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Abstract 

Despite the spontaneous regenerative capacity of the peripheral nervous system (PNS), 

large gap peripheral nerve injuries (PNI) require bridging strategies. The limitations and 

suboptimal results obtained with autografts or hollow nerve conduits in the clinic urge 

the need for alternative treatments. Recently, we have described promising 

neuroregenerative capacities of Schwann cells derived from differentiated human dental 

pulp stem cells (d-hDPSCs) in vitro. Here, we extended the in vitro assays to show the 

pro-angiogenic effects of d-hDPSCs such as enhanced endothelial cell proliferation, 

migration and differentiation. In addition, for the first time we evaluated the 

performance of d-hDPSCs in an in vivo rat model of PNI. Eight weeks after 

transplantation of NeuraWrap™ conduits filled with engineered neural tissue containing 

aligned d-hDPSCs in 15 mm rat sciatic nerve defects, immunohistochemistry and 

ultrastructural analysis revealed ingrowing neurites, myelinated nerve fibers and blood 

vessels along the construct. Although further research is required to optimize the 

delivery of this engineered neural tissue, our findings suggest that d-hDPSCs are able to 

exert a positive effect in the regeneration of nerve tissue in vivo. 
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1 Introduction 

Peripheral nerve injury (PNI) represents a major clinical concern worldwide and has 

significant socio-economic impact, causing pain and restriction in daily activities of 

affected individuals. Although endogenous peripheral nerve regeneration is possible, it 

is a slow and therefore often an incomplete process (Faroni et al., 2015). Many attempts 

have been made to accelerate neural regeneration and improve functional outcomes. The 

preferred therapy for PNI is primary end-to-end suturing. However, for large nerve 

gaps, when tension-free joining of the proximal and distal nerve stumps is excluded, 

autologous nerve grafting is regarded as the gold standard therapy (Gordon et al., 2011, 

Millesi, 2007). Nerve autografts provide aligned autologous denervated Schwann cells 

in an aligned extracellular matrix, the predominant structural component of which is 

collagen type I. Nevertheless, since morphometric mismatch between graft and native 

nerve is a frequent occurrence, optimal recovery is often restrained (Nichols et al., 

2004). Furthermore, autografting raises additional problems such as donor site 

morbidity, limited availability of donor tissue and extra time and cost of the second 

surgical procedure (Siemionow and Brzezicki, 2009). In search for alternative strategies 

to treat PNI, a wide range of natural and synthetic biomaterials have been developed, 

with collagen type I being the most commonly used natural polymer, and combined 

with Schwann cells or stem cells in order to mimic the key features of the autograft 

(Angius et al., 2012, Bell and Haycock, 2012, Nectow et al., 2012). 

In the development of artificial nerve tissue, the use of a cellular scaffold provides an 

opportunity to promote axon regeneration, vascularization and myelination which are 

important contributors to functional recovery. Numerous techniques have been applied 

to recreate the highly oriented cellular and extracellular matrix architecture of peripheral 
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nerves. Gravity or pressure-driven flow, magnetic fields and electrical gradients can 

establish alignment of collagen type I fibrils in hydrogels (Jang et al., 2015). Instead of 

relying on external forces to orient the extracellular matrix, a recent technique described 

the self-alignment of Schwann cells by using a uniaxially tethered cellular hydrogel 

system, and as a result collagen fibril alignment (Georgiou et al., 2013). Following 

plastic compression to stabilize the construct, the resulting engineered neural tissue 

(EngNT) has been shown to support and guide neuronal growth both in vitro and in vivo 

when seeded with rat Schwann cells (Georgiou et al., 2013). To facilitate clinical 

translation of this potential therapy for PNI, the use of an autologous cell source is 

preferred. Despite the apparent ideal profile of autologous Schwann cells, their isolation 

is rather invasive and their expansion is difficult. Furthermore, to obtain alignment of 

cells in constrained hydrogels, cells need to be able to exert a sufficient level of traction 

forces, a characteristic that is limited in primary glial cell cultures (East et al., 2010, 

O'Rourke et al., 2015). In search of alternative cell sources, mesenchymal stem cells 

have shown to be promising candidates for regenerative medicine purposes. 

Dental pulp stem cells (DPSCs) represent an easily accessible source of adult stem cells 

as they can be isolated from extracted wisdom teeth (Gronthos et al., 2000). The 

proliferative and immunomodulatory properties of DPSCs are more pronounced 

compared to bone marrow-derived mesenchymal stem cells (Pierdomenico et al., 2005), 

which enforces their therapeutic potential. Furthermore, their neural crest origin has 

triggered extensive research on the neurogenic differentiation potential of DPSCs 

(Tatullo et al., 2015). Recently, we described the in vitro differentiation of human 

DPSCs (hDPSCs) towards Schwann-like cells (d-hDPSCs) (Martens et al., 2014). In 

addition to successful morphological differentiation, the in vitro functionality of d-
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hDPSCs was confirmed as they not only promoted neuronal survival, but also directed 

neurite outgrowth and myelinated axons in self-aligned 3D co-cultures. These 

promising data are a first indication that d-hDPSCs could be used as an alternative 

Schwann cell source for the construction of artificial neural tissue for the treatment of 

PNI. However, additional research is required in order to potentiate therapeutic 

application of d-hDPSCs. Since the survival of transplanted cells in bioengineered 

scaffolds depends, amongst others, on adequate (neo-) vascularization of the construct, a 

cell population with an angiogenic profile could have therapeutic benefits. Only 

recently, the positive impact of hDPSCs on endothelial cell proliferation and tube 

formation was described (Hilkens et al., 2014). In addition, both the capillary density of 

skeletal muscles and intra-epidermal nerve fiber density of diabetic rats was 

significantly ameliorated upon transplantation of DPSCs into skeletal muscles (Hata et 

al., 2015).  

Within the current study, we investigated the initial use of d-hDPSCs as a cell-based 

therapy for peripheral nerve repair. First, the paracrine angiogenic properties of d-

hDPSCs were investigated at the level of endothelial proliferation, migration and tube 

formation. Next, EngNT constructs containing d-hDPSCs (EngNT_d-hDPSC) were 

transplanted within a NeuraWrap™ conduit in an in vivo rat model of large gap PNI and 

the regenerated nerve tissue was evaluated for the presence of neurites, myelinated 

axons and blood vessels.  
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2 Materials and methods 

2.1 Materials and products  

All products were purchased from Sigma-Aldrich (Bornem, Belgium) unless stated 

otherwise. 

2.2 Cell culture 

Human third molars were collected from donors (15-20 years of age) undergoing 

extraction for orthodontic or therapeutic reasons at Ziekenhuis Oost-Limburg, Genk, 

Belgium. The medical ethical committee of Ziekenhuis Oost-Limburg approved this 

study and written informed consent from all donors, or from legal guardians in case of 

under-aged donors, was obtained. hDPSCs were isolated and differentiated towards 

Schwann-like cells (d-hDPSCs) in 2D conditions as described previously (Martens et 

al., 2014). hDPSCs were maintained in minimal essential medium, α modification 

(αMEM) supplemented with 10% fetal bovine serum (FBS, Biochrom AG, Berlin, 

Germany), 2 mM L-glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin, 

further referred to as standard culture medium. After the induction of differentiation, d-

hDPSCs were cultured in complete differentiation medium, which is standard culture 

medium supplemented with 5 µM forskolin, 10 ng/ml basic fibroblast growth factor, 5 

ng/ml platelet-derived growth factor AA, and 200 ng/ml heregulin-β-1 (Immunotools, 

Friesoythe, Germany).  

A human microvascular endothelial cell line (HMEC-1) was purchased from the Center 

of Disease Control and Prevention (Atlanta, GA). The cells were cultured in MCDB 131 

medium (Invitrogen, Carlsbad, CA) supplemented with 100 U/ml Penicillin and 100 
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µg/ml Streptomycin, 10 mM L-glutamine, 10% FBS, 10 ng/ml human epidermal growth 

factor (hEGF, Immunotools, Germany) and 1 µg/ml hydrocortisone (Immunotools). 

2.3 Collection of conditioned medium and ELISA 

Donor-matched hDPSCs or d-hDPSCs were seeded at a density of 20,000 cells/cm
2
 in 

standard or complete differentiation culture medium respectively. After 24 h, cells were 

washed 3 times in phosphate buffered saline (PBS) and fed fresh standard culture 

medium containing 0.1% FBS. Another 48 h later, the medium was collected and stored 

at -80°C.  

An enzyme-linked immunosorbent assay (ELISA) was performed according to the 

manufacturer’s protocol on conditioned medium from 4 different donors in order to 

determine the concentration of VEGF-A produced by hDPSCs and d-hDPSCs 

(RayBiotech, Inc., Boechout, Belgium). Experiments were performed in triplicate and 

absorbance was measured at 450 nm by means of the FLUOstar Optima multifunctional 

microplate reader (BMG Labtech, Germany). 

2.4 Alamar Blue cell proliferation assay 

HMEC-1 were seeded in a 96-well plate at a density of 10,000 cells per well in standard 

MBEC culture medium. After attachment to the culture plate, cells were rinsed with 

PBS and incubated with conditioned medium from hDPSCs or d-hDPSCs for 24, 48 or 

72 h. αMEM with 0.1% FBS was used as negative control. Alamar Blue ® Cell 

Viability Reagent (Invitrogen, Carlsbad, CA) was added 4 h prior to readout according 

to the manufacturer’s instructions. 
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2.5 Transwell migration assay 

HMEC-1 were seeded in tissue culture inserts (ThinCertTM, 8 µm pore size, Greiner 

Bio-One, Frickenhausen, Germany) at 100,000 cells/cm² in standard hDPSC culture 

medium containing 0.1% FBS and placed into a 24-well plate. Underneath the tissue 

culture inserts, conditioned medium from hDPSCs or d-hDPSCs was added. Standard 

hDPSC culture medium containing 10% FBS or 0.1% FBS was used as a positive and 

negative control respectively. Following 24h of incubation, transmigrated HMEC-1 

were fixed with 4% paraformaldehyde (PFA) in PBS and stained with 0.1% crystal 

violet in 70% ethanol. Cells on the surface of the upper chamber were gently removed 

with a cotton swab. Per insert, two representative pictures were taken with an inverted 

phase-contrast microscope (Nikon Eclipse TS100, Nikon co., Japan) equipped with a 

ProgRes® C3 digital microscope camera (Jenoptik AG, Jena, Germany). The amount of 

migration (segmentation based on stained cells expressed as mean area percent) was 

quantified using AxioVision software 4.6.3 (Carl Zeiss Vision, Aalen, Germany).  

2.6 Tube formation assay 

In order to evaluate the effect of hDPSCs and d-hDPSCs on tubulogenesis, a tube 

formation assay (in vitro angiogenesis assay kit, Millipore) was performed. ECMatrix
TM

 

was prepared in 96-well plates as described by the manufacturer, and 15,000 HMEC-1 

were plated onto the surface in the presence of conditioned medium from hDPSCs or d-

hDPSCs. Standard hDPSCs culture medium containing 10% FBS and 0.1% FBS was 

used as a positive and negative control, respectively. HMEC-1 were allowed to attach 

for 4 h before tube formation was evaluated using the inverted phase-contrast 

microscope described above. Three random fields from each well were captured and 

analyzed using Angiogenesis Analyzer (ImageJ) for the number of branching points, 
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total network length (continuously joined end-end cells) and the number of closed 

polygon-shaped structures (mesh size).  

2.7 Preparation of EngNT_d-hDPSCs  

Gels were prepared as described previously (Martens et al., 2014) with some 

modifications. Tethered gels were kept in standard culture medium at 37 °C in a 

humidified atmosphere containing 5% CO2 for 24 h to allow alignment of d-hDPSCs, 

after which they were stabilised by plastic compression (Brown et al., 2005). The 

resulting 40 µm thick sheets of EngNT_d-hDPSCs were rolled up to form rods 

(approximately 200 μm diameter × 15 mm length) and kept in standard culture medium 

until transplantation into an animal model of sciatic nerve injury later the same day.  

2.8 Surgical repair of rat sciatic nerve 

All experimental procedures involving animals were conducted in accordance with the 

UK Animals (Scientific Procedures) Act (1986)/the European Communities Council 

Directives (86/609/EEC) and approved by the Open University Animal Ethics Advisory 

Group. Surgery on Sprague Dawley (250–500 g) rats was performed as described 

previously (Georgiou et al., 2015). To assess neuronal regeneration across a 15 mm gap, 

three groups (7 rats per group) were included: (A) empty NeuraWrap™ conduit (18 mm 

long with 1.5 mm at each end to accommodate proximal and distal stump), (B) two 

EngNT_d-hDPSCs rods (15 mm long) in a NeuraWrap™ sheath (18 mm long) or (C) a 

15 mm nerve graft taken from a littermate culled using CO2 asphyxiation (allograft). 

Animals receiving d-hDPSCs were immunosuppressed by sub-cutaneous injection of 

Cyclosporine A (15 mg/kg) 24 h prior to the surgery and then daily throughout the 

recovery period. After 8 weeks, animals were culled using CO2 asphyxiation and 
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repaired nerves were excised and immersion fixed in 4% PFA at 4C. The central 3 mm 

of the repair device was removed and prepared for transmission electron microscopy 

(TEM) and transverse cryostat sections (10 μm thick) were prepared from the proximal 

and distal parts of the device and the nerve stumps for immunostaining (Figure 5a).  

2.9 Transmission electron microscopy 

Following fixation with 4% PFA, the fixative was gently aspirated with a glass pipette, 

and tissues from the central 3 mm of the repair devices were postfixed in 2% osmium 

tetroxide (Aurion) for 1 h. Subsequently, tissues were dehydrated through a series of 

graded concentrations of acetone and embedded in araldite according to the popoff 

method (Bretschneider et al., 1981). Semi-thin sections (0.5 µm) were stained with 

toluidine blue after which they were scanned with a Mirax digital slide scanner (Carl 

Zeiss Vision, Aalen, Germany). Ultrathin sections (0.06 µm) were mounted, contrasted 

and examined as described previously (Martens et al., 2014). The images were 

processed digitally with iTEM-FEI software (Olympus SIS). The number of blood 

vessels and myelinated neurites in the whole of each cross-section was quantified 

manually. 

2.10 Immunostaining 

Prior to the staining, cryosections from the proximal and distal parts of the device and 

the nerve stumps were washed with PBS and post-fixed in 4% PFA for 10 min at room 

temperature (RT). Sections were permeabilized with 0.05% Triton-X for 30 min at 4°C 

and blocked using 5% normal donkey serum in PBS for 30 min at RT. A mouse 

monoclonal anti-neurofilament antibody (1:100, DakoCytomation, Glostrup, Denmark) 

was diluted in 0.2% Triton-X and incubated overnight at 4°C. As secondary antibody, 
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donkey anti-mouse labeled with A555 (1:500, Invitrogen/Molecular probes, Merelbeke, 

Belgium) was applied for 45 min at RT in the dark. Following nuclear counterstaining 

using 4',6-diamidino-2-phenylindole (DAPI), slides were mounted with fluorescent 

mounting medium (Dako, Glostrup, Denmark). Images were taken with a Nikon Eclipse 

80i fluorescence microscope equipped with a Nikon digital sight camera DS-2MBWc 

(Nikon, Tokyo, Japan). Primary antibody was omitted in the negative control condition. 

To assess axonal growth throughout the EngNT, the total number of neurites was 

quantified. Pictures were taken covering the whole section and NF-positive neurites 

were counted manually using Image J software (NIH; available at: 

http://rsb.info.nih.gov/ij/).  

2.11 Confocal microscopy 

To quantify the density of NF growth within the EngNT group, high quality overview 

images were obtained from cryosections, mapping the entire cross-section of the mid-

proximal part (Figure 5a). Imaging was performed using a Zeiss LSM510 META (Carl 

Zeiss, Jena, Germany) mounted on an Axiovert 200M and a 40x/1.1 water immersion 

objective (LD C-Apochromat 40/1.1W Korr UV-VIS-IR, Carl Zeiss), yielding a pixel 

size of 0.439 µm. The Alexa 555 fluorophore was excited with the 543 nm emission line 

of a He-Ne laser and internally detected after a 560 nm long pass filter. DAPI excitation 

was achieved by two-photon excitation at 720 nm performed by a MaiTai laser 

(Spectra- Physics, CA, USA) and when transmitted through a 37.5 nm wide band pass 

filter with a central wavelength of 427.5 nm, emitted light was captured by an analogue 

photomultiplier tube (Zeiss). Confocal z-stacks were acquired (depth 9 µm, z-resolution 

0.89 µm), and tiled together to produce a mosaic of image z-stacks that spanned the 

entire cryosection. 3D images were compressed to a single image using Image J. Next, 

http://rsb.info.nih.gov/ij/
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sections were subdivided into three zones (EngNT_d-hDPSCs material; 25 µm border 

around each EngNT_d-hDPSCs rod; remaining area within conduit) to assess the 

location of neurites in relation to the EngNT_d-hDPSCs. The density of neurites in each 

zone was measured using Image J software analysis and expressed as mean grey value. 

2.12 Statistical analysis 

Statistical analysis was performed using GraphPad Prism 5 software (GraphPad, San 

Diego, CA, USA). Data from the VEGF-A ELISA were submitted to a D’Agostino-

Pearson omnibus normality test, followed by an unpaired t test. Data from the 

proliferation assay, neurofilament stainings were compared by means of a 2-way 

ANOVA followed by Bonferroni’s multiple comparison test. Data from the migration 

and tube formation assay and the blood vessel and myelin counting were first controlled 

for normality by means of a D’Agostino-Pearson omnibus normality test, followed by 

comparison of control and experimental groups by means of a Kruskal-Wallis test while 

applying a Dunn’s multiple comparison post hoc test. Values of P  0.05 were 

considered statistically significant. All data are expressed as means ± standard error of 

mean (SEM). 
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3 Results 

3.1 Expression of VEGF-A by hDPSCs and d-hDPSCs in vitro 

In our previous study (Martens et al., 2014), we identified a range of neurotrophic 

factors which are differentially expressed by d-hDPSCs compared to hDPSCs. Here, we 

evaluated the expression level of the angiogenic factor VEGF-A between both cell 

populations. ELISA revealed that d-hDPSCs secreted a significantly higher 

concentration of VEGF-A compared to hDPSCs (Figure 1). 

3.2 Angiogenic properties of d-hDPSCs in vitro 

Angiogenesis is a well-coordinated process involving endothelial cell proliferation, 

migration and differentiation. Therefore, the potential effects of factors secreted by d-

hDPSCs on each of these endothelial cell behaviors were evaluated using a series of in 

vitro assays. First, the proliferation-promoting capacity of d-hDPSCs was evaluated 

using an Alamar Blue assay. The results in Figure 2 show that after 72 h, the 

endothelial cell line HMEC-1 had proliferated significantly more in the presence of 

conditioned medium from hDPSCs and d-hDPSCs compared to those in control 

medium. 

Since endothelial cells can migrate in response to chemical stimuli, the chemotactic 

potential of d-hDPSCs was examined. In the transwell migration assay, HMEC-1 

showed significantly increased transmigration in the presence of conditioned medium 

from hDPSCs and d-hDPSCs compared to those in control medium (Figure 3). 

Finally, an ECMatrix
TM

 assay was performed to assess the effect of d-hDPSCs on 

endothelial tube formation. Following 4 h incubation of HMEC-1 seeded in 

ECMatrix™, the conditioned medium of hDPSCs or d-hDPSCs significantly increased 
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the number of nodes, segments and meshes compared to control medium (Figure 4a-d). 

Furthermore, the total branching length of endothelial tubes was significantly longer in 

these conditions compared to the negative control (Figure 4e).  

3.3 Nerve repair 

d-hDPSCs were seeded in uniaxial tethered collagen type I hydrogels. Following 

cellular self-alignment, the gels were stabilized by plastic compression and rolled into 

rods, of which two were placed within NeuraWrap™ conduits. Adult rats with a 15 mm 

sciatic nerve gap received either EngNT_d-hDPSCs, empty conduit or allograft 

transplants. Following an 8 week recovery period, specific parts of the excised 

transplants were processed for transverse cryosectioning and subsequent 

immunofluorescence staining to detect neurofilament (Figure 5a). For each group, the 

number of neurites in the mid-proximal and mid-distal part of the construct were 

normalized to the number of neurites in the proximal nerve stump, which was set at 

100% (Figure 5b). In the empty conduit group, only about half of the neurites reached 

the mid-proximal part of the construct (54.2 ± 8.4%), which was significantly fewer 

compared to the allograft group (85.4 ± 6.8%). The number of neurites in the EngNT_d-

hDPSCs group at this level was 78.3 ± 7.5% of the neurites in the proximal stump. In 

the mid-distal part of the transplants, the level of neurite regeneration in the allograft 

group was approximately 2.5-fold higher than the EngNT and empty conduit groups. In 

order to capture the transverse distribution of regeneration within the EngNT_d-

hDPSCs constructs, the density of neurites in three different zones within the mid-

proximal part was determined: zone 1 comprised the EngNT_d-hDPSCs rods, a border 

of 25 µm adjacent to the rod defined zone 2 and the remainder of the construct lumen 

(NeuraWrap™ excluded) was zone 3 (Figure 5c). No significant differences between 
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the three zones were observed, although zone 2 showed a trend for higher mean grey 

values (relative to the density of neurofilament immunoreactivity) compared to the other 

zones (Figure 5d). 

3.4 Blood vessels and myelin 

The mid part of the excised transplants (Figure 5a, dark grey) were processed for TEM. 

The analysis of semi-thin sections stained with toluidine blue revealed regenerated 

nerve tissue throughout the cross-section of the allograft group, the presence of 2 rods 

and regenerated tissue in the EngNT_d-hDPSCs samples and limited tissue regeneration 

in the empty conduit group (Figure 6a, upper part). At the ultrastructural level (Figure 

6a, lower part), blood vessels and myelinated nerves in the EngNT_d-hDPSCs group 

were observed within and near an abundant fibrillar extracellular matrix. Although 

blood vessels and myelinated nerve fibers were also present in the empty conduit 

samples, collagen type I fibrils were hardly detectable. The numbers of blood vessels 

and of myelinated fibers were assessed for the whole area of each tissue section (Figure 

6b-c). The allograft and EngNT_d-hDPSCs groups contained significantly more blood 

vessels compared to the empty conduit group. The number of myelinated neurites was 

significantly higher in the allograft group, but there was no difference in this measure 

between the EngNT_d-hDPSCs and empty conduit group. The great majority of vessels 

appeared to be oriented longitudinally along the constructs, which may be beneficial for 

supporting or guiding neuronal regeneration. Although no correlation was observed 

between the number of blood vessels and the number of myelinated neurites for any of 

the groups, the three experimental groups seemed to exhibit different characteristic 

patterns with regard to numbers of blood vessels and myelinated neurites (Figure 6d). 

Overall, the empty conduit group had low blood vessel and low myelin counts, the 
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EngNT_d-hDPSCs group had high blood vessel and low myelin counts and the allograft 

showed both high blood vessel and high myelin counts. 
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4 Discussion 

A major challenge in the field of neuroscience is the repair of peripheral nerve gaps. In 

the clinic, different strategies such as autografts, allografts and nerve conduits are 

employed to join nerve ends and enhance PNS regeneration (Chiono and Tonda-Turo, 

2015). Unfortunately, repair outcomes of these bridging approaches are suboptimal 

(Grinsell and Keating, 2014). Over the past decades, tissue engineering strategies have 

been proposed as promising alternatives to reconstruct peripheral nerve defects. A 

variety of cells and biomaterials have been combined in attempts to provide an adequate 

environment for nerve regeneration (Rice et al., 2013). As we previously described, d-

hDPSCs display neuroprotective and neurotrophic properties, can self-align within 

collagen type I hydrogels and myelinate neurites in vitro (Martens et al., 2014). In the 

present study, we assessed the angiogenic properties of d-hDPSCs using in vitro assays, 

then a rat sciatic nerve model of PNI was performed for the first time to further 

understand the potential for using EngNT containing d-hDPSCs as a regenerative 

strategy for peripheral nerve lesions. 

In the first part of this study, the presence of the pro-angiogenic factor VEGF-A in the 

conditioned medium of hDPSCs and d-hDPSCs was determined via an ELISA. The 

results showed that d-hDPSCs secreted approximately 2–fold more VEGF-A compared 

to hDPSCs. VEGF-A is known to stimulate different steps in the process of blood vessel 

formation, and while it is one of the key factors associated with angiogenesis there are 

many others that are likely to play a role in mediating the effects of hDPSCs and d-

hDPSCs on endothelial cells. Recently, research performed by Hilkens et al. showed 

that hDPSCs had a predominant pro-angiogenic impact on endothelial cell migration 
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and tube formation (Hilkens et al., 2014), which is confirmed in our study. In addition, 

we demonstrate that d-hDPSCs have comparable capacities in stimulating the migratory 

and tubulogenic actions of endothelial cells, indicating that hDPSCs retain their 

pronounced angiogenic properties following differentiation into Schwann-like cells. 

Whereas the former publication showed no effect of hDPSCs on endothelial cell 

proliferation using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) assay (Hilkens et al., 2014), we observed a significant increase in HMEC-1 

when incubated with conditioned medium from hDPSCs or d-hDPSCs for 72 h via an 

Alamar Blue assay. A possible explanation for this discrepancy could lie in the 

sensitivity of the conducted proliferation assays, since the fluorescence-based readout of 

the Alamar Blue assay has been reported to provide higher sensitivity compared to the 

absorbance measurements obtained by MTT assays (Hamid et al., 2004, Patel et al., 

2013). Since several studies have indicated beneficial effects of MSCs on the 

proliferative capacity of endothelial cells (Duffy et al., 2009, Gruber et al., 2005, Iohara 

et al., 2008, Potapova et al., 2007) and the results obtained for hDPSCs so far are 

contradictory, it would be of interest to re-evaluate their effect on endothelial cell 

proliferation. To circumvent interpretation bias of the aforementioned assays due to 

metabolic changes in HMEC-1 behavior (Rampersad, 2012), it might be better to 

conduct future proliferation experiments by means of a Bromodeoxyuridine ELISA 

(Yadav et al., 2014).  

Whilst both hDPSCs and d-hDPSCs promote angiogenesis, only d-hDPSCs were used 

in the in vivo study given their neurotrophic properties and their lineage commitment 

prior to transplantation (Martens et al., 2014). The capacity of EngNT_d-hDPSCs to 

support neuronal growth from the proximal stump in vivo was assessed in a rat sciatic 
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nerve injury model. A nerve gap of 15 mm was reconstructed with either nerve 

allograft, empty conduit or EngNT_d-hDPSCs. Eight weeks after transplantation, 

immunohistochemical analysis of the mid-proximal part of the allograft and EngNT_d-

hDPSCs constructs revealed comparable neuronal regeneration, whereas less neuronal 

tissue was observed in the empty conduit treated animals. Regeneration was maintained 

in distal parts of the allograft, whereas in the EngNT_d-hDPSCs transplants the number 

of neurites in mid-distal regions were lower than in allografts and similar to that of 

empty conduit transplants. Interestingly, this trend is in contrast to previous research 

performed with Schwann cells and with differentiated rat adipose-derived stem cells in 

EngNT, where regeneration was maintained between proximal and distal parts of the 

implanted constructs (Georgiou et al., 2015). This difference might be attributed to 

immunosuppressant treatment, administered daily to all the animals in our study and not 

used in the previous studies where rat cells were used in EngNT. Although hDPSCs 

have been described to exhibit potent immunomodulatory and anti-inflammatory 

capacities (Pierdomenico et al., 2005, Tomic et al., 2011), graft-versus-host responses 

in rats receiving EngNT_d-hDPSCs transplants could not be excluded, so all animals 

were treated with Cyclosporine A in this study. Both innate and adaptive immune cells 

have been shown to play a role in clearing myelin and axonal debris and promoting 

neurite outgrowth (Benowitz and Popovich, 2011), and Namavari et al. showed that 

immunomodulation with Cyclosporine A delays axonal sprouting and growth of 

transected nerves (Namavari et al., 2012). The recovery period used here of 8 weeks is 

relatively short for a 15 mm rat sciatic nerve gap, but it facilitates the detection of 

differences between the allograft and artificial repair constructs which may be reduced 

if the recovery time is extended. This time point of 8 weeks and gap length of 15 mm 
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has been established previously to be ‘critical-length’ (Georgiou et al., 2013) and is 

useful for pre-clinical evaluation of nerve repair conduits (Georgiou et al., 2015). 

With regard to the distribution of the regenerating neurites in the EngNT transplants, 

there was a trend for higher axon densities in the zone directly adjacent to the EngNT 

rods compared to the surrounding area, which was also a region of high neurite density 

in the previous study using rat Schwann cells in EngNT (Georgiou et al., 2013). Since 

neuronal growth within the rods was lower in this study, one could speculate that the 

longitudinal permeability of the EngNT_d-hDPSCs rods was not optimal for neurite 

ingrowth. In order to fully exploit the potential of EngNT_d-hDPSCs, other ways of 

incorporating EngNT sheets within the constructs will be examined in the future. For 

example, a low density hydrogel could be used as a core material to wrap the EngNT_d-

hDPSCs sheets around, or as an additional spacing layer within the rods. By increasing 

the total available EngNT_d-hDPSCs sheet surface for regenerating axons and 

facilitating diffusion of neurotrophic factors produced by d-hDPSCs, the growth of 

neurites into and throughout such constructs might be enhanced. 

In the mid part of the construct, the number of blood vessels observed in the EngNT_d-

hDPSCs and allograft transplants were comparable. Revascularization of nerve grafts, 

and especially vascular ingrowth from the surrounding tissue bed, is important since 

ischemia-induced necrosis and fibrosis hamper axonal regeneration (D’Arpa et al., 

2015). Furthermore, transplantation of adipose-derived stem cells has been shown to 

boost vascularization of the nerve defect (Kingham et al., 2014), which can promote the 

longevity of the construct. Upon transplantation of EngNT_d-hDPSCs, a lack of 

intrinsic vascular supply creates a hypoxic environment for the encapsulated cells, 

thereby triggering the upregulation of pro-angiogenic pathways (Krock et al., 2011). 
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Because the resulting enhanced vasculature will increase survival chances of the 

transplanted cells, this is an important component in the provision of subsequent 

neurotrophic support. The difference in number of regenerated axons between the mid-

proximal and the mid-distal part of the EngNT_d-hDPSCs constructs indicates that 

priority may have given to revascularization and, as a consequence, reinnervation was 

delayed when compared to allograft controls. Previous studies have demonstrated that 

longitudinal inosculation is the primary method of revascularisation in allografts, 

whereby anastomosis occurs between the vessels in the graft and the repaired nerve, 

accelerating restoration of blood flow without the requirement for angiogenesis (Best et 

al., 1999, Chalfoun et al., 2003). Given the importance of microvessels in guiding nerve 

renegeration and supporting neuronal survival (Bearden and Segal, 2004), future 

improvements to EngNT_d-hDPSCs devices could therefore focus on provision of 

structures that accelerate vascularisation and promote the survival and neurotrophic 

behaviour of the implanted cells. In addition, it would be relevant to investigate the fate 

and phenotype of the differentiated cells over the first days to weeks after 

transplantation. 

In this first study to report the transplantation of human cells in EngNT constructs for 

peripheral nerve repair, the proximal part of the EngNT_d-hDPSCs showed a 

comparable amount of neurite regeneration compared to allograft treatment but a lower 

number of neurites had traversed into the distal part after 8 weeks. This pattern of nerve 

regeneration was associated with increased vascularisation compared to empty conduits, 

which was consistent with the pro-angiogenic effects of d-hDPSCs observed in vitro. In 

conclusion, EngNT_d-hDPSCs is a promising new approach that showed an ability to 

enhance vascularisation and to promote initial neurite ingrowth in a long-gap nerve 
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repair scenario. Future work will focus on tuning the cell and material environment to 

improve regeneration in the distal part of the constructs.  
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7 Figure captions 

Figure 1: Expression of the angiogenic factor VEGF-A by hDPSCs and d-hDPSCs in 

vitro. ELISA indicated a significant increase in VEGF-A release over 48 h in vitro after 

differentiation of hDPSCs toward Schwann cells. Data represent means ± SEM (n = 4). *P < 

0.05. 

 

Figure 2: Effect of hDPSCs and d-hDPSCs on endothelial cell proliferation. Endothelial 

cells were incubated for 24, 48 or 72 h with conditioned medium from hDPSCs or d-hDPSCs. 

Negative control (neg) is culture medium containing 0.1% FCS. Endothelial cell proliferation 

was measured using an Alamar Blue fluorescence assay. Data represent means ± SEM (n = 4). 

P < 0.05 for hDPSCs (*) or d-hDPSCs (#) compared to the negative control at that time point. 

Error bars may be smaller than the symbol. 

 

Figure 3: Effect of hDPSCs and d-hDPSCs on endothelial cell migration. (a) 

Representative micrographs show endothelial cell transmigration following 24 h of incubation 

with conditioned medium from hDPSCs or d-hDPSCs. Culture medium containing 10% FBS 

or 0.1% FBS was included as positive (pos) and negative (neg) control respectively. Cells 

were stained with crystal violet. Scale bars = 200 µm. (b) Endothelial cell transmigration 

expressed as the mean percentage area per condition. Data represent means ± SEM (n = 4). *P 

< 0.05, **P < 0.01. 

 

Figure 4: Effect of hDPSCs and d-hDPSCs on endothelial tubulogenesis. (a) 

Representative micrographs show endothelial cell tube formation following 4 h of incubation 

with conditioned medium from hDPSCs or d-hDPSCs. Culture medium containing 10% FBS 

or 0.1% FBS was included as positive and negative control respectively. Scale bars = 300 µm. 
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The average number of nodes (b), segments (c) and meshes (d) and the total branching length 

(e) was measured for each condition. Data represent means ± SEM (n = 4). *P < 0.05, **P < 

0.01, ***P < 0.001. 

 

Figure 5: Quantification of nerve regeneration by repair devices and allografts. (a) 

Schematic representation of 15 mm transplanted construct (allograft: n = 7; empty conduit: n 

= 7; or EngNT_d-hDPSCs: n = 6) with indications on transverse sectioning for post-

processing. (b) Nerve regeneration throughout the constructs was assessed by means of 

neurofilament fluorescence staining on transverse cryosections. The number of neurofilament 

positive axons in the mid-proximal and mid-distal part of the constructs were counted and 

compared to the number of axons detected in the proximal part of the conduit (expressed as 

percentage of proximal part). In the proximal part, there were 8675 ± 943 neurites in the 

allograft group, 8642 ± 1186 neurites in the empty conduit group and 9556 ± 1754 neurites in 

the EngNT_d-hDPSCs group. The number of nerve fibers is the distal nerve segments were 

respectively 5489±443, 1520±313 and 2320±549 respectively. (c) Schematic representation of 

transverse section of two EngNT_d-hDPSCs rods in a NeuraWrap™ sheath with indications 

of different zones within the mid-proximal part in which the number of axons per unit area 

were quantified: zone 1 = whole EngNT_d-hDPSCs rods; zone 2 = 25 µm adjacent to 

EngNT_d-hDPSCs rods; zone 3 = rest of the cross-sectional area within the NeuraWrap™ 

sheath. (d) The axon density is represented by the mean grey value of neurofilament 

fluorescent staining for each zone. Data represent means ± SEM. **P < 0.01, ***P < 0.001. 

 

Figure 6: Comparison number of blood vessels and myelinated fibers. The mid parts of 

the 15 mm conduits were processed for TEM examination. (a) Representative semi-thin (0.5 

µm) toluidine blue stained sections (upper row scale bars = 300 µm; lower row scale bars = 
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100 µm) and TEM images (upper row scale bars = 10 µm; lower row scale bars = 1 µm). Red 

dotted line marks the edge of a cellular hydrogel rod, and representative higher magnification 

images of collagen fibrils inside and outside a rod are also shown. The number of blood 

vessels (b) and myelinated neurites (c) in the whole of each cross-section were quantified 

manually. A scatter plot (d) depicts the mean number of blood vessels and myelinated 

neurites for every animal that received allograft, EngNT_d-hDPSCs or empty conduit 

transplantation. Data represent means ± SEM. *P < 0.05, **P < 0.01. 
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