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Abstract

Vaccinia virus (VACV) is an established vector for vaccination and is beginning to

prove effective as an oncolytic agent. Industrial production of VACV stands to

benefit in future from advances made by synthetic biology in genome engineering

and standardisation. The CV-1 cell line can be used for VACV propagation and has

been used extensively with the CRISPR/Cas9 system for making precise edits of

the VACV genome. Here we take first steps toward establishing a scalable

synthetic biology platform for VACV production with CV-1 cells featuring

standardised biological tools and serum free cell cultivation. We propose a new

BioBrickTM plasmid backbone format for inserting transgenes into VACV. We

then test the performance of CV-1 cells in propagation of a conventional

recombinant Lister strain VACV, VACVL-15 RFP, in a serum-free process. CV-1

cells grown in 5% foetal bovine serum (FBS) Dulbecco’s Modified Eagle Medium
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(DMEM) were adapted to growth in OptiPRO and VP-SFM brands of serum-free

media. Specific growth rates of 0.047 h−1 and 0.044 h−1 were observed for cells

adapted to OptiPRO and VP-SFM respectively, compared to 0.035 h−1 in 5% FBS

DMEM. Cells adapted to OptiPRO and to 5% FBS DMEM achieved recovery

ratios of over 96%, an indication of their robustness to cryopreservation. Cells

adapted to VP-SFM showed a recovery ratio of 82%. Virus productivity in static

culture, measured as plaque forming units (PFU) per propagator cell, was 75 PFU/

cell for cells in 5% FBS DMEM. VP-SFM and OptiPRO adaptation increased

VACV production to 150 PFU/cell and 350 PFU/cell respectively. Boosted PFU/

cell from OptiPRO-adapted cells persisted when 5% FBS DMEM or OptiPRO

medium was observed during the infection step and when titre was measured using

cells adapted to 5% FBS DMEM or OptiPRO medium. Finally, OptiPRO-adapted

CV-1 cells were successfully cultivated using Cytodex-1 microcarriers to inform

future scale up studies.

Keywords: Biological sciences, Biochemistry, Bioengineering, Cell biology,

Microbiology History

1. Introduction

Vaccinia virus (VACV) is an enveloped, brick-shaped particle typically 300 × 240

× 120 nm containing a double stranded DNA genome which, for the Lister strain

(Garcel et al., 2007), is 189.4 kilobase-pairs (kb) in size, encoding up to 201 open

reading frames (ORFs). VACV is arguably one of the most effective

biotechnological tools in history by dint of the fact human antibodies raised

against VACV tend also to recognise smallpox epitopes. VACV was used to

eradicate smallpox via a global vaccination programme carried out by the World

Health Organization (WHO) between 1966 and 1980 (Fenner et al., 1988).

VACV has also been used as a molecular biology tool to effect high-level

transgene expression in mammalian cells, due in part to its ≈25 kb capacity for

accommodating recombinant DNA (Mackett and Smith, 1986; Hruby, 1990; Guse

et al., 2011). Molecular biology techniques developed in this area have also

enabled construction of a wide range of recombinant VACV vaccines in which

selected epitopes or payloads are defined by recombinant DNA.

Recombinant VACV has been developed as an effective live vaccine against viral,

bacterial and oncological diseases (Hruby, 1990; Lee et al., 1994; Timiryasova

et al., 1999; Zhang et al., 2007), due to its ability to elicit vigorous antibody and T-

cell mediated responses. Hiley et al. (2010) and Tysome et al. (2011) have also

demonstrated the effectiveness of recombinant Lister strain VACV in targeting

hypoxic tumours in human head and neck cancer.
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Mass production of VACV for smallpox eradication was achieved by harvesting

virus from lesions brought about by infection of live animals (Fenner et al., 1988).

However, this method brought significant risk of contamination with microbiolog-

ical agents and was superseded by viral propagation in embryonated hen eggs

(EAEMP 2002). Monath et al. (2004) investigated the use of MRC-5 cells to

produce the New York City Board of Health (NYCBH) VACV strain for a Phase I

clinical trial as a smallpox vaccine. As a human diploid cell line, MRC-5 has a

finite in vitro life span that limits capacity for long-term cultivation . Large-scale

VACV production using diploid cell lines can be difficult as such cells typically do

not grow well on microcarriers (Barrett et al., 2009).

At laboratory-scale, scale-out strategies, such as roller bottles, T-flasks and the

NuncTM Cell FactoryTM, are commonly used to cultivate adherent cells for

propagation of VACV. However, methods that can be scaled up, as opposed to

scaled out, are the ideal solution for increasing the level of production,

predictability and affordability for widespread application of VACV-based

therapies. Toward this aim Bleckwenn et al. (2005) used HeLa S3 cells grown

on microcarriers, at 1.5L scale, in a hollow fibre perfusion bioreactor setup to

propagate VACV.

Viral vaccine production in media supplemented with bovine serum has been

discouraged by regulatory authorities such as the Food and Drug Administration

(FDA), brings high variability between serum batches and can lead to variations in

product yield and quality. Undefined components in serum may also provide a route

for adventitious agent contamination. Bioprocesses that are serum-free and animal

derived component free (ADCF) are now sought in order to reduce the contamination

risk, ease the downstream processing artefacts and promote robustness and reliability

for the production of VACV. Previous attempts to grow CV-1 cells in serum-free

media (Steimer et al., 1981) replaced serum with other animal-derived products so

did not remove routes for adventitious agent contamination.

Synthetic biology aims to render biological phenomena easier to engineer (Ye and

Fussenegger 2014). An inevitable consequence of this aim is that biology becomes

easier to manufacture. When applied to VACV production, and its exploitation in

areas such as gene therapy and oncotherapeutics, synthetic biology offers the

prospect of rapid design and assembly of viral payloads using interoperable tools,

such as BioBrickTM-formatted plasmids (Shetty et al., 2008), compatible with

repositories containing thousands of components. Synthetic DNA is now also

being used to construct large segments of eukaryotic genomes (Dymond et al.,

2011) and construction of human artificial chromosomes (Kononenko et al., 2015)

is now an established approach in gene therapy research.

Vero cells are commonly used for VACV propagation and have been investigated

in terms of their VACV production during cultivation in serum-free media
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(Mayrhofer et al., 2009), and on microcarriers (Monath et al., 2004). The CV-1 cell

line is more often used for VACV titration (Schweneker et al., 2012) but recently

multiple reports have been published demonstrating the use of the Cas9 nuclease/

clustered regularly interspaced short palindromic repeats (Cas9/CRISPR) system to

edit VACV genomes during CV-1 based virus propagation (Yuan et al., 2015a;

Yuan et al., 2015b; Yuan et al., 2016a; Yuan et al., 2016b). The Cas9/CRISPR

system enables precise, multiple edits of a genome to be made in parallel and has

had a huge impact in the field of synthetic biology and beyond.

Because Cas9/CRISPR tools for VACV have been established in CV-1 cells, in

this study we take the following first steps toward establishing a CV-1-based

synthetic biology platform for VACV production: i) we propose a BioBrickTM-

formatted plasmid backbone for VACV genome engineering, ii) we retrofit VACV

production in CV-1 cells from serum-containing media to serum-free media, iii) for

serum-free adapted CV-1 cells, we measure growth performance and viral

productivity during T flask cultivation and finally iv) we measure growth of serum-

free adapted CV-1 cells in a microcarrier-based cultivation platform.

2. Material and methods

2.1. Cell cultivation

CV-1 cells, product CCL-70TM from American Type Culture Collection (ATCC),

were grown in High Glucose Dulbecco’s Modification of Eagle’s Medium

(DMEM) from PAA Laboratories (Pasching, Austria), supplemented with 5% v/v

foetal bovine serum (FBS) from batches A10409-1728 and A15112-2026 for three

passages prior to this study. Cells were passaged twice weekly in T flasks and

seeded at 1 × 104 cells/cm2 for growth in 5% FBS DMEM and serum-free

OptiPRO and 2 × 104 cells/cm2 for growth in serum-free VP-SFM medium.

Serum-free media was supplemented with GlutaMAX to 4 mM and detached by

treatment with TrypLE Select. All materials were sourced from Life Technologies,

New York, USA, unless otherwise stated.

2.2. Cell banking and revival

Cells adapted to growth in 5% FBS DMEM were cryopreserved in 90% FBS plus

10% v/v dimethyl sulfoxide (DMSO) from Sigma-Aldrich (Ayrshire, UK). Cells

adapted to growth in serum-free media were frozen in a v/v mixture of; 45% fresh

growth medium, 15% 2 day, 15% 3 day and 15% 4 day conditioned medium plus

10% DMSO and 0.1% v/v methylcellulose (Sigma). Cells were suspended in the

cryopreservation medium at 3–5 × 106 cells/mL and transferred to 2 mL screw cap

cryopreservation tubes (Eppendorf Ltd, Stevenage, UK) for storage in the liquid

phase of a liquid nitrogen Dewar (Part No. 9902130, Statebourne Cryogenics, Tyne

& Wear, UK). For revival, cryopreservation tubes were removed from liquid
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nitrogen and thawed in a SUB14 water bath at 37 °C (Grant Instruments,

Cambridge, UK). Upon thawing, cells suspended in cryopreservation solution were

diluted to a volume of 8 mL and centrifuged at 1300 rpm for 3 min. The

supernatant was withdrawn and cell pellet was resuspended in 8 mL pre-warmed

OptiPRO and transferred to a T 25 flask and incubated at 37 °C, 5% CO2 in an

MCO-19AIC incubator (Sanyo, Gunma, Japan).

2.3. Counting cells cultivated using T flasks

Cells were detached from flask surfaces using standard trypsin treatment. Total

cells in suspension were then counted using a TC10TM Automated Cell Counter

(Bio-Rad, Hercules, USA) according to manufacturer’s instructions (document

PN10016620 Rev B). Total viable cell counts in suspension were performed using

standard trypan blue dye exclusion. Cells were stained with 0.4% trypan blue

(#T8154, Sigma-Aldrich, Aryshire, UK) and counted using an Improved Neubauer

haemocytometer (Hawksley, Lancing, UK) within three minutes of staining.

2.4. Adaptation to serum free media

Cells were grown in 10% FBS DMEM to a density of 1.3 × 105 cells/cm2 in a T-25

flask (3.25 × 106 cells total). Cells were then harvested into a total volume of 8 mL

growth media mix, containing, for each round of adaptation; 6 mL, 4 mL, 2 mL,

0.8 mL and finally zero mL 10% FBS DMEM made up to 8 mL with serum-free

media before further passaging. OptiPRO or VP-SFM brands of serum-free

medium were used, as indicated in Fig. 2.

2.5. Cell growth kinetics in T flasks

Average cell growth rate (cells/cm2/day) was calculated using Eq. (1),

Cell growth ¼ CH � CS

D
(1)

-where CH is total cell density (cells/cm2) at harvest; CS is the total cell density

(cells/cm2) at seeding and D is culture duration (days). Cell Recovery Ratio

(CRR) under complete serum free conditions was calculated using Eq. (2).

CRR% ¼ 100%� NF

NT
× 100% (2)

-where NF is total number of detached cells 24 h post seeding; NT is total

number of cells seeded (cells/cm2). Specific growth rate, μ (h−1) was based on

Eq. (3).

μt ¼ ln
xn
x0

(3)
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Where x0 is starting total cell concentration per mL; t is the time of sampling in

hours; x is total cell concentration per mL after t hours. A plot of ln x versus

time (see Eq. (1)) gives a straight-line plot with μ as the slope. Cell doubling

time, DT (hours) was calculated using Eq. (4), where μmax is the maximum

specific growth rate during the exponential phase, hour−1.

DT ¼ ln2
μmax

(4)

2.6. Virus propagation

A single virus stock was used throughout this work. The Lister VACV, VACVL-

15 RFP, has been propagated historically at Queen Mary University of London and

encodes a red fluorescent protein (RFP) as reporter. A titre of 6.68 × 108 PFU/mL

was determined for this stock using the procedures described below and with CV-1

cells used for titration. Aliquots of virus for infection were diluted with the

required volume of growth media. Virus solutions were added drop wise to cells at

a density of 3–5 × 105 cells/well in a 6-well plate at a multiplicity of infection

(MOI) of 0.1. After the indicated time period, infected ‘propagator’ cells were

harvested using a cell scraper for virus release by cell disruption.

2.7. Virus release from cells

Suspensions of cells infected for virus propagation were frozen in a −80 °C freezer

for 30 min, thawed in a 37 °C water bath for 4 min and vortexed for 10 seconds.

This freeze-thaw-vortex cycle was repeated three times and the resultant disruptate

containing cell debris and released virus particles used for virus titration with no

further purification.

2.8. Virus infection of target cells for titration

Median tissue culture infective dose (TCID50) was determined using CV-1 cells as

indicator cells. Disruptates, containing cell debris and viruses, were serially diluted

in 96-well plates containing cells adapted to, and grown in, 5% FBS DMEM unless

otherwise stated. Cytopathic effect (CPE) was scored by light microscopy six days

post infection. The Reed-Muench procedure (1938) was used to calculate TCID50

values, which were converted to PFU/cell using Eq. (5).

PFU=Cell ¼ 0:69
TCID50value ×Vs×NI

(5)

-where Vs is the volume of sample used to infect the first row of the 96-well

titration plates, mL; NI is number of cells at infection.
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2.9. Growth on microcarriers of CV-1 cells adapted to OptiPRO
medium

2.9.1. Pre-treatment of vessels and microcarriers

Cultivation of OptiPRO-adapted CV-1 cells adhered to Cytodex-1 microcarriers

(GE Healthcare, Westborough, USA) was performed using a Techne MCS-104L

250 mL spinner flask setup (Bibby Scientific Ltd, Staffordshire, UK). All

procedures were performed in a Level 1 laminar flow biological safety cabinet

(BSC) unless otherwise stated. Spinner flasks were first prepared for use by

siliconisation of the flask interior surface and impellers using Sigmacote (SL2,

Sigma-Aldrich, USA) in accordance with manufacturer’s instructions. When the

siliconisation procedure was complete the impeller system was assembled within

the 250 mL spinner flask and autoclaved using a cycle of 20 min at 121 °C.

A 0.5L pyrex Duran bottle was also coated with silicon using the Sigmacote and

following manufacturer’s instructions. Briefly, 100 mL of Sigmacote were poured

into to the 0.5L pyrex Duran bottle which was swirled until all the interior surface

received a covering of Sigmacote. Remaining Sigmacote was decanted and the

bottle was autoclaved, dried in a fume hood overnight then rinsed with Milli-Q

water to remove any siliconisation by-products before use.

The required mass of Cytodex-1 microcarriers (17-0448-01, GE Healthcare,

Sweden) was added to the siliconised Pyrex Duran bottle. For every gram of dry

microcarriers 100 mL of pH 7.4 PBS, free of calcium and magnesium ions (Life

Technologies, Paisley, UK), was added. The bottle was left to stand over night to

achieve complete swelling and hydration of the microcarriers. The next day the

PBS used to hydrate the microcarriers was gently decanted and replaced with 50

mL fresh PBS for every gram of wet microcarriers. The microcarrier slurry was

then sterilized by autoclaving (121 °C, 20 min). Prior to use, the sterilized

microcarriers were allowed to cool and settle. Upon cooling the supernatant was

gently decanted and replaced with 50 mL fresh OptiPRO medium for every gram

of wet microcarriers. This OptiPRO/microcarrier slurry was allowed to settle and

the OptiPRO supernatant was gently decanted then replaced with 100 mL fresh

OptiPRO for every gram of wet microcarriers.

2.9.2. Mixing cells and microcarriers

30 mL of the microcarrier/media slurry was transferred to the spinner flask. 70 mL

of a suspension of OptiPRO-adapted CV-1 cells in OptiPRO was then added to the

spinner flask to achieve a microcarrier concentration of 3 g/L and a cell

concentration of 3.4 × 105 cells/mL, corresponding to 26 cells/microcarrier. The

spinner flask was then placed on the MCS-104L stirrer device inside an MCO-

19AIC incubator (Sanyo, Gunma, Japan) at 37 °C and 5% CO2. The mixture of

Article No~e00238

7 http://dx.doi.org/10.1016/j.heliyon.2017.e00238

2405-8440/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2017.e00238


cells and microcarriers was subjected to intermittent agitation at 30 RPM for 30

seconds every 30 min for the first two days of cultivation after which continuous

30 RPM agitation was used for the third day and then 35 RPM for the remainder of

the cultivation experiment. Approximately 70% of the volume of culture medium

was replaced with fresh OptiPRO every 24 h by terminating agitation; allowing

microcarriers to settle decanting supernatant and adding fresh OptiPRO.

2.9.3. Removing CV-1 cell samples during microcarrier-based
cultivation

The MCS-104L stirrer device was switched off and transferred, with the spinner

flask, from the incubator to the BSC. The stirrer was set to agitate the spinner flask

at 60 RPM and the cap from one side-arm port of the spinner flask was removed to

allow withdrawal of a 0.2 mL sample from the culture. The MCS-104L stirrer

device was then switched off and the entire setup returned to the incubator where

incubation and agitation were resumed.

2.9.4. Counting CV-1 cells during cultivation using microcarriers

Samples taken as above were typically transferred to a 1.5 mL Eppendorf tube and

washed with 1 mL PBS. Microcarriers were allowed to settle and 1 ml supernatant

was gently decanted; then a further 1 mL PBS wash performed. After the final

decanting of supernatant 0.2 mL aqueous crystal violet solution (0.1% w/v Crystal

Violet, 0.1 M citric acid, 0.1% v/v Triton X-100) was added to the microcarriers

slurry and the mixed by pipetting up and down 25 times before the Eppendorf tube

was transferred to an incubator set at 37 °C/5% CO2 for 1.5 h. This treatment

causes cells to lyse and release stained nuclei. Typically the solution was diluted by

addition of PBS. Released nuclei were counted using an Improved Neubauer

haemocytometer (1080346, Heinz Herenz Medizinalbedarf GmbH, Hamburg,

Germany) as an indicator of cell numbers.

3. Results and discussion

3.1. Proposal for a BioBrickTM-based VACV plasmid tools

The VACV genome is conventionally edited within mammalian cells by parallel

viral infection and transfection with a plasmid. The plasmid typically encodes a

transgene intended for insertion into the VACV genome is flanked by sequences

identical to a VACV locus. Homologous recombination within the mammalian cell

then directs insertion of the transgene at the intended VACV genome location

(Fig. 1). Typically the locus encoding the ORF for thymidine kinase (TK) is used

to target insertion of transgenes (Byrd and Hruby, 2004) as its disruption does not

compromise virus replication in cells commonly used for virus propagation

(Fig. 1). Plasmids designed for this purpose often feature a multiple cloning site
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flanked upstream and downstream by regions of homology with the VACV TK

gene. However, such multiple cloning sites tend to be designed without

consideration of any standards for DNA assembly.

The Registry of Standard Biological Parts is widely used by synthetic biologists

and uses the BioBrickTM standard for plasmids and their assembly by ligation. The

Registry, run by staff of the International Genetically Engineered Machines

(iGEM) Foundation (Boston, USA), consists of a large plasmid library (Mu ̈ller &
Arndt, 2012) curated by users. All BioBrickTM formatted plasmids are inter-

compatible so any plasmid designed in the BioBrickTM format is automatically

compatible with the entire BioBrickTM registry.

For BioBrickTM compatibility a given DNA segment need only be flanked upstream

by a defined sequence motif encoding, in order, EcoRI, NotI and XbaI restriction sites

and downstream by, in order, SpeI, NotI and PstI sites (Canton et al., 2008; Shetty

et al., 2011). These flanking sequences are known as the BioBrickTM prefix and

suffix. BioBrickTM tools for virus design have been developed previously, such as

BBa_K404129 that encodes a transgene expression cassette designed to be

encapsidated by adeno-associated virus. Here we have designed a new BioBrickTM

plasmid backbone, BBa_J140000, which features the BioBrickTM prefix and suffix

flanked by 5′ and 3′ end regions of the VACV TK ORF. Any BioBrickTM of interest

[(Fig._1)TD$FIG]

E X S PTK5 TK3

CmpR

b) BBa_J14nnnn

TKc) VACV genome

d) modified VACV genome

E X S PTK5 TK3

CmpR

a) BBa_J140000

BOI

E X S PTK5 BOI TK3

Fig. 1. Design of a BioBrickTM-formatted Vaccinia DNA tool. a) Overview of BBa_J140000, a

proposed BioBrickTM plasmid backbone for VACV genome editing. The plasmid incorporates a

chloroamphenicol resistance selection marker (CmpR) and the BioBrickTM prefix: Eco RI (E), Xba I

(X), and suffix: Spe I (S), Pst I (P). Not I sites are omitted for graphical brevity. The BioBrickTM

cloning site is flanked by 5′ and 3′ ends of the TK locus for homologous recombination. b) A

BioBrickTM of interest (BOI) can be cloned into BBa_J140000 using standard BioBrickTM assembly,

resulting in a new plasmid, BBa_J14nnnn. c) Parallel cell infection with unmodified VACV and

transfection with BBa_J14nnnn can then result in recombination for insertion of the BOI into the

genome of replicating, progeny VACV. d) This insertion will result in a new, recombinant VACV.
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(BOI) can be inserted into this region of BBa_J140000 by ligation then subsequently

into the VACV genome by co-transfection and recombination (Fig. 1).

3.2. Adaptation of CV-1 cells to serum free growth media

CV-1 is a continuous cell line derived from Cercopithecus aethiops African green

monkey kidneys by Jensen (1964). It is susceptible to several viruses including

VACV and has been widely used for virus titration (Cho et al., 1970; Hiley et al.,

2010). CV-1 cells were grown in a rich medium, 10% FBS DMEM, before

stepwise adaptation to growth in the VP-SFM and OptiPRO brands of serum-free

medium. The serum content (v/v) of the growth mediummix used during each round

of adaptation was lowered to 7.5%, 2.5%, 1% and finally 0%. Fig. 2 shows the average

growth rates observed when cells were first challenged with the decreased serum

content media mix. Average CV-1 cell growth rate in 10% FBS DMEM was 2.93 ±

0.54 × 104 cells/cm2/day. Average growth rates in 7.5% and 5% FBSmediamixes, for

both VP-SFM andOptiPRO, were increased compared to 10%FBSDMEM. Only 0%

serum, pure VP-SFM or OptiPRO, resulted in initial growth rates lower than that for

10% FBS DMEM, with 1.97 × 104 cells/cm2/day and 1.29 × 104 cells/cm2/day

respectively. Cells were then grown in VP-SFM or OptiPRO for another four

passages before being considered as fully adapted to serum-free media.

3.3. Growth profiles of CV-1 cells adapted to serum-free media

Cells adapted to 5% FBS DMEM, VP-SFM and OptiPRO were seeded at 5 × 104

cells/25 cm2 in T-25 flask and cell densities measured every 24 h for 350 h to

[(Fig._2)TD$FIG]
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Fig. 2. Average growth rates of CV-1 cells during stepwise adaption to serum-free media. Starting at

10% FBS DMEM (square) cells were harvested and re-plated in mixtures of serum-containing and

serum-free medium to give the serially decreasing overall serum concentration indicated by the X-axis.

VP-SFM (triangles) or OptiPRO SFM (circles) brands of serum free medium were used. Growth rates

were determined as detailed in Methods.
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observe lag, exponential and stationary phases (Fig. 3) and determine growth rate

(Table 1). For cells adapted to 5% FBS DMEM (Fig. 3A), total cell numbers

decreased over the first 24 h post-seeding. Growth increased after this with a

specific growth rate of 0.035 h−1 observed, corresponding to a doubling time of

20.1 h. This is comparable to the doubling time of 22 h reported by Hagedorn et al.

(1985) for CV-1 cells grown in medium with 5% v/v foetal calf serum (FCS). Cell

growth slowed after 168 h, at a saturation density of 4.52 × 106 cells/25 cm2.

Saturation density of adherent cells on a solid surface is a potential indicator of

microcarrier growth performance.

Cells adapted to VP-SFM (Fig. 3B), decreased rapidly in number over the first 95 h

post-seeding, with viability as low as 4.9%. Cells then entered exponential growth,

achieving 90% viability and a specific growth rate of 0.044 h−1 (15.9 h doubling

time). Cells entered stationary phase 235 h post-seeding with saturation density of

2.15 × 106 cells/25 cm2.

[(Fig._3)TD$FIG]

Fig. 3. Growth of CV-1 cells adapted to serum-free media. Cells adapted to, and grown in, A) 5% FBS

DMEM (squares), B) VP-SFM (triangles) and C) OptiPRO (circles) were seeded into T-25 flasks at the

density indicated and their growth (closed symbols) and viability (open symbols) followed over 350 h.

Total cells were detached by trypsinisation, counted and reseeded in fresh media at each time point,

with 1–5% of material discarded after cell counting and viability assessment. Dashed line indicates the

linear regression of cell growth during exponential phase used to calculate growth rates provided in

Table 1. Error bars indicate standard deviation over n = 2 biological repeats.
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Growth of cells adapted to OptiPRO (Fig. 3C) lagged over the first 67 h post-

seeding then grew exponentially, with a specific growth rate of 0.047 h−1 (14.8 h

doubling time). These cells reached stationary phase at 192 h post-seeding, at a

saturation density of 3.84 × 106 cells/25 cm2. Notably, a significant decrease in

viability was observed 24 h post-seeding. This increased to >90% at 67 h,

remained above 90% until 200 (160) hours then declined to <60% at 354 h post-

seeding.

Compared to cells adapted to grow in 5% FBS DMEM, cells adapted to VP-SFM

and OptiPRO had lower saturation densities and significant drops either in cell

number or viability in the first 96 h post-seeding. The absence of specific growth

factors (Todaro et al., 1965; Vogel et al., 1980) or nutrients from certain serum-

free media formulations may result in reduced shear resistance in mammalian cells

(EL-Ensahsy et al., 2009). This could explain the extended lag phase growth of

cells adapted to VP-SFM and OptiPRO compared to those adapted to 5% FBS

DMEM (Fig. 3). VP-SFM and OptiPRO-adapted cells may have required a longer

time period to recover from shear experienced over multiple rounds of detachment,

resuspension and re-seeding during adaptation (Fig. 2).

3.4. CV-1 cell robustness to cryopreservation

Stable and reliable recovery from cryopreservation is a critical attribute of

mammalian cells used for industrial production of biotherapeutics. Recovery ratio

provides an indication of the effectiveness of a given formulation of cryopreservant

media for storing cells under liquid nitrogen. Cells adapted to growth in 5% FBS

DMEM, VP-SFM and OptiPRO were resuspended in cryopreservant media, as

detailed in the Methods section above, containing methylcellulose as a protective

agent only for CV-1 cells previously adapted to VP-SFM and OptiPRO

(Waymouth and Vamum, 1976). After storage in liquid nitrogen for six months

Table 1. Performance of cells adapted to serum-containing and serum-free media

types. Summary of performance data for cells adapted to growth in the different

media types. Column 1 shows recovery from cryopreservation (recovery ratio).

Column 2 provided growth rates of cells after adaptation to the indicated media

type.

1 2

Medium used for cell
adaptation and growth

Recovery Ratio
(% ± STD)

Specific Growth Rate
μ (h−1)

VP-SFM 82.10 ± 3.59 0.044

OptiPRO SFM 97.31 ± 0.34 0.047

5%FBS DMEM 97.15 ± 0.72 0.035
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cells were revived and recovery ratios determined (Table 1). Recovery ratios of

≈97% were measured for cells grown in, and adapted to, both OptiPRO and 5%

FBS DMEM. Cells adapted to VP-SFM had the lowest recovery ratio of ≈82%.

3.5. Vaccinia virus production by CV-1 cells adapted to grow in
serum-free media

For production of VACV strain TSI-GSD-241 using MRC-5 cells for propagation,

Wu et al. (2005) reported virus productivity of 77 PFU/cell when the cells were

grown in 20% FBS DMEM and infected at an MOI of 0.1. We used a recombinant

Lister strain VACV, VACVL-15 RFP, encoding a red fluorescent protein

expression cassette payload. At an MOI of 0.1 we infected CV-1 cells (as

‘propagators’) adapted to, and cultivated in, 5% FBS DMEM, VP-SFM or

OptiPRO. Infected cells were incubated at 37 °C with 5% CO2 for 24, 48 and 72 h

post-infection after which virus was released and virus titre measured (Fig. 4) by

infection of CV-1 cells adapted to, and cultivated in, 5% FBS DMEM as ‘targets’
cells. At 72 h post infection ‘propagator’ cells adapted to growth in OptiPRO

achieved a titre of 352 PFU/cell, 4.6 fold higher than the titre achieved by cells

adapted to 5% FBS DMEM and 2.6 fold higher than the titre achieved by cells

adapted to VP-SFM.

3.6. Influence of media type and cell provenance on viral titre
performance

It is not evident from Fig. 4 whether the enhanced titre performance of OptiPRO-

adapted cells results from OptiPRO favouring virus infection events or OptiPRO

exerting a selective pressure that favours CV-1 cells capable of high virus

[(Fig._4)TD$FIG]

Fig. 4. Viral productivity of CV-1 cells adapted for growth in serum free media. Viral titre productivity

of CV-1 cells adapted for growth in VP-SFM (open bar), OptiPRO (black bars) and 5% FBS DMEM

(striped bars). Cells at 80–95% confluence were infected with VACVL-15 RFP at MOI = 0.1 and virus

liberated for titration at indicated times post-infection. Error bars indicate standard deviation over n = 3

biological repeats.
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productivity. Furthermore, compatibility with a notional synthetic biology

production platform for VACV manufacture would require multiple iterations of

entirely serum-free propagation.

As such we repeated the OptiPRO, 72 h post-infection harvest time experiment of

Fig. 4 alongside two comparator experiments in an attempt to determine both the

likely causative factors for the increased titre observed in Fig. 4 and the relative

efficiency of an entirely serum-free round of propagation. Table 2 summarises our

approach; cells adapted for growth in OptiPRO were grown to 95% confluence

then washed twice with PBS before immersion either again in OptiPRO (Fig. 5A

and C) or 5% FBS DMEM (Fig. 5B), immediately prior to infection. For titration,

OptiPRO-adapted cells in the presence of OptiPRO (Fig. 5A) and 5% FBS DMEM-

adapted cells in the presence of 5% FBS DMEM (Fig. 5B and C) were used as

‘targets’ for titre measurement.

Experiment C (Table 2) is a straight repeat of the conditions used in Fig. 4 (data in

black bars, harvest 72 h post-infection) so the resultant titre was set as the 100%

level for comparison with Experiments A and B (see Table 2, Fig. 5A and B). If the

presence of OptiPRO media enhances VACV infection of CV-1 cells, then

Table 2. Dissecting effect of growth medium and cell-adaptation on viral infection and production.

Experiment setup A: CV-1 cells adapted to growth in OptiPRO were washed in PBS, re-immersed in

OptiPRO and infected with VACV at MOI = 0.1. 72 h post-infection, progeny virus from these cells was

used to infect CV-1 cells adapted to growth in OptiPRO, in the presence of OptiPRO. Experiment setup B:

CV-1 cells adapted to growth in OptiPRO were washed in PBS, immersed in 5% FBS DMEM and infected

with VACV at MOI = 0.1. 72 h post-infection, progeny virus from these cells was used to infect CV-1 cells

adapted to growth in 5% FBS DMEM, in the presence of 5% FBS DMEM. Experiment setup C: CV-1 cells

adapted to growth in OptiPRO were washed in PBS, re-immersed in OptiPRO and infected with VACV at

MOI = 0.1. 72 h post-infection, progeny virus from these cells was used to infect CV-1 cells adapted to

growth in 5% FBS DMEM, in the presence of 5% FBS DMEM. Data generated from these experiments

were plotted in Fig. 5. *Propagator: cells that are infected with virus for the purpose of harvesting virus

particles from those cells. **Target: cells that have been infected with virus in order to establish a TCID50 as

an indication of the titre of the virus solution used to infect the cells.

Experiment A B C

Propagator cell* Cells adapted to growth in
OptiPRO

Cells adapted to growth in Opti-
PRO

Cells adapted to growth in Opti-
PRO

Media present during Propagator
cell infection

OptiPRO 5% FBS DMEM OptiPRO

Target cell** Cells adapted to growth in
OptiPRO

Cells adapted to growth in 5%
FBS DMEM

Cells adapted to growth in 5%
FBS DMEM

Media present during Target cell
infection

OptiPRO 5% FBS DMEM 5% FBS DMEM
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Experiment A could be expected to increase the titre achieved by Experiment C

(see Table 2, Fig. 5A and C). This is not the case, with Experiment A yielding at

best the same titre performance as Experiment C. If the presence of 5% DMEM

enhances VACV infection of CV-1 cells, then Experiment B could be expected to

increase the titre achieved by Experiment C (see Table 2, Fig. 5B and C). This is

not the case, with Experiment B yielding at best the same titre performance as

Experiment C.

Taken together, observations from Figs. 4 and 5 are consistent with the enhanced

titre observed for OptiPRO-adapted cells being due to the process of adaptation to

OptiPRO media also exerting a post-infection phenotype of increased virus

productivity. They also indicate that entirely serum-free rounds of VACV

propagation, such as those likely to define industrial synthetic biology platforms,

yield comparable titre performance to serum-containing processes and so are

feasible.

3.7. CV-1 cell cultivation using OptiPRO and microcarriers

We sought to determine if CV-1 cells adapted to OptiPRO could be cultivated

using microcarriers (Fig. 6). We attempted cultivation using Cytodex-1 micro-

carriers and a Techne MCS-104L 250 mL spinner flask setup (Bibby Scientific

Ltd, Staffordshire, UK) in which microcarrier suspensions were agitated by

bulb–shaped glass impellers driven directly by a magnetic base. OptiPRO-adapted

CV-1 cells were able to grow on micocarriers when approximately 70% of

[(Fig._5)TD$FIG]

Fig. 5. Influence of media and cell type on viral titre performance. As set out in Table 2, CV-1 cells

were washed in PBS and re-immersed either in OptiPRO or 5% FBS DMEM, infected with VACV at

MOI = 0.1 and 72 h post-infection progeny virus used to infect cells adapted to growth in OptiPRO in

the presence of OptiPRO (Experimental setup A) or 5% FBS DMEM (Experimental setup B), or cells

adapted to growth in 5% FBS DMEM in the presence of 5% FBS DMEM (Experimental setup C). Error

bars indicate standard deviation over n = 3 biological repeats. As Experimental setup C was a repeat of

the experiment performed to generate the data in Fig. 4 (72 virus harvest 72 h post-infection), the titre

achieved with Experimental setup C was set as the 100% level.
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OptiPRO mediumwas changed daily and showed reduced growth when the

OptiPRO made was unchanged over 270 h of cultivation (Fig. 6).

In the case of T-flask cultivation, VACV propagation involves two significant

factors: virus number and cell numbers, which are summarised by the MOI. By

contrast microcarrier-based VACV propagation presents three major factors;

viruses, cells and microcarriers, and as such represents a complex investigation to

identify productivity optima, such as those reported by Monath et al. (2004) for

production of VACV from Vero cells grown using microcarriers and Bleckwernn

et al. at (2005) for VACV production from HeLa cells. Such an investigation falls

outside the scope of this study, which is to indicate the broad feasibility of the steps

likely to define a future synthetic biology platform for VACV production.

4. Conclusions

We have proposed a new BioBrickTM plasmid backbone, BBa_J140000, which in

effect makes every BioBrickTM in the Registry of Standard Biological Parts

available for insertion into the TK locus of VACV without the need for bespoke

cloning strategies. CV-1 cells adapted for growth in OptiPRO serum free medium

exhibited elevated titre performance when grown using static culture. Mechanisms

underlying the elevated titre are unclear but may result from selective pressure

exerted by the adaptation process acting also to select for an unintended phenotype.

These adapted CV-1 cells also showed promising growth characteristics on

Cytodex-1 microcarriers.

[(Fig._6)TD$FIG]

Fig. 6. Cultivation of CV-1 cells adapted to OptiPRO media on microcarriers. Cells adapted for growth
in OptiPRO were mixed with Cytodex-1 microcarriers at a starting ratio of 26:1 in 100 mL OptiPRO

and agitated at 30–35 RPM over the indicated period. Cell concentrations were plotted for cultivation in

which either 70% of the OptiPRO was changed every 24 h (black circles) or OptiPRO was unchanged

throughout (open squares). Error bars indicate standard deviation over n = 3 biological repeats, P < 0.05.
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Overall these results are consistent with the assertion that a standardised, serum-

free, microcarrier-based synthetic biology platform for production of VACV is

feasible. Cultivation in suspensions is inherently more scalable than cultivation on

planar surfaces so further scale up of the platform proposed here should be

investigated. Future work should include an investigation of the optimal conditions

for VACV production from CV-1 cells grown on microcarriers, including the ratio

of infecting virus to cells and microcarriers. Characterisation of virus quality

should also be performed to assess factors such as the percentage of total virus

particles that are plaque-forming as opposed to inactive.
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