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Abstract 

 This special issue explores the growing intersection between mathematical psychology 

and cognitive neuroscience. Mathematical psychology, and cognitive modeling more generally, 

has a rich history of formalizing and testing hypotheses about cognitive mechanisms within a 

mathematical and computational language, making exquisite predictions of how people perceive, 

learn, remember, and decide. Cognitive neuroscience aims to identify neural mechanisms 

associated with key aspects of cognition using techniques like neurophysiology, 

electrophysiology, and structural and functional brain imaging. These two come together in a 

powerful new approach called model-based cognitive neuroscience, which can both inform 

cognitive modeling and help to interpret neural measures. Cognitive models decompose complex 

behavior into representations and processes and these latent model states can be used to explain 

the modulation of brain states under different experimental conditions. Reciprocally, neural 

measures provide data that help constrain cognitive models and adjudicate between competing 

cognitive models that make similar predictions about behavior. As examples, brain measures are 

related to cognitive model parameters fitted to individual participant data, measures of brain 

dynamics are related to measures of model dynamics, model parameters are constrained by 

neural measures, model parameters or model states are used in statistical analyses of neural data, 

or neural and behavioral data are analyzed jointly within a hierarchical modeling framework. We 

provide an introduction to the field of model-based cognitive neuroscience and to the articles 

contained within this special issue. 

 

keywords: cognitive modeling, cognitive neuroscience, model-based cognitive neuroscience 
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 Exciting new synergies between mathematical psychology and cognitive neuroscience 

have emerged. This special issue of the Journal of Mathematical Psychology includes reviews, 

tutorials, and original research papers highlighting this new area of model-based cognitive 

neuroscience. In this opening article, we outline this new approach and introduce the articles 

contained in this special issue. 

 

What is Model-based Cognitive Neuroscience? 

 Alternative approaches to theory in both psychology and neuroscience often begin by 

considering Marr’s (1982) classic three levels: The computational level considers the goals of the 

organism and the structure of the environment, without considering mechanism, typified by 

many Bayesian theories of the mind (e.g., Anderson, 1990; Oaksford & Chater, 2007; 

Tenenbaum, Kemp, Griffiths, & Goodman, 2011). The algorithmic level considers what 

representations and processes underlie cognition and perception, without considering their 

biological realization, typified by many mathematical and computational models of cognition 

and perception (e.g., Busemeyer, Townsend, Wang, & Eidels, in press; Sun, 2008). The 

implementation level asks how mechanisms are physically realized within a biological substrate, 

namely neurons and their connections in the brain, typified by classical theoretical work in 

neuroscience (e.g., Carnevale & Hines, 2006; Dayan & Abbott, 2005).  

 While Marr envisioned connections between these levels, there often had been 

intellectual and disciplinary barriers to considering explanations that crossed levels. This led 

theorists to work traditionally within only one level of analysis. Not so long ago, a graduate 

student trained in mathematical psychology considering postdoctoral training in neuroscience 

might have been about as sensible as considering running off to join the circus. For some, the 
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brain could well be made of tinker toys for its relevance to understanding human cognition. As 

well, not so long ago, few trained in systems neuroscience would ever consider whether insights 

from cognitive and mathematical psychology might inform understanding of neural function. 

Cognitive conceptual building blocks were often thought little more than folk psychology, with 

philosophical arguments lending support to a strict reductionist approach to understanding the 

brain (e.g., Churchland, 1986).1  

 Early attempts to address this impasse focused on connectionist models of cognition that 

took inspiration from the brain. Connectionists viewed the brain as consisting of simple 

computing units (akin to neurons) that integrated signals passed across connection weights that 

were adjusted by learning rules. However, these models rarely made contact with the 

implementational details of the brain. In most cases these models served as existence proofs that 

a model consisting of many simple computing elements could accomplish a task in roughly the 

same fashion as a human. Nevertheless, these models were attempts to bridge levels of analysis 

and were championed as more biologically plausible than competing models at the algorithmic 

or computational levels. Unfortunately, notions of biological plausibility were rarely defined nor 

evaluated rigorously. The gap between levels of analyses stubbornly remained. 

 Model-based cognitive neuroscience breaks the traditional barriers between models and 

the brain (e.g., Forstmann, Wagenmakers, Eichele, Brown, & Serences, 2011; Forstmann & 

Wagenmakers, 2015; Palmeri, Schall, & Logan, 2015; Smith & Ratcliff, 2004). From the 

perspective of cognitive and mathematical psychology, formal models explain behavior in terms 

of representations and processes instantiated in mathematics and computations, and observed 

variation in behavior across experimental conditions and individuals is explained in terms of 

variation in model parameters and model states. Model-based cognitive neuroscience allows for 
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consideration of whether these latent model parameters or model states might be related to, or 

constrained by, observed brain measures or brain states, over and above whether a model fits or 

predicts observed behavior. From the perspective of systems and cognitive neuroscience, a key 

component of understanding neurons, neural circuits, or brain areas is explaining the 

computations that they perform. In a model-based cognitive neuroscience approach, to the extent 

that brain measures or brain states are predicted by model parameters or model states, those 

models provide a potential explanation of brain function, regardless of whether or not those 

models are implemented in neuron-like elements. 

 The emergence and growth of model-based cognitive neuroscience over the past decade 

can be attributed to a number of converging forces. One was the recognition on the part of 

cognitive modelers and mathematical psychologists interested in understanding the mechanisms 

that brain data is simply additional data by which to constrain and contrast models. Response 

probabilities, response times, confidence ratings and the like are the outcomes of processing. 

Brain data reflect intermediary states. Considering how internal processes predicted by a model 

relate to internal processes measured in the brain can break theoretical stalemates caused by 

model mimicry. While two different models making different mechanistic assumptions about 

representations and processes may make similar predictions about observed behavior, they may 

well make different predictions about internal model states, which can then be compared with or 

constrained by measured brain states (e.g., Boucher, Palmeri, Logan, & Schall, 2007; Mack, 

Preston, & Love, 2013; Purcell, Heitz, Cohen, Schall, Logan, & Palmeri, 2010; Purcell, Schall, 

Logan, & Palmeri, 2012).  

 Another force was the recognition on the part of cognitive and systems neuroscientists for 

the need for new approaches to making sense of the growing body of neural data from functional 
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brain imaging, electrophysiology, neurophysiology, and other neuroscience techniques. 

Correlating brain measures with stimuli, conditions, and responses provides only a rather limited 

window on understanding brain function. To go beyond merely mapping out which brain areas 

or which neurons modulate their activity under which conditions means to explain and 

understand what mechanisms and computations are engaged within those brain areas or neurons. 

Algorithmic and computational models provide a language and a body of viable hypotheses, as 

well as a set of tools, for explaining and understanding those neural mechanisms and 

computations.  

 Recognition has grown for considering the algorithms and computations that underlie 

neural processing. Carandini (2012) characterized any direct link between neural circuits and 

behavior as a “bridge too far”, and argued that it was necessary to theorize at an intermediate 

level in Marr’s hierarchy, considering the algorithms and computations that neural circuits 

perform. The purely bottom-up approach to understanding the brain that characterized the initial 

stages of the billion Euro Human Brain Project was widely criticized by cognitive and 

computational neuroscientists and led to a shake-up of its leadership and vision (e.g., Enserink & 

Kupferschmidt, 2014; Theil, 2015). Rather than adopting a strictly bottom-up (or top-down) 

approach, model-based cognitive neuroscience can be characterized as an inside-out approach 

(Love, 2015), that may well be a level of theorizing that is just right (Logan, Schall, & Palmeri, 

2015). 

 Perhaps the most potent force propelling model-based cognitive neuroscience over the 

past decade has been its demonstrated success in providing new insight at both the cognitive and 

neural levels. One especially salient body of work has centered around accumulator models of 

decision making, a well-known class of models with a long history in cognitive psychology (e.g., 



Palmeri,	  Love,	  &	  Turner	   	   Model-‐based	  Cognitive	  Neuroscience	  

	   7	  

Ratcliff & Smith, 2004). These models assume that variability in choice probability and response 

times arise from variability in the, often noisy, accumulation of evidence to response thresholds, 

and variants of these models have accounted for decisions in perception, memory, categorization, 

and other tasks (e.g., Brown & Heathcote, 2008; Bogacz, Brown, Moehlis, Holmes, & Cohen, 

2006; Forstmann, Ratcliff, & Wagenmakers, 2016; Nosofsky & Palmeri, 1997; Palmeri, 1997). 

As one of the first examples of systems neuroscience making contact with cognitive modeling, 

when Hanes and Schall (1996) were interested in understanding how neurons in Frontal Eye 

Field (FEF) decide where and when to saccade in the visual field, they turned to the cognitive 

modeling literature for inspiration and insight. Based on the fact that the dynamics of certain FEF 

neurons mirrored the dynamics in accumulators, accumulation of evidence models provided a 

language for describing the computations that these FEF neurons were engaged in. Cognitive 

models provided insight into neural processes. Hanes and Schall also showed that the dynamics 

of these FEF neurons were more consistent with variable accumulation to a fixed threshold than 

fixed accumulation to a variable threshold, two competing mechanistic hypotheses of decision 

making that can be difficult to distinguish based on behavioral data alone (Grice, 1968). Neural 

data provided insight into cognitive models. 

 These initial insights spawned a considerable body of research linking neurophysiology 

and cognitive modeling to understand elementary decision making (e.g., Forstmann, Ratcliff, 

Wagenmakers, 2016; Gold & Shadlen, 2007; Logan, Yamaguchi, Schall, & Palmeri, 2015; 

Mazurek, Roitman, Ditterich, Shadlen, 2003; Palmeri, Schall, & Logan, 2015; Ratcliff, Cherian, 

& Segraves, 2003; Schall, 2001, 2004; Smith & Ratcliff, 2004; Zandbelt, Purcell, Palmeri, 

Logan, & Schall, 2014). As one illustrative example, Purcell (Purcell et al. 2010, 2012) applied 

accumulator models to understand existing data on the behavior and neurophysiology of saccade 
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decision making by awake behaving primates (e.g., Bichot & Schall, 1999; Cohen, Heitz, 

Woodman, & Schall, 2009). Adopting a classic approach used in mathematical psychology, they 

formulated a variety of alternative models assuming various architectural components 

characteristic of various accumulator models of decision making, rejecting models that could not 

account qualitatively and quantitatively for observed response probabilities and distribution of 

response times for saccades.  

 Going beyond a pure mathematical psychology approach of fitting models to behavioral 

data, they turned to neurophysiology in two ways. First, they allowed neurophysiology to 

constrain key model components. In many, but not all (e.g., Nosofsky & Palmeri, 1997; Palmeri, 

1997), applications of accumulator models, the rate at which evidence is accumulated, the drift 

rate, is allowed to be a free parameter. Purcell et al. (2010, 2012) instead instantiated an 

hypothesis that a particular class of neurons in FEF (visually-responsive neurons) represent the 

evidence that is accumulated, replacing the drift rate and other parameters with recorded 

neurophysiology. Neurophysiology significantly limited the flexibility of various model 

architectures to account for observed behavioral data.  

 Second, faced with several alternative model architectures that could account equally 

well for the observed behavioral data, if they had no other data to turn to, they would have had to 

appeal parsimony in selecting a winning model architecture (see also Boucher et al., 2007; Logan 

et al., 2015). Purcell et al. (2010, 2012) instead turned to neurophysiology as an additional data 

source for contrasting between alternative models. Adopting the linking proposition (Schall, 

2004; Teller, 1984) that movement-related neurons in FEF instantiate an accumulation of 

evidence to a threshold for saccade decisions (Hanes & Schall, 1996), they compared the 

predicted dynamics of model accumulation to the observed dynamics of these FEF neurons (see 
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also Purcell & Palmeri, this volume). Only their gated accumulator model could both account for 

the behavioral data and predict the dynamics of FEF movement-related neurons. 

Neurophysiology provided key data by which to contrast models that otherwise provided the 

same predictions of overt behavior.  

 Another approach for avoiding the theoretical stalemate that can ensue when fitting 

complex models to behavioral data alone is to treat neural data as auxiliary information on which 

latent model mechanisms should covary. Models like the classic diffusion model (Ratcliff & 

Rouder, 1998; Ratcliff & Smith, 2004) have three sources of trial-to-trial variability, assuming 

fluctuations in things like response bias, the rate of evidence accumulation, and perceptual and 

motor non-decision time. The assumption is that these parameters vary from one trial to another 

in ways that are completely consistent throughout the experiment (an assumption known as 

independent, identically distributed). However, because there is no mechanism to guide these 

fluctuations, we cannot appreciate aspects of the decision process that are vital to ensuring 

success on a specific trial. Furthermore, these assumptions are at odds with several findings in 

neuroscience that implicate the gradual waxing and waning of attention on behavioral 

performance. In summary of these findings, unique networks of brain activity arise from 

separating neural data on the basis of behavioral data: an “off-task” network gives rise to poor 

behavioral performance whereas an “on-task” network gives rise to good behavioral performance 

(Mittner, Boekel, Tucker, Turner, Heathcote, & Forstmann, 2014; Turner et al., 2015).  

 These observations lead Turner, Van Maanen, and Forstmann (2015) to develop a model 

that blends neuroscience and mathematical psychology to formally ground decision-making 

models with neurophysiology. Their strategy was to treat trial-by-trial neural data (as measured 

by fMRI) as information about the trial-to-trial fluctuations in the latent parameters assumed by a 
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standard diffusion model. The model was constructed on the basis of a previously developed 

framework for imposing neurophysiological constraints on behavioral models across subjects 

(Turner, Forstmann, Wagenmakers, Brown, Sederberg, & Steyvers, 2013, Turner, 2015), but 

extends this framework to a trial-by-trial basis. Once fit to data, the model was able to articulate 

how disparate networks of brain activity were associated with orthogonal mechanisms in the 

model, such as pre-stimulus bias and the rate of evidence accumulation. Turner et al. also 

showed that not only did their model provide a new perspective on both neural and behavioral 

data using generative modeling techniques, but the model could also outperform a standard 

diffusion model that only considered behavioral data in a leave-one-out cross-validation test.  

 Model-based neuroscience opens up possibilities for cognitive models to take on second 

lives as formal neuroscientific theories. For example, Love and Gureckis (2007) proposed a 

theory linking aspects of the SUSTAIN clustering model of human categorization (Love, Medin, 

& Gureckis, 2004; Sakamoto & Love, 2004) to the functions of prefrontal cortex and the 

hippocampus. They simulating various populations, such as amnesics (Love & Gureckis, 2007), 

infants (Gureckis & Love, 2004), and the aged (Davis, Love, Maddox, 2012), by adjusting model 

parameters hypothesized to relate to brain regions whose functions vary across populations. With 

the advent of model-based neuroscience, exact predictions of the theory were tested and 

confirmed with healthy young adults using fMRI (Davis, Love, Preston, 2012a; 2012b; Davis, 

Xue, Love, Preston & Poldrack, 2014; Mack, Preston, & Love, in press). The analyses revealed a 

number of phenomena that would not be possible to observe without the model, such as how the 

involvement of the hippocampus changes over learning trials, ramping up for familiar items 

(related to recognition) at the time of decision and ramping down at the time of feedback as the 

error signal abates (Davis et al., 2012a). The model-based imaging work also confirmed more 
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speculative hypotheses such as that prefrontal and hippocampus interactions would be strongest 

in the early stages of mastering a new learning task as attention weights are established (Mack et 

al., in press). 

 While we opened this article by contrasting a bottom-up neural network approach with an 

inside-out (Love, 2015) cognitive modeling approach to relating brain and behavior, we want to 

make clear that the approaches used in a model-based cognitive neuroscience can just as well be 

applied to neural network models as to more abstract cognitive models. The SUSTAIN model 

(Love, Medin, & Gureckis, 2004) used by Davis, Love, and Preston (2012) discussed above is 

instantiated using a number of neural network building blocks. Yet the relation between 

SUSTAIN and brain imaging data is not cemented by any mapping from neural-like model 

elements to neurons in the brain, but by the ability of patterns of activity in the model to reveal 

and explain patterns of activity in the brain. Similarly, the overall structure of so-called deep 

learning models of vision (e.g., LeCun, Bengio, & Hinton, 2015) are inspired by neural networks 

and key aspects of the neurophysiology of the primate visual system. But the insights provided 

by these models into understanding the representation of objects in the brain (Kriegeskorte, 

2015; Yamins, Hong, Cadieu, Solomon, Seibert, & DiCarlo, 2014) is based on how well patterns 

within high-level representational layers of these models predict patterns of brain activity, not on 

the neural-like building blocks of these models (Khaligh-Razavi, Henriksson, Kay, & 

Kriegeskorte, this volume; Khaligh-Razavi & Kriegeskorte, 2014).  

 

Overview 

Here we provide brief outlines of the papers that appear in this special issue: 
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Approaches to Analysis in Model-based Cognitive Neuroscience. Turner, Forstmann, Love, 

Palmeri, and Van Maanen (this volume) provide an overarching framework for describing the 

varying approaches to model-based cognitive neuroscience that have emerged in the literature 

over the past several years. They organize these approaches on the basis of particular theoretical 

goals, which include using neural data to constrain a cognitive model, using a cognitive model to 

predict neural data, and accounting for both neural and behavioral data simultaneously using the 

same model. Accompanying each of these theoretical goals, they highlight some particularly 

successful examples. They also provide a conceptual guide to choosing among various 

approaches when performing model-based cognitive neuroscience. 

 

Integrating Theoretical Models with Functional Neuroimaging. Pratte and Tong (this volume) 

highlight a number of salient examples linking cognitive models and functional brain imaging 

data using a model-based cognitive neuroscience approach. Their selective review spans a broad 

range of core topics in perception and cognition, including visual perception (Brouwer & 

Heeger, 2011), attention (Pratte, Ling, Swisher, & Tong, 2013), long-term memory (Kragel, 

Morton, & Polyn, 2015), categorization (Mack, Preston, & Love, 2013), and cognitive control 

(Ide, Shenoy, Yu, & Li, 2013). 

 

A Step-by-step Tutorial on Using the Cognitive Architecture ACT-R in Combination with fMRI 

Data. Borst and Anderson (this volume) provide a tutorial on using the ACT-R cognitive 

architecture (e.g., Anderson, Bothell, Lebiere, & Matessa, 1998) to understand fMRI data (e.g., 

Anderson, Betts, Ferris, & Fincham, 2010; Anderson, Fincham, Qin, & Stocco, 2008; Borst & 

Anderson, 2013). They illustrate how ACT-R can be used in combination with fMRI data in two 
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different ways: first that fMRI data can be used to evaluate and constrain models in ACT-R by 

means of predefined Region-of-Interest (ROI) analysis, and second that predictions from ACT-R 

models can be used to locate neural correlates of model processes and representations by means 

of model-based fMRI analysis. As a tutorial, they provide code and worked examples of both 

types of analysis on a math problem solving task performed in an fMRI scanner. 

 

Variability in Behavior That Cognitive Models Do Not Explain Can Be Linked to Neuroimaging 

Data. Gluth and Rieskamp (this volume) review evidence for the proposal that neural and 

behavioral variability can be linked to one another by allowing moment-to-moment fluctuations 

in neural measures, like fMRI and EEG, to inform trial-by-trial variability in cognitive model 

parameters. One approach to linking single-trial measures of the brain to single-trial parameters 

in models has been to simply regress them onto one another. Gluth and Rieskamp provide a 

tutorial of a novel and efficient alternative approach that goes beyond a raw two-stage 

correlational approach by increasing the resolution of the single-trial parameter estimates in an 

iterative fashion, similar in some ways to an EM algorithm. As illustration, they show how the 

variability in the parameters of an accumulator (sequential sampling) model can be related to 

variability in neuroimaging data. 

 

How Attention Influences Perceptual Decision Making: Single-trial EEG Correlates of Drift-

Diffusion Model Parameters. Nunez, Vandekerckhove, and Srinivasan (this volume) provide a 

specific illustration of how variability in neural measures can constrain variability in model 

parameters. Within a hierarchical Bayesian framework, various forms of a drift-diffusion model 

are fitted to behavioral data from a perceptual decision making task, with different model forms 
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assuming different mathematical relationships between model parameters and EEG measures. 

Trial-to-trial measures of certain key attention-related evoked potentials in simultaneous EEG 

recordings can explain trial-to-trial evidence accumulation rates and perceptual processing times 

in a diffusion model fitted to perceptual decision making behavior. 

 

 

A Confirmatory Approach for Integrating Neural and Behavioral Data into a Single Model. van 

Ravenzwaaij, Provost, and Brown (this volume) provide another illustration of a joint modeling 

approach to model-based cognitive neuroscience. Within a hierarchical Bayesian framework they 

use the Linear Ballistic Accumulator (LBA) model (Brown & Heathcote, 2008) to account for 

behavioral data during a mental rotation task, testing different hypotheses linking cognitive 

model parameters and neural data measured via event-related potentials (ERPs). They 

specifically investigate how changes in drift rate and non-decision time with mental rotation 

angle might be constrained by changes in certain ERP amplitudes measured during the task. 

 

On the Efficiency of Neurally-informed Cognitive Models to Identify Latent Cognitive States. 

Hawkins, Mittner, Forstmann, and Heathcote (this volume) illustrate how neural data can be used 

to test between cognitive models with different latent states. They focus on whether the 

underlying states driving performance in a speeded decision tasks are discrete or continuous. 

Through model recovery studies the authors determine that discrete state models are more 

robustly recovered than continuous state models, suggesting that neural data may more easily be 

linked to certain varieties of cognitive models. 
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Relating Accumulator Model Parameters and Neural Dynamics. Purcell and Palmeri (this 

volume) build on the work cited earlier on the identification of neural activity in certain brain 

areas with evidence accumulation in sequential sampling models. Through simulations, they 

caution against simply equating variability in measures of neural dynamics with variability in 

cognitive model parameters. Simulated variation in model dynamics in accumulators is not 

always related one-to-one with variation of accumulator model parameters. The most general 

mapping between neural measures and model mechanisms may be one between measured neural 

dynamics and predicted model dynamics, not one between measured neural dynamics and model 

parameters. 

 

A Primer on Encoding Models in Sensory Neuroscience. van Gerven (this volume) explores 

fundamental questions of how the primate visual system represents the visual world. In visual 

neuroscience, the concept of the receptive field has been a key concept for understanding the 

response properties of neurons. While classical receptive field mapping has proved successful for 

understanding representations in early visual areas like area V1, more general methods are 

needed for understanding higher-level visual representations and to allow for non-invasive 

mapping of visual representations in humans. van Gerven provides a mathematical and 

computational primer on Encoding Models, which at first approximation can be described as 

generalization of classical receptive field and population receptive field approaches, allowing for 

the nonlinear response properties of complex representations in high-level visual areas and their 

manifestation in functional brain imaging to be well characterized. 
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Fixed Versus Mixed RSA: Explaining Visual Representations by Fixed and Mixed Feature Sets 

from Shallow and Deep Computational Models. Khaligh-Razavk, Henriksson, and Kriegeskorte 

(this volume) provide a complementary approach to understanding how the primate visual 

system represents the world. Their starting point is existing neural network and computer vision 

models of object recognition. Their question is whether the representations produced in the 

model predict the activity measured in the brain. Using a technique called Representational 

Similarity Analysis (Kriegeskorte, 2009, 2015), they ask whether patterns of similarities in 

object representations produced in particular layers of a model are analogous to patterns of 

similarities measured in particular areas of the brain. Deep learning models (LeCun, Bengio, & 

Hinton, 2015) have provided good accounts of object representations observed in high-level 

visual areas (Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte, 2015; Yamins, Hong, Cadieu, 

Solomon, Seibert, & DiCarlo, 2014); this article reviews that work and outlines approaches to 

fixing or mixing the model representations when comparing to brain measures. 

 

A Tutorial on the Free-energy Framework for Modeling Perception and Learning.  

Bogacz (this volume) provides a tutorial on free energy and related predictive coding 

approaches. In these approaches, models assume that the sensory cortex infers the most likely 

values of attributes or features of sensory stimuli from the noisy inputs encoding the stimuli. The 

author demonstrates how powerful inferences can be made by very simple computations that 

could be carried out by neurons. Clear examples help the reader grasp these general concepts that 

link measures of uncertainty with neural computations. 
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Model-based Functional Neuroimaging Using Dynamic Neural Fields: An Integrative Cognitive 

Neuroscience Approach. Wijeakumar, Ambrose, Spencer, and Curtu (this volume) provide a 

review and tutorial of an approach to model-based cognitive neuroscience using a theoretical 

framework called Dynamic Field Theory (Erlhagen & Schöner 2002) applied to functional brain 

imaging (Buss, Wifall, Hazeltine, & Spencer, 2009). They outline the assumptions of DFT and 

how it is applied to behavioral data, describe how parameters of the model can be used in brain 

imaging analyses, and compare the model-based cognitive neuroscience approach to standard 

brain imaging analyses of the same dataset.  
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(Texas Tech University), Birte Forstmann (University of Amsterdam), Scott Brown (University 

of Newcastle), Sam Gershman (Harvard University), Laurence Hunt (University College 

London), Xiaosi Gu (University of Texas at Dallas), Michael Mack (University of Toronto), 

Neal Morton (University of Texas at Austin), Braden Purcell (New York University), Michael 

Pratte (Mississippi State University), Per Sederberg (The Ohio State University), Mark Steyvers 

(University of California Irvine), Marcel van Gerven (Donders Institute), Marieke van Vugt 

(University of Groningen), Joachim Vandekerckhove (University of California Irvine), Corey 

White (Syracuse University), Bram Zandbelt (Donders Institute). 
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Footnotes 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Of	  course,	  there	  were	  exceptions	  to	  barriers	  between	  the	  algorithmic	  level	  and	  the	  
implementation	  level,	  to	  again	  cast	  this	  in	  Marr’s	  terms.	  In	  the	  case	  of	  relatively	  low-‐level	  
visual	  sensation	  and	  perception,	  there	  have	  long	  been	  deep	  connections	  between	  
theoretical	  work	  in	  visual	  psychophysics	  and	  the	  underlying	  visual	  neurophysiology	  and	  
neuroanatomy,	  in	  part	  because	  the	  relevant	  neural	  hardware	  is	  not	  far	  removed	  from	  the	  
source	  of	  visual	  stimulation.	  And	  the	  field	  of	  cognitive	  neuropsychology	  has	  long	  
considered	  theoretically	  how	  cases	  of	  brain	  damage	  and	  neurodegenerative	  and	  
neurodevelopmental	  disorders	  influence	  understanding	  of	  human	  cognition.	  
	  
	  


