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ALGEBRAIC VERTICES OF NON-CONVEX POLYHEDRA

ARSENIY AKOPYAN, IMRE BÁRÁNY, AND SINAI ROBINS

Abstract. In this article we define an algebraic vertex of a generalized polyhedron and show
that the set of algebraic vertices is the smallest set of points needed to define the polyhedron.
We prove that the indicator function of a generalized polytope P is a linear combination of
indicator functions of simplices whose vertices are algebraic vertices of P . We also show that
the indicator function of any generalized polyhedron is a linear combination, with integer
coefficients, of indicator functions of cones with apices at algebraic vertices and line-cones.

The concept of an algebraic vertex is closely related to the Fourier–Laplace transform. We
show that a point v is an algebraic vertex of a generalized polyhedron P if and only if the
tangent cone of P , at v, has non-zero Fourier–Laplace transform.

1. Introduction

We study the vertices of non-convex polyhedra, which we also call generalized polyhe-

dra, and which we define as the finite union of convex polyhedra in Rd.
There are many different ways to define a vertex of a generalized polyhedron P , most of

them based on properties of the tangent cone to P at a point v ∈ P . The tangent cone at v,
which we write as tcone(P,v), is intuitively the collection of all directions that we can ‘see’ if
we stand at v and look into P (see Section 2 for a rigorous definition). We furthermore define
a line-cone to be a cone that is the union of parallel lines.

One approach is to say that a point v is a vertex of a generalized polyhedron P if its
tangent cone is not a line-cone. We call such a point v a geometric vertex of a generalized
polyhedron, and it is clear that for a convex polyhedron this definition coincides with the usual
definition of vertices (see the last Section). In this article we focus on another definition of
vertices.

Definition 1. For a generalized polyhedron P , a point v ∈ P is called an algebraic vertex

of P if the indicator function of its tangent cone tcone(P,v) cannot be represented (up to a set
of measure zero) as a linear combination of indicator functions of line-cones.

The theorem of D. Frettlöh and A. Glazyrin [5] states that the indicator function of a convex
cone which is not a line-cone cannot be represented as a sum of indicator functions of line-cones,
implying that the vertices of an ordinary convex polytope are indeed algebraic vertices.

Our main result is the following description of algebraic vertices, showing that in some
sense these generalized vertices form a minimal set of points needed to describe a generalized

polytope, which is by definition a bounded generalized polyhedron.
Throughout, we denote the indicator function of any set S ⊂ Rd by [S]. In other words

[S](x) = 1 if x ∈ S, and [S](x) = 0 if x /∈ S.

Theorem 1. Let VP be the set of algebraic vertices of a generalized polytope P ⊂ Rd, and
let TP be the set of simplices whose vertices lie in VP . Then

(1) [P ] =
∑

Ti∈TP

αi[Ti],
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2 ARSENIY AKOPYAN, IMRE BÁRÁNY, AND SINAI ROBINS

where the αi are integers and the equality holds throughout Rd, except perhaps for a set of
measure zero.

Moreover, if [P ] is represented (up to measure zero) as a linear combination of indicator
functions of some finite number of simplices, then the set of vertices of these simplices must
contain VP .

It seems that weaker versions of this theorem were known for a long time, and in particular
A. Gaifullin [6] showed that the indicator function of a polytope P is a linear combination of
indicator functions of simplices whose vertices belong to the set of geometric vertices of the
polytope P .

Algebraic vertices of P are closely related to the structure of integral transforms of [P ], in
particular the Fourier–Laplace transform of [P ] (see below), and the Fantappiè transform FP (z)
[7]. In [7] the authors prove an analogue of Theorem 1, where the role of algebraic vertices
is played by linear functions 〈z, v〉, appearing in the denominator

∏
v∈VF

(1 − 〈z, v〉) of FP (z).
They needed, however, an extra genericity assumption on VF , and were only able to establish
a decomposition like the one in (1) with αi ∈ R. They stated a conjecture [7, Conjecture 7],
that claims the genericity is not needed; this conjecture is essentially settled in the affimative
by our Theorem 1, see Remark 10 for further discussion.

We were informed by Dmitrii Pasechnik [private communication, 2014] that [7, Conjecture 7]
follows from results in [4].

Generalized (non-bounded) polyhedra also can be described through their algebraic vertices
with the following theorem.

Theorem 2. Let VP be the set of algebraic vertices of a generalized polyhedron P ⊂ Rd. Then

[P ] =

k∑

i=1

αi[Di] +
∑

v∈VP

[tcone(P,v)],

for some integers αi and line-cones Di, i = 1, . . . , k. The equality holds almost everywhere,
except perhaps on a set of measure zero.

Moreover, if [P ] is represented (up to a set of measure zero) as a linear combination of
indicator functions of line-cones and simplicial cones, then the set of apices of these simplicial
cones should contain VP .

It is well known that the indicator function of a line-cone has vanishing Fourier–Laplace
transform (see the definition in section 4). Therefore if v is not an algebraic vertex, then the
Fourier–Laplace transform of the indicator function of its tangent cone also vanishes, because
it is a finite linear combination of indicator functions of line-cones.

We show that the opposite also holds. Lemma 6 implies that the indicator function of the
tangent cone at an algebraic vertex has non-vanishing Fourier–Laplace transform. We formulate
this fact in a more general form.

Theorem 3. If P is a generalized polyhedron with zero Fourier–Laplace transform, then it does
not have algebraic vertices.

We prove these theorems in a more general form, for elements of the algebra of polyhedra
instead of non-convex polyhedra. The article is organized in the following way. In section 2 we
define the algebra of polyhedra and tangent cones of generalized polyhedra. In section 3 we
prove Theorems 1 and 2. In section 4 we recall the definition of the Fourier–Laplace transform.
In section 5 we give the proof of Theorem 3. In the ensuing section we discuss one corollary
of the proof, which states that polytopes with zero Fourier–Laplace transform also have a zero
Fourier–Laplace transform for each of their signed sections. Finally, in the last section, we
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discuss various different ways of defining vertices of generalized polyhedra and find various
relations between these definitions.

2. The algebra of polyhedral indicator functions

We define a polyhedron as the intersection of a finite number of half-spaces, which is a
convex set. Thus, a polyhedron may be unbounded, and a bounded polyhedron is by definition
a convex polytope. We define a generalized polyhedron as a finite union of polyhedra. Now
we can speak about the union, intersection, and subtraction of polyhedra.

For each generalized polyhedron P we can associate the class of sets inRd which differ from P
on a set of measure zero. Thus, we work with equivalence classes of generalized polyhedra. The
above operations extend naturally to these equivalence classes.

Lemma 1. Each generalized polythedron P ⊂ Rd can be represented as a finite disjoint union
of convex polyhedra.

Proof. Draw a hyperplane through each facet of each convex polyhedron in the union generat-
ing P . These hyperplanes cut Rd into convex cells (some of which are unbounded) that are by
definition convex polyhedra. Some of them are contained in P , and their union is exactly P . �

We call such a representation of P into a disjoint union of convex polyhedra a convex partition

of P .

Lemma 2. If P and Q are two generalized polyhedra then the subtraction T = P \Q is also a
generalized polyhedron.

Proof. This argument is almost identical with the previous proof. Draw a hyperplane through
each facet of each convex polyhedron of the convex partitions of P and Q. These hyperplanes
cut Rd into convex cells (some of which are unbounded). Some of these cells are contained in T
and their union is T . �

There is a natural algebra structure on the equivalence classes of indicator functions of
polyhedra, as follows.

Let Pd be the vector space, under addition of functions, of real linear combinations of indica-
tor functions of all convex polyhedra in Rd. We may also define multiplication as the pointwise
multiplication of functions. These two operations allow us to consider Pd as an algebra, which
we call the algebra of polyhedra.

Again, we are working with equivalent classes of functions. So two functions are equivalent
if they differ on a set of measure zero. In fact, Pd is the algebra of equivalence classes of
polyhedra. Furthermore, if P and Q are two generalized polyhedra then:

[P ∩Q] = [P ] · [Q],

[P ∪Q] = [P ] + [Q]− [P ] · [Q].

From the previous two lemmas it follows that for any function f belonging to the algebra Pd,
the level set {x ∈ Rd | f(x) = constant} is a generalized polyhedron, because it can be
represented as union and subtraction of convex polyhedra in Rd. So we can represent f as a
sum

∑
αi[Pi], where the Pi are disjoint generalized polyhedra, and αi ∈ R. We call this sum

a basic decomposition of f .
If P is a convex polyhedron and v is a point then we define the tangent cone of P at v by

tcone(P,v) = {v + x : v + εx ∈ P for some ǫ > 0}, if v ∈ P,
tcone(P,v) = ∅, if v /∈ P.
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If the generalized polyhedron P is a union of polyhedra P1, . . . , Pn then we define tcone(P,v)
by their union ∪n

i=1 tcone(Pi,v).
Let

∑
αi[Pi] be a basic decomposition of f , and let Ci be the tangent cone at a point v

belonging to the polyhedron Pi. We define the tangent cone of the function f , at the point v,
by tcone(f,v) :=

∑
αi[Ci].

As an aside, an alternate way to define the tangent cone to f is to consider a sufficiently
small neighborhood U

v
of v and for each point x ∈ U

v
define tcone(f,v)(y) = f(x) for all

points y on the ray [v,x).
We are now ready to define the algebraic vertices of a function f ∈ Pd. We say that v is

an algebraic vertex of f if tcone(f,v) cannot be represented as
∑

αi[Di], where the Di are
line-cones (cones that can be represented as a union of parallel lines) and αi ∈ R.

We say that f is polyconical function if it can be represented as a linear combination of
indicator functions of simplicial cones Ci with apex at the origin:

f =

n∑

i=1

αi[Ci].

The collection of polyconical functions forms a very natural subalgebra of Pd. We will
also need the following definition.

Definition 2. Let f be a function on Rd, and let h be an oriented hyperplane, which means
that there is a normal vector nh, whose direction depends on the orientation of h. Suppose
that for almost all (up to measure zero) x ∈ h the limits f+

h (x) = lim
ε→0

f(x+ εnh) and f−
h (x) =

lim
ε→0

f(x− εnh) exist. Then the function fh(x) := f+

h (x)− f−
h (x) is called the signed section

of the function f by the signed hyperplane h.

It is clear that for f ∈ Pd, both f+

h (x) and f−
h (x) belong to Pd−1 in the (d− 1)-dimensional

hyperplane h. Therefore the signed section of f ∈ Pd is also an element of the algebra of
polyhedra Pd−1 defined on h.

In what follows we prove Theorems 1, 2, 3 not only for generalized polyhedra and polytopes,
but also for elements of Pd.

3. Proofs of Theorems 1 and 2

Here we prove the statement of the Theorems for functions with bounded support from the
algebra Pd.

Theorem 1’. Assume f ∈ Pd has bounded support and let Vf be the set of algebraic vertices
of f . Let Tf be the set of simplices whose vertices lie in Vf . Then for suitable real αi,

f =
∑

Ti∈TP

αi[Ti].

Moreover, if f is represented as a linear combination of indicator functions of simplices, then
the set of vertices of these simplices must contain Vf .

If the coefficients of f in its basic decomposition are all integers, then the αi are also integers.

Consider any oriented hyperplane h and the signed section fh of f by h. Usually fh is zero,
but sometimes it is not. If P is convex polytope then [P ]h is non-zero if and only if h contains
a facet of P . Using this observation we can define a facet of f in the following way.

Definition 3. If f ∈ Pd, and the signed section fh is non-zero for an oriented hyperplane h,
then the function fh is called a facet of f .
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Note that if fh is a facet of f with the same orientation as h, then it is also a facet with the
opposite orientation of h. It is clear that fh is a function belonging to Pd−1, on the hyperplane h.
We will use the following Lemma.

Lemma 3. An algebraic vertex of any facet of the function f is an algebraic vertex of f .

This result follows directly from Lemma 9 in Section 6. We offer a more direct proof here,
though, of Lemma 3 using Definition 1 only.

Proof. We show that if a point v is not an algebraic vertex of f then it is not an algebraic vertex
of any signed plane h containing it. Hence we suppose that tcone(f,v) =

∑
αi[Di], where Di

are line-cones. Note that [Di]h are also indicator functions of some line-cone in h. Since
taking signed section is a linear map from Pd to Pd−1, it follows that tcone(fh,v) =

∑
αi[Di]h.

Therefore v is not an algebraic vertex of fh. �

Lemma 3 implies, by an easy induction, the following corollary.

Corollary 4. Any non-zero f ∈ Pd with bounded support has an algebraic vertex.

Proof of Theorem 1’. The proof is by induction on the dimension. For the 1-dimensional space
the statement is trivial.

Let’s fix a point p in Rd. For each facet fh of f choose the orientation of h so that p lies in
the positive halfspace of h. We can associate a signed “pyramid function” Pyrh as follows: if
x ∈ h and y is a point on the interval (p,x) define Pyrh(y) = fh(x) and zero otherwise. (So, if
fh is an indicator function of a two-dimensional polygon in R3 then Pyrh will be the indicator
function of the pyramid whose apex is p and whose base is the polygon.)

It is clear that

(2) f =
∑

h

Pyrh,

where the sum is taken over all facets of f . Indeed for each point y consider the tail [y,∞) of
the ray [p,y), intersecting hyperplanes the h1, h2, . . . , hk that are supporting facets of f . As
their orientation was chosen properly, y lies on the positive side of each hi, and f equals 0 at
points that are far away on the ray, we see that f(y) equals the sum of fhi

.
By the induction hypothesis each facet fh is a linear combination of indicator functions of

simplices:

fh =
∑

βh,i[Th,i],

where Th,i are simplices whose vertices are algebraic vertices of fh (which are algebraic vertices
of f by Lemma 3). Note that

(3) Pyrh =
∑

βh,i[simplex(p, Th,i)],

where the simplex(p, Th,i) is a simplex with base Th,i and apex p, and p is an arbitrary point
of Rd.

Now we let p be any algebraic vertex of f , which exists by Corollary 4. We conclude that
the vertices of all simplices Pyr(p, Th,i) are algebraic vertices of f .

Therefore combining equalities (2) and (3) we obtain the required representation:

f =
∑

h

∑
βh,i[simplex(p, Th,i)].

It is clear that if the coefficients in the basic decomposition of f are integers, then the
coefficients of the basic decomposition of its signed sections are also integers. Therefore in the
representation of f which we obtain by this induction the coefficients are integers.
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Finally we show that if f =
∑m

1
αi[Ti], where each Ti is a simplex, then the set of vertices

of Ti contains Vf . Suppose v ∈ Vf is not a vertex of any of the simplices Ti. Then the tangent
cone tcone([Ti],v) is a line-cone for every i. Since tcone(f,v) =

∑
i αi tcone([Ti],v), the tangent

cone of f at v can be represented as a sum of line-cones. This contradicts the fact that v is an
algebraic vertex of f . �

Theorem 2’. Let Vf be the set of algebraic vertices of f ∈ Pd. Then

f =

k∑

i=1

αi[Di] +
∑

v∈Vf

tcone(f,v),

for some reals numbers αi and line-cones Di, i = 1, . . . , k.
Moreover, if f is represented as a linear combination of indicator functions of line-cones and

simplicial cones, then the set of apices of these simplicial cones should contain Vf .
If the coefficients of f in its basic decomposition are all integers, then αi and βi are also

integers.

Proof. Draw a hyperplane through each facet of each polyhedron in the basic decomposition
of f . These hyperplanes separate the space into convex polyhedra Pi, which tile the space face-
to-face. Denote the set of vertices of this convex partition by V. On each of these polyhedra
Pi the function f takes the same constant value, so:

f =
∑

i

γi[Pi].

We note that each convex polyhedron can be represented as a linear combination of tangent
cones of its faces of all dimensions, also known as the Brianchon–Gram relation [2, Theorem
9.5]. Since the tangent cone of a face of dimension ≥ 1 is a line-cone, we may write:

[Pi] =
∑

v∈V

tcone(Pi,v) +
∑

j

αi,j[Dj ],

where Dj are line-cones which are tangent cones corresponding to faces of Pi of dimension ≥ 1.
Observe now that if v is not an algebraic vertex of f then

∑
i γi tcone(Pi,v) = tcone(f,v)

can be represented as a linear combination of indicator functions of line-cones. We see that f is
a linear combination of indicator functions of line-cones, plus a linear combination of tangent
cones at algebraic vertices of f . This proves the first part of the Theorem.

It is clear that if the coefficients of f in its basic decomposition are all integers, then in each
step we obtain a representation of f with integers coefficients.

Finally, we show that if f is represented as a linear combination of indicator functions of line-
cones and simplicial cones, then the set of apices of these simplicial cones should contain Vf .
This is similar to the proof of the corresponding statement in Theorem 1’. Suppose that

f =
∑

i

αi[Di] +
∑

i

βi[Ci],

for some real αi and βi, line-cones Di, i = 1, . . . , k, and simplicial cones Ci, i = 1, . . . , m. Let
v ∈ Vf . Note that

tcone(f,v) =
∑

i

αi tcone([Di],v) +
∑

i

βi tcone([Ci],v).

If v is not a vertex of some cone Ci, then all tcone([Ci],v) are line-cones, and tcone([Di],v) are
line-cones as well. Therefore we obtain a representation of tcone(f,v) as a linear combination of
indicator functions of line-cones, contradicting the assumption that v is an algebraic vertex. �
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4. The Fourier–Laplace transform

In this section we recall the definition of the Fourier–Laplace transform and list some of its
properties. For more details see [1, Chapter 8] and [2, Chapter 10], or the original works [8]
and [9].

The Fourier–Laplace transform of a generalized d-polytope P is defined as follows:

[̂P ](z) :=

∫

P

e〈z,x〉dx,

valid for all z ∈ Cd.
It may be tempting to also define the Fourier–Laplace transform of generalized polyhedra P

in the same manner, but we cannot do so because we run into the problem that there may not
be any value of z ∈ Cd for which the latter integral converges, as happens for example when P
consists of positive and negative orthants.

We first define the Fourier–Laplace transform of a convex polyhedral cone K whose apex
is the origin by

(4) [̂K](z) :=

∫

K

e〈z,x〉dx,

which converges for all z ∈ Cd, for which the real part ℜ(−z) lies in the interior of the dual

cone K◦, that is K◦ = {y ∈ Rd : 〈x,y〉 ≥ 0, ∀x ∈ K}. We recall that a simplicial cone K is
a convex cone in Rd with exactly d edges (also called generators), say w1, . . . ,wd, and for such
a simplicial cone with apex at the origin, we have the elementary fact that (see [1, 2]):

(5) [̂K](z) :=
| detK|

〈w1, z〉 · · · 〈wd, z〉
=

|w1 ∧ · · · ∧wd|

〈w1, z〉 · · · 〈wd, z〉
,

where we define | detK| to be the absolute value of the determinant of the matrix whose columns
are the vectors wj ∈ Rd.

Let K
v
be a cone K shifted by a vector v. From Equation (4) it follows that [̂K

v
](z) must

be defined as [̂K](z) · e〈z,v〉.
Note that if the edges w1 and w2 of a simplicial cone K are parallel to each other then

it degenerates to a line-cone and the value in the numerator in (5) equals zero. Since each
line-cone can be represented as disjoint union of these degenerated line-cones it is natural to
define the Fourier–Laplace transform of line-cones as zero. Finally, using the Brianchon–Gram
identity it is possible to extend the definition of the Fourier–Laplace transform to all elements
of the algebra of polyhedra Pd (for full details see Theorem 8.4 in [1]).

It is clear from the above discussion that the Fourier–Laplace transform of f ∈ Pd can be
written in the form

(6)
∑

v∈V

e〈v,z〉F
v
(z),

where F
v
is a finite linear combination of functions of the form

∏d

1
〈wj, z〉)

−1, and V ⊂ Rd

is a finite set. For instance, for V we can choose the set of geometric vertices of a basic
decomposition of f . Theorem 2’ shows that V = Vf is an appropriate choice. We will show
later that, in fact, V essentially coincides with Vf .

We also should note that f̂(z) is an analytic function of z, and so it follows that if it vanishes
on an open d-dimensional set, then it vanishes on all of Rd.
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5. Polyhedra whose Fourier–Laplace transform vanishes

Here we prove Theorem 3 for any function from the algebra of polyhedra.

Theorem 3’. If f ∈ Pd has zero Fourier–Laplace transform, then it has no algebraic vertices,
or equivalently by Theorem 2’, we have

f =

k∑

i=1

αi[Di]

for some real numbers αi and line-cones Di, i = 1, . . . , k.

Let Vf be the set of algebraic vertices of f , and assume that Vf 6= ∅. Rearrange the members
in the representation of f as the sum from Theorem 2’:

f =

k∑

i=1

αi[Di] +
∑

v∈Vf

tcone(f,v).

The proof consist of two parts. Lemma 6 below implies that the Fourier-Laplace transform of
tcone(f,v) is non-zero because it cannot be represented as a linear combination of line-cones.

All the algebraic vertices v ∈ Vf are distinct. Then Lemma 7 shows that the Fourier–Laplace
transform of their sum should be non-zero as well.

The following lemma is crucial to a lot of the analysis that ensues, showing in particular
that if we consider the union of pointed cones which lie in the interior of a half space, then the
transform of this union cannot vanish.

Lemma 5. Suppose we have n internally disjoint pointed cones Ci lying in the upper halfspace
of Rd. Let g =

∑n

i=1
αi[Ci]. Then

ĝ(·) = 0 if and only if all αi = 0.

Proof. Let C be the cone generated by all generators of the cones Ci. Thus C is a pointed
cone. Suppose ĝ(z) = 0 for all z belonging to the interior of the dual cone C◦. We assume
by contradiction that all αi are different from zero. Let w be one of its extreme ray directions
of C, and let C1, . . . , Ck be the cones that have w as a generator. We assume without loss of
generality that ‖w‖ = 1. We are going to show that αi = 0 for i = 1, . . . , k. This contradiction
will finish the proof.

From here we proceed by induction on the dimension d. For d = 1 there is a unique cone,
which is the ray generated by w. So ĝ(z) = α1

〈w,z〉
, and it is clear that α1 = 0. The case d = 2 is

also somewhat special since then there is only one cone C1 containing w. Let z be the unique
unit vector orthogonal to w and having 〈z,wj〉 > 0 for all other generators wj . Define for ε > 0

u = uε =
z+ εw

||z+ εw||
.

If ε is small enough then u is a unit vector with 〈u,wj〉 > 0 for all generators including w as

well. It is easy to check using (5) that [̂Ci](u) are bounded for all i > 1. Denoting the second
generator of C1 by w1,

[̂C1](u) =
|w ∧w1|

〈w,u〉〈w1,u〉
=

|w ∧w1|

ε〈w1, z〉(1 + o(1))
,

So ĝ(u) = 0 for all ε > 0 is only possible if α1 = 0.
Now for the step d− 1 → d with d > 2, we write G = {x ∈ Rd : 〈w,x〉 = 0}; this is a copy

of Rd−1 of course. Let C ′
i denote the orthogonal projection of Ci to G for i = 1, . . . , k. Let

z ∈ G be a unit vector with 〈z,wj〉 > 0 for all generators different from w. The set of such z’s
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is exactly the set of unit normal vectors to those support hyperplanes of C that contain only
w from the generators of C. Observe now that all C ′

i, i = 1, . . . , k lie in {x ∈ G : 〈x, z〉 > 0}
which is an open halfspace in G. Define u = uε the same way as above; so u is a unit vector
with 〈wj,u〉 > 0 for all generators including w as well.

Note that for i = 1, . . . , k

[̂Ci](u) =
[̂C ′

i](z) +O(ε)

ε
.

Indeed, suppose Ci is generated by vectors w1, . . .wd−1, wd = w. Denote by w′
j the projection

of wj on the hyperplane G. Then

[̂Ci](u) =
|w1 ∧ · · · ∧wd|∏d

j=1
〈wj,u〉

=
|w′

1 ∧ · · · ∧w′
d−1

|
∏d−1

j=1
(〈w′

j, z〉+ ε〈w,wj〉)
·

‖w‖

ε‖w‖2
= ([̂C ′

i](z) +O(ε)) ·
1

ε
.

Note that [̂Ci](u) for i > k is bounded as ε goes to zero. Therefore

0 = ĝ(u) =
1

ε

k∑

1

αi [̂C ′
i](z) +O(1).

Multiplying by ε and taking the limit ε → 0 gives the equation
∑k

1
αi[̂C

′
i](z) = 0. This holds

for all unit vectors z ∈ G for which 〈z,wj〉 > 0 for every generator of the cones Ci, i = 1, . . . , k,
which is the same as 〈z,w′

j〉 > 0 for every generator of the cones C ′
i, i = 1, . . . , k. Observe that

∑k

1
αi[̂C ′

i](z) is the Fourier–Laplace transform (taken in G = Rd−1) of the function
∑k

1
αi[C

′
i]

and so by the induction hypothesis all αi = 0 for i = 1, . . . , k. �

Lemma 6. A polyconical function g has zero Fourier–Laplace transform if and only if it is a
linear combination of line-cones.

Proof. One direction is easy: if g is a linear combination of line-cones, then it has zero Fourier–
Laplace transform because all line-cones have zero Fourier–Laplace transform. For the other
direction we consider the decomposition of g into simplicial cones:

g =
∑

i=1

αi[Ci].

We will show how to reduce the proof to the context of Lemma 5, namely, it suffices to prove
the theorem in a simpler case, when

(i) all the Ci are internally disjoint pointed cones, and
(ii) there is a unit vector v such that 〈v,w〉 > 0 for every generator w of every Ci.
To see this we start with a simplicial cone C whose generators are w1, . . . ,wd, that is,

these vectors are linearly independent and every point in C is a linear combination with non-
negative coefficients of the wj , that is, C = pos{w1, . . . ,wd}. Let, further, v be a unit vector
with 〈v,wj〉 6= 0 for any j. Define w∗

j as wj if 〈v,wj〉 > 0 and −wj if 〈v,wj〉 < 0. Set
C∗ = pos{w∗

1, . . . ,w
∗
d}. We start with a simple

Claim 1. There are coefficients ε ∈ {−1, 1} and εi ∈ {−1, 0, 1} and line-cones Di such that

[C] = ε[C∗] +
∑d

i εi[Di].

Proof of the claim. There is nothing to prove if 〈v,wj〉 > 0 for all j. Assume 〈v,w1〉 < 0,
say, and observe that

[C] = [pos{w1, . . . ,wd}]

= [pos{w1,−w1,w2, . . . ,wd}] \ [pos{−w1,w2, . . . ,wd}].
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The cone pos{w1,−w1,w2, . . . ,wd} is a line-cone and the simplicial cone pos{−w1,w2, . . . ,wd} =
pos{w∗

1,w2, . . . ,wd} has one fewer generators than C with 〈v,w〉 < 0. Continuing this way we
end up with the required formula, finishing the proof of the claim.

We return now to the reduction of our Lemma to Lemma 5. Applying the Claim to each cone
Ci we have

g =
n∑

i=1

αi[Ci] =
n∑

i=1

αiεi[C
∗
i ] +

k∑

j=1

γj[Dj]

where εi = ±1 and the Dj are line-cones. It follows that the Fourier–Laplace transform of
g∗ =

∑n

i=1
αiεi[C

∗
i ] is zero.

The advantage of g∗ is that it is a linear combination (of the indicator functions) of simplicial
cones C∗

i and each C∗
i lies in the open halfspace H = {x ∈ Rd : 〈x,v〉 > 0}.

Consider now all the hyperplanes containing a facet of some C∗
i . The complement of their

union in Rd consists of finitely many cones, and on each such cone, F say, g∗ is constant. This
constant is zero if the cone F does not lie completely in H . Thus g∗ =

∑m

j=1
βj [Fj] where each

βj 6= 0 and the Fj are pairwise internally disjoint cones, each contained in H . This finishes the
proof of the reduction, and of the Lemma.

�

Lemma 7. Suppose we are given a collection of n distinct points vi ∈ Rd and n polyconical

functions fi, whose Fourier–Laplace transform f̂i is not the zero function.
Let g(z) :=

∑n

i=1
αifi(z− vi), with all αi ∈ R. Then

ĝ(·) = 0 if and only if all αi = 0.

Proof. Let P be the convex hull of the points vi. Without loss of generality we can assume
that v1 is an extreme point of P . We translate everything so that v1 becomes the origin. Let
K be the dual cone to the tangent cone of P at v1, and fix u to be any point in the interior of
K.

Denote by gi(z) := fi(z − (vi − v1)). It is enough to prove that
∑

αigi has zero Fourier–
Laplace transform if and only if all αi = 0.

As the apex of every cone defining gi is vi − v1, and its Fourier–Laplace transform is of the
form

e〈vi−v1,z〉Fi(z),

where Fi(z) is a linear combination of functions of the form (
∏d

1
〈wj, z〉)

−1. Then for every
i > 1 the value ĝi(tu) tends to 0 like o(etci), with ci < 0, as t → ∞. But the function ĝ1(z)
does not have an exponential in the numerator, since its associated vertex is the origin, and
hence ĝ1(tu) = t−d · ĝ1(u) tends to 0 like O(t−d). Therefore ĝ1(u) = 0 for all u ∈ K. Since K

is d-dimensional, we see that ĝ1(z) = 0 for all z and hence f̂1 vanishes identically. This last
conclusion contradicts our assumption about the fi’s. �

Remark 8. Using the same argument in the Lemma above, we return to formula (6) and claim F
v

is zero if v /∈ Vf . This will show that the representation of the Fourier-Laplace transform in the
form of (6) is essentially unique. The proof is simple. Suppose there are two representations.
We then subtract the two representations from each other to obtain

0 =
∑

v∈V ′

e〈v,z〉F
v
(z),

for some finite set V ′. Now repeating the arguments from the proof of Lemma 7 leads to a
contradiction.
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6. Signed sections of polyhedra

The following theorem shows the strong correlation between f ∈ Pd and its signed sections fh.

Theorem 4. Let f ∈ Pd. Then f̂(·) = 0 if and only if f̂h = 0 for any oriented hyperplane h.

We first prove it for polyconical functions.

Lemma 9. The Fourier–Laplace transform of a polyconical function f is zero if and only if for
all hyperplanes h through the origin, the (d− 1)-dimensional Fourier–Laplace transform of the
signed section fh is zero.

Proof. Note that the (d− 1)-dimensional Fourier–Laplace transform of every signed section of
a line-cone is zero, as the signed section itself is a line cone.

Now applying Claim 1 to the cones generating f we get the function f ∗ whose support lies

in a halfspace H . From Lemma 5 it follows that f̂(·) is zero if and only if f ∗ is zero.
But f ∗ vanishes if and only if all of its signed sections vanish. Supports of signed sections of f ∗

lie in H . Therefore, by Lemma 5 again, the condition that the Fourier–Laplace transform of all
signed sections of f ∗ are zero is equivalent to the condition that all their (d − 1)-dimensional
Fourier–Laplace transforms are zero. But the Fourier–Laplace transform of a signed section f ∗

h

coincides with the Fourier–Laplace transform of a signed section fh, for any h, since they differ
from each other on linear combinations of line-cones. �

Proof of Theorem 4. By Theorem 3, if f̂(·) = 0, then at each point v, the Fourier–Laplace
transform of the tangent cone to f equals zero, and vice versa.

Suppose f̂(·) = 0 and h is a some hyperplane. Consider the tangent cone C = tcone(f,v)
of a point v from h. By Lemma 9 its Fourier–Laplace transform is zero, therefore the Fourier–
Laplace transform of its signed section Ch is also zero. This holds for any point v from h and

therefore f̂h = 0.
In the other direction the proof is analogous. We let v be any point, and C := tcone(f,v).

For any hyperplane h through v we have f̂h = 0, and therefore by Lemma 7, Ĉh = 0. Lemma 9

now implies that Ĉ = 0. Since this holds for any point v, we conclude that f̂(·) = 0. �

7. What is a vertex of a generalized polytope?

There are several ways to define a vertex of generalized polytope P (or of f ∈ Pd). In this
section we discuss these possibilities.

In the introduction v is defined as a geometric vertex of P if tcone(P,v) is not a line-cone.
Figure 1 shows a generalized polytope in which two edges touch each other at the point v.
According to the above definition, v is a geometric vertex. But it is not very natural to
consider this point as a vertex, because it appears occasionaly and can disappear after a slight
mutation of polytope.

One may try to define a geometric vertex when not all connected components of tcone(P,v)
are line-cones. Such a vertex is shown on Figure 2. Is it natural to take this point for a vertex?
Perhaps not.
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v

Fig. 1.

v

Fig. 2.

v

Fig. 3.

Here is a another way to define a vertex (see [7]).

Definition 4. A point v is a combinatorial vertex of a generalized polytope P if its tangent
cone cannot be partitioned into line-cones.

Lemma 5 in [7] shows that this definition is equivalent to the following one.

Definition 5. A point v is a combinatorial vertex of a generalized polytope P if, in every
dissection P into disjoint simplices, the point v is a vertex of some simplex of the dissection.

It is well-known that some non-convex polytopes P cannot be triangulated into simplices
using only vertices of P . The most famous example is the Schönhardt polytope [10], which is
a modification of the triangular prism.

So if we try to define a triangulation of non-convex polytopes we are either forced to use
simplices with vertices not only from the set of vertices of P (which are clearly discernible in the
case of the Schönhardt polytope), or we are forced to use overlapping simplices by subtracting
simplices from each other (see [7, Remark 5] for a representation of the Schönhardt polytope).
In view of this phenomena, it is natural to modify the latter two definitions by allowing signed
versions instead of unions. We thus arrive at our definition of algebraic vertices, which we
repeat from the introduction.

Definition 1’. For a generalized polyhedron P , a point v ∈ P is called an algebraic vertex

of P if the indicator function of its tangent cone tcone(P,v) cannot be represented as a linear
combination of indicator functions of line-cones.

Definition 6. A point v is an algebraic vertex of P if in every representation of the indicator
function of P as a linear combination of indicator functions of simplices, the point v is a vertex
of some simplex.

Theorem 1 shows that the set of vertices that satisfy these two definitions coincide.

Remark 10. In [7], instead of the Fourier–Laplace transform the authors consider the Fantappiè
transform FP (which is closely related to the Fourier–Laplace transform) of a generalized poly-
tope P , see the discussion following Theorem 1. The authors of [7] show that if the set of
combinatorial vertices of P is in general position (i.e. the affine span of each (d + 1)-tuple
equals Rd) then it is a set of vertices VF appearing in FP . Using our approach it is possible to
show that VF is exactly the set of algebraic vertices of P . The proof is similar to the proof of
Lemma 7 and Remark 8.

Finally, Figure 3 shows the tangent cone of the generalized polytope P which is defined as
a union of three cones having a common apex v, such that their sides lie on three lines. The
Fourier–Laplace transform of tcone(P,v) is zero, so v is not a vertex (see [1], Problem 9.3 for
a more general statement). But is it not, really? The interested reader should decide.
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