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Abstract
Progress in nanotechnology critically relies on high resolution probing tools, and

X-ray coherent diffraction imaging (CDI) is certainly an attractive method for ex-
ploring science at such small scales. Thus, the aim of this PhD is to study struc-
tural properties of nano-materials using X-ray CDI, with a special motivation to
combine Bragg CDI with ptychography. The former has ability to retrieve the com-
plex density and strain maps of nano-meso crystalline objects, and the latter uses
translational diversity to produce quantitative maps of the complex transmission
function of non-crystalline objects. As both techniques promote highly sensitive
phase-contrast properties, the thesis exploits their agreement to reveal the morphol-
ogy of domain structures in metallic thin films. Additionally, it is demonstrated
that Bragg-ptychography is an evolutionary improvement to probe the structure of
’highly’ strained crystals, with respect to its Bragg-CDI counterpart. However, the
adaptation of ptychography to the Bragg geometry is not without difficulties and
comes with more experimental cost. Therefore, the effects of experimental uncer-
tainties, e.g., scan positions undetermination, partial coherence, and time-varying
probes are assessed throughout the thesis and corrected for by implementation of
suitable refinement methods. Furthermore, it is shown how the set-up at beamline
34-ID-C at the Advanced Photon Source, used for the experimental measurements
can be optimized for better ptychographical reconstructions.
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Chapter 1

Introduction

X-ray coherent diffraction imaging is a versatile tool for nanosciences that can im-
age the fine structure of non-crystalline and crystalline materials to resolutions of
better than 20 nm at synchrotron facilities worldwide. The best spatial resolution
achieved so far is 2 nm and as the method has the inherent potential for wavelength
limited only resolution, efforts are being pursued to reach sub-nanometer resolution
in a near future. The applications of CDI at the ultra-bright fourth generation light
sources being developed around the world will accelerate this trend and most impor-
tantly will allow the imaging of ultra-fast processes in nanomaterials at ultra-high
resolution.

Bragg geometry CDI has the ability to map the strain present in nano-materials
with pico meter resolution, because it couples a large q-vector to the small displace-
ments. Strain is a tensorial quantity related to stress that arises from chemical, elec-
trical, magnetic, mechanical forces, and which due to the increased surface area to
volume ratio in nanomaterials is rather distinctive from bulk materials. Ptychogra-
phy is derived from scanning electron transmission microscopy and uses redundancy
in acquired data to produce a quantitative map of the complex sample transmission
function, with the added advantage of measuring the 3D distribution without stren-
uous sample preparation that is for example necessary in electron microscopy. In
ptychography, a real-space constraint is formed by rastering a partially overlapping
illumination, and provides enough robustness as to recover at the same time, the
complex features of the probe and object, and experimental information such as
the degree of coherence properties of the illumination, positional uncertainties and
vibrations. While ptychography has been considered as a phase diverse technique,
the introduction of another of degree phase-diversity in the probe was tested by
simulations, in order to understand how to optimise experiments requiring a low
X-ray dose. Development of ptychography in Bragg geometry is important because
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CHAPTER 1. INTRODUCTION

of its great potential for understanding nano-structural physics.
Chapter 2 introduces the fundamental principles behind x-ray coherent diffrac-

tion imaging, such as propagation of x-rays through free-space, their interactions
with matter, the requirements on their degree of coherence, brightness and focus for
experiments that rely on diffracted intensities. Based on the formalism of Fourier-
space propagation, the concepts of detection, sampling, and algorithmic procedures
to construct a high spatial resolution object from the lost Fourier phase components
in the diffraction intensity, are reviewed.

Chapter 3 is dedicated to the generality of refinement methods for ptychography
that correct for experimental nuisances, such as scan positions undetermination,
partial coherence, and time-dependant variations in illumination. As these nui-
sances are likely to affect the ptychographic reconstructions, their implementations
into the difference map algorithm and their numerical behaviours are thoroughly
evaluated by means of simulated complex-valued samples. The refinement methods
being algorithmically demanding, optimisation and parallelisation of the reconstruc-
tion algorithms are briefly discussed. The chapter then culminates with beautiful
examples of 3D ptychographical images of the inner structure of radiation hard and
biological objects, obtained by combining angular ptychographical projections with
the techniques of tomography.

Chapter 4 discusses the developments of ptychography at beamline 34-ID-C of
the Advanced Photon Source along with the performances of experimental measure-
ments using test objects. Once the remarkable ability of ptychography to character-
ize complex wavefields is demonstrated by mean of Fresnel propagation, the impact
of wavefields bandwidth and diversity on the resolution of the reconstructed images is
investigated experimentally. Preliminary simulations on illumination phase-diversity
to surpass the resolution limitations of the ptychographical reconstructions at 34 ID-
C APS are provided, together with a general discussion on how to vary high and
low phase-diversity both in the sample and illumination for future improvements at
this beamline.

Chapter 5 first considers the necessary geometrical transformations to extend
ptychography to the Bragg geometry, before detailing the experiments performed on
nano- and micro-crystalline samples. While the suitability of Bragg-ptychography
for ’highly’ strained crystals will be demonstrated, the main motivation of this chap-
ter is to demonstrate that the highly sensitive phase-contrast properties of Bragg
CDI measurements combined with the translational diversity of ptychography can
provide a Bragg ’dark field’ imaging method capable of revealing the exact mor-
phology of domain structure in metallic thin films. After assessing suitability for
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CHAPTER 1. INTRODUCTION

reconstructions of simulated two-phase domains by modelling of the experimental
variables likely to prevent a successful implementation of the method, experimen-
tal diffraction data taken from epitaxially grown niobium and molybdenum metallic
thin films; are analysed with help of a careful combination of implemented correcting
mechanisms (developed in chapter 3).
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Chapter 2

Coherent Diffraction Imaging

This chapter introduces the theoretical and physical tools necessary to grasp the
concepts behind the experiments described in later chapters and, despite being el-
ementary, constitutes the fundamental background of coherent diffraction imaging
(CDI). Forming an image traditionally involves a set of lenses (at least a condenser
and an objective) but they limit the ’quantity’ of information coming from an object
and at x-ray wavelength are difficult to manufacture without aberrations. While the
limit set by a lens is the diffraction limit due to the classical wave nature of light, it
is however possible to take advantage of light’s ability to diffract, to circumvent the
need for lenses. When the light approaches full coherence, the scattered light arising
from interaction with the sample forms a fringed diffraction pattern from interfer-
ence effects. When collected in the far-field, the relation to the local structure of the
illuminated object to the diffraction pattern is simply a Fourier transform. Diffrac-
tion from interference patterns has been known since the work of Young in 1807 [3],
but the invention of lasers in 1960 brought forward the theories and applications of
coherent diffraction [4].

X-rays can penetrate thick samples due to their weak interactions with matter.
Their relatively low wavelength (∼ Å) coupled with repeated copies of a sample can
reach atomic resolution of periodic objects, i.e., crystallography. X-ray microscopy
can provide images of non-periodic objects but the current technology of x-ray op-
tics limits the resolution to ∼10-15 nm [5, 6]. X-ray CDI or x-ray lensless imaging,
which was first proposed by Sayre in the 1950’s [7], fuses elements of crystallography
with full-field microscopy to provide images of non-periodic objects. It now has the
possibility to fill the gap and overcome the limitations of both techniques, thanks
to the advent of ultra-bright coherent sources (section 2.3), efficient pixelated de-
tectors (section 2.5.1) and computerised algorithms (section 2.5.4), all dedicated to
a proper inversion of the Fourier space. It should be mentioned that electron mi-
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croscopy has already elucidated many relevant structures of the nano-world due to
the ultra small De-Broglie wavelength (pm) of the electrons [8]. Their high kinetic
energy, strong interaction and ability to focus to sub-ångström probe, already allows
dynamic imaging of single atoms [9]. Thus, electrons will always give higher reso-
lution than X-rays in an analogous measurement. However, their strong interaction
also means only thin sample (100’s nm) can be used and can be hard to image in nat-
ural environments (i.e., not vacuum). X-rays can relax these demands as they can
be used in almost any environment since they penetrate lots of materials in environ-
ments such as liquids, high pressure, high temperature, etc.. but also bio-materials
in their natural habitat without much change to the experimental setup.

Even so, when it comes to sensitive biological materials both x-rays and electron
imaging techniques are limited by radiation damage (section 2.5.2) and only the
ultrashort and ultra-intense pulses of fourth generation light sources will outrun this
problem by recording the unperturbed scattering or signal before destruction of the
object. It is hoped that this small introduction clearly highlights the advantages for
x-ray CDI in nanoscience. This chapter does not claim to present original research,
but is rather a brief and specific introduction to the techniques used later.

2.1 Propagation of scalar fields

Scalar diffraction and Fourier optics constitute an essential part of the necessary
comprehension of image formation in coherent diffraction imaging. Diffraction is
considered when geometrical optics fail to explain an observed image (see fig. 2.6)
after the perturbation of a propagating wave and is of critical importance for ap-
plications involving high resolution, i.e., astronomical imaging, lithographic pro-
cesses, etc. The propagation behaviour of an electromagnetic wave is governed
by Maxwell’s equations, which are vector equations but a complete treatment of
diffraction becomes very ’heavy’ for obstacles or perturbations of any form. Ideally,
when monochromatic light propagates through an ideal medium (linear, isotropic,
non-dispersive and nonmagnetic), the spatial and temporal variations of the six
components can be separated and the spatial variations are identical. This leads
to a simplified scalar field equation, from which a wave-front in the x − y plane is
expressed with a phasor as:

U(x, y) = A(x, y).eiΦ(x,y), (2.1)

where A(x, y) is the amplitude and Φ(x, y) is the phase which represents a devia-
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tion from a reference, i.e., a flat phase. This phasor expression aids in mathematical
manipulation because the temporal term is suppressed and so a wave-front at at
any other plane can be expressed as a superposition of secondary spherical wave
originating from each point in the first plane. This is known as the Huygens-Fresnel
principle, the foundation of the scalar diffraction theory:

U2(x2, y2, z) =
i

λ

∫ ∫
U1(x1, y1)

exp (ikr)

r
cos r̂dx1dy1, (2.2)

where r is the length connecting the point (x2, y2) with (x2, y2) along the unit
vector r̂. It will be assumed that z is the fundamental direction of propagation. Even
if this formulation is very intuitive, the process of solving an integral over all the
contributing wavelets is very demanding. Fresnel later introduced some important
assumptions which are known as the paraxial approximations. Assuming the object
size is small compared to the distance of the plane of observation, the cosine angle
of integration is approximated to one and the spherical term is rearranged using the
approximation

√
1 + ε ≈ 1 + ε/2. Now, given a source-plane optical field U(x1, y1),

an observation-plane field U(x2, y2) is given by the Fresnel diffraction integral:

U2(x2, y2) =
eik∆z

iλ∆z

∫ D/2

−D/2

∫ D/2

−D/2
U1(x1, y1)e

ik
2∆Z

[(x1−x2)2+(y1−y2)2]dx1dy1, (2.3)

where λ is the wavelenght, D the spatial extent of the source, ∆Z is the distance
between plane, k = 2π/λ is the wave-vector and the eik∆z terms represent the phase-
wave variation along the path ∆z = z2−z1. The square terms inside the exponential
can be simplified by factoring portions out of the integral, to yield:

U2(x2, y2) =
eik∆Z

iλ∆z
e

ik
2∆Z

(x2
2+y2

2)

∫ ∞

−∞

∫ ∞

−∞
U1(x1, y1)e

−2π
λ∆Z

(x2
1+y2

1)e
ik

2∆Z
[(x1.x2)+(y1.y2)]dx1dy1.

(2.4)
If a change of variable is made,fx,y = (x, y)/(λ∆z), which give the relation be-

tween spatial frequencies and angle of inclination, it is realised that a bidimensionnal
Fourier transform is expressed. In textbooks [10, 11], operator notation is used for
more clarity, such as:

• Q[ 1
∆z
, r]{U(r)} = ei

k
2∆z
|r|2U(r) for the quadratic phase factor

• α[ 1
∆z
, r]U(r) = 1

∆z
U( 1

∆z
r) for the scaling

• F [r, f ]U(r) =
∫∞
−∞ U(r)e−i2πf.rdr for the Fourier transform
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• r is used for plane coordinates and f for frequency plane coordinates,

thus leaving the Fresnel integral as:

U2(r, z) = Q[
1

∆z
, r2].α[

1

λ∆Z
, r2].F [r1, f1].Q[

1

∆Z
, r1]{U1(r)}. (2.5)

Figure 2.1: Wave-front decomposition. A wave-front can be visualised by surfaces of
constant phase.

The Fresnel diffraction expression is appealing in simulations since it fits dif-
ferent propagation scenarios and is easy to compute [10, 11]. The Fresnel transfer
propagator is routinely used for short propagation distance:

U2(r2) = F−1[r1, f1] [H(f1).F [r1, f1]{U1(r)}] , (2.6)

which incorporates the transfer function H:

H(f) = eik∆z. exp
(
−iπ∆z(|f |2)

)
, (2.7)

and which could be more or less understood as the propagation of the Fourier
domain. With the assumption of an extended ∆z, it is possible to approximate the
quadratic phase factor Q as being flat over one pixel. Specifically clarified when
∆z > D2/λ, where D is the maximum spatial extent of the source-plane field. This
is refered to as the Fraunhofer approximation,

U2(r) = F [r1, f1].{U1(r)}. (2.8)

In this regime the angular distribution of the diffracted wave no longer changes
with increasing distance from the sample. Thus, a plane-wave after passing through
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the planar function U1(r) can be considered as a superposition of plane waves prop-
agating in different directions (see Fig.2.1). The vast knowledge of analytic Fourier
transforms may be used but for arbitrary functions, fast numerical algorithms are
necessary to calculate the Fourier transform. The basic codes written for simulation
of propagation and used in this thesis were compared with known analytical solu-
tions, such as the Fresnel sine and cosine integrals for a square aperture at a given
distance:

U(r2) =
eik∆Z

2i
{[C(α2)− C(α1)] + iS(α2)− S(α1)]} (2.9)

×{[C(β2)− C(β1)] + iS(β2)− S(β1)]}, (2.10)

where α1,2 and β1,2 are constants found based on the dimension of a square
aperture. S(x) and C(x) are respectively the sine and cosine of the Fresnel integral:

S(x) =

∫ x

0

sin(
πt2

2
)dt, (2.11)

and
C(x) =

∫ x

0

cos(
πt2

2
)dt. (2.12)

2.1.1 X-ray interaction with matter

X-ray imaging is explained here from the macroscopic mechanisms behind x-ray
interaction with a material, rather than from the microscopic (atomic or electronic)
interaction. In the X-ray regime, the complex refractive index of a material is
defined by n(r, z) = 1 − δ(r, z) − iβ(r, z) which is directly proportional to the
electron density distribution. Its spatial variation will thus give rise to differences
in phase and amplitude to a wavefield propagating through an object. For a given
material, the values of δ and β, which are related to the real and imaginary parts
of the atomic scattering factor (microscopic-to-macroscopic), are given respectively
by:

β =
nareλ

2

2π
f 0

1 (λ), (2.13)

and
δ =

nareλ
2

2π
f 0

2 (λ), (2.14)

where na is the atomic density, given in atoms per unit volume, re = 2, 82 ×
10−13m is the electron radius and f 0

1 and f 0
2 are the real and imaginary parts of the

atomic scattering factor. While determination of the imaginary part does not pose
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difficulties since it is a measure of absorption, the determination of the real part,
which manifests as a phase shift, proves to be more difficult to measure with precision
(even with interferometric techniques). Fortunately, they are mathematically related
through the Kramers-Kronig relations as long as the energy dependance of one of
the factor is known through a broad range [12].

For our experimental parameters (far from the absorption edges of the atomic
species), the transmissivity of a sample T (r, z) is well approximated by a complex-
valued projection approximation [13], separated into amplitude and phase compo-
nents:

ψ(r) = exp

[
−k
∫ Z

0

δ(r, z)− iβ(r, z)

]
dz.ψo(r, 0) (2.15)

= A(r)eiφ(r).ψo(r) (2.16)

= T (r).ψo(r, 0), (2.17)

(2.18)

where the integral is taken along the thickness of the object. Thereby, the
recovered image is a map which encodes both the absorption A(r) and phase shift
eiφ(r) produced by the sample. This complex transmission function (also coined
as the "projection propagator" due to the accumulated variations in phase and
amplitude [14]) is valid as long as the illuminating wavefront ψo(r) is planar or
possess a low degree of curvature [14]. A three dimensional map of the electron
density distribution can only be recovered by solving different orientations with a
computer tomography method (section 3.6 ).

2.2 Coherence of wavefields

Wavefield propagation between planes, as described earlier, intrinsically involves full
coherence of the illumination. This assumption is central to the iterative methods of
CDI which propose to study non-crystalline and semi-crystalline specimens through
far-field interference patterns. However x-ray sources present some degree of par-
tial coherence and this departure from perfectly coherent illumination, results in a
blurry version of the pattern and is of critical importance for the phase retrieval
(section 3.4). Thus, the concepts of coherence are reviewed in this section by means
of the canonical Young’s double-slit experiment. As Feynman was wont to say :
"that all of quantum mechanics can be gleaned from carefully thinking through the
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implications of this single experiment" [15]; one can certainly see how this model of
diffraction model can be used to qualitatively and quantitatively probe the coherence
function of x-ray.

Figure 2.2: Schematic of the legendary Young’s double slit experiment used to measure
the transverse coherence length of x-ray sources. The mutual coherence function Γ12

describes the correlation of the wave field at two arbitrary points E1 and E2 in the plane
of the slits. Figure and caption derived from [16, 17].

Recalling Huygen’s principle (section 2.1), the illuminated points in the two slits
from the source, are themselves the source of spherical waves with amplitude E1(t)

and E2(t). A point D on the detector measures the modulus square of the two
varying electric field with the relationship of their time-averaged product formed as:

Γ12(τ) =< E1(t)E∗2(t+ τ) >, (2.19)

where τ is the relative delay in time produced by the path difference. This is a
first order cross-correlation function, also known as the mutual coherence function
(MCF). A more general MCF is given for an ensemble average realizations (<>)
over a scalar wavefield ψ(r, t),

Γ(r1, r2, τ) =< ψ(r1, t)ψ
∗(r2, t+ τ) > . (2.20)

The first order treatment of the MCF is in agreement with demonstrated Gaus-
sian characteristics [13] of wavefields coming from synchrotron light sources (sec-
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tion 2.3). The degree of coherence is given by normalising the MCF:

γ(r1, r2, τ) =
Γ(r1, r2, τ)√

Γ(r1, r2, 0)Γ(r1, r2, 0)
(2.21)

=
Γ(r1, r2, τ)√

I1

√
I2

. (2.22)

For total incoherence, |γ| = 0. Examining of the interference pattern (solid vi-
olet, Fig.2.6) at point D a constructive interference is found, however if the phase
slit s2 is retarded by any value φ, it will have the effect to shift the location of the
minima and maxima (D’). Then, partial coherence can be qualitatively understood
as the random variation of φ, which over long intensity measurement produce re-
duced fringe contrast [18]. In what follows, the degree of coherence is quantitatively
deduced from the contrast of the Young’s two slit experiment fringes.

2.2.1 Spatial or transverse coherence

To derive a condition for transverse spatial coherence of a wavefield, the schematic
of Young’s double slit experiment is now reviewed from a geometrical point of view.
Two light paths emanating from the extremities of a source σ illuminates a pair
of thin slits s1 and s2. The waves recombining at D must have a difference in
path length ∆ϕ = k(s12 − s11 − s22 + s21) = 2kθσ < π, and using a small angle
approximation, the transverse coherence length can be described in term of the
angular relationship between the two waves, to give an angular condition:

θσ < λ/4. (2.23)

Using another geometric condition for the maximal distance the slits can be
separated (d = 2.θ.zs), the transverse coherence length is deduced as:

lxy =
λzs

2σx,y
, (2.24)

where σx,y is the finite source related to the sizes of accelerated electrons from
which synchrotron X-rays are produced, zs being the distance the incident X-ray
travels from the source to the screen (it was considered that σx,y � z). Horizontal
and vertical source sizes are different due to the path the oscillating electrons take
through the machine and undulator.
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2.2.2 Measuring coherence

The contrast measured at the detector plane coming from the fringes of the diffrac-
tion model of Fig.2.6, gives intensity maximum and minimum called the "visibility",
defined as:

ν(r) =
Imax − Imin
Imax + Imin

. (2.25)

Again, using the Young’s double slit experiment it is possible to relate the vis-
ibility (Eq.2.25) to the degree of coherence (Eq.2.21). In a conventional laser in-
terferometric set-up, the measured intensity from both pinholes illuminated, I, is
given by the sum of the individual intensities. For the partially coherent x-ray case,
an interference term, which depends on the degree of coherence in the wavefield is
inserted:

I = I1 + I2 + 2
√
I1I2|γ(r1, r2, τ)| cos(Φ12(r1, r2, τ)), (2.26)

where Φ12 is the phase difference between the interfering wavefields [14]. Under
the assumption that the pinholes are identical together with their equal illuminating
intensity (I1 = I2), it has been demonstrated in [19] that

ν(r) = |γ(r1, r2, τ)|. (2.27)

Perfect coherence should result in the intensity dropping to zero between fringes
maxima whereas full incoherence washes the fringes out. Fitting of this formula at
synchrotron sources have yielded confirmation of the assumed Gaussian character
[20]. This explained by the thermal fluctuations of the source that have a Gaussian
distribution.

For a very narrow bandwidth (coined as quasi-monochromaticity), the MCF is
approximated with:

γ1(r1, r2, τ) = J(r1, r2) exp(−iωτ), (2.28)

where ω0 is the central angular frequency of the wave field and J is the MOI [21]:

J(r1, r2) = ψ(r1)ψ(r2)g(r1 − r2), (2.29)

and g(r1 − r2) is the coherence factor. Assuming a source with Gaussian distri-
bution and using the Van Cittert-Zernike theorem [22], this factor becomes
exp (−|r1 − r2|2/2l2xy).
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2.2.3 Temporal or longitudinal coherence

The longitudinal coherence length (ll) is regarded as the length at which two incident
(X-ray) waves λ and λ+ ∆λ, initially in phase become anti-phase (see fig.2.3). Two
waves starting with the same phase but differing in frequency by a small ∆λ value
will be exactly out of phase after a distance ll, as illustrated in Fig.2.3, with the
shorter wave having N+1 maxima at 2ll, as opposed to the N maxima of the longer
one. Equating:

2ll = Nλ = (N + 1)(λ−∆λ), (2.30)

gives under the assumption that ∆λ � λ, the longitudinal coherence length
before the phase difference between the two waves is 2π is:

ll =
λ2

2∆λ
. (2.31)

Figure 2.3: Two waves with slightly different wavelengths λ and λ−∆λ starting in phase
will arrive out of phase after traveling a distance ll.

The length of ll is inversely proportional to the bandpass of the beamline optics,
usually achieved with the (111) reflection of a perfect Si crystal. A typical fractional
bandwidth given by a double crystal monochromater is ∆λ ' 1.4.10−4 and leads to
the reasonable assumption of monochromaticity due to this ability of synchrotron
to produce quasi-monochromatic light. After the X-ray beam passes through a
Si(111) double crystal monochromator, it typically produces a relative bandwidth
of approximately ∆λ/λ.

2.3 Synchrotron source

This section briefly reviews the central features of synchrotron radiation which are
sources of sufficiently coherent and bright x-rays for coherent diffraction experi-
ments. As it is well known, any charged particle moving in an non uniform fashion
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produces an electromagnetic field, and when accelerated to relativistic speed along
curved trajectories, it is called synchrotron radiation [23]. Synchrotron radiation
took a major importance when it was realised that radiation emitted in storage
rings constituted a source of exceptional intensity and spectral brightness, partic-
ularly at short wavelengths. Whereas the continuous loss of energy was first seen
as a hindrance in particle physics, the shrewed exploitation of this radiation gave
birth to the construction of a large number of so-called 2nd generation synchrotron
rings dedicated to all sorts of experiments, where the high brightness and the low
divergence (similar to laser properties) would be the key for numerous advances in
condensed matter. They used powerful bending electromagnets in the accelerators
to generate the radiation with the relativistic electrons forced to travel in a closed
path by strong magnetic fields (Lorentz force), with the lost of energy replenished
through the use of radio frequency cavities placed at various points along the ring.

Figure 2.4: Early synchrotron radiation facility were electrons are bent around a quasi
circular path producing a cone of radiation (shown in violet) in the forward direction with
an opening angle 1/γ. Although, in the center-of-mass moving frame, the e− behave like
an Hertzian dipole [12].

For electrons circulating in a microscopic atom, the laws of quantum mechanics
apply and ’surprisingly’ to a large system like a synchrotron accelerator as well,
as it can be regarded as a macroscopic atom. But has the energy state can be
regarded has having a large quantum number, a classical treatment is a very good
approximation [24]. Maxwell equations can be used to determine the characteristics
of the synchrotron radiation but an approach based on the known classical results of
Hertzian dipole radiation subject to Lorentzian transformation is an easier approach
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[12]. In fact, synchrotron radiation can be qualitatively understood by considering
a moving antenna. Two dramatic effects arise from the relativistic effect, first the
change in frequency due to the Doppler effect which brings the radiation in the X-
ray range and secondly, the isotropic radiation that is distorted into an extremely
forward pointing cone of radiation due to Lorentz compression (Fig.2.4). This latter
compression of the well known sin2(Θ) radiation, result in a cone with an opening
angle 1/γ in the laboratory system. In the frame of special relativity, its half angle,
θr is described by the factor γ:

θr =
1

γ
=

1√
1− β2

, (2.32)

where β denotes the relativistic particle velocity given by β = v/c, with v is the
particle velocity and c the velocity of light. This equation highlights the importance
of the ability for synchrotrons to accelerate electrons to near the speed of light,
reducing the angle of emission, and thus producing lower emittance, and a brighter
X-ray beam. Spectral brightness B is an important parameter to qualify the quality
of an x-ray source, and is defined by:

B =
Φ(Eν)

4π2εxεy
, (2.33)

where Eν the spectral flux, defined as the number of photons per time interval
at a certain energy of 0.1 bandwidth normalized by the emittance εx,y (product of
the divergence θx,y and the lateral extent of x-ray beam σx,y [13]). Fig.2.5 displays
a graph comparing the spectral brightness of various sources [25, 21].

The latest synchrotrons, the so-called third-generation make use of magnetic
multipole structures between the bending magnets of the storage ring. These spe-
cialized devices that are generically referred to as insertion devices present two
different modes of operation depending on the strength of their periodic magnetic
field and differentiated by a single parameter:

K =
eB0λu
2πmec

, (2.34)

where B0 is the magnetic field strength, e and me are the charge and mass of
the electrons and λu is the undulator wavelength.

When the magnetic field is relatively weak, K � 1, the angular excursion of the
electrons is smaller than the natural emission angle of the synchrotron radiation, and
the radiation resulting from the coherent interference of the harmonic oscillation of
the electrons has a very narrow spectrum with small angular divergence (1/

√
Nγ).
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Figure 2.5: Comparison of average spectral brightness (left) and peak spectral brightness
(right) for various sources (i.e., wigglers, undulators and XFELs). Comparison of spectral
brightness for synchrotron radiation sources (Undulators, Wigglers and Bends), to lab
based sources such as rotating anodes and stationary anodes. Stationary anodes have a
spectral brightness in the low end of the range, and rotating anodes are in the middle
range. The difference in brightness between synchrotron sources and stationary laboratory
sources can be up to 10 orders of magnitude. Figure and caption taken from [25, 21].
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In this mode, the insertion device is called an undulator and is ideal for coherent
diffraction experiments because of it laser like properties. While it obviously does
not alleviate the need for a monochromator, it still minimizes the heat load on the
beam line components.

A wiggler is the strong magnetic field version of an undulator with, K � 1, and
as the angular excursion of the electrons is larger than the natural emission angle
of the synchrotron, the radiation produced has a broad smooth spectrum resulting
from the incoherent sum of the large harmonics. The radiation from a wiggler is
more similar to synchrotron radiation except that its spectrum is shifted towards
higher photon energy and increased to 2N photon flux.

Figure 2.6: a) Modern storage ring optimized for high spectral brightness through the
inclusion of insertion devices [12]. b) The array of N dipole magnets forces the relativistic
electrons to follow a sinusoidal wave with periodicity λu. c) When the magnetic field
is relatively weak, K � 1, the angular excursion of the electrons is smaller than the
natural emission angle of the synchrotron radiation, and the radiation resulting from the
coherent interference of the harmonic oscillation of the electrons has a very narrow spectrum
with small angular divergence (1/

√
Nγ). In this mode, the insertion device is called an

undulator. In the the strong magnetic field version of an undulator withK � 1, the angular
excursion of the electrons is larger than the natural emission angle of the synchrotron, the
radiation produced has a broad smooth spectrum resulting from the incoherent sum of the
large harmonics. In this mode, the insertion device is called a wiggler with radiation more
similar to synchrotron radiation except that its spectrum is shifted towards higher photon
energy and increased to 2N photon flux. . Caption and figure derived from [12, 14] .
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2.4 Focusing optics

X-ray experiments are reliant on beam shaping optics [26], which one manipulates
the energetic beams to obtain higher numerical aperture (NA) by taking advantage
of the different interaction types of light with matter, such as diffraction (Fresnel
zone plates), reflection (mirrors) and refraction (lenses). In coherent imaging, an
increase of the NA increases the size of the fringes in the diffraction pattern, thus
enabling oversampling while providing better signal to noise ratio (SNR) at high
diffracting angles. As it will be seen in ptychographic sections, focusing is used to
select parts of the sample. The choice of focusing devices is usually done based
on the experimental needs, such as photon energy, bandwidth, efficiency, and an
adequate choice for those performed in CDI are Kirkpatrick-Baez mirrors (KB) and
Fresnel Zone Plates (FZP). Both produce a curved wave-front upon incidence of
a plane wave illumination and use constructive interference at the actual focusing
point, however, KB mirrors have much higher efficiencies for coherent X-ray than
FZP. A review of their characteristics is presented below.

KB mirrors. In a historic 1948 paper, Kirkpatrick and Baez introduced their
focusing mirror [27], signalling the beginning of X-ray optics and thus the very
birth of X-ray microscopy [28]. In fact, Roentgen himself proclaimed that it would
be impossible to focus X-rays with lenses since the index of refraction of x-rays is
smaller than unity, but external reflection occurs as Compton realised in 1922. A KB
mirror is an elliptically shaped (total) reflective mirror which keeps the distance from
a point source S to the focal point F constant, thus a spherical wave emerging from
S interferes constructively in F [26] , see Fig.2.7 (a). Two-dimensional focusing seem
to require mirrors of three-dimensional ellipsoidal shape at first sight, but hopefully
the two dimensions decouple, and a common focal plane is achieved by placing two
one-dimensional mirrors orthogonally. The desired elliptical profile is realised with
elastic emission machining (EEM) [29] and advanced polishing techniques, to achieve
figure errors (i.e., deviation from the ideal profile) well below 1 nm and roughness
of less than 0.1 nm.

Fresnel Zone Plate. The quasi-periodic structures of FZP act like binary
circular diffraction gratings, which alternate between transparent and opaque (or
phase shifting) rib zones to scatter an incoming wave in such a way that the multiple
scattered waves interfere constructively at the focus [26]. As the distance from the
optical axis increases, the density of alternating zones increases as to diffract the
light at the same focusing point. The focal length of a zone plate is given by
f = D∆r/λ. with D is the diameter of the zone plate, δr is the finest spacing of the
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Figure 2.7: Typical set-up of elliptical mirrors used at synchrotron radiation sources for
focusing. In (a), the one-dimensional focusing principle based on the elliptical shape is
illustrated; in (b) illustration of the stages for the uncoupled dimensions (VFM, HFM) in
the KB geometry of two sequential mirrors. Caption and figure from [26].

outermost zone. The binary structure produces successive higher order focal lenghts
of fm = (1, 3, .., 2m+1) with the even orders producing destructive interference. As a
consequence of the multiple diffracting orders, an order sorting aperture (OSA) and
a central stop are needed to let pass only the first order (which has an efficiency of
about 10% ) and to block the undiffracted light (zeroth order 25 %). The efficiency
can be increased by using fully transparent zone plate with alternating 0 and π

phase shift ring zones rather than transparent and opaque, although such a zone
plate works only for one energy. Important properties of a FZP are given by:

Rres = 1.22δr, (2.35)

and
Rdepth =

4δr2

λ
, (2.36)

where the width of last zone sets the resolution Rres and depth of field Rdepth [14].
An high aspect ratio is necessary for focusing efficiency and near the edge, where the
zones are thinner and thinner. This is achieved by electron-beam lithography with
gold as material of choice for keeping this high aspect ratio. To further increase the
resolution, FZPs based on iridium using atomic layer deposition (ALD) with zone
doubling is under development [30].

Advances in X-ray focusing optics. Early researchers focused their efforts
on curved reflective optics, and it was accepted that optics based on total external
reflection were fundamentally limited by the critical angle θc =

√
2δ to around 10

nm. This limit was also speculated to apply to all types of single optics but new
advances in nanofabrication capabilities like electron beam nano-lithography, thin
film deposition, pulsed laser deposition (PLD), focused ion beam (FIB) allows us to
take advantage of all types of interactions of light with matter, in addition to recent

29



CHAPTER 2. COHERENT DIFFRACTION IMAGING

Figure 2.8: a) A schematic of a binary zone plate composed of an alternation of trans-
parent and opaque rings. b) Schematic showing zone plate focussing for incident radiation
originating from the left. The m = 1 order is focussed at f while the m = 3 is focussed at
f/3. The schematic also depicts the virtual focus behind the zone plate (dotted lines) that
is composed of negative orders. Image and caption from [21].

theoretical work, promise spot sizes < 1 nm. They are for example competing
techniques such as thick tilted zone plates [31] (see Fig.2.9 c)) or sequential arrays
of hundred refractive lenses in a row [32] (see Fig.2.9 b)), Multi Layer Laue (MLL)
lenses, laterally graded multilayer mirrors, waveguides, and compound kinoform
lenses.

To push the focal spot size into the sub 10 nm regime, a reflective mirror using an
adaptative mirror to compensate for phase errors has been recently demonstrated
(see Fig.2.9 a)). However, the determination of the focal spot size was not co-
instantaneous as the mirror has been rotated for measurements in x and y. Of
further advantage, compound optics such as a combination of high gain KB mirror
(acting as pre-focusing) with a multilayer zone plate has very recently exploited and
shown to reach 5 sub-nm point focusing (see Fig.2.9 e)). In fact, multilayer zone
plate that are fabricated by PLD on a rotating wire seem to provide unlimited aspect
ratio as compared to conventional FZP where high aspect ratio is hard to prepare
with e-beam lithography. Two-step focusing scheme also appears to be indispensable
to capture the higher possible bandwidth offered by the 104 zones while exhibiting
less dispersion [33].

These highly efficient nano-focusing optics will also benefit analytical methods
reliant on the exceptional properties of hard x-rays such as fluorescence, spectrom-
etry, phase-contrast, etc. and this is the reason why nanotechnology centres are
being established at synchrotrons.
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Figure 2.9: a) Schematic of hard-X-ray focusing system with an adaptive or deformable
upstream mirror used to correct for the wavefront error that was not ideal owing to figure
errors (figure from [34]). b) Scanning electron micrograph of a nanofocusing lense unit
(figure from [31]). c) Focusing geometry for a thick Fresnel zone plate with tilted zones
[35]. d) An electron microscope image showing the single lens in one channel and the first
two lenses of the four-lens array (figure from [32]). e) Concept of compound optics, in
which the MZP is to be found slightly downstream of the KB focus (figure from [33]).
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2.5 Measuring and inverting the diffraction patterns

2.5.1 X-ray detection systems

To measure the fine fringes of a diffraction pattern that can vary over many orders of
magnitude in amplitude, the ideal detector must possess high resolution and output
a linear count over a high dynamic range in response to the photons impinging on
a pixel. To help choose the correct detector, the X-ray data booklet from Berkeley
[36] provides a good summary.

For the main experiments undertaken in this thesis, a Princeton Charge Coupled
Device of format 1024×1024 pixels measuring 20×20µm was used. A photon, after
absorption within the semiconductor (depletion layer) generates an electron-hole pair
(average energy required is 3.65 eV). In each pixel, an electric field discourage the
recombination and charge accumulate, then converted to the internal units of a CCD,
the Analog to Digital Units (ADU), which are related to its gain [37]. Although,
noise is also generated in the counting process and their effects in the diffraction
imaging system must be understood for correct inversion of the diffraction pattern.
The primary source of noise is due to the quantum nature of light, thus an inherent
statistical Poisson noise, proportional to the square root of the number of photons
(
√
N) is present in the detection of photons. In the detection process, thermal

effects act to add a background count. Fortunately, this dark current noise can
be removed from a CCD image by taking an image under the same experimental
conditions without being exposed to any photons (a mean from many exposures
accounts for the stochastic nature of the process). As the dark current describes the
rate of generation of thermal electrons at a given CCD temperature [37], cooling is
necessary to damp it. When the photon count is low, the dominant source is the
read noise.

A statically accurate signal for the detection is then given by the total signal to
noise ratio (SNR),

SNR =
S√

S +N2
dc +N2

readout

. (2.37)

Where S is the signal, Ndc is the dark current noise, Nreadout is the readout noise.
The first photon peak (Gaussian distributed) in the photon count histogram is used
for the noise threshold, see Fig.2.10. For a more formal processing of the CCD
frames and to correct for the different type of noises, it is possible to measure the
varying response across the device area, the so-called flat field measurement using
the analysis equation given in the Princeton instrument booklet [37]:
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Ec =
(E −D)× 1

N

∑pixels(F −D)

(F −D)
, (2.38)

where Ec is the corrected frame, E is an experimental diffraction pattern, D is
the time dependant dark exposure, F is the uniform illumination flat field.

Commercially available CCD detectors are being surpassed by hybrid detector
pixels descended directly from high energy research like done at the European Or-
ganization for Nuclear Research (CERN), such as the Medipix [38] now installed at
beamline 34-ID-C of APS and the Pilatus [39] (developed at Swiss Light Source)
which are single photon counting and very large dynamic range of up to 220 photons,
with no instrumental noise.

Figure 2.10: Matlab histogram of a photon count for a typical experimental data set
coming from a CCD. The first photon peak is used for the noise threshold.

Even with current detector technology, the phase is destroyed in the recording
process, a phenomenon referred to as the phase problem, and fundamental to CDI.

2.5.2 Resolution

Assuming post phase reconstruction (section 2.5.4), images are synthesized from
Fourier inversion of the captured angular distribution of the scattered waves, hence
the resolution is directly related to the maximum angular divergence (θ) to which
the radiation propagates:
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res =
λ

θ
. (2.39)

In the approximation of small angle scattering, the size of the detector D and
its distance from the sample Z are used to put the resolution into units of lengths,

res =
λD

2Z
. (2.40)

A condition sine qua non to a sufficient detection aperture, is that the generated
signal at high angle should contain enough photons to keep the SNR high enough.
Even at synchrotron sources where the brightness is about 1012 times higher than
lab sources, the flux may be not enough to reach satisfactory high spatial resolution.

Figure 2.11: In a conventional imaging setup (left), the lens sets the numerical aperture
(NA) whereas in a diffractive imaging system, the NA is recorded by a CCD (right).

Howells et al. [40] have investigated (both theoretically and experimentally) the
minimal required dose for imaging biomaterials which are known to be sensitive and
weak scatterers. Their starting point is the Rose criterion [41] which states that
to be able to reliably detect a feature against background noise, its signal should
exceed by a factor of 5 the root mean square level of noise during exposure. Taking
into account Poisson shot noise, this criterion requires a minimum of 25 photons.
By further proceeding with the classical electron radius:

re =
1

4πε0

e2

mec2
= 2.818× 1015m, (2.41)

and the complex electron density:

ρe =
2π(λ+ iβ)

λ2re
, (2.42)

they found the number of incident X-rays per unit area required to scatter pho-
tons into a detector from one of sample’s voxel dimensions d3, is given by:
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N0 =
P

r2
eλ

2|ρe|2d4
, (2.43)

and this corresponds to a dose, measured in Grays (with 1 Gy = 1 J/kg of
deposited energy) of:

D =
µhv

ρm
N0, (2.44)

where ρm is the mass density and µ is the inverse absorption length. Finally,
using a bio-material with composition H50C30N9O10S1 of density ρm = 1.35g/cm3,
against a water background and for X-ray energies ranging from 1 and 10 keV, the
limit for imaging a single non-periodic sample at a synchrotron was found to be 10
nm [40] (see Fig.2.12).

Note that this demonstrates that the necessary flux is inversely proportional
to fourth power of the desired spatial resolution. Thus, only very short and ultra
intense sources have the potential to reach atomic resolution (see section 2.6).

Figure 2.12: Graph summarizing information on the required dose and the maximum
tolerable dose for imaging a bio-material, based on calculation from a protein of empirical
formula H50C30N9O10S1 and density ρm = 1.35g/cm3 against a background of water for
X-ray energies of 1 keV (lower continuous line) and 10 keV (upper continuous line). The
required dose is based on the Rose criterion. Measurements of the maximum tolerable
dose have been compiled from experiment such as filled circles: X-ray crystallography;
filled triangles: electron crystallography; open circles: single-particle reconstruction; open
triangles: electron tomography; diamonds: soft X-ray microscopy (including XDM); filled
squares: ribosome experiment. Image and caption from [40].
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2.5.3 Sampling requirements

Having the diffraction experimentally measured on pixellated grids (to be later pro-
cessed by computation), necessarily implies that a continuous real-world signal is
sampled.The sampling requirements and the phase problem are closely connected,
a fact primarily realised by Sayre [7]. Thus, a Fourier transform becomes discrete
(DFT), still periodic but with circular boundaries that wraps up frequencies that
exceed the Nyquist frequency (or limit), a phenomenon called aliasing. Bates [42]
extends this argument and states that in order to avoid aliasing and rather have
edges that smoothly falls to zero, the autocorrelation of an image, which is given
by the inverse FT of the recorded intensity, must not overlap itself through the
boundary conditions. This is known as the oversampling criteria and can equiv-
alently be reached with an equation counting argument of the degrees of freedom
[43]. Re-writing the recorded intensity at the detector of a propagated wavefield as:

I[qx, qy] =

∣∣∣∣∣
Nx∑

x

Ny∑

y

ψ(x, y) exp

(
−i2π
N

(x.qx + y.qy)

)∣∣∣∣∣

2

, (2.45)

where Nx,y is the width of the array, x, y are discrete real-space coordinates and
qx, qy are discrete reciprocal-space coordinates, implies to solve Nx.Ny coupled non
linear equations. As the exit wavefield or real space function is a complex quantity,
the number of unknowns becomes 2NxNy and explains why the object must not
occupy a box of half size the array to reduce the number of unknowns. In fact this
mathematical demonstration formulates Sayre’s original proposition (1950’s) that
the methods of crystallography might be adapted for imaging general non-periodic
objects provided sufficient sampling of its reciprocal space diffraction [7]. From
this equation counting argument, Miao [44] and Sayre refer to a constant named
the oversampling ratio, σ, and defined as the number of points in the field of view
divided by the number of points in the extent of the object:

σ =
Field of view

Extent of sample
. (2.46)

These results can also be qualitatively understood from the fact that a fringe
must be recorded with more than one pixel to accurately record the minima between
fringes [45, 18].

The relation between pixel resolution of the object and the pixel size of the
detector are deduced, based on the Fourier transform relationship and geometri-
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Figure 2.13: Coherent diffraction measurement of a continuous fringed intensity prop-
agated from a single isolated object of size a. The sampling of π/a and the zero-density
region of 2a around the object, ensures a unique reconstruction. Caption and figure derived
from [17].

cal considerations. Equating a continuous Fourier transform with its discretized
approximation, given a real space grid spacing, ∆r show that:

∆r.∆q =
2π

N
, (2.47)

where ∆q is the reciprocal-space spacing. A far field diffraction pattern from
a finite size object a, has a fringe period or smallest period in reciprocal space of
∆q = 2π/a and corresponds to a maximum sampling distance (see Fig.2.13). Using
the geometrical parameters such as the small angle approximation (∆q‘|k|∆d/z),
the distance z (where the approximation is legitimate) and the detector pixel size
∆d, the real space sampling rate is finally:

∆x =
λz

N∆d
. (2.48)

These derivations have an important implication, the object must be contained
within a band limited support which consequently places an upper limit to its size
when the geometry of the experiment cannot fulfil critical oversampling. Using
a beam smaller than the object and the ptychographic technique overcome this
problem, as will be demonstrated in later sections.

2.5.4 Phase retrieval algorithm

Having set the necessary background to ’properly’ prepare fringed patterns, our
attention is now focused on the iterative mechanism whereby the remaining task
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of finding numerical solutions to the phase problem can be tackled. The phase
retrieval problem being widespread in the optics and crystallography community,
the diffraction imaging benefits from ground work of both communities. To solve
for the lost phase, the reconstruction algorithms share a common strategy, which
is to enforce constraints in both real- and reciprocal -space. In the latter, the
algorithm takes information from the measured diffraction amplitudes and in the
former, the information is derived from a priori knowledge on the nature of the
object or experimental method. When the constraints are satisfied, convergence of
the algorithms is reached and the phased diffraction can deliver (after inversion) a
complex representation of the object. Even though the term algorithm is employed,
this is perhaps not entirely appropriate as formal convergence is not guaranteed as
with a true algorithm which provides a completely deterministic solution in a fixed
number of steps [14]. The first diffraction algorithm was formulated by Gerchberg
and Saxton (GS) but for example suffer stagnation (see Fig.2.15), and a variety
of other algorithms were developed to circumvent such problems like the Hybrid
Input-Output (HIO) of Fineup [46] or the difference map of Elser [47].

Figure 2.14: Common flow chart to diffraction imaging phase retrieval algorithms. A
approximation of the real space object is propagated to the reciprocal space by mean of
a Fourier transform where the measured intensity is projected. The newly constrained
reciprocal space is then inverse Fourier transformed back to real space where constraints
such as positivity (real object) and tight support are applied, completing one iteration.
Figure and caption derived from [48].

The original iterative GS algorithm is composed of the following steps:

1. As starting point, an object guess ψ(r) is formed from a priori knowledge.
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2. The current object guess is propagated to the far-field by means of a FFT.

3. The computed diffracted wave amplitude is replaced by the measured am-
plitude, whilst preserving the calculated phase. It is the so-called modulus
constraint and adopting operator notation [14], is defined as:

ΠmΨ(q) =
Ψ(q)

|Ψ(q)|
√
Im(q). (2.49)

The operator can also encapsulate the backward propagation (propagated
modulus constraint):

Πmψ(r) = F−1ΠmFψ(r). (2.50)

4. A real-space support constraint is enforced (or projected) on the updated
object guess ψ′(r) by,

ψk+1(r) =

{
ψ′(r) if r ∈ S
0 if r /∈ S,

where S defines the area of the support .

5. The cycle is repeated for a sufficient number of iterations or steps, necessary
to reach data convergence.

Finally, a more comprehensible way to illustrate the algorithm operation, is the
projection language adopted by Veit Elser [47]. Thus, the simple GS iterative scheme
can be generalized as:

ψk+1(r) = ΠSΠmψ
k(r). (2.51)

The Gerchberg-Saxton algorithm was later classed as a steepest descent algo-
rithm [46, 48], meaning that its ’action’ either reduces or leaves the error metric
unchanged, in any case not worse. This is quite a serious problem as the error met-
ric very often reaches plateaus or is trapped into local minima. Fienup [46] went on
and generalized the GS algorithm by proposing the hybrid input-output algorithm,
known as the HIO, which can alleviate the stagnation problem of ER by avoiding
local minima (see Fig.2.15). This is due to an ability to explore the vicinity of local
minima in the solution space owed to the non linear feedback control provided by
the mixture of current estimate and semi-updated estimate:
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Figure 2.15: Error metric showings local minima and a global minimum.

ψk+1(r) =

{
Πmψ(r) if r ∈ S
(1− βΠm)ψ(r) if r /∈ S,

where β is a feedback parameter, selected to be between 0.5 to 0.9.
To monitor the algorithm’s convergence, the difference between calculated and

measured diffraction intensities, mean square error in reciprocal-space:

χ =

∑
q

(√
(I(q))− |Ψ(q)|

)2

∑
q I(q)

. (2.52)

The size of the support can be deduced from autocorrelation or the fringe spacing,
and can be later refined with the shrinkwrap method [49]. A variety of constraints for
the real-space can be employed such as constraining the range of phase values [50],
the density, and in the formulation of their update. Adaptation of Fourier modulus
although less ubiquitous, can be realised to account for experimental realities such
as photon noise, missing data under a beam-stop [51, 52] or by the difference map
algorithm which takes two instances of the Fourier modulus update. The difference
map algorithm was introduced by Elser and for simplicity is written with projection
operators:

ψk+1(r) = [1 + (1 + β)ΠSΠm − ΠS − βΠm]ψk(r). (2.53)

Using the formalism of projection operators in a feasibility problem, Garth
Williams in his thesis [48] has analysed the convergence success rate of the different
algorithms along with their trajectories. A similar analysis and in-depth review of
phase retrieval algorithms has been presented by Marchesini [53]. These algorithms
are at the root of the ptychographical algorithms, even though the support regime
adopts a more complicated form.
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2.6 Advances in Coherent Diffractive imaging

While the proposal of diffractive imaging was suggested 50 years ago by Sayre [7],
it was not until advances in x-ray source and detection technology were introduced
over the past 10 years or so, that CDI became a topic of considerable importance
[54]. It was only in 1999 that the first successful experimental demonstration of a
non-periodic pattern of gold dots (100 nm), took place conducted by Miao [44]. In
parallel and as opposed to transmission, Robinson used the CDI technique to image
gold nano-crsystals in reflection geometry by collecting diffraction pattern around a
Bragg point [55] (subject of chapter 6). Seminal experiments by Miao on three di-
mensional imaging [56] were then surpassed by Chapman’s convincing reconstruction
of a buried test object composed of a pyramid of 50-nm gold spheres [57], Fig.2.16.
In 2008, three dimensional reconstructions reached a new peak with the determi-
nation of structural deformation mechanism of a ceramic nanofoam, performed by
Barty et al. [58].

Although more difficult and challenging to investigate, biological materials are
not precluded from the CDI technique and efforts are being made to image unstained,
thick and unsectionned mesoscale samples like cells [59], chromosomes [60], viruses
[61], in conditions close to their native environment. The first biological images
were obtained in 2003 by Miao, with a reconstruction at 30 nm resolution of the
bacterium E.Coli [62]. As opposed to radiation hard material, biological materials
impose limits on the absorbed dose, which one is firmly linked (even with freezing)
to a minimum achievable resolution of approximately 10 nm [40]. Fig.2.17 shows the
work of Nishino et al. [60] on chromosomes.The necessary conditions, limitations
and technical aspects of imaging biological materials with X-rays are discussed at
length in Laura Shemlit’s thesis [63].

Figure 2.16: Three dimensional reconstruction of a buried sample consisting of 50 nm
gold balls on a Si3N4 pyramid. Images from [57].
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Figure 2.17: 3D reconstruction showing isosurface of the chromosome. The tomographic
reconstruction is enabled by the 2D slices data taken at different projections and stitched
together. Figures and caption from reference [60].

The X-ray CDI method is hopefully not restricted to photons and taking on
a broader view, has its roots in coherent electron microscopy. Electrons are also
described by wave mechanics and their stronger interaction with matter ( 104),
benefits a higher flux at high scattering angles than X-Rays. The drawback of the
strong interaction is multiple scattering, which limits the thickness of samples to
0.5-0.6 microns [40] with a size presently limited due to the short coherence lenghts
(about 10’s of nanometres) of typical electron beams. However, electron CDI can
tackle Fenymann’s 1959 challenge to make electron microscope more powerful in
order to make easy analyses of any complicated chemical substance by considering
its individual atomic position [64]. More recently, Howells claimed that electron
CDI has the exciting potential to highlight the function of proteins in molecular
machines [40]. Fig.2.18 shows the image of a reconstructed single-wall nanotube at
a resolution of 1Å[65].

Progress is also being made so that large-scale facilities do not stay the only
’soundbox’ for CDI, with alternative bright x-ray sources such as compact syn-
chrotrons [66] or high harmonic Generation [67]. After Sandberg [67] first demon-
strated the use of CDI from a table top HHG was possible, Dilanian [68] extended
the use to more than one harmonic. Considering the implicit wasteful of photons in
the coherent diffraction process, a CDI reconstruction procedure modified to include
the known incident spectrum is highly efficient and together with a greatly reduced
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data acquisition time while providing higher resolution (over with an associated in-
crease in computing power), small-scale facility x-ray microscopes will broaden the
use of CDI in nano-science and biology.

Figure 2.18: A. Measured diffraction pattern from carbon nano-tubes irradiated with
electrons. B. Part of the reconstructed nano-tube. C. The structural model. (the inner
and outer wall diameter are indicated by the yellow and red arrows respectively). Images
from [65].

Extension of CDI research to the emerging X-ray Free Electron Lasers (XFELs)
has the truly important potential for turning these extremely bright light source into
discovery machines [69]. While the very high peak brilliance will allow for atomic
resolution of nanostructures such as bio-molecular complexes and crystal defects,
the femto-second pulse duration will allow the study of their dynamics [70]. The
situation for organic matter seems at a first glance paradoxical, i.e., how a pulsed
beam with a dose exceeding by more than 5 orders the maximum allowable dose of
radiation can be a remedy. The key is that the sample remains intact during the
very short duration of the pulse and the useful data collection at high scattering
angle has been performed before a rapid photo-ionization cascads into an ultimate
Coulomb explosion. Recent studies have indicated that the underlying mechanism of
damage takes place between 20 to 200 femto-seconds [70], which confirmed the first
theoretical consideration done on a single molecule by Janos Hajdu et al. [71]. The
ability to image single bio-molecules will be of enormous benefit for structural biology
and especially to the protein difficult to crystallize, e.g., the vital membrane proteins,
target of future drugs [72]. Even though an XFEL has a high peak intensity, “fresh”
copies are individually introduced to accumulate the homeopathic speckles. This is
done with a so-called spraying technique but is challenging as it presumably involves
random orientation through the beam. However, by considering a large ensemble
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of scattering images, the application of clever procedures can almost miraculously
rearrange and classify ex post facto, the accumulated data and build the correct ’to
be phased 3D volume’ (see Fig.2.19). The pressing scientific challenges (of benefit to
society) that will be addressed by XFEL’s, are reviewed in the excellent SwissFEL
science case [69].

Figure 2.19: Illustration of a single-particle CDI from an XFEL pulse. (A) The intense x-
ray pulse scattering off the object forms an intensity pattern at the detector. However, the
intense pulse photo-ionizes the sample leading to plasma formation and followed Coulomb
explosion, leaving time to record only one diffraction pattern of the particle. Thus, a jet
of fast traveling identical particles is needed to record many individual diffraction patterns
from single particles (the detector must be able to capture just as quickly). (B) The large
ensemble of noisy diffraction patterns arising from the random and unknown orientations
full is assembled into a 3D diffraction data set in reciprocal space (i.e., patterns are classified
to group patterns of like orientation, averaged within the groups to increase signal to noise,
and finally oriented with respect to one another). The image is then obtained by phase
retrieval. Images and caption from [57].
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Ptychography

Coherent Diffraction Imaging (CDI) suffers from an experimental drawback, which
is the required size of the sample for satisfying the oversampling criterion, thus can
lead to aggressive sample preparation. Ptychography can examine any particular
region of interest by shifting the probe in small steps to record diffraction patterns
from overlapping regions. Ptychography is an elegant synthesis of CDI and scanning
transmission x-ray microscopy (STXM), two techniques that use coherence and a
detector but have developed separately. While the former has the prospect of very
high resolution but is limited to isolated object, the latter easily provides a trans-
mission map of an extended specimen by use of a scanning probe but its resolution
is limited to the extent of the focal spot size. Thus for a given STXM setup, such a
marriage of methods provides at least a five fold increase in resolution. Ptychogra-
phy also leverages the problems encountered in single-measurement CDI methods,
such as convergence difficulties for strong phase objects [73]. Its intrinsic quantita-
tive character makes it a successful microscopy technique for nano-materials as well
as biological objects [74] in 2D and in 3D [75]; as will be shown in section.3.6.

Improving the algorithms, to deal with experimental problems such as vibrations
[76], partial coherence [77] and uncertainties in scan positions [78] is the subject of
this chapter.

3.1 Ptychographic Iterative Engines

The translation-diverse phase retrieval approach of ptychography was brought to
maturity by Rodenburg and Faulkner in 2007 with the introduction of the ptycho-
graphic iterative engine (PIE) [79]. Ptychography finds its roots in structure solving
by overlapping Bragg peaks in reciprocal space by Hoppe and later implementations
by Nellist et al. for electron microscopy [80].
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In ptychography, an unknown specimen is scanned by a localized illumination
with known displacements. For the mathematical description, the complex-valued
probe and object are defined as two dimensional fields p(r) and o(r) with r =

(x, y, 0), while the different positions are given by a single vector (rj). Each of the
j-th scan points generate an exit field that is measured in the far field:

Ij(q) = |F [p(r− rj)o(r)]|2. (3.1)

Figure 3.1: Ptychographic scheme. The circles indicate the partially overlapping positions
and the arrows indicate how the desired input-output information is taken from Fourier
inversion at each position stepping.

Given as inputs, p(r), rj and the corresponding measurements Ij, a ptycho-
graphic reconstruction entails finding a single object field o(r) that agrees with all
the measurements. The overlap constraint between positions implies a multiple up-
date of the different field realizations within a single iteration, and thus dramatically
increases the success of converging efficiently to a unique solution. Obviously, the
relative strength of the overlapping constrained illumination is the ingredient that
favours the convergence.

PIE sequentially generates views that agree with the measurements; the proce-
dure is detailed here:

1. A current object transmission function from a shifted position rj becomes after
multiplication with a localized probe function: fj(r) = o(r − rj)p(r) = ψj .
Then, this complex function evolves (or propagates) to the far field by use of
a computational FFT:
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Ψj(q) = |Ψj|e(iφ̂j)| = F [ψj(r)]. (3.2)

2. Next, the modulus constraint is applied while preserving the computed phase:

Ψ′j(q) =
√
Ij.e

(iφ̂j). (3.3)

3. The inverse Fourier transform of F−1[Ψ′j(q)] updates the current view which
is in turn used to estimate a new object:

on+1
j (r) = onj (r) +

|p(r + rj)|p∗(r + rj)

|pmax(r + rj)||p(r + rj)|2 + alpha
.β(ψ′j(r)− ψj(r)), (3.4)

where α is a term used to avoid numerical problems when p(r) ≈ 0 and β is a
feedback parameter usually adjusted between 0.5 and 1.

Operation 1-3 can be resumed into a single operator ΠF → ψ′j = ΠF [ψj].

4. The above steps are repeated for each of the j diversity images all over the
positions rj to update for the object field. Completion is realised after n iter-
ations, with one iteration being interpreted as one pass over all scan positions
(The PIE scheme is summarised in Fig.3.2).

A few years later in 2008, Guizar-Scicarios highlighted in [81], the relation of the
PIE algorithm to a steepest descent algorithm. In fact, PIE is an ordered subsets
steepest descent algorithm as the whole data are divided into several subsets (in
this case, one subset = one diffraction pattern) with the object updated serially.
Steepest descent means that each sub-iteration consists in minimization of a cost
function. The mathematical steps and analytical expression are derived in Guizar’s
paper but more generally, it can be more readily seen by rewriting Eq.3.20 as:

onew(r) = o(r) + β′
∂LPIE

(∂o∗ + ∂o)
{o(r); I(q))}, (3.5)

where the gradient of the metric LPIE = ||
√
Ij −Ψ′(q)||I2 is taken with respect

to the real and imaginary part of the object. The spatially variant step size in the
direction of the steepest descent are given by:

β′ =
|p(r + rj)|

|pmax(r + rj)||p(r + rj)|2 + alpha
.β, (3.6)
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and are proportional to the weight of each pixel in the normalized illumina-
tion function, thus emphasising the object update where the beam amplitude is
significant [81]. Recognizing that other gradient search algorithm, e.g. conjugate
gradient, are superior to steepest descent, Guizar suggested the use of a non lin-
ear optimization algorithm to jointly optimize over the ptychpgraphic entries, i.e.
the object, the illumination beam and the translation parameters. For an efficient
implementation of the algorithm, the analytical expressions with respect to each of
the entries are provided in [82, 81]. The advantage of such an approach is that any
other non ideality in the measurements can be included , i.e., transverse coherence,
detector misalignments, finite pixel size, etc.. Even though the algorithm was found
to achieve superior image reconstruction over PIE when the system is not accurately
known i.e., p(r) and rj, it was ’eclipsed’ by an algorithm with better performance:
the difference map adapted to ptychography.

Figure 3.2: PIE scheme.

3.1.1 Difference Map

Elser found that many of the already established phase retrieval algorithms can
be readily described by the formalism of projection onto constraint sets [47]. A
solution is then obtained when a point has reached an intersection between two
subspace constraints. Thibault in 2009 [83], has adapted the formalism of difference
map to ptychographic data where the constraints are in this particular case, the
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Fourier projection and the overlap projection.

Figure 3.3: Difference map scheme: the arrow represents where the measured diffraction
patterns enter. The update of the object and probe functions are computed from the
entire set of views simultaneously, and the Fourier projection can be calculated in a parallel
fashion. In the PIE algorithm these updates and projections are calculated serially as the
algorithm loops over the individual views.

In the adaptation of DM to ptychography, a state vector formed from the multi-
plication of each view (Ψ = (ψ1(r), ψ2(r), ..., ψN(r)) must simultaneously satisfy two
constraints: the Fourier constraint and the overlap constraint. The projection onto
a constraint is the element that satisfies the the constraint while minimizing the
distance ||Ψ− Π(Ψ)||2. While the Fourier projection ΠF that applies to each view,
has been described earlier, the overlap projection Π0 can be computed from setting
the derivative of the distance-minimisation ||Ψ − Π0(Ψ)||2 to zero with respect to
overlap constraint to give:

onew(r) =

∑
j p
∗(r + rj).ψj(r)∑
j |p(r + rj)|2

, (3.7)

and
pnew(r) =

∑
d o
∗(r− rj).ψj(r)∑
d |o(r− rj)|2

. (3.8)

These equations need to be solved simultaneously as the system cannot be de-
coupled analytically and this is the reason for the built nested loop seen in Fig. 3.3
which iterates a number of times. While the ePIE uses only the overlap constraint
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to derive a probe, the additional step of overlap projection here, makes the probe
derivation more formal.

The main difference is in the update of the state vector, which in ePIE takes a
simple replacement form and is incorporated within the object and probe update
whilst in the difference map algorithm the update function takes a more complicated
form which is more similar to the HIO (Eq.2.53) equations of Fineup for single-shot
CDI:

Ψn+1 = Ψn + ΠF (2Πo(Ψn)−Ψn)− Πo(Ψn). (3.9)

The convergence is monitored by the squared absolute difference between the
current and previous iterations [84]:

εn+1 = ||Ψn+1 −Ψn||2. (3.10)

Projections: In the supplementary info of Thibault’s paper were DM is pre-
sented, the validity of the multiplicative projection is also assessed with real space
argument whereas Rodenburg and Bates had first developed their argument as
Reciprocal-space argument [86]. Thus, for the multiplicative relation of probe and
object to be true, a maximum depth of the sample is given as a function of the
resolution of the system, R, the spatial extent of the probe wave-field, and the
wavelength by Z = Ra/λ. Consequence of the overlap, stems a large a, and so
allows the assumption that the probe is always constant within the sample. Un-
der these conditions, reconstructions are possible independently of the scattering
regime (whether weak or strong) and even not compromised with strong dynamical
diffraction [83].

Other techniques

Phase modulator scanning : This method takes a similar approach to phase
retrieval but using the essence of the wave-front sensing technique. This uses a
known phase perturbation (coming from a manufactured plate) in the recording of
intensities from which the phase can be derived. This method can also be used to
image extended objects where the support cannot be defined by the sample. The
technique has been developed by Zhang et al. [87]. As with other forward scattering
methods the sample must have sufficient transmission in order to capture diffraction
with sufficient statistics.

Marchesini: Marchesini in his 2011 paper reviews some of the existing meth-
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Figure 3.4: Sketch of the behaviour of ER and DM algorithms as projections onto con-
straint sets. The modulus constraint set is shown as a blue line and the support constraint
as the red line, the solution is at the point where the two lines intersect. From these
geometrical representations, it is understood that the difference between the ER and DM
algorithms lies in the paths taken to reach the solution (which is not always on the con-
straint set), e.g., the DM algorithm works by taking the difference between two projections
labelled here as p1 and p2. Caption and figures derived from [53, 85, 63].
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ods for solving ptychographic phase retrieval problem from a numerical analysis
approach, and proposes a solution to the problem by alternative methods that are
standard in the numerical optimization community [88].

3.2 Simulation and experimental parameters

A common practice when extending the algorithms tools is to perform numerical
tests (or simulations) to assess their performance. An arsenal of tools has been de-
veloped in the CDI field to correct for imperfections in data and next sections cover
their implementation within the difference map method as to reach satisfactory re-
sults under departure from a controlled environment. The following scenarios are
considered: uncertainties in scan positions, degraded beam coherence, illumination
drifts, vibrations. To be more realistic, all scenarios are tested with different degrees
of noise (the procedure to add Poisson noise counting statistics diffraction data is
explained later in this section). As the effects of realistic parameters can be studied
separately, simulations aim to give us a better understanding of the correcting mech-
anisms and their respective limits. However, real world experiments usually involve
all the scenarios during acquisition of a data set; then, it will be assumed that the
large amount of redundant data allows the combination of refinement methods to
work together in an efficient manner.

Simulations and reconstructions share the discrete pixel units of the computer
whose sizes are related to experimental ’real world’ units by the sampling relationship
of real and reciprocal space of the DFT:

∆r∆d =
λL

N
. (3.11)

Thus, the translation for each of the jth illumination positions during numerical
reconstructions are set by this equation. However, this should be understood as the
pixel size for the numerical calculation as opposed to a measure of resolution.

Simulations were designed with Matlab (short for Matrix laboratory), a computer
language where the fundamental units are matrices. It is thus perfectly suited for
numerical imaging problem in two and three dimensions, as a range of arithmetic
operations can be performed on arrays. The language is interpreted by and also
contains a number of built-in computational and graphical procedures.

At the root of the ptychographic simulations lies the transformation of a feature
rich (jpg or png) image into a complex-valued matrix. The following sequence of
Matlab functions is used:
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1. Transformation into a Matlab matrix using the function:
image = imread(’image.jpg’).

2. The RGB image is merged into a single matrix with:
image = rgb2gray(image).

3. Normalisation of the image to have an amplitude [0-1] :
object = image-min(min(image)),
object = object / max(object(:)).

4. The object is embedded into a larger field of view,
object = padarray(object, [300 , 300]).

5. Finally, the object is rendered complex,
object = exp(−k ∗ δ∗ object). * exp(−i ∗ k ∗ β∗object).

For the effectiveness of simulations, the projection of a single material sample is
considered, with a convenient ratio β/δ of approximately [6-8], to avoid the situation
of a pure phase object or a purely absorptive object. The computational sensitivity
of CDI with regard to the integrated phase does not decrease as a function of the
object thickness but rather curl the signal around the origin due to the limited
interval [0 ← 2π], a phenomenon called phase wrapping. Then, simulations are
produced with a phase retardation of maximum 2π, otherwise the reconstructed
phase images need to be unwrapped, and this could provide a difficulty for ’noisy’
images (the Goldstein method [89] which uses spatial correlations in the image, is
a reliable way to this end). Extension to multi-materials has not been considered
but should be straightforward, for example the object field could be divided into
regions with different ratios along with sub-regions that are formed by union of
these different regions.

Once a complex-valued object is created, the type and size of the localised illu-
mination must be considered. Simulations presented in the next sections are based
on a pupilar function, meaning a circular aperture filled by ones generated on a
background array of zeros. To ’smoothen’ its sharp edges, the pupilar function will
either be convolved with a Gaussian function (of few pixels) or be propagated slightly
using the angular spectrum method (Equ.2.6). To avoid aliasing and also generate
oversampled diffraction pattern, the substantially localized illumination must not
fill more than half of each of the array dimensions. The illumination array size and
therefore the size of the computed diffraction patterns is set to power of two in each
dimension (e.g.28, 256 pixels) for computational efficiency of the FFT. In later sec-
tions of the thesis, it will be shown that ptychography can cope with illuminations
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that are more ’structured’ or present astigmatism with an initial model strongly
dissimilar from the wavefront to be recovered.

Figure 3.5: HSV plot of a pinhole, a pinhole with smooth edges and a pinhole propagated
using the angular spectrum approximation to z = 5 mm. Pixel size is 50 nm

No 3D simulations were performed. Nonetheless, considering the previous as-
sumption that the beam wavefront function stays constant inside the sample, a
three dimension illumination is simply created by expanding the 2D array into the
third dimension z. For more realistic simulations, an exponential term based on
calculation of the absorption length as a function of the beam interaction with the
material, should be imparted in the amplitude term. 3D simulations were investi-
gated in Bean’s thesis [52] with the findings that convergence is only reached if a
relatively tight support is applied to the object’s third dimension.

3.2.1 Error assessment

In the case of simulations, the error in reconstructions can be reliably computed by
a suitable metric such as the one provided by Fienup [90]:

En =

∑ |On|2 +
∑ |O|2 +

∑∑
OO∗n∑ |O|2 , (3.12)

which in this form, is insensitive to constant global phase factors. As the the
probe is allowed to float during ptychographic reconstructions, the object will also
consequently move. Thus, the term

∑∑
OO∗n should be replaced with the maxi-

mum of the cross-correlation to render the metric insensitive to translational offsets.
However, assessment of error for real reconstructions is less absolute and the reli-

ability of the reconstructions will be mainly monitored (or analyzed as for real data)
with difference map error metric Eq. 3.10 and the R-factor [83] which quantifies the
agreement with the measured data and calculated as:
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R =

∑J
j

∑Q
q (||Ijobs(q)| − |Ijcalc(q)||)∑J

j

∑Q
q |Ijobs(q)|

, (3.13)

where the summation is over the reciprocal-space coordinate q and the jth mea-
sured diffraction patterns.

3.2.2 Scans

Simulated and real data were acquired using a ’spiral’ scan pattern or more precisely,
the Round-ROI-scan. This scan, which follows concentric trajectories, eliminates
grid artefacts in ptychography [75] that are due to a ’pathological’ symmetry. Its
ability to break down translation symmetries has also proven to improve data con-
vergence and to reduce ambiguities in data reconstructions [83]. Explanation given
in [75] are repeated:

" If p(r) and o(r) are the solutions to a ptychograpic dataset then so are the
functions o′(r) = f(r)o(r) and p′(r) = [f(r)]−1p(r) if and only if f(r) = f(r+ rj) for
all positions j. This has only the trivial f = Cte solution unless the scan positions
lie on a regular grid. Implementations of this in use are adding a random offset to
a set of ’grid’ positions. One benefit of the round-ROI scan is that while breaking
the translational symmetry, an analytical description of the scan positions can be
preserved ".

Figure 3.6: Scan positions for ptychography: Left: periodic pattern. Middle: concentric
pattern. Right: Fermat spiral pattern containing two sets of equiangular spirals follow-
ing clockwise (black curves) and counterclockwise (blue curves) path [91]. They are two
consecutive Fibonacci numbers.

The scan pattern is defined by the following equations:
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x = ∆r.n cos((m− 1)
2π

Nθn
), (3.14)

and
y = ∆r.n sin((m− 1)

2π

Nθn
), (3.15)

where x and y are the coordinates of the object position, ∆r is the step size, n
is the schell number, Nθ is the number of points in the first shell and m is the mth

point in the nth shell (whilst still sampling evenly).
This scan has been widely used, but a promising scan that presents a lack of sym-

metry while featuring a uniform coverage has been presented very recently by Huang
[91]: a Fermat spiral pattern. This scan presents better reconstructing performance,
especially towards low overlapping conditions. Inspired by plants in nature (daises,
sunflowers, pineapple) where arrangements of branches are ’space-optimized’ as to
provide equal exposure to pollinators (or even to the Sun). The analytical expres-
sion proposed by Vogel [92] to construct the tightly packed sunflower seeds is given
in polar coordinates:

r = c
√
n, θ = n.φ0, (3.16)

where c is a constant scaling factor for the radius r, n is the index number of the
seed, and φ0 is the divergence angle, known as the golden angle ≈ 137.508 . Due to
its recent introduction, the scan has not been used in this thesis but should be used
for future experiment has it has proven to improve SNR of reconstructed images by
a factor ≈ 5%

Fig 3.6 c) shows a Fermat spiral pattern, with the factor c adjusted to give a
total number points that matches with that of the other scans over the same area.
Some of the clockwise and anticlockwise lines are drawn to depict the capitulum
of a sunflower. Its superior performances is explained by the fact that the scan
distributes more power to high spatial frequency (through the Fourier transform of
the overlap maps). It has then been concluded that: ’the Fermat spiral pattern
indeed represents more randomly arranged points while providing more uniform
coverage’ [91].

Simulated diffraction

Once a scan regime has been chosen, a ptychographical set of 2D diffraction ampli-
tudes is generated from a complex-valued object and illumination, using the follow-
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ing procedure (script ’diff.pattern.sim’ in appendix) which is also given in Bean’s
thesis [52]:

1. Generate the vector position rj (pixel units) from the scan regime (raster or
Round-ROI) and its respective parameters.

2. At each of the j − th positions, cut a region defined by the size of the illumi-
nation function array to form the sub-images, (o(r− rj)).

3. Multiply each sub-images with the illumination array p(r) to yield the views
ψj(r).

4. Propagate the views to the far field using an FFT as for propagator.

5. Square the propagated views,|Ψj|2, to remove the phase information and gen-
erate the intensity recorded as in an experimental diffraction experiment.

6. Stack the intensity patterns in .mat structure as input data for the ptychog-
raphy algorithms.

In an experimental measurement, the number of arriving photons follows a Pois-
son distribution, so even a perfect measurement inherit of some uncertainty which
follows

√
M , with M being the number of photons measured at each pixel. The

procedure to make realistic simulations is given in Garth Williams’ thesis [48]:

• Select the density projection of the object

• Compute the FFT to simulate a diffraction pattern

• Estimate or select the number of photons M

• Calculate the intensity for use as a probability for determining the location of
photons

• Based on the integrated intensity and the number of photons, calculate the
average intensity per photon drawn from a random distribution with mean
given by the intensity in that pixel divided by the average intensity per photon.

In Matlab language the process can almost can be condensed into one line using
the implemented poisson distribution function:

Pattern= poissrnd((Intensity/sum(Intensity(:))) ∗M)
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Figure 3.7: Left to right: A typical diffraction pattern with its number of photons and
hence SNR decreasing.

Figure.3.7 shows the effect of different level of photons on the diffraction patterns.
Fortunately, the ptychography has been shown from its early days to be robust

with respect to noise [93], nonetheless for low counting statistics, techniques like
maximum likelihood can be implemented for even better performance of the algo-
rithms [94, 95]. The degrees of partial coherence and scan errors are set optionally
in the simulation code.

3.3 Positions determination

If robustness is the consequence of the translation diversity, in counterpart, this lat-
ter couples the reconstruction resolution to the accuracy requirement in translation.
Indeed, it was quickly realised experimentally that the achievable resolution could
not surpass the scan accuracy [96]. Moreover, the degradation increases drastically
at short wavelength as the instabilities and inaccuracies of translation stages become
significant with the desired resolution [97].

Based on the premise that thermal drifts and mechanical instabilities are integral
parts of real-world experiments, Takahashi in his quest for high resolution [97],
developed an in situ technique to suppress position errors but it is quite tedious a
method (before measuring a diffraction pattern at each focused beam position, an
isolated particle has to be scanned with a dark-filed knife-edge method, then the
peak of the fitted intensity profile is used as a reference point to precisely measure
the drift). An a posteriori method that relaxes the sensitivity to positional errors
while improving the quality in images, is a better tool being able to also correct for
camera length and misalignment inaccuracies.

58



CHAPTER 3. PTYCHOGRAPHY

Guizar-Sicarios in 2008 [81] was in fact the first to address such a numerical
challenge as his metric minimization approach (using conjugate gradients) allows
each ptychographic entry to be optimised simultaneously. This method was not
shown to operate robustly using experimental data [96] as it easily becomes trapped
in local minima. However, keeping the conjugate gradient descent approach to
correct for insufficiently known position while updating the object and illumination
functions with ePIE or DM has shown (very recently) to be a scheme that operates
robustly, even for large critical scan positions errors [98].

Rodenburg and coworkers developed a genetic algorithm [99] but it did not prove
to be robust either, so they came to settle upon another method that is simpler in
its implementation while providing a promising solution, an annealing approach
based on a trial and select strategy at each single position of the diversity field
[96]. While the annealing method is based on optimization of each single exit wave’s
Fourier space, it was followed thereafter by an alternative method based on a model
of position errors, which instead optimizes the summed-square error. In the latter
method, randomly distributed linear drifts are applied during reconstructions until
a global coefficient has been found within the applied parameter space of error
distribution (see Fig.3.8). Considering that the method requires to first correct for
the linear drift and then to switch to a conjugate gradient search to correct for non
linearities left, the flexibility of annealing method will be preferred.

In contrast to these methods that explore various ways of finding some configu-
rations of scan positions that minimize a reciprocal-space error metric, the solution
that came very recently to existence, is a real-space sub-images cross-correlation
method proposed by Fucai Zhang [78]. It is a very promising technique that has
shown to achieve sub-pixel correction accuracy within several tens of iterations.

This section describes the annealing and cross-correlation strategies and explain
how they can be adapted to DM together with the use of a simulated test object to
explore the capabilities of the algorithms. A rigorous comparison of the performance
of ePIE and DM regarding positions refinements is not the purpose here; rather DM
is targeted because it performs better on non-extended objects. Moreover, the ability
of position correction method to retrieve global tilt through a transformation matrix
T (θx, θy, θz) reveals similarity to the transformation matrices needed in the Bragg
ptychography geometry, thus will be used to reinforce the success of reconstructions
regarding this challenging geometry.

59



CHAPTER 3. PTYCHOGRAPHY

Figure 3.8: Left: scan positions before drift correction (black circles) and after linear
correction (blue dots). Right: the error distribution of individual reconstructions after
many randomly distributed linear drift founds a minimum (polynomial fit, red surface)
providing the adequate set of corrections in x, y. Image and caption taken from [100].

3.3.1 Annealing based algorithm for ptychography

The trial and select method known as the annealing method is an obvious choice
for an algorithm that proceeds in a serial manner, such as the ePIE. At each sin-
gle sub-iteration the modified ePIE algorithm (epcPIE) takes iteratively update its
corresponding position correction vector rj through the following sequence, reported
from [96].

1. Form an estimate of the wavefront at position rj, ψ1(r) = p(r)O(r− (rj + cj))

along with a set of m=1..M further estimates of wavefront, each with a different
trial offset c∆m:

ψguess,j(r, R) = p(r− (rj + cj + c∆m)).oguess,j(r), (3.17)

where ∆m = c[δx,m, δy,m] is a vector of two random numbers between [-1 1]
and the variable c is a function of the iteration numbers. (cj is set to zero to
start).

2. Next, each output exit wave will now travel to the far field using an FFT to
give M+1 estimates at the detector plane:

Ψn,m(q, R) = F [ψguess,j,m]. (3.18)
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3. The modulus of each of the trial exit waves ([ψguess,j,m]) is compared to the
measured diffraction pattern (

√
Ij):

E(m) =
∑

q

(||Ψguess,j,m| −
√
Ij|2). (3.19)

4. The index of the minimum value of Em is labelled n, so that m = min Em.
If one of the trial offset has resulted in a lower error, the current vector cj is
updated with cj = cj + c∆m and stored until the next iteration, in which it
will used as the centre-point for the M trial offsets.

5. The projector operator ΠF is applied to the wavefront that resulted in the
lowest error metric value, ψ′ = ΠF (ψ̂m).

6. Then Eq.3.20 applies for the object update, followed by the probe update:

pn+1
j (r) = pnj (r) +

|o(r− rj)|o∗(r− rj)

|omax(r− rj)||o(r− rj)|2 + alpha
.β(ψ′j(r)− ψj(r)), (3.20)

7. The procedure is repeated for each of the j sub-iterations.

The ’epcPIE’ has been reported [96] to give good results for simulated and exper-
imental data (optical and x-ray) with a mean error under a single pixel for diffraction
patterns with reliable photon counts and with initial position errors < 20 pixels .
The manner used to ’corrupt’ the translation positions is quite original: the speci-
men was loosely coupled to the scanning stage during the data collection (from an
optical bench). The reconstructed complex-valued images, are reported from [96] in
Fig.3.9.

Implementation into difference map

The common feature to ePIE and DM is the the Fourier projection (ΠF ) operation,
so the minimization of a reciprocal-space error metric can be also applied to each
wavefront of the diversity field. If we express the the Fourier projector inside the
DM equation as:

Πm
F

[
2p̂(r− (rj + cj + c∆m))ô− ψj

]
(3.21)

this operator resumes operation 1-6 in section 1.6, in which the modulus of each
of the M trial exit waves at each position j is compared during the Fourier oper-
ations to the measured diffraction pattern (

√
Ij) and the exit-field which provides
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Figure 3.9: Reconstructed complex-valued image of a Winter Jasmine flower bud using
data collected from the optical bench with the specimen insecurely fastened to the trans-
lation stage. (a) ePIE reconstruction, (b) pcPIE reconstruction, both after 500 iterations.
The insets show the areas in the black boxes bottom right of the respective figures. The
colour wheel scale shows how phase is represented by hue and modulus by brightness; the
same scale is used throughout for the colour reconstructions. Images and caption reprinted
from [96].

the best metric is kept so to update a view along with its corresponding position.
Below, a sketch of the implementation of annealing for DM is given in Fig 3.10 with
parallelization of the annealing process seen as a direct advantage over ePIE.

To explore the ability of the annealing method implemented for DM, a simulated
ptychographic experiment was performed. A complex object is derived from the
image found in Fig.3.1 with a modulus comprised between 0.1 and 1 and a phase
from 0 to π. A pupil function and 128× 128 pixel array detector with 20µm pixels
placed 1 m downstream of the object gives a Fourier pixel scaling of 28 nm in the
real-space for x-ray energy of 9 keV. A round-roi scan of 200 points is selected with
a corresponding beam-overlap of ∼ 70%, (previous work situates the optimum beam
overlap around this value [SLS]). The errors introduced in the translational positions
were of Gaussian distribution within an interval of [-5 5] pixels for a mean difference
in position vectors of 20 pixels.

The reconstructions with and without position corrections are shown in Fig 3.11
with inclusion of Poisson noise with total counts in the probe set to 108. It can
be noticed from Fig 3.11 c) that the annealing method has largely improved the
difference-map error metric and hence is robust to noise. 150 iterations of the
optimisation procedure appears to be enough to reach a plateau as no oscillations
are observed at the end of the annealing cycle. The mean error was less than one
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Figure 3.10: Schematic representation of the position-correcting algorithm. At each
positional entry, a set of corrections are tested. If one those trialled positions is the source
of a better diffraction pattern, it is kept and become itself the source for the trial correction
offsets in the following iteration; as in the epcPIE of Maiden [96].

pixel for this simulation and investigation as a function of noise as a function of
noise is reported by Maiden for epcPIE in [96] and it is believed that the present
adaptation of annealing to DM should in principle reproduce similar results, under
the same experimental conditions.

Sub-pixel shift implementation: As in ’real-world’ applications the scan step
sizes happen to be non-integer multiples of the calculated pixel size, the use of sub-
pixel shift is necessary to obtain high quality reconstructions. A small displacement
in real-space is realised by application of a phase ramp in the Fourier space (but
direct linear interpolation can also in principle be performed). The simulation was
performed without the usual rounding of the position errors that is usually adminis-
tered to the numerical scan positions. To reduce the computation time, the sub-pixel
shift correction should obviously be applied to the probe instead of the entire field
of view and only employed towards the very end of the iterations. In Fig.3.12, it
can be observed that the majority of the points have found their respective ’nests’
but to improve the chances of getting a ’full’ nesting, the overlap should probably
be increased along with the trial of different parameters for the decrement of c∆m.

To further understand the kind of uncertainty, like global rotation and scaling,
the position errors can be decomposed during the iterative process through trans-
formation matrices [78, 96].
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Figure 3.11: Comparison of simulated objects reconstructed in amplitude without and
with position corrections, for positional errors of Gaussian distribution in an interval [−5→
5] pixels. Middle row: zoom over the reconstructed objects. Down: Difference in error
metric for reconstructions with (green) and without (blue) the annealing method. The
annealing scheme is launched after 100 iterations for a cycle of 200 iterations with M = 5.
Scale bar, 1µm.
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Figure 3.12: Zoom over the central region of the scan used for the ptychographic recon-
structions shown in Fig.3.11. Initial positions in red (circle), positions to retrieve in blue
(cross) and in green the annealed positions which have in majority, found their respective
nests. The added positional errors are of Gaussian distribution in an interval [−5 → 5]
pixels External regions of the scan usually result in the largest remaining position errors
as the image is the not feature-rich. Pixel size is 28 nm.
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’Cardinal correction’ method : Using the same principle of trial and select
described but even simpler in its implementation, would be a method ’using’ the
4 cardinal neighbours to guide the search for true positions at each of the scan
position. This was not tested but should be in principle equivalent.

3.3.2 Cross-correlation based position determination

The recent scheme for position determination developed by Fucai Zhang [78], is
’radically’ different from methods that are based on minimization of an error metric
as the correcting mechanism involves the cross correlation of sub-images in the real-
space. It is such a powerful method that in the case of perfect simulated data, all
the positions can be initiated at the origin of the numerical scan (0,0). It is reported
that the algorithm gives a mean residual error well below 0.004 pixels for a total
count in the probe set to 107 with Poisson noise and a mean start error less than
about 20 pixels.

At the genesis, Zhang observed that in the presence of translation positions
errors, the individual objects estimate Onew(r−rj) have a ’natural’ tendency to move
towards its correct position after the modulus constraint and the overlap constraint
have been enforced. This relative shift (e) is indeed tiny but can be injected into a
position error cj feedback mechanism:

cj = cj + βe, (3.22)

where β is a constant or a function of the iteration number. The small shift error
e is from the peak of the following cross correlation function:

e(t) =
∑

r

on+1(r, cj;n)
∏

m

(r)on(r − t, cj;n)
∏

m

(r − t), (3.23)

with
∏

(r), a window that defines an area over which the light contributes signif-
icantly. This equation is computed through an image registration algorithm, com-
monly used in image processing, such as the matrix multiplication method developed
by Guizar-Sicairos [101] and which largely reduces computational time.

implementation to difference map

In DM an object is created as a whole using all the updated exit-fields (or views) and
so the sub-images are stitched together in a single process. However, it is suggested
to perform the cross correlation between the newly updated exit fields with DM
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(Eq.3.9) and the previous ones, in order to extract the shift information. Thus
Eq.3.23 adapted to DM becomes:

e(t) =
∑

r

ψj,n+1(r, cj;m)
∏

m

(r)ψj,n(r − t, cj;m)
∏

m

(r − t). (3.24)

However, as the accuracy of the feedback parameter (and thus of the algorithm,
see Fig.3.13) is reliant on the performance of the cross-correlation which one is
determined by the degree of overlap and update in the illumination and object
function, the adaption of the method to the difference proved to be more difficult
than for the annealing. More care in the weight of the function Πm together with
implementation of a generic adjustment of the β parameter, should overcome the
difficulties encountered.

Figure 3.13: Difference map scheme for cross-correlation based position determination.
After a view has been updated, it is cross-correlated with the previous view to extract the
small shift e, which updates cj through a feedback mechanism.

3.4 Partial coherence correction

The confidence of both CDI and ptychography in reconstructing images is entrusted
on the high degree of spatial coherence of X-ray illumination. Nonetheless, even a
third generation synchrotron presents a certain degree of partial coherence, leading
to reduced data quality and less coherent diffraction pattern speckle contrast that
could compromise the authenticity in recovered images [102, 103]. It manifests as
spurious spots or reconstructions that completely fail. Whitehead [?] in 2009 has
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lifted the need for full coherence by suitably incorporating its characteristics into
reconstructing algorithms like HIO. But a full determination of the spatial coherence
can be time consuming [104, 105, 106], and once more, a posteriori methods that
improve image interpretability are needed. Jesse Clark [107], using convolution
rather than modal decomposition, was the first to demonstrate that coherence can
be recovered from the sample diffraction data alone. His method was later cast
as a blind deconvolution problem as the effects of fluctuation in probing radiation,
random vibration of components and sample dynamic are unmitigated [108]; even
though beamlines are constructed as to drastically reduce these unwanted effect. It
is assumed in this section that all the decoherence effects are contained within the
illumination (Babinet principle) [21].

Figure 3.14: A source of decoherence affects the measured intensity distribution by
reducing the visibility of the fringes (here on the left side, the blurring is exagerated).

3.4.1 Theory behind partial coherence correction

The scattered far-field intensity from a sample’s complex electron density, was de-
veloped for the ideal case of coherent illumination, in section 2.1 . The diffracted
intensity under effect of partial coherence and quasi-monochromaticity in the illu-
mination, can be described by introducing the mutual optical intensity (MOI) [21]
at two points in space r1, r2:

68



CHAPTER 3. PTYCHOGRAPHY

Iq) =

∫ ∫
J(r1, r2)ρ(r1)ρ∗(r2) exp [iq.(r1 − r2)]dr1dr2, (3.25)

where

J(r1, r2) =
∑

µkPk(r1)P ∗k (r2), (3.26)

and Pn is the illuminating wavefield. Instead of a sum of mutually incoherent
modes, the Schell model describes an equivalent estimate for J(r1, r2), where the
MOI is treated as a statistically stationary Gaussian form separable in x and y:

J(r1, r2) = Io exp

[−|x1 − x2|2
l2x

]
exp

[−|y1 − y2|2
l2y

]
, (3.27)

with respective coherence lengths lx and ly. The recorded partially coherent
intensity takes now the form of a simple convolution:

Ipc(q) = Ifc(q)⊗ γ̂(q), (3.28)

where Ifc(q) is the fully-coherent intensity obtained through the usual Fourier
transform of the wavefield exiting the sample, γ̂(q) is the Fourier transform of the
complex coherence function, and ⊗ denotes convolution. As γ(q) blurs the coherent
intensity (Fig. 3.14), artefacts or even non-uniqueness will result in the reconstructed
images as no object will satisfy both constraints [?].

The method developed by Jesse Clark [107] that accommodates for partial co-
herence, can simultaneously retrieve the object and the MCF (or complex coherence
function) of the illumination from a single diffraction pattern, as opposed to tedious
interferometric measurements [104, 105, 106]. The simple reciprocal-space projection
assumes illuminating x-rays are fully spatially coherent, ignoring any imperfection
of coherent X-ray sources that might introduce complexity of recorded Fourier-space
diffraction intensities. The projector associated to the Fourier constraint ΠF in the
difference map update (Eq.3.9) is thus modified to account for partial coherence at
each iteration k, ΠF → Πpc:

Πpc = F−1


F(2Πo[ψ

k
j (r)]− ψkj (r)).




√
Ijm(q)

√
|F(2Πo[ψkj (r)]− ψkj (r))|2 ⊗ γ̂(q)




 .

(3.29)
Notice that the overlap projector Π0 that computes for an object o(r) and a probe

p(r) from all the subsets together (Eq.3.7 - Eq.3.8), does not need modification. Prior
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to the application of the intensity constraint (Eq.3.3), it is suggested [107] to update
the numerical estimate of γ̂k by employing a Richardson-Lucy (RL) algorithm:

γ̂k,i+1(q) = γ̂k,i(q).

(
I∆k(−q)⊗ Im(q)

I∆k(q)⊗ γ̂k,i(q)

)
, (3.30)

where I∆k(q) is formed by a combination of the previous and current iterates es-
timate of the coherent intensities. Straightforward adaptation of the RL refinement
algorithm to ptychography is realised by using:

I∆k(q) = 2|F(2Πo[ψ
k
j (r)]− ψkj (r))|2 − |F(2Πo[ψ

k−1
j (r)]− ψk−1

j (r))|2, (3.31)

while i in Eq.(3.30) is referring to a sub-iteration, γ̂k,i+1(q) → γ̂k,j+1(q) will be
now referring to the index j of each ptychographic data subset. To reduce computa-
tion time, the RL algorithm is applied each 10 iterations. Alternatively, minimisation
of the reciprocal-space quantity:

Ej =

∫
|Ijm(q)− |ψ̂kj (q)|2 ⊗ γ̂k,j(q, σ̂)|2dq, (3.32)

with respect to the free parameter σ̂ or to the free parameters, lx and ly can be
used to update γ̂k,j.

The work of Clark et al. [107] reported in Fig. 3.15, shows a typical image of
a reconstructed gold nanocrystal comparing data assuming perfect coherence and
accommodating partial coherence. To degrade the coherence, coherence defining
slits (beamline 34 ID-C, APS) were opened (50 µm) beyond the nominal size of
coherence (30 µm).

The findings are clear, a reconstruction not accounting for partial coherence pro-
duce an image that suffers from significant unphysical density modulations (Fig. 3.15
(c)) while a reconstruction that corrects for partial coherence generates an image of
a defect-free nanocrystal of uniform density (Fig. 3.15 (d)). Certainly, data for the
same nanocrystal were taken with a high degree of coherence at the beamline (slits
opening of 12.5 µm) in order to demonstrate that correcting for partial coherence
gives the same results. However, Clark did not investigate the limit for the partial
coherence correction.

3.4.2 Simulations

The partial correction method adapted to ptychography was tested on a simulated
crystal derived from Fig. 3.15, with comparable size and electron density on a 128×
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Figure 3.15: Comparison of reconstructions of a nanocrystal taken under partially co-
herent illumination, shown in isosurface. (a) assuming full coherence, and (b) using the
modified modulus constraint that accommodates partial coherence (b). Figure and caption
taken from [107]

128 pixel size but a strong phase of 7π of spherical curvature is added, and a simple
soft edge pupil function is used a scanning probe. To introduce a partial transverse
coherence function that acts as a point-spread function that causes fully coherent
diffraction intensities to be blurred, one can simulate spatially partial coherent X-ray
illumination using a two-dimensional Gaussian function with standard deviation σ
as complex coherence function, the same approach as in the previous study of Parks
et al. [109]. Here, a simulated ptychography data reconstructions with transverse
partial coherence of σ/L = 0.75 where L is the size of the probe array (when
σ/L > 1, perfect coherence is assumed).

The reconstruction shows that the ptychography is relatively robust to a reason-
able amount of partial coherence (Fig.3.16 b-b’)) and that the correction of partial
coherence (Πpc) certainly amounts to same reconstructions as with perfect calculated
coherence. This proof of concept could have been stopped with this simulation but
a recent study [109] has performed systematic analyses on both simulated and ex-
perimental CDI data and concluded that for strong-phase objects, applying partial
coherence correction has very little improvement in reconstructed results compar-
ing to improvement of partial coherence correction of samples of flat or weak-phase
structures. And so in conclusion, they suggested: " in CDI, the best strategy for
study of strong phase objects is to maintain high degree of coherence of illuminat-
ing X-rays due to broadening of solution space due to high phase structures in the
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Figure 3.16: (a) Simulated crystal with 5 π of quadratic phase. (b) Gaussian probe
used for the simulations. c-c’) Zoom over amplitude and phase of the reconstructed crys-
tal without partial coherence correction. d-d’) Zoom over amplitude and phase of the
reconstructed crystal with partial coherence correction.

sample ".
In order to gain in understanding of correction of partially coherent light source

in X-ray ptychography, further analyses on simulated ptychography data are per-
formed, varying both degree of coherence properties of X-rays and sample phase
structure complexity

To be comparable with previous study of Parks et al. [109], a Lena object
was used to generate the numerical experiment (see Fig.3.17). Also, for the same
reason of minimizing of correlation between the magnitude and phase components
of the real- space complex wave-field, the same image for both amplitude and phase
component with 90-degree rotation to each other is used. The Lena image used in
simulation has 512× 512 pixels. To minimize the factors contributing ptychography
reconstructions, a simple probe, the same soft pupil probe as in Fig.3.5 b) is used.

Initial random seeding of both amplitude and phase was used for fully-coherent
(FC) reconstruction step; partially-coherent (PC) projection was applied after data
difference map metric reached a plateau after 60 iterations of FC projection. The
definitions of FC (ΠF ) and PC (Πpc) are illustrated in Eq.3.9 and Eq.3.29 respec-
tively. Refinement of the complex coherence function parameter sigma was not
performed at this stage, Πpc projection step uses a single convolution of reciprocal-
space complex wavefield of the exact coherence function parameter σ0.
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Figure 3.17: Object used in reconstruction simulations. (a) a real- valued object with
max phase = 0; (b) a complex- valued object with max phase = 2π
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Figure 3.18: Results of reconstructions using both the PC and FC projections for real-
valued and complex valued (max phase= 2π) samples at several degrees of coherence
σ/L. The reconstruction of the real- valued sample always receives a bonus from the
PC projection vis-a-vis the FC projection, but the complex-valued sample is sometimes
penalized. All reconstructions were performed with overlap of 80 % in ptychographic
simulations. Probe used here is simple Gaussian function as in [109, 110].
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3.4.3 Interpretation of reconstruction results

One expects that with robust overlap constraint in real-space, ptychography is much
more tolerant to imperfections in X-ray illumination, reaching better data conver-
gence compared to that of conventional CDI. The reconstructed simulated results
support this claim (published by Burdet, Shi and Parks [110]). It is observed better
quality of reconstructed data with same coherence properties for ptychography than
CDI. This improvement of data reconstructions occurs in the coherence definition
parameter σ/L from 0.25 to 1, however, there has been no significant improvement
of reconstruction results for σ/L values that are outside of the selected range (see
Fig.3.18).

Figure 3.19: Rreal (PC/FC) Vs σ/L for 9 σ/L used in simulations, for maximum phase
= 2π and 0.5π. Two sets results are done with 2D Gaussian probe in simulations. This
figure is for investigation of cut-off σ/L for phase = 2π and phase = 0.5π of objects. We
have result which show that the cut-off σ/L for good reconstructions is higher for max
object phase = 2π than that of 0.5π. In other words, better coherence is needed for highly
complex objects. All simulations were performed with 70 % overlap. Reconstructions
performed in collaboration with Shi and Parks, [109, 110].

It is very convincing that by incorporation of partial coherence correction in the
ptychographic iterative algorithm, reconstructions are improved significantly in a
wide range of degree of coherence σ/L values. It was found that the ptychography
reconstructions with partial coherence correction converge well with σ/L value at
or above 0.25. Moreover, the real-space metric analyses, proves that ptychography
with partial coherence correction works well for maximum object phase equals or
bigger than π/2, suggesting that the method is a very robust technique for complex
real condensed matter physics materials that usually exhibit high phase structures.
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For a better understanding of how well the partial coherence correction performs
for the usually unknown parameter sigma, a ratio of σ/σ0 = 1.5 was introduced
as initial parameters for the reconstructions. The rationale behind this analysis is
the fact that we would never know the exact complex coherence function for exper-
imental data, owing to the experimental complexity and instrumental instabilities
in real world synchrotron beamlines. Ptychographic reconstructions were performed
with the RL approach of Eq.(3.30), initiated at iteration 80 and performed each 10
iterations only.

Figure 3.20: Results of reconstructed coherence function, parametrized by σ/L, the re-
sults are plotted as ratio of reconstructed σ to simulated σ0 for various degree of coherence,
sample complexity with 70% overlap in simulated dataset. Performed in collaboration with
Shi and Parks, [109, 110]

X-ray ptychography is then envisaged has an overwhelming advantage over con-
ventional CDI for investigation of complex objects of scientific interests, and suitable
samples for ptychography can be relatively of large area, ranging from hundreds of
nanometers to microns.

3.4.4 Multimodal decomposition

Thibault and Menzel [108] have recently demonstrated the feasibility of incorpora-
tion of multi-modes of X-rays into ptychographic reconstructions, and this particular
approach accommodates arbitrary complex coherence function in the iterative al-
gorithms. In the previous section, a two-dimensional Gaussian-Shell model (Eq.28)
was employed to approximate possible arbitrary complex coherence function (Eq.27),
as suggested by K.A. Nugent [111]. However, studies of multi-modes of X-rays in
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ptychography is becoming a subject of intense studies considering its promises of
high-resolution diffraction imaging of extended objects. Starting with Eq.27, the

In the case of a mode specific illumination (Eq.27), a set of mutually incoherent
exit waves ψ(k)

j = P k
j (r).O propagate in concert to the detector:

Ij,q =
∑

l

µl|F [|ψ(k)
j ]2 (3.33)

In order to decorrelate the incoherent set of diffraction patterns from the recorded
data, a parametrization of the Fourier projector ΠF (ψ

(k)
j = P k

j (r).O) becomes the
key ingredient:

Πms = F−1


∑

l

F(2Πo[ψ
k,l
j (r)]− ψk,lj (r)).




√
Ijm(q)

√
|∑l F(2Πo[ψ

k,l
j (r)]− ψk,lj (r))|2




 ,

(3.34)
together with the real-space projection probe update operation Π0, similarly

augmented to incorporate the multi-modes:

Pl(r) =

∑
j O
∗(r + rj).ψj(r)

(k,l)

∑
j |O(r + rj)|2

, (3.35)

and

O(r) =

∑
l

∑
j P
∗
k,l(r + rj).ψj(r)

(k,l)

∑
k

∑
j |Pk,l(r + rj)|2

. (3.36)

Since the relative weighting of each illumination mode is generically computed
from Eq.3.33 , their orthogonal combination allows for an ab initio a recovery of
the coherence property of the illumination wave-field [112]. The modes can easily
be made orthogonal with the Gram-Schmidt orthonormalization. The number of
reconstructed modes should in principle scale with the ptychographical prescription,
although no rule has been clerly formulated yet.

A model calculation was performed on the simulated Lena object by mean of
four illumination modes. The choice of Gaussian transverse modes (TEM) was
rather an arbitrary choice and a formal comparison between arbitrary complex co-
herence function and two-dimensional Gaussian-Shell function should be perfomed
at a synchrotron beamline, as will be discussed in section 4.3.1 The amplitude modes
were converted to phase modes, with the Gaussian shape for the amplitude parts.
Thus, the amplitudes for the selected modes were, TEM00= 50%, TEM11= 20%,
TEM22= 5% and TEM33= 2.5% respectively. For the reconstructions, the initial
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Figure 3.21: Results of reconstructions using multiple modes in the illumination (simu-
lation of a low coherence x-ray experiment). a. The four modes (l = 1,2,3,4) modes used
for the simulation realised on a static object. b. Diffraction patterns as a function of
accumulated modes. c. Reconstructions as a function of modes inserted into the extended
difference-map algorithm
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modes were altered from the original probes amplitude by +/- 10 %, and multiplied
with a random phase array of values. The reconstruction taking into account only
one mode (l1) totally fails, as displayed in Fig.3.21 and comes to an acceptable level
only with 3 modes.

The method seems to be so powerful that the vibrating modes of a sample
can be absorbed by the modes in the probe [112]. Moreover, Batey et al. have
demonstrated that the states of the object can be also concurrently reconstructed.
These pioneering works on the reconstruction of discretized dynamics will possibly
venture the ptychography into the universe of quantum physics [108].

3.5 Towards real-time ptychographic reconstruction

With the ever increasing performance of computing - thanks to a proliferation of
multicore machines and hyper-threading technology -, real time ptychography is be-
coming a reality. An online analysis process, synchronized with the data acquisition
will be made possible without the need to go offline to a ’dark chamber’ to develop
a ptychographic image, essentially turning it from an offline to interactive job [113].

Graphics Processing Units (GPU’s) were first used for graphics but then their
computing power used to leverage Matlab calculations and applications while re-
quiring minimal programming effort, thus it has been in use for the reconstructions
found in this thesis. But to be able to reconstruct the images in real time, a paral-
lelization of the ptychographic algorithms over many GPUs can be adapted to take
advantage of parallel hardware. In fact, computationally intensive problems such as
data analysis, image and signal processing applications including communications
systems and computational finance are made easier with the Matlab Parallel com-
puting tool box (PCT) [114] where scaling a code does not require investment in
CUDA programming (high level constructed parallel for loops are already built).
Hence changing the ptychographic code is done with quite trivial changes with no
major trouble as such, leading to drastically increased performance [114] .

A Matlab benchmark as a function of number FFTs performed is reported in
Fig.3.22 with a speed increase up to 50 times with a GPU cluster. The number of
FFTs performed (2.5× 105) more or less corresponds to those needed to reconstruct
a single ptychographic image. When there is cost of transferring data between the
CPU and GPU, and the time it takes to create a matrix, or other parameters, the
increase in speed is rather poor. For example, to prevent unneeded data transfer,
the variable that goes within the body of a parfor loop should be sliced (hope-
fully, Matlab tutorials highlight the main challenges that one might encounter like
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independence, globals and transparency, classification and uniqueness [115]).

Figure 3.22: A Matlab benchmark as a function of FFTs performed with and without
transfer between CPU and GPU. The ratio GPU/CPU time is indepedant of matrix size.

In general, taking full advantage of a code requires careful programming but
parallelization is responsible for the major improvement in speed. Parallelization
will be essential to ptycho-tomographic technique which requires the assembly of at
least 180 ptychographic images. Moreover, to reduce upfront cost, Amazon Elastic
Compute cloud offers to run Matlab programs on its high computing performance
GPU’s. This approach could be a growing trend in the ptychographic community
because users get instant access to large memory GPUs [116].

3.5.1 Parallelisation strategy

Starting with the serial program of DM ptychography, it is explained here how it
can be parallelized (and optimized). The first obvious candidate for parallelization
is the difference map equation (3.9), whereby a subscript inspection directly reveals
that the views update (through phasing operation), does not depend on previous
positions or sub-iteration calculations. Thus Eq.3.9 should be sent to as many cores
(or nodes) as possible. It is regarded that this has a better advantage over ePIE,
where the views update is dependant on the previous sub-iteration.

Although, due to the DM overlap constraint projection requirement in real-space,
the object and illumination update requires all the updated views altogether (see
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Figure 3.23: The ptychography frame stack is sent to four GPU’s to reconstruct the four
quadrants of an image independently. The full image is recombined at the end.

Eq.3.7 and Eq.3.8) and so has to be classicaly calculated (or processed) in a serial
fashion. However, to increase the computational efficiency, the numerical scan area
can be broken into smaller pieces. For example as Matlab can easily manage up to 4
Tesla GPUs inside a personal computer, the scan area together with ptychography
frame stack is divided into four ’quadrants’ where the regions are independently
reconstructed, as can be seen in Fig.3.23.

This solution obviously applies to both ePIE and DM and requires either a sub-
stantial amount of recovery in between the image ’sub-pieces’ (if there are no com-
munication between iterations) or a stitching operation at each iteration in order
to avoid ill-conditioned boundaries areas. A more appropriate way to take advan-
tage of the Round-ROI scan is to decompose it into concentric ring domains and
’recombine’ the pieces at each iteration.

The performance improvement provided made the refinement methods compu-
tationally reasonable but unfortunately, a ’complete’ parallelization of combination
of refinements method is not yet possible considering that Matlab cannot manage
yet, the double or even triple parfor loop required (although researchers like Philipe
Maia et al. [113], have used advanced programming techniques to optimize triply
nested loop).

3.5.2 Dynamical probe reconstruction

One of the fundamental assumptions in ptychography is that probe structure is
assumed to be constant during the scan [79]. However, beside the computational
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advantage of a real-space parallelization, it was realised that real object reconstruc-
tions could be improved by assigning a probe to each of the ’decomposed’ scan
areas. This is explained by the unavoidable oscillations and drift in the illumina-
tion structure that occurs during the time to perform an entire ptychographic scan,
which ranges from several minutes to several hours [63]. To this effect, the overlap
projection equations (Eq.3.7) that computes the real-space update of object and
illumination are modified:

Onew(r) =

∑D
d=1

∑dN
D

+1

j=(d−1)N
D

+1
P ∗d (r + rj).ψd(r)

∑D
d=1

∑dN
D

+1

j=(d−1)N
D

+1
|P ∗d (r + rj)|2

, (3.37)

and

Pd(r) =

∑D
d=1

∑(d)N/D
j=(d−1)N/D+1O

∗
up(r− rj).ψd(r)

∑D
d=1

∑(d)N/D
j=(d−1)N/D+1 |Oup(r− rj)|2

, (3.38)

where D is the number of reconstructed illuminations and N the number of scan
points.

To illustrate the concept, ptychographic simulations are conducted on a complex
image with a probe drifting of 50 µm incremental steps along z (between each
scan point). In a real world experiment, the illumination drift is rather pseudo-
continuous, thus this simulation is based on an illumination that is continuously
drifting from the sample (z direction only with its evolution calculated with a Fresnel
propagator); see Fig.3.24. The simulation parameters for a simulated 9 keV x-ray
beam are resumed below.

Properties beam size pixel resolution scan range scan step size degree of overlap
value 1H × 1V 50 15x15 300 70
unit µm nm µm nm %

. As the algorithm requires a minimum of overlapped illuminations, the presented
reconstruction is performed with D = 10 dynamical illuminations, which represents
about 20 illuminations projected (or averaged) into a single one. Even though the
drift is exaggerated, the assumption that the probe is constant over ∼ 20 scan
postions is consistant with experimental findings [63].

As expected, the resolution of the classically reconstructed ptychographic image
is affected whereas the image reconstructed with a set of 10 dynamical probes re-
trieves a high resolution (see Fig.3.25). A drawback when "linearly" decomposing
the Round-Roi scan is that the probes overlap is constrained in one direction only
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Figure 3.24: Pupilar function propagated along the z direction. The starting illumina-
tion at the first scan position is a pupilar function. Then this function is propagated by
increment of 50µm using a Fresnel propagator.

for some regions of the scan. Thus different manners of decomposing the Round-ROI
scan should be considered for next experiments at coherent beamlines.

Figure 3.25: Reconstructed images with and without dynamical probe correction. Lower
row: reconstruction of the probe as a function of its evolution. Scale bar, 2µm.

In the experimental section, the dynamical probe method will be combined with
cycles of illumination positions corrections as both of these drift incertitudes are
rather entangled (this to enhance chances of getting better averaged dynamical
probes). For more ’completeness’, this method could be extended to the multimodal
decomposition.
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3.6 Ptychography-tomography

As ptychography-tomography is expected to become an inescapable tool of nanoscience,
this chapter ends with examples of work from participation with members of the Re-
search Complex of Harwell. Tomography from Ancient Greek τoµoζ (tomos, ’sec-
tion, slice’) is a generic term for methods that aims at visualizing virtual sections
through a specimen [117]. Since its inception in the 70s, computerised tomography
(CT) is a well established technique in the field of medical engineering that aims to
reveal high resolution features within biological specimens [118]. In CT, an algorithm
’fuses’ projectional images taken at different angles, to access the third dimension,
thus overcoming many limitations of plain radiographs. While this sophisticated
method is considered to be the the greatest marvel since Rontgen’s discovery of
x-rays, it is not limited to this portion of the electromagnetic spectrum but ex-
tends from Gamma ray to radio-waves, and also extends to particles like electrons,
positrons, neutrons. The spatial resolution achieved in medical applications is just
< 1 mm3 from attenuation maps. Combining the sets of projection in the real space
is owed to the Fourier slice theorem, which states:

The Fourier transform of a parallel projection of an object, µ(u, v), taken at
an angle φ, gives a slice of the two-dimensional transform of µ(u, v) subtending an
angle φ with the u-axis.

Figure 3.26: (a) The Fourier Slice Theorem. A projection measured in space domain is
connected by a Fourier transform to a slice of the frequency domain. (b) The frequency
domain is filled by recording tomographic projections from many angles. Illustration taken
from [119].

The Fourier slice theorem is illustrated in Fig 3.26. Once the Fourier space
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is filled with the transformed projectional images measured at different angle φ,
an object is in principle simply retrieved after an inverse Fourier transform has
been performed. However, Fourier transforms are performed onto rectangular grids
while the rotational angle φ calls for polar grid, thus an extra step is involved
to switch between the two systems of coordinates prior to calculating the inverse
Fourier transform. The Filtered Back Projection (FBP) is the most popular answer
to this problem as the Jacobian determinant for the coordinate transformation,
is a multiplying factor which acts as a frequency filter (visualized as ramp that
accentuates large frequencies) that ensures equal contribution for all of the measured
values. Central to tomography is also the question of how many angular projections
are needed to appropriately sample the Fourier space [119].

CT is also used in other fields, such as nondestructive materials testing but re-
quires the addition of phase-contrast mechanisms [120]. The two major drawbacks
of x-ray phase contrast tomography are a difficulty to quantify physical quantities
and to scale down the resolution below µm3. It was found that the diffraction con-
trast in CDI leverage these difficulties by providing quantitative maps at nanometer
resolutions without reverting to weak phase object or negligible absorption [120] and
has been successfully applied to materials such as ceramic nano foam [58]. Slice-and-
image methods that uses electron microscopy [121] can also reveal the nanostructure
inside macroscopic objects but to the risk of spoiling the original structural features.

It is thus to the great interest of the CDI community to combine high-quality
projectional images as to ’project’ tomography into the nanoscale world [120]. Some
of the CDI reconstruction schemes considered up to now were inspired by crystallog-
raphy where phase retrieval is carried out in 3D space directly after assembling the
diffraction measurements as done by Jiang in 2010 [122], who conducted tomogra-
phy of biological samples too thick for electron microscopy [123, 8] (using projections
from CDI at nanometer scale). While this approach works only for samples that
have been totally isolated, x-ray ptychographic tomography propose to to image the
structure of entire organisms, in conditions close to their native environment [1].

The 3D images reported in this section were reconstructed from data collected
at cSXAS beamline, thus the experimental and data processing procedures for to-
mography are resumed from the papers of the dedicated beamline scientists, which
are Guizar [1], Diaz [124, 125] and Holler [126, 127]

Tomographic measurements: The collection of diffraction data for a num-
ber of angular projections is resumed in Fig. 3.27. A ptychographic tomography
measurement could prolong time to several hours due to the large number of accumu-
lation necessary at high diffraction angles. Keeping the axis of rotation and sample
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Figure 3.27: Schematic of data collection in a ptycho-tomo experiment for three angular
projections. Experimentally the sample is rotated to obtain different projections, while the
optics, illumination, and detector positions remain constant. Figure and caption derived
from [14].

position stable during such enduring time, is technologically challenging when tar-
geting nanoscale tomography. A precise extroceptive metrology measurement with
laser interferometry was then developed at SLS [126, 127] to control the degrees of
liberty of the different parts within tens of nanometers while rotating. The differ-
ential measurements are used as feedback to compensate thermal drift and position
stabilities to better than 10 nm standard deviation.

Post processing the data: When a sample had no fiducial or salient features
in the projectional images to allow fiducial marker tracking [1], alignment of tomo-
graphic phase projections are done by the following algorithm developed by Guizar
et al. [1] sample had no fiducial or salient features in the projectional images to
allow fiducial marker tracking

The algorithm developed by Guizar et al. [1] can realise an alignment of the
tomographic phase projections from samples presenting neither a fiducial nor salient
features. After proper phase removal and unwrapping, an iterative procedure allows
to find the center of mass from maximizing the correlations of transversal variations
in mass (it is worth noting that mass is understood here as the integral of the
projected phase). The processing steps are resumed in Fig.3.28.
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Figure 3.28: Scheme used by Guizar for ptychography tomography [1]

3.6.1 3D spatial structure of aluminium epoxy anti-corrosive

marine coatings

The ’ptycho-tomo’ method was applied to a relevant industrial material, a marine
coating, and provided ground for further analysis by modelling its protective function
with regard to corrosion and fouling of ship hulls. The work been highlighted by
the London Centre for Nanotechnology as: "a fine example of the modern scientific
method, teamwork between industrial hi-tech materials development, international
characterisation facilities and university-based theory and modelling" [128]. The full
experimental details are reported elsewhere [129] and here, partially. 1

Marine coatings provide outstanding corrosion protection to substrates. The cru-
cially functional component is made from aluminium flakes, whose lamellar shape
and alignment are parallel to the surface improve the barrier properties of coatings
by decreasing the transportation rate of corrosive substances such as ions, water
(vapour) and oxygen through the coating layers. While Chen [130] could not effec-
tively visualize the aluminium flakes by using transmission X-ray microscopy meth-
ods, the ptychographic X-ray tomography has produced 3D images with sufficient
phase contrast. Moreover, the quantitative x-ray refractive data allowed, through
the automatic identification of the main components of the coatings; to build a de-

1x-rays of 6.2 keV with a 3 µm diameter pinhole placed 4 mm upstream of the sample along the
x-ray propagation direction were used to partly illuminate the sample which was rotated 180 degrees
with 0.5 degree intervals to obtain 361 orientations (and projections), during the measurements.
At each orientation angle, a Round-Roi scan of 1.4 µ m radial step (0.2 s exposure) generated 487
different scan positions.
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tailed modelling of the paint’s function. By plugging the modelling in the COMSOL
simulation software, important physical key insights such as the relation between
the orientation and morphology of the aluminium component to the permeability
of the material to ions, were enabled. Fig.3.29 shows the work of Bo Chen [129] on
segmentation and rendering of a 3D spatial structure image of the sample.

Figure 3.29: 3D ptychographic X-ray tomography of an aluminium epoxy marine coating:
rendering of the segmentation of the 3D spatial structure. Purple parts are aluminium
flakes, red objects are talc fragments and yellow particles are iron oxide. Image and
caption taken from Bo Chen [129]. Scale bar, 1µm.

3.6.2 3D spatial structure of virus crystals

As the ’ptycho-tomo’ provides sufficient phase contrast even for transparent bio-
logical specimens, another tomographic experiment was performed at SLS c-SAXS
beamline on biological crystals (0.1-5micron in size) armouring viruses [131, 132],
in collaboration with Colin Nave from Diamond Light Source, England. In fact,
this is the viruse itself that encode for proteins, polyhedrin, thus building large pro-
teinaceous crystalline occlusion bodies or polyhedra which isolate them from harsh
environmental conditions. The experiment aimed at imaging the virus particles in-
side the polyhedra crystals and determine whether there was a preferred orientation
of the cylindrical virus particles with respect to the crystal lattice. In addition,
the relatively robust crystals are useful for developing and comparing x-ray imaging
methods for low contrast biological objects.

The same c-SAXS beamline set up was used to the exception of a zone plate
which, while retaining a fully coherent beam, provided approximately a 40 times
increase in flux compared with the pinhole previously used. Considering that bio-
logical materials are weakly scattering, the increase in flux was considered essential.
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Figure 3.30: Slice of a tomogram showing a slurry of dried crystals inside the tip of a
capillary. b-c) line scans through a crystal and the capillary.

A slurry of crystals were allowed to dry in the ends of capillaries which had a diam-
eter of approximately 8 microns (the cubic shape of the 1-2 microns size crystals are
easily visible in the projections from the ptychographic scans, Fig.3.30). A typical
slice through one of the tomograms, together with line scans through the crystal
and capillary are shown below.

The presented tomographic reconstruction was performed in collaboration with
Manuel Guizar during the beamtime, and the following discussion is based on the
experimental report. While the tomographic reconstruction was carried out with
minimal smoothing in order to maintain the best resolution, this latter is of no bet-
ter than 100nm, and the noise levels appear rather high. Although extra smoothing
might reduce the noise level, it would degrade rather than improve the resolution,
therefore it appears to be unlikely that the presence of single virus particles can be
identified. The reasons for the poor resolution can be due to remaining instabilities
in the probe beam or by the low contrast object. These unfavourable circumstances
that preclude sufficient resolution, thus call for robust solutions in each ptycho-
graphic projection, such as probe fluctuations correction, the maximum-likelihood
technique, modification of ptychographic algorithm for weakly scattering sample.2

2Fig.3.31 shows the presence of streaks presumably coming from scattering by the edges of
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Therefore, the code required for further analysis was impossible to realize in the
frame of this thesis.

Figure 3.31: An image of one of the raw diffraction images which went in to the ptycho-
graphic reconstructions

the capillary, these streaks extended to a Bragg resolution of approximately 35nm, a significantly
better resolution than obtained from the reconstructions. The raw data also includes an intense
central annulus produced by the zone plate in combination with the order sorting aperture. The
beam scattered from the specimen interferes with this incident beam as in the production of a
hologram. The outer radius of the annulus corresponds to a Bragg resolution of approximately
130nm, similar to the resolution obtained in the tomographic reconstruction. It is possible that
the ptychographic reconstructions are dominated by this holographic component.
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Experimental realisation at APS

This chapter will examine the implementation and optimisation of the experimen-
tal parameters for the set-up developed for ptychography under the partner user
proposal (PUP) at beamline 34 ID-C of the Advanced Photon Source (APS) lo-
cated on the site of Argonne National Laboratory (ANL) in Argonne, Illinois. This
beamline has been developed for Bragg coherent diffraction experiments, thus, the
very specialized requirements with respect to beam optics, sample environment with
ability to easily mount and optically observe samples in beam position with the con-
focal microscope, large working distance and photon detection (which are similar
for ptychography in transmission and Bragg geometries) were already optimised for
this geometry. The high coherence capabilities of the APS have been developed
considerably and are needed for CDI as the high brilliance and tunable energy. Par-
allel to the development of such sources, has been those of monochromators capable
of providing sufficient temporal coherence while withstanding the high heat loads
implicated.

The successful developments of CDI at this beamline constituted in several thesis
from PhD students of Prof. I.K.Robinson [133, 134, 48, 135] e.g., high-precision
slits to create apertures of only a few micrometers, necessary for achieving spatial
coherence and convenient to use, etc.. Thus, the development of this section is built
upon their work.

The motivation for the PUP application was to develop new imaging capabilities
for 34-ID-C that will expand the existing one from imaging of small isolated objects
to large field of view. The ’long term’ goal is to develop the imaging capability to
the ’black box’ level where users can walk away with completed images. The plan
for this PUP is to develop the method by testing a range of different variations
of the method. It was proposed that UCL would contribute to the piezo scanning
hardware needed to make precise scans of the probe position with respect to the
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sample. X-ray ptychography, both Bragg and in-line versions, will be available as a
’user’ technique.

The high degree of coherence of 34 ID-C and high brilliance at 8.9 keV pho-
ton energy, combined with the standard KB focusing system were used to create a
suitable probe without loss of coherence and high photon density at the sample to
produce enough photon statistics at high diffracting angles. The diffraction has been
recorded in the far field using a CCD detector compatible with KB focused mode
and optimised (quantum efficiency [37]) for hard x-rays of 8.9 keV energy. The high
dynamic range of the detector used, means the diffraction can be measured in the
forward direction without a beam stop, allowing even the lowest orders of diffraction
to be measured. Having a focused beam results in the recorded diffraction pattern
from the extended object being oversampled. A photon with energy of 8.9 keV also
means that its wavelength (∼ 1.4Å) is comparable with the interatomic distances
in crystalline samples and has enough momentum to reach reciprocal lattice vec-
tors for experiments performed in Bragg geometry (see Ewald sphere construction,
section.5.1).1

4.1 Experimental set-up

The x-rays employed at sector 34 ID are produced by an APS undulator A [137].
Before the experimental hutch, a liquid nitrogen cooled mirror filters out the high
harmonic to leave a ’pink’ beam which then passes through a double crystal Si(111)
monochromator that selects only a narrow band of frequency. The beam size coming
inside the hutch is determined by the synchrotron with the half width at half max-
imum (HWHM) transverse coherence lengths given by 2λZ

√
ln2/(πσ) [111] (where

Z refers to the 54.5 m distance away from the center of the Undulator A and σ to
the X-ray beam source size, i.e., σv = 26µm [137]). Thus, to control the transversal
coherence properties a pair roller slits with gap settings linearly tuneable between in
the range 0-200 microns [134] are used, see Fig.4.1. Each slit consists of two polished
molybdenum cylinders made from brass material, to produce very smooth aperture
edges. A flexural-pivot design allows good reproducibility of the gap setting and po-
sitioning to a precision better than 250 nm. Although the possibility to increase the
horizontal coherence length, is given by selecting a 100 µm wide beam by horizontal
slits in front of a mirror, placed 27.5 m in front of the coherence-defining entrance

1A severe increase of the hard x-rays energy would allow for the simultaneous mapping of the
small angle scattering and several Bragg peaks on the detector, to reveal nano structured materials
with atomic resolution [136]. However, in practice it is very difficult to realise as the photon energy
required is in the range of 100 keV.
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slits; as was done in the experiments performed with Huang [138].

Figure 4.1: Picture of the Roller-blade slits made of polished molybdenum cylinders and
separated by 200 µm shims. A first actuator allow them to be rotated thanks to flexible
pivots. A second actuator translates the slit assembly on another set of flexural pivots
with a 4:1 reduction. Images and caption taken from [134]

The flux of X-ray impinging on the optics is simply increased by bigger slit open-
ings but this has the consequence of introducing additional wavefields modes, hence
partial coherence effects with reduced visibility in fringes of recorded diffraction pat-
terns. In the opposite, for narrow slits opening (1-5 µm), the illumination become
asymmetric due to a parallax effect [134]. As the CDI single-shot method assumes
a plane wave as illumination, any departure from this ideal condition will lead to
misinterpretation of the reconstruction. In ptychography this has no importance
but for a better idea over the focused spot, beam propagation was simulated. Here
are the necessary elements for the simulation:

• The incoming field is a plane wave with a Gaussian intensity profile.

• The slits are simple steps function (heavy-side function in mathematical terms).

• The KB mirror which is a one dimensional parabola is treated as a lens.

The beam is first propagated until a 1-D focusing lens using a Fresnel prop-
agator (Eq.2.5) then, as the high frequency term of the lens cannot be sampled
finely enough, another form of the Fresnel diffraction is used for further propagation
(section.4.2.1). The finding is that the focusing spot distribution is only asymmetric
for narrow slits opening (< 5µm) but for larger openings, the distribution is rela-
tively symmetric. More details on the distribution of the focal spot for usual slits
opening of ptyhographic experiment are provided in next section (section.4.2.2).
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Figure 4.2: Slits and KB mirror at APS: A Si(111) channel-cut single crystalline
monochromator is used to define the energy and monochromaticity of the incoming syn-
chrotron radiation then followed by roller-slits used to preserve incoming coherence and
quality of the X-Ray spectrum, then finally passing through the ’lens’.

Figure 4.3: 2D simulation of the KB focus for asymmetric slits setting
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4.1.1 Focusing optics

Once the coherence area is defined by the slits, the beam (after propagation) can
either directly impinge on the sample or illuminate a focusing optics. Focusing can
be used to overcome space limitations, a large detector pixel size or to match the
needs of the sample, i.e., nanoscale objects that are smaller than the coherence
volume. KB mirrors as focusing elements for CDI were first introduced at APS 34-
ID-C to compensate for the reduction in signal brought by the reduced dimensions
of nanocrystals [139] (focusing is also serves in isolating particles from other in a
field of nanocrystals [140]). It is explained by the broadening of reciprocal space
which thus calls for a maximisation of the coherent photons involved in scattering.
So to use the whole coherence volume of the beam KB mirrors are employed with the
property that the coherence area is reduced (without affecting the coherence) while
the demagnification of the beam is increased, a consequence of Liouville’s theorem.
Moreover, focusing optics such as KB mirrors or diffractive optics, create almost no
scattering artefacts [139].

At 34-ID-C, the focusing is administered by a set of KB mirrors of Peter Eng
design [141], see Fig.4.4. The KB mirrors are designed with two shaped highly
reflective silicon crystals, each held in a carriage. The focusing power is provided
by applying force at both end of the tapered mirror [52, 134]. As the mirrors are
implemented in a row along the x-ray propagation direction, a longer focal length
for the downstream mirror is necessary to get the focus at the same position (ie.,
fv = 200mm and fh = 100h mm). The bendable KB mirrors are coated with 50 nm
platinum on top of a 10 nm chrome under-layer. To measure the size of the focused
beam, a tungsten wire is scanned across at the sample plane.

4.1.2 Experimental data handling

The different types of scan patterns seen in section 3.2.2 are realised experimentally
thanks to an nPoint NPXY100Z25A dual-axis piezo stage, which one is mounted
on the top of a set of XYZ stepper-motors for larger range movements [138]. Then,
diffraction patterns are collected using the Princeton Instruments CCD and its na-
tive WinView software (.SPE format). This program controls the number of accu-
mulations at a constant exposure time and group it into a single frame. As long
exposures saturates the detector, instead many short exposures are taken at a par-
ticular data point. The transistor-transistor logic (TTL) pulse provided by the
controller is used to command a shutter event and also to control when to (auto-
matically) move to the next scan point. Once the ptychographic scan is completed,
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Figure 4.4: Left: schematic of a silicon KB mirror bender. The flat mirror is suspended
between steel rollers placed on pivots where the bending force is applied through a pin
contact and CuBe leaf springs. The dashed line represents the pivot axis for the roll
adjustment. Translation is parallel to the bending force direction. Motors are omitted
for clarity. Right: bottom view of the KB unit assembly. The position of the mirror is
adjusted by a first motor while its orientation is adjusted by a second one. Two more
motors apply their force at each end of the silicon mirrors to bend them in order to focus
the reflected beam. The vertical focusing is done first (right) followed by the horizontal
focusing (left). Picture and caption taken from [52].

a series of 3 dark current CCD exposures with the beamline shutter closed using the
same exposure time are recorded (to ensure as close as possible conditions between
the measurements). The WinView program stores the data and the experimental
parameters in a file whose structure is ’publicly’ available. It is then used in conjuga-
tion with a Matlab data preparation (appendix) code needed to feed ptychographic
algorithms, and from which the steps are resumed here:

• Both experimental diffraction and backgrounds files are converted to Matlab
matrices using a .SPE read file and all the 2-dimensional data stacked into a
third dimension (representing the probe positions).

• The average dark counts from the background exposures are subtracted from
the all the experimental diffraction patterns and values.

• A threshold value for the noise is given from the first photon peak statistics
found in the data histogram.

• The centre of mass is automatically found from the first diffraction pattern
and used as centre for the rest of the data stack.

• The user decides on the size of the frame ROI based on the maximum extent
of the diffraction.
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• The code thus pad an extra 20 percent to the size of the ROI with zero’s in
order to avoid aliasing when performing the FFT (with rounding to the next
power of two for more computational efficiency.)

• The user possess the choice over data binning in x, y (this speeds out FFT
calculation if data are oversampled).

• Square root the intensity values to give diffraction amplitudes is performed
over the 3d stack.

• Finally, the code will generate a .mat parametric structure to feed the a pty-
chographic algorithm.

4.1.3 Test pattern for APS

An array of test patterns was designed for use in x-ray imaging. Dr. Graeme
Morrison orchestrated the design and choice of materials for the pattern arrays that
were later sent to Zoneplates Ltd (see www.zoneplates.com) who replicated them in
tungsten films supported on silicon nitride membranes [142]. Small Siemens stars
were drawn with 36 open spokes etched into the tungsten support film, with equal
mark-space ratios, so the angular width of each spoke will be 5 deg. The spatial
period d of the spokes at a distance r from the centre of the star is d(r) = πr/18 =

0.1745r. There are of unetched tungsten film at the centre of the star.

Figure 4.5: Left: SEM images of the test patterns replicated in 1.5 µm thick W film. b)
X-ray transmission and phase shift as a function of energy for 3 different thicknesses of
tungsten.

Tungsten was chosen as the material from which the test patterns would be
fabricated. Its chemical and mechanical properties allow it to be prepared in uniform
thin films, films that can be etched anisotropically using Reactive Ion Etching (RIE)
so that nano-patterned structures can be reproduced in the tungsten film. It has
a high atomic number so a relatively modest thickness of tungsten can absorb a
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significant fraction of an x-ray beam, giving good absorption contrast in an x-ray
image. The real part of its refractive index means that phase shifts that are a
significant fraction of π can also be achieved with thin tungsten films. The test
patterns were intended for use on both hard and soft x-ray beamlines, for which
different thicknesses of material are required. The percentage x-ray transmission and
phase shift as a function of energy is plotted for 3 different thicknesses of tungsten
in Fig.4.5 b). The pattern used in the experiments of Burdet and Huang [138, 143]
was prepared in 1.5 µm thick tungsten film evaporated on to a 1 µm thick silicon
nitride window, to provide about 70 % intensity transmission and about 0.9π phase
shift when illuminated by a 9 keV (λ = 0.138 nm) X-ray beam.

4.2 Wavefield characterization

4.2.1 Intro

The ability to characterize wavefronts opened a new dimension for ptychography
as the recovered information is used as in situ feedback over optics fabrication and
x-ray imaging where optical quality and alignement between elements are critical
to achieve small focus spot size [144]. Alignment will be even more critical when
compound optics will be required to achieve sub-5nm focus size.

A major concern at the beginning of this thesis was the motivation for better
approximations of the beam for input to the ptychographic algorithm and thus to
finding a door to a general wavefront characterization procedure [145, 146, 147, 148].
Even if it will be demonstrated that ptychography is able to accurately characterize
a wavefront from very simple model, methods to provide an a priori knowledge of
the illumination function such as simulations and the Quiney method [148] were in-
vestigated. The latter has proven to be useful for the characterisation of x-ray beam
focused by Fresnel Zone Plate. It is evident that when complicated experiments
like for example: focused beam Bragg geometry ptychography studies on Silicon-
On-Insulator nanostructures [149] are envisaged or experiments on weak scattering
samples, the difficulty of retrieving a highly complex object is relaxed by a good
knowledge of the focused beam.

Fresnel Zone Plate characterization

Numerical and experimental approaches were used to understand the focusing be-
haviour of partially illuminated FZP (Fig 4.7 (a)). The partial illumination results
from the coherence length of the x-ray beam which possess a limited extent, typi-
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Figure 4.6: (a) Sketch of the experimental setup at 34-ID-C with entrance slits (1), KB
mirrors (2), piezo-stage (3) and camera (4). (b) SEM image of the test pattern. (c)-(d)
reconstructed phase and amplitude images using data measured at z =2.3 m. Scale bars,
2 µm.
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cally 10− 100µm. A good compromise between working distance and loss of photon
flux is obtained in this manner but as the resulting focused x-ray beam necessarily
represents a noteworthy departure from the focus of a fully illuminated FZP; the
wave-field behaviour is investigated here. The important question to whether the
Quiney algorithm can converge under partial illumination has been assessed else-
where [150]. The initial wave-field ψ(x, y, 0) at the pupil just after the pupil function
is defined as:

ψ(x, y, 0) = P1 = exp(−ΦFZP (rn)).M1(x, y), (4.1)

where the zone plate phase profile ΦFZP (rn) is function of the radius rn =
√
nλr

with n the number of zone. The mask M1(x, y) defines the illuminated area. For
initial simulations a shifted ’logical’ square pupil was employed but for more refine-
ment, propagation of the beam from the coherence defining slits to the FZP was
used. 2

The Quiney method: In principle, a single step calculation between the pupil
plane to the detector should be possible using the Fresnel free-space propagator
but sampling of the quadratic phase factor makes it a difficult task. Quiney [148]
derived a new formalism of the Fresnel equation which extend the process of phase
retrieval algorithms to a three plane iterative method that provides stability to
the algorithm, through removal of the highly oscillatory terms. Since the focal
distribution is theoretically of infinite extent it is by definition it is not possible to
impose a well defined support in this plane, his key idea was then to use the known
support in the pupil plane as opposed to the object’s plane.

For the calculations, the FZP is assimilated to a complex pupil function of a
thin lens P (ρ) of focal length zf . As the detector is placed in the far field the
propagation from z3 7→ z2 requires only the Fourier transform of the slowly varying
function D(r3), rather than of the complete rapidly oscillating wavefield ψ(r3, z3).
The stability of the phase retrieval is maintained by simplification of the Fresnel
terms seen in section 2.1 and summarized by the following steps:

1. Propagate from Pupil to focal plane : ψ(r2, z2) = Q[ 1
∆Z12

, r]F [P (r1)].

2. Propagate from focal plane to detector : ψ(r3) = α[ 1
∆Z23

, r]F [Q[ 1
∆Z12

, r]ψ(r2, z2)].

3. Impose modulus constraint πm on D(r3).

2When it is not possible to image where the beam is hitting the circular plate, e.g. because of
a vacuum chamber, a method like the shrinkwrap [49] invented by Marchesini should be used to
refine iteratively the support of the ’pupil’ function which is realised by smoothing and thresholding
the current iterate
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4. Propagate from detector to focal plane ψ(r2, z2) = Q[ 1
∆Z12

, r]FD(r3)].

5. Propagate from focal plane to Pupil : P (r1) = α[ 1
∆Z23

, r]FQ[ 1
∆Z12

, r]ψ(r2, z2)].

6. Impose support constraint πs on P (r1).

Propagation of the phase-retrieved foucs to the pupil plane gives insight about
deviations from a perfect spherical wave, thus a decomposition of the wave-front
into Zernike polynomials [16] can give quantitative information about the kind of
aberrations present in the optics.

Figure 4.7: Left: A partially illuminated zone plate matching the coherence lengths of the
x-ray beam. 2D schematic of the propagation wavefield produced the partially illuminated
FZP along with the Quiney cycle.

Experimental3: to simulate the focusing performance of the FZP, the FZP
fabrication details together with the experimental setup parameters (Fig.4.8) were
introduced into the Quiney algorithm. To calculate the function M1(x, y), a plane
wave was assumed at the the plane of the beam defining slits set to 30h × 100vµm
which was then propagated 286 mm downstream until partially illuminating the
FZP with an offset of 35 µm in the horizontal direction. After passing through the
FZP, the modified wavefront continued to propagate by 85 mm, where the outer

3The FZP we used in this work contains 2 µm thick alternating gold and diamond zones [151].
The diameter is 180 µm with 80 nm outer-most zone width and a 30 µm diameter central stop. For
X-rays with energy of 9 keV, the first-order focus length is found at 104.5 mm. It was fabricated
using ultra-nanocrystalline diamond (UNCD) as the dielectric mold material into which Au is
electroplated. UNCD is a chemical vapour deposition (CVD) diamond composed of 2-5 nm grains
of diamond bonded together with graphitic type bonds [152]. A 2-µm-thick layer of UNCD was
prepared on 40 nm of tungsten and 1µm of Si3N4 supported by a Si substrate. These layers were
released to form a membrane by back etching the Si substrate. The sample was then coated with
hydrogen silsesquioxane (HSQ) acting as the resist material and exposed using a 100 keV e-beam
lithography system. After development, UNCD was etched with oxygen plasma designed for high
anisotropy and selectivity. The resulting mold was filled by electroplating gold using tungsten as
the conductive base. The HSQ was removed and the resulting FZP consists of alternating Au and
UNCD zones.
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wavefront was masked out by an optical sorting aperture (OSA) of 30 µm diameter.
The wavefront propagated a further 19.5 mm until the focal plane zf .

A 10 × 10 µm Round-ROI scan, with 0.5 µm radial increments, produced 323
far-field diffraction patterns from the ptychographical measurement performed at
the plane of focus zf . The simulated focused probe was used to initiate the DM. A
typical reconstructed test sample image is shown in Fig 4.8 c).

Figure 4.8: Comparison between the simulated probe (a), the probe obtained using the
Quiney method (b) and the ptychographic probe (c).

As the same ptychographic experiment was performed on a bounded object (a
tungsten pin), the main input for the Quiney method - a diffraction pattern com-
ing from the free propagation of the beam to the detector- was taken from the last
point of the scan region (where the beam is the least perturbed). For better perfor-
mance of the three plane method, a diffraction pattern should be taken with object
removed. This probably explains why the ptychographic measurement has given
perfect agreement with the simulated beam as compared to the three plane method.

The retrieved focused beam Fig 4.8 c) was propagated along z as ptychographical
measurement were repeated at 2 different defocus positions with z = +6.0 mm and
z = −12.32 mm, respectively, while the positive z points the downstream direction
of the X-ray beam. A half-pixel size sampling interval was used in the Fresnel prop-
agation calculation, upon FFT in an array of 1024× 1024 pixels. Fig.4.9 shows how
the beam propagates between the planes of measurement. The recovered wavefront
are not analysed in this section but are reported in the publication of Huang [138]
as KB mirrors were exclusively used for the results throughout the thesis, hence are
the main interest of this section.
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Figure 4.9: Propagation of the probe retrieved at the focus zf .

4.2.2 KB mirror

Kewish et al. [144] used the ptychographic method to do comparison of phase-
retrieval results with projected metrology data. They propagated the phase-retrieved
probe to the exit plane of the KB mirror and the optical wave coming from surface
metrology to this very same plane and reached very good agreement. As the lack
of metrology measurement of KB mirrors at APS prevents numerical simulation of
their focusing behaviour and in analogy to three plane method explained earlier
(which appears to be hard to adapt for a pair of mirrors) the idea of performing
measurements at three different planes around the focus came as a self-imposing
method.

Figure 4.10: Reconstructed tungsten pin with difference map. Scale bar, 1µm.

As recovered wavefronts are related to each other by Fresnel propagation, an
agreement with numerical propagation to a plane of interest, is a means for convinc-
ing self-verification [138].

Experimental: A tungsten pin (Fig.4.10) was placed at the focus of KB system,
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which was set at an incidence angle of 3 µrad. The coherence defining slits were set
to an opening of 20× 20 µm for full coherence of the x-ray beam. Ptychographical
measurements were performed at the the focus plane z = 0 and at two other planes,
almost symmetrical to the latter, z = −10.0,+10.5 mm respectively. The scan range
of the usual Round-ROI scan was set to 10 × 10 µm with radius increment of 0.75
µm. The detector region-of-interest (ROI) was set to N = 512 pixels.

The results presented here are complementary to the study of Huang [138], as
they concern the reconstruction of a probe from an non-extended sample. This was
of major importance for later implementation of Bragg projection ptychography
for crystals (chapter 5). The pin sample (Fig.4.10) could be reconstructed with the
difference map algorithm alone, meaning without constraining the probe update with
a diffraction pattern coming from the direct beam. The lower of Fig.4.11 displays
the reconstructed KB probes, while the upper row displays the central numerically
propagated to the computed from the Fresnel propagator (Eq.(2.5) ) to the the -10
mm and +10.5 mm planes. The recovered probe at the focal plane was propagated
backward and forward to the other two planes as they relate by free space Fresnel
propagation. Good agreement with the retrieved probes validates the ability of
ptychography to recover wavefronts.

Figure 4.11: Lower row: the reconstructed probe of the KB mirrors with the sample
placed at -10 mm, 0 mm and 10.5 mm, respectively. Upper row: the simulated probes
propagated from the focused probe matches the reconstructed probes at -10 mm and 10.5
mm as in [138].

The reconstructed probe was propagated in a range of 100 mm with 100µm
propagation step size. To avoid aliasing, the Fresnel propagator was calculated with
a a half-pixel size sampling interval, upon FFT in an array of 512× 512 pixels. The
horizontally and vertically integrated intensities at different planes are shown in Fig
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Figure 4.12: a)b) The integrated vertical and horizontal amplitude through focus from
the central probe of Fig 4.11

4.12 (f) and (g). The vertical focal plane was located at z = −18.6 mm, while the
horizontal focal plane was at z = −27.8 mm.

The horizontal and vertical focal sizes were estimated to be 0.9 µm and 1.3 µm,
respectively, as shown in Fig 4.13.

Figure 4.13: Horizontal (a) and vertical (b) focal sizes of the Kirkpatrick-Baez (KB)
mirror system at their corresponding focal planes. Respective size are 0.9 (V) and 1.3 µm
(H) from fitted Gaussian HWFM.

The methodology of defocused planes produces a convincing self-verification of
the analytical method recovering un-arbitrary wavefield structure information.
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4.3 Probe bandwidth experiment

Previous chapters demonstrated that reconstructions are readily obtainable with
only initial rough estimates of the probe. Exploration of what characteristics are of
benefit for the the imaging resolution and convergence [153] of the reconstructions
are now of very interest in the CDI community. As the scattering power for a given
object is fixed, it is the probe bandwidth that amounts to changing the attainable
angle in diffraction space and hence the image resolution.

Guizar et al. in 2012 [1] showed (experimentally) that a probe with a wider
spatial-spectrum is beneficial for ptychographic reconstructions. They compared the
illumination coming from a pinhole and a focused illumination coming from a FZP
and assessed the resolution of the reconstructed images via Fourier Ring Correlation.
However, the starting point of their reflection was based on previous theoretical
work on Wiener deconvolution for ptychography [86]. While ptychography could
be performed through Wigner deconvolution, it would be only under the unrealistic
condition of data taken with sample steps finer than the desired resolution. However,
Guizar [1] found from the mechanism of information encoding by ptychography that
: "a limited probe spectrum does not pose a fundamental limitation in resolution but
rather a disadvantage in SNR, for a faithful recovery of the object’s high resolution
details it helps to have a probe ambiguity function with a wide spread in reciprocal
space. "

In our set-up, a smaller probe with an increased bandwidth within a CDI window
is easily obtained by opening the KB entrance slits wider. According to classical
diffraction theory of lenses, the size of the focus scales as the reciprocal of the
entrance aperture: (d ∼ 2λf/a) where d is the focus spot size, f the focal length
and a the entrance aperture size. The X-ray beam coherence is ensured within the
nominal length of 30 × 50 µm, thus, it is considered detrimental to open the slits
wider.

To study the effect of probe bandwidth with a significant change between probes
within the CDI window, two entrance slit settings to provide full coherence (10× 10

µm and 30× 50 µm) along with three distances (z = 0.55, 1.0 and 2.184 m) which
are representative of the available range of camera lengths were chosen. A concentric
circular scan trajectory [75] with 5n points on the nth ring and a radius increment of
0.5 µm within a 12× 12 µm scan range, generated 460 frames of far-field diffraction
patterns for each measurement. The detector region-of-interest (ROI) was set to
N = 256 pixels, which respectively gave the real-space pixel size of ∆x =14, 24 and
55 nm for the three detector distances used. As the focal length of the KB mirrors
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are 100 mm and 200 mm in the horizontal and vertical directions respectively, the
slits settings give a nominal focus size of 2.7× 5.4 µm and 0.9× 1 µm.

The difference map approach was used to retrieve the complex sample and il-
lumination functions from the measured diffraction data. As initial input for the
algorithm, a random guess of the sample image and a 1× 1 µm square aperture for
the illumination probe were used. For the first 10 iterations, only the object was
updated, while the illumination function started to update after 10 iterations until
the final number of 100 iterations.

In Fig.4.14, we can clearly observe that for a given distance, sharper edges,
improved contrast are given by reconstructions with the smaller probe that has a
larger bandwidth. We observe as well that for longer distances, the 36 spokes legend’
written on the sample becomes visible along with the grid pattern. To explain these
results, we can define a quality criterion, by coupling into a single product (Ω) the
two fundamental quantities of ptychography, which are the overlap (Θ) and the
sampling (S) as both are varying in this experiment. The overlap in 2D is given by:
Θ = (dx− dr)/dx + (dy − dr)/dy)/2, where dx and dy defines the beam size in x and
y and dr is the scan radius increment. The sampling S, defined here by dividing the
CDI window by then beam area (dx × dy). We define the quantity Ω = Θ.S as an
aggregate measure of the overdetermination of the phase problem. In principle, the
value Ω should be ≥ 1 as the respective entities taken alone should be ≥ 0.5 for the
overlap Θ [154] and ≥ 2 for the sampling S. From the numbers that are reported in
Fig.4.14, it seems that Ω needs to be an order of magnitude higher to obtain good
reconstructions.

It is concluded that probes with increased divergence show higher quality re-
constructions despite a reduced degree of overlap. This demonstrates that probe
bandwidth is a complementary factor to the overlap. Another factor which seems to
surpass the effect of overlap, is the sampling of the probe, where the majority of the
power gradually fits within the field of view when the camera distance is increased.
The increased divergence also allows more flux, so has a double benefit due to the
enhancement of high photon signals at high-angle scattering.

The obvious solution to increase the resolution is to reduce the scan steps, but the
number of points in the scan would require more stability from the instrumentations,
sample drifts and also humidity (except for smaller field of view, such a compromise
on time of measurement is not necessary and the overlap could be increased followed
by a drastic increase in the overdetermination factor S).
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Figure 4.14: From left to right: reconstructed objects and probes for detectors located
at distance z = 0.55, 1.0 and 2.184 m from the sample. Top half part: reconstructions for
slit openings of 10× 10 µm. Lower half part : Reconstructions for slit openings of 30× 50
µm (note: the horizontal KB mirror has one half the focal length of the vertical). The
probes are shown on a common array scale but a white frame has been drawn to represent
the original size of the CDI window. The amplitude of each probe is mapped to the image
brightness, and the phase is mapped to Hue. The beams sizes are in good agreement with
what predicted from diffraction theory.
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4.3.1 Probe diversity: simulations

It was seen in the previous sections that the ptychography unquestionably disentan-
gle the probe features from these of the objects. The probe bandwidth experiment
also suggested that finer features in the probe could maximise the diffraction data.
Thus, to further understand the impact of the probe structure and phase diversity
over resolution, a numerical experiment is performed. The study also aims at de-
coupling the effects of probe structure (the lobes) and phase structure (diversity).
To do so, a reconstructed probe coming from the KB mirror system is used to create
four different types of illuminations:

1. A first probe where only the amplitude structure remains but its typical phase
structure is suppressed, Fig.4.16 a).

2. A second probe that is made by filtering the oscillations surrounding the cen-
tral spot of the first probe with a Turkey window, Fig.4.16 b).

3. A third probe is created by multiplying the second probe with a complex phase
valued array, Fig.4.16 c).

4. A fourth probe is generated by using the first probe amplitude structure but
multiplied with the complex phase valued array of the third probe, Fig.4.16
d).

To generate the phase diverse array, a gently varying landscape of valleys and
troughs is generated by convolving a uniformly random distributed array of numbers
[0-1] over with a Gaussian kernel of 10 × 10 pixels. Simulation were based on a
simulated siemens star (see Fig.4.15) and the usual Round Roi scan used to generate
565 diffraction patterns. Different level of Poisson noise were used from 106 to 1010.

Properties Value unit
Energy 9 KeV
Array size 256 pixels
λ 1.4 A
beam size ∼ 1.5H × 1.5V µm
detector distance, L 1 m
pixel size 20 µm
pixel resolution 27 nm
scan range 8x8 µm
step size 0.3 µm
Number of positions 565
Noise level 105 7→ 1010
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Figure 4.15: Simulated Siemens star of size,11.4 µm

Results on preliminary study: The quality of the reconstructions was exam-
ined using two quality criterions. The first one, the difference map error ε that takes
place in the real space and measures the difference between subsequent iterations
(Eq.(3.10)) whereas the second takes place in reciprocal-space and is based on the
difference between the generated and calculated intensities (Eq.(3.13)). The differ-
ence map error analysis reported in Fig.4.18 indicates that a KB probe cleaned of its
structure (whether phase or amplitude) gives better reconstructions, meaning that
the side fringes have a ’detrimental’ impact on the quality of the reconstructions.
The R-factor analysis is more mitigated as the level of noise seem to play a role
regarding the role of the structure in the quality of the reconstructions. A visual in-
spection is not possible when the level of photons is > 108. Interesting behaviour at
lower photon count which suggests that phase diversity will be useful for biological
sample (like the human metaphase chromosome imaging project [63]) where lower
dose are required.

The results on the filtered KB probe converge with the analysis on X-ray pty-
chography of a weakly scattering object (still a daunting task) done by Takahashi
[97] where a spatial filter at the KB focus provided a better solution with this kind
of illumination optics, to measure the slight object phase-shift.

4.3.2 Discussion

A real object presenting more diversity could also help at identifying the pros and
cons of phase structured illuminations. A set of irregular test patterns made of
polycrystalline tungsten could be used for future experiments. For simulations with
both phase diverse objects and probes, the problem that could arise is that the
high frequency in the Fourier data will wrap-around across the edge of the compu-

109



CHAPTER 4. EXPERIMENTAL REALISATION AT APS

Figure 4.16: Left column: 1) Original probe with amplitude structure only. 2) Probe with
central spot left. 3) Central spot with phase diversity. 4) Original probe with phase diver-
sity. Right column: Respective Fourier Transforms from the product of the corresponding
illumination pattern and the simulated Lena object (for better diversity in features). Scale
bar, 1.5µm.
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Figure 4.17: Reconstructed objects from the diverse probes as a function of photon
counting in the simulated data. The difference in colours indicates the presence of phase
offsets in the reconstructions (also, one of the reconstructions reveals a transfer of the
probe diversity onto the object).
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Figure 4.18: Metrics comparison for the reconstructions with different level of noise.
Left: Comparison using the R-factor. Right: Comparison using the difference map error.

tational window; as pointed out in Guizar’s thesis [82]. The use of this continuous
extra wrap-around intensity pattern for image reconstructions, though non-physical,
is not a cons for simulations. However, in a real-world experiment, care must be
taken that the propagated radiation resulting from such a diversity does not fall
outside the detector area as it would cause discontinuity at the edge of the compu-
tational window. Such truncation would translate into aliasing of the reconstructed
image. Although, it is possible to overcome this limitation by implementing the
super-resolution method developed by Maiden and Rodenburg, which extrapolates
the information outside the detector (and thereby improving the image resolution)
[155]. Furthermore, recent developments at 34-ID-C enlarge both the space available
between samples and detector and the pixels size of the latter, the medipix [38], to
enable resolving much finer reciprocal space speckle diffraction patterns.

Moreover, a systematic study on transmission-geometry ptychography as a func-
tion of X-ray probe phase diversity and degree of partial coherence properties at
beamline 34-ID-C at APS should be performed. Previous researchers [109] have
suggested that incorporation of phase diversity improves CDI reconstructions sig-
nificantly. The previous studies have suggested that, according to the numerical
simulations, introduction of a high degree of phase diversity to X-ray illumination
improves ptychographic reconstructions significantly [N. Burdet, X.Shi, et al, sub-
mitted to optics express 2014]. The theoretical predictions should be tested with
experiments, which would be an important precursor to X-ray coherent diffraction
imaging studies on real condensed matter materials.

Phase-diversity x-ray illumination means the introduction of certain phase struc-
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ture in the incoming illumination function, as comparing to a typical KB focusing
probe. Several random pinhole diffusers will be fabricated to this aim (a typical
SEM image of a similar type of diffuser is illustrated in Fig.4.20. Higher number
of random pinholes present in the diffuser can generate high phase-diversity in the
x-ray probe. The phase diversity can be influenced by the number and size of the
random pinholes that are illuminated by the x-ray beam, so it is possible to ar-
tificially make X-ray illumination with high and low phase-diversity. To vary the
degree of coherence of illumination, both the horizontal and vertical coherence defin-
ing slits size should be varied so as to introduce extra modes in the illumination.
Preliminary reconstruction on partially coherent illumination at APS demonstrates
that a multimodal decomposition for a KB probe is achievable, see Fig.4.19, and
will enable a thorough investigation of partial coherence correction reconstructions.

Figure 4.19: Reconstruction of three KB focus modes for the case of partial coherence.
Preliminary work done with Clark [112]. Scale bar, 1µm.

The insertion of random pinhole array diffuser may cause the KB focus of X-
rays to be more difficult to retrieve. Appropriate guard and standard pinholes; slits
should be placed before the x-ray beam enters the KB mirrors. A guard pinhole to
define the area of random pinholes that are illuminated, and that this pinhole may
also affect the degree of coherence of the illumination reaching the sample.

Ptychographic data with various complexity of random pinhole diffusers, and a
number of coherence defining slits sizes should be taken for investigation of partial
coherence correction with X-ray illumination phase diversity introduced.

Because the numbers of variables are too many for ptychographic simulation
studies, incorporation of all unknown variables of real experimental condition could
provide vital information about the effects of partial coherence and probe phase
diversity in X-ray ptychography, and thus help to test the validity of findings in
recent numerical studies.
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Figure 4.20: Left: SEM image of some randomly-positioned holes. The image was taken
by Pambos Charalambous [156]. The holes are about 40nm diameter, and were etched
into 50nm thick tungsten film, with the holes covering about 14% of the film area. The
area into which random holes were drawn was about 94 × 94 µm microns, which is much
larger than the area shown in the SEM image. Middle: field size for a generic example,
with 2546 holes of 100nm diameter, giving 20% area coverage in a field size of 10× 10µm.
Right: diffraction limited spot obtained from the simulation holes (middle picture). Scale
bar, 50nm.
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Chapter 5

Bragg Ptychography

5.1 Bragg CDI

The foundations of the support-based CDI technique were explained in the back-
ground chapter for non-periodic objects but are also applicable to crystalline ob-
jects in Bragg geometry (originally, CDI is an emancipation from crystallography
to allow for the imaging of non periodic samples). X-ray crystallography study
how atoms organize in periodic arrays, but Bragg-CDI is able to investigate the
atomic displacement from the ideal periodic lattice, making it a strong contender
over more conventional imaging techniques such as TEM, which requires thinning of
the samples. The ability of Bragg CDI to recover a quantitative map of the strain
distribution is of fundamental importance to nanoscience, as strain relates to chem-
ical, electrical, magnetic, and mechanical properties [157]. Strain engineering in
nanoscale materials, includes the enhancement of semiconductor functionality, and
also spatial tuning which may give rise to multiple device relevant effects, such as
anisotropic magnetoresistance [158]. The extension of the Bragg CDI technique in
the XFEL domain has recently demonstrated ultra-fast imaging of lattice dynamics
in nanocrystals [159], and will be of great benefit for the study of pico- and femtosec-
ond processes. Examples of systems which may be studied thus include catalysts
and photonic devices.

5.1.1 Theory behind Bragg CDI

A perfect crystal arrayed on an infinite lattice and broken down into unit cells
arranged on a periodic Bravais lattice [160], is first considered. The direct lattice
vectors a, b, c, known as the primary lattice vectors, defines the discrete translation:
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Rn = n1a + n2b + n3c, (5.1)

where the nis are integer value. Conveniently, the Fourier transform of the direct
lattice is also a Bravais lattice (see Fig.5.1) with the reciprocal lattice vectors that
are defined as:

Ghkl = ha∗ + kb∗ + lc∗, (5.2)

with:

a∗ = 2π
b× c

a · (b× c)
, b∗ = 2π

c× a

b · (c× a)
, c∗ = 2π

a× b

c · (a× b)
, (5.3)

and where h, k, l are the Miller indices. As diffraction from crystals is interpreted
as the reflection from a set of lattice planes, (h, k, l), thus the convenient reciprocal
lattice vector Ghkl locates the scattered intensity that can be probed by an exper-
iment. This is the Laue formulation, which is equivalent to but more formal than
Bragg’s law (Eq.5.4), which nonetheless is at the origin of x-ray crystallography.
Indeed, Bragg was the first to elucidate the fact that for diffraction to occur, the
x-ray wavelength must match the interatomic distances in crystals, which led him
to express the master equation:

nλ = 2dhkl sin(θ), (5.4)

which states that a Bragg peak is produced when the x-ray radiation from the
atomic lattice planes interferes constructively (when the phase shift is a multiple of
2π). The lattice spacings dhkl fulfil many realisations of Bragg peaks.

The Ewald sphere construction depicted in Fig.5.2 helps visualizing the scattering
process in reciprocal-space. The initial and scattered momenta of the radiation
are denoted ki and kf and the scattering vector q defined as q = ki − kf , with
|q| = (4π/λ) sin(θ) and θ the angle between the scattered wave vectors. Neglecting
inelastic scattering process (|kf | = |ki|), the scattered wave vector sweeps out a
sphere of radius |k| and each reciprocal lattice point that lie in the sphere can be
measured by a detector placed at the right location. In the case of a finite crystal, the
physical consequence implies that a copy of the object’s Fourier transform convolves
around each Bragg peak (Fig.5.2).

As it was seen in section 3.6, a 3D diffraction pattern cannot be probed from
all directions simultaneously, and a set of 2 dimensional reconstructed projections,
spanning an angular range of close to 180 degrees is assembled into a single 3 dimen-
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Figure 5.1: Two dimensional real and reciprocal space based on a set of infinite lattices.
A lattice (top left) in the real space can be thought of as the convolution of 1D lattices
(bottom left). The Fourier transform is therefore the product of the Fourier transforms
of the individual 1D lattices (top right), which are sets of lines which intersects to form a
lattice of points. Figure and caption derived from [133].

Figure 5.2: Left: a finite lattice network representing a crystal in real space. Right: recip-
rocal space construction in which the Fourier transform of the shape of the crystal is found
to be convolved around given lattice points (red grid). In an Ewald circle representation of
a constant-wavelength scattering experiment, the scattered intensity occurs at reciprocal
lattice points (red grid) for which the scattering vector q = ki − kf (red arrow) matches
the reciprocal lattice vector Ghk. Figure and caption derived from references [52, 135].
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sional diffraction by mean of the back-projection technique (tomography). However,
a Bragg geometry experiment presents a major difference to its transmission coun-
terparts as the 3D information (or diffraction pattern) is easily available via the
so-called rocking curve, see Fig.5.3. Typically, a few degrees are enough to rock
the entire crystal through the selected (hkl) planes to assemble the 2D projections
while going through a Bragg peak, hence requiring smaller time investment in scan-
ning. The 2D projectional slices are perpendicular to the kf vector, although a small
geometrical correction is to be applied to each of the slices [135, 133].

A less-often used way to measure slices away from the center of the diffraction
pattern, is by tuning the radius of the Ewald sphere by changing the energy of the
incident beam very slightly. This has the effect of changing by a small amount the
position of the diffraction pattern on the detector plane [135].

A crystalline sample with no strain will show an a symmetric diffraction pattern
giving information about its shape and size. Any departure from an ideal crystal (see
Fig.5.4) which is represented by the displacement vector field u(~r) will be projected
onto the transfer momentum q and result in an asymmetric pattern in the reciprocal
space. Robinson [55] derives an equation that allows expressing the crystal scattering
contrast as an effective complex-valued electron density:

ρ(r) = |ρ(r)| exp(iΦ(r)), (5.5)

where |ρ(r)| is the physical density of the crystal and the phase shift Φ(r),
resulting from the displacement field and is given by:

Φ(r) = Ghkl.u(r), (5.6)

where Ghkl , the Bragg vector for the chosen hkl reflection, is related to the
lattice spacing dhkl being considered. Full three-dimensional strain tensors can be
obtained from the measurement of three non coplanar Bragg reflections, as later
demonstrated by Newton et al. [161]. This technique gives an overwhelming advan-
tage for investigation of nanoscale strains in nanocrystals, nanostructures, buried
structures (nm to micrometer) in native states.

All the normal x-ray imaging techniques can be applied in a Bragg geometry
using a zone plate to form the image, but do not provide phase information. Some
techniques could, like STXM in Bragg geometry, but all these techniques are limited
by the lens-resolution, ability to manufacture good lenses, and ease of use, as well
as to the fact that 3D images are very hard to obtain.

Bragg CDI has been shown to work well for objects that are smaller than the
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Figure 5.3: The orientation of the CXD pattern from an octahedral fcc crystal is fixed
to the orientation of the crystal. Rotation of the crystal is equivalent to a rotation of the
x-ray beam. A 2D detector probes slices through the CXD pattern and different slices are
measured for different sample orientations. The scattered amplitude for the corresponding
2D slice is shown on the right side. Derived from [135].
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Figure 5.4: Illustration of a strained region of a crystal. A position dependent vector u(r)
displace a local block of material along with the phase of the scattered x-ray beams relative
to that of the reference crystal by a total amount φ = kf · u − ki · u = Q · u. Whenever
Q is set to a Bragg condition, all unit-cell corners scatter in phase, so this phase shift is
manifested in the final image as a region of complex density with the same magnitude as
the rest of the crystal and a phase φ(r). Caption and figure taken from [55].

beam but extended objects or structures tend to be difficult to study. This is because
of the requirement that the beam coherence width should in principle be twice the
lateral size of the object [162]. Highly strained objects tend to be even more difficult
to study as convergence is not guaranteed, for reasons not yet fully understood [163].

Simulation studies for Test of Robustness of Conventional ER and HIO algo-
rithms on ’highly’ strained 2D objects were performed by Shi and Clark [149]. Their
results show that reconstructions of a highly strained object with a quadratic phase
fails, see Fig.5.5. To solve for highly strained CDI datasets (8π which corresponds to
4 phase-wraps), Shi et al. have introduced a new Guided-Phase approaches whereby
knowledge of the phase structures derived from finite element calculations that are
close to that of the actual objects, are used to define an allowed phase range for
each pixel, thus guiding the iterative algorithm to reach data convergence [149] .

Diffractometer

To accomplish the sample orientation and detector positioning for the scattering
geometry of our experiments, a 6 angles Newport kappa diffractometer is used [164],
see fig.5.6. The long detector arm is necessary to achieve the desired high resolution
in q space, and to support a heavy camera at a distance > 2m from the center
of rotation, the diffractometer has to be strong with a counterweight. To capture
the outgoing Bragg diffraction in reciprocal space, the detector can be moved to
arbitrary points of space by control of the δ and γ angles of the diffractometer. The
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Figure 5.5: Top Panels: 2D simulations of amplitude with soft and strong phase structure
(up to 5 phase wraps). Bottom Panels: Reconstructions using an alternation of ER-HIO.
Courtesy of Xiaowen Shi [149].
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camera distance is adjustable along an arm that is designed to hold various lengths
of flight path, which are chosen for an individual experiment based on the desired
resolution and field of view.

To orient the crystal to its specific Bragg reflections, the sample stage is mounted
on a goniometer capable of orienting in any direction, and independently of the de-
tector part. The precision of the angles and steps with respect to the incoming beam
is high to allow oversampling in the third dimension (operated by the SPEC pack-
age). The use of a 20-micron-pixel CCD detector aims at resolving (oversampling)
the fringes in the remaining dimensions.

Figure 5.6: Left: A typical schematic layout of a Newport Six-Axis Kappa diffractometer
(image taken from [28]). This type of diffractometer is implemented at the beamline 34-
ID-C at APS. Middle: Gionometer showing altogether the θ, χ, φ rotation and translation
stages. Right: The diffractometer arm set at a small 2θ angle and large γ angle. Derived
from [133].

5.1.2 Ptychography in Bragg geometry

The limit imposed by the partial coherence and the need for concentrating the coher-
ent beams, lead to a restriction of the specimen size to the micrometer range. Bragg
ptychography comes as a solution for arbitrarily extending the field of view while
keeping high resolution [73]. Huang in his 2012 paper, observed an advantage of
Bragg ptychography in regards to its single-shot counterparts for ZnO crystals: im-
provements are seen at the image boundary where the beam can drop to a low level
and prompt roughness and structural undetermination at at the edges of the crys-
tal. Moreover, its redundant nature coupled with its better real-space constraints
makes it a strong contender to overcome the problem of solving complex direct-space
structures in compact or extended highly crystalline structures [149, 52]. Indeed, its
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robustness with regards to highly non homogeneous strain fields was evidenced by
numerical analysis [73], while it was demonstrated earlier (section.5.1.1) that such
problems pose a difficulty in Bragg CDI even if improvements in the technique have
been made. High strain fields are to be found in a wide variety of materials like
epitaxial nanocrystals, i.e, quantum dots, nanowires [73]).

The ptychographical Bragg data of crystals, presented in the following sections
show encouraging results, and aim at providing subsequent developments for 3D
atomic displacement fields and surface science.

Bragg geometry considerations

The Bragg scattering geometry calls for a correction of the scan positions as the
apparent movement of the sample is no longer equivalent (or co-linear) with the
detector. Indeed, the sample is now at an angle to the detector, and the overlap
must be adjusted so that the Fourier constraint which is applied at the detector
plane, keeps enforcing the consistency between the views. Thus, for computational
reconstructions, a set of matrices is introduced that account for the sample angles
(φ, χ, θ) and diffractometer angles (δ, γ). First, a translation of the scan positions
to the laboratory is prepared with:



x

y

z




lab

= M−1θM−1χM−1φ



x

y

z




samp

, (5.7)

and using the following sequence of rotation matrices, as rotations are in general
non commutative:




1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)







cos(χ) sin(χ) 0

− sin(χ) cos(χ) 0

0 1 1







cos(φ) 0 sin(φ)

0 1 0

− sin(φ) 0 cos(φ)


 , (5.8)

finally, the coordinates are further transformed from the laboratory to the de-
tector:
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samp

. (5.10)

The approach reported here, is well described in Richard Bean’s PhD Thesis [52],
with the corresponding Matlab code given in its annex part.

5.1.3 Ptychography on gold nanocrystals

Experiments at SLS

Gold nanocrystals (using Bragg CDI) have been the subject of intense study from
Robinson’s group [157]. The experiment reported here, which took place in Febru-
ary 2011, was in fact the first demonstration of ptychography adapted to Bragg
geometry. The primary aim of the beamtime, however had been to record diffrac-
tion patterns while slightly rocking the sample and use X-ray ptychography in the
forward direction to look at the change in effective density when the Bragg peak
is excited. Upon exciting a Bragg condition, the phase shift changes and gives a
detectable contrast change in the forward ’hologram’ part of the diffraction pattern.
Maria Civita [45] was able to measure the phase shift inside the crystals between
the different rocking conditions and compare results with dynamical theory [165]

As a second detector was placed at the Bragg angle, to collect reflection inten-
sities during the rocking curve, the possibility to image the crystal by performing
Bragg-ptychography through the matrices described earlier (Eq.5.9-5.7) was granted.

The following experiment was not conducted at 34-ID-C APS but at the dedi-
cated coherent small angle X-ray scattering (cSAXS) beamline at the Swiss Light
Source, Paul Scherrer Institute. The apparatus used for ptychography is similar to
the APS set-up where a FZP was used to focus the beam (section 4.2.1), to the
exception that the Pilatus detector was placed at 7.2 m due to larger pixel size
(172× 172µm). The set-up is well described in Maria Civita’s transfer report [45].

The FZP outermost zone width (100nm) sets the focus size, which is smaller
than the crystal. The estimation done by analyzing the reconstructed probe profile
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Figure 5.7: Schematic of the experiment made at SLS where it can clearly be seen that the
two detectors collect the transmitted beam (Pilatus 2M) and the reflected beam at Bragg
angle (Pilatus 100k) from the (111) diffraction planes. From left to right: the coherent
beam goes first through a pinhole with a central part made to block the central part of the
beam. Focusing optics: a high-efficiency Fresnel zone plate we used a 1mm thick gold FZP
with 75 µm diameter and 100 nm finest zone width which produces a focal spot of about
100 nm. An Order Sorting Aperture has been placed between the FZP and the sample to
block the higher harmonics generated by the binary phase plate. The sample is centered
in the beam waist of the illumination where the phase front has no curvature. Experiment
preformed in collaboration with Civita [45].
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gives a beam size of around 110 nm (FWHM) with pixel size of 31nm, which is
then consistent with expectation. The Bragg angle for Au nano-crystals is found at
17.65◦ for the (-111) plane. Once a crystal was ’picked’ (xy plane scan), the exact
Bragg condition was found based on the highest intensity of the spots recorded with a
PILATUS 100k detector. The latter was inclined at 35 degree with respect to the axis
of beam propagation z and at a distance of 1.03 m with respect to the sample. The
reconstructed image of an isolated gold nanocrystal grown on thin Silicon membrane
was obtained and analysed (Fig.5.9), which confirm the dimensions found from an
SEM image: lateral dimension of 250nm and thickness of 150nm.

The ptychographic reconstruction shown in the lowest part of Fig.5.8, was per-
formed on the dataset recorded at the Bragg condition. Maria Civita went further
in her transfer report [45], by analysing each of the datasets collected off-Bragg, to
report that the ptychographic reconstructions were only viable for those recorded
in the proximity of the Bragg condition. This is explained by the weak intensity
recorded off-Bragg, thus preventing correct Fourier inversion. These results have
an interesting outcome: they suggest that the tomographic techniques would not
work for the Bragg geometry, whereas assembling the 3D diffraction at each point
and performing direct 3D FFT during ptychographic reconstructions, should lead
to a full reconstruction of the 3D shape of the crystal; this has been performed by
Godard in [95] and by Huang [138]. For stability reasons, it is also suggested to rock
the crystal at each position of the ptychographic scan instead of performing a full
scan for each of the rocking curve angles.

This small excursion primarily aims at demonstrating the sensitivity of ptychog-
raphy to the shape of nano-crystals (see Fig.5.8), but also to highlight that besides
the high performances of the c-SAXS beamline, the success of the Bragg reconstruc-
tion is most likely due to a beam focused on a vastly smaller scale than the object.
The change in the reconstructed crystal density from transmission to Bragg condi-
tions is studied in the ongoing thesis of Maria Civita, UCL. The main interest of
the Bragg-ptychography, which is the mapping of strain pattern in nano and micro
crystals is investigated in the following sections.

Experiments at APS

Another experiment on gold nanocrystals was conducted at APS 34-ID-C beamline.
The nano-crystals were formed by annealing of a film of 20 nm of Au, grown epi-
taxially on a SiN membrane. Ptychographic data were collected at a distance of
0.7 m with a Medipix detector, set at an angle of γ = 34◦. A Round-ROI scan of
2 × 2µm, with radial steps of 100 nm gave 360 scan points with 30s accumulation
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Figure 5.8: Top: Reconstructed phase (l) and amplitude (r) of a gold nanocrystal in
the transmission geometry. Bottom: Reconstructed phase (l) and amplitude (r) of a gold
nanocrystal in the reflection geometry. Work done in collaboration with Maria Civita [45].
Scale bars, 250nm.

for each measurement collected. Setting the slits opening 30h × 60vµm, produced a
KB focused beam of dimensions 900× 900nm, and a large 88% overlap.

Figure 5.9: Unsuccessful ptychographic reconstruction of a gold nano-crystal.

The reconstruction displayed in Fig.5.9 possibly shows a crystal (in the probe
window), while the object presents a collection of small crystals not overlapping.
This is explained by the fact the crystal is of comparable size with the scan steps (the
crystal size was calculated from the extent of reciprocal fringes, using λz/Nf∆p).
While the shape and size of the reconstructed crystal can be trusted, its phase
realization can not, considering that is an average from many non connected Fourier
inversions.

It was then realised from this experiment, that it was the object that was scan-
ning the extents of the probe p(r), and consequently the overlap calculated based on
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the object dimensions. Manuel Guizar in his 2010 thesis, through a simple numerical
simulation, concluded that the advantages of translation diversity are maintained
even when the object is contained within the probe. Surprisingly, his ptychographic
reconstruction had translation steps comparable to the extent of the object (de-
duced from five circles drawn around the small simulated object, representing the
five positions of the large pupil illumination used in his simulations). To mitigate
the findings, numerical simulations follow.

5.1.4 Simulations: crystal contained within the beam

One of the most important criteria in ptychography is the relative strength of the
illumination overlap (in principle > 50 %). It was realised during the last experi-
ment described, that for a small sample contained within the beam, it is the object
that scan the extents of the probe p(r), and as consequence the overlap should be
calculated based on the object dimensions (see Fig.5.10). The objects chosen for the
following numerical experiments are derived from the crystal presented in simulation
of section 3.4.2. In fact, three sizes were used here, in order to study the relation
object-probe size in ptychographic reconstructions. Varying the crystal dimensions
was preferred over those of the illumination (see Fig.5.11).

Figure 5.10: Illustration of a crystal scanning the extent of the complex illumination
function.

The simulation parameters for the ptychographic simulations (commensurate
with the usual experimental conditions at APS), are summarized in the table below.
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Properties Value unit
Energy 9 KeV
Array size 256 pixels
λ 1.4 A
beam size ∼ 800(H)× 800(V ) nm
detector distance, L 2 m
pixel size 20 µm
pixel resolution 13 nm
scan range 5x5 µm
step size 150 7→ 450 nm
Number of positions 440 7→ 30

The scan range of 5× 5µm was chosen so that the crystals would cover the full
extent of the illumination pattern but in reality, it should only cover the central spot,
where full coherence is guaranteed. The overlap relationship for the three different
step sizes used, from both the point of view of the probe and objects are resumed
in the table below.

scan steps size 150 250 350 nm
Overlap probe 81 68 56 %
Overlap crystal 400 nm 62 37 12 %
Overlap crystal 600 nm 76 61 46 %
Overlap crystal 900 nm 83 72 61 %

Figures. 5.12 - 5.14 show the reconstructions after 200 iterations of DM. If the
model probe is allowed to float from the few first iterations, an exchange between
probe and object is observed. As expected, for the smallest crystal, a 50 % overlap
from the point of view of the probe gives bad reconstructions as it represents only a
12% crystal overlap. The simulated 600 nm crystal presented superior reconstruction
(Fig.5.13) in comparison to the 900 nm one for a same crystal overlap of 61% but
which presented a lower probe overlap (Fig.5.14) and indicates that both the crystal
and probe overlaps should be kept high. Thus, to meet the requirement for future
ptychographical experiments on nano-crystals at beamline 34-ID-C of APS, the KB
mirror system should be replaced by a FZP.

5.1.5 Zeolite micro-crystal

Ptychographic measurements were performed on zeolite micro-crystals at beamline
34-ID-C of APS, in the frame of a collaboration with the Group of Professor Kim
[163, 166]. Zeolites are a crystalline aluminosilicate minerals nurturing a network of
well-defined 0.3-1.5 nm wide pores [163], and which serve as catalysts, sorbents,
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Figure 5.11: Left: Simulated crystals of 900, 600 and 400 nm mean size. Right: Ampli-
tude and phase of a typical KB probe at APS.

Figure 5.12: Top row: reconstructed crystals for a simulated scan with radial steps of
150 nm found in the probe window. Middle row: reconstructed probes (modulus) for
the three different simulated crystals respectively (found in the object part). Lower row:
reconstructed probes (phase) for the three different simulated crystals respectively (found
in the object part).
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Figure 5.13: Top row: reconstructed crystals for a simulated scan with radial steps of
250 nm found in the probe window. Middle row: reconstructed probes (modulus) for
the three different simulated crystals respectively (found in the object part). Lower row:
reconstructed probes (phase) for the three different simulated crystals respectively (found
in the object part).
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Figure 5.14: Top row: reconstructed crystals for a simulated scan with radial steps of
350 nm found in the probe window. Middle row: reconstructed probes (modulus) for
the three different simulated crystals respectively (found in the object part). Lower row:
reconstructed probes (phase) for the three different simulated crystals respectively (found
in the object part).
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and ion exchangers [167]. Their industrial application requires the attachment
of the crystals on the substrate followed by a calcination, to finish the synthesis
and removal of organic residues. These two operations involve thermal processing
during which the crystals undergo a certain degree of distortion, due to complex
temperature-dependent anisotropic thermal expansion coefficients [168], and results
in the alteration of zeolite efficiencies.

Figure 5.15: Simulated 3D coherent diffraction patterns for an idealised ZSM-5 crystal
with wave-vector transfer shown for Q ‖ b (020) and Q ‖ a (200). Figure and caption taken
from [163].

The group of Professor Kim [163, 166] explored the characteristic distortion
modes that arises from the thermal process using Bragg x-ray CDI, but their main
problem was a limitation of the real-space phase to the range [−π/2, π/2] (which
corresponds to a displacement of half the lattice spacing), above which the recon-
struction of a crystal is subject to failure. Thereby, a ptychographic test experiment
was conducted on one of their synthesized zeolite crystal (ZSM-5), with dimension
1.9×0.8×2.7µm3 and lattice constants of 20.02, 19.09 and 13.38 A along the a,b and
c axes. The sample was attached on a Si membrane and calcinated at 450 C for 15h.
Coherent x-ray photons of 9 keV, and a small angle of four degrees were employed
to measure a Bragg peak from the (020) reflection (geometry reported in Fig. 5.15
(b)). To satisfy the ptychographical requirements, a collection of 141 Bragg peaks
were collected by mean of a Round-Roi scan of 5× 5µm with radial steps of 0.5µm.

The single projection Bragg ptychographic measurement (no rocking curve) shows
successful reconstruction of the phase within the range [−π, π], Fig.5.16, exceeding
by far the limitations of the ER-HIO alternation used in classical CDI. The strain
mainly appears at the boundary, a fact explained by a core-shell differential thermal
gradient provoked by the organic template leaving fewer residues than the core after

133



CHAPTER 5. BRAGG PTYCHOGRAPHY

the calcination process.

Figure 5.16: Ptychographic reconstruction of zeolite micro-crystal, shown in hue color.
Scale bar, 1µm.

As these results gave confidence in the method, similar measurements were per-
formed on metal containing Zeolites Cu-ZSM5. These zeolites have a great poten-
tial for the catalysis of many reactions, for example the direct partial oxidation of
methane to oxygenates or the conversion of benzene to phenol. As it is known [169],
the catalysis takes place inside the zeolite channel and not at the outer surface of the
crystal but only a small region of the catalyst particle below the surface is found to be
active. This is either because of the limited reactant-gas penetration into the zeolite
or the distribution of active copper sites within the crystal. The latter distribution
can be mapped by ptychography in small-angle Bragg geometry and potentially lead
to improvement of the catalytic efficiency of the Cu-ZSM5 zeolite by identifying the
limiting process. Measurements at different times were performed, to ascertain the
time dependance of the copper diffusion process. The copper was introduced into
the zeolite by ion exchange with a drop of an aqueous copper solutions on the sam-
ple. As the diffusion takes place over a 24h time period, the time dependence of
the diffusion was mapped by 2h intervals (scan time, 1h). The crystals had a (020)
orientation, and thereby ’lying down’ on the substrate, presented a similar condition
to the one described in section 5.1.3; in which the scanning KB probe was larger
than the crystal. Even though the KB focus (1 × 1µm) was only slightly larger
than the crystal height (0.8µm), this condition prevented successful reconstructions.
A fact not well understood at the time of measurements, but highlighted from the
simulations of the previous section. It is then advised to use the smaller focus of an
FZP for future experiments on nano-crystals at beamline 34 ID-C of APS.
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5.2 Bragg projection ptychography of domains in

metal thin films

Ptychography for transmission scattering experiments is now well established, how-
ever, its realisation in reflection is still under intense development due to complicities
of experimental geometries and high quality data that is needed for reconstructions.
Bragg ptychography in reflection geometry already been used for imaging of surfaces
in thin films, local polarization in ferroelectric thin films [170], lattice distortions and
out-of-plane dilatation in semiconductor heterostructures [171], although its implica-
tions in nano-structural physics could be far more important. Reflection geometry
CDI combined with holography has been recently demonstrated for test samples
[172] and will be a complementary method for imaging of surfaces in thin films,
buried interfaces in magnetic multilayers, field effect transistors (but does map the
strain field, which is the relevant quantity to engineer strain for implementation of
new generation semiconductor [173, 149].

3D nanoscale imaging is appealing, but it involves scanning the same area from a
number of viewpoints and results in more complex experiments with longer data ac-
quisition times that even with state-of-the-art setups lead to unavoidable positional
drifts. The definition of a rotation centre in Bragg experimental setups considered
for extended samples can also be problematic [52]. Moreover, the lack of diversity in
the direction of the beam propagation brings a supplementary difficulty in providing
an appropriate support for the 3D phase-retrieval algorithms [52]. Although, with
some a priori structural knowledge, recently developed regularization techniques
[174] can compensate for the detrimental sparsity of the 3D data set and provide a
full 3D quantitative map of strain.

To overcome these problems, we select ’grown-in’ thin film samples presenting
a ’quasi’ three dimensional structure and develop Bragg projection ptychography
(BPP) [170] to exploit the use of traditional 2D ptychographic algorithms.

One layer of domains within the information depth means that the three dimen-
sional diffraction volume can be approximated as constant and thus, a single cut
through the 3D diffraction volume will result in a valid reconstruction. An alter-
native selection of cuts through the diffraction volume will result in reconstructions
with different projection through the ’2D extruded’ or columnar structure.

Up to now, the few investigations carried out on the structure of thin films
with coherent X-ray diffraction support based methods have failed to be conclusive
[175, 52]. On one hand, it could be attributed to the difficulty in providing a
complete formulation of a real-space support to domains that naturally extends
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over the whole crystal surface, and so BPP comes in an obvious solution owing to
its ability to disentangle an illumination function (the support) from the extended
structural features (the sample). On the other hand it could be attributed to the
difficulty in phasing the ’densely’ speckled pattern and again, the intimate relation
between the diffracting features in the thin film and the observed scattering can
be retrieved owing to the redundant approach of ptychography. Bragg diffraction
patterns in this experimental geometry encode not only structural information about
the shape of the illuminated region on the sample but its lattice perturbations.

Richard bean in his thesis work [52], attempted to reconstruct thin films with
Bragg ptychography and did result in produced images of phase structures of an
appropriate scale, but the phase and amplitude structure of the reconstructed sample
and illumination were inconsistent from run to run. The reported reason for the
convergence failures were most likely down to combination of experimental and
analytical factors and concluded that despite the apparent robustness of the method,
further experiments will require much greater knowledge of the experimental regime,
as well as exceptional control and stability. However, his thesis work did indeed pave
the way for the set of experiments presented here, and thus constitutes a valuable
guide for the further work on improving experimental set-up, scanning method and
a posteriori refinement methods developed for this thesis.

In the following sections, detailed investigations of a ’grown-in’ domain struc-
ture in a metal thin film (niobium) prepared by molecular beam epitaxy (MBE)
is described. The experiment was completed at APS using the experimental setup
described (and ’characterised’) in chapter 4 at beamline 34-ID-C.

When phase retrieval is successfully performed, reconstruction of Bragg reflection
geometry ptychography should present a real-space phase image of the thin film with
nano-scale regions of constant phase corresponding to niobium lattice that have
formed a domain structure (to minimize elastic strain). Antiphase type structures
are not expected because these nanoscale regions are interrupted by areas where
misfit dislocations have caused a shift in the crystal lattice which is not an integral
multiple of the Nb lattice spacing.

5.2.1 Introduction to thin films

Thin films grown epitaxially are of importance in many areas of technology and have
been developed as a valuable route for the synthesis of elementary building blocks
for electronic and nanotechnology [2]. Indeed, these buffer layers or templates of
high crystalline quality act as precursor for the growth of other metal thin films and
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Figure 5.17: Model of the Nb(110) Sapphire(1120) interface

superlattices of rare earth and transition metals. High quality epitaxy is owed to
MBE whereas a lower structural quality was obtained by earlier researchers using
sputtering.

A classical and important case among these is Nb on sapphire which form films
of exquisite crystalline quality. Nb can be epitaxially deposited onto onto a different
number of ceramic materials (MgO, GaAs, InAs) but the pair Nb/Sapphire is singled
out for its quality, and is consequently the most ’heavily’ studied system, with
a variety of technique including X-ray diffraction, RHEED and TEM aiming at
understanding (and possibly optimising) the defect structure and accompanying
strain introduced by lattice mismatch.

But this system also warrants careful and extensive studies because it a useful
model system of metal-ceramic interface, commonly seen in engineering applications,
where the effect of the microscopic structure of the interface and film on the material
properties is important. (Recent research interest has focussed on a superconducting
phase found in very thin film Nb on Sapphire films [176].)

The true structure of these systems is broadly complex but common observations
show that above the critical thickness for an epitaxial system [177], the unavoidable
lattice mismatch between the film and substrate gives rise to elastic strain that
is relaxed by misfit dislocations which are observed to form at or near the metal-
ceramic interface in the case of Nb-Saphhire [178].

X-ray studies performed in specular reflection have shown rocking curves with a
two component lineshape with a broad and sharp features for Niobium thin films up
to 500 nm. Wildes [2] gathers and consolidates much of the previous research efforts
on this system in his 2001 review, with lengthy discussion about the nature and
distribution of misfit dislocations, however its conclusion reports that the nature of
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these dislocations is somewhat unclear and that no full model for the morphology
has been currently found. Only results that are relevant to imaging the mosaicity
are restated here.

Domains with lateral broadening and small rotational disorder is a possible model
to explain the sharpening of the broad feature in the scattering [2], as seen in
Fig.5.17. (The broad component of the scattering would be then explained by
the reciprocal of the average domain size). It was therefore considered that a two
component profile is characteristic of many epitaxial systems for which there is a
lattice mismatch between the film and substrate. This profile is also found on an
other quantitative model [177].

Niobium films have been found to be versatile thanks to their ability to grow
on sapphire substrates of various surface orientations with an identical three di-
mensional epitaxial relationship. However, the sapphire substrate surface properties
defines the epitaxy of the niobium.

The crystalline structure of niobium is body centred cubic lattice with a lattice
parameter of 0.3301 nm, see Fig.5.18. Sapphire is a close match to niobium with a
rhombohedral lattice that presents very similar dimensions to Nb b.c.c unit cell of
one of the Al sublattices with an angle of α = 85.7 and unit cell length a = 0.350nm.

The most classic orientation used for the growth of NB on Sapphire (for X-ray
studies especially) is Nb(110) on Al2O3(1120). A schematic of a proposed interface
model for this orientation is shown in Fig. 5.18.

The substrate surface is often stepped due to slight miscut whereby producing
steps that facilitate nucleation and layer by layer Frank-van der Merwe type growth
of niobium. Flynn propose a step flow model to explain metallic multilayer growth
[178]. The step height on one of these viscinal surfaces is incommensurate with
spacing of the Nb lattice planes and provides possible nucleation sites for misfit
dislocations [177]. Thus, a coherent growth between these dislocations is a possible
mechanism to produce domains. As the shift between the domains would exhibit
non integer values of the niobium lattice spacing, the difference in scattering from
these regions should be revealed from the high phase-contrast mechanism provided
by Bragg projection ptychography.

1

1The sample used for experiments presented here is the classic Nb(110) on Al2O3(1120) ori-
entation with a thickness of 1000 A . The temperature of the substrate at growth was 900 ◦ C.
The film was grown by K. Ritley in the laboratory of C. P. Flynn at the university of Illinois,
Urbana-Champaign.
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Figure 5.18: Three-dimensional epitaxial relationship between Nb and Al2O3, shown for
the different substrate orientations. Figure and caption taken from [2].

5.2.2 Bragg projections

To illustrate the following discussion, a schematic cross section of a focused X-
ray beam intersecting at an incident angle corresponding to the Bragg condition
of a crystalline thin film is given in Fig. 5.19, together with diffraction vectors
corresponding to the specular geometry and idealized kf projected focused beam.

The general sample projection principle and formalism to describe Bragg diffrac-
tion has been established elsewhere [55]. In Bragg diffraction, the far-field 2D co-
herent diffraction pattern measured at the Bragg condition of a locally illuminated
crystal is the Fourier transform of the projection of the crystalline volume along
the exit wave vector kf . Thus, Bragg projection ptychography propose to exploit
the 2D Fourier correspondence between Bragg diffraction and the projected thin
film illumination function [170]. The most critical operation is then to understand
how to enforce the consistency between Bragg diffraction patterns and the projected
overlapping sample positions. In previous experiments performed on thin films [52],
the ptychographical scans were realised in the plane of the sample surface, and the
relationship between the displacements and their resulting projection in the detector
plane later adjusted by a set of matrices (Eq.5.9-5.7) during ptychographic recon-
structions. In order to remain independant of the Bragg angle and keep symmetric
overlap, laboratory frame scans were prefered. In this manner, displacement magni-
tudes in the reconstruction plane are equivalent to those of the scan, as established
by Hruszkewycz in [170]. Thus, in the selected coordinate system of Fig. 5.19, the
scan is performed by moving the sample in the xy plane as in transmission (a sta-
tionary sample with a moving beam is equivalent). x (out of plane) being common
to all projection planes in the specular case, there is hopefully no ambiguity about
the displacements or direction of the movements. A movement of the sample along
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the y direction vector from position a” to b” changes the illumination projection
vector into the kf normal plane by ~a′b′ a mirror reflection about the sample sur-
face; leaving the magnitude unchanged for the ptychographic phasing. However, for
more complex Bragg geometries where x and x” do not coincide and the resulting
projected beam is dramatically more complex and is not treated here.

Figure 5.19: Schematic of Bragg projection on a idealised niobium thin film presenting
only one layer of structural domain. By performing laboratory scans, the projected overlap
after the beam displacement is symmetric and of equal magnitudes within the detector
plane (|a′b′| = −|a′′b′′|) for the specular case. Figure and caption derived from [170].

5.2.3 Simulations on domain structure

To help experimental data analyses, simulations are performed on a phase structured
domain system with no absorption contrast. The goal is to assess the possibility of
convergence of pure phase structure, but also to test parameters for situations which
may be encountered in an experiment such as global uncertainty on scan positions
and fluctuations in illumination. As the amount of expected phase contrast is not
known for the majority of systems, except from those with anti-phase domain like
found in the bi-metallic alloy FeAl or Cu3Au and which is one of the main focuses
of Bragg-ptychography; the simulated domain structure is of anti-phase type. How-
ever, the key for numerical studies of niobium on sapphire would be a simulated
phase structure that mimics the real sample structure used in experiments, i.e.,
block structure of mosaic domains with different phase shifts relative to each other
with added phase ramps due to slightly rotated domains (model in Fig.5.17). The
relative phase of each block is determined by its position relative to its neighbours
(on some ideal lattice). While the experimentally reconstructed images in Fig.5.38
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agree with this model, they are not perfectly unique from run to run and better
modelling would help discriminate the relative phase shifts and rotational disor-
ders from remaining global phase ramps and offsets; that were difficult to remove
(section.5.2.6). To design a pattern of equally populated region of 0 and π phase
(or equivalently −π/2 and π/2, the procedure to produce the phase diversity found
in section.4.3.1 and illustrated in [52], is recalled. Then, binarization of the smooth
array is realised by assigning a value of π to regions higher than π/2 and 0 to re-
gions presenting lower values. The average size of the phase-only areas is set by the
size of the Gaussian kernel used, here 10 pixels. Finally, a complex valued array is
produced using the relation c = exp(iφ), which leaves a constant amplitude of one
everywhere. Parameters used to generate the simulated data are a realistic match
to experimental parameters. Specific parameters for the algorithm are included in
table. 5.1 and results from simulations are split into parts based on the parameter
under investigation.

Properties Value unit
Energy 9 KeV
Array size 256 pixels
λ 1.4 Å
beam size ∼ 1.5(H)× 1.5(V ) µm
detector distance, z 1.5 m
detector pixel size 20 µm
pixel resolution 27 nm
scan range 10x10 µm
step size 0.3 µm
Number of positions 300

Table 5.1: Parameters for the ptychography simulations on a two-phase domains system.

Figure 5.20: The results for this chapter are displayed with a (fire) colour scale. The
same black to violet scale is used for the normalised amplitude (from 0→ 1), and for the
phase values that range from (−π → π).

To accommodate different ptychographic scan sizes (or fields of view) and also to
have the illuminated area defined only by the footprint of the scanning illumination,
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the phase structure extends up to the edge of the array (see Fig.5.21. The probe
used for the simulation is designed based on experimental reconstruction from a pair
of KB mirrors at APS.

If the beam were to be nano-sized, calculating the projection of its complex
function as a function of incidence angle and thin film thickness for the Bragg
condition would be critical. This arises from the fact that the high aspect ratio
of the illuminated volume blurs its edges once the local illumination is projected
on the kf vector and changes substantially the illumination function [170]. For a
beam approaching micron size and for a thin film thickness < 100 nm, the aspect
ratio of the illuminated volume is low and can be ideally approximated as a purely
reflecting beam, with no intensity gradients that come to ’spoil’ the the outgoing
illumination function. Simulating deviations from this idealization by a better beam
projection in the plane parallel to the area detector, is only required when the
numerical reconstructions aim at perfectly matching those of the experiments. The
following simulations, however, aim at reproducing effects from other experimental
uncertainties.

The detector pixel pitch size and energy of the X-ray are set to 20 µm and 9 keV
respectively. The detector distance is chosen to be 1.5 meters downstream of the
sample, which is close to optimum far-field geometry distance for our experiments
at APS. Poisson noise was not introduced in the numerical simulations as Signal to
Noise Ratio (SNR) does not impose any difficulties for thin film sample experiments
because exposure time in real measurements can be substantially increased. The
tested overlap is 70% even though larger overlaps may lead to travel faster towards
global convergence, the computational time required per area is greater, and not
deemed necessary for these simulations.

The series of images in Fig.5.22 show the updating object and illumination func-
tion as the algorithm progresses. The starting guess is a simple pupil function of half
a micron diameter. Convergence is usually monitored using the difference map error
metric in measured data. However for these simulations, a direct visual inspection
of reconstructed real-space phases is a better guide and a direction of progress. The
domain features already appear after only 30 iterations, converge to an acceptable
level after 50 iterations and are completed within 150 iterations (Fig. 5.23).

A parameter of primary importance in Bragg ptychography is the correct pro-
jection of the scan position vectors into a plane parallel to the area detector. A scan
improperly transformed may severely affect the reconstructions or even produce non
unique solutions. To test this hypothesis, a simulation with a fictitious CCD camera
set at an angle of 34◦ (like in Fig. 5.19) and a scan accordingly transformed was

142



CHAPTER 5. BRAGG PTYCHOGRAPHY

Figure 5.21: The central image represents the simulated object domain sizes of about
10 pixels in average. Black represents a phase value of π, white represents a value of 0.
Lower right corner: the probe used for the simulation is designed based on experimental
reconstruction at APS from a pair of KB mirrors. Lower right corner: a typical diffraction
pattern (256 × 256 pixels) resulting from the propagated complex exit wave produced at
the first scan position
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Figure 5.22: Images of the probe (column 1), object amplitude (column 2) and object
phase (column 3) respectively from up to down to 10, 30, 50, 80 and 100 iterations of the
DM algorithm showing the progress as a function of convergence. The probe update starts
after 5 iterations. The object FOV is 300× 300 pixels or 5× 5 microns.
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Figure 5.23: Reconstructed amplitude and phase domain for 150 iterations of DM when
full convergence is obtained, zoom over the central part of the objects.

performed. This correction was only applied to the simulated data and a ptycho-
graphic reconstruction was performed with an uncorrected Round-ROI scan. It can
be observed in the reconstruction displayed in Fig. 5.24, that the central part of
the object is correctly reproduced whereas the outer part is clearly affected. This
is mainly due to the the fact that the difference in vector positions increases as
the scan grows in size. By the same token, the conclusion drawn is that central
phase domain in which we will be interested in real experiments, is demonstrated
to be robust to a global uncertainty in scan positions (global drift). Although, an
important loss in illumination fringes was noted.

Figure 5.24: Amplitude and phase domain reconstructed from an ’untransformed’ scan,
zoom over the central part of the objects.

Another uncertainty in the experimental parameters that may produce non-
uniqueness is the likely inversion of diffraction patterns caused by the mirror reflec-
tion about the thin film sample2. To understand the resulting trend in reconstructed
domain morphology, diffraction patterns are computed upside-down before feeding
into the iterative algorithm. Three different random seeding starts were performed
with DM and reported on Fig. 5.25, where it can be observed that domains are quite

2While it is true that the data inversion cannot be considered a real variable, its effects are
nevertheless investigated.
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different from what is expected and seem to be non-unique from run to run. One can
also observe in the reconstructed images the important loss of recovered fringes of
illumination. Most importantly, these simulations shows that the complex contribu-
tions of the projected focused beam cannot be correctly separated from those related
to the sample, when the experimental parameters are uncertain. It might indicate
that the probe fringes should be used as a reconstruction quality (or performance)
metric for real experiments performed on thin films.

Figure 5.25: Images of the probes (line 1), object amplitude (line 2) and object phase (line
3) respectively from three different random start and 150 iterations of the DM algorithm
for reconstructions with diffraction patterns that are computed upside-down (or without
taking into account the reflection type of Bragg modes). The probe update starts after 5
iterations.

5.2.4 Experimental parameters

Coherent diffraction patterns from a specular (110) reflection were collected with a
focussed 8.9 keV X-rays, a Round-ROI scan, and a CCD detector positioned 2.184
m downstream of the sample. The beam was focussed by a pair of Kirkpatrick-
Baez (KB) mirrors to a size of ∼ 900 × 900 nm and made coherent by setting
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the entrance slits to 30 × 50µm. Rotation matrices were introduced so that an
incidence angle of 17 degrees for the sample was correctly accounted for. This way,
ptychographic scans are performed in the direction perpendicular to the incident
X-ray beam (as in the transmission case), thanks to a 3D piezo stage mounted
on the diffractometer goniometer head. Table. 5.2 summarises the experimental
parameters used for the ptychographic scans. The Nb specular (110) peak is chosen
for ptychographic scan and hence inversion of diffraction patterns. Off-specular
peaks can provide information about the depth of the sample but have not been
measured. A reciprocal space map of the Nb thin film is shown in Fig.5.26.

Properties Value unit
Energy 8.9 KeV
λ 1.4 Å
lattice parameter, a 0.33 Å
θ110 17 ◦

δ110 34 ◦

beam size ∼ 0.9H × 0.9V µm
detector distance, z 2.184 m
real-space pixel 15 nm
scan range 2x2 µm
scan step size 150 nm
degree of overlap ∼ 80 %

Table 5.2: Experimental parameters for Ptychography scans on Nb(110) data taken at
APS 34 ID-C.

Regions of the film present different crystal characteristics with sub-micron beam
length scales, and are thus simultaneously illuminated. The coherent beam-mosaicity
interferes when diffracting and modulates the large Nb peak into a densely speck-
led pattern with mean feature size inversely proportional to the incident beam size.
The beam interaction with the crystalline substrate gives rise to bulk Bragg peak
(sharpand single peaked) which is of intensity comparable to the central speckles
arising from thin film peak. The beam size d could consequently be calculated from
the average of minimum to minimum speckle widths s from a series of lineouts
through the centre of the Bragg peak, through the relation d = λz/s.

A self-consistent ptychographic image is generated from adjacent and well de-
fined scattering regions of a crystal only by inversion of coherent diffraction patterns
presenting a high contrast. To keep a constant scattering volume, the method places
stringent requirements on beam coherence and instrument vibration during the real-
isation of a fixed point measurement. Fortunately, the high capabilities of beamline
34-ID-C provided a high and suitable contrast of 80±5%, calculated from the speckle
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features taken in a line plot at the center of the diffraction pattern (Fig. 5.27). They
are oversampled with approximately 8 pixels across each feature.

Figure 5.26: Typical coherent diffraction pattern taken at the Nb (110) specular Bragg
peak.

5.2.5 Reconstruction attempts

Coherent diffraction data was collected in specular Bragg geometry reflection from
Nb(110) crystalline planes. In this geometry, the illumination and the ptychographic
scan are kept as simple as possible when projected in the reconstructing plane par-
allel to the detector area. This plane is also parallel to the plane of the momentum
transfer, q, hence sensitivity to the film structure is in the film thickness direction.
The detector being set with only one rotation angle (γ) results in a simplification of
the scan transformation (y direction only), for the ptychographic reconstructions.

A scan of 2×2µm with radial steps size of 150 nm distributed 141 scan positions
with accumulations of 0.2 sec CCD exposure time taken at each position. Due to
the limited memory of the GPU, the data set is reduced to 100 diffraction patterns,
corresponding approximately to a scan area cut to 1.5 × 1.5µm . The diffraction
patterns are centered in order to minimize artificial phase gradients. The 512× 512

reciprocal-space data were embedded in 1024 × 1024 pixel array in order to have
larger features in the real-space. A single centering adjustment was made based on
calculation on the centre of mass of the first diffraction pattern within the 1024×1024

pixel array. In this manner, any shifting of peaks is only due to the change of sample
domain profile.
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Figure 5.27: Speckle profile taken in the detector x direction at the centre of the Nb(110)
specular Bragg peak. Speckle features are high contrast showing a high degree of coherence
and are ∼8 pixels per speckle.

To prevent the risk in the algorithm attempting to fit the sapphire peak and
hence incorporating artefacts into the object structure, the sapphire bulk diffraction
intensity values are set to zero, by an appropriate mask applied to the diffraction
patterns. The ptychographic reconstructions are started with a complex illumination
reconstructed from test pattern data taken in a transmission geometry (see Fig.)
and resampled to match the reflection geometry dimensions. The algorithms start
to update the complex illumination function after 60 iterations of DM. A circular
support is applied to the CDI window to prevent the algorithm from filling the
corners with artefacts of relatively high intensity values. No binning of the data
was performed, in order to provide robustness to the algorithm and its correcting
schemes.

This first attempt in reconstructing domain structure faced difficulties as pre-
viously reported in [175, 52], with real-space images only showing a few promising
features, therefore the reconstructions are considered partially successful. The rea-
sons for the failure are investigated in details in this section before the reproducibility
of the images is demonstrated. All reconstructed images display object amplitudes
across the full array, however for reasons of clarity, only the central region of the
object phases is displayed.

The recovered phase structures are split into domains and are one with non-
random (Fig. 5.28). They all look very similar but different random seedings give
phase results that are not consistent from one run to another. The recovered am-
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Figure 5.28: Images of first experimental reconstructions of Nb(110) sample. a) illumi-
nation amplitude. b) object amplitude c)-d) zoom of phase results for two random start.

plitudes are not located to the areas where the overlapping illumination provides
significant intensity. As already encountered with simulations, an illumination func-
tion that does not present weak amplitudes well away from the central focus, signals
that either the scan transformation is wrong or that the probe is fluctuating over
time, or both. An encouraging sign, is that the profile is not corrupted by domains
implying that the illumination function can be numerically deconvoluted from such
complicated object.

Despite the apparent complexity of the sample under study, the high quality of
the coherent diffraction data with the slow modulation of the speckles (from overlap)
should enable both the Fourier-space and real-space overlap constraints to produce
phase structures uniquely and disentangle a better illumination function. As ways to
correct scan point positions and fluctuations in probes have been developed (chapter
3) for the sole purpose of improving sensitive experiments, they will be administered
separately in the next subsections and provide a careful analysis of their combined
effects. Certainly, it could be argued that probe and scan drift could be dismissed by
running reconstructions with fewer scan positions only. Although, reconstructions
performed with 20 and 50 positions proved to be difficult with regard to retrieving a
probe with sufficient features (only the central portion of the KB could be retrieved
as in Fig.5.25 ). Therefore, it will be seen that exploring multiple probes and position
corrections does not amount to giving more degrees of freedom to the reconstruction
algorithm but rather provide better constraints. It is also worth reporting that less
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redundancy presented greater analytical difficulties, and this is why the following
section focuses only on the larger overlap data set.

Dynamical scan transformation

As presented in the simulations of section., imaging self-similar small features is
feasible. As has been reported [52], the difficulty in imaging domains likely lies in
the numerical scan transformation to the Bragg projection geometry. The positional
input for computational reconstructions are usually adjusted to the Bragg geometry
by rotation matrices (section 5.1.2) but a scan positions correction scheme offers the
alternative possibility of iteratively adjusting the scan positions. However, this is
only realistic for small scans as the correction for outer vector positions should lie
within the range of effectiveness of the employed method [96, 78]. However, once the
correct scan transformation is found, the method can be used as a complementary
numerical constraint to the matrices.

An effective approach to ’iteratively transform’ the scan will be the annealing
method, explained in section 3.3, and which is preferred over a cross-correlation
based method for this particular case where images fluctuate severely from one
iteration to another.

To help us understand ’qualitatively’ which correction should be applied to the
scan (y direction for now) the annealing method is applied to the set of previously
analysed data. The annealing correction is initiated at iteration 200 and sustained
for 200 hundred more iterations, and which is clearly enough to ’stabilize’ the metric.
Annealed positions and corresponding metrics are displayed in Fig. 5.29 for the three
different y scan transformations tested: one with a cos(34) correction, one without
correction and the finally one 1/ cos(34) correction.

Starting with a cos(34).y contraction of the scan, it is observed that the outskirt
positions are displaced quite far from their original positions towards the outer region
of the scan, with a slight asymmetry in the distance travelled.

For a scan with no contraction, which is expected from illustration in Fig. 5.19,
we observe that the ’annealed’ positions are still trying to go outwards but with an
amplitude that is reduced by about half from the previous (cos(θ).y) correction.

Finally, by testing a scan expansion,1/ cos(34).y, it can be observed that the
points are migrating relatively around their original scan points with no global di-
rection. For each of the three scans, the metric stagnates around about 0.4 which
represents a respectable improvement of 35%. Retrieving the scan transformation
from a correcting scheme seems to be a valid idea since the correction in the x
direction is relatively stable, as expected. A proof a non erratic behaviour and
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reproducibility was brought by running the ptychographic reconstructions several
times.

Nevertheless, looking at the resulting probes suggests that finding the right scan
transformation and possibly the true scan positions is not sufficient to recover full
fringes, as expected from the KB illumination profile. Interestingly, the recovered
probes are overall invariant under different scan transformations. Thus, the con-
clusion to be drawn from these results is that the illumination fluctuates with time
and therefore the annealing correction method must be combined with a dynamical
probe scheme to a better effect. However, the latter method is first tested apart for
a better understanding of its sole capabilities on the ptychographic reconstructions.

Dynamical probe analysis

Artifacts in the retrieved images, may be caused by the phase retrieval algorithms
but from changes in the experimental set-up itself, as well. Changes to the shape
and intensity of the probe would not be expected from such a ptychography set-up,
although it is not surprising to find drifts and damage in the illumination on a time
scale approaching an hour [63].

As probe instabilities could be responsible for the poorly formed outer fringes
in the reconstructed illumination function, therefore, a dynamical probe method
(Eq.3.37) is tested by performing reconstructions with an ever increasing number of
illuminations assigned to the scan (up to 16 in steps of 2). The scan being comprised
of 100 points, the phase retrieval is fragmented in subset of 50, 25, 12, 10, 8 and
6 scan points respectively. The reconstructions obey the following cycle: for the
first 60 iterations, the reconstructions are performed using a pupilar function of 800
nm in diameter (a rough guess to the central KB spot size), then a single probe
is updated for 40 iterations before the dynamical probe scheme elucidates for more
probes, for a further 300 iterations. A code that optimizes the number of dynamical
illuminations over the course of iterations could be envisaged.

Ptychographic reconstructions performed with 2,8 and 14 probes are displayed
in Figures.5.30-5.32. A 2 probe scheme already yields noticeable improvement with
reconstructed probe fringes extending almost over the entire CDI window, which in
the case of complicated samples could be in principle interpreted as an encouraging
sign of data convergence. Reconstructions with more illuminations stabilize into the
typical shape that one expects to see from the focus of a pair of KB mirrors.

The final error metric values are reported in Fig. 5.33 and expose a net trend:
a minima in error metrics when 14 probes are involved in the ptychographic recon-
structions. However, for such a number the quality of the illuminations degrades
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Figure 5.29: a)-c) Difference-map metrics for cos(34), 0, cos(34)−1 scan transformations
in y with corresponding positions retrieval. During the annealing process, scan points
are plotted in violet each 5 iterations. This means that for each of the 100 scan points
there could between 1 to 40 retrieved points plotted. d)- f) Phase of probes correspond-
ing to scans a)-c) respectively. g) - i) Amplitude of probes corresponding to scans a)-c)
respectively. The probe are invariant with regard to scan transformation.
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Figure 5.30: Ptychographic reconstruction using 2 dynamical probes. a) Plot of difference
map metric. b-c) amplitude for first and second illumination (amplitudes are slightly
enhanced). d) Object amplitude. e) Object phase (zoom on central part, ∼ 1× 1 µm).
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Figure 5.31: Ptychographic reconstruction using 8 dynamical probes. a) Plot of differ-
ence map metric. b-f) amplitude for first to fourth illumination (amplitudes are slightly
enhanced). g-i) phase for first to fourth illumination j) Object amplitude. k) Object phase
(zoom on central part, ∼ 1× 1 µm).
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Figure 5.32: Ptychographic reconstruction using 14 dynamical probes. a) Plot of differ-
ence map metric. b-f) amplitude for first to fourth illumination (amplitudes are slightly
enhanced). g-i) phase for first to fourth illumination j) Object amplitude. k) Object phase
(zoom on central part, ∼ 1× 1 µm).
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with suppressed fringes and noisy contours (see Fig. 5.32). This is explained by a
numerical overlap constraint being weakened by a reduction in closest neighbours,
thus the most numerically constrained region of the reconstruction is near the centre
of the image. (Hence, a reduced set of metrics does not always mean better quality
reconstructions and a compromise has to be found.) As these drifts in illumination
could be attributed to instabilities in the source or in the experimental set-up, it is
proposed to analyze the latter by introduction of a position correction scheme into
the algorithm. Therefore, an examination of the phase structures is not dispensed
at this stage. Given the increased complexity in experiment and sample structure,
it was thought that a stringent requirement on the a priori knowledge of the il-
lumination function would be necessary. It was demonstrated with this method
that a rough starting guess is sufficient to recover an illumination that is consistent
with the expected KB illumination profile. In conclusion, a realistic guess for the
illumination is not needed for this type of study.

Figure 5.33: Plot of difference map error metric final value as function of illuminations
number D in the ptychographic reconstructions .

Combining the refinement schemes

As both the scan points and the illumination inevitably drift during the course of
an experiment, a combination of the two previously tested methods should lead to
a major improvement of reconstructions at dedicated coherent beamlines. Starting
from the ’deduced’ 1/ cos(γ).y scan transformation of the previous section, the per-
formance of reconstructions as a function of the number of ’injected’ probes into the
100 adjusted scan positions, are assessed. The three update schemes, to be known
the probe, dynamical probe and annealing are not started simultaneously but each
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begin after exhaustion of their individual capacities. Therefore, 3 plateaus should
be observed during the course of the difference map error metric. On Fig. 5.34, it
is shown that for an analysis with 8 dynamical probes, the points are on majority
stable with no particular trends in direction. This time, a quantitative analysis is
given by choosing to calculate mean error for retrieved scan positions in the direction
of interest (y) and it is defined as:

∆rfinalavg =

∑
j |rfinalj − rscanj |

N
=

∑
j |cjj|
N

. (5.11)

Figure 5.34: Plot of the corrected positional points as a function of illuminations number
used in the reconstruction of Nb(110) data. From left to right: 2,4 and 8 probes reconstruc-
tion respectively. The points are plotted in violet each 5 iterations during the annealing
process. This means that depending on stability, there could between 1 to 40 retrieved
points plotted for each of the 100 scan positions.

The reported trend in Fig. 5.35 is clear: the mean error for retrieved scan posi-
tions decreases as a function of probe numbers. It reaches the minimum of 2 pixels
(30 nm) for 8 and 10 dynamical probes so no further probes are employed. It is then
deduced that a better converged probe (or probes) favours a more realistic search
in scan positions. In fact, a virtuous cycle is initiated as the favour is returned by
the annealing process by helping the illumination to improve in quality.

In Fig.5.36, the reconstruction with a set of 2 probes shows a twofold improve-
ment in metric as expected from a combination of refinement methods that bring
net improvements when applied separately. After the ’annealing peak’3, its metric
(yellow plot) initiates a descent that goes well below it starting point. The metrics
associated with reconstructions using a superior subset of dynamical probes show
a peculiar behaviour. After the ’annealing peak’, the metrics oscillate but overall
stay at a level higher than their starting point. Hopefully, it will be seen in next

3The annealing peak is the sudden change in metric due to the introduction of the correcting
scheme
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Figure 5.35: Mean error (∆final
avg ) as a function of illuminations number (D) used in the

ptychographic reconstruction of Nb(110) data. The amplitude of the mean error depends
on the ability of the algorithm to retrieve the illumination fluctuations.

section, that the metrics associated with reconstructions of molybdenum data work
in a cascade fashion, as predicted.

Figure 5.36: Plot of difference map error metrics as a function of illuminations number
used in the reconstruction of Nb(110) data. The best error metric (yellow) corresponds to
the use of 2 probes.

While the method broadly demonstrates the good stability of the experimental
scan, it is difficult to tell whether the positional uncertainties are the true positions.
Nevertheless, the positions retrieved with 8 dynamical probes will be kept as a
constraint for the following analysis of the images reproducibility.
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5.2.6 Analysis of the phase domains

Despite the conundrum in error metrics, the phase structures are analyzed from
reconstructions using an 8 dynamical probes reconstruction from two different ran-
dom seedings respectively, as stability in annealed points was minimal. What can
be observed in Fig. 5.38, is that the phase domain patterns are quite unique from
one random start to another despite a change in phase ramp and possibly in phase
offsets. The phase domains produced by reconstructions involving a different num-
ber of illuminations presented a lesser degree of reproducibility. The first (d = 1)
and last (d = 8 = D) of the D retrieved dynamical illuminations are displayed at
the bottom of Fig. 5.38 in hue color, and show high quality reconstruction. Appar-
ently, fluctuations between the dynamical illuminations are indeed subtle but still
necessary a condition to favour convergence of the domain structure. Different runs
leave the illuminations unchanged.

Figure 5.37: First row: central region of phase objects reconstructed with 8 dynamical
probes and started from two different random seeds. Second row: first and last illumination
(sown in Hue color with amplitudes slightly enhanced). Pixel size, 15 nm.

Linear phase term removal: when preference is given to reconstructing both
object and probe, an ambiguity on the linear phase terms arises. Manuel Guizar in
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[179] was the first to discuss an alternative solution to a ptychographic image that
also satisfies the object domain constraints, by considering:

o
′
(x, y) = o(x, y) exp

[
i2π(bx+ cy)

]
, (5.12)

and
p
′
(x, y) = p(x, y) exp

[
− i2π(bx+ cy)

]
, (5.13)

then:

f
′

n(x, y) = o
′
(x− xn, y − yn)p

′
(x, y) = fn(x, y) exp

[
− i2π(bxn + cyn)

]
, (5.14)

"from this mathematical construction, it is realized that the fields f ′n(x, y) and
fn(x, y) differ by only constant phase terms and consequently still produces the
same intensity pattern in the far field, |F ′|2 = |F |2 (and the overlap constraint
is satisfied, the functions o′(x, y) and p

′
(x, y) are solutions for any value of b and

c. This is intrinsic and decoupled from reconstruction algorithm when no a priori
knowledge of the sample or probe is used. It has been then concluded that image
quality is not affected by this arbitrary phase ramp as long as the illumination func-
tion is reconstructed with a linear phase of equal magnitude but of opposite sign."
Linear phase term removal is usually not critical but in this particular case, remain-
ing non-uniqueness in phase domains reconstruction can be attributed to different
phase terms that arise from different random seeding. According to the relation in
Eq.5.14, the phase ramp found in the complex object can in principle be suppressed
by multiplication with the opposite ramp found in the complex illumination func-
tion. Therefore , to successfully quantify the ramp in the probe, were studied the
several available options which are the mean phase gradient, center of mass, and
polynomial fit. A brief overview follows.

Mean gradient: this is a simple method in which the gradient of the phase
is computed at each array point, and then the mean of the local gradient phase is
calculated from the whole array. The magnitude part of the illumination can also
be used as a weight (this method can be found in the package of the SLS code,
developed by Pierre Thibault and coworkers [180]).

Center of Mass: the Fourier transform of a translated function introduces
a phase tilt across the Fourier domain. In mathematical term it translates into :
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Ff(x + a) = eiqaFf(x). From the same property, a phase ramp across the real-
space will result in a shift of the Fourier domain. For example a phase ramp of 2π

across the object will result in one pixel shit of the Fourier intensity pattern. Thus,
to calculate the phase ramp present in the illumination, we Fourier transform the
illumination complex function and calculate the center of mass using the following
equation:

∆a =

∑
(x.|P (x)|α)∑
(|P (x)|α)

. (5.15)

As the calculation proceeds on a pixelated array, the precision reached is propor-
tional to the upsampling factor employed,i.e, the array is embedded into a bigger
array filled with zeros before performing a FFT. As a GPU is limited in memory the
upsampling factor was limited to 30, which allows for a precision in phase of π

15
. After

performing an inverse Fourier transform the array is cropped back to its original size.

Polynomial fit: this original way of measuring a phase ramp (first order co-
efficient) has been privately developed by Fucai Zhang (UCL) and represents an
interesting alternative but demands to first unwrap the phase which may result in
ambiguities. To avoid noise in the fit, a region of interest is manually selected by
the user.

To discriminate between the methods, a reconstructed siemens star presenting
a phase ramp was used (besides its spokes the test sample presents a flat phase
structure). The center of mass method left a small amount of phase ramp whereas
the other failed to remove it or even worsen it. Hence, phase ramps found in each
of the D reconstructed illuminations is calculated using the center of mass method.
The values are reported in table.5.3 for ptychographic reconstructions using a subset
of 2, 4, 6 and 8 dynamical illuminations respectively.

As expected, the phase ramp values change from run to run but surprisingly, also
in between each dynamical probes of a same iteration and reconstruction. Despite
a smooth change in between neighbouring illumination phase ramps, these latter
fluctuations render the phase ramp removal tremendously harder.

Restarting reconstructions with a suppressed phase ramp on each of the D dy-
namical illuminations retrieved as an input model for the ptychographic reconstruc-
tions, and allowing only for the update of the object, comes as an obvious solution.
According to Eq.5.14, reconstructions performed in this manner should result in
outcoming phase structure presenting no phase ramps and hence structural phase
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Phase ramp P1 P2 P3 P4 P5 P6 P7 P8

2 probes −0.52π −0.26π x x x x x x
2 probes −1.86π −1.46π x x x x x x
4 probes −0.26π 0.12π 0.4π 0.26π x x x x
4 probes 0π 0.4π 0.52π 0.52π x x x x
6 probes 0.4π 0.8π 0.66π 1.06π 1.06π 1.06π x x
6 probes 0.26π 0.52π 0.8π 0.88π 0.88π 0.3π x x
8 probes 0.2π 0.1π 0.2π 0π −0.2π 0.3π −0.3π −0.1π
8 probes −0.5π −0.4π 0.2π −0.4π 0.2π 0.1π 0.4π 0.1π

Table 5.3: Phase values of ramps found in two random seeding for ptychographic recon-
structions using a subset of 2, 4, 6 and 8 dynamical illuminations respectively.

values that are the same from one to another random object starting guess. This
method was tested with the D = 8 retrieved dynamical probes as input model for
the unchanging beams along with addition of the retrieved annealed position. The
8 previously retrieved probes with suppressed phase ramps were stacked in an array
(illd) and ptychographic reconstructions were performed from two random starts,
using the following equation:

Onew(r) =

∑D
d=1

∑dN
D

j=(d−1)N
D

+1
ill∗d(r + rj).ψd(r)

∑D
d=1

∑dN
D

+1

j=(d−1)N
D

|ill∗d(r + rj)|2
. (5.16)

After 400 iterations of DM, the final phase images were rather worsened with a
metric that was 10% higher than the respective value reported in Fig. 5.35. The
reasons for this are not yet well understood.

Figure 5.38: Central region of phase objects reconstructed with 8 dynamical probes and
started from two different random seeds.

Alternatively, an integral phase ramp cancellation can be performed on each
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object’s subfields by multiplication with the respective conjugate phase ramp found
in the dynamical illuminations. In fact, ptychographic Eq.3.37 which updates an
object from all the j = N views andD dynamical probes is modified for this purpose:

Occ =

∑D
d=1

∑dN
D

j=(d−1)N
D

+1
RdO(r − rj)

∑D
d=1

∑dN
D

j=(d−1)N
D

+1
|RdO(r− rj)|

=
D∑

d=1

dN
D∑

j=(d−1)N
D

+1

e(φd).O(r − (rj + cfinalj ),

(5.17)
where Rd is the ramp array associated with one of the D given dynamical probe.

The method was tested for the reconstructions with D = 8 dynamical probes (with
the ramp values found table. 5.3) and with the previously retrieved positions (rj+cj)

overlaid to the object array so that code can correctly suppress the object phase
ramps according to area belonging to the respective subset of dynamical probes.

Figure 5.39: Hue rendering of central region of objects with suppressed phase ramp,
according to Eq.5.17. Scale bar, 150 nm.

The results from this method are displayed in Fig.5.39, and with hue rendering
for a better visibility. The local structures are clearly consistent from run to run,
however at this stage a cross-correlation analysis could only be performed on the
amplitude part of the arrays, as the phase ramps were not perfectly removed.

5.2.7 Reconstructions of Molybdenum data

Data for a molybdenum thin film were taken with the same conditions and geom-
etry as for the niobium data, with the exception of a slightly increased angle of
sample incidence (θ = 18). The data are analyzed with the previous combination of
multiprobes and annealing method with the best scan transformation of 1/ cos(γ).y
correction. The algorithm update cycles follows the Niobium data prescription. The
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experimental parameters are resumed in table.5.4. A reciprocal space map of the
molybdenum thin film is shown in Fig.5.40, where it can be seen that a beamstop
was used to block the high intensity coming from the Sapphire peak.

Properties Value unit
Energy 8.9 KeV
λ 1.4 Å
lattice parameter, a 3.15 Å
θ110 18 ◦

δ110 36 ◦

beam size 0.9(H)×0.9 (V) µm
detector distance, z 2.184 m
real-space pixel 15 nm
scan range 2x2 µm
scan step size 150 nm
degree of overlap 80 %

Table 5.4: Experimental parameters for Ptychography scans on (110) peak of molybde-
num at APS 34 ID-C.

The mean errors for the y direction, reported in Fig.5.41, observe (as for niobium
data) a decrease in magnitude as a function of probe numbers with a minimum of
2.6 pixels ( 40 nm) reached with the use of 10 dynamical probe. Although the mean
error seem to further improve with more addition of dynamical probes, it is stopped
at the number of 10 because it is counterbalanced by the reconstruction metric which
increases. The mean error in the x direction decreased slightly from 1 pixel to 0.5

pixel, which is expected, as no transformation is involved in this particular direction.
The metrics seen in Fig. metrixage also behave as expected, with a decrease in

metric following each of the refinement cycle (with the 10 probes being an exception
to the rule). In this manner, the best ’combination’ can be safely extracted (violet
metric in Fig. metrixage ). Hence, the analysis of the phase uniqueness is based on
this set of conditions.

The phase structure in Fig. 5.43 (zoom in hue color) show that reconstructions
are seemingly unique. The domains show some slight changes in structure from one
run to another and a phase almost constant within boundaries. These encouraging
results seem to be have been possible owing to the fine scan step of 150 nm size.
The hue color demonstrates in a single image that both the phase and amplitude
structure are seemingly unique from run to run.
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Figure 5.40: Typical coherent diffraction pattern taken at the Mo (110) specular Bragg
peak. At the bottom, a beamstop was used to block the high intensity coming from the
Saphire peak.

Figure 5.41: Mean error (∆final
avg ) as a function of illuminations number used in the

reconstruction of data S027. The amplitude of the mean error seems to be depending on
the ability of the algorithm to retrieve the illumination fluctuations. Mean error for the x
direction is given (cyan plot).
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Figure 5.42: Metrics as a function of illuminations number used in the reconstruction of
data S036. The best error metric (violet) corresponds to the use of 8 probes.

Discussion

A successful adaptation of ptychography to reflection Bragg geometry of extended
thin films was demonstrated, thanks to the general discussions of previous re-
searchers on how the experimental method and analysis factors might be devel-
oped to deliver successful reconstructions [52]. Thereby, great care was devoted to
demonstrate that neither the self-similarity of the domain structure nor the fact
that the samples presented no clear edges to ’guide’ the algorithm were the cause
of the previous failures. It was also shown that despite the complexity of the in-
vestigated samples, no a priori knowledge of the illumination profile was required.
Ultimately, the correcting mechanisms are also testament to the fact that an ex-
ceptional knowledge of the experimental regime, control, stability and single photon
detectors are not always necessary. However, the phase ramps present in the phase
objects could not be appropriately removed with conventional methods, and thus
prevented quantitative analysis of the images reproducibility.
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Figure 5.43: Zoom on phase objects reconstructed with 8 dynamical probes. a) Differ-
ence map metric. b-b’) Probes reconstructed from two random starts (hue color). c-c’)
Object’s amplitude from two different random starts. d-d’) Zoom on object’s phase from
two different random starts. Scale bar, 150 nm.
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Conclusions

In this dissertation, the sphere of applicability of ptychography was extended by
adapting its traditional transmission framework to Bragg geometry. Nonetheless,
before undertaking the major analytical hurdle of ptychographical diffraction data
taken in reflection geometry, the potential of ptychography in the transmission ge-
ometry was exploited, with judicious experiments and simulations.

Numerical modelling allowed for special considerations in the formulation of
transverse partial coherence correction for ptychography. Systematic analyses were
performed, and clearly demonstrated that by incorporation of partial coherence cor-
rection in the ptychographic iterative algorithm, reconstructions improve dramati-
cally even with severely degraded coherence. A wide range of degree of coherence
parameter (σ/L) values was used, as to formulate the lower cut-off limits to the
degree of partial coherence from which below ptychographic reconstructions fail to
converge.

Refinement of the complex coherence function during iterative reconstructions,
was also investigated with simulation studies. The iterative reconstructions were
started with several complex coherence function guesses, to be gradually refined
during the reconstruction process. The results evidenced that labourious interfero-
metric measurements of coherence can be avoided at x-ray beamlines. However, the
modelling advocates the use of a simple test object to refine the coherence function
in real-experiments, similar to the method for extracting a complex probe structure
through a well-known test pattern in transmission-geometry.

These results coupled with the experimental findings on probe bandwidth (section.4.2.1
suggest that an appropriate degree of partial coherence of X-rays can be implemented
to maximise coherent scattering intensities for sufficient signal-to-noise ratios needed
to achieve good quality ptychographic data reconstructions. Furthermore, future
studies could extend the two-dimensional Gaussian-Shell model approximation (sec-
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tion.sec:partial) to more complex forms of mutual coherence functions, incorporating
multi-modes of X-rays, to explore more intensively the promises of high-resolution
diffraction imaging.

Chapter 4 reported the developments of ptychography at beamline 34-ID-C of
the Advanced Photon Source along with the performances of experimental measure-
ments using test objects. The remarkable ability of ptychography to characterize
complex wavefields was demonstrated by mean of Fresnel propagation and test ob-
jects at beamline 34 ID-C, APS. This was a step of vital importance as a good
model assists the recovery of highly complex real-objects. The work on the probe
characteristics was then extended by investigating the effects of its bandwidth and
diversity on the resolution of the reconstructed images. It was then suggested to
fabricate a set of irregular test patterns (polycrystalline tungsten) and several ran-
dom pinhole diffusers, to artificially vary high and low phase-diversity both in the
sample and illumination for future studies on improvements of the ptychographical
images.

Upon undertaking the work on Bragg-ptychography on thin films, the problems
were clear, the reconstructed information on the nanostructural domains were in-
consistent from run to run. Thanks to the prescriptions of previous researchers,
the experimental and analysis work were taken a step further, to provide a vast
improvement in retrieving the mutual arrangement of the domain structure. Except
for a new set of piezo-scans to simplify the necessary geometrical transformations for
Bragg-ptychography, no extra dedicated instruments were required at the coherent
beamline 34 ID-C of APS. Experimental incertitudes such as spatial fluctuations in
the x-ray illumination or scan drifts were accounted for computationally. By noting
the ability of position correction algorithms to retrieve global tilt through trans-
formation matrices, the correct model for scan transformation in Bragg projection
ptychography, was generically deduced for simple geometries. For the case of less
symmetric geometries, more complex work steps are likely to be involved. Never-
theless, this work further elevates the experimental procedures for the application of
ptychography in Bragg reflection geometry and sets the course for future directions
of research, e.g., imaging of orbital ordering domains in strongly correlated electron
systems, or spin density waves.

Preliminary studies on crystals demonstrated that Bragg projection ptychogra-
phy is a superior technique to Bragg CDI with regard to ’high’ strain. However
the advantage is lost for probes of transversal dimensions larger than those of the
specimens, a fact not fully understood at the time of experiments but later deci-
phered with careful simulations. The successful application of Bragg-ptychography
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in three-dimensions will still require the solving of experimental stabilities of long-
time-scans, even though sophisticated a posteriori correcting methods have been
made available.
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