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Abstract 

In structural analysis and design, it is essential to define the material properties associated with the targeted structural 

systems. When harsh environmental or operational conditions are of primary concern, the mechanical properties of 

materials must be quantified by considering the effects of the conditions. As testing is only a method to quantify the 

material properties, numerous test databases have been developed in the literature – some of which are limited to 

specific conditions and others that are based on old materials that are no longer in use. Modern material-

manufacturing technologies have greatly advanced the material properties featured in old test databases, and today’s 

structural systems are often exposed to the harsher environmental and operational conditions associated with their 

functional requirements. Thus, test databases for these volatile material properties should be continuously developed 

to meet such requirements. The aim of the present study is to develop a new test database on the mechanical 

properties of materials for marine applications, such as mild steel, high-tensile steel, aluminium alloy 5083-O and 

stainless steel 304L, focusing on the effects of cold temperatures and strain rates. Discussion of the new test database 

refers to extant test databases where available. Moreover, test coefficients that may be useful in the existing 

constitutive equations for the materials are suggested and the details of the test database are documented. 
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1. Introduction 

Ships and offshore structures are typically subjected to dynamic or impact loads while in service. In 

some cases, they are also exposed to low temperatures in association with Arctic operations or the 

cryogenic conditions created by liquefied natural gas cargo and its unintended leaks. The mechanical 
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properties of structure materials are significantly affected by loading speed (strain rate) and temperature, 

among other factors. The strain rate is defined as a relevant ratio of the loading speed to structural 

displacement measured between two reference points, i.e., /d dt  , where  = strain and t = time.  

There are typically three major differences between static/quasi-static and dynamic/impact loading 

cases (Paik and Thayamballi 2003). First, the stress field differs because tensile stresses can occur even 

under compressive far-field loading, and stress concentrations can happen even without notches in an 

impact loading situation. Second, the structural response under impact loading varies as a function of the 

strain rate. These first and second aspects always interact. The third difference occurs with the failure 

strain. Materials in an impact loading condition tend to become brittle, decreasing the failure strain, even 

though they are predominantly ductile under static or quasi-static loading conditions. This occurs when 

the energy absorption capability by ductile yielding decreases at high strain rates subsequent to the 

increase of yield strength itself. In low temperatures, materials also tend to become less ductile or even 

brittle, and thus a special treatment during the material manufacturing process together with the relevant 

chemical composition is required to prevent brittle fracture in materials intended for use in low 

temperatures. 

In structural design, it is of obvious importance to select suitable materials. As such, the structural 

analyst and designer must develop a comprehensive understanding of the mechanical properties of the 

materials used in target structural systems (Paik and Thayamballi 2003; Paik and Melchers 2008; Hughes 

and Paik 2013). The mechanical properties of metals depend on many factors, such as their composition, 

heat-treatment and thickness (the grain size of thinner rolled steel plating tends to be smaller), along with 

the effects of temperature and strain rate for databases that show these effects, see, for example, 

Brockenbrough (1991), and Paik and Thayamballi (2003). 

The nominal values of the mechanical properties in conjunction with the minimum requirements 

specified by design rules are provided by materials manufacturers, but these values are not necessarily 

relevant enough for the structural analysis and design. Although the mechanical properties of such 

materials can only be characterised through testing, a large test database has been developed from 

laboratory tests in the literature (Manjoine 1944; Cowper and Symonds 1957; Bodner and Symonds 1962; 

Symonds 1967; Forrestal and Sagartz 1978; Nicholas 1981; KSNA 1983; Campbell and Cooper 1966; 

Toyosada et al. 1987; Brockenbrough 1991; Paik and Chung 1999; Itabashi and Kawata 2000; Paik and 

Thayamballi 2003; Hsu and Jones 2004; Paik and Thayamballi 2007; Kundu and Chakraborti 2010; 

Cadoni et al. 2012; Choung et al. 2013).  

The test database in the literature covers different temperature and loading speed conditions for 

different types of materials. However, most of them have been obtained for specific conditions associated 

with the special purposes of their studies. Moreover, some of the old test databases are not relevant for 

use today because they were obtained for very old materials that are no longer in use.  Given the 

significant advancements in modern material-manufacturing technologies, and because today’s structural 

systems are often exposed to harsher environmental and operational conditions, it is important to realise 

that the on-going mechanical property characterisation of modern materials must consider the effects of 

extreme and accidental conditions.  

Another challenge is associated with material modelling techniques that use the so-called constitutive 

equations, including some coefficients (Ramberg and Osgood 1943; Cowper and Symonds 1957; Johnson 

and Cook 1983; Mazzolani 1985; Jones 2012) determined according to the test database. Although the 
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constitutive equations given in a closed-form expression are convenient for practicing engineering and 

design, it is important to realise that they always involve the uncertainties inherent in attempting to 

formulate a simplified expression with a limited amount of the test database. In this regard, the material 

properties must also be defined by a direct statistical analysis of the raw test database, where the method 

of the best-fit prediction is combined with extrapolation and/or interpolation techniques unless other 

testing is undertaken. 

The aims of the present study are to develop a new test database for modern metals under different 

temperature and loading speed (stain rate) conditions; to propose new coefficients for the constitutive 

equations based on the new and existing test databases, where available; and to develop a statistical 

analysis method for predicting the material properties. Seven types of materials for marine applications 

are considered: mild steel (grades A and D), high-tensile steel (AH 32, DH 32 and DH 36), aluminium 

alloy 5083-O and stainless steel 304L. Both room and low temperatures are studied by covering low 

temperatures (up to -60°C) in an Arctic environment and the cryogenic conditions (up to -160°C) 

associated with liquefied natural gas cargo or its unintended leaks. Both quasi-static and high-speed 

loading conditions are considered up to a strain rate of 102/s.  

2. Characterisation of the Material Properties  

It is important to clearly define the characteristics of material properties (Paik and Thayamballi 2003). 

Typically, the mechanical properties of materials are characterised by testing pre-designated specimens 

under monotonic tensile loading. Figure 1 shows the typical engineering stress–engineering strain curves 

for structural metals, which are obtained using monotonic tensile coupon tests. The material properties 

can then be characterised using the following parameters: 

 Young’s modulus (or modulus of elasticity), E  

 proportional limit, P  

 upper yield point, YU  

 lower yield point, YL  ( Y )  

 yield strength, Y    

 yield strain, Y   

 strain-hardening strain, h  

 strain-hardening tangent modulus, hE  

 ultimate tensile strength, T   

 ultimate tensile strain, T  

 necking tangent modulus, nE  

 necking stress at fracture (total breaking), 
F   

 fracture (total breaking) strain, F   

 Poisson’s ratio,    
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Figure 1. Idealised monotonic engineering stress–

engineering strain relationship for structural metals (Paik 

and Thayamballi 2003). 

Figure 2. A schematic of engineering stress–engineering strain 

curves and offset yield stress for heat-treated metals (Paik and 

Thayamballi 2003). 

Figure 2 shows the engineering stress–engineering strain curve of heat-treated metals where neither 

upper nor lower yield points may appear until the ultimate tensile strength is reached. In this case, the 

yield strength is commonly defined as the stress at the intersection of the stress–strain curve and a straight 

line passing through an offset point strain, i.e.,    002.0,0,  , which is parallel to the linear portion 

of the stress–strain curve in the elastic regime. For structural design purposes, regulatory bodies or 

classification societies identify a ‘minimum’ yield strength and its chemical composition and heat 

treatment.  

Beyond the yield stress or strain, the metal flows plastically without appreciable changes in stress 

until the strain-hardening strain h is reached. The slope of the stress–strain curve in the strain-hardening 

regime is defined as the strain-hardening tangent modulus hE , which may not be constant, but rather 

dependent on different conditions. After the ultimate tensile stress is reached, necking takes place with 

the necking tangent modulus 
nE  until the test specimen is totally broken into two parts at the fracture 

strain F . The mechanical properties of materials in a quasi-static loading condition at room temperature 

are relatively well characterised, but continuous efforts are required for different loading speed and 

temperature conditions. 

3. Test-setup 

3.1. Test specimen  

The test specimens are cut out of the parent plate sheet in the rolling direction that are the most recent 

materials procured in Korea. Dynamic modes of loading depend on the strain rate, among other 

environmental or operational factors (Jones 2012). Table 1 indicates a typical classification of the loading 

characteristics, depending on the strain rate (Hayashi and Tanaka 1988; Paik and Thayamballi 2003). 
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Table 1. Dynamic modes of loading versus the strain rate (Paik and Thayamballi 2003) 

Strain rate (1/s) <10-5 10-5-10-1 10-1-101.5 101.5-104 >104 

Dynamic mode Creep Quasi-static Dynamic Impact 
Hyper velocity 

impact 

 

 

Figure 3. Test specimen for quasi-static testing (in mm) (ASTM-E8 2012). 

 
Figure 4. Test specimen for dynamic testing (in mm) (ASTM-E8 2012). 

 

Figure 5. Test specimen for impact testing (in mm) (ASTM-E8 2012). 

Figures 3 to 5 show the different test specimen sizes and shapes for different loading speeds. The 

thickness of the specimen varies with the material as per the test standard (ASTM-E8 2012). The gauge 

length of the specimen is 50 mm for the quasi-static and dynamic testing and 25mm for the impact testing. 

To measure the gauge length deformation during testing, an extensometer is attached in each specimen. 

To ensure the reliability of the test results, all of the tests are performed three times on the same test 

condition. During dynamic or impact testing, it is well noted that the specimens inevitably experience an 

acceleration region right after dynamic or impact loading, and a stress wave is created that propagates 

through the test frame toward the specimen. This wave is referred to as the incident wave, and upon 

reaching the specimen it splits into two smaller waves. The first wave, called the transmitted wave, travels 

through the specimen and into the transmitted test frame, causing plastic deformation in the specimen. 

The second wave, called the reflected wave, is reflected away from the specimen and travels back down 

the incident test frame (Hopkinson 1914; Kolsky 1949; Paik 2014).  
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To avoid this phenomenon, the test specimens are designed as shown in Figures 4 and 5. As a result, 

the test specimen is unsymmetrical having an extra-long grip section on one hand with regard to the 

portion embedding the extensometer unlike that in the quasi-static loading condition, and the dynamic or 

impact tensile force is then applied to the longer side of the test specimen (Larour et al. 2007; Huh et al. 

2008). In fact, the Hopkinson bar technique is a well-known method to examine the effect of strain rates, 

but the present study used the same test machine with the loading actuator in a consistent way not only 

for a quasi-static loading condition but also the dynamic and even the impact loading conditions.    

3.2. Quasi-static loading machine 

For testing in a quasi-static loading condition, a Universal Testing Machine (UTM) with a load cell 

capacity of 1,000 kN is used. The loading speed of the actuator is kept at 0.05 mm/s under the 

displacement control. Figure 6 shows the tensile test set-up for quasi-static testing. 

 

Figure 6. Test setup for quasi-static testing. 

3.3. Dynamic loading machine 

For testing in a dynamic loading condition, a dynamic loading actuator with a capacity of 500 kN is 

used. The loading speed can be varied in the range of 5 to 100 mm/s. Figure 7 shows the test setup for 

dynamic loading. The test set-up for the dynamic loading condition is the same to the quasi-static loading 

condition. 

 

Figure 7. Test setup for dynamic testing. 
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3.4. Impact loading machine 

For testing in an impact loading condition, a dynamic loading actuator with a capacity of 100 kN is 

used. The loading speed can be up to 1,000 mm/s. Figure 8 shows the test setup for impact loading. The 

test set-up for the impact loading condition is the same to the quasi-static loading condition. 

 

 

 

Figure 8. Test setup for impact testing. 

3.5 Low temperature control chamber  

For the temperature control, an environmental chamber system using liquid nitrogen (LN2) is attached 

to the test facilities. The environmental chamber is automatically controlled by inputting the target 

temperature value. For practical temperature measurement, three thermocouples (T-type) are used to 

monitor the surface temperature of the test specimen each second, from the beginning of the test to its 

end. When the specimen reaches the target temperature, a soaking time of about 10 minutes is applied to 

allow the low temperature to permeate the specimen and secure accurate test results, as shown in Figure 

9. The temperature is varied from room temperature (RT) to the cryogenic condition, and it is confirmed 

that the target low temperature can remain constant within an error of 3°C during the test.  

 

Figure 9. Schematic of the low temperature control.  

4. Test Results and Discussion  

Tables 2 to 5 indicate the typical mechanical properties obtained from the present tests in a quasi-

static loading condition but with varying temperatures for mild steel, high-tensile steel, aluminum alloy 

5083-O and stainless steel 304L, respectively, although the Poisson’s ratios are nominal values. It is 

noted that the yield strength of the so-called mild steel is not necessarily 235MPa which is a minimum 

requirement but it is up to 300MPa even at room temperature.  
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Figures A.1 to A.86 present the details of the test results in the Appendix. The figures present the 

characteristics of material properties with increase in the loading speed and with decrease in the 

temperature. It is generally observed that the yield and ultimate tensile strengths tend to increase as the 

loading speed increases, while the fracture (total breaking) strain tends to decrease. Mild steel Grade A 

is not relevant for use at low temperatures as the fracture strain significantly decreases with decrease in 

the temperature. 

Work hardening is investigated in terms of stress ( /T Y  ) and strain ( /T Y  ) as shown in Figures 

A.67 to A.74. The work hardening behavior is affected by temperature and strain rate. For mild steel, 

high-tensile steel and aluminum alloy, the work hardening tends to decrease with decrease in the 

temperature, while it tends to increase for stainless steel. However, the strain based work hardening tends 

to decrease for all of the materials as the temperature decreases. It is found that the work hardening 

decreases with increase in the strain rate for all types of the materials considered in the present study. 

Necking characteristics can also be investigated in terms of stress ( /F Y   or /F T  ) and strain 

( /F Y   or /F T  ) as shown in Figures A.75 to A.90. The necking behavior is affected by temperature 

and strain rate. For mild and high-tensile steel, fracture or total breaking takes place at the stress similar 

to the yield strength, but it occurs at the stress several times higher than the yield strength for aluminum 

alloy and stainless steel. The necking regime relative to the work hardening regime is shortened as the 

temperature decreases. With increase in the strain rate, the necking regime is also shortened. 
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Table 2. Mechanical properties of mild steel. 

Temp. 

(oC) 

Grade A Grade D 

E (GPa) Y (MPa) 
T (MPa) 

F    E (GPa) Y (MPa) 
T (MPa) 

F    

20 

199.6 299.3 464.9 0.423 0.3 194.5 287.2 458.7 0.457 0.3 

196.1 298.9 464.6 0.427 0.3 204.1 276.4 461.7 0.446 0.3 

186.3 300.8 462.4 0.426 0.3 186.1 283.6 460.4 0.468 0.3 

Mean 194.0 299.6 463.9 0.425 0.3 194.9 282.4 460.3 0.457 0.3 

-20 

212.2 310.7 485.5 0.425 0.3 189.9 303.3 466.4 0.462 0.3 

208.6 323.8 512.6 0.439 0.3 223.6 306.9 494.0 0.473 0.3 

206.5 326.3 506.4 0.410 0.3 214.1 311.6 493.0 0.470 0.3 

Mean 209.1 320.3 501.5 0.424 0.3 209.2 307.3 484.5 0.468 0.3 

-60 

181.2 345.0 512.5 0.458 0.3 217.3 332.1 525.7 0.448 0.3 

173.8 349.6 514.2 0.436 0.3 205.0 338.4 524.1 0.471 0.3 

189.8 345.4 509.2 0.448 0.3 212.7 333.9 520.1 0.461 0.3 

Mean 181.6 346.7 512.0 0.447 0.3 211.6 334.8 523.3 0.460 0.3 

      Note: The Poisson ratio   is an assumed value. 

Table 3. Mechanical properties of high-tensile steel. 

Temp. 
(oC) 

Grade AH32 Grade DH32 Grade DH36 

E  

(GPa) 
Y  

(MPa) 

T  

(MPa) 
F    E  

(GPa) 
Y  

(MPa) 

T  

(MPa) 
F    E  

(GPa) 
Y  

(MPa) 

T  

(MPa) 
F    

20 
194.1 355.6 533.4 0.380 0.3 192.1 347.2 532.4 0.409 0.3 192.9 377.8 519.4 0.339 0.3 
192.3 352.5 527.4 0.389 0.3 220.9 351.6 535.6 0.422 0.3 180.9 383.1 530.5 0.347 0.3 
201.7 362.1 532.2 0.388 0.3 196.3 351.2 535.4 0.403 0.3 174.0 390.0 540.6 0.343 0.3 

Mean 196.0 356.7 531 0.385 0.3 203.1 350.0 534.4 0.411 0.3 182.6 383.6 530.2 0.343 0.3 

-20 
209.9 381.9 560.5 0.389 0.3 185.0 370.0 562.6 0.410 0.3 187.4 407.7 576.3 0.359 0.3 
200.0 384.7 563.5 0.411 0.3 176.6 373.6 562.3 0.412 0.3 165.8 405.8 574.4 0.353 0.3 
202.6 384.7 567.7 0.399 0.3 - 366.0 560.2 0.458 0.3 - 422.8 586.7 0.355 0.3 

Mean 204.1 383.7 563.9 0.399 0.3 180.8 369.8 561.7 0.426 0.3 176.6 412.1 579.1 0.355 0.3 

-60 
188.8 395.7 565.6 0.416 0.3 207.1 381.2 568.6 0.438 0.3 177.0 407.7 576.3 0.359 0.3 
179.5 388.8 567.5 0.421 0.3 177.1 388.4 574.1 0.410 0.3 183.3 405.8 574.4 0.353 0.3 

- 391.3 561.3 0.427 0.3 187.6 386.4 572.7 0.424 0.3 - 422.8 586.7 0.355 0.3 
Mean 184.1 391.9 564.8 0.421 0.3 190.6 385.3 571.8 0.424 0.3 180.1 412.1 579.1 0.355 0.3 

Note: The Poisson ratio   is an assumed value. 
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Table 4. Mechanical properties of aluminum alloy 5083-O. 

Temp. 
(oC) 

Aluminum alloy 5083-O 

E  

(GPa) 
Y  

(MPa) 

T  

(MPa) 
F    

20 

73.8 177.4 330.2 0.247 0.33 
71.7 173.5 330.9 0.241 0.33 
65.6 173.0 329.5 0.229 0.33 

Mean 70.3 174.6 330.2 0.239 0.33 

-120 

65.0 180.2 340.0 0.308 0.33 
76.8 177.0 338.6 0.314 0.33 
65.1 180.9 340.0 0.315 0.33 

Mean 68.9 179.3 339.5 0.312 0.33 

-160 

63.3 189.8 373.6 0.341 0.33 
83.1 187.9 367.4 0.318 0.33 
79.4 183.4 366.7 0.324 0.33 

Mean 75.2 187.0 369.2 0.327 0.33 

Table 5. Mechanical properties of stainless steel 304L. 

Temp. 

(oC) 

Stainless steel 304L 

E  

(GPa) 
Y  

(MPa) 

T  

(MPa) 
F    

20 

203.7 306.1 727.3 0.661 
0.27-
0.3 

197.8 313.2 739.9 0.661 
0.27-

0.3 

199.3 307.8 731.4 0.647 
0.27-

0.3 

Mean 200.2 309.0 732.8 0.656 
0.27-

0.3 

-120 

202.6 394.6 1331.5 0.417 
0.27-
0.3 

190.6 379.8 1351.5 0.397 
0.27-

0.3 

192.9 388.9 1346.9 0.387 
0.27-
0.3 

Mean 195.3 387.7 1343.3 0.400 
0.27-

0.3 

-160 

191.6 413.7 1504.8 0.365 
0.27-

0.3 

196.5 428.9 1521.4 0.360 
0.27-
0.3 

205.0 422.1 1496.6 0.359 
0.27-

0.3 

Mean 197.7 421.5 1507.6 0.361 
0.27-
0.3 

 

5. Test Coefficients of the Cowper-Symonds Equation  

The dynamic yield strength of each material can be expressed as follows (Jones 2012). 

   



gf

Y

Yd  ,                                                  (1) 

where Y  and Yd  are static or dynamic yield stresses, respectively;  f  is a function of the strain 

rate sensitivity effect;  g  is the material work hardening function; and   is the strain rate. 

If one neglects the effects of work-hardening, then   1g  . The strain rate sensitivity parameter,

 f , is often given using the equation (Jones 2012) as follows.  

q/1

Y

Yd

C
0.1 














 
,                                                 (2) 

where C  and q  are coefficients to be determined based on the test database. Jones (2012) gives some 

recent constants for the Cowper-Symonds equation (Cowper and Symonds 1957) for different types of 

materials. 

Both crushing effects and yield strength increase with the loading speed while any fracture or tearing 

of steel (and the welded regions) in a structure tends to occur earlier. The following approximate formula, 

which is the inverse of the Cowper-Symonds constitutive equation for the dynamic yield stress, is then 

useful for estimating the dynamic fracture strain as a function of the strain rate (Paik and Thayamballi 

2003; Jones 2012).   

1
q/1

F

Fd

C
0.1































 
,                                             (3) 

where F  and Fd  are the static or dynamic fracture strains, respectively, and   is the ratio of the 

total energies to rupture for dynamic and static uniaxial loadings. 
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Figures A.91 to A.98 suggest the test coefficients of equations (2) and (3), as determined by a best-fit 

technique. 

6. Development of the Material Database Software    

This section describes the development of the Mechanical Property Database Management System 

(MPDAS) software, which can predict material properties based on the test database. The input 

parameters are material type, grade type, strain rate, thickness and temperature as shown in Figure 10. 

Various types of materials – mild steel, high-tensile steel (H32 and H36), stainless steel (304, 304L, 

316L), aluminium alloy, nickel alloy and five grades (A, B, D, E and F) of carbon steel – are considered 

under a range of low temperatures and strain rates. The output parameters are the stress–strain curves 

and yield stress, ultimate tensile stress and fracture strain. Figure 10 illustrates the input data definition 

of the MPDAS software.  

The software is developed based on the MATLAB code by taking advantage of the multi-dimensional 

matrix. Figure 11 shows the concept of the MPDAS. Material card is the most significant group. Each 

parameter consists of a number of spaces. Although the existing test database occupies the spaces, empty 

spaces are also reserved for the new test database to provide updates. To generate the stress–strain curves 

of materials unavailable in the database, the software conducts inter- or extra-polations as shown in 

Figure 12. Figure 13 presents applied examples of the MPDAS software. The user can predict the 

mechanical properties for both engineering and actual stress-strain curves.  

 

   

(a) Material types (b) Grades (c) Strain-rates 

Figure 10. Parameters considered in the software MPDAS. 

 

Material Strain-rateGrade

S-S curve ThicknessTemperature
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Figure 11. Schematic representation of the concept to develop the software MPDAS. 

 

Figure 12. Inter or extra-polations of the test database. 

 

  

(a) Mild steel (b) Stainless steel 

Figure 13. Applied examples of the software MPDAS generating the engineering stress-engineering strain curves of a specific 

material. 

 

The benefits of the MPDAS software (version 2016) are as follows.   

 Various types of materials are considered: mild steel, high tensile steel, stainless steel, 

aluminium alloy and nickel alloy 

 Five types of grades are considered for carbon steels: A, B, D, E and F 

 Based on the Cowper-Symonds equation, the effect of strain rates can be considered up to 

100/s 

 Applicable thickness is up to 20 mm 

 Applicable temperature is in the range of -200 to 20°C 

 Four types of stress–strain curves are generated for engineering, true, effective and power 

law curves 

 Allowed to add the new test database 

 Other functions with grid on/off, zoom-in/out, printing, coordinating, etc. 

-160°C

-143°C

Stainless steel 304L, 1.2mm

-120°C

-170°C

Material property at -170°C by extrapolation

Property at -143°C by interpolation

Property at -160°C by test

Property at -120°C by test

Mild steel, A grade, 12mm

Test

Developed program

-20°C

-40°C

Stainless steel 304L, 1.2mm

Test

Developed program

-160°C

-120°C
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7. Concluding Remarks 

The aim of the present study was to develop a new test database of materials for marine applications 

with the focus on low temperatures and strain rates. The details of the materials’ stress–strain curves 

were documented. 

The obtained test database of materials used for ships and offshore structures was analysed to 

characterise the material properties in the form of graphs. The Cowper-Symonds equation was considered 

to quantify the effects of strain rates and low temperatures on the dynamic yield strength and fracture 

strain, together with the existing test database where available. Work hardening and necking behaviour 

were also documented. The MPDAS software was developed to define the material properties directly 

from the test database.  

Clearly, the results of the structural analysis will be totally wrong if the material properties are not 

correctly defined. This is of greater significance when structural systems involve highly nonlinear 

behaviour in association with extreme and accidental conditions. It is important to realise that inadequate 

definition of the material properties is a primary cause of the uncertainties involved in structural designs. 

It is thus highly encouraged to continue to develop the new test database of materials covering a greater 

variety of environmental and operational conditions. It is planned that the test database will be updated 

with new test results as they become available. 
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Appendix: Details of the Test Results 

A.1 Mild steel Grade A 

  

Figure A.1. Engineering stress-engineering strain curves for 

mild steel Grade A at room temperature. 

Figure A.2. Engineering stress- engineering strain curves for 

mild steel Grade A at -20 deg. C. 

 

 

 

Figure A.3. Engineering stress- engineering strain curves for 

mild steel Grade A at -60 deg. C. 

Figure A.4. Effects of low temperature on elastic modulus 

of steels. 
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Figure A.5. Effects of low temperature on yield strength of 

mild steel Grade A. 

Figure A.6. Effects of low temperature on tensile strength of 

mild steel Grade A. 

 

  

Figure A.7. Effects of low temperature on fracture (total 

breaking) of mild steel Grade A. 

Figure A.8. Effects of strain rate on yield strength of mild 

steel Grade A. 

 

  

Figure A.9. Effects of strain rate on tensile strength of mild 

steel Grade A. 

Figure A.10. Effects of strain rate on fracture (total breaking) 

strain of mild steel Grade A. 
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A.2 Mild steel Grade D 

  

Figure A.11. Engineering stress- engineering strain curves 

for mild steel Grade D at room temperature. 

Figure A.12. Engineering stress- engineering strain curves 

for mild steel Grade D at -20 deg. C. 

 

  

Figure A.13. Engineering stress- engineering strain curves for 

mild steel Grade D at -60 deg. C. 

Figure A.14. Effects of low temperature on yield strength of 

mild steel Grade D. 

 

  

Figure A.15. Effects of low temperature on tensile strength 

of mild steel Grade D. 

Figure A.16. Effects of low temperature on fracture (total 

breaking) strain of mild steel Grade D. 
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Figure A.17. Effects of strain rate on yield strength of mild 

steel Grade D. 

Figure A.18. Effects of strain rate on tensile strength of mild 

steel Grade D. 

 

 

Figure A.19. Effects of strain rate on fracture (total breaking) strain of mild steel Grade D. 

A.3 High-tensile steel AH 32 

  

Figure A.20. Engineering stress- engineering strain curves 

for high-tensile steel AH32 at room temperature. 

Figure A.21. Engineering stress- engineering strain curves 

for high-tensile steel AH 32 at -20 deg. C. 
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Figure A.22. Engineering stress- engineering strain curves for 

high-tensile steel AH 32 at -60 deg. C. 

Figure A.23. Effects of low temperature on yield strength of 

high-tensile steel AH 32. 

 

  

Figure A.24. Effects of low temperature on tensile strength 

of high-tensile steel AH 32. 

Figure A.25. Effects of low temperature on fracture (total 

breaking) strain of high-tensile steel AH 32. 

 

  

Figure A.26. Effects of stain rate on yield strength of high-

tensile steel AH 32. 

Figure A.27. Effects of strain rate on tensile strength of high-

tensile steel AH 32. 
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Figure A.28. Effects of strain rate on fracture (total breaking) of high-tensile steel AH 32. 

A.4 High-tensile steel DH 32 

  

Figure A.29. Engineering stress- engineering strain curves 

for high-tensile steel DH 32 at room temperature. 

Figure A.30. Engineering stress- engineering strain curves 

for high-tensile steel DH 32 at -20 deg. C. 

 

  

Figure A.31. Engineering stress- engineering strain curves for 

high-tensile steel DH 32 at -60 deg. C. 

Figure A.32. Effects of low temperature on yield strength of 

high-tensile steel DH 32. 
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Figure A.33. Effects of low temperature on tensile strength 

of high-tensile steel DH 32. 

Figure A.34. Effects of low temperature on fracture (total 

breaking) strain of high-tensile steel DH 32. 

 

  

Figure A.35. Effects of strain rate on yield strength of high-

tensile steel DH 32. 

Figure A.36. Effects of strain rate on tensile strength of high-

tensile steel DH 32. 

 

 

Figure A.37. Effects of strain rate on fracture (total breaking) strain of high-tensile steel DH 32. 
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A.5 High-tensile steel DH 36 

  

Figure A.38. Engineering stress- engineering strain curves 

for high-tensile steel DH 36 at room temperature. 

Figure A.39. Engineering stress- engineering strain curves 

for high-tensile steel DH 36 at -20 deg. C. 

 

  

Figure A.40. Engineering stress- engineering strain curves for 

high-tensile steel DH 36 at -60 deg. C. 

Figure A.41. Effects of low temperature on yield strength 

of high-tensile steel DH 36. 

 

  

Figure A.42. Effects of low temperature on tensile strength of 

high-tensile steel DH 36. 

Figure A.43. Effects of low temperature on fracture (total 

breaking) strain of high-tensile steel DH 36. 
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Figure A.44. Effects of strain rate on yield strength of high-

tensile steel DH 36. 

Figure A.45. Effects of strain rate on tensile strength of high-

tensile steel DH 36. 

 

 

Figure A.46. Effects of stain rate on fracture (total breaking) strain of high-tensile steel DH 36. 

A.6 Aluminum alloy 5083 

  

Figure A.47. Engineering stress- engineering strain curves 

for aluminum alloy 5083 at room temperature. 

Figure A.48. Engineering stress- engineering strain curves 

for aluminum alloy 5083 at -120 deg. C. 
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Figure A.49. Engineering stress- engineering strain curves for 

aluminum alloy 5083-O at -160 deg. C. 

Figure A.50. Effects of low temperature on elastic modulus 

of aluminum alloy 5083-O. 

 

  

Figure A.51. Effects of low temperature on yield strength of 

aluminum alloy 5083-O. 

Figure A.52. Effects of low temperature on tensile strength 

of aluminum alloy 5083-O. 

 

  

Figure A.53. Effects of low temperature on fracture (total 

breaking) strain of aluminum alloy 5083-O. 

Figure A.54. Effects of strain rate on yield strength of 

aluminum alloy 5083-O. 
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Figure A.55. Effects of strain rate on tensile strength of 

aluminum alloy 5083-O. 

Figure A.56. Effects of strain rate on fracture (total breaking) 

strain of aluminum alloy 5083-O. 

A.7 Stainless steel 304L 

  

Figure A.57. Engineering stress- engineering strain curves 

for stainless steel 304L at room temperature. 

Figure A.58. Engineering stress- engineering strain curves 

for stainless steel 304L at -120 deg. C. 

 

 

 

Figure A.59. Engineering stress- engineering strain curves for 

stainless steel 304L at -160 deg. C. 

Figure A.60. Effects of low temperature on elastic modulus 

of stainless steel 304L. 
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Figure A.61. Effects of low temperature on yield strength of 

stainless steel 304L. 

Figure A.62. Effects of low temperature on tensile strength 

of stainless steel 304L. 

 

  

Figure A.63. Effects of low temperature on fracture (total 

breaking) strain of stainless steel 304L. 

Figure A.64. Effects of strain rate on yield strength of 

stainless steel 304L. 

 

  

Figure A.65. Effects of strain rate on tensile strength of 

stainless steel 304L. 

Figure A.66. Effects of strain rate on fracture (total 

breaking) strain of stainless steel 304L. 

A.8 Work hardening 
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Figure A.67. Effects of low temperature on work hardening 

of mild steel - /T Y  . 

Figure A.68. Effects of low temperature on work hardening 

of high-tensile steel - /T Y  . 

 

  

Figure A.69. Effects of low temperature on work hardening 

of aluminum alloy 5083-O - /T Y  . 

Figure A.70. Effects of low temperature on work hardening 

of stainless steel 304L - /T Y  . 

 

  

Figure A.71. Effects of low temperature on work hardening 

of mild steel - /T Y  . 

Figure A.72. Effects of low temperature and strain rate on 

work hardening of high-tensile steel - /T Y  . 
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Figure A.73. Effects of low temperature and strain rate on 

work hardening of aluminum alloy 5083-O - /T Y  . 

Figure A.74. Effects of low temperature and strain rate on 

work hardening of stainless steel 304L - /T Y  . 

A.9 Necking 

 

  

Figure A.75. Effects of low temperature and strain rate on 

necking of mild steel - /F Y  . 

Figure A.76. Effects of low temperature and strain rate on 

necking of high-tensile steel - /F Y  . 

 

  

Figure A.77. Effects of low temperature and strain rate on 

necking of aluminum alloy 5083-O - /F Y  . 

Figure A.78. Effects of low temperature and strain rate on 

necking of stainless steel 304L - /F Y  . 
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Figure A.79. Effects of low temperature and strain rate on 

necking of mild steel - /F T  . 

Figure A.80. Effects of low temperature and strain rate on 

necking of high-tensile steel - /F T  . 

 

  

Figure A.81. Effects of low temperature and strain rate on 

necking of aluminum alloy 5083-O - /F T  . 

Figure A.82. Effects of low temperature and strain rate on 

necking of stainless steel 304L - /F T  . 

 

  

Figure A.83. Effects of low temperature and strain rate on 

necking of mild steel - /F Y  . 

Figure A.84. Effects of low temperature and strain rate on 

necking of high-tensile steel - /F Y  . 
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Figure A.85. Effects of low temperature and strain rate on 

necking of aluminum alloy 5083-O - /F Y  . 

Figure A.86. Effects of low temperature and strain rate on 

necking of stainless steel 304L - /F Y  . 

 

  

Figure A.87. Effects of low temperature and strain rate on 

necking of mild steel - /F T  . 

Figure A.88. Effects of low temperature and strain rate on 

necking of high-tensile steel - /F T  . 

 

  

Figure A.89. Effects of low temperature and strain rate on 

necking of aluminum alloy 5083-O - /F T  . 

Figure A.90. Effects of low temperature and strain rate on 

necking of stainless steel 304L - /F T  . 
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Figure A.91. Dynamic yield strength of mild steel against strain rates and low temperatures. 

 

Figure A.92. Dynamic yield strength of high-tensile steel against strain rates and low temperatures. 
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Figure A.93. Dynamic yield strength of aluminum alloy 5083-O against strain rates and low temperatures. 

 

Figure A.94. Dynamic yield strength of stainless steel 304L against strain rates and low temperatures. 
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Figure A.95. Dynamic fracture strain of mild steel against strain rates and low temperatures. 

 

Figure A.96. Dynamic fracture strain of high-tensile steel against strain rates and low temperatures. 
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Figure A.97. Dynamic fracture strain of aluminum alloy 5083-O against strain rates and low temperatures. 

 

Figure A.98. Dynamic fracture strain of stainless steel against strain rates and low temperatures. 

 


