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Abstract – We follow the passage from complex amplitude bistability to phase bistability in
the driven dissipative Jaynes-Cummings oscillator. Quasi-distribution functions in the steady
state are employed, for varying qubit-cavity detuning and drive parameters, in order to track a
first-order dissipative quantum phase transition up to the critical point marking a second-order
transition and spontaneous symmetry breaking. We demonstrate the photon blockade breakdown
in the dispersive regime, and find that the coexistence of cavity states in the regime of quantum
bistability is accompanied by pronounced qubit-cavity entanglement. Focusing on the effect of
quantum-activated switching for both coupled degrees of freedom, we move from a region of
minimal entanglement in the dispersive regime, where we derive analytical perturbative results,
to the threshold behaviour of spontaneous dressed-state polarization at resonance.
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Introduction. – The Jaynes-Cummings (JC) oscilla-
tor is an archetypal source of intricate quantum nonlinear
dynamics arising from the coupling of a quantized electro-
magnetic mode inside a resonator (cavity) to a two-level
system (qubit) [1]. The behaviour of quantum nonlin-
ear oscillators has been a subject of intense theoretical
investigation (for an overview see Chapt. 7 of [2]) provid-
ing at the same time the basis for numerous experiments
in cavity and circuit quantum electrodynamics (see, for
example, [3] where the extended JC oscillator is driven
out of equilibrium in the presence of dissipation). In ad-
dition, controlled light-matter interaction has shifted the
center of interest in phase transitions from condensed mat-
ter to quantum optics. Amongst the most discussed light-
matter quantum phase transitions in the literature are the
Dicke phase transition [4,5], which is explicitly dissipative
(with cooperative resonance fluorescence as its driven vari-
ant [6]), and the laser which exhibits a second-order phase
transition out of equilibrium [7]. In comparison to those,

(a)E-mail: t.mavrogordatos@ucl.ac.uk

however, the driven JC model is fundamentally different
as it deals with the interaction of one field mode with one
two-level system, the qubit, necessitating the reappraisal
of the rôle of quantum fluctuations and a different defini-
tion of the thermodynamic limit [8–11]. The open co-
herently driven dissipative qubit-cavity system yields a
bistable response where quantum fluctuations are respon-
sible for switching between two metastable states that are
long-lived in relation to the characteristic cavity and qubit
decay times [12]. The

√
n splitting of the JC energy levels

is a unique feature determining the nature of bistability
both at resonance, where the cavity and qubit bare fre-
quencies coincide, and in the dispersive regime, where the
qubit and cavity are strongly detuned in relation to their
dipole coupling strength [10,13,14].

At resonance, the mean-field nonlinearity diverges for
zero photon number, while in the dispersive regime bista-
bility builds up in a perturbative fashion with no as-
sociated threshold, unlike the laser. The perturbative
approach becomes inadequate when the qubit participates
actively in the bistable switching for stronger driving.
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In that regime, the system response comprises an aver-
age over spontaneous switching between the metastable
mean-field steady states where both the qubit and cavity
are significantly excited. For complex amplitude bistabil-
ity switching occurs between a dim (with lower n) and
a bright (with higher n) state, while in phase bistability
both states have the same magnitude and opposite phases
following a transition from a discrete to a continuous spec-
trum in the system quasi -energies [9,10,15]. In first-order
dissipative phase transitions for the cavity field, weaker
coupling implies a bigger photon number required for the
nonlinearity to manifest itself, yielding a response which
is a non-analytic function of the drive [2,10].

Motivated by the current experimental and theoretical
interest in the response of quantum nonlinear oscillators,
in this letter we track amplitude bistability, from its origin
in the dispersive regime, up to a critical point at reso-
nance, where phase bistability takes over. Mean-field re-
sults guide us to extract the relevant scaling parameters
used to define the “thermodynamic limit” for this driven
resonator in which the number of photons is not conserved.
We present contour plots of quasi -distribution functions
for the cavity field, showing the passage from amplitude
to phase bistability, and invoke the entanglement entropy,
calculated via the reduced qubit density matrix, to reveal
the active participation of both quantum degrees of free-
dom in the emerging bimodality. We show further that,
closer to resonance, enhanced multi-photon transitions ap-
pear for weak cavity excitation, followed by a breakdown
of the photon blockade with stronger driving [10,11].

The dispersive JC model. – The JC Hamiltonian
describes the interaction between a single resonant cavity
mode and a qubit; however, it does not account directly for
the coupling to the environment which is included only in
the formulation of the Master Equation (ME) [16]. After
adding dissipation in a frame rotating with the frequency
ωd of the coherent driving field, the Lindblad ME for the
reduced system density operator ρ (for a system Hamilto-
nian in the rotating-wave approximation and setting h̄ = 1
for convenience) reads [9,17]

ρ̇ = iΔωc[a†a, ρ] + iΔωq[σ+σ−, ρ] + g[a†σ− − aσ+, ρ]
+ [εda

† − ε∗da, ρ] + κ(2aρa† − ρa†a − a†aρ)
+ (γ/2)(2σ−ρσ+ − ρσ+σ− − σ+σ−ρ). (1)

Here, Δωc,q = ωd − ωc,q are the detunings of the cav-
ity resonance frequency ωc and the qubit bare frequency
ωq from the frequency of the drive, coupled to a reso-
nant cavity mode with photon annihilation and creation
operators a and a†, respectively. The inversion operator
σz is related to the raising (lowering) operators σ+ (σ−)
for the qubit with two states |g〉 (ground), e〉 (excited)
via σz = 2σ+σ− − 1. The cavity mode is dipole-coupled
to the qubit with strength g, while the classical coher-
ent field (with very high photon occupancy) is coupled
to the resonant cavity mode with strength εd (also called

drive amplitude). The cavity field is also coupled to a
Markovian thermal bath at zero temperature, which in-
duces a photon loss rate of 2κ. In addition to photon
dissipation, there is also spontaneous emission to modes
different from the resonant cavity mode, with rate γ. The
strongly dispersive regime with weak spontaneous emis-
sion is defined through a qubit-cavity detuning such that
δ ≡ |ωc−ωq| � g � 2κ � γ. We show complex amplitude
bistability for the cavity field in the following region of the
drive phase space: 0 ≤ Δωc ≤ g2/δ and εd < g2/δ < g
(with γ/(2κ) ≈ 0.1). At resonance, where δ = 0, we show
phase bistability (with γ/(2κ) � 1) associated with a par-
ticular point in the phase space: (Δωc = 0, εd = g/2),
and a threshold behaviour. We solve numerically the
Lindblad ME1 in a truncated Hilbert space for an ini-
tial product state with the qubit in the ground state and
the cavity in a zero photon Fock state (i.e., the ground
state ρ(0) = (|n = 0〉〈n = 0|)(|g〉〈g|)). The validity of the
rotating-wave approximation in the dispersive regime we
are considering is checked against fig. 1 of [18] and fig. 1
of [19]. The former shows that the counterpropagating
terms can be omitted without affecting the physical pic-
ture even for the maximum cavity-qubit detuning consid-
ered, since the coupling strength g remains sufficiently
smaller than the bare cavity frequency (g/ωc ≈ 0.03),
while the latter demonstrates good agreement between
theory and experiment in a similar parameter regime.

In fig. 1 (frames (a) and (b)) we depict the the cav-
ity field (in the coherent state space with |α〉 ≡ |x + iy〉)
within a drive region where the quantum fluctuations are
responsible for the deviation from the mean-field predic-
tions. For low driving strengths, |α|,

√
〈a†a〉 and |〈a〉| co-

incide and the cavity is in the dim state, resembling a
vacuum state with Gaussian distribution. With increas-
ing εd/κ, the bright state accrues probability resulting in
the coherent cancellation we observe at the point A. As
we follow the curve for |〈a〉|, probability transfers from the
dim to the bright state crossing the boundary of a first-
order dissipative quantum phase transition. The complex
steady-state semiclassical cavity amplitude α obeys the
equation [15]

α = − iεd

κ̃

⎡
⎣1 +

2g2(κ − iΔωc)−1(γ − 2iΔωq)−1

1 + 8g2|α|2
(γ2+4Δω2

q)

⎤
⎦
−1

, (2)

with κ̃ = κ − iΔωc, which predicts two metastable states
(dim and bright) and one unstable state vanishing in
the presence of fluctuations. In contrast to the mean-
field prediction, the curve depicting |〈a〉| does not exhibit
any bistability. Quantum fluctuations out of equilibrium
manifest themselves through the absence of a Maxwell
construction, since the line |〈a〉| does not cut the semi-
classical curve in two equal areas. Furthermore, the curve
for

√
〈a†a〉 does not show the coherent cancellation dip,

1We perform numerical simulations by using the open-source
Matlab software Quantum Optics Toolbox.
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Fig. 1: (Colour online) Dispersive amplitude bistability. (a) Steady-state intracavity amplitude as a function of the normalized
drive strength εd/γ in the semiclassical and the quantum description for Δωc/γ = 340. The semiclassical bistability curve
(solid line, with the sparsely dashed part indicating the unstable branch) depicting |α| is superimposed on top of the quantum
amplitude curves

p

〈a†a〉 (thinly dashed line) and |〈a〉| (dash-dotted line). The latter exhibits the characteristic coherent
cancellation dip (point A) of the Duffing oscillator, and intersects the semiclassical bistability curve in three points (B, C, D).
For the marked points A, B, C, D, we plot the quasi-distribution function Q(x + iy) for the corresponding intracavity field
amplitude. (b) Average cavity photon number 〈a†a〉 as a function of the drive parameters. The dashed line indicates the drive
frequency selected for (a). Parameters: g/δ = 0.14, 2κ/γ = 12, g/γ = 3347, nscale = 12.68.

which is hence solely a quantum phase effect. These con-
siderations hold also for the driven Duffing oscillator (see
fig. 1 of [17]) as a consequence of non-constant diffusion
coefficients in the corresponding Fokker-Planck equation;
here, however, we cannot formulate such an equation due
to the active participation of the qubit [8,9].

Perturbative expansion for the cavity bistabil-
ity. – At first we will examine the birth of dispersive am-
plitude bistability for a driving frequency in the region
Δωc 
 g2/δ and weak drive strength. The presence of the
small term g/δ precludes the divergence of nonlinearity at
low cavity excitation. When the length of the Bloch vec-
tor is conserved, in the absence of spontaneous emission,
the steady-state complex field amplitude is given by the
relation [10]

α = −iεd

{
κ − i

[
Δωc −

g2

δ

(
1 +

4g2

δ2
|α|2

)−1/2
]}−1

.

(3)
According to eq. (3), we can identify nscale = δ2/(4g2) as
the dispersive scale parameter. This number approaches
infinity for g → 0 (at constant δ) and the “thermodynamic
limit”, where fluctuations vanish, is a weak-coupling limit
(for a constant cooperativity parameter C = g2/(κγ)).
The display of nonlinearity presents similarities to ab-
sorptive optical bistability where, setting γ = 0 in the
Maxwell-Bloch equation solutions a posteriori, we find the
scaling parameter Δω2

c/(2g2) [10] (note that eq. (2) with
Δωc = Δωq ≡ Δω is identical to eq. (28) of [10]).

We apply the dispersive transformation to diag-
onalize the JC Hamiltonian, generating the term
δ
√

1 + ns/nscale, where ns = a†a + σ+σ− is the operator
of system excitations (see [14] and [19]). Expanding eq. (3)
to the lowest order in ns/nscale (with |α|2 the semiclassical
analogue of ns) yields

α = −iεd

{
κ − i

[
Δωc −

g2

δ

(
1 − 2g2

δ2
|α|2

)]}−1

, (4)

in agreement with eq. (32) of [10]. In the dressed-cavity
Duffing approximation we retain only terms up to the
second-order in ns/nscale, and the reduced Hamiltonian
acquires the quartic correction (g4/δ3)σza

†2a2 (in agree-
ment with the semi-classical prediction of eq. (4) for
σz = −1). The series expansion also renormalizes pro-
gressively the driving phase space such that the effective
drive strength and frequency are functions of the system
operators [14].

We can then derive the Wigner function for the effective
dressed Duffing oscillator [17], calculated via the general-
ized P -representation [20–22]

W (α, α∗) =
2
π

e−2|α|2 |0F1 (c, 2ε̃d α∗)|2

0F2(c, c∗, 2|ε̃d|2)
, (5)

where 0F1(λ;x) and 0F2(λ, μ;x) are generalized hyper-
geometric functions of the variable x, with parameters
λ, μ. Here, c = (κ − iΔω′

c)/(iχ) and ε̃d = εd/(iχ)
with χ = (g4/δ3)σz. The effective detuning Δω′

c =

54001-p3
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Fig. 2: (Colour online) The effective Kerr nonlinearity. Joint quasi-distribution function W (x+ iy) for Δωc/κ = 72.50 and four
different values of the drive strength: εd/κ = 2.17, 2.33, 2.50, 2.67 in (a)–(d) respectively, using eq. (5) (panel I) and the solution
of eq. (1) for the reduced cavity density matrix (panel II). Parameters: g/δ = 0.14, 2κ/γ = 12, g/γ = 3347, nscale = 12.68.

Δωc +(g2/δ)σz − (g4/δ3)(2σz +1) accounts for the correc-
tion by the dispersive shift and higher-order terms. The
perturbative expression (5) reproduces the Gaussian form
of the distribution function corresponding to a vacuum
state, W = (2/π)e−2|α|2 , for very low driving strengths
εd/κ, and allows us to track the progressive participation
of the various nonlinear terms arising from the hyperge-
ometric function 0F1. It is therefore more instructive to
write a perturbation series expansion for the numerator:

W (α, α∗) =
(2/π)e−2|α|2

0F2(c, c∗, 2|ε̃d|2)

∣∣∣∣1 +
z

D1
+

z2

2!D2
+ · · ·

∣∣∣∣
2

,

(6)
with z =

√
−8ε̃d α∗ and Dm = [(c + m − 1)!]/[(c − 1)!] =

c·(c+1)·. . .·(c+m−1), showing explicitly the development
of nonlinearity for increasing drive strength. In the regime
where ns/nscale ≈ 1, the Duffing approximation breaks
down as the qubit vector becomes increasingly entangled
to the cavity mode, moving towards the equatorial plane
in the Bloch sphere representation [15].

In fig. 2(a) we depict the cavity field distribution in the
absence of entanglement with the qubit. The excitation
pathways “flow” around the nodes of the Wigner function
in a spiral-like fashion, as the departure from the Gaussian
form becomes more apparent. These perturbative distri-
butions approximate very well the exact ME results, in
which the qubit is included as an independent degree of
freedom (see fig. 2(b)). Hence, the agreement verifies the
fact that the qubit participates only in dressing the cavity
with a Kerr term depending on σz = 〈σz〉 = −1. Treating
σz as a constant of motion when solving Hamilton’s equa-
tions (for arbitrary excitation but for a short time scale
in comparison to γ−1) underlies the method followed by
the authors of ref. [19], who provide a semiclassical ex-
pression for |α|2 in the dispersive regime. The cavity re-
sponse is described therein by a skewed Lorentzian curve
with an amplitude dependent frequency shift, approach-
ing the value σzg

2/δ for |α| → 0, and restoring the linear
regime limit [23]. Conversely, for large intracavity ampli-
tudes and δ = 0, their expression yields the drive detuning

corresponding to the two resonant paths, as revealed by
the nonlinear equation

|α|2 =
ε2
d

κ2 + [Δωc ∓ g/(2|α|)]2 , (7)

that explains the split Lorentzian response at resonance.
This distinct split has a direct relation to the origin
of phase bistability, namely the formation of two quasi-
independent excitation ladders with a vanishing connec-
tion between them [10]. The region of high powers in
the strongly dispersive regime can be accessed for non-
demolition qubit readout with Δωc ∼ κ [19,24,25]. Dy-
namical mapping of the qubit to the photon states has
been also proposed in [26] as an optimized protocol, ex-
ploiting the first-order phase transition by means of which
the photon blockade breaks down.

Phase transition crossover. – We will now delin-
eate the defining features of complex amplitude bistabil-
ity with the aim of approaching phase bistability, the
occurrence of which signals the ultimate difference be-
tween the effective Duffing and the full JC nonlinearity.
For that purpose we plot the Q function in the steady
state, Q(x+ iy) = (1/π)〈x + iy|ρc|x + iy〉, for the reduced
cavity matrix ρc and the coherent state |x + iy〉. The re-
gion of coexisting states with probabilities of the same or-
der of magnitude marks the boundary in the drive phase
space where quantum fluctuations induce equiprobable
transitions between the metastable states [12,27]. The
resulting critical slowing-down is a direct consequence of
nonlinear dynamics (see Chapt. 5 of [8]) and the depar-
ture from a Gaussian probability distribution. As the
authors of [12] note, “bistability is a macroscopic phe-
nomenon reached in the limit nscale → ∞”. In our case,
the bimodal distributions identify distinct states that are
long-lived on the time scale γ−1 (and consequently on the
scale (2κ)−1) even for nscale = 12.68. Bimodality is de-
picted in fig. 3 (panel I, frames (a)–(c)), associated with
maximal qubit-cavity entanglement. The bright state is
quadrature-squeezed along the mean-field direction (in a

54001-p4
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Fig. 3: (Colour online) Boundary of the first-order phase transition in panel I (a)–(c): joint quasi-distribution function Q(x+iy)
for four different points in the (Δωc/κ, εd/κ) phase space: (a) (56.83, 16.67), (b) (47.33, 33.33), (c) (39.83, 50) and (d) (0, 33.47).
Parameters: g/δ = 0.14, 2κ/γ = 12 (in (a)–(c)) and 2κ/γ = 200 (in (d)), g/γ = 3347. Towards phase bistability at the critical
point (Δωc = 0, εd = g/2) in panel II: joint quasi-distribution function Q(x + iy) for four decreasing values of δ/g: (a) 7.12,
(b) 4.13, (c) 1.14, (d) 0. Parameters: g/γ = 3347, 2κ/γ = 200. The driving field has a phase difference of −π/2 with respect
to the drive in fig. 1(a), leading to a rotation in the x-y plane by that angle, as expected from eq. (2).

similar way to resonance fluorescence [8,28]), another dis-
play of the JC nonlinearity in this regime.

In the panel I of fig. 3 we plot quasi -distribution func-
tions showing coexistent metastable states in a region
where the qubit is significantly excited and approaches
progressively the equator in the Bloch sphere. For increas-
ing drive amplitude εd/κ we observe a growing separation
of the two state distributions followed by a change in their
orientation (frames (a)–(c)). The quasi -distribution func-
tion in fig. 3(d) of panel I illustrates a precursor of phase
bistability for εd = g/2, lacking nevertheless complete
symmetry with respect to the horizontal axis (and hence
having peaks of unequal height) because δ �= 0. We build
upon this theme in the panel II of fig. 3, where we track
the emergence of phase bistability for decreasing values of
δ/g, and Δωc = 0, εd = g/2. As δ/g → 0, nonlinearity
is triggered by lower photon numbers and the two peaks
approach each other (for the same values of εd/κ), while
complete symmetry is restored only when δ = 0.

We proceed now to the study of entanglement as a mea-
sure of the joint participation of both quantum degrees
of freedom, employing the von Neumann entropy for the
reduced qubit density matrix ρq = Trcρ in the steady state
(where Trc denotes the partial trace over the cavity field
states), defined as Sq = −Tr[ρq ln ρq] = −

∑
i=1,2 λi ln λi.

The eigenvalues λi of the reduced qubit matrix ρq =
(ρgg, ρge; ρ∗ge, ρee) are given by the expression [29,30]:

λ1,2 =
1
2

[
1 ±

√
(ρgg − ρee)2 + 4|ρeg|2

]
. (8)

The entropy Sq quantifies the entanglement between the
two quantum degrees of freedom, assessing the purity of
the reduced quantum state for the qubit in the steady
state (following the evolution of the open system from an
initial pure state). In the dispersive regime there is still

Fig. 4: (Colour online) Amplitude bistability for both cav-
ity and qubit. (a) Entanglement entropy Sq as a function of
the drive frequency and strength. (b) Entanglement entropy
(×20, red curve), |〈σ−〉| (green curve), |〈a〉| (orange curve) and
autocorrelation function g(2)(0) (blue curve) for varying drive
frequency and εd/κ = 16.67 (corresponding to the top level
of the phase space diagram in (a)). Parameters: g/δ = 0.14,
2κ/γ = 12, g/γ = 3347, nscale = 12.68.

appreciable entanglement between the cavity and qubit
despite their strong detuning. It has recently been shown
that entanglement is also present in the linear region [31],
which we have neglected when setting 〈σz〉 = −1 in our
analytical mapping to the Duffing oscillator. The entan-
glement entropy tracing a first-order phase transition in
the drive phase space is shown in fig. 4(a). From the linear
region, where entanglement is very weak (light blue region
in fig. 4(a) appearing at Δωc = g2/δ), we move to the non-
linear regime where the maximum shifts to the left with a
very steep drop, in a similar manner to the average pho-
ton number 〈n〉 = 〈a†a〉, due to the presence of growing
amplitude bistability (compare to figs. 1 and 3(a) of [10]).

54001-p5
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Fig. 5: (Colour online) Nonlinearity for varying nscale.
(a) Growing entanglement entropy Sq vs. driving frequency
for nscale = 12.68 (g/δ = 0.14) and five equispaced drive
amplitudes in the range εd/γ = [20, 100]. The red curve corre-
sponds to εd/γ = 100 at the peak of which we plot the function
Q(x + iy) for the cavity amplitude distribution (inset). The
green curve depicts the relative difference of the Q function
peak values h1, h2, defined as r = (h1 − h2)/h1. (b) En-
tanglement entropy Sq for nscale = 0.33 (g/δ = 0.87) and
five equispaced drive amplitudes (increasing along the direc-
tion of colours: light blue, green, orange, red, dark blue) in
the range εd/γ = [200, 1000]. The upper right inset depicts
successive multi-photon resonances for the same five drive am-
plitudes as in (a). The bottom right inset depicts the quasi-
distribution function Q(x + iy) corresponding to the marked
point M. Parameters: 2κ/γ = 12, g/γ = 3347.

In fig. 4(b) we plot the second-order correlation function
for zero time delay, g(2)(τ = 0), defined via the relation
g(2)(0) = 〈n(n − 1)〉/(〈n〉2), in order to reveal the effect of
quantum fluctuations. The peak of quantum correlations

Fig. 6: (Colour online) Changing excitation paths at resonance.
Entanglement entropy Sq in the region of phase bistability
(δ = 0) as a function of the driving frequency past the thresh-
old εd = g/2 (compare with fig. 1 of [10] and see eq. (7), in the
absence of spontaneous emission). The insets depict the joint
quasi-distribution function Q(x + iy) for the marked points A,
B and C. Parameters: 2εd/g = 1.06, 2κ/γ = 500, g/γ = 3347.

is shifted relatively to the entropy maximum, with the
two curves (blue and red, respectively) intersecting closer
to the position of the coherent cancellation dip in the cav-
ity amplitude |〈a〉| (similar to the point A in fig. 1(a)) and
the pseudospin projection |〈σ−〉|. The aforementioned dip
has a purely quantum origin at zero temperature, which
explains the amplification of quantum fluctuations in that
region [17,32]. On the other hand, the maximum of the
von Neumann entropy occurs at the frequency where the
dim- and bright-state distributions attain peaks of equal
height, as we can observe in fig. 5(a). When δ/g → 0 the
system response becomes highly nonlinear for low drive
strengths, as nscale decreases. We observe enhanced reso-
nant multi-photon transitions (inset of fig. 5(b)) gradually
disappearing in the region of high drive amplitudes (main
panel of fig. 5(b)). This phenomenon is referred to as
breakdown of the photon blockade (see figs. 2(a) and 5(a)
of [11], and [10] for an extensive discussion at resonance
—δ = 0) accompanied by the appearance of amplitude
bistability (see the Q function plot in the bottom inset of
fig. 5(b)).

Phase bistability. – Let us finally link the increas-
ing entanglement entropy to the appearance of phase
bistability past the threshold set by the critical point
of the second-order quantum dissipative phase transition:
(Δωc = δ = 0, εd = g/2). At resonance, the nonlinearity
can be triggered by low photon numbers with a differ-
ent scaling parameter, associated with a strong-coupling
limit [10], as opposed to the strongly dispersive regime.
Figure 6 shows the development of a phase-bimodal dis-
tribution as we cross the line Δωc = 0, where the en-
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tanglement entropy has a local maximum. For growing
drive strength, the entropy at point B increases and the
two peaks of the Q function move further apart compared
to their threshold position, always remaining symmetrical
with respect to the horizontal axis.

At this stage, it is instructive to invoke for a final time
the solution above threshold of the so-called neoclassi-
cal equations, i.e., the semiclassical equations that con-
serve the length of the Bloch vector [10], which are also
combined to derive the steady-state expression of eq. (3)
in the dispersive regime. Neoclassical theory predicts a
parity-breaking transition at resonance, according to the
equation

α = −iεd

(
κ ± i

g

2|α|

)−1

, (9)

as well as a bistable qubit vector lying on the equatorial
plane (ζ ≡ 〈σz〉 = 0) with ν ≡ 〈σ−〉 = ±α/(2|α|). In
that regard, phase bistability corresponds to maximally
entangled states of the two coupled quantum degrees of
freedom, in which the qubit polarization and the cavity
field are not enslaved to the external drive, as already
predicted by the mean-field analysis [16].

Conclusion. – In this letter we have examined the in-
terplay of qubit-cavity entanglement and cavity bimodal-
ity when connecting the dispersive and the resonance
regimes in the driven dissipative Jaynes-Cummings model
for varying qubit-cavity detuning. For the assessment of
the cavity nonlinearity we have employed both the mean-
field and the master equation treatment including quan-
tum fluctuations. We have followed the change of the
cavity field quasi -distribution functions from the strongly
dispersive regime to the gates of a critical point related
to a second-order quantum phase transition at resonance.
We have also included in our discussion the complex am-
plitude bistability encountered in the driven dissipative
Duffing oscillator, adopting a perturbative approach for
weak drive fields. This is a region of minimal entanglement
and very weak qubit involvement in the formation of the
system nonlinearity, for the quantum description of which
we have employed an analytical form of the Wigner func-
tion. The growing participation of both coupled quantum
degrees of freedom marks the passage from a first-order to
a second-order dissipative quantum phase transition.
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