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Current State of the Science 

 

 There has been significant research focused on the identification of blood-based 

biomarkers that have utility in Alzheimer’s disease (AD) or other neurological disoders1-4. 

Blood-based biomarkers have important advantages of being cost- and time-effective, compared 

to the collection of cerebrospinal fluid or neuroimaging, while simultaneously providing 

feasibility for accessibility at the population level4,5. Therefore, blood-based biomarkers can 

serve as the first-step in a multi-stage process2,5,6 similar to the procedures utilized in other 

disease states (e.g. cancer, cardiovascular disease, infectious disease)2,5,6. Acknowledging that 

peripheral biomarkers (blood or otherwise) of brain disorders are more difficult to identify and 

lock-down, there are many potential contexts of use (COU) for blood-based AD biomarkers, 

including, but not limited to, primary care screening, diagnostics, predictive risk (i.e. risk for 

incident AD, risk for progression from MCI to AD), disease monitoring, stratification into 

clinical trials and pharmacodynamic or treatment response monitoring (positive or adverse). 

Multiple international working groups have provided overviews of the landscape, potential uses 

and challenges for blood-based AD biomarkers1,2,7. Since those reviews/perspectives were 

published, there has been significant movement in the field, including a recent special issue of 

Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring focused specifically on 

advances in blood-based biomarkers of AD3. Here, we discuss some of the recent advances in the 

field.  

 



Methodological Considerations. One key advancement produced by the international 

professional interest area (PIA) on blood based biomarkers was the generation of the first-ever 

guidelines for pre-analytic processing of specimens8. This first-step was the result of a 

tremendous effort spanning industry and academic investigators from across the globe. It 

provided a basic set of pre-analytic processing variables to be followed (and refined) and a 

minimum set of information that should to be provided within publications to allow for 

appropriately designed studies of cross-validation. More recently, this workgroup published data 

comparing biomarkers from the same blood draw (person, date and time) across assay platforms 

and blood fraction (serum and plasma)9. Results indicated that individual markers, while 

oftentimes statistically significantly correlated, may share minimal variance across platform or 

tissue indicating that direct comparisons are oftentimes not possible. Differences in concentration 

for specific analytes on different technology platforms can be lined to calibrators or neat 

biological samples may not have the same immunoreactivity with the antibodies included. 

Additionally, the use of different antibodies as well as assay design can impact findings10. 

Together, this work clearly demonstrated additional methodological factors that must be 

considered when comparing across studies, cohorts, and biorepositories. Andreasson, Blennow 

and Zetterberg11 provided an update and overview of ultrasensitive technologies to measure AD-

related biomarkers in blood as well as CSF. While still early in the process, these novel assay 

technologies have the capacity to detect very low-levels of markers that may be of tremendous 

importance when seeking to move from research-grade to “pharmaceutical-grade” kits in future 

attempts to take research use only (RUO) methods towards laboratory developed tests (LDTs) 

and in vitro diagnostics (IVDs)12,13. As evident from the continued progress of the Global 

Biomarkers Standardization Consortium of CSF biomarkers (GBSC), the blood-based biomarker 



field will need to address additional methodological barriers in order to produce clinically 

useful/applicable biomarkers.  

Blood Biomarkers of AD Risk. An important potential COU for AD biomarker science is 

the identification of risk, which can take several forms: (1) risk of incident AD among 

cognitively normal elders, (2) risk of progressing from mild cognitive impairment (MCI) to AD 

and (3) risk for rapid progression within AD. Biomarkers related to these specific COUs have 

tremendous potential for clinical intervention trials aimed at preventing AD, halting progression 

from MCI, as well as slowing progression among patients with manifest AD. Enrichment of 

these specific subjects into trials has the benefit of reducing the diluting effect of enrolling those 

subjects not likely to progress. Indeed, an important potential of AD blood biomarkers could be 

to increase the likelihood of subjects being positive on more expensive (e.g. PET imaging) or 

invasive (Cerebrospinal fluid, CSF, sampling) screening procedures used later during screening 

procedures for trial eligibility.  

A substantial amount of work has been conducted examining plasma amyloid markers 

within the COU of predicting progression of AD14, conversion from MCI to AD15 as well as risk 

for future AD16. In a highly publicized article, Mapstone et al17 examined plasma lipidomic and 

metabolomic markers from 525 community-dwelling older adults in an effort to identify a 

signature of risk for incident aMCI/AD. The authors identified a signature of 10 metabolites that 

yielded approximately 80% accuracy in discriminating controls from MCI/AD and 90% or 

greater accuracy in detecting those normal controls who converted to aMCI/AD over time. 

However, cross-validation attempts have been unsuccessful.  Casanova et al18 examined these 

same 10 metabolites in the Baltimore Longitudinal Study of Aging (BLSA) and the Age, 

Gene/Environment Susceptibility-Reykjavik Study (AGES-RS). In that work, these metabolites 



yielded an AUC=0.64 (BLSA) and an AUC=0.40 (AGES-RS) in these independent cohorts. 

Additionally, examining data from the Atherosclerosis Risk in Communities (ARIC) study, Li 

and colleagues19 were unable to cross-validate the cross-sectional discrimination capacity of the 

10 metabolites in discriminating normal controls from MCI/AD. Hye et al20 analyzed plasma 

proteomics from 452 cognitively normal elders, 169 MCI non-converters, 51 MCI converts and 

476 AD cases from across three independent cohorts, AddNeuromed (ANM), Kings Health 

Partners-Dementia Case Register (KHP-DCR) and Genetics AD Association (GenAD).  This 

work, and cross-validation attempts, are important to push the field forward. A set of 10 proteins 

predicted progression from MCI to AD (average time of conversion approximately one 

year)(AUC=0.78).  

There has also recently been a surge in research devoted towards the potential utility of 

exosome markers in predicting and detecting AD and other neurodegenerative diseases21-23. 

Recently, Rissman24 examined the utility of neuronally-derived exosomes (NDEs) in predicting 

conversion from MCI to dementia. Alterations in plasma NDE levels of P-tau, Aβ1-42, NRGN 

and REST were found among AD and MCI cases that converted to AD within 36 months 

compared to stable MCI cases and normal controls. Additionally, when injected into the right 

hippocampus of wild-type (C57/BL6) mice, the NDEs from MCI cases that converted to AD 

caused increased P-tau when compared to NDEs from normal controls and stable MCI cases. 

This work significantly advances the utility of exosome biomarkers in AD and, critically, back-

translates these findings into animal models for additional study, which is rarely done. There 

remains a significant amount of work with regards to standardizing methods for exosome 

biomarker work; however, strong signals have been identified and suggest the need for additional 

work. 



An example of blood-based biomarker that has received a great deal of attention for 

predicting future risk is plasma clusterin. Levy25 recently examine plasma clusterin from 1,532 

non-demented subjects of the Framingham Study Offspring cohort to determine whether this 

putative biomarker could predict incident dementia and stroke. Among older adults (age>80), 

plasma clusterin was associated with increased risk for dementia; however, plasma clusterin was 

related to a reduced risk of dementia (age 60-69) and stroke (age < 80) among younger 

participants. These results suggest the importance of considering age when interpreting the 

predictive utility of this putative biomarker.  

Together, the above-described studies provide proof-of-concept in support of the 

potential use of blood-based biomarkers when considering the COU of predicting future risk. 

However, a great deal of additional work is required including, but not limited to, independent 

cross-validation, rigorous standardization of methods and assay technologies, and prospective 

studies designed to explicitly test the COU (with direct application of specific cut-scores). This 

COU may, in fact, be the “Holy Grail” of AD biomarkers and blood-based biomarkers provide 

an optimal first step in a multi-stage approach to addressing this COU (e.g. imaging studies will 

not be reimbursable first-line biomarker strategies for clinical use). It is possible that blood-based 

biomarkers may serve as the first-line in a multi-stage approach where the biomarker-specific 

context of use is to rule out those least likely to progress, thereby screening out those who are not 

in need of more costly and invasive procedures, not only in clinical trial contexts but also in 

general medical practice. If this is the most valuable COU and market strategy, the design of the 

studies should be appropriately tailored.  

 



Biomarkers of AD Diagnosis. The most studied potential COU for blood-based 

biomarkers in AD are diagnostic biomarkers. Some of this work seeks to identify screening tools 

for primary care clinics in order to provide a multi-stage approach5 while others seek to identify 

diagnostic tools26.  

One area of investigation is that of plasma total tau (T-tau) concentration, which are 

increased in the dementia stage of AD but the data are less clear in the MCI stage of the 

disease27, and, unfortunately, there is no clear correlation between plasma and CSF T-tau 

concentrations28. A newer marker receiving a significant amount of attention in this COU is 

neurofilament light (NF-L). In contrast to tau, there is excellent correlation between CSF and 

plasma concentrations of NF-L29. CSF NF-L concentration is increased in both dementia and 

MCI stages of AD with a similar effect size as that of CSF T-tau27, and these findings were 

recently replicated on serum and plasma samples30. The marker is not disease-specific, but 

should rather be regarded a general marker of axonal degeneration to gauge disease intensity 

(ref: Zetterberg H. Neuron. 2016 Jul 6;91(1):1-3).  

Martins31 examined baseline and 18-month follow-up plasma apoJ (aka clusterin) 

concentrations in the AIBL cohort. The authors found that apoJ levels were significantly higher 

among MCI and AD cases at both time-points and were also correlated with standardized uptake 

value ratio (SUVR) PET amyloid levels and hippocampal volume. Recently, specific 

glycosylated forms of clustern have been found to more robust markers within this group. Nagele 

have conducted a series of studies examining the potential utility of autoantibodies in detecting 

AD and other neurodegenerative diseases32,33. Recently from this lab,  DeMarshall34 examined 

serum autoantibodies from 236 participants (50 MCI with CSF-confirmed amyloid pathology, 25 

early stage Parkinson’s disease [PD], 25 mild-to moderate PD, 50 mild-moderate AD, 25 



multiple sclerosis, 11 breast cancer, 50 controls). The top 50 differentially expressed 

autoantibodies were utilized for the classification analyses. The authors found >95% (96-100% 

sensitivity and specificity for discriminating MCI from all other diagnostic categories. Using the 

top 10 markers, excellent accuracy was retained for discriminating MCI from all categories. 

Mielke35 recently analyzed plasma sphingolipid changes among autopsy-confirmed AD, Lewy 

Body Dementia (DLB) and control subjects. The authors found significant plasma ceramide 

alterations and monohexosylceramide alterations between dementia cases (AD and DLB) and 

controls suggesting that these biomarkers may have utility in identifying possible AD and/or 

DLB pathology. O’Bryant and colleagues recently cross-validated a serum-based algorithm for 

discriminating AD from controls across an independent platform, animal model and brain tissue 

and demonstrated preliminary data for the algorithm in discriminating AD from PD36. More 

recently, that group5 created the locked-down referent cohort for an AD blood screen intended 

for primary care use and demonstrated excellent positive and negative predictive values when 

compared to screening tests. In the long-term, it is likely that the most viable and applicable 

COU for blood-based biomarkers within the “diagnostic” realm is to serve as the first-step in a 

multi-stage diagnostic process where CSF and PET amyloid and tau imaging will serve as the 

final diagnostics of presence of AD pathology5. Given the cost of PET and CSF methods relative 

to blood-based methods, the availability of a blood-based tool that is utilized to determine who 

does and does not undergo PET and CSF exams has a viable cost strategy, which is also the 

strategy followed in the cancer arena (PET scans are not first-line diagnostics37).  

 Blood Biomarkers of Amyloid Pathology. Another COU with high potential to aid in 

clinical trials is the identification of blood-based biomarkers that can identify those individuals 

with high (or low) likelihood of being amyloid positive38-40. Westwood and colleagues38 recently 



examined proteomic markers among longitudinal plasma samples collected over 12-year period 

among non-demented individuals with [11C]PiB PET scans available. In this study, seven 

plasma proteins (including A2M, Apo-A1, and multiple complement proteins) were significantly 

associated with amyloid burden.  In a small-scale pilot study, Kaneko40 examined 40 PiB 

positive individuals (controls, MCI, AD) along with 22 PiB negative individuals (controls) and 

found that plasma amyloid proteins (Aβ40, Aβ42) and Aβapproximate peptides (AβAPs; 

APP669-71) were significantly correlated with amyloid positivity with a sensitivity and 

specificity of 0.93 and 0.96, respectively. In a larger analysis of 273 participants of the AIBL 

study, Burnham et al41 identified a plasma-based nine-analyte signature yielded a sensitivity and 

specificity of 0.80 and 0.82, respectively. Saykin and colleagues conducted a pilot study among 

96 participants of the ADNI study and found a significant relationship between plasma amyloid 

and [11C]PiB uptake among APOE non-carriers42. Though still very early in discovery phases, 

this COU has tremendous potential for design of clinical trials targeting amyloid and much more 

work is warranted. 

The vast majority of the work described above remains in early stage discovery with only 

a few instances where multiple cross-validation steps have been undertaken. If these discovery 

findings are to become clinically meaningful, a great deal of work must be undertaken. For 

example, there is a significant need to understand the impact of many factors on alterations of 

these blood-based biomarkers. This is important because “hallmark” AD biomarkers have been 

shown to change in association with factors such as depression, cardiac arrest, head injury as 

well as hematological and cancer interventions43,44. Additionally, do any of these markers need 

to be stratified specifically to ApoE4 genotype or concomitant/comorbid diseases? These and 

other questions are important considerations when moving from initial discovery towards 



consideration of movement to clinic.  The process of moving from discovery to clinic is best 

undertaken as a partnership between academia and industry/biotech in order to most effectively 

leverage the available skillsets. In the next section, we provide an updated model for moving 

biomarker discovery through the stages of development towards clinical implementation.  

A Public-Private Partnership Paradigm for Moving From  

Biomarker Discovery to Clinical Use 

While both academia and industry have the common goal of identifying biomarkers of AD, 

there are drastically different perspectives between academia and industry45. Further, due to 

increasing cost structures, industry has put less funds and effort into “front end” research and 

discovery (R&D)46. While academia seeks the novel and best solution to a problem, industry 

focuses on the intended use of a safe and effective product with an identified market value45. 

While there are several notable exceptions in the drug discovery space (particularly cancer)46, 

academia and industry currently largely work independently with regards to biomarker R&D and 

continue to inherently follow the traditional “hand-off” approach such that academic discoveries 

are “handed off” to industry for further development towards the clinic. There is a large concern 

regarding the lack of reproducibility of research findings across independent laboratories, within 

laboratory settings, and particularly from academic laboratory settings to industry settings47-50. 

Indeed, the “unspoken rule” among venture capital firms is that 50% (higher if speaking with 

industry personnel) of published studies will not replicate in industrial labs50. Despite the 

recently outlined NIH plan to address this problem,48 this “reproducibility crisis” remains a 

significant problem in the eyes of industry51. However, this is not an issue that can be resolved 

by academics (e.g. NIH) or industry alone and an updated model is required.  



The traditional handoff model of academic biomarker discovery to industry validation is 

outlined in Figure 1. The academic model broadly falls into four stages: (1) a case-control cohort 

is established to examine a wide-range of possible “biomarkers”, (2) a “biomarker” or 

“biomarkers” are statistically shown to be differentially related to disease status (e.g. significant 

mean group differences, significant fold-change scores), (3) the “biomarker(s)” are then 

correlated with relevant clinical disease endpoints (e.g. memory scores, disease severity, age of 

onset, rate/risk of progression, amyloid positivity) and finally (4) the context of use (COU) is 

proposed (e.g. biomarker of disease presence, biomarker of disease risk, biomarker of disease 

subgroups). Few academic studies in the blood-based biomarker space validate discovery 

findings across cohorts52, much less across technological platforms36. Those that do attempt to 

cross-validate oftentimes fail53. To date, one can convincingly argue that no prior work has 

explicitly validated a blood-based biomarker within a specific COU, which requires a 

prospective clinical trial5. In fact, when reviewing the literature outlined above, few of those 

studies were validations of previously identified biomarkers. Most were discovery studies 

following the initial steps (1-3) outlined above.  This approach starkly contrasts the product-

driven model of industry that begins with defining the COU and validating the fit-for-purpose of 

this COU with a constant eye towards regulatory pathways and market strategy. While several 

novel public-private models have been developed for the advancement of drug development46, 

less attention has been focused specifically on the biomarker discovery to clinical use pathway. 

Here we provide a novel integrated partnership model for taking AD biomarkers from discovery 

to clinic. While much of the examples and discussion focus on blood-based biomarkers, this 

model is applicable to biomarker development more broadly.  

 



Biomarker Development Concepts of Relevance and Available Resources  

There are several relevant resources that can assist in the process of establishing a biomarker 

discovery program that has the goal of translating these discoveries to clinic.  

 

BEST (Biomarkers, EndpointS, and other Tools) Resource – “Effective, unambiguous 

communication is essential for efficient translation of promising scientific discoveries into 

approved medical products”54. If there is to be a bridge to not only foster, but expedite the 

process of going from discovery to clinical implementation, there must be a common language 

and working definitions for key terms. To that end, the Food and Drug Administration (FDA) / 

National Institutes of Health (NIH) Biomarker Working Group (FDA-NIH Biomarker Working 

Group) released the BEST (Biomarkers, EndpointS, and other Tools) Resource to provide such a 

common working vernacular. The BEST Resource provides definitions for a broad range of 

relevant terms and concepts, including analytical validation, candidate surrogate endpoint, 

clinical benefit, as well as the term biomarker itself. A “biomarker” is defined as a “characteristic 

that is measured as an indicator of normal biological processes, pathogenic processes, or 

response to an exposure or intervention, including therapeutic interventions. A biomarker is not 

an assessment of how an individual feels, functions or survives.” The proposed categories of 

biomarkers included susceptibility/risk biomarker, diagnostic biomarker, monitoring biomarker, 

prognostic biomarker, pharmacodynamic/response biomarker and predictive biomarker54, while 

enrichment biomarkers (e.g. context used in clinical intervention trials) are not defined. Another 

important definition with relevance for biomarker development is the notion of context of use 

(COU), which is defined as “a statement that fully and clearly describes the way the medical 



product development tool is to be used and the medical product development-related purpose of 

the use” (discussed more below).  

 

U.S. Food and Drug Administration – Biomarker Qualification Program – The FDA Biomarker 

Qualification Program was created to work with the Center for Drug Evaluation and Research 

and others to aid in the identification of biomarkers for use in the drug development process. 

Through this program, one can seek regulatory qualification of a biomarker with a clearly 

defined COU in drug development 

(http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualification

Program/ucm284076.htm)  

 

Institute of Medicine – The IOM “Evolution of Translational Omics: Lessons Learned and the 

Path Forward”55 provides a model for considering the process for biomarker (focused on 

‘omics’) development process. This model is broken down into two broad categories: “Discovery 

and Test Validation Stage” and the “Evaluation for Clinical Utility and Use Stage”. This model 

can be applied not only to ‘omics’ methods, but other biomarker discovery technologies. In the 

blood-based AD biomarker space, the vast majority of work has remained within the “Discovery 

Phase” without the additional work required for the “Test Validation Phase”, which has 

traditionally been the “handoff” to industry.  

 

Fit-for-Purpose Biomarker Validation56 – The fit-for-purpose biomarker validation methods were 

proposed to assist in the development and validation of clinically useful biomarkers. These 

methods were developed on the basis that biomarkers would have the capacity to identify the 

http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/ucm284076.htm
http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/ucm284076.htm


most promising drug candidates within the drug development pipeline56. First, the intended use 

or COU is determined, which guides the remaining steps. These guidelines place the steps within 

the equivalent steps for pharmacokinetic (PK) assay, biomarker assay for drug development and 

biomarker assay for diagnostic development. Once the COU is defined, these methods can be 

placed within the IOM model using the BEST terminology (see new model proposed below). In 

the AD blood-based biomarker space, the recently published preanalytic guidelines can assist 

with the design of the fit-for-purpose steps in biomarker discovery and development8. If the 

ultimate goal is to generate a laboratory developed test (LDT), clinical trial assay (CTA) or in 

vitro diagnostic (IVD), the CLSI and CLIA guidelines must also be reviewed and incorporated 

into the program development from the beginning. 

 

In addition to the resources outlined above, there are three important commonalities found across 

biomarker development programs that have progressed from discovery to clinical 

implementation and should be considered from program inception45: (1) predefined vision of the 

commercialization path, (2) straightforward and controllable manufacturing process and, (3) 

focus on applied research45.  

 

Defining the Context of Use (COU) 

While the definition of the COU is outlined above, this point warrants additional consideration. 

The COU sets the entire stage of science for any new putative biomarker and the importance of 

this step cannot be overstated as it is largely ignored in academic discovery science. While 

Industry-lead work has less room for basic biology discovery, this is one of the primary 

objectives of academic work. However, there are many interesting, novel and potentially useful 



discoveries that have little to no chance to reach the clinic or impact patient care. Within the 

development of the COU, conceptualization and inception phases should include the following 

considerations: scalability, manufacturability, compatibility with traditional large-scale methods, 

intellectual property (IP), and regulatory pathway45. When using a blood-based biomarker for 

detecting AD in primary care clinics, each of these points will be considered individually:  

1. Scalability – If the COU for the blood based biomarker is defined as “a detection tool for 

primary care clinics to determine which patients should or should not be referred for 

additional cost-intensive and invasive procedures”, how does scalability become a 

consideration? First, there are currently over 40 million Americans age 65 and above and 

this segment of the population will grow dramatically in the near future57. If a novel 

biomarker is to fit the CMS-regulated annual wellness visit (AWV), which is a current 

need based on the 2015 report of the Gerontological Society of America58, it must be 

available to all primary care clinics. This translates to a biomarker platform that can 

potentially be performed on over 10,000 patients daily. Therefore, is this biomarker (or 

biomarker assay) sufficiently scalable to be offered to everyone in need? If the biomarker 

requires specialized equipment, cumbersome pre-analytic procedures or even a single 

reference lab, this biomarker will not meet the scalability needs of primary care 

providers.  

2. Manufacturability – Academic investigators excel in creating new and novel procedures 

that surpass currently available methods. However, it is important to consider whether the 

product components can be produced at a level that will meet the 10,000 patients per day 

scale? If this is a new and novel platform, how easy is it utilized and produced? If this is a 

new biomarker (or set of biomarkers) that leverages existing platforms (e.g. ELISA) can 



the antibodies and reagents meet CLIA and similar requirements and be produced large-

scale reliably? What is the long-term availability of antibodies (there are inherent 

difficulties with long-term availability with polyclonal antibodies)? If not, a potentially 

scalable biomarker without available manufacturing components will have to meet that 

latter need prior to being considered for movement towards clinic.   

3. Compatibility with traditional large-scale methods – A blood-based biomarker serving 

the first-step in the AD assessment process for primary care providers offers advantages 

to increasing appropriate access to invasive and costly methods for confirmatory 

diagnostics (as well as therapies); however, how does this biomarker make it to primary 

care providers? There is an existing large-scale (global) network of companies 

specifically designed to collect and analyze blood samples at a scale far beyond 10,000 

patients per day. However, can this biomarker fit into that infrastructure? Can this 

biomarker work with the existing global network of companies already providing primary 

care clinics with daily blood work results? If not, this barrier must be considered before 

the path to clinic can be realized.  

4. IP and Regulatory Considerations – One phrase commonly heard in public-private-

partnership meetings is “academics discover things and industry brings things to 

patients.” A new and novel biomarker that meets all of the outlined needs above that does 

not have an adequately structured IP strategy has little to no chance to reach patients 

because there will be no financial incentive to capture an industry partner. Considerations 

regarding regulatory issues early in the process also help appropriately design the studies, 

without which much of the data produced in the academic laboratory will likely be 

rendered useless when the regulatory path is realized. 



 

Together, these points provide a contextual pathway to move academic discovery toward clinical 

utilization. As can be seen in Figure 1, the standard inherent approach in academic research does 

not consider these points, which explains a tremendous amount of the failure to replicate 

academic findings in industry settings. This lack of replication has little to do with the soundness 

of the academic research, but more to do with the context within which the work was conducted. 

Rather than the traditional “handoff” model of scientific discovery findings to industry 

laboratories, a partnership that leverages the strengths of academic centers, pharma and 

diagnostic/biotech companies at the outset can greatly expedite getting new and better tools into 

the clinic in a manageable timeframe. Figure 2 proposes a new collaborative public-private 

partnership model that begins at the conceptualization of the biomarker itself. While industry’s 

primary expertise is not basic discovery, academic research that is aiming at discovery that is, 

from the outset, put into the context of movement to clinical implementation will have a far 

greater chance of success. Additionally, this model allows for the “fail fast, fail forward” 

industry mindset. The new model combines the strengths of both academia and industry by 

partnering from the very outset and incorporates the IOM framework. From Figure 2, one can 

see the gradual shift in leadership from full academic lead on the left to full industry lead on the 

right. The “handoff”, as traditionally conceptualized, would best be considered at the shift from 

Level 2 to Level 3 work. The four levels of the research are as follows: 

 

STAGE 1 – Define Context of Use; Academic Lead: Defining the COU sets the stage for the 

entire program of research. Without a clearly defined COU, the research be unfocused without a 

clear pathway forward. Additionally, early stage discussions should clearly articulate the 



considerations for the funding pathway based on existing models (e.g. Industry/State funded 

centers, Sponsored Research, corporate mini-labs46). Academic Roles: Innovation here is key. 

Academic partners are responsible for identifying and discovering new biomarkers that may have 

market potential. However, the current model of incorporation of industry and biotech from the 

outset allows for rapid communication of novel ideas and findings that can be considered from a 

marketable lens. Provide new and novel COUs for the biomarkers, generate improved methods 

and technologies that offer significant advantages to available biomarkers with similar COUs 

(keeping in mind that it is exceedingly difficult to “beat good enough” in the marketplace), and 

identify the infrastructure upon which to build the program of research. Industry Roles: 

Evaluate the COU within the competitive landscape, market value and opportunity, and focus on 

relevant endpoints and understanding the Regulatory pathway for assay and clinical validation as 

well as the potential for approval. Go-no-Go: Failure to identify a novel and useful COU that has 

a readily identifiable market potential.  

Discovery and Test Validation Phase – Academic Lead 

STAGE 2 – Discovery Studies: Academic Roles: In the second stage, the academic group 

continues to lead the program with the primary contributions including the design of the study 

protocol, recruitment of the case-control study population, generation of the methods/technology 

for biomarker discovery, and capture and analysis of biomarker data relative to the “gold 

standard” or clinical outcome(s). Detailed documentation of methods used across all aspects is 

critical, from sample collection and processing, to assay technological aspects and analytic/post-

processing. These methods will require deep-level qualification and lock-down at later stages. If 

academic investigators utilize discovery platforms within the discovery science, this further 

complicates the methodological standardization needs further down. Therefore, any biomarkers 



identified/discovered utilizing a discovery-based assay technology should immediately be cross-

validated on an established technology or the discovery technology must be locked down prior to 

additional studies. Industry Roles: Independent analysis of the data, generate the strategy for 

regulatory approval, consider the market entry point and strategy to market (i.e. scalability of 

technology, fit with existing medical infrastructure, etc.), consider payer issues, (e.g. 

considerations for reimbursement strategy), consider scalability of the discovered biomarker 

technology, and discuss IP strategy and technology startup needs (e.g. new company [NewCo], 

fold into existing biotech). Additionally, industry scientists must work with academic scientists 

to examine the performance parameters of the assay technology. If discovery-based technologies 

were utilized, academic and industry/biotech scientists must outline the plan to either (1) validate 

findings on an independent technological platform with known assay validity or (2) outline the 

process for validation of the discovery platform.  Go-no-Go: Failure to identify an a priori 

hypothesized or discovery-based biomarkers for the intended COU results in no-go and flow 

back to initial discovery samples/cohort for additional discovery work. Identification of a 

biomarker that has no scalability results in no-go. Inability to identify a validated assay 

technology or ability to validate discovery-based technology results in no-go. Success in 

discovery and potential scalability moves to Stage 3.  

STAGE 3 – Confirmation of Biomarker(s) & Lock-Down of Methods: Academic Roles: Recruit 

an independent validation case-control study population, replace methods/technology from 

biomarker discovery, capture and analyze biomarker data relative to the “gold standard” or 

clinical outcome(s). Industry Roles – Independent analysis of data, review methods for 

generation of standard operating procedures for lock-down of methods, review of potential 

production capacity in fine-tuned scalability analysis, review the methods and determine the 



ability to transfer technology to existing platforms/infrastructure to meet scalability and provider 

needs (e.g. assimilation of new radiotracer into PET scan capacity of existing cancers, transition 

of proteomic marker to FDA-approved existing platforms versus seeking approval of new 

technologies), determination of LDT versus IVD strategy, initial discussion with FDA. Go-no-

Go: Failure to replicate results is no-go and shift back to Stage 1 or 2 (“fail fast, fail forward”). 

Validation in independent sample serves as initial “proof-of-principal” for industry transition.  

 

STAGE 4 – Finalize COU, Validation, Regulatory: Here the lead shifts to industry partners with 

extensive input from academic scientists. Industry Roles: Finalize COU statement in Regulatory 

aligned format that is clearly articulated (in terms that fit with regulatory needs), validate proof-

of-principal findings in STAGE 3 on a blinded set or initial small-scale prospective study 

utilizing standardized locked-down methods. If the technology requires transition to different 

platform (to meet production and scalability needs), additional bridge-study work will be 

required to refine the locked-down methods and compare findings on new platform/technology 

to that from the discovery platform utilizing the initial study banked samples and new study. 

Lastly, Regulatory consultation to obtain guidance for path to clinical trials and approval 

procedures are required (e.g. LDT versus IVD regulatory considerations, a companion diagnostic 

biomarker for a drug is approved with the drug whereas a new device may require a 510k 

exemption or approval). Academic Roles: Recruit new clinical subjects for industry study per 

locked-down methods, possibly conduct the biomarker studies (e.g. if biomarker is assay-based 

and academic lab has, as will be required within the Regulatory framework, CLIA lab or 510k 

approved platforms in-house), work with industry partners to transfer technological methods to 

widely-available and Regulatory-approved platforms and partner on appropriate bridge-studies, 



work with the industry partner to the refine locked-down methods and referent cohort, if 

applicable. The academic role in Stage 4 is of key importance as this public-private partnership 

model avoids the “handoff” and allows for the scientists that discovered the technology to 

explicitly partner with the industry scientists for transfer of the methods rather than a simple 

handoff. It is possible (and likely) that additional work will be needed to successfully transfer the 

methods. This stage is likely the most important critical juncture to avoid failure of the 

technology in clinical trials. Go-no-Go: Failure to replicate within internal industry partner 

hands results in no-go and a re-evaluation of the locked-down methods and data from Stages 2-3. 

Validation with blinded set within industry laboratory setting and standards results in movement 

to STAGE 5.  

STAGE 5: Prospective Study: Industry Roles - Obtain specific input from the Regulatory 

agencies (FDA, PMDA,EMA or others if applicable) regarding the procedures required for 

regulatory approval (e.g. within FDA 510k exempt, clinical trial, LDT versus IVD), conduct a 

prospective study to explicitly test the COU (e.g. primary care patients are screened if the COU 

is primary care).  Academic Roles – Participation in prospective study design and in subject 

recruitment. Go-no-Go: Success in prospective study. 

STAGE 6: Clinical Trials: Industry Roles – Design and carry out Regulated clinical trials 

(including partnerships with CROs, contracting with e.g. CLIA approved labs, etc.), work with 

Regulators for appropriate regulatory classification of approval. Academic Roles – Participation 

in study design, site participation in subject recruitment. Go-no-Go: Determined by meeting or 

not meeting clinical trial endpoints.  



STAGE 7: Clinical Use: Industry Roles – Market deployment, Phase 4 evaluations, provides 

access to buyers, marketing strategies. Academic Roles – provision of early adopters, 

engagement in Phase 4 studies.  

 

Placing Blood-Based Biomarkers into a Broader Context 

 It is important to keep in mind where blood-based biomarkers potentially fit within the 

bigger picture for specific COUs. With regards to AD diagnostics, the majority of work in the 

AD space on biomarkers has focused on CSF and imaging modalities, which will likely be the 

confirmatory diagnostic procedures. However, first-line biomarkers are needed to fit the needs of 

the rapidly growing aging segment of the population. As was the case with breast cancer 

screening 30-years ago, primary care screening tools are needed for AD though significant issues 

related to fear, stigma and misinformation remain59. Additionally, when considering the 

historical context of the emergence of diagnostic imaging technologies for breast cancer along 

with the regulatory and reimbursement approval patterns of those technologies37, the availability 

of cost- and resource-effective strategies for staging the allocation of diagnostic resources in AD 

that fit within the existing medical infrastructure will likely not only increase the likelihood of 

Regulatory approval for additional imaging modalities, this development would also likely result 

in a more rapid speed-to-market. It is important to be clear that, at this point, blood-based 

biomarkers are not viewed as “diagnostic”, but rather they are the potential first-line in the multi-

staged diagnostic process, are more cost- and time-effective than other biomarker technologies, 

and may yield excellent accuracy when compared to primary care screening tools with similar 

COU5. Therefore, the availability of such screening tools for primary care settings should 

enhance appropriate access to more advanced diagnostic strategies. When considering 



therapeutics, blood-based biomarkers can serve important roles in increasing access to disease 

modifying and other Regulatory approved AD therapeutics. When put within the COU of an AD 

multi-stage neuro-diagnostic process, Figure 3 provides a landscape for immediate biomarker 

opportunities. Clear Regulatory pathways and fit-for-purpose biomarker validation studies could 

be immediately generated with these goals. Blood-based biomarkers have clear advantages over 

PET technologies for front-line testing, but PET and CSF biomarkers can provide final 

confirmatory (and differential) diagnostics. There is a non-overlapping, but complementary COU 

landscape that fits within the current medical infrastructure and each technology can be scalable 

to meet the needs of the population; however, neither biomarker is capable of fitting the COU of 

the other.  

Blood-based biomarkers also offer significant advancements to the clinical trial structure, 

for patient selection as well as potentially monitoring treatment response. For selection into 

trials, blood-based biomarkers can be utilized as the initial screening process to (1) increase 

access to clinical trials beyond specialty clinic settings, while simultaneously (2) reducing the 

cost and resource burden in the screening process. PET and CSF biomarkers can then serve as 

the differential diagnostic step. Overall, this two-step process would significantly reduce time to 

randomization and reduce overall resources needed for trial start-up.  With regards to monitoring 

treatment response, the traditional outcome in AD clinical trials are change in cognitive test 

scores (i.e. decreased decline within a period of time – typically 12-24 months). Given the slow 

nature of cognitive change, this outcome by default requires lengthy trial designs thereby 

increasing cost, reducing patent life and providing an overall unfavorable cost landscape. 

Therefore, there has been a significant interest in predictive and response biomarkers. Blood-

based biomarkers may have utility to provide a cost-effective means for the identification of 



predictive biomarkers that identify specific subsets of patients most likely to respond to a given 

therapy2,60, which is a key focus of blood-based (genetic, proteomic and other) markers in the 

precision medicine approach to cancer therapy (e.g. EGFR in predicting response to non-small 

cell lung cancer, BRCA1/2 mutations in predicting response among women with ovarian cancer). 

It is also possible that blood-based biomarkers have the potential to rule out those who may 

respond unfavorably to specific therapies. CSF and imaging biomarkers may have roles in the 

generation of predictive biomarkers, which are being examined as secondary outcomes in many 

ongoing trials. Response biomarkers have tremendous potential to change the landscape of AD 

clinical trials. Specifically, if a change in a biomarker is a sign of treatment response (i.e. 

improved cognition), such a marker could conceivably be introduced as a surrogate biomarker 

for the primary outcome rather than change in cognition. Recent work suggests that early change 

in plasma S100β and neuron specific enolase (NSE) may predict six month clinical outcomes in 

stroke patients61 and this area has been studied extensively in cancer62-64. The ideal situation 

would be the identification of such a response biomarker that changes within six months, thereby 

significantly decreasing the time of the clinical trials. If blood-based biomarkers can be utilized 

for the sub-stratification of specific patient populations most likely to respond to a given therapy, 

change in that biomarker over time can be evaluated as a potential response biomarker. Overall, 

the evidence and focus on utilization of any biomarkers as outcomes in clinical trials targeting 

AD has been weak, which is in part related to the regulatory requirements for Phase 3 trials in 

the space. However, if the COU of the biomarkers are outlined from the inception of the drug 

development program and built into all stages of development via fit-for-purpose steps, this 

process can significantly improve the trial process65. Given their use for other diseases, it is 



likely that blood-based biomarkers can significantly improve the clinical trial design and 

precision medicine model for AD and other neurodegenerative diseases (Figure 4).  

 

Conclusions 

Overall, there has been substantial progress in the area of blood-based biomarkers in AD. 

Recent discovery-based work has identified potential biomarkers that predict future risk of AD 

among cognitively normal older adults, risk of progression from MCI to AD, and that 

discriminate between AD, MCI and cognitively normal elders. While these advancements are 

significant, the failure to cross-validate across academic labs, cohorts and within industry 

laboratories is a consistent limitation. Academic laboratories excel in scientific discovery and 

this strength should be leveraged in the biomarker science, as should the capacity of taking novel 

biomarkers to clinic by industry/biotechnology sector. In this article, we have outlined several 

important concepts that must be taken into account early in the biomarker discovery program and 

have provided several resources of importance to discovery laboratories. Lastly, herein we have 

provided a detailed structure of how one can go from discovery science to clinical 

implementation via close collaboration between academic and industry laboratories. The public-

private partnership arrangement has produced tremendous success in the cancer arena and that 

model can be leveraged for advancement of biomarker work in AD.  
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Figure 2. Public-Private Partnership Model for Moving from Biomarker Discovery to Clinical Use 
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Figure 3: Potential Landscape of Diagnostic Process Biomarkers in Alzheimer’s Disease 

 

 

 

 

 

 

 

Figure 4: Potential Biomarker COUs in Alzheimer’s Disease Clinical Trial Designs 
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