades, and increased tourism with
471	unsustainable waste management may negatively impact the Okavango ecosystems (Darkoh
472	& Mbaiwa, 2014). Therefore, preservation and restoration activities in these wetlands remain
473	crucial to maintain, if not enhance, the respective diversity of their algal communities.

~		
3		
4		
5		
6		
7		
' 0		
0		
9		
1	0	
1	1	
1	2	
1	ົ	
1	3	
1	4	
1	5	
1	6	
1	7	
1	R	
4	0 0	
1	Э с	
2	0	
2	1	
2	2	
2	ີ	
~	4	
2	4	
2	5	
2	6	
2	7	
5	, 0	
2	0	
2	9	
3	0	
3	1	
R	2	
2 2	ົ	
З С	3	
3	4	
3	5	
3	6	
3	7	
2	ò	
3	0	
3	9	
4	0	
4	1	
4	2	
, 1	2	
+	ں ۸	
4	4	
4	5	
4	6	
4	7	
л	ò	
+	0 0	
4	9	
5	0	
5	1	
5	2	
5	- 2	
с Г	ن م	
5	4	
5	5	
5	6	
5	7	
5	è	
5	0	
С	9	

1 2

474 Habitat

475 Shallower habitats did not show significantly higher algal richness than deeper habitats, and 476 habitat type was not a significant control of richness in either wetland. We speculate that in 477 the Okavango, more diverse vascular plants may increase algal richness in shallow 478 floodplains by providing benthic taxa with different substrata for attachment. Relationships 479 between macrophyte abundance and diversity, and algal diversity were observed in other 480 wetlands at temperate (Borics et al., 2003), and subtropical latitudes (Izaguirre et al., 2004; 481 Rodrigues & Bicudo, 2004 in Murakami et al., 2009). Complex microhabitats on plants, for 482 example due to high leaf surface area, create numerous ecological niches for a variety of 483 organisms, including algae (Thomaz & Cunha, 2010; Kovalenko et al., 2012). On the other 484 hand, where plant density or biomass are too high, light penetration may become limiting for 485 algae (Izaguirre *et al.*, 2004), thus potentially reducing their diversity. Therefore, to isolate the influence of habitat type and heterogeneity on algal richness, we recommend the 486 487 collection of data on plant and sediment substrata, and the development of habitat complexity 488 metrics on, e.g. surface area, and structure of plant leaves and stems (Kovalenko *et al.*, 2012), 489 and indices accounting for plant abundance and diversity (Thomaz & Cunha, 2010). Such 490 data can help predict how modified hydrology may alter floodplain landscapes, and algal 491 community structure in these and other wetlands in view of ongoing and future threats. 492

493 Life-history strategies

Most of our CSR indicator taxa had varying relative abundances across gradients of
desiccation and P scarcity that well reflected the expectations of the CSR framework applied
on algae; benthic C taxa were larger than S and R taxa, while S and R planktonic algae were
larger than C taxa. In the Okavango, the R taxa *Aulacoseira ambigua*, and *A. granulata*indicated higher P, consistent with Mackay *et al.* (2012). In the Everglades, one taxon

Page 21 of 64

1 2

Freshwater Biology

3
4
5
6
7
8
0
3
10
11
12
13
14
15
16
17
10
18
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
25
30
30
37
38
39
40
41
42
43
10
15
40
46
47
48
49
50
51
52
52
55
04
55
56
57
58
59
60

499	indicated both desiccation and P scarcity (Scytonema, most likely S. hoffmanii), as previously
500	observed by Gaiser et al. (2011). Some of the small algae we identified as indicator taxa have
501	been previously classified as R-strategists in Lake Okeechobee (LKO; Fig. 1b), e.g.
502	Achnanthes minutissima (now called Achnanthidium minutissimum; Tables S1-S2), and
503	species of Lyngbya, Fragilaria and Chroococcus (Carrick & Steinman, 2001). Fragilaria and
504	A. minutissimum have been also classified as R taxa in temperate streams (Biggs et al., 1998).
505	In the Okavango, the share of R desiccation-resistant algae among indicator taxa was much
506	higher than in the Everglades (Table 5), as was expected due to sampling sites having shorter
507	hydroperiod in the Okavango (Table 1). Our R taxa in the Everglades (e.g. benthic diatoms),
508	were concentrated in shorter hydroperiod sites, analogous to observations made by Carrick &
509	Steinman (2001) in shallow epipelic habitats in LKO. Despite differences between C, S, and
510	R in nutrient requirements, and surrounding environmental gradient structure in the benthos
511	and plankton (Law et al., 2014; Tapolczai et al., 2016), overall, 63% of the CSR taxa we
512	classified matched expectations on algal cell size for periphyton (Biggs et al., 1998) and
513	phytoplankton (Reynolds, 2006). Therefore, our CSR classification approach is promising for
514	future comparisons in the same sites, and applications in other wetlands.

515

516 Limitations and outlook

This study provides a replicable and theory-informed template to design further comparative research to examine controls of algal richness at finer temporal and habitat scales than those analysed in this study. As we sampled algae in water in the Okavango, and in periphyton mats in the Everglades, the total algal richness is underestimated in each study; thus we recommend that future work jointly sample algae in water, and on plant and sediment/soil substrata. In the Everglades, TP comprises P in algal cells, and carbonates to which P is chemically adsorbed; as water TP is often below detection limits, periphyton TP remains

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 52	
55	
54	
55	
56	
57	
58	
59	
60	

541

542

543

544

545

546

547

548

future environmental change impacts.

1

524	however the best measure of P availability to algae in the Everglades (Gaiser et al., 2004).
525	The periphyton mat is the environmental matrix for benthic algae, analogous to the water
526	column (in which TP is usually measured) for planktonic algae. Our approach to classify
527	CSR indicator taxa can be further developed taking into account other features than cell size,
528	such as shape, surface/volume ratio, and life-forms; these influence growth rate, buoyancy
529	regulation, light capture, nutrient uptake, and susceptibility to grazing (Reynolds, 2006), and
530	are thus important elements for elaborating joint classification of planktonic and benthic
531	algae. The much higher mean algal richness in the Okavango than in the Everglades is likely
532	in part due to methodological differences between the studies. Further research with
533	standardized protocols would help understand whether the Everglades' lower richness may be
534	due not only to its extreme oligotrophy, but also to its young geological history and
535	peninsular character.
536	Our findings provide a robust baseline for future comparisons of algal richness, and life-
537	history strategy distribution in relation to hydroperiod and P; measuring N would allow a
538	deeper understanding of the role of limiting nutrients on richness and CSR strategies. In the
539	Okavango, upstream hydropower plants could attenuate the flood pulse, thus impacting the
540	Delta's algal communities (Milzow et al., 2009; Mackay et al., 2012; Darkoh & Mbaiwa,

2014). In the Everglades, water purification schemes, and controlled water releases are

already restoring water quality and flow with potential widespread return of characteristic

benthic algal communities adapted to very low P (Gaiser et al., 2011). Taxonomically and

as complementary species make primary production and other ecosystem functions more

functionally diverse algae likely enhance these wetlands' resilience to environmental change,

efficient (Cardinale et al., 2009). Continued monitoring of these wetlands' algal communities

is therefore key to assess the effectiveness of their conservation and management, and detect

550

551

12

Freshwater Biology

We are grateful to the Royal Geographical Society, the UCL Graduate School, the DEFRA

Darwin Initiative (162/14/029), and the South Florida Water Management District and the US

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4Z 12
40 11
44 15
40 46
40 47
47 10
_ 1 0 ⊿0
50
51
52
53
54
55
56
57
58
59

60

552	Army Corps of Engineers for funding fieldwork and laboratory analyses. We also thank:
553	Nqobizitha Siziba, Okavango Research Institute and FIU staff for sampling and laboratory
554	work; Jan Axmacher for statistical advice; Mike Rugge and Daniel Gann for GIS support;
555	Leonard Pearlstine for providing Everglades habitat data, and Joel Trexler for leading the

556 Everglades program; Lars Ramberg and Sophie des Clers for co-mentoring LM's Ph.D; Nick

- 557 Schulte and John Kominoski, and two anonymous reviewers for providing thoughtful
- 558 comments. This research was developed in collaboration with the Florida Coastal Everglades
- 559 Long Term Ecological Research program, and represents paper number ### of the Southeast
- 560 Environmental Research Center.

Acknowledgments

561

566

562 Supporting information

- 565 Additional Supporting Information may be found in the online version of this article:
- 567 **Table S1**. List of the all the algal taxa observed in the Okavango Delta.
- **Table S2**. List of the all the algal taxa observed in the Everglades.
- 569 **Table S3**. Results of the Monte Carlo significance tests on the indicator taxa identified.

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
21	
28	
29	
30	
31	
ა∠ ეე	
33 24	
34	
36	
37	
38	
30	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

570 **References**

- 571 American Public Health Association (APHA), American Water Works Association (AWWA)
- & Water Environment Federation (WEF) (2005) Standard Methods for the Examination
 of Water and Wastewater, 21st Edition.
- 574 American Public Health Association (APHA) (1998) Standard Methods for the Examination
- of Water and Wastewater. American Public Health Association, Washington, DC.
 - 576 Battin T.J., Kaplan L.A., Newbold D.J. & Hansen C.M.E. (2003) Contributions of microbial
- 577 biofilms to ecosystem processes in stream mesocosms. *Nature*, **426**, 439-442.
- 578 Biggs B.J.F., Stevenson R.J. & Lowe R.L. (1998) A habitat matrix conceptual modes for
 579 stream periphyton. *Archiv für Hydrobiologie*, 143, 21–56.
- 580 Borics G., Tóthmérész B., Grigorszky I., Padisák J., Várbíró G. & Szabó S. (2003) Algal
- 581 assemblage types of bog-lakes in Hungary and their relation to water chemistry,

582 hydrological conditions and habitat diversity. *Hydrobiologia*, **502**, 145–155.

- 583 Cardinale B.J. *et al.* (2011) The functional role of producer diversity in ecosystems.
- 584 *American Journal of Botany*, **98**, 572–592.
- 585 Cardinale B.J., Hillebrand H., Harpole W.S., Gross K. & Ptacnik R. (2009) Separating the
- 586 influence of resource 'availability' from resource 'imbalance' on productivity-diversity
 - 587 relationships. *Ecological Letters*, **12**, 475–487.
 - 588 Carrick H.J. & Steinman A.D. (2001) Variation in periphyton biomass and species
 - 589 composition in Lake Okeechobee, Florida (USA): Distribution of algal guilds along
 - 590 environmental gradients. *Archiv für Hydrobiologie*, **152**, 411–438.
- 591 Chao A. (1984) Nonparametric estimation of the number of classes in a population.

592 *Scandinavian Journal of Statistics*, **11**, 265-270.

Freshwater Biology

3	593	Coesel P.F.M. & van Geest A. (2009) Taxonomic and biogeographical notes on Okavango
5 6	594	desmids (Zygnematophyceae, Streptophyta) II: genera Cosmarium, Xanthidium and
7 8	595	Staurastrum. Systematics and Geography of Plants, 79, 15-31.
9 10	596	Coesel P.F.M. & van Geest A. (2008) Taxonomic and biogeographical notes on Okavango
11 12	597	desmids (Zygnematophyceae, Streptophyta). Systematics and Geography of Plants, 78,
13 14 15	598	27-46.
16 17	599	Cronberg G., Gieske A., Martins E., Nengu J.P. & Stenstrom I.M. (1996) Major ion
18 19	600	chemistry, plankton, and bacterial assemblages of the Jao/Boro River, Okavango Delta,
20 21	601	Botswana: the swamps and flood plains. Archiv für Hydrobiologie. Supplementband.
22 23	602	Monographische Beiträge, 107, 335-407.
24 25 26	603	Darkoh M.B.K. & Mbaiwa J.E. (2014). Okavango Delta – A Kalahari Oasis under
27 28	604	environmental threats. Journal of Biodiversity & Endangered Species, 2, 4-9.
29 30	605	Davidson T.A., Mackay A.W., Wolski P., Mazebedi R., Murray-Hudson M. & Todd M.
31 32	606	(2012) Seasonal and spatial hydrological variability drives aquatic biodiversity in a flood-
33 34 35	607	pulsed, sub-tropical wetland. Freshwater Biology, 57, 1253–1265.
36 37	608	de Tezanos Pinto P., Lombardo R., O'Farrell I. & Izaguirre I. (2015) Drivers shaping
38 39	609	phytoplankton diversity and composition in a humid Pampean floodplain lake (natural
40 41	610	reserve). Hydrobiologia, 752, 77–89.
42 43 44	611	Ding Y., Cawley K., Cunha C.N. & Jaffé R. (2014) Environmental dynamics of dissolved
44 45 46	612	black carbon in wetlands. Biogeochemistry, 119, 259-273.
47 48	613	Douglas M.S. (1947) The Everglades: River of Grass (Rinehart, New York, 1947).
49 50	614	Dufrêne M. & Legendre P. (1997) Species assemblages and indicator species: the need for a
51 52 52	615	flexible asymmetrical approach. Ecological Monographs, 67, 345-366.
55 55	616	EPA (1983) Methods for chemical analysis of water and wastes. Chapter 365.1 Revision
56 57	617	March 83. Cincinnati, OH: United States Environmental Protection Agency.
58 59		

Erwin K.L. (2009) Wetlands and global climate change: the role of wetland restoration in a

changing world. Wetlands Ecology and Management, 17, 71-84.

2	
2 3 4	618
5 6	619
7 8	620
9 10	621
11 12	622
13 14 15	623
16 17	624
18 19	625
20 21	626
22 23 24	627
24 25 26	628
27 28	629
29 30	630
31 32	631
33 34 35	632
36 37	633
38 39	634
40 41	635
42 43 44	636
45 46	637
47 48	638
49 50	639
51 52	640
53 54 55	641
56 57	
58	
59 60	

Estenoz S.A. & Bush E. (2015) Everglades restoration science and decision making in the
face of climate change: a management perspective. Environmental Management, 55, 876-
883.
European Standard (2005) Water quality - Guidance standard for the routine analysis of
phytoplankton abundance and composition using inverted microscopy (Utermöhl
technique) prEN 15204:2005.
Folke C., Carpenter S.R., Walker B.H., Scheffer M., Elmqvist T., Gunderson L.H. & Holling
C.S. (2004) Regime shifts, resilience and biodiversity in ecosystem management. Annual
Review in Ecology, Evolution and Systematics, 35 , 557–581.
Fry E.L., Power S.A. & Manning P. (2014) Trait-based classification and manipulation of
plant functional groups for biodiversity-ecosystem function experiments. Journal of
Vegetation Science, 25, 248–261.
Gaiser E.E. (2009) Periphyton as an indicator of restoration in the Everglades. <i>Ecological</i>
Indicators, 9, S37-S45.
Gaiser E.E., McCormick P.V., Hagerthey S.E. & Gottlieb A.D. (2011) Landscape Patterns of

- Periphyton in the Florida Everglades, *Critical Reviews in Environmental Science and Technology*, **41(S1)**, 92–120.
 - 637 Gaiser E.E., Scinto L.J., Richards J.H., Jayachandran K., Childers D.L., Trexler J.C. & Jones
 - 638 R.D. (2004) Phosphorus in periphyton mats provides the best metric for detecting low-
 - 639 level P enrichment in an oligotrophic wetland. Water Research, **38**, 507–516.
- 640 Grime J. (1977) Evidence for the existence of three primary strategies in plants and its
- relevance to ecological and evolutionary theory. *American Naturalist*, **111**, 1169-1194.

Freshwater Biology

642	Grover J.P. & Chrzanowski T.H. (2004) Limiting resources, disturbance, and diversity in
643	phytoplankton communities. Ecological Monographs, 74, 533-551.
644	Gruberts D., Paidere J., Priedītis J., Škute A., Druvietis I., Poppels A., Parele E. &
645	Engele L. (2005) Biodiversity of the Daugava's floodplain lakes in South-East Latvia.
646	Acta Biologica Universitatis Daugavpiliensis, 5, 137–153.
647	Gunderson L.H. (1994) Vegetation: determinants of composition. In Everglades: The
648	Ecosystem and Its Restoration (Eds. S.M. Davis & J. Ogden) pp. 323-340. Delray Beach,
649	FL: St. Lucie.
650	Hillebrand H. (2003) Opposing effects of grazing and nutrients on diversity. Oikos, 100, 592-
651	600.
652	Hubbell S.P. (2001) A Unified Theory of Biodiversity and Biogeography. Princeton
653	University Press, Princeton, NJ.
654	Izaguirre I., O'Farrell I., Unrein F., Sinistro R., dos Santos Alfonso M. & Tell G. (2004)
655	Algal assemblages across a wetland, from a shallow lake to relictual oxbow lakes
656	(Lower Paraná River, South America). Hydrobiologia, 511, 25-36.
657	John D.M., Whitton B.A. & Brook A.J. (2002) The freshwater algal flora of the British Isles:
658	An identification guide to freshwater and terrestrial algae, Cambridge University Press.
659	Jordan F., Coyne S. & Trexler J.C. (1997) Sampling fishes in vegetated habitats: effects of
660	habitat structure on sampling characteristics of the 1-m ² throw trap. Transactions of the
661	American Fisheries Society, 126, 1012–1020.
662	Junk W.J., Brown M., Campbell I.C., Finlayson M., Gopal B., Ramberg L. & Warner B.G.
663	(2006) The comparative biodiversity of seven globally important wetlands: a synthesis.
664	<i>Aquatic Sciences</i> , 68 , 400–414.
665	Junk W.J. (2002) Long-term environmental trends and the future of tropical wetlands.
666	Environmental Conservation, 29, 414-435.

2 3 4	667	Junk W.J., Bayley P.B. & Sparks R.E. (1989) The flood pulse concept in river-floodplain
- 5 6	668	systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106, 110-127.
7 8	669	Komárek J. & Anagnostidis K. (1999) Cyanoprokaryota. I. Teil Chlorococcales. In:
9 10	670	Süßwasserflora von Mitteleuropa (Eds. H. Ettl, G. Gärtner, H. Heynig, D. Mollenhauer),
11 12 13	671	Volume 19/1. Gustav Fischer, Stuttgart, Germany, pp. 13-145.
14 15	672	Komárek J. & Anagnostidis K. (1989) Modern approach to the classification system of
16 17	673	cyanobacteria. 4 Nostocales. Algological Studies, 56, 247-345.
18 19	674	Komárek J. & Anagnostidis K. (1986) Modern approach to the classification system of
20 21 22	675	cyanobacteria. 2 Chroococcales. Algological Studies, 43, 157–226.
22 23 24	676	Komárek J. & Hindak F. (1975) Taxonomy of new isolated strains of Chroococcidiopsis
25 26	677	(Cyanophyceae). Archiv für Hydrobiologie, 46 (Suppl.), 311–329.
27 28	678	Kovalenko K.E., Thomaz S.M., Warfe D.M. (2012) Habitat complexity: approaches and
29 30	679	future directions. <i>Hydobiologia</i> , 685 , 1–17.
31 32 33	680	Kruk C., Huszar V.L.M., Peeters E., Bonilla S., Costa L., Lurling M., Reynolds C.S. &
34 35	681	Scheffer M. (2010). A morphological classification capturing functional variation in
36 37	682	phytoplankton. Freshwater Biology, 55 , 614–627.
38 39	683	Law R.J., Elliott J.A. & Thackeray S.J. (2014) Do functional or morphological classifications
40 41 42	684	explain stream phytobenthic community assemblages? Diatom Research, 29, 309-324.
42 43 44	685	Lee S.S., Gaiser E.E. & Trexler J.C. (2013) Diatom-based models for inferring hydrology and
45 46	686	periphyton abundance in a subtropical karstic wetland: implications for ecosystem-scale
47 48	687	bioassessment. Wetlands, 33, 157–173.
49 50	688	Liess A., Lange K., Schulz F., Piggott J.J., Matthaei C.D. & Townsend C.R. (2009) Light,
51 52 53	689	nutrients and grazing interact to determine diatom species richness via changes to
53 54 55	690	productivity, nutrient state and grazer activity. Journal of Ecology, 97, 326-336.
56 57		
58		
59 60		
60		28

Page 29 of 64

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

Raton FL: CRC Press.

1

Freshwater Biology

Lodge T. (2010) The Everglades handbook: understanding the ecosystem (3rd edition). Boca

Mackay A.W., Davidson T., Wolski P., Woodward S., Mazebedi R., Masamba W.R.L. &

Todd M. (2012) Diatom sensitivity to hydrological and nutrient variability in a

subtropical, flood-pulse wetland. *Ecohydrology*, 5, 491–502.

2	
3	
Δ	
5	
5	
6	
1	
8	
9	
10	
11	
12	
12	
10	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
40	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	

60

Mackay A.W., Davidson T., Wolski P., Mazebedi R., Masamba W.R.L., Huntsman-Mapila P. & Todd M. (2011) Spatial and seasonal variability in surface water chemistry in the Okavango Delta, Botswana: a multivariate approach. *Wetlands*, **31**, 815–829.
Marazzi (2014) Biodiversity and biomass of algae in the Okavango Delta (Botswana), a subtropical flood-pulsed wetland. Ph.D. Thesis, University College London.
McCarthy J.M., Gumbricht T., McCarthy T., Frost P., Wessels K. & Seidel F. (2003) Flooding patterns of the Okavango Wetland in Botswana between 1972 and 2000. *Ambio*, **32**, 453–457.
McCormick P.V. & Cairns J. (1994) Algae as indicators of environmental change. *Journal of Applied Phycology*, **6**, 509-526.

706 McCune B. & Mefford M.J. (2011) PC-ORD. Multivariate Analysis of Ecological Data.

707 Version 6. MjM Software, Gleneden Beach, Oregon, U.S.A.

Milzow C., Kgotlhang L., Bauer-Gottwein P., Meier P. & Kinzelbach W. (2009) Regional
review: the hydrology of the Okavango Delta, Botswana—processes, data and modelling. *Hydrogeology Journal*, 17, 1297-1328.

711 Murakami E.A., Bicudo D.C. & Rodrigues L. (2009) Periphytic algae of the Garças Lake,

712 Upper Paraná River foodplain: comparing the years 1994 and 2004. *Brazilian Journal of*713 *Biology*, 69, 459-468.

714	Murray-Hudson M., Wolski P., Cassidy L., Brown M., Thito K., Kashe K. & Mosimanyana
715	E. (2015) Remote Sensing-derived hydroperiod as a predictor of floodplain vegetation
716	composition. Wetlands Ecology and Management, 23, 603-616.
717	Noe G.B., Childers D.L. & Jones R.D. (2001) Phosphorus biogeochemistry and the impact of
718	phosphorus enrichment: Why is the Everglades so unique? <i>Ecosystems</i> , 4 , 603–24.
719	O'Farrell I., Sinistro R., Izaguirre I. & Unrein F. (2003) Do steady state assemblages occur in
720	shallow lentic environments from wetlands? Hydrobiologia, 502, 197–209.
721	Paidere J., Gruberts D., Škute A. & Druvietis I. (2007) Impact of two different flood
722	pulses on planktonic communities of the largest floodplain lakes of the Daugava River
723	(Latvia). <i>Hydrobiologia</i> , 592 , 303-314.
724	Pan Y., Stevenson R.J., Vaithiyanathan P., Slate J. & Richardson C.J. (2000) Changes in
725	algal assemblages along observed and experimental phosphorus gradients in a subtropical
726	wetland. U.S.A. Freshwater Biology, 44, 339–353.
727	Passy S.I. (2008) Continental diatom biodiversity in stream benthos declines as more
728	nutrients become limiting. Proceedings of the National Academy of Sciences, 105,
729	9663-9667.
730	Passy S.I. (2007) Diatom ecological guilds display distinct and predictable behavior along
731	nutrient and disturbance gradients in running waters. Aquatic Botany, 86, 171-78.
732	Pearlstine L.G., Smith S.E., Brandt L.A., Allen C.R., Kitchens W.M. & Stenberg J. (2002)
733	Assessing state-wide biodiversity in the Florida Gap analysis project. Journal of
734	Environmental Management, 66, 127–144.
735	Philippi T. (2005) Final report. CERP MAP Implementation: Transect and Sentinel Site
736	Sampling Design. South Florida Water Management District Agreement CP040131.

Freshwater Biology

3	737	Pisani O., Yamashita Y. & Jaffé R. (2011) Photo-dissolution of flocculent, detrital material in
5	738	aquatic environments: contributions to the dissolved organic matter pool. Water Research,
7 8	739	45 , 3836–3844.
9 10	740	Potapova M. & Charles D.F. (2003) Distribution of benthic diatoms in US rivers in
11 12 13	741	relation to conductivity and ionic composition. Freshwater Biology, 48, 1311-1328.
14 15	742	Prescott G.W. (1962) Algae of the Western Great Lakes Area, revised ed. Wm.C. Brown,
16 17	743	Co., Dubuque, Iowa, USA.
18 19	744	Ptacnik R., Solimini A.G., Andersen T., Tamminen T., Brettum P.L., Lepistö L., Willén E. &
20 21	745	Rekolainen S. (2008). Diversity predicts stability and resource use efficiency in natural
22 23 24	746	phytoplankton communities. Proceedings of the National Academy of Sciences USA, 105,
25 26	747	5134–5138.
27 28	748	Ramberg L., Lindholm M., Hessen D.O., Murray-Hudson M., Bonyongo C., Heinl M.,
29 30	749	Masamba W., Vanderpost C. & Wolski P. (2010) Aquatic ecosystem responses to fire and
31 32 22	750	flood size in the Okavango Delta: observations from the seasonal floodplains. Wetlands
33 34 35	751	Ecology and Management, 18, 587 595.
36 37	752	Ramberg L., Hancock P., Lindholm M., Meyer T., Ringrose S., Sliva J., Van As J. &
38 39	753	Vanderpost C. (2006) Species diversity of the Okavango Delta, Botswana. Aquatic
40 41 42	754	<i>Sciences</i> , 68 , 310–337.
42 43 44	755	Reynolds, C.S. (2006) The Ecology of Phytoplankton (Ecology, Biodiversity and
45 46	756	Conservation). Cambridge, UK: Cambridge University Press.
47 48	757	Reynolds (1993) Scale of disturbance and their role in plankton ecology. <i>Hydrobiologia</i> , 249,
49 50	758	157-171.
51 52	759	Reynolds C.S., Padisák J. & Sommer U. (1993) Intermediate disturbance in the ecology of
วง 54 55	760	phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia, 249,
56 57 58	761	183-188.

762	Rodrigues L. & Bicudo D.C. (2004) Periphytic algae. In: The upper Paraná River and its
763	floodplain: physical aspects, ecology and conservation (Eds. S.M. Thomaz, AA.
764	Agostinho & N.S. Hahn), pp. 125-143. The Netherlands: Backhuys Publishers.
765	Rodrigues L. & Bicudo D.C. (2001a) Similarity among periphyton algal assemblages in a
766	lentic-lotic gradient of the Upper Paraná River Floodplain, Brazil. Revista Brasileira de
767	<i>Botânica</i> , 24 , 235-48.
768	Rodrigues L. & Bicudo D.C. (2001b). Limnological characteristics comparison in three
769	systems with different hydrodynamic regime in the upper Paraná river floodplain. Acta
770	Limnologica Brasiliensia, 13, 39-49.
771	Rojo C., Álvarez-Cobelas M., Benavent-Corai J., Barón-Rodríguez M.M. & Rodrigo M.A.
772	(2012) Trade-offs in plankton species richness arising from drought: insights from long-
773	term data of a National Park wetland (central Spain). Biodiversity and Conservation, 21,
774	2453-2476.
775	Rojo C. & Alvarez Cobelas M. (1993) Hypertrophic phytoplankton and the Intermediate
776	Disturbance Hypothesis. Hydrobiologia, 249, 43-57.
777	Salmaso N., Naselli-Flores L. & Padisák J. (2015) Functional classifications and their
778	application in phytoplankton ecology. Freshwater Biology, 60, 603–619.
779	Siziba N., Chimbari M.J., Masundire H. & Mosepele K. (2012) Spatial variations of
780	microinvertebrates across different microhabitats of temporary floodplains of Lower
781	Okavango Delta, Botswana. African Journal of Ecology, 50, 43-52.
782	Siziba N., Chimbari M.J., Masundire H. & Mosepele K. (2011) Spatial and temporal
783	variations of microinvertebrates across temporary floodplains of the Lower Okavango
784	Delta, Botswana. Physics and Chemistry of the Earth, 36, 939-948.
785	Sommer U. (1993) Disturbance-diversity relationships in two lakes of similar nutrient
786	chemistry but contrasting disturbance regimes. Hydrobiologia, 249, 59-65.

Page 33 of 64

Freshwater Biology

3	787	Sommer U., Padisák J., Reynolds C.S. & Juhász-Nagy P. (1993) Hutchinson's heritage: the
5 6	788	diversity-disturbance relationship in phytoplankton. <i>Hydrobiologia</i> , 249 , 1–8.
7 8	789	Stevens D.L. & Olsen A.R. (2004). Spatial balanced sampling of natural resources. Journal of
9 10	790	the American Statistical Association, 99, 262–278.
11 12	791	Stevenson R.J., Hill B.E., Herlihy A.T., Yuan L.L. & Norton S.B. (2008) Algae-P
13 14	792	relationships, thresholds, and frequency distributions guide nutrient criterion
15 16 17	793	development. Journal of the North American Benthological Society, 27, 259–275.
18 19	794	Stevenson R.J., McCormick P.V. & Frydenborg R. (2002) Methods for Evaluating Wetland
20 21	795	Condition. #11 Using Algae to Assess Environmental Condition in Wetlands. United
22	796	States Environmental Protection Agency EPA-822-R-02-021.
24 25 26	797	Stevenson R.J. & Bahls L.L. (1999) Periphyton protocols. In: Barbour MT, Gerritsen J,
27 28	798	Snyder BD (Eds). Rapid Bioassessment Protocols for Use in Wadeable Streams and
29 30	799	Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. 2nd ed., 6-1-6-22. U.S.
31 32	800	Environmental Protection Agency, Office of Water, Washington, DC. EPA 841-B-99-
33 34 35	801	002.
36 37	802	Strayer D.J. & Dudgeon D. (2010) Freshwater biodiversity conservation: recent progress and
38 39	803	future challenges. Journal of the North American Benthologic Society, 29, 344-358.
40 41	804	Tapolczai K., Bouchez A., Stenger-Kovács, Padisák J. & Rimet F. (2016) Trait-based
42 43	805	ecological classifications for benthic algae: review and perspectives. Hydrobiologia, 776,
44 45 46	806	1-17.
40 47 48	807	Thomaz S.M. & Cunha E.R. (2010) The role of macrophytes in habitat structuring in aquatic
49 50	808	ecosystems: methods of measurement, causes and consequences on animal assemblages'
51 52 53 54 55	809	composition and biodiversity. Acta Limnologica Brasiliensia, 22, 218–236.
56		

2
3
3
4
5
6
7
0
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
27
25
26
27
28
20
29
30
31
32
22
33
34
35
36
37
57
38
39
40
41
71 10
42
43
44
45
16
40
47
48
49
50
50 E1
DI
52
53
54
55
55
56
57
58
50

1

810 Utermöhl H. (1958) Zur Vervollkomnung der quantitativen Phytoplankton-Methodik.

811 Mitteilungen der internationale Vereinigung für theoretische und angewandte

812 *Limnologie*, **9**, 1–38.

- 813 Van Ginkel C. (2002) Trophic Status Assessment, Executive Summary. Institute for
- 814 Water Quality Studies, Department of Water Affairs and Forestry, Pretoria.
- 815 Wehr J.D., Sheath R.G. & Kociolek J.P. (Eds.) (2015) Freshwater algae of North America.
- 816 Academic Press, San Diego, California.
- , t -energy the 817 Wright D.H. (1983) Species-energy theory: an extension of species-area theory. Oikos, 41,
- 818 496-506.

Page 35 of 64

Freshwater Biology

Table 1. Number of algal samples collected in the Okavango (OW: Open Water with floating vegetation; MV: Marginal

Vegetation: F: Floodplain) and Everglades (OW: Open Water with floating vegetation; MP: Marsh/Prairie; SL:

Shrubland). * Habitat or hydroperiod class not available (n.a.); see Fig. 1 for abbreviations.

Hydroperiod			(Okavang	0					Eve	rglades		
				Region						R	egion		
	Habitat	UPH	LPH	XAK	BOR	SAN	Subtotal	Habitat	LKO	LOX	Out_ENP	ENP	Subtotal
1: < 90 days	OW					12	12	OW			1		1
-	MV							MP			1	30	31
	F			3		15	18	SL			3	2	5
	-							n.a.					
2: 90-240 days	OW			2	13		15	OW		1	5	7	13
	MV				4		4	MP		20	85	174	279
	F				48		48	SL		65	15	11	91
	-							n.a.				6	6
3: > 240 days	OW	9	3	2			14	OW			26	9	35
	MV	4	7	4			15	MP		1	269	84	354
	F	2		2			4	SL		7	14	7	28
	-							n.a.				4	4
HP class n.a.	OW							OW	2		11		13
	MV							MP	6		28	12	46
	F							SL	16		4	2	22
n.a.*	-							n.a.*			7	12	19
	Subtotal	15	10	13	65	27	130	Subtotal	24	94	469	360	947

Table 2. Number of sites classified in the metagroups created using hydroperiod class (HP)

6 and P concentrations [associated with algal life-history strategies, i.e. competitive (C), S (stress-

tolerant), R (ruderal) and stress-disturbance tolerant (SD)].

Strategy	С	S	R	SD	
Region Group	longer HP higher P	shorter HP lower P	shorter HP higher P	longer HP lower P	Total
UPH	2			5	7
LPH	2		1	3	6
XAK	1		4	6	11
BOR		10	4		14
SAN			2		2
Total	5	10	11	14	40
Strategy	С	S	R	SD	
Group	longer HP	shorter HP	shorter HP	longer HP	Total
Region	higher P	lower P	higher P	lower P	
LKO	2				2
LOX	13		3		16
ENP	2	31	1	22	56
Out_ENP	31	33	4	4	72
Total	48	64	8	26	146

Table 3. Summary of environmental data and estimated richness (mean ± standard deviation).

Okavango	Depth (cm)	Depth change (%)	TP (μg L ⁻¹)	TDP (μg L ⁻¹)	Estimated richness
UPH	240±111	70 ± 0	34±16		65±19
LPH	345±89	38±14	54±14		45±9
XAK	90±38	5±7	44±29		91±17
BOR	97±77	64±35	29±14	46±31	102±15
SAN	79±34	100 ± 24		54±10	103±32
Everglades	Depth	Depth	TP (μg g ⁻¹)		Estimated
-	(cm)	change (%)			richness
LKO	58±7.1	69±16	1,608±352		22±7
LOX	44±14	58±21	445±126		28±5
Out_ENP	61±19	49±19	262±123		19±4
ENP	34±12	63±27	147±117		19±3

Freshwater Biology

1	
י 2	
2	
3	
4	
5	
2	
6	
7	
8	
à	
10	
10	
11	
12	
13	
10	
14	
15	
16	
17	
11	
18	
19	
20	
21	
21	
22	
23	
24	
25	
20	
26	
27	
28	
20	
29	
30	
31	
32	
33	
00	
34	
35	
36	
27	
20	
38	
39	
40	
41	
10	
42	
43	
44	
45	
40	
46	
47	
48	
⊿0	
-13	
50	
51	

53 54

Table 4. Multiple stepwise regression results: statistically significant predictors

of estimated algal richness. *P was measured as TP in 2006-2007 in UPH, LPH, XAK and BOR,

and as TDP in 2009-2010 in BOR and SAN.

WETLAND/Region	Predictor	F (model)	Coefficient	p-value	R ² adj
OKAVANGO					
Total					
All regions	Depth	5.867	-0.558	0.031	0.258
Bacillariophyta					
All regions	\mathbf{P}^*	6.167	-0.583	0.029	0.284
BOR	Р	9.194	-0.778	0.023	0.539
Chlorophyta					
All regions	Depth	8.865	-0.652	0.012	0.377
BOR	Р	16.027	0.853	0.007	0.682
EVERGLADES					
Total					
All regions	TP	22.279	0.364	< 0.001	0.126
Out_ENP	ТР	17.086	0.443	< 0.001	0.185
ENP	TP	8.056	0.355	0.006	0.110
Bacillariophyta					
LOX	Depth	6.098	0.551	0.027	0.254
Out ENP	TP	4.326	0.241	0.041	0.045
ENP	ТР	4.434	0.271	0.040	0.057
Chlorophyta					
Out ENP	ТР	10.556	0.362	0.002	0.119
ENP	Depth	4.296	0.267	0.043	0.055
Cvanobacteria	1				
LÖX	HP class	5.640	0.536	0.032	0.236
ENP	ТР	4.613	0.276	0.036	0.060

21 Table 5. List of the C, S and R and stress - and disturbance tolerant taxa identified via

indicator species analysis (in bold italics the indicator taxa identified in both wetlands).

Strategy	Okavango
Competitive (C)	
1 Planktonic/Benthic (P/B), 5 Benthic (B)	Bacillariophyta - (B) : <i>Eunotia flexuosa</i> , Frustulia rhomboides, F. saxonica, Frustulia sp., Stauroneis phoenicenteron
	Chlorophyta - (P/B): Micrasterias foliacea
Stress-tolerant (S)	
Ruderal (R)	Bacillariophyta - (P): Aulacoseira ambigua, Aulacoseira granulata
28 Planktonic (P), 20 Planktonic/Benthic (P/B), 1 Benthic (B)	Chlorophyta - (P) : Botryococcus sp., Chlamydomonas sp., Chlorococcum sp., Chlorococcales, Coelastrum sp., Crucigeniella crucifera, Eremosphaera sp., E. viridis, Oocystis sp., Pediastrum angulosum, P. boryanum, P. duplex, Scenedesmus falcatus, S. maximum, S. obtusus, S. planctonicum, S. serratus, Tetraedron caudatum
	(P/B): Cosmarium contractum, C. obsoletum, C. pseudopyramidatum, C. regnesii, C. trilobulatum, Euastrum bidentatum, E. binale, E. denticulatum, E. elegans, Euastrum sp., Hyalotheca sp., Micrasterias pinnatifida, Staurastrum furcatum, S. margaritaceum, S. tetracerum, Staurodesmus convergens, S. dickiei, S. subulatus, Teilingia granulata
	Cryptophyta - (P): Rhodomonas lacustris
	cyanobacteria - (P): Lyngbya sp.
	Euglenophyta - (P): Euglena limnophila, E. proxima, Phacus sp., P. pusillus
	Xanthophyta - (P): Goniochloris sp.; (B): Tribonema sp.
	Pyrrophyta - (P) : <i>Peridinium sp.</i> (P); (P/B): <i>Amphidinium sp.</i>
Strategy	Everglades
Competitive (C)	Bacillariophyta – (B): Encyonopsis ftsp02, Eunotia flexuosa
3 Planktonic, 8 Planktonic/Benthic, 4 Benthic	 Chlorophyta - (P): Pediastrum tetras, Scenedesmus bijuga, Tetraedron minimum (P/B): Cosmarium sp., C. calcareum, C. ocellatum, C. phaseolus, C. pyramidatum, Staurastrum cyathipes, S. excavatum, S. longebrachiatum (B): Oedogonium (small)
	cyanobacteria - (B): Lyngbya sp.
Stress-tolerant (S) 1 Benthic	Bacillariophyta - (B): Nitzschia serpentiraphe
Ruderal (R)	Bacillariophyta – (B) : Diploneis parma, Encyonopsis microcephala, Eunotia incisa, Fragilaria nana, Nitzschia amphibia, N. nana
1 Planktonic, 2 Planktonic/Benthic, 6 Benthic	Chlorophyta - (P/B): Cosmarium inaequalis, Micrasterias crux-mellitensis
	cyanobacteria - (P): Johannesbaptistia sp.
Stress/disturbance tolerant	
1 Planktonic/Benthic (P/B)	cyanobacteria - (P/B): Scytonema sp.

Freshwater Biology

2
3
Δ
- -
5
6
7
8
õ
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
21
22
23
24
25
20
26
27
28
20
29
30
31
32
33
24
34
35
36
37
00
38
39
40
41
10
42
43
44
45
16
40
47
48
49
50
50
51
52
53
54
54
55
56
57
58
50
59
~~

23 FIGURE LEGENDS

25	Fig. 1 a) and b). Map of estimated algal richness in the a) Okavango and b) Everglades,
26	respectively located in NW Botswana and SE USA, as shown in the inset maps. a) Okavango
27	(site averages); UPH= Upper Panhandle; LPH=Lower Panhandle; XAK=Xakanaxa;
28	BOR=Boro; SAN=Santantadibe; b) Everglades; LKO=Lake Okeechobee;
29	LOX=Loxahatchee; Out_ENP=Outside of Everglades National Park (including the Water
30	Conservation Areas, WCA 2 and 3); ENP=Everglades National Park. The total area of the
31	Okavango is 28,000 km ² while today's Everglades' area is \sim 5,000 km ² , reduced from its
32	original pre-drainage size of $> 10,000 \text{ km}^2$ by agriculture and urbanization (Junk <i>et al.</i> , 2006).
33	Due to the their outstanding geographic features and biodiversity, both these wetlands are
34	protected as World Heritage sites (http://whc.unesco.org/), and are included in the Ramsar
35	Convention on Wetlands of International Importance (<u>http://www.ramsar.org/</u>).
36	
37	Fig. 2 a) and b). Observed species richness of planktonic, planktonic/benthic, and benthic
38	algae by phylum in the a) Okavango and b) Everglades.
39	
40	Fig. 3. Mean site-specific estimated algal richness in relation to mean water depth change
41	(%). Okavango (empty circles); Everglades (black fill triangles). Depth change was not a
42	significant predictor in either wetland (linear regression p-values > 0.05; quadratic models
43	did not yield better results).
44	
45	Fig. 4 a) and b). Mean site-specific estimated algal richness across groups of sites with
46	different hydroperiod class (HP) and phosphorus (P) for Fig. 6 (C=competitive; S=stress-
47	tolerant; R=ruderal; SD=stress and disturbance tolerant). Significant differences (Kruskal-

48 Wallis, K.W., and Mann Whitney U, M.W.U., tests: p<0.05): <u>Okavango</u>: Total (K.W.: χ^2 =

2
3
Δ
- -
5
6
7
8
0
9
10
11
12
12
13
14
15
16
17
17
١ð
19
20
21
21
ZZ
23
24
25
20
20
27
28
29
23
30
31
32
33
24
34
35
36
37
20
38
39
40
41
12
42
43
44
45
16
40
47
48
49
50
50
51
52
53
54
54
55
56
57
58
50
59
60

49	9.061), Chlorophyta (Chl; K.W.: $\chi^2 = 11.097$) and cyanobacteria (Cya; K.W.: $\chi^2 = 12.482$);
50	Other phyla: K.W.: χ^2 =8.440. Statistically significant post-hoc differences in phylum mean
51	richness as per M.W.U. tests (p<0.05) are marked with (in decreasing order) a and b; total
52	richness with A and B. Everglades: Total (χ^2 =36.275), Bacillariophyta (Bac; K.W.:
53	χ^2 =10.139), Chl (K.W.: χ^2 =22.474), and Cya (K.W.: χ^2 =10.380). Statistically significant post-
54	hoc differences in phylum mean richness as per M.W.U. tests (p<0.05) are marked with (in
55	decreasing order) aa, a and b; total richness with AA, A and B.
56	
57	Fig. 5. Mean estimated habitat-specific algal richness in the Okavango and Everglades. No
58	statistically significant differences (p-value=0.05) were found within each wetland.
59	
60	Fig. 6 a) and b). Summary of the distribution of competitive (C), stress-tolerant (S), ruderal
61	(R) indicator taxa, and stress-disturbance tolerant (SD) at sites with varying desiccation
62	disturbance and P scarcity in the a) Okavango, and b) Everglades. The number of C, S, and R
63	indicator taxa in each wetland is included.
64	
65	
66	
67	

Freshwater Biology

1 2 3 4 5	1 2 3
6 7 8 9 10	
11 12 13 14	
15 16 17 18	
19 20 21 22	
23 24 25 26 27	
28 29 30 31	
32 33 34 35	
36 37 38 39 40	
41 42 43 44	
45 46 47 48	
49 50 51 52 53	
54 55 56 57	
58 59	

Table S1. List of all the algal taxa observed in the Okavango Delta (main source of authorities:www.algaebase.org; information on planktonic / benthic mostly from Wehr J.D., Sheath R.G. & Kociolek J.P. (Eds). (2015)."Freshwater algae of North America. Ecology and classification". Academic Press, San Diego).

BACILLARIOPHYTA		Planktonic / Benth
Species	Authority	
Achnanthidium minutissimum	(Kützing) Czarnecki 1994	В
Amphora libyca	Ehrenberg 1840	В
Amphora ovalis	Kützing 1844	В
Amphora pediculus	(Kützing) Grunow in Schmidt 1875	В
Asterionella formosa	Hassall (1850)	Р
Aulacoseira ambigua	(Grunow) Simonsen 1979	Р
Aulacoseira granulata	(Ehrenberg) Simonsen 1979	Р
Caloneis bacillum	(Grunow) Cleve 1894	В
Caloneis tenuis	(W.Gregory) Krammer	В
Caloneis undulata	(W.Gregory) Krammer	В
Craticula cuspidata	(Kützing) Mann 1990	В
Cymatopleura solea	(Brébisson and Godey) W. Smith (1851)	В
<i>Cymbella cuspidata</i>	Kützing 1844	В
Cymbella naviculiformis	(Auerswald) Cleve (1894)	В
Epithemia adnata	(Kützing) Brébisson 1838	В
Eunotia alpina	(Nägeli) Hustedt in Schmidt <i>et al.</i> 1913	В
Eunotia arcus	Ehrenberg 1837	B
Eunotia asterionelloides	Hustedt 1952	В
Eunotia hilunaris	(Ehrenberg) Schaarschmidt 1880	B
Eunotia exigua	(Brébisson ex Kützing) Rabenhorst 1864	B
Eunotia faha	(Ehrenberg) Grunow in van Heurck 1881	B
Eunotia flervosa	(Bréhisson ex Kützing) Kützing 1849	B
Eunotia incisa	W Smith ex W Gregory 1854	B
Eunotia intermedia	(Krasske) Nörnel and Lange-Bertalot	B
Eunotia minor	(Kützing) Grunow in van Heurek 1881	B
Functia muscicola	Krasske 1939	B
Functia naegellii	Migula 1907	B
Eunotia okawangoi	Cholnoky	B
Functia pectinalis	(Kützing) Rabenhorst 1864	B
Eunotia preerinta	Ehrenberg 1843	B
Eunotia rhomboidea	Hustedt 1950	B
Eunotia sarra	Ehrenberg 1837	B
Eunotia soloivolii	(Kützing) Rabenborst 1864	B
Euronia solenoni	Hustedt	D D
Fragilaria crotononsis	Kitton 1860	D I
Enagilaria ulua	(Nitzsah) Langa Partalat 1020	I
Fruguaria una Emistrilia nomboidas	(Initzsch) Lange-Dertalot 1980 (Ehrenberg) De Teni 1801	Г/D D
Frustulia rhombolaes	Dehenhoret 1852	D
Frustulla saxonica	C. A condit 1823	D
Gomphonema angustum	C. Agaran 1831	B
Gompnonema augur	Enrenberg 1840	B
Gomphonema clevel	Fricke in Schmitd <i>et al.</i> 1902	B
Gomphonema globiferum	Meister 1913	B
Gomphonema gracile	Enrenberg 1838	B
Gomphonema hebridense	W.Gregory 1854	B
Gomphonema lanceolatum	Kutzing 1844	В
Gomphonema olivaceum	(Hornemann) Brébisson 1838	B
Gomphonema parvulum	(Kützing) Kützing 1849	В
Gomphonema pfannkucheae	Cholnoky	В
Gomphonema resendei	Moura	В
Gomphonema subtile	Ehrenberg 1843	В

BACILLARIOPHYTA		Planktonic / Benthic
Gomphonema truncatum	Ehrenberg 1832	В
Gyrosigma spencerii	(W.Smith) Griffith and Henfrey 1856	В
Hantzschia amphioxys	(Ehrenberg) Grunow	В
Meridion circulare	(Greville) C.Agardh 1831	В
Navicula cryptocephala	Kützing 1844	В
Navicula cryptotenella	Lange-Bertalot in Krammer and Lange-Bertalot 1985	В
Navicula halophila	(Grunow) Cleve 1894	В
Navicula laevissima	Kützing 1844	В
Navicula menisculus	Schumann 1867	В
Navicula radiosa	Kützing 1844	В
Navicula veneta	Kützing 1844	В
Neidium ampliatum	(Ehrenberg) Krammer in	В
Neidium productum	(W.Smith) Cleve 1894	В
Nitzschia acicularis	(Kützing) W.Smith 1853	В
Nitzschia linearis	(C.Agardh) W.Smith 1853	В
Nitzschia pellucida	Grunow 1880	В
Nitzschia perminuta	(Grunow) M.Peragallo 1903	В
Nitzschia recta	Hantzsch ex Rabenhorst 1862	В
Nitzschia scalaris	(Ehrenberg) W.Smith 1853	B
Nitzschia sigma	(Kützing) W Smith 1853	B
Nitzschia sigmoidea	(Nitzsch) W Smith 1853	B
Nitzschia subacicularis	Hustedt	B
Nitzschia vermicularis	(Kützing) Hantzsch in Rabenhorst 1860	B
Pinnularia abauiensis	(Pantocsek) R Ross 1947	B
Pinnularia hraunii	(Grunow) Mills 1934	B
Pinnularia divergentissima	(Grunow) Cleve 1895	B
Pinnularia gibba	Ehrenberg 1843	B
Pinnularia interrunta	W Smith 1853	B
Pinnularia lundii	Hustedt 1954	B
Pinnularia major	Kutzing (Rabenhorst) 1997	B
Pinnularia mesolenta	(Ehrenberg) W Smith 1853	B
Pinnularia nobilis	(Ehrenberg) Ehrenberg 1843	B
Pinnularia subcanitata	W Gregory 1856	B
Pinnularia subrostrata	(A Cleve) Cleve Fuler 1955	B
Pinnularia viridis	(Nitzsch) Ehrenberg 1843	B
Rhonalodia gibba	(Fhrenberg) () Müller (1895)	B
Sallanhora bagillum	(Ehrenberg) D.G. Mann 1090	B
Sallaphora pupula	(Kützing) Meresekkovsky 1002	B
Stauronais ancans	Ehrenberg 18/3	B
Stauronais phoanicantaron	(Nitzsch) Ehranbarg 1843	B
Stauroneis producta	Grupow in von Hourek 1990	D
Suringlla agnonii	Dréhisson av E Vitton	D
Surfreita capronti	Ehrenherg	D
Surfrella lingaria	W Smith 1952	<u>ש</u> ח
Surirella linearis	W.SIIIIII 1855	D/D
Syneara acus	Kuizing 1844	P/B
Syneara amphicephala	Kutzing 1844	P/B
Synedra capitata	Enrenberg (1836)	P/B
Synedra nana	F.Meister 1912	P/B
Synedra rumpens	Kutzing 1844	P/B
Tabellaria fenestrata	(Lyngbie) Kützing 1844	Р

CHLOROPHYTA		Planktonic / Benthic
Species	Authority	
Actinastrum hantzschii	Lagerheim 1882	Р

Actinotaenium cucurbitum	Teiling	P/B
Ankistrodesmus falcatus	(Corda) Ralfs 1848	Р
Ankistrodesmus spiralis	(W.B.Turner) Lemmermann 1908	P
Bambusina borreri	(Ralfs) Cleve 1864	P/B
Bambusina brebissonii	Kützing ex Kützing 1849	P/B
Chlamydomonas mirabilis	Pascher 1927	P
Chlorobion braunii	(Nägeli) Komàrek 1979	P/B
Closteriopsis acicularis	(Chodat) J.H.Belcher and Swale 1962	P
Closterium acerosum	Ehrenberg ex Ralfs 1848	B
Closterium aciculare	West 1860	B
Closterium acutum	Brébisson in Ralfs 1848	B
Closterium attenuatum	Ralfs 1848	B
Closterium closterioides	(Ralfs) A.Louis and F.Peeters 196/	B
Closterium cornu	Ehrenberg ex Ralfs 1848	B
<u>Closterium dianae</u>	Ehrenberg ex Ralfs 1848	B
Closterium directum	W.Archer 1862	B
Closterium ehrenbergii	Meneghini ex Ralfs 1848	B
Closterium gracile	Brebisson ex Ralfs 1848	B
Closterium idiosporum	west and G.S. west 1900	B
Closterium incurvum	Brebisson 1856	B
Closterium jenneri	Ralfs 1848	B
Closterium juncidum	Ralis 1848	B
Closterium kuetzingii	Brebisson 1856	B
Closterium leiblenii	Kutzing ex Ralfs 1848	B
	F.Gay 1884	B
	Enrenberg and Hemprich ex Kalis 1848	B
Closterium monoliferum	(Bory) Enfenderg ex Kalis 1848	B
Closterium navicula	(Bredisson) Luikemulier 1902	B
Closterium parvuium	Nagell 1849	B
Closterium raijsti	Bredisson ex Ralls 1848	B
Closterium subfusiform o	Maggilammar	D
Closterium subjustforme	Wessikonniner Vystaina av Dolfa 1949	D
Coolastmum mianonomum	Niggeli 1955	B
Coelastrum microporum	Nagell 1855	P D
Coelastrum pseudomicroporum	Niggoli 1940	P D
Coenarium annulatum	Nageli 1649	P D/D
Cosmarium annulatum	(Nagell) de Daly 1649 Dagiborgki (Lütkomüller)	Г/D D/P
Cosmarium dustrate	Nordstadt in Wittrock and Nordstadt 1990	Г/D D/P
Cosmarium bioculatum	Brábisson av Palfs 1848	Г/D D/P
Cosmarium bioculalum	Delfa I (1949)	D/P
Cosmarium blythii	Willo 1990	D/P
Cosmarium botrytis	Meneghini ex Balfs 1848	I/B P/B
Cosmarium brahissonii	Meneghini ex Ralfs 1848	D/D
Cosmarium caelatum	Ralfe 1848	D/D
Cosmarium connatum	Bréhisson in Ralfs 1848	D/R
Cosmarium contractum	Kirchner 1878	D/D
Cosmarium cucumis	Corda ex Ralfs 1848	D/D
Cosmarium depressum	(Nägeli) P Lundell 1871	Г/D D/D
Cosmarium difficile	L ütkemüller 1802	D/D
Cosmarium algarissimum	P Lundell 1871	Г/D D/D
Cosmarium formulosum	Hoff in Nordstedt 1888	Г/D D/D
	11011 111 1101431444 1000	Planktonia / I
CILOROT II IA Cosmarium gaminatum	P Lundell 1871	
Cosmarium granatum	1. Lunuen 10/1 Bréhisson in Ralfs 1848	D/D
Cosmartum granatum	DICUISSUII III KAIIS 1040	r/B

Cosmarium impressulum	Elfving 1881	P/B
Cosmarium margaritatum	(P.Lundell) J.Roy and Bisset 1886	P/B
Cosmarium meneghinii	Brébisson ex Ralfs 1848	P/B
Cosmarium moniliforme	Ralfs 1848	P/B
Cosmarium monomazum	P.Lundell 1871	P/B
Cosmarium obsoletum	(Hantzsch) Reinsch 1867	P/B
Cosmarium okavangicum	Coesel and van Geest 2009	P/B
Cosmarium ornatum	Ralfs ex Ralfs 1848	P/B
Cosmarium portianum	Archer 1860	P/B
Cosmarium pseudoconnatum	Nordstedt 1870	P/B
Cosmarium pseudoprotuberans	O.Kirchner 1878	P/B
Cosmarium	P.Lundell 1871	P/B
Cosmarium pseudosulcatum	Rich in F.E.Fritsch & Rich 1937	P/B
Cosmarium pseudotus	Coesel and Van Geest 2009	P/B
Cosmarium pygmaeum	W.Archer 1864	P/B
Cosmarium pyramidatum	Brébisson ex Ralfs 1848	P/B
Cosmarium quadratulum	(F.Gay) De Toni 1889	P/B
Cosmarium ralfsii	Brébisson ex Ralfs 1848	P/B
Cosmarium regnellii	Wille 1884	P/B
Cosmarium regnesii	Reinsch 1867	P/B
Cosmarium reniforme	(Ralfs) W. Archer 1874	P/B
Cosmarium richianum	Compère 1987	P/B
Cosmarium taxichondrum	P.Lundell 1871	P/B
Cosmarium trilobulatum	Reinsch 1866	P/B
Cosmarium turpinii	Brebisson 1856	P/B
Cosmarium undulatum	Corda ex Ralfs 1848	P/B
Cosmarium zonatum	P.Lundell 1871	P/B
Crucigenia tetrapedia	(Kirchner) West et G.S. West 1902	P/B
Crucigeniella crucifera	(Wolle) Komarek 1974	P/B
Crucigeniella rectangularis	(Nägeli) Komàrek 1974	P/B
Desmidium grevillei	(Ralfs) De Bary 185	P/B
Desmodesmus communis	Hegewald 2000	Р
Docidium baculum	Brébisson ex Ralfs 1848	P/B
Eremosphaera gigas	(W.Archer) Fott and Kalina 1962	P/B
Eremosphaera viridis	De Bary 1858	P/B
Euastrum africanum	(Bourrelly) Coesel and Van Geest 2008	P/B
Euastrum ansatum	Ralfs 1848	P/B
Euastrum attenuatum	Wolle	P/B
Euastrum bidentatum	Nägeli 1849	P/B
Euastrum binale	(Turpin) Ehnrenberg ex Ralfs 1848	P/B
Euastrum denticulatum	F. Gay 1884	P/B
Euastrum divergens	Joshua 1886	P/B
Euastrum dubium	Nageli 1849	P/B
Euastrum elegans	(Brebisson) Kützing ex Ralfs 1848	P/B
Euastrum mononcylum	(Nordstedt) Raciborski 1885	P/B
Euastrum pectinatum	Brebisson ex Brebisson in Ralfs 1848	P/B
Euastrum sphyroides	Nordstedt 1888	P/B
Euastrum spinulosum	Delponte 1876	P/B
Euastrum truncatiforme	G.S. West 1907	P/B
Euastrum verrucosum	Ehrenberg ex Ralfs 1848	P/B
Golenkinia paucispina	(J.W.G.Lund) Fott 1981	Р
Golenkiniopsis chlorelloides	West and G.S.West 1902	Р
		Planktonic / B
UNLUKUPNIA		
Gonatozygon aculeatum	Hastings 1892	P/B
Gonatozygon aculeatum Gonatozygon brebissonii	Hastings 1892 De Bary 1858	P/B P/B

1	
2	
3	
4	
5	
6	
8	
9	
10	
11	
12	
13	
15	
16	
17	
18	
19 20	
20 21	
22	
23	
24	
25	
20	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
30 30	
40	
41	
42	
43	
44 45	
46	
47	
48	
49 50	
51	
52	
53	
54	
55 56	
วง 57	
58	
59	
60	

Gonatozygon monotaenium	De Bary 1856	P/B
Gonatozygon pilosum	Wolle 1882	P/B
Groenbladia undulata	(Nordstedt) Kurt Förster 1973	P/B
Haplotaenium minutum	(Ralfs) T.Bando 1988	В
Haplotaenium rectum	(Delponte) Bando 1988	В
Hyalotheca dissiliens	Brébisson ex Ralfs 1848	P/B
Kirchneriella irregulare	(G.M.Smith) Korshikov 1953	P/B
Kirchneriella obesa	(G.S.West) West and G.S.West 1894	P/B
Koliella spiculiformis	(Vischer) Hindák 1963	Р
Korshikoviella	(Elenkin) P.C.Silva 1959	В
Micrasterias americana	Ehrenberg ex Ralfs 1848	P/B
Micrasterias crux-melitensis	(Ehrenberg) Trevisan 1842	P/B
Micrasterias foliacea	Bailey ex Ralfs 1848	P/B
Micrasterias	Brühl and Biswas	P/B
Micrasterias oscitans	Ralfs 1848	P/B
Micrasterias pinnatifida	Ralfs 1848	P/B
Micrasterias pusilla	G.C.Wallich	P/B
Micrasterias rotata	Ralfs 1848	P/B
Micrasterias tropica	Nordstedt 1870	P/B
Micrasterias truncata	Ralfs 1848	P/B
Monoraphidium arcuatum	(Korshikov) Hindák 1970	Р
Monoraphidium contortum	(Thuret) Komàrková-Legnerová 1969	Р
Monoraphidium convolutum	(Corda) Komárková-Legnerová 1969	Р
Monoraphidium griffithii	(Berkeley) Komárková-Legnerová 1969	Р
Monoraphidium irregulare	(G.M.Smith) Komárková-Legnerová	Р
Monoraphidium komarkovae	Nygaard 1979	Р
Monoraphidium minutum	(Nägeli) Komárková-Legnerová 1969	Р
Monoraphidium obtusum	(Korshikov) Komárková-Legnerová 1969	Р
Monoraphidium pusillum	(Printz) Komárková-Legnorová 1969	Р
Monoraphidium tortile	(West and G.S.West) Komárková-Legnerová 1969	Р
Netrium digitus	(Brébisson ex Ralfs) Itzigsohn and Rothe	P/B
Netrium interruptum	(Brébisson ex Ralfs) Lütkemüller 1902	P/B
Onychonema filiforme	(Ehrenberg ex Ralfs) J.Roy and Bisset 1886	P/B
Oocystis natans	(Lemmermann) Lemmermann 1908	P/B
Oocystis solitaria	Wittrock 1879	P/B
Pediastrum angulosum	Ehrenberg ex Meneghini 1840	Р
Pediastrum boryanum	(Turpin) Meneghini 1840	Р
Pediastrum duplex	Meyen 1829	Р
Pediastrum simplex	Meyen 1829	Р
Pediastrum tetras	(Ehrenberg) Ralfs 1844	Р
Penium cylindrus	Brébisson ex Ralfs 1848	P/B
Penium gonatozygiforme	Claassen	P/B
Penium margaritaceum	Brébisson in Ralfs 1848	P/B
Pleurotaenium coronatum	Rabenhorst 1868	В
Pleurotaenium ehrenbergii	(Brébisson ex Ralfs) Delponte 1878	В
Pleurotaenium trabecula	(Ehrenberg) Nägeli 1849	В
Scenedesmus acuminatus	(Lagerheim) Chodat 1902	Р
Scenedesmus acutus	Meyen 1829	Р
Scenedesmus alternans	Reinsch	Р
Scenedesmus arcuatus	Lemmermann 1899	Р
Scenedesmus armatus	(Chodat) R.Chodat 1913	Р
Scenedesmus brasiliensis	Bohlin 1897	Р
CHLOROPHYTA		Planktonic / Ber
Scenedesmus communis	Hegewald 1977	Р
Scenedesmus ellipsoideus	Chodat	Р
G 1 11: .:	Cordo 1925	D

1
2
3
4
5
6
0
1
8
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
23
24
25
20
20
21
28
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
43
44
45
16
40
47
48
49
50
51
52
53
54
55
56
57
57
20
59
60

Scenedesmus falcatus	Chodat 1894	Р
Scenedesmus longispina	Chodat 1913	Р
Scenedesmus magnus	Meyen 1829	Р
Scenedesmus maximus	(West and G.S.West) Chodat 1913	Р
Scenedesmus obtusus	Meyen 1829	Р
Scenedesmus planctonicus	(Korshikov) Fott 1973	Р
Scenedesmus protuberans	F.E. Fritsch and M.F. Rich 1929	Р
Scenedesmus auadricauda	(Turpin) Brébisson in Brébisson & Godey 1835	Р
Scenedesmus serratus	(Corda) Bohlin 1901	Р
Scenedesmus verrucosus	Roll 1925	P
Schroederia robusta	Korshikov 1953	P
Selenastrum hibraianum	Reinsch 1866	P
Selenastrum gracile	Reinsch 1866	P
Sovastrum amoricanum	(Bohlin) Schmidle 1000	P/B
Spirotaonia condensata	Brábisson in Palfs 1949	D/D
Stavnastmum anachno	Dicoisson in Kans 1646	
Staurastrum aracine	(Ebrophorg og Dolfe) D Lundoll 1971	P/D
Staurastrum arctiscon	Definition 1956	P/B
Staurastrum armigerum	Bredisson 1850	P/B
Staurastrum avicula	Bredisson in Kalfs 1848	P/B
Staurastrum cerastes	P.Lundell 18/1	P/B
Staurastrum chaetoceras	(Schröder) G.M.Smith 1924	P/B
Staurastrum convergens	(Ehrenberg) Meneghini	P/B
Staurastrum denticulatum	(Nägeli) W.Archer 1861	P/B
Staurastrum excavatum	West and G.S.West 1895	P/B
Staurastrum fuelleborniforme	Coesel and Van Geest 2009	P/B
Staurastrum furcatum	Brébisson 1856	P/B
Staurastrum gemelliparum	Nordstedt 1870	P/B
Staurastrum gracile	Ralfs ex Ralfs 1848	P/B
Staurastrum hagmannii	Grönblad	P/B
Staurastrum hexacerum	Ehrenberg ex Wittrock 1872	P/B
Staurastrum hirsutum	Ehrenberg ex Ralfs 1848	P/B
Staurastrum hystrix	Ralfs 1848	P/B
Staurastrum johnsonii	West and G.S.West 1896	P/B
Staurastrum leptocladum	Nordstedt, 1869	P/B
Staurastrum longispinum	(Bailey) Archer 1861	P/B
Staurastrum margaritaceum	Meneghini ex Ralfs 1848	P/B
Staurastrum muticum	Brébisson ex Ralfs 1848	P/B
Staurastrum paradoxum	Meyen ex Ralfs 1848	P/B
Staurastrum planctonicum	Teiling 1946	P/B
Staurastrum proboscideum	(Brébisson) Archer in Prichard 1861	P/B
Staurastrum productum	(West and G S West) Coesel 1996	P/B
Staurastrum auadrangulare	Bréhisson in Balfs 1848	P/B
Staurastrum rzoskae	Grönblad and Scott 1958	P/R
Staurastrum sabaldi	Reinsch 1866	D/R
Staunastrum totna comum	Relifs or Polfo 1949	I/D
Staunastrum volans	Wast & C.S. Wast 1805	
Staurastrum wildom anii	Cutwinghi 1002	I/B
Stauro dagmug geografia	(D Lundell) S Lilliereth 1050	Г/D D/D
Stauro dagmus hugui-sing	(F.Luidell) S.Lilleloui 1930	
siauroaesmus previspina	(Próbiggon) (Proggdolo 1057	
<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	(Brébisson) Croasdale 1957	
Staurodesmus convergens	(Brébisson) Croasdale 1957 (Ehrenberg ex Ralfs) S.Lilleroth 1950	P/B
Staurodesmus convergens Staurodesmus crassus	(Brébisson) Croasdale 1957 (Ehrenberg ex Ralfs) S.Lilleroth 1950 (West and G.S.West) MB.Florin 1957	P/B P/B
Staurodesmus convergens Staurodesmus crassus Staurodesmus cuspidatus	(Brébisson) Croasdale 1957 (Ehrenberg ex Ralfs) S.Lilleroth 1950 (West and G.S.West) MB.Florin 1957 (Brébisson) Teiling 1967	P/B P/B P/B P/B
Staurodesmus convergens Staurodesmus crassus Staurodesmus cuspidatus CHLOROPHYTA	(Brébisson) Croasdale 1957 (Ehrenberg ex Ralfs) S.Lilleroth 1950 (West and G.S.West) MB.Florin 1957 (Brébisson) Teiling 1967	P/B P/B P/B P/B Planktonic / Benthic
Staurodesmus convergens Staurodesmus crassus Staurodesmus cuspidatus CHLOROPHYTA Staurodesmus dejectus	(Brébisson) Croasdale 1957 (Ehrenberg ex Ralfs) S.Lilleroth 1950 (West and G.S.West) MB.Florin 1957 (Brébisson) Teiling 1967 (Brébisson) Teiling 1967	P/B P/B P/B P/B P/B P/B P/B
Staurodesmus convergens Staurodesmus crassus Staurodesmus cuspidatus CHLOROPHYTA Staurodesmus dejectus Staurodesmus dickiei	(Brébisson) Croasdale 1957 (Ehrenberg ex Ralfs) S.Lilleroth 1950 (West and G.S.West) MB.Florin 1957 (Brébisson) Teiling 1967 (Brébisson) Teiling 1967 (Ralfs) S.Lillieroth 1950	P/B P/B P/B P/B P/B P/B P/B P/B P/B

3	Staurodesmus glaber	(Ralfs) Teiling 1948	P/B
4	Staurodesmus mamillatus	(Nordstedt) Teiling 1967	P/B
5	Staurodesmus megacanthus	(P.Lundell) Thunmark 1948	P/B
6	Staurodesmus mucronatus	(Ralfs ex Ralfs) Croasdale 1957	P/B
7	Staurodesmus sellatus	(Teiling) Teiling 1948	P/B
8	Staurodesmus subulatus	(Kützing) Thomasson 1963	P/B
9	Teilingia excavata	(Ralfs ex Ralfs) Bourrelly 1964	P/B
10	Teilingia granulata	(J.Roy and Bisset) Bourrelly 1964	P/B
11	Tetmemorus euastroides	A.M.Scott and Prescott	P/B
12	Tetraedron caudatum	(Corda) Hansgirg 1888	Р
13	Tetraedron incus	G.M.Smith 1926	Р
14	Tetraedron minimum	(A.Braun) Hansgirg 1888	Р
15	Tetraedron regulare	Kutzing 1845	Р
16	Tetraedron triangulare	Korshikov 1953	Р
17	Tetraselmis cordiformis	(Carter) Stein 1878	Р
18	Tetrastrum elegans	Playfair 1917	Р
19	Tetrastrum triangulare	(Chodat) Komárek 1974	Р
20	Triploceras gracile	J.W.Bailey 1851	В
21	Trochiscia hirta	Hansgirg 1888	P/B
22	Ulothrix zonata	(Weber and Mohr) Kützing 1843	В
23	Xanthidium antilopaeum	(Brébisson) Kützing 1849	P/B
24	Xanthidium bifidum	(Brébisson) Deflandre 1929	P/B
25	Xanthidium cristatum	Brébisson ex Ralfs 1848	P/B
26	Xanthidium fascicolatum	Ehrenberg ex Ralfs 1848	P/B
27	Xanthidium octocorne	Ehrenberg ex Ralfs 1848	P/B
28	Xanthidium subhastiferum	West 1892	P/B
29	Xanthidium subtrilobum	West and G.S.West 1897	P/B
30	CHRYSOPHYTA		
31	Bitrichia chodatii	(Reverdin) Chodat 1926	Р
32	Mallomonas caudata	Iwanoff 1899	Р
33	Mallomonas insignis	Penard 1919	Р
34	СКҮРТОРНҮТА		1
35	Chroomonas acuta	Utermöhl 1925	Р
36	Chroomonas baltica	(J.Büttner) N.Carter 1937	Р
37	Chroomonas coerulea	(Geitler) Skuja 1948	Р
38	Cryptomonas acuta	Butcher 1952	Р
39	Cryptomonas anomala	Fritsch 1914	Р
40	Cryptomonas curvata	Ehrenberg 1831	Р
41	Cryptomonas erosa	Ehrenberg, 1832	Р
42	Cryptomonas marssonii	Skuja 1948	Р
43	Cryptomonas ovata	Ehrenberg 1832	Р
44	Cryptomonas platyuris	Skuja 1948	Р
45	Rhodomonas lacustris	Pascher and Ruttner 1913	Р
46	CYANOBACTERIA		
47	Anabaena circinalis	Rabenhorst ex Bornet and Flahault 1886	P/B
48	Anabaena cylindrica	Lemmermann 1896	P/B
49	Chroococcus limneticus	Lemmermann 1898	Р
50	Lyngbya contorta	Lemmermann 1898	P
51	Merismopedia elegans	Braun ex Kützing 1849	P/B
52	Oscillatoria limnetica	Lemmermann 1900	<u> </u>
53	Oscillatoria limosa	C.Agardh ex Gomont 1892	B
54	Oscillatoria redekei	Van Goor	
55	CYANOBACTERIA		Planktonic / Benthic
56	Oscillatoria rubescens	De Candolle 1826	<u> </u>
57	Oscillatoria tenuis	Agardh 1813	B
58	Phormidium lucidum	(C.Agardh) Kützing 1843	В

В

P/B

P/B

Р

Р Р

Р

Р

Р

Р Р

Р

Р

Р Р

Р Р

Р

2		
3	Phormidium luridum	(Kützing) Gomont 1892
4	Snowella lacustris	(Chodat) Komárek and Hindák 1988
5	Spirulina maior	Kützing ex Gomont 1892
6	Woronichinia naegeliana	(Unger) Elenkin 1933
7	EUGLENOPHYTA	
8	Euglena acus	(O.F.Müller) Ehrenberg 1830
9	Euglena ehrenbergii	Klebs 1883
10	Euglena elongata	Schewiakoff 1891
11	Euglena geniculata	F.Schmitz 1884
12	Euglena granulata	(Klebs) F.Schmitz 1884
13	Euglena limnophila	Lemmermann 1898
14	Euglena mutabilis	F.Schmitz 1884
15	Euglena oblonga	F.Schmitz 1884
16	Euglena oxyuris	Schmarda 1846
17	Euglena proxima	P.A. Dangeard 1901
18	Euglena repulsans	J. Schiller 1952
19	Euglena sociabilis	P.A.Dangeard 1901
20	Euglena spirogyra	Ehrenberg 1832
21	Euglena splendens	P.A.Dangeard 1901
22	Euglena texta	(Dujardin) Hubner 1886
23	Lepocinclis caudata	A.M. Cunha 1913
24	Lepocinclis fusiformis	(H.J.Carter) Lemmermann 1901
25	Lepocinclis playfairiana	Deflandre 1932
26	Lepocinclis steinii	Lemmermann 1901
27	Phacus acutus	C A Klaba 1990
28	Phacus alatus	G.A.Klebs 1880
29	Phacus anomalus Phacus caudatus	F.E.FILISCII aliu MI.F.KICII 1929
30	Phacus circumflerus	Pochmann 1941
32	Phacus curvicauda	Svirenko 1915
33	Phacus elegans	Pochmann 1942
34	Phacus helicoides	Pochmann 1942
35	Phacus longicauda	(Ehrenberg) Dujardin 1841
36	Phacus nordstedtii	Lemmermann 1904
37	Phacus orbicularis	K.Hübner 1886
38	Phacus pusillus	Lemmermann 1910
39	Phacus suecicus	Lemmermann
40	Phacus triqueter	(Ehrenberg) Perty 1852
41	Strombomonas deflandrei	(Y.V.Roll) Deflandre 1930
42	Trachelomonas caudata	(Ehrenberg) Stein 1878
43	Trachelomonas planctonica	Svirenko 1914
44	PYRROPHYTA	
45	Gymnodinium cnecoides	T.M.Harris 1940
46	Gymnodinium triceratium	Skuja 1939
47		E-# 1000
48	Goniochioris fallax	Fott 1960
49	Goniochioris mulica	(Blaun) Four 1960
50	Ophiocytium capitatum	Wolle 1887
51	Ophiocytium capitatum	(Perty) A Braun 1855
52	Pseudostaurastrum enorme	(Ralfs) R Chodat 1921
53		1 (Nulls) N.Chouat 1721
54		GENERA
55	BACILLARIOPHYTA	
50 57	Achnanthes	Bory de Saint-Vincent, 1822
57 59	Actinella	Lewis 1864
50 50		
55		

1

	Р
	Р
	Р
	Р
	Р
	Р
	Р
	Р
	Р
	Р
	Р
	Р
	Р
A	Р
	Р
	Р
	Р
	Р
	Р
	Р
	Р
	Р
	Р
	Р
	Р
	Р
	Р
	P/B
	P/B
	Р
	Planktonic / Benthic
	В
	В

Anomoeoneis	E.Pfitzer, 1871	В
Cocconeis	Ehrenberg 1837	В
Cyclotella	Brebisson 1838	P/B
Diatoma	Bory de St-Vincent (1824)	P/B
Diploneis	(Ehrenberg) Cleve 1894	P/B
Encyonema	Kützing 1833	В
Melosira	Agardh 1824	P/B
Placoneis	Mereschkovsky, 1903	В
Staurosira	Ehrenberg, 1843	P/B
Stenopterobia	Brebisson ex Van Heurck, 1896	В
CHLOROPHYTA		
Actinochloris	Korschikov, 1953	Р
Ankyra	Fott, 1957	Р
Botryococcus	Kutzing 1849	P/B
Bulbochaete	Agardh 1817	В
Carteria	Diesing, 1866	Р
Chilomonas	Ehrenberg ex Ralfs 1831	Р
Chlamydocapsa	Fott 1972	Р
Chlorella	Beijerinck 1890	Р
Chlorococcum	Meneghini 1842	Р
Cladophora	Kutzing 1843	В
Coccomixa	Schmidle 1901	P/B
Cylindrocapsa	Reinsch, 1867	В
Cylindrocystis	Meneghini ex De Bary, 1858	В
Dictvosphaerium	Nageli 1849	P/B
Didymogenes	Schmidle, 1905	Р
Dimorphococcus	Braun 1855	P/B
Elakatothrix	Wille 1898	Р
Eudorina	Ehrenberg 1832	Р
Gonium	O.F. Muller, 1873	P
Haematococcus	Flotow, 1844	P
Hvdrodictvon	Roth, 1797	B
Microspora	Thuret 1850	B
Mougeotia	C. Agardh, 1824	 P
Nephrocytium	Nageli, 1849	Р
Oedogonium	Link ex Hirn, 1900	P/B
Phacotus	Perty, 1852	Р
Pteromonas	Seligo, 1887	Р
Radiofilum	Schmidle, 1894	В
Sphaerocystis	Chodat, 1897	P/B
Sphaerozosma	Corda ex Ralfs, 1848	В
Spirogyra	Link, 1820	В
Spondylosium	Brebisson ex Kutzing, 1849	В
Stigeoclonium	Kutzing, 1843	В
Volvox	Linnaeus, 1758	Р
Zygnema	Agardh 1817	В
CHRYSOPHYTA		•
Chromulina	Cienkowsky 1870	Р
Cystodinium	Klebs 1912	Р
Dinobryon	Ehrenberg 1834	Р
Svnura	Ehrenberg 1834	Р
Uroglena	Ehrenberg 1834	P
CHRYSOPHYTA		Planktonic / Ber
Kephvrion	Pascher 1911	P
СПУРТОРНУТА		^
	E1 1 1001	D

2
3
4
5
6
7
0
8
9
10
11
12
13
1/
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
24
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
17
40
4ð
49
50
51
52
53
54
55
55
50
5/
58
59

CVANORACTERIA		
Calothrix	Agardh 1824	В
FUCLENOPHVTA	rigurun 1024	В
Peranema	Dujardin 1841	Р
PYRROPHYTA	Dujutum, 1011	
Amphidinium	Clanarède and Lachmann, 1859	P/B
Glenodinium	Ehrenberg 1836	Р
Katodinium	Fott 1857	P/B
Peridiniopsis	Lemmermann, 1904	Р
Peridinium	Ehrenberg, 1832	Р
Woloszynskia	Thompson 1951	Р
ХАМТНОРНУТА		
Centritractus	Lemmermann 1900	В
Tribonema	Derbès and Solier 1851	В

Table S2. List of all the algal taxa observed in the Everglades (asterisks indicate species also

found in the Okavango Delta (main source of authorities: www.algaebase.org; information on planktonic / benthic

mostly from Wehr J.D., Sheath R.G. & Kociolek J.P. (Eds). (2015). "Freshwater algae of North America. Ecology and

	9	
1	q	

classification". Academic Press, San Diego).

Species	Authority	Planktonic / Ben
Achnanthes caledonica	Lange-Bertalot in Lange-Bertalot & Moser 1994	В
Achnanthes gracillima	Hustedt 1927	В
Achnanthidium minutissimum*	(Kützing) Czarnecki 1994	В
Amphora ovalis [*]	Kützing 1844	В
Amphora sulcata	Gregory 1854	В
Amphora coffaeiformis	(C.Agardh) Kützing	В
Amphora holsatica	Hustedt 1925	В
Amphora veneta	Kützing 1844	В
Anomoeoneis sphaerophora f. costata	(Kützing) AM.Schmid 1977	В
Bacillaria paxillifer	(O.F.Müller) T.Marsson 1901	В
Brachysira aponina	Kützing 1836	В
Brachysira brebissonii	R.Ross in Hartley 1986	В
Brachysira neoacuta	Lange-Bertalot 1994	В
Brachysira neoexilis	Lange-Bertalot in Lange-Bertalot & Moser 1994	В
Brachysira serians	(Brébisson) Round & D.G.Mann 1981	В
Caponea caribbea	A.C.Podzorski	В
Cocconeis placentula	Ehrenberg 1838	В
Cyclotella meneghiniana	Kützing 1844	Р
Diadesmis confervacea	Kützing 1844	В
Diploneis oblongella	(Nägeli ex Kützing) Cleve-Euler in Cleve-Euler & Osvald 1922	В
Diploneis parma	Cleve 1891	В
Diploneis puella	(Schumann) Cleve 1894	В
Encyonema evergladianum	Krammer 1997	В
Encyonema silesiacum	(Bleisch) D.G.Mann in Round, Crawford & Mann 1990	В
Encyonema silesiacum var. elegans	Krammer	В
Encyonopsis floridana	Krammer	В
Encyonopsis microcephala	(Grunow) Krammer 1997	В
Encyonopsis subminuta	Krammer & E.Reichardt 1997	В
Eunotia camelus	Ehrenberg	В
Eunotia flexuosa [*]	(Brébisson ex Kützing) Kützing 1849	В
Eunotia incisa [*]	W.Smith ex W.Gregory 1854	В
Eunotia monodon	Ehrenberg 1843	В
Eunotia naegelii [*]	Migula 1907	В
Eunotia rabenhorstiana var. elongata	(Patrick) D.Metzeltin & Lange-Bertalot 1998	В
Eunotia zygodon	Ehrenberg 1843	В
Fragilaria minuscula	(Grunow) D.M. Williams & 1987	В
Fragilaria nana	Lange-Bertalot 1991	В
Fragilaria synegrotesca	Lange-Bertalot 1993	В
Fragilariformis virescens	(Ralfs) Williams & Round	В
Frustulia rhomboides [*] + var. crassinervia	(Ehrenberg) De Toni 1891 + (Brebisson) Ross 1947	В
Gomphonema affine	Kützing 1844	В
Gomphonema auritum	A.Braun ex Kützing 1849	В
Gomphonema coronatum	Ehrenberg 1840	В

BACILLARIOPHYTA		Planktonic / Benthic
Gomphonema cf. clavatulum	Ehrenberg 1832	В
Gomphonema gracile [*]	Ehrenberg 1838	В
Gomphonema intricatum var. vibrio	(Ehrenberg) Cleve 1894	В
Gomphonema maclaughlinii	Reichardt 1999	В
Gomphonema parvulum [*]	(Kützing) Kützing 1849	В
Gomphonema parvulum var. exilissimum	Grunow in van Heurck 1880	В
Gomphonema parvulum var. lagenula	(Kützing) Frenguelli	В
Gomphonema pratense	Lange-Bertalot & E.Reichardt	В
Gomphonema vibrioides	Reichardt & Lange-Bertalot 1998	В
Hantzschia amphioxys [*]	(Ehrenberg) Grunow	В
Lemnicola hungarica	(Grunow) F.E.Round & P.W.Basson 1997	В
Mastogloia braunii	Grunow 1863	В
Mastogloia lanceolata	Thwaites ex W.Smith 1856	В
Mastogloia smithii	Thwaites ex W.Smith 1856	В
Mastogloia smithii var. lacustris	Grunow 1878	В
Navicella pusilla	Krammer 1997	В
Navicula constans	Hustedt 1944	В
Navicula constans var. symmetrica	Hustedt 1957	В
Navicula crvntocephala [*]	Kützing 1844	В
Navicula cryptotenella [*]	Lange-Bertalot in Krammer and Lange-Bertalot 1985	В
Navicula palestinae	Gerloff 1978	В
Navicula radiosa [*]	Kützing 1844	В
Navicula radiosafallax	Lange-Bertalot 1993	В
Navicula salinicola	Hustedt 1939	В
Navicula subtilissima	Cleve 1891	В
Nitzschia amphibia	Grunow 1862	В
Nitzschia amphibia f frauenfeldii	(Grunow) Lange-Bertalot 1987	В
Nitzschia filiformis	(W.Smith) Hustedt 1896	В
Nitzschia lacunarum	Hustedt 1930	В
Nitzschia nana	Grunow in van Heurck 1881	В
Nitzschia nalea	(Kützing) W.Smith 1856	B
Nitzschia palea var dehilis	(Kützing) Grunow 1880	B
Nitzschia sernentiranhe	Lange-Bertalot 1993	B
Pinnularia acrosphaeria	W.Smith 1853	В
Pinnularia hraunii [*]	(Grunow) Mills 1934	В
Pinnularia gibha [*]	Ehrenberg 1843	В
Pinnularia microstauron	(Ehrenberg) Cleve 1891	В
Pinnularia viridis [*]	(Nitzsch) Ehrenberg 1843	B
Pinnularia stomatophora	(Grunow) Cleve 1895	В
Pinnularia strentoranhe	Cleve 1891	B
Placoneis porifera var opportuna	Novelo et al. 2007	B
Planothidium frequentissimum	(Lange-Bertalot) Round & Bukhtiyaroya 1996	B
Plaurosigma salinarum	(Grupow) Grupow in Cleve & Grupow 1880	B
Pseudostaurosira brevistriata	Grunow in Van Heurek 1885	B
Rhonalodia gibba*	(Ehrenberg) O Müller (1895)	B
Rossithidium lineare	(W Smith) Round & Bukhtiyarova 1996	B
Sellaphora lagyissima	(Kützing) D G Mann 1989	B
Sellaphora nunula [*]	(Kützing) Mereschkovsky 1902	B
Stauronais phoanicanteron*	(Nitzsch) Ehrenberg 1843	B
suuroneis proenicenteron	(W Smith) Krammer in Lange-Rertalot &	J
Stenopterobia curvula	Krammer 1987	В
1		i

BACILLARIOPHYTA		Planktonic /
Stauroneis pachycephala	Cleve 1881	В
Synedra filiformis	Cleve-Euler	В
Synedra ulna	(Nitzsch) Ehrenberg 1832	P/B
CHLOROPHYTA	·	L.
Cosmarium amoenum	Brébisson ex Ralfs 1848	P/B
Cosmarium calcareum	Wittrock 1872	P/E
Cosmarium commissurale	Brébisson ex Ralfs 1848	P/E
Cosmarium contractum [*]	Kirchner 1878	P/E
Cosmarium cf. depressum [*]	(Nägeli) P.Lundell 1871	P/E
Cosmarium excavatum	Nordstedt 1870	P/E
Cosmarium panamense	Prescott	P/E
Cosmarium phaseolus	Brébisson ex Ralfs 1848	P/F
Cosmarium praseotus	Brébisson ex Ralfs 1848	P/P
Cosmarium of regressi [*]	Reinsch 1867	P/P
Cosmarium raniforma*	(Ralfs) W Archer 1874	P/P
Cosmanium ingogualia		P/F
Cosmarium indequalis	West 1890	D/E
Cosmarium Isinmium	P Lundell 1871	D/E
Cosmarium monomazum	(Hontzach) Boinach 1867	F/L
Cosmarium obsoletum	Fighler & Cutwinghi 1904	
Cosmarium ocellatum	Legendell 1871	P/E
Cosmarium smolandicum		P/B
Crucigenia quadrata	Morren 1830	P/E
Desmidium aptogonum	Brébisson ex Kützing 1849	P/E
Desmidium baileyi	(Ralfs) Nordstedt 1880	P/E
Desmidium swartzii	C.Agardh ex Ralfs 1848	P/E
Euastrum cornubiense	West & G.S.West 1905	P/E
Euastrum pectinatum [*]	Brebisson ex Brebisson in Ralfs 1848	P/E
Genicularia elginensis		P/E
Micrasterias crux-melitensis [*]	(Ehrenberg) Trevisan 1842	P/E
Micrasterias floridana / floridae		P/E
Micrasterias pinnatifida	Ralfs 1848	P/E
Pediastrum simplex [*]	Meyen 1829	Р
Pediastrum tetras [*]	(Ehrenberg) Ralfs 1844	Р
Pleurotaenium minutum var. attenuatum	(Ralfs) Hilse 1866	В
Pleurotaenium minutum var. excavatum	(Ralfs) Hilse 1866	В
Scenedesmus arcuatus*	Lemmermann 1899	Р
Scenedesmus armatus [*]	(Chodat) R Chodat 1913	Р
Scenedesmus hijuga	(Turpin) Lagerheim 1893	Р
Scenedesmus serratus [*]	(Corda) Bohlin 1901	Р
Staurastrum alternans	Brébisson in Ralfs 1848	P/E
Staurastrum connatum	(P.Lundell) J.Roy & Bisset 1886	P/E
Staurastrum cvathines	Scott & Grönblad 1957	P/F
Staurastrum dejectum	Bréhisson in Ralfs 1848	P/F
Staurastrum depressum	(C W Nägeli) W B Turner	P/F
Staurastrum disputation	West & G S West 1012	D/E
Staurastrum alspulatum	West and G S West 1905	
Staurastrum excavatum	Nordstadt 1870	
Staurastrum gratiatorium	(Dorgo) Cutwinski	
Staurastrum longebrachiatum		
Staurastrum ophiurum f. cambriatum	WDT	P/E
Staurastrum pinnatum	w.B.Turner	P/F

CHLOROPHYTA		Planktonic / Ben
Staurastrum cf. sonthalium	W.B.Turner	P/B
Tetraedron caudatum*	(Corda) Hansgirg 1888	Р
Tetraedron minimum [*]	(A.Braun) Hansgirg 1888	Р
Tetraedron pentaedricum	West & G.S.West 1895	Р
CYANOBACTERIA		
Rhabdoderma sigmoideum	G.T.Moore & N.Carter 1923	Р
Rhabdoderma lineare	Schmidle & Lauterborn in Schmidle 1900	Р
EUGLENOPHYTA		
Phacus orbicularis [*]	K.Hübner 1886	Р
	GENERA	
BACILLARIOPHYTA		
Genus	Authority	
Caloneis*	Cleve, 1894	В
Coscinodiscus	Ehrenberg, 1839	Р
Fragilariforma	D.M.Williams & Round, 1988	В
Parlibellus	E.J.Cox, 1988	В
Thalassiosira	Cleve, 1873	Р
СНГОВОЬНАТА		
Ankistrodesmus [*]	Corda, 1838	Р
Bulhochaete*	Agardh 1817	В
Centritractus [*]	Lemmermann 1900	В
Characium	A. Braun in Kützing, 1849	В
Closterium [*]	Nitzsch ex Ralfs 1848	B
Coalastrum [*]	Nägeli 1849	B
Desmidium [*]	C Agardh ex Ralfs 1848	P/R
Dimorphococcus [*]	Braun 1855	P
Closemustis	Nägeli 1849	p
Clocotgonium	Hansgirg 1890	P/R
Gibeoldenium Comptonium	De Bary 1858	P/B
Gonalozygon	Ebranbarg av Palfs 1848	D/B
Hyalotneca	Sahmidla 1802	I / D
Kirchneriella	C A gordh 1824	D I/D
Mougeona	Link ox Him 1000	B
Oedogonium	Wallich 1960	D D/D
Onychonema	Nägali av A Draup 1955	P/D
Oocystis *	Nageli ex A.Diauli, 1855	P/D
Ophiocytium	Nagell, 1849	P/D
Palmodictyon	Kützing, 1845	P/B
Quadrigula	Printz, 1916	P
Spirogyra *		B
Spondylosium	Brebisson ex Kutzing, 1849	B
Stigeoclonium	Kutzing, 1843	B
Teilingia	Bourrelly, 1964	P/B
Triploceras	J.W.Bailey, 1851	В
CHRSYOPHYTA		
Dinobryon [®]	Ehrenberg, 1834	Р
Lagynion	Pascher, 1912	В
CYANOBACTERIA		
Anabaena [*]	Bory de Saint-Vincent ex Bornet & Flahault, 1886	P/B
Anhanothece	C.Nägeli, 1849	В

CYANOBACTERIA		Planktonic / Benthic
Aphanocapsa	C.Nägeli, 1849	В
Chroococcidiopsis	Geitler, 1933	В
Chroococcus*	Nägeli, 1849	P/B
Coelosphaerium [*]	Nageli 1849	Р
Dactylococcopsis	Hansgirg, 1888	Р
Fischerella	(É.Bornet & C.Flahault) M.A.Gomont, 1895	В
Gloeocapsa [*]	Kutzing 1843	P/B
Gloeothece	C.Nägeli, 1849	В
Gomphosphaeria [*]	Kutzing 1836	Р
Johannesbaptistia	G.De Toni, 1934	P/B
Lyngbya [*]	C.Agardh ex Gomont, 1892	В
Merismopedia [*]	F.J.F.Meyen, 1839	Р
Microchaete	G.Thuret ex É.Bornet & C.Flahault, 1886	В
Microcystis [*]	Lemmermann 1907	Р
Oscillatoria [*]	Vaucher ex Gomont, 1892	P/B
Schizothrix	F.T.Kützing ex M.Gomont, 1892	В
Scytonema [*]	C. Agardh ex Bornet and Flahault, 1886	P/B
Spirulina [*]	P.J.F.Turpin ex M.Gomont, 1892	P/B
Stigonema [*]	C. Agardh ex Bornet and Flahault, 1886	В
PYRROPHYTA		
Peridinium [*]	Ehrenberg, 1832	Р
ХАМТОРНУТА		
Stipitococcus sp	West & G.S. West, 1898	В
15 16 17 18 19 20		
21		
22		
73		
24		
24 25		
24 25 26		

Table S3. Results of the Monte Carlo significance tests on the indicator taxa identified (inbold, the algal taxa retained in the final list, see Table 5).

Taxon	Indicator Value	Mean	Standard deviation	p-value
	OKAVANGO			
COMPETITIVE		1	1	1
Amphora sp.	64.4	48.1	5.80	0.0126
Eunotia flexuosa	75.0	46.3	5.92	0.0002
Eunotia praerupta	42.9	15.2	4.95	0.0004
Eunotia serra	19.0	8.7	3.66	0.0282
Frustulia rhomboides	28.4	13.1	4.81	0.0050
Frustulia saxonica	19.0	8.9	3.78	0.0300
Frustulia sp.	56.4	23.9	6.03	0.0002
Micrasterias foliacea	19.0	9.7	3.80	0.0320
Stauroneis phoenicenteron	46.4	31.5	6.83	0.0344
RUDERAL				
Amphidinium sp.	40.7	18.1	5.52	0.0018
Aulacoseira ambigua	29.6	15.2	5.39	0.0136
Aulacoseira granulata	33.3	15.3	5.04	0.0072
Botryococcus sp.	44.9	24.2	6.50	0.0042
Bulbochaete sp.	37.2	22.2	5.44	0.0180
Caloneis bacillum 🛛 🗸	29.6	14.1	4.81	0.0176
Chlamydomonas sp.	41.4	27.5	6.81	0.0434
Chlorococcum sp.	70.3	44.0	6.24	0.0004
Chlorococcales	29.6	17.1	5.41	0.0180
Chroococcus sp.	56.9	38.7	5.98	0.0100
Closterium acicularis	38.6	19.8	5.81	0.0060
Closterium acutum	29.6	14.2	4.91	0.0146
Closterium gracile	25.9	13.4	5.03	0.0324
Closterium incurvum	37.0	16.7	5.35	0.0022
Closterium leiblenii	33.3	15.5	5.19	0.0080
Coelastrum sp.	45.1	27.9	5.78	0.0110
Colony	27.7	15.3	5.02	0.0276
Cosmarium contractum	22.2	11.6	4.42	0.0486
Cosmarium obsoletum	22.2	11.3	4.20	0.0332
Cosmarium pseudopyramidatum	22.2	11.3	4.26	0.0440
Cosmarium regnesii	29.6	13.9	4.80	0.0152
Cosmarium trilobulatum	29.6	14.0	4 81	0.0158
Crucigeniella crucifera	25.9	12.7	4.53	0.0256
Elakatothrix sp.	37.4	23.4	5.39	0.0180
Eremosphaera sp.	22.2	11.3	4.21	0.0342
Eremosphaera viridis	22.2	11.3	4.23	0.0366
Euastrum bidentatum	33.3	17.4	5.06	0.0116
Euastrum binale	32.0	17.6	5.27	0.0188
Euastrum denticulatum	33.3	15.1	4.82	0.0046
Euastrum denneutatum Fuastrum elegans	29.6	14.0	4 77	0.0130
Euastrum sp.	69.4	513	4 87	0.0130
Euglena limnonhila	25.9	13.0	4 78	0.0260
Fuglena provima	31.5	17.2	5 53	0.0200
Eurotia naegellii	39.7	22.2	6 50	0.0190
Gomphonema lanceolate	20.4	170	5 37	0.0192
Gomphonema napyulum	29.5	3/18	6.00	0.0440
Conjochloris sp	5/.5	26.6	5.66	0.0034
Goniochioris sp.	54.0	20.0	5.00	0.0000

Freshwater Biology

Taxon	Indicator Value	Mean	Standard deviation	p-value
Hyalotheca sp.	22.2	11.5	4.35	0.0458
Kirchneriella irregulare	33.3	15.1	4.76	0.0052
Kirchneriella obesa	39.3	19.9	5.34	0.0030
Lyngbya sp.	33.3	15.3	5.00	0.0082
Melosira sp.	29.6	14.8	5.31	0.0150
Merismopedia sp.	44.7	22.2	6.16	0.0024
Micrasterias pinnatifida	37.0	16.5	5.16	0.0032
Micrasterias truncata	22.2	11.3	4.28	0.0474
Monoraphidium minutum	49.3	35.0	6.39	0.0344
Monoraphidium pusillum	38.7	21.2	5.56	0.0126
Neidium sp.	33.3	15.2	4.97	0.0068
Oocystis sp.	57.0	44.3	6.25	0.0436
Pediastrum angulosum	28.3	15.6	5.19	0.0350
Pediastrum boryanum	53.1	36.6	6.04	0.0154
Pediastrum duplex	29.6	15.0	5.27	0.0160
Peridinium sp.	38.3	21.8	6.02	0.0150
Phacus pusillus	56.1	25.0	6.06	0.0006
Phacus sp.	66.8	41.9	5.98	0.0012
Pinnularia subcapitata	25.9	12.9	4.77	0.0306
Pleurotaenium trabecula	33.3	15.4	4.95	0.0066
Rhodomonas lacustris	34.0	18.3	5.66	0.0146
Scenedesmus alternans	25.9	12.7	4.68	0.0270
Scenedesmus arcuatus	58.5	38.5	5.76	0.0040
Scenedesmus falcatus	68.4	32.8	7.00	0.0004
Scenedesmus maximum	22.2	11.3	4.30	0.0386
Scenedesmus obtusus	29.6	13.9	4.78	0.0134
Scenedesmus planctonicum	29.6	13.9	4.53	0.0164
Scenedesmus serratus	26.9	15.3	4.98	0.0390
Selenastrum sp.	40.5	26.6	5.61	0.0240
Sphaerocystis sp.	25.9	14.1	4.99	0.0330
Staurastrum furcatum	42.1	22.3	6.14	0.0064
Staurastrum margaritaceum	25.9	12.8	4.64	0.0276
Staurastrum tetracerum	29.6	14.1	4.88	0.0166
Staurodesmus convergens	29.6	14.1	4.86	0.0182
Staurodesmus dickiei	22.2	11.3	4.24	0.0430
Staurodesmus subulatus	32.0	19.8	5.25	0.0340
Stenopterobia sp.	25.9	12.8	4.63	0.0290
Teilingia granulata	25.9	12.9	4.73	0.0278
Tetraedron caudatum	37.0	16.3	4.89	0.0032
Tribonema sp.	46.2	25.2	6.57	0.0044
	EVERGLADES			
COMPETITIVE				
Cosmarium calcareum	34.6	16.6	5.56	0.0138
Cosmarium ocellatum	26.4	14.4	5.36	0.0400
Cosmarium phaseolum	27.7	15.8	5.44	0.0402
Cosmarium pyramidatum	42.6	14.9	5.52	0.0042
Cosmarium sp.	40.9	28.2	4.77	0.0234
Encyonopsis ftsp02	41.7	29.0	4.27	0.0162
Encyonema subminuta	30.0	9.3	4.70	0.0064
Eunotia flexuosa	21.7	10.2	4.83	0.0358
Oedogonium sp. (small)	43.3	25.9	5.32	0.0134
Pediastrum tetras	15.2	7.6	4.19	0.0496

Taxon	Indicator Value	Mean	Standard deviation	p-value
Scenedesmus bijuga	20.7	7.7	4.41	0.0282
Staurastrum cyathipes	23.8	9.5	5.00	0.0264
Staurastrum excavatum	42.2	24.8	5.76	0.0158
Staurastrum longebrachiatum	39.0	10.9	5.12	0.0022
Tetraedron minimum	40.1	16.6	5.33	0.0050
STRESS-TOLERANT	•			
Nitzschia serpentiraphe	34.4	24.0	4.88	0.0416
RUDERAL	·			
Brachysira brebissonii	35.7	13.1	5.74	0.0094
Brachysira neoacuta	18.6	8.2	4.43	0.0330
Brachysira serians	18.7	8.5	4.66	0.0372
Bulbochaete (filament)	31.6	19.5	5.22	0.0366
Cosmarium inaequalis	18.5	8.1	4.49	0.0384
Diploneis parma	33.1	18.1	5.37	0.0264
Encyonopsis microcephala	39.9	28.9	4.17	0.0224
Eunotia incisa	25.3	7.7	4.45	0.0126
Eunotia monodon	35.3	6.4	3.82	0.0004
Eunotia naegellii	32.0	12.5	5.29	0.0114
Fischerella sp.	25.0	13.5	5.30	0.0384
Fragilaria nana	45.0	25.3	5.63	0.0124
Frustulia rhomboides var. crassinervia	26.8	10.0	4.91	0.0156
Gomphonema intricatum var. vibrio	35.3	23.3	5.54	0.0380
Johannesbaptista sp.	34.4	11.2	4.95	0.0054
Lagynion sp.	26.9	9.5	4.82	0.0118
Mastogloia sp.	11.9	3.4	2.91	0.0270
Micrasterias crux-melitensis	11.8	4.5	3.06	0.0290
Nitzschia amphibia	38.9	17.7	5.50	0.0090
Nitzschia nana	28.0	11.1	5.17	0.0148
Pinnularia gibba	17.4	7.6	4.42	0.0378
Pinnularia microstauron	23.9	7.6	4.23	0.0122
Pinnularia (large)	17.2	5.8	3.79	0.0230
Pinnularia sp.	19.9	6.2	3.79	0.0096
Stauroneis phoenicenteron	22.3	5.0	3.51	0.0060
Unknown girdle	49.8	10.6	4.98	0.0002
Unknown alga	17.5	7.5	4.35	0.0418
STRESS / DISTURBANCE				
TOLERANT				
Scytonema sp. (light brown)	44.3	24.9	5.48	0.0106