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Abstract

The theoretical properties of the Whittle likelihood have been studied extensively
for many different types of process. In applications however, the utility of the
approach is limited by the fact that the asymptotic sampling distribution of the
estimator typically depends on third- and fourth-order properties of the process
that may be difficult to obtain. In this paper, we show how the methodology
can be embedded in the standard framework of estimating functions, which allows
the asymptotic distribution to be estimated empirically without calculating higher-
order spectra. We also demonstrate that some aspects of the inference, such as the
calculation of confidence regions for the entire parameter vector, can be inaccurate
but that a small adjustment, designed for application in situations where a mis-
specified likelihood is used for inference, can lead to marked improvements.

1 Introduction

Since its introduction by Whittle (1953) as a computationally efficient way to approxi-
mate the likelihood of a stationary Gaussian process, the ‘Whittle’ or ‘spectral’ likelihood
function has at times attracted considerable interest. In the mainstream of modern ap-
plied time series analysis, it is no longer widely used: modern computing power, along
with efficient algorithms for computing the exact likelihood of a Gaussian process (sum-
marised, for example, in Chandler and Scott 2011, Section 5.1.5), mean that the use of
such approximations is no longer necessary for ‘standard’ models. However, when work-
ing with processes for which an exact likelihood is hard to compute or is not analytically
tractable but where the second-order spectral density is easy to compute, Whittle esti-
mation remains a useful addition to the time series analyst’s toolkit. Indeed, over the
last decade or so there has been a resurgence of interest in the methodology, when using
nonstandard models in application areas such as hydrology (Montanari and Toth, 2007),
biomedicine (Krafty and Hall, 2013) and oceanography (Sykulski et al., 2015); although
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it is becoming accepted that the resulting estimators can be inefficient in non-Gaussian
settings (Contreras-Cristán et al., 2006).

The properties of Whittle estimation have been studied extensively. Thus, Hannan
(1973) proved the consistency and asymptotic normality of the Whittle estimator for the
class of linear processes, the results subsequently being extended by Rice (1979). Fox
and Taqqu (1986) and Giraitis and Taqqu (1999) studied its properties in the presence of
long-range dependence, and showed that both for long-memory Gaussian processes and
non-linear processes the estimator is consistent but does not necessarily have a limiting
multivariate normal distribution after standardisation. More recently, there has been sub-
stantial work in applying Whittle likelihood principles to particular classes of nonlinear
processes such as ARCH (Giraitis and Robinson, 2001); and Dahlhaus (2000, 2009) exam-
ines extensions to locally stationary processes, both for the univariate and multi-variate
cases. The approach has also been applied to spatial processes (e.g. Fuentes 2002). These
examples are not intended to be exhaustive, but rather to give a flavour of the range of
processes for which Whittle estimation can be useful.

Although the Whittle estimator has been studied extensively from a theoretical per-
spective, a difficulty is that its asymptotic covariance matrix typically depends on the
fourth-order spectral density of the process being studied (Robinson, 1978). This is a ma-
jor drawback in practical applications, because expressions for fourth-order spectra are
unavailable for many processes of interest (Chandler, 1997; Giraitis and Robinson, 2001).
Perhaps as a result of this, there are few published applications of Whittle estimation in
which standard errors are given for the parameter estimates, or in which formal model
comparisons (e.g. based on changes in the log Whittle likelihood) are carried out. This
is clearly undesirable.

Our aim in the present paper is to highlight a straightforward solution to this problem,
with empirical estimation of the required asymptotic covariance matrix so that there
is no need to evaluate fourth-order spectra explicitly: this is done by casting Whittle
estimation in the general framework of estimating functions. A similar approach was
taken by Heyde (1997), who focused on stationary processes with zero mean. Indeed,
much of the literature on the topic is concerned with zero-mean processes: the original
justification for this in Whittle (1953) was that ‘corrections for the mean do not affect
the different formulae’, but in fact this is not necessarily the case when working with
models for which both the first- and second-order properties are functions of the same
parameter(s). Perhaps the simplest example of such a process is a sequence of independent
Poisson variates in which the variance and mean are equal (to λ, say): in this situation the
sample mean is sufficient for λ, but a ‘standard’ application of Whittle estimation would
subtract the sample mean and then estimate λ using what is effectively the variance of the
observations. Obviously, nobody would seriously contemplate Whittle estimation in this
situation; but our own interest in the topic stems from work with stochastic models based
on Poisson processes, for which exact maximum likelihood is not feasible and where the
sample mean may carry considerable information about the parameter(s) of interest: an
example is given in Section 2 below. One of our subsidiary contributions, therefore, is to
extend the existing theory of Whittle estimation to processes with non-zero mean. Of more
general interest perhaps, we also show via simulations that standard estimating function
asymptotics can perform poorly in this context for some aspects of inference in finite
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samples; and we demonstrate how recent developments, aimed at adjusting likelihood-
based inference in mis-specified models, can rectify this problem.

After introducing our motivating application in the next section, Section 3 briefly
outlines the main ideas of Whittle estimation. Section 4 then reviews the relevant theory
of estimating functions. Section 5 demonstrates that the Whittle estimator does indeed
satisfy the requirements of this theory. Finite-sample performance is assessed in Section
6, using simulations of the model from Section 2. Section 7 concludes.

2 Motivation: inference for a stochastic rainfall model

To provide some context for the subsequent contributions of this paper, in this section we
give an example of the type of model that motivated our own interest in the topic. It is a
stochastic model for rainfall time series, and is very different from the kinds of model for
which Whittle estimation is typically used. Although the specific model considered here
is rather simplified, more complex models of this type are widely used by hydrologists to
simulate artificial rainfall time series (see Wheater et al. 2005 for a review), for purposes
such as the assessment of flood risk and the impacts of climate change.

We consider the simplest of a class of continuous-time rainfall models introduced
by Rodriguez-Iturbe et al. (1987). In this model, the rainfall intensity at any time is
considered to be a sum of contributions from rain ‘cells’ that are ‘active’ at that time.
Each cell is initiated by an event of a stationary Poisson process N(t) of rate λ, and has
a random duration during which it deposits rain with a constant intensity (also random)
so that its temporal profile is rectangular. The rainfall intensity at time t is thus

Y (t) =

∫ ∞
u=0

Xt−u(u)dN(t− u) ,

where Xτ (r) is the random intensity of a cell that arrived at time τ , observed r time
units later. In the simplest case, the intensities of all cells are taken to be independent
exponential variables with mean µX ; the durations are taken to be independent exponen-
tial variables with mean µL; and the intensities and durations are taken to be mutually
independent. The model thus has three parameters λ, µX and µL.

In practice of course, rainfall intensities cannot be recorded in continuous time. Ob-
servations typically consist of time series at a specific temporal resolution, often daily or
hourly, representing rainfall accumulations within the corresponding intervals. Denoting
by Yt the rainfall accumulation within the tth interval, we therefore have

Yt =

∫ t∆

(t−1)∆

Y (u)du , (1)

where ∆ is the duration of the aggregation interval.

Parameter estimation and inference for such a model is difficult. It is not feasible
to evaluate the exact log-likelihood on the basis of aggregated data, although Northrop
(2006) has obtained a marginal likelihood for λ and µL based on the binary sequence of
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‘dry’ and ‘wet’ intervals (i.e. intervals in which Yt is either zero or non-zero). Usually,
such models are fitted using a generalised method of moments that aims to match, as
closely as possible, the observed values of selected summary statistics. A difficulty with
this approach is that the choice of summary statistics is potentially arbitrary. We show
below that Whittle estimation offers an appealing alternative, and that it has some justi-
fication despite the highly non-Gaussian nature of the process. We will also see that the
parameters λ and µX are not separately identifiable using standard Whittle estimation,
and that the problem can be resolved only by accounting explicitly for the non-zero mean
of the process. A related point is that the parameters all combine to influence both the
first- and second-order properties of the process: this contrasts with most models where
Whittle estimation has been applied, where different parameters control the first- and
second-order structure. Identifiability problems aside therefore, for this class of model
it is not appropriate simply to subtract the mean and then carry out standard Whittle
estimation for the parameters, because the mean itself carries relevant information. In
particular, the calculation of standard errors for the parameter estimates requires that
the first- and second-order properties are considered simultaneously.

We return to this class of models for our simulation study in Section 6.

3 The Whittle likelihood

Let (Yt) be a stationary stochastic process corresponding to some model with parameter
vector θ ∈ Θ; and consider conducting inference about θ on the basis of observations
Y1, . . . , Yn. If the process is Gaussian, then the log-likelihood for θ involves both the
determinant and inverse of the covariance matrix of Y = (Y1 . . . Yn)′ under the model.
The main contribution of Whittle (1953) was to provide an approximation to the Gaussian
log-likelihood that avoids the costly evaluation of this determinant and inverse.

The same approximate log-likelihood can be obtained using a different argument,
without assuming that the process itself is Gaussian but rather appealing to a central limit
theorem on the sample Fourier coefficients (Subba Rao and Chandler, 1996; Chandler,
1997). This derivation provides some useful insights into the nature of the approximations
involved, and we therefore sketch it informally here. Denote by µ = µ (θ) the mean of
the process (Yt), by c(r;θ) its autocovariance function at lag r, by

h(ω;θ) =
∞∑

r=−∞

c(r;θ)e−iωr ,

its second-order spectral density at frequency ω ∈ [−π, π] and by cκ (r1, . . . , rκ−1) the
joint κth cumulant of Yt, Yt+r1 , . . . , Yt+rκ−1 . Further, for p = 0, ..., bn/2c and ωp = 2πp/n,
define the sample Fourier coefficients as

Ap =
n∑
t=1

Yt cos(ωpt) and Bp =
n∑
t=1

Yt sin(ωpt) , (2)
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and define the periodogram at frequency ωp as

I(ωp) =
1

n

(
A2
p +B2

p

)
.

Note that the the observations can be recovered from the Fourier coefficients by ap-
plying an inverse Fourier transform; hence the coefficients may be regarded as data in
their own right, with no loss of information. Moreover, if the process has short-range
dependence so that the joint cumulants of all orders κ ≥ 2 are absolutely summable:

∞∑
r1=−∞

· · ·
∞∑

rκ−1=−∞

|cκ(r1, . . . , rκ−1)| <∞ , (3)

then in large samples the Fourier coefficients are approximately normally distributed and
pairwise independent (Brillinger, 1975, Section 4.4):

A0 ∼ N (nµ, nh(0;θ)) ; Ap ∼ N
(
0, n

2
h (ωp;θ)

)
(p 6= 0) ;

Bp ≡ 0 (ωp = 0, π) ; and Bp ∼ N
(
0, n

2
h(ωp;θ)

)
(ωp 6= 0, π) .

(4)

If these results were to hold exactly for all of the Fourier coefficients, then a likelihood for
θ could be written as a product of the corresponding densities. Some algebra confirms
that the corresponding log-likelihood is

logL(θ; Y) = −
bn/2c∑
p=0

[
1− 1

2
δp,n/2

] [
I(ωp)

h(ωp;θ)
+ log h(ωp;θ)

]
−
[

1

2
log h(0;θ) +

(A0 − nµ(θ))2

2h(0;θ)

]
, (5)

where δi,j is the Kronecker delta. The final term, and the p = 0 contribution to the first
term, are contributions from the zero-frequency coefficient A0: if these terms are omitted
then (5) reduces to

∑bn/2c
p=1 [I(ωp)/h(ωp;θ) + log h(ωp;θ)], which is the usual form of the

Whittle log-likelihood (Hauser, 1998). The inclusion of the zero-frequency term, however,
can be helpful in some situations as outlined in Section 1.

According to this derivation, the main sources of approximation in (5) relate to the
marginal normality and independence of the Fourier coefficients. Although these approx-
imations may be asymptotically negligible when considering the coefficients at a finite,
fixed set of frequencies, in practice the number of frequencies grows with n: the increase
in the number of approximation errors thus offsets the reduction in their size. For further
discussion of this point, see Chandler (1997), who provides some suggestions for modifying
the log-likelihood so that the approximation errors become negligible. These suggestions
all involve discarding information, however, which is unsatisfactory. We take an alterna-
tive viewpoint in the present paper, therefore: we consider (5) as a log-likelihood based
on a mis-specified joint distribution for the sample Fourier coefficients, and we study its
properties using an estimating functions approach.
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4 Estimating functions

If the derivatives ∂h(ω;θ)/∂θ and ∂µ(θ)/∂θ exist for all ω ∈ [0, π] and θ ∈ Θ, then
(5) can be maximised by solving ∂ logL/∂θ = 0. This is an example of an estimating
equation, and the function ∂ logL/∂θ is an estimating function: a review and discussion
of the relevant theory is provided in Jesus and Chandler (2011). We here summarise,
without proof, the main definitions and results presented in that paper.

Consider carrying out inference for a parameter vector θ ∈ Θ on the basis of a vector
Yn of n random variables; and suppose that θ is estimated by solving an equation

gn(θ; Yn) = 0 , (6)

which is assumed to have a unique root. Many common estimation methods can be cast
in this framework, notably those where the estimating function gn(θ; Yn) is the gradient
of some objective function. For example, the normal equations in least-squares estimation
have the form (6), as do the score equations in maximum likelihood estimation. However,
the framework also covers situations, such as method of moments estimation, where the
estimating equations are obtained directly without reference to an optimisation problem.

The sequence {gn(·; ·) : n ∈ N} of estimating functions is assumed to satisfy:

Assumption 1: There exists a sequence (ηn) of p × p matrices, independent of θ and
such that as n → ∞, ηngn(θ; Yn) converges uniformly in probability to a non-
random function, g∞ (θ) say, such that (i) the equation g∞ (θ) = 0 has a unique
root at θ = θ0 where θ0 is an interior point of Θ (ii) g∞(·) is bounded away from
zero except in the neighbourhood of θ0.

Assumption 2: The p×p matrices {Gn(θ) = ∂gn/∂θ} exist, and each of them is invert-
ible. Furthermore, there exist sequences (γn) and (δn) of invertible p × p matrices
that do not depend on θ and are such that:

1. At θ = θ0, the covariance matrix of g̃n (θ; Yn) = γngn (θ; Yn) exists and
converges to a limiting matrix, Σ̃ say, as n→∞. We note that the limit of a
sequence of positive definite matrices is itself positive semi-definite, and hence
there is no need for the additional requirement in Jesus and Chandler (2011)
that Σ̃ is itself a valid covariance matrix.

2. Defining G̃n(θ) = ∂g̃n/∂θ, there exists c > 0 such that, for all θ with
|θ − θ0| < c, the matrix G̃n(θ)δn converges uniformly in probability to an
invertible matrix M(θ) with elements that are continuous functions of θ.

Under Assumption 1, as n → ∞ the estimating equation (6) defines a unique esti-
mator θ̂n that converges in probability to θ0. Moreover, under Assumptions 1 and 2 the
covariance matrix of δ−1

n θ̂n converges to C = M−1
0 Σ̃

(
M−1

0

)′
where M0 = M (θ0). If, in

addition, g̃n (θ; Yn) has a limiting multivariate normal (MVN) distribution then the dis-
tribution of δ−1

n θ̂n is itself multivariate normal in the limit. Operationally, this result says

that the distribution of θ̂n is approximately MVN
(
θ0,G

−1
0 Σn

[
G−1

0

]′)
in large samples,
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where Σn is the covariance matrix of the unnormalised estimating function gn (θ0; Yn)
and G0 = E [Gn (θ0)], which is assumed to exist. This provides a means of testing hy-
potheses and calculating confidence intervals about elements of θ.

4.1 Estimating functions as gradient vectors

In the present paper, the estimating function of interest is the gradient vector of the
approximate log-likelihood (5). In generic situations where an estimating function is
obtained by differenting some objective function Qn (θ; Yn) say, inference about θ can also
be based on the objective function itself: the relevant theory comes from the properties
of the estimating functions, however (Jesus and Chandler, 2011). We outline the main
results here, for situations in which estimators are obtained by maximising (rather than
minimising) Qn (θ; Yn).

Consider testing hypotheses about, or calculating confidence regions for, some linear
combination Ξθ of the parameters, where Ξ is a matrix of appropriate dimension. Often
one may be interested in testing a hypothesis of the form H0 : Ξθ = ξ0. In classical time
series analysis for example, such a test could be used to compare autoregressive models
of different orders by fitting a high-order model and testing the hypothesis that one or
more coefficients are zero: in this case, Ξ is a matrix of ones and zeroes picking out the
coefficients to be tested, and ξ0 is a vector of zeroes. Similarly, for the kind of stochastic
rainfall model described in Section 2 we might ask whether the exponential distribution
provides an adequate representation of rain cell intensity and duration: this could be done
by fitting a more complex model in which both quantities have gamma distributions, and
then testing the hypothesis that the shape parameters of these distributions are both
equal to unity. Alternatively, it may be of interest to calculate confidence intervals for
the shape parameters, to gain insights into the kinds of variation in rain cell properties
that are consistent with the data.

For the hypothesis testing problem, let θ̃n be the value of θ maximising Qn (θ; Yn)
subject to the restriction Ξθ = ξ0. Under Assumptions 1 and 2, and if E [Gn (θ0)] = G0

exists, then under H0 the quantity 2
[
Qn

(
θ̂n; Yn

)
−Qn

(
θ̃n; Yn

)]
has approximately

the same distribution as Z′A−1Z, where Z ∼ MVN(0,−ΞG−1
0 Σn

[
ΞG−1

0

]′
) and A =

−ΞG−1
0 Ξ′: the negative signs here arise because the expected Hessian matrix G0 is

negative definite at a maximum of Qn(·; ·). This generalises the result in Kent (1982)
on the distribution of likelihood ratios in mis-specified models. In principle, it yields a
straightforward procedure for testing the hypothesis of interest: accept if

2
[
Qn

(
θ̂n; Yn

)
−Qn

(
θ̃n; Yn

)]
(7)

is less than the appropriate percentile of the distribution of Z′A−1Z and reject otherwise.
Similarly, a confidence region or interval for Ξθ is the set of values for which (7) is less
than the corresponding percentile.

Unfortunately, distributions of quadratic forms such as Z′A−1Z are intractable in
general: they are often approximated using scaled and shifted chi-squared distributions.
Jesus and Chandler (2011) provide further details, and also highlight situations where the
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required distribution reduces to the usual chi-squared result for likelihood ratio testing
in a correctly specified model. One such situation arises when G0 = −Σn (i.e. the
expected negative Hessian of the objective function is equal to the covariance matrix of
its gradient vector), in which case the large-sample covariance matrix of the estimator θ̂n
is itself equal to Σ−1

n = −G−1
0 . In classical likelihood inference, this equality is the second

Bartlett identity (Severini, 2000, Section 3.5). If it holds, then the distribution of Z above
reduces to Z ∼ MVN

(
0,−ΞG−1

0 Ξ′
)

= MVN (0,A); and the distribution of Z′A−1Z is
exactly chi-squared with q degrees of freedom, where q is the rank of Ξ.

When the second Bartlett identity does not hold, inference based on (7) has a further
drawback: the objective function threshold required to defined a confidence region for a
rank-q transform of θ varies depending on the matrix Ξ. In particular, different thresh-
olds are required to define confidence intervals for different elements of θ: thus, a 95%
confidence interval for θ1 (for which Ξ = (1 0 . . . 0)) might consist of all values for which
(7) is less than some threshold τ1 say, whereas a 95% confidence interval for θ2 (for which
Ξ = (0 1 . . . 0)) might consist of all values for which (7) is less than a different threshold
τ2. This is unintuitive. An alternative is to work with an adjusted objective function that
satisfies the second Bartlett identity, such as

Q(ADJ)
n (θ; Y) = Qn

(
θ̂n; Y

)
−
{(
θ − θ̂n

)′
G0Σ

−1
n G0

(
θ − θ̂n

)} Qn

(
θ̂n; Y

)
−Qn (θ; Y)(

θ − θ̂n
)′

G0

(
θ − θ̂n

)
(8)

which is the ‘vertically adjusted’ objective function defined at equation (25) of Chandler

and Bate (2007). When θ = θ̂n, (8) yields Q
(ADJ)
n (θ; Y) = Qn (θ; Y): the original and

adjusted objective functions share the same maximum. The denominator in the final term

is the second-order Taylor expansion of Qn

(
θ̂n; Y

)
−Qn (θ; Y): thus, to second order, the

final ratio in (8) is unity, the final term in its entirety is
(
θ − θ̂n

)′
G0Σ

−1
n G0

(
θ − θ̂n

)
,

and Q
(ADJ)
n

(
θ̂n; Y

)
−Q(ADJ)

n (θ; Y) is
(
θ − θ̂n

)′
G0Σ

−1
n G0

(
θ − θ̂n

)
. The Hessian of this

quadratic form (i.e. the matrix G0Σ
−1
n G0) is the inverse of the large-sample covariance

matrix of θ̂n as given earlier: thus Q
(ADJ)
n (θ; Y) does indeed satisfy the second Bartlett

identity as claimed.

Combining (8) with equations (18) and (20) of Chandler and Bate (2007), it is easy
to show that a test of H0 : Ξθ = ξ0 can be carried out by comparing

2
(
Ξθ̂n − ξ0

)′ [
ΞG−1

0 Σn

(
ΞG−1

0

)′]−1 (
Ξθ̂n − ξ0

)
(
θ̂n − θ̃n

)
G0

(
θ̂n − θ̃

)′ [
Qn

(
θ̂n; Y

)
−Qn

(
θ̃n; Y

)]
(9)

with the appropriate percentage point of a χ2
q distribution. Confidence regions can be

constructed similarly.

To apply the results outlined above in practice, it is necessary to estimate the matrices
G0 and Σn. Suggestions for achieving this in the context of Whittle estimation are
provided at the end of the next section.
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5 Asymptotic distribution of the Whittle estimator

This section is the core of the paper, showing that for the Whittle log-likelihood defined by
(5), the estimating function gn (θ; Y) = ∂ logL (θ; Y) /∂θ satisfies Assumptions 1 and 2
in Section 4. Having done this, the generic theory above follows immediately. We reiterate
that the properties of the usual Whittle estimator have been established previously by
Heyde (1997) using an approach that we regard as similar in spirit, although this work
does not appear to have been widely noticed in the time series community and does not
consider the contribution from frequency ω0 = 0. In fact, one of the key steps in our
approach is to work with the centred process

Y ∗t = Yt − µ (θ0) = Yt − µ0 say, (10)

where θ0 now is the true value of θ (i.e. the value corresponding to the process that
generated the data). This enables us to treat the zero-frequency contributions separately
from the remainder.

We make no pretence that the asymptotic results in this section will be ‘news’: indeed,
we borrow heavily from the established literature. Our aim is rather to frame the results
in a form that is suitable for routine practical application. Before continuing, it is helpful
to collate some results that will be used in the subsequent derivations.

5.1 Some useful convergence results

The first result in this section provides a central limit theorem for a weighted sum of
periodogram ordinates.

Result 1: Let (Yt) be a zero-mean stationary process with second-order spectral density
h(ω) satisfying the following conditions:

1. 0 < h(ω) <∞ for all ω ∈ [−π, π].

2. h(ω) satisfies a Hölder(ξ) condition for some ξ > 1/2 i.e. there exists a constant K
such that for all ω1, ω2 ∈ [−π, π], |h (ω2)− h (ω1)| ≤ K |ω2 − ω1|ξ.

Moreover, suppose that the fourth-order spectral density of (Yt) is square-integrable, and
that the cumulant condition (3) is satisfied. Then, if φ(ω) is a vector-valued function of
ω ∈ [−π, π], each element of which is an even function that is Hölder(ξ) for some ξ > 1/2,
the quantity

n−1/2

bn2 c∑
p=−bn−1

2 c
φ(ωp) [I (ωp)− h (ωp)] (11)

has a limiting multivariate normal distribution as n → ∞, with mean vector zero and
finite covariance matrix. �

This result is Theorem 4 of Robinson (1978), rephrased slightly for current purposes.
In fact, Robinson’s statement omits the zero-frequency term in the sum; but an inspection
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of the proof confirms that the result is unaffected by this. Robinson also summarises some
alternatives to the cumulant condition (3), and the same or similar results regarding
limiting multivariate normality have been provided by several authors in other situations,
including long-memory processes for which (3) does not hold: see, for example, Heyde
and Gay (1993), Giraitis et al. (2001) and Giraitis and Koul (2013). Bardet et al. (2008)
provide a good review of the area, highlighting a variety of different conditions that can
be used to establish this kind of result.

In Result 1, the required Hölder condition is trivially satisfied if h(ω) has a finite
derivative for all ω ∈ [−π, π]: for in this case, by the mean value theorem, h(ω2)−h(ω1) =
(ω2 − ω1)∂h/∂ω|ω=ω† for some ω† ∈ [ω1, ω2], whence |h(ω2)− h(ω1)| ≤ |ω2 − ω1| supω∈[−π,π] |∂h/∂ω|
and h(ω) is Hölder(1).

The second result is Lemma 1 of Brillinger and Rosenblatt (1967) and provides an
approximation for the cumulants of the discrete Fourier transform of a stationary process:

Result 2: Let (Yt) be a stationary process, with κth-order spectral density defined on
[−π, π]κ−1 as

h(κ)(ω1, . . . , ωκ−1) =
∞∑

r1=−∞

. . .
∞∑

rκ−1=−∞

cκ(r1, . . . , rκ−1)e−i
∑κ−1
j=1 ωjrj (12)

where cκ(r1, . . . , rκ−1) is the joint κth-order cumulant of Yt, Yt+r1 , . . . , Yt+rκ−1 as before.
Suppose that for each j ∈ {1, . . . , k − 1},

∞∑
r1=−∞

· · ·
∞∑

rκ−1=−∞

|rjcκ(r1, . . . , rκ−1)| <∞ , (13)

which is a slightly stronger version of the short-range dependence condition (3); and
define Jp =

∑n
t=1 Yte

−iωpt = Ap + iBp, with Ap and Bp as in (2). Then the joint κth-order
cumulants of the {Jp} satisfy

cκ(Jp1 , ..., Jpκ) = (2π)κ−1 ∆(n)

(
κ∑
j=1

pj

)
h(κ)(wp1 , ..., wpκ−1) +O(1) , (14)

where ∆(n)(p) = n if p = 0 (mod n) and zero otherwise. �

We are now in a position to derive the estimating functions defined by the Whittle
likelihood, and to show that under some constraints on the process (Yt) the Whittle
estimating function satisfies the conditions of Section 4.

5.2 The spectral score function

The gradient vector of the Whittle log-likelihood (5) will be referred to as the vector of
spectral scores, with ith component

gi(θ; Y) =
∂ logL

∂θi
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= −
bn/2c∑
p=1

[
1− 1

2
δp,n/2

] [
∂h(ωp;θ)

∂θi

1

h(ωp;θ)2
(h(ωp;θ)− I(ωp))

]
−1

2

[
∂h(0;θ)

∂θi

1

h(0;θ)
− ∂µ(θ)

∂θi

2(A0 − nµ(θ))

h(0;θ)
− ∂h(0;θ)

∂θi

(A0 − nµ(θ))2

nh(0;θ)2

]
. (15)

The first line here is the contributions from all frequencies except zero; the last line is the
contribution from the zero-frequency term in (5). By dealing with the terms separately, we
can exploit existing results for the situation in which the zero-frequency term is excluded.

For the subsequent development, it will be helpful to express (15) in terms of the
periodogram of the centred process (10). Let A∗0 denote the zero-frequency Fourier coef-
ficient for the sequence Y ∗1 , . . . , Y

∗
n , and let I∗ (ωp) denote the periodogram at frequency

ωp. Then, from the definitions (2) and (3) applied to the centred process, we have
A∗0 =

∑
Y ∗t = A0 − nµ0, I∗(0) = A∗20 /n = I(0) − 2A0µ0 + nµ2

0 and I∗(ωp) = I(ωp)
for p 6= 0. Note that only the Fourier coefficient at zero frequency is affected by the cen-
tring. Of course, the quantities A∗0 and I∗ (0) cannot be calculated in practice since they
require knowledge of µ0, which itself depends on the unknown parameter θ0; nonetheless,
for theoretical purposes it is convenient to work with these quantities.

Rearranging the expressions in the previous paragraph, we find that A0 = A∗0 + nµ0

and that I(0) = I∗(0) + 2A∗0µ0 − nµ2
0. Plugging these in (15), and defining

ai(ω;θ) =
∂h(ω;θ)

∂θi

1

h(ω;θ)2
= − ∂

∂θi
h−1(ω;θ), (16)

we obtain

gi(θ; Y) = −
bn/2c∑
p=1

[
1− 1

2
δp,n/2

]
[ai(ωp;θ) (h (ωp;θ)− I∗ (ωp))]

−1

2

[
ai(0;θ)h(0;θ)− ∂µ(θ)

∂θi

2(A∗0 + nµ0 − nµ(θ))

h(0;θ)
− ai(0;θ)

(A∗0 + nµ0 − nµ(θ))2

n

]
.

The summands in the first line of this expression are all even functions of ω, and therefore
the sum can be written as

−1

2

bn2 c∑
p=−bn−1

2 c
ai(ωp;θ) (h(ωp;θ)− I∗(ωp)) +

1

2
ai(0;θ) (h(0;θ)− I∗(0)) ,

the final term arising because there was no p = 0 term in the original sum. Some further
algebraic manipulation, using the fact that I∗(0) = A∗20 /n, leads eventually to the result

gi(θ; Y) = −1

2

bn2 c∑
p=−bn−1

2 c
ai(ωp;θ) [h(ωp;θ)− I∗(ωp)] +

A∗0 + n [µ0 − µ(θ)]

h(0;θ)

∂µ(θ)

∂θi

+
ai(0;θ)

2

[
n(µ0 − µ(θ))2 + 2A∗0(µ0 − µ(θ))

]
. (17)

11



This expresses the spectral scores as a function of the periodogram and sample mean of
a zero-mean process, whence existing results from the literature can be applied.

5.3 Assumptions on (Yt)

For the remainder of the paper, we assume that (Yt) is a stationary process such that the
centred process (Y ∗t ), defined in (10), satisfies the requirements of Result 1. Note that
the zero-mean process (Y ∗t ) has the same second-order spectral density as (Yt).

As well as the requirements of Result 1, we impose several additional conditions on
the model for (Yt), expressed in terms of its properties at individual values of θ ∈ Θ.
These conditions are reasonably innocuous: they mostly relate to existence, smoothness,
differentiability and finiteness of relevant quantities. They are as follows:

C1 If θ1 6= θ2 then at least one of the following conditions holds:

• h (ω;θ1) and h (ω;θ2) differ on a set of non-zero measure in [−π, π].

• µ (θ1) 6= µ (θ2).

C2 The θ-derivatives of all quantities appearing in (17) exist and are finite.

C3 The quantities h (ω;θ) and {∂h/∂θi} have bounded ω-derivatives of order up to 2,
on [−π, π].

C4 The third-order spectral density, h(3)(·, ·;θ) say, is such that h(3) (0, ω;θ0) is twice
differentiable in ω and ∂2h(3) (0, ω;θ0) /∂ω2 is finite for all ω ∈ [−π, π].

Condition C1 ensures that the parameters are identifiable, in the sense that different
values of θ lead to asymptotically distinct estimating function values. C2 is trivial: note
that if the spectral density is bounded away from zero and infinity on [−π, π] as required
by Result 1, and if the mean µ(θ) is finite, then finite derivatives of the various quanti-
ties in (17) are guaranteed if the elements of ∂µ/∂θ and ∂h(ωp;θ)/∂θ themselves exist
and are finite. C3 ensures that the quantity ai (ω;θ)h (ω;θ) has finite second deriva-
tives on [−π, π], with ai (ω;θ) as defined in (16). Finally, C4 is needed to handle the
zero-frequency term when demonstrating convergence of the covariance matrix of the nor-
malised estimating function as shown in Appendix A. From definition (12), it follows that
∂2h(3) (0, ω;θ0) /∂ω2 = −

∑∞
r1=−∞

∑∞
r2=−∞ r

2
2c3(r1, r2) exp (iωr2) so that C4 will be satis-

fied if there is no periodic variation in c3(r1, r2) and if
∑∞

r1=−∞
∑∞

r2=−∞ r
2
2 |c3(r1, r2)| <∞.

This holds trivially if the third-order cumulants are all zero, which is the case for Gaussian
processes.

An immediate consequence of the above conditions is that each of the even, vector-
valued functions {∂ai (ω;θ) /∂θ} exists and satisfy the requirements of the function φ(·)
in Result 1. This is because C3, together with the requirements of Result 1, guarantees
that the ω-derivatives of ∂ai (ω;θ) /∂θ are finite so that ∂ai (ω;θ) /∂θ is itself Hölder(1).
It follows that under these conditions, Result 1 can be applied to the first term of (17)
after appropriate normalisation.
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Conditions C1 to C4 exclude some important classes of processes: for example, long-
memory processes in which the spectral density is infinite at ω = 0. However, they do
include a wide variety of non-Gaussian processes for which Whittle estimation has not
been widely used: the rainfall model of Section 2 is an example.

Finally, we assume that the parameter space Θ is compact. Although this is slightly
restrictive, it is a ubiquitous device in the literature for establishing uniform convergence
as required to obtain consistency results. For a more detailed discussion including alterna-
tive possibilities, see Jesus and Chandler (2011) and citations therein. Moreover, for many
models this assumption is a convenient way to guarantee the finiteness or boundedness of
quantities appearing in conditions C2 and C3 above.

5.4 Conditions for consistency

The Whittle estimator is consistent if the root of the estimating equation gn (θ; Y) = 0
converges in probability to θ0, the true parameter value. From Section 4, this occurs if a
normalised version of gn (θ; Y) converges to a deterministic function with a unique root
at θ0 and which is bounded away from zero away from θ0. We now show that under
the conditions set out in Section 5.3, this is achieved by choosing the normalizing matrix
(in the notation of Assumption 1) ηn = n−1I, where I is the identity matrix. With this
choice of ηn, the ith element of ηngn (θ; Y) is just n−1gi (θ; Y), with gi (θ; Y) given by
(17). Notice first that A∗0/n is the sample mean of the centred observations and, under
the stated assumptions, this tends to zero as n → ∞. Moreover, from Result 1 applied
to the centred process (Y ∗t ), the quantity n−1

∑
p ai(ωp;θ) [I∗(ωp)− h(ωp;θ0)] converges

in probability to zero as n → ∞ under the conditions of Section 5.3. Thus we can write
(here and throughout the remainder of the paper, all p-sums are from −

⌊
n−1

2

⌋
to
⌊
n
2

⌋
)

n−1
∑
p

ai(ωp;θ) [I∗(ωp)− h(ωp;θ)] = n−1
∑
p

ai(ωp;θ) [h(ωp;θ0)− h(ωp;θ)] + op(1)

=

∫ π

−π
ai(ω;θ) [h(ω;θ0)− h(ω;θ)] dω + op(1) ,

the second step following because the difference between the integral and its Riemann
sum is O(n−2) providing the integrand has bounded second derivative (condition C3 of
Section 5.3 guarantees this). It follows that, for each θ,

lim
n→∞

[ηngn(θ; y)]i = −1

2

∫ π

−π
ai(ω;θ) [h (ω;θ)− h (ω;θ0)] dω

+
∂µ(θ)

∂θi

(µ0 − µ(θ))

h(0;θ)
+
ai(0;θ)

2
(µ0 − µ(θ))2 .

Pointwise convergence to a limiting function with a zero at θ = θ0 is now obvious; the
uniqueness of this zero is guaranteed by condition C1. Uniform convergence follows from
the compactness of Θ.
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5.5 Limiting distribution

To obtain a limiting covariance matrix for the estimator, in addition to the conditions
for consistency we need to show that the requirements of Assumption 2 are satisfied. In
fact, for the class of processes considered here these requirements can be met by choosing
γn = n−1/2I and δn = n−1/2I. This is demonstrated in Appendix A, using Result 2.

If we can also show that γngn(θ0; Y) has a limiting multivariate normal distribution,
then a central limit theorem for the estimator is assured. Again, Result 1 is key: it provides
limiting joint normality of the p-sums in each component of γngn(θ0; Y) in (17). The re-
mainder of the normalised estimating function is a linear function of n−1/2A∗0, which itself
is normal in the limit according to (4). However, the limiting marginal normality of two
non-degenerate quantities is not sufficient to ensure the limiting normality of their sum;
and it is not obvious how to provide an easily verifiable condition that ensures this in the
present context. We therefore leave this as an additional assumption, noting that it is un-
likely to be contentious except in pathological examples. If the assumption holds, it follows

that n1/2(θ̂n − θ0)
d→ MVN(0,M0Σ̃M′

0), where M0 = limn→∞ n
−1 ∂2 logL/∂θθ′|

θ=θ0

and Σ̃ = n−1Var(gn(θ0; Y)).

To use this result in practice, for finite n it is convenient to proceed as though θ̂ ∼
MVN

(
θ0,G

−1
0 ΣnG

−1
n

)
where G0 = ∂2 logL/∂θθ′|

θ=θ0
and Σ = Var

(
∂ logL/∂θ|

θ=θ0

)
.

It is then necessary to estimate the matrices G0 and Σn. As noted in Jesus and Chandler
(2011), in principle any estimator can be used for this purpose providing the estimation
error is asymptotically negligible compared with the quantity being estimated. Thus, G0

can estimated as Ĝ0 = ∂2 logL/∂θθ′|
θ=θ̂

, which can be calculated either analytically or
numerically.

The estimation of Σn is more challenging. A direct approach would use analytical
approximations to the covariance matrix of the spectral scores, similar to the results pro-
vided in Appendix A. However, these approximations involve higher-order properties of
the process (Yt) which are rarely available except for rather simple processes. Alterna-
tives are to use empirical or simulation-based estimators. The latter are constructed by
simulating a large number of replicates, each of size n, of the process (Yt), calculating
∂ logL/∂θ|

θ=θ̂
for each replicate and then calculating the sample covariance matrix of

these simulated spectral score vectors. In many situations, this is the most straightfor-
ward way to proceed. However, there are other settings in which it might be appropriate
to consider that the observations consist of R (say) independent replicates of an under-
lying process: an example is given in Section 6. In such settings, a log-likelihood and
associated spectral score vector can be computed separately for each replicate; the overall
log-likelihood and spectral score are then obtained by summing over the replicates, and
the covariance matrix of the spectral scores for each replicate can be estimated as the
sample covariance matrix of the individual score vectors. The independence of the repli-
cates then ensures that the covariance matrix of the total score vector is just R times the
covariance matrix for an individual replicate.

Whatever approach is used to estimate Σn, the estimating functions framework pro-
vides an opportunity to estimate the covariance matrix of θ̂ without recourse to higher-
order spectra; the results from Section 4 can then be used for inference about θ0.
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6 Simulation study

We now investigate the finite-sample performance of the theory outlined above, using a
simulation study based on the stochastic rainfall model from Section 2. Recall that this
model has parameters λ, µX and µL which are all non-negative. For ease of numerical
optimisation, and also to avoid inferential problems if any of the parameter estimates
is close to zero, for our inference we take logarithms throughout, so that our parameter
vector is θ = (log λ, log µX , log µL)′ ∈ Θ, where Θ is an appropriate compact subspace of
R3. By ‘appropriate’ here, we mean ‘large enough to be unrestrictive in practical terms’.

We consider the process (Yt) of rainfall accumulations aggregated over intervals of
length ∆ time units, as in equation (1). Without loss of generality, we take h = 1. In this
case (Yt) is stationary, with mean

µ(θ) = λµXµL (18)

and second-order spectral density

h(ω;θ) =
∞∑

k=−∞

s (ω + 2kπ)

(
sin([ω + 2kπ]/2)

[ω + 2kπ]/2

)2

(|ω| ≤ π) , (19)

where
s(ω) = 2λµ2

Lµ
2
X/π(1 + µ2

Lω
2) (20)

is the spectral density of the underlying continuous-time process (the spectral densities
for this, and several other similar models, are given by Chandler 1997). Result (19), on
the spectral density of the aggregated process, follows from Priestley (1981, equations
(4.12.24) and (7.1.12)): in practice, the infinite sum can be truncated at values ±K
beyond which s (ω + 2|k|π) / (ω + 2|k|π)2 is negligible. For the process studied here (and
other similar processes), with realistic parameter values we find that K = 10 usually
suffices.

These closed-form expressions for the mean and spectral density ensure that Whittle
estimation is feasible for this particular model and, moreover, that most of the conditions
in Section 5.3 can be verified directly. Thus, for any finite θ the spectral density (19) is
finite, bounded away from zero and has finite θ- and ω-derivatives: hence the requirements
of Result 1 are satisfied. Moreover, the spectral density has finite ω-derivatives and the
mean (18) has finite θ-derivatives: thus conditions C2 and C3 are also satisfied. Moving to
C1, note that λ and µX contribute the same factor λµ2

X to the spectral density throughout
its range: these parameters are not identifiable from the usual Whittle likelihood therefore,
because distinct values of θ yield identical spectra. However, if θ1 and θ2 are distinct
with h(ω;θ1) = h(ω;θ2) then (18) shows that µ(θ1) 6= µ(θ2) as required by C1: by
incorporating the zero frequency term as in (5) therefore, the model becomes identifiable.

The remaining condition to check is C4. This is demonstrated in Appendix B.

6.1 Design of the simulation study

The simulation setup used here is similar to that described in Jesus and Chandler (2011),
and is designed to be typical of a situation in which this kind of stochastic rainfall model
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is often used. Thus, because the models are stationary they are usually fitted separately
to hourly data for each calendar month (Rodriguez-Iturbe et al., 1988; Wheater et al.,
2005): data from different years are considered to provide independent replicates of the
rainfall process. Typically, such models are fitted using records of least 20 years’ duration.
Therefore, for each of our simulations we generate m = 20 independent sets of 30 days’
worth of hourly values, each from a model with parameter vector θ0 = (−3.5 0 1.1)′.
These values (with time measured in hours and intensity in mm h−1) can be considered
typical of January rainfall in the UK.

We generate 1000 simulated datasets with the structure described above. For each
dataset, we compute a log-likelihood (5) separately for each of the 20 replicates; and
an overall log-likelihood is then defined as a sum of these individual contributions as
described in Section 5.5.

To study the properties of the estimators, in the first instance we examine the distri-
butions of estimates for each parameter. However, the focus of the present paper is not
so much upon the estimators per se as upon the associated inference. To examine this
therefore, we compare the ‘empirical’ and ‘theoretical’ standard errors of the estimators.
Specifically, for each parameter we calculate an ‘empirical’ standard error as the standard
deviation of the estimates obtained from the 1000 simulations. For comparison, we cal-
culate ‘theoretical’ standard errors as follows: for each simulation we calculate estimates
of G0 and Σn as described in Section 5.5, use these to estimate the covariance matrix
G−1

0 ΣnG
−1
0 and then calculate the sample mean of these estimated covariance matrices as

a summary measure. Our ‘theoretical’ standard errors are the square roots of the diagonal
elements of this matrix.

As well as comparing the empirical and theoretical standard errors, we examine the
coverages of 95% and 99% confidence intervals and regions. Specifically, for each simulated
dataset, confidence intervals are calculated according to the large-sample multivariate
normal distribution from Section 5.5. For each parameter, the proportion of intervals
containing the true parameter value is calculated. If the theory holds in practice, then a
100(1−α)% confidence interval should contain the true parameter value roughly 100(1−
α)% of the time. Similarly, confidence regions for the entire parameter vector can be

computed, either on the basis of the statistic 2
[
logL

(
θ̂; y

)
− logL (θ0; y)

]
(this is the

test statistic (7) with Ξ = I3×3 and ξ = θ0), or the adjusted version of this statistic
corresponding to (9).

A further question of interest relates to the estimation of Σn in Section 5.5. As noted
there, the availability of multiple independent replicates allows the possibility of estimat-
ing Σn empirically by computing the empirical covariance matrix of the spectral scores
from each replicate. In a similar setting involving generalised method of moments estima-
tion however, Jesus and Chandler (2011) found that this empirical estimator led to very
poorly calibrated inference. For comparison therefore, we also investigate the performance
of a simulation-based estimator as described in Section 5.5. For each simulation, 1000
further replicates of the process are generated using the parameter vector θ̂; the spectral
scores at θ̂ are calculated for each new replicate (note that no optimisation is required
here: merely the evaluation of (17) at θ̂ for each simulated dataset); and the results are
used to estimate the covariance matrix of the spectral scores for a single replicate. In the
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Figure 1: Sampling distributions of estimators for the parameters of a Poisson pulse model
for rainfall. Distributions are obtained from 1000 simulated data sets, each containing
20 independent 30-day sequences of hourly values and generated using parameter values
log(λ) = −3.5, log(µX) = 0, log(µL) = 1.1. Vertical solid and dashed lines represent
respectively the true value of each parameter and the mean of the simulated estimates.
The individual estimates are indicated at the bottom of each plot; and their distributions
are shown as kernel density estimates.

results reported below, these two approaches are referred to respectively as “Empirical”
and “Simulation-based”.

6.2 Results

Figure 1 shows the distributions of the 1000 sets of estimates. The distributions for log λ̂
and log µ̂L seem reasonably symmetrical so that a normal approximation may be adequate
here; the distribution of log µ̂X is negatively skewed. Moreover, the estimates appear
slightly biased: the empirical biases for the three parameters are 0.022, −0.029 and −0.028
respectively, with associated standard errors 0.005, 0.003 and 0.004. Taken together, these
results suggest that larger sample sizes may be required before the asymptotics for this
particular process become highly accurate. Nonetheless, the biases are on the order of
just 2% to 3% on the original (non-logarithmic) scale for each parameter: this is probably
acceptable for many applications. Moreover, the skewness of the sampling distribution
for log µX is arguably problematic only if it affects the substantive conclusions derived
from the asymptotic theory, for example if the associated standard errors and confidence
interval coverages are inaccurate. This can be investigated using the results in Table 1.

Focusing first on the empirical and theoretical standard errors in Table 1, there seems
to be reasonable agreement: the empirical estimation of Σn seems to yield lower standard
errors than the simulation-based estimation, although there is no particular reason on the
basis of these results to prefer one method over the other. A different story emerges when
we consider the coverages of confidence intervals for individual parameters, however: here,
the empirical estimates of Σn lead to undercoverage in all cases, and the performance of
the confidence intervals using simulation-based estimates is much better. However, the
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Parameter
λ µX µL Θ

Σ̂Emp Σ̂Sim Σ̂Emp Σ̂Sim Σ̂Emp Σ̂Sim Σ̂Emp Σ̂Sim

Bias 0.022 −0.029 −0.028 —

Empirical std err 0.151 0.083 0.136 —
Theoretical std err 0.144 0.165 0.087 0.096 0.122 0.133 — —

95% coverage 0.93 0.96 0.84 0.91 0.87 0.88 0.75 0.78

(adjusted) — — — — — — 0.84 0.93
99% coverage 0.96 0.97 0.93 0.97 0.94 0.99 0.90 0.91

(adjusted) — — — — — — 0.90 0.97

Table 1: Performance of asymptotic inference in 1000 simulations of a Poisson pulse
model for rainfall. “Empirical” standard errors are derived directly from the 1000 sets
of estimates; “theoretical” ones from the mean of the estimated large-sample covariance
matrices. Coverages indicate the proportions of simulations for which asymptotic confi-
dence intervals or regions at the nominal level contained the true parameter value: for
individual parameters, confidence intervals are directly from the limiting normal distribu-
tion of the estimator, while for the entire parameter vector they are derived either from
(7) or (for the ‘adjusted’ rows) from (9). In columns ‘Σ̂Emp’, Σn is estimated from the

empirical covariance matrix of the spectral scores in each simulation; in columns ‘Σ̂Sim’,
it is estimated by resimulating from the fitted model.

coverage of confidence regions for the entire parameter vector, based on (7), is rather poor
whichever estimate is used (e.g. 75% or 78% for a nominal 95% confidence region). The
coverage of confidence regions based on (9) is not much improved when Σn is estimated
empirically; but for simulation-based estimation of Σn these coverages improve dramati-
cally, to 93% and 97% for nominal 95% and 99% confidence regions. For nonlinear models
where inference is challenging, and a sample size at the lower end of what is typical when
applying this kind of model, this kind of performance is quite impressive.

Although these results are from a single set of simulations of one particular model, the
messages are consistent with our experience and understanding of similar problems else-
where. Thus, when studying the performance of the generalised method of moments, we
find that empirical covariance estimation can yield very poor confidence interval coverage
in finite samples and that simulation-based estimation is much more reliable (Jesus and
Chandler, 2011). Similarly, when calculating confidence regions based on a mis-specified
likelihood, arguments in Chandler and Bate (2007) suggest that in general the contours
of the mis-specified likelihood are the wrong shape so that it is hard to achieve accurate
inference in finite samples; adjustments such as (8) are designed to overcome this.

7 Discussion

We have extended the work of Heyde (1997) to show how Whittle estimation may be
viewed from an estimating functions perspective, which enables formal asymptotic in-
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ference to be carried out without evaluating higher-order properties of the model under
consideration; to show how some aspects of the inference can be improved by working with
an easily-computed adjustment to the Whittle log-likelihood (although this adjustment
does not change the estimator itself); and to provide asymptotics for use in situations
where the mean of the process depends on the parameter(s) of interest so that a zero
frequency term should be included in the Whittle likelihood. In a special issue devoted
to the memory of Maurice Priestley, it is perhaps worth pointing out that our contri-
bution here can be regarded as a (very minor, compared with his own work) practical
contribution to spectral estimation.

From an applied perspective, perhaps the most interesting contribution of the present
article is to provide a feasible way of calculating standard errors and confidence regions
for Whittle estimation. This is particularly useful given the concerns expressed by some
authors (e.g. Contreras-Cristán et al. 2006) about its inefficiency: if standard errors can be
estimated reliably, then the analyst can at least be made aware that parameter uncertainty
may be large. The use of an adjusted log-likelihood surface to define confidence regions
may also help to resolve the issue, reported in Contreras-Cristán et al. (2006), that the
Whittle log-likelihood surface may have a substantially different shape from the real log-
likelihood. A reasonable estimator of the covariance matrix of the spectral scores is
needed, however, for the inference to be accurate. In many applications of estimating
functions, an ‘empirical’ estimator of this covariance matrix is used; however, we find
that this can perform poorly for Whittle estimation, in which case an alternative should
be sought. Our experience is that simulation-based estimators perform well, and can be
calculated cheaply on modern computers for any process that is easy to simulate.

We have restricted our attention to processes satisfying the conditions of Section 5.3.
These conditions allow the application of Whittle estimation to a much wider class of
situations than is often appreciated (for example, the highly non-Gaussian rainfall model
of our example), but nonetheless they exclude some important situations — for example,
long-memory processes where the spectral density h(ω;θ) is unbounded at the origin.
They are imposed in order to satisfy Assumptions 1 and 2 which are taken from Jesus and
Chandler (2011) as a fairly generic set of conditions under which ‘classical’ asymptotic
results hold. Some of the conditions can be weakened in specific situations (see, for
example, the earlier discussion of alternative conditions under which Result 1 holds), and
hence the estimating functions approach can be applied to other classes of process as well;
however, such classes typically need to be studied individually to establish the required
results. We nonetheless hope that our contribution will stimulate an interest in this kind of
approach to frequency-domain inference, and that it will highlight the availability of easily-
computed standard errors and confidence regions in this setting. For the specific case of
long-memory processes, it is perhaps worth noting that the large-sample distribution
(4) of the Fourier coefficients, that was used to motivate the log-likelihood expression
(5), is no longer valid for the lowest frequencies: the justification for using (5) therefore
seems questionable, with or without the zero-frequency term. An alternative is to form
a log-likelihood from the correct large-sample distributions of the Fourier coefficients, as
implied by results in Hurvich and Beltrao (1993) for example. This is essentially the idea
of Sykulski et al. (2015), who recommend replacing the spectral density in the Whittle
likelihood by the expected value of the periodogram. It would be of interest to use an
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estimating functions approach to explore the properties of such methods.

Appendix A: Requirements of Assumption 2

In Section 5, we claimed that with the choice γn = n−1/2I and δn = n−1/2I and under
the conditions of Section 5.3, the estimating functions gn (θ; Y) with ith element given
by (17) meet the requirements of Assumption 2. We here justify this claim.

First, we note that condition C2 (Section 5.3) ensures that the matrices Gn(θ) =
∂gn/∂θ exist. Our first task, therefore, is to demonstrate that the covariance matrix of
γngn (θ0; Y) converges to a limiting positive definite matrix Σ̃. Consider the (i, j) element
of γngn (θ; Y): Cov(n−1/2gi(θ; y), n−1/2gj(θ; y)) which, from (17), can be written as

1

4
Cov

(
n−1/2

∑
p

ai(ωp;θ) [I∗(ωp)− h (ωp;θ)] ,

n−1/2
∑
p

aj(ωp;θ) [I∗(ωp)− h (ωp;θ)]

)
(21)

+
bij(θ)

n
Var (A∗0) (22)

+
1

n
Cov

(∑
p

[dij(θ)ai(ωp;θ) + dji(θ)aj(ωp;θ)] I∗(ωp), A
∗
0

)
, (23)

where bij(θ) and dij(θ) are non-random functions of θ.

The convergence of (21) follows immediately from Result 1 given earlier, and the limit
of (22) follows directly from (4):

lim
n→∞

bij(θ0)

n
Var (A∗0) = bij(θ0)h(0;θ0) .

The treatment of (23) is less straightforward. Note first that E (A∗0) = 0 so that the
covariance is just an expectation. Note also that A∗0 = J∗0 and that I∗ (ωp) = n−1J∗pJ

∗
−p

where J∗p is the pth complex Fourier coefficient of the centred process, defined analogously
to Jp in Result 2 (Section 5.1). Hence, focusing on the first term in (23), we have

1

n
Cov

[∑
p

dij(θ)ai(ωp;θ)I∗(ωp), A
∗
0

]
=

dij(θ)

n
E

[
A∗0
∑
p

ai(ωp;θ)I∗(ωp)

]

=
dij(θ)

n2

∑
p

ai(ωp;θ)E
[
J∗0J

∗
pJ
∗
−p
]

=
dij(θ)

n2

∑
p

ai(ωp;θ)c3

(
J∗0 , J

∗
p , J

∗
−p
)
.

The last step here again makes use of the fact that E[J∗p ] = 0; as in Result 2, c3(·, ·, ·) is
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a generic notation for the joint third cumulant. Applying (14) now yields

dij(θ)

n2

∑
p

ai(ωp;θ)
[
(2π)2 nh(3)(0, ωp) +O(1)

]
=

(2π)2 dij(θ)

n

∑
p

ai(ωp;θ)h(3)(0, ωp) +O(n−1) ,

where h(3)(·, ·) is the third-order spectral density of (Yt). Boundedness of the second
derivatives (Section 5.3, condition C4) ensures that the sum approximates an integral with
negligible error, so that the entire expression converges to dij(θ) (2π)2 ∫ π

−π ai(ω;θ)h(3)(0, ω)dω

as n→∞. Similarly, the second term in (23) tends to dji(θ) (2π)2 ∫ π
−π aj(ω;θ)h(3)(0, ω)dω.

Combining all of these results, as n→∞ the elements of Cov(γngn(θ0; Y),γngn(θ0; Y))
are seen to converge to quantities which, under the restrictions of Section 5.3, are all finite.
The limiting matrix is the required Σ̃ of Assumption 2.

We now turn to the second requirement of Assumption 2: that for g̃(θ; y) = γngn(θ; y)
there is a sequence (δn) of matrices such that [∂g̃(θ; Y)/∂θ] δn converges in probability
to a non-random matrix M(θ), continuous in θ, in a neighbourhood of θ0. Under the
conditions of Section 5.3, the choice δn = n−1/2I satisfies this requirement. For, in this
case, recalling that γn = n−1/2I, the (i, j)th element of [∂g̃(θ; Y)/∂θ] δn is n−1∂gi/∂θj,
with gi (θ; Y) defined in (17). The required convergence to a continuous function can be
shown using arguments that are very similar to those presented above (notably invoking
Result 1, the convergence of n−1A∗0 to zero and the approximation of a p-sum with an
ω-integral). The details are omitted because the algebra, although straightforward, is
lengthy and not particularly instructive.

Appendix B: Condition C4 for the rainfall model

To apply the results of Section 5 to the rainfall model of Section 2, it is necessary to
demonstrate that condition C4 holds for the discretised process in which Yt represents the
aggregated rainfall over some time interval ∆ as in equation (1). Without loss of generality,
in this appendix we take ∆ = 1 time unit. As discussed in Section 5.3, for a process with no
periodic variation it is sufficient to demonstrate that

∑∞
r1=−∞

∑∞
r2=−∞ r

2
2 |c3(r1, r2)| <∞,

where c3(·, ·) is the joint third-order cumulant of Yt, Yt+r1 and Yt+r2 . The derivation below
makes use of two preliminary results.

Lemma 1: Let Y =
∑N

i=1Xi where N ∼ Poi(µ), the {Xi} are independent and identi-
cally distributed random variables with finite positive moments of all orders and Y := 0
if N = 0. Let αk(µ) = E

(
Y k|N > 0

)
for k ∈ N. Then αk(µ) is an increasing function of

µ.

Proof: Unconditionally, Y has a compound Poisson distribution and E
(
Y k
)

is a kth-
order polynomial in µ, with positive coefficients that depend on the moments of X. We
have αk(µ) = E (Y |N > 0) = E

(
Y k
)
/ (1− e−µ), which is an increasing function of µ

because µn/ (1− e−µ) is increasing in µ > 0 for n ∈ N. �
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Lemma 2: for any finite m > 0, A > 0 and B > 0, 0 <
∑∞

r=0 r
m
[
1− exp

(
−Ae−Br

)]
<

∞.

Proof: the lower bound is trivial since exp
(
−Ae−Br

)
< 1 when A > 0 and B > 0. It

follows that
∑∞

r=0 r
m
[
1− exp

(
−Ae−Br

)]
=
∣∣∑∞

r=0 r
m
[
1− exp

(
−Ae−Br

)]∣∣
=

∣∣∣∣∣−
∞∑
r=0

rm
∞∑
k=1

(
−Ae−Br

)k
/k!

∣∣∣∣∣ =

∣∣∣∣∣−
∞∑
k=1

(−A)k

k!

∞∑
r=0

rme−Brk

∣∣∣∣∣
<

∞∑
k=1

Ak

k!

∞∑
r=0

rme−Br =
(
eA − 1

) ∞∑
r=0

rme−Br , (24)

the strict inequality following from the fact that e−Brk < e−Br for k > 1 and B > 0. The
r-sum in (24) is convergent by the ratio test, and the result is shown. �

Turning now to the cumulants for the rainfall model: note first that c3(r1, r2) can
alternatively be written as E

(
Y ∗t Y

∗
t+r1

Y ∗t+r2
)
, where Y ∗t = Yt − E (Yt). Also, recall that

rain cells arrive in a Poisson process and that their intensities are independent: de-
pendence in the process can only arise, therefore, from cells that affect multiple inter-
vals simultaneously. Accordingly, let Ut,t+r1,t+r2 be a random variable taking the value
1 if at least one cell is active during all three intervals, and zero otherwise. Then
E
(
Y ∗t Y

∗
t+r1

Y ∗t+r2|Ut,t+r1,t+r2 = 0
)

= 0 because, conditional upon Ut,t+r1,t+r2 = 0, at least
one of the intervals must be independent of the other two and the process (Y ∗t ) has zero
mean. Unconditionally therefore, we have

c3(r1, r2) = E
(
Y ∗t Y

∗
t+r1

Y ∗t+r2
)

= EUt,t+r1,t+r2

[
E
(
Y ∗t Y

∗
t+r1

Y ∗t+r2|Ut,t+r1,t+r2
)]

= E
(
Y ∗t Y

∗
t+r1

Y ∗t+r2|Ut,t+r1,t+r2 = 1
)
× P (Ut,t+r1,t+r2 = 1) ,

so that

|c3(r1, r2)| = E
(∣∣Y ∗t Y ∗t+r1Y ∗t+r2∣∣ |Ut,t+r1,t+r2 = 1

)
× P (Ut,t+r1,t+r2 = 1) . (25)

The next step is to show that E
(∣∣Y ∗t Y ∗t+r1Y ∗t+r2∣∣ |Ut,t+r1,t+r2 = 1

)
is bounded uniformly

in r1 and r2. A full derivation is neither brief nor instructive, so we merely sketch
the argument. First, Yt is non-negative and E (Yt) is finite so that unboundedness of
E
(∣∣Y ∗t Y ∗t+r1Y ∗t+r2∣∣ |Ut,t+r1,t+r2 = 1

)
can arise only due to contributions from the upper tail

of the joint distribution. A sufficient condition for E
(∣∣Y ∗t Y ∗t+r1Y ∗t+r2∣∣ |Ut,t+r1,t+r2 = 1

)
to

be uniformly bounded is therefore that E (YtYt+r1Yt+r2|Ut,t+r1,t+r2 = 1) itself is uniformly

bounded. Now write Yt = Ỹt + Y̆t, where Ỹt is the contribution from cells that are active
during all three intervals and Y̆t is the contribution from all other cells. Ỹt and Y̆t are inde-
pendent due to the independence of cell characteristics; and E (YtYt+r1Yt+r2|Ut,t+r1,t+r2 = 1) =

E
(
YtYt+r1Yt+r2|Ỹt > 0

)
. The value of ỸtỸt+r1Ỹt+r2 cannot exceed that obtained when

the contributing cells are all active throughout each interval: in this case Ỹt, Ỹt+r1 and
Ỹt+r2 are all equal and their marginal distribution is compound Poisson with mean at
most λ(µL+ 1)µX (because the exponential cell intensity distribution has finite moments,
and the rate of cells that simultaneously affect three intervals is no greater than the
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rate of cells affecting a single interval which is λ(µL + 1)). Similar uniform bounds are
obtained for higher moments. Lemma 1 now guarantees uniform boundedness of the
conditional moments given Ỹt > 0. Next consider the joint moments of Y̆t, Y̆t+r1 and
Y̆t+r2 . Independence of Ỹt and Y̆t implies that conditioning on Ỹt > 0 does not affect
these joint moments, which cannot exceed the corresponding (unconditional) joint mo-
ments of the original process (Yt) because the non-negative contributions from some cells
have been subtracted. The original process has finite joint moments that are uniformly
bounded (for example, a Chebyshev-style argument coupled with stationarity can be
used to show that E (YtYt+r1Yt+r2) ≤ 2E (Y 3

t )). Conditional on Ut,t+r1,t+r2 = 1 therefore,

the processes
(
Ỹt

)
and

(
Y̆t

)
have uniformly bounded joint third moments and are in-

dependent: uniform boundedness of E
(∣∣Y ∗t Y ∗t+r1Y ∗t+r2∣∣ |Ut,t+r1,t+r2 = 1

)
follows, yielding

E
(∣∣Y ∗t Y ∗t+r1Y ∗t+r2∣∣ |Ut,t+r1,t+r2 = 1

)
< M for some finite M .

Having established this, from (25) we have

|c3(r1, r2)| ≤MP (Ut,t+r1,t+r2 = 1) . (26)

If r1 and r2 are not both equal to zero, P (Ut,t+r1,t+r2 = 1) is the probability that at least
one cell active at the end of the earliest time interval t, t+ r1, t+ r2 is still active at the
start of the latest interval. By stationarity, this is equal to the probability that at least
one cell active at time zero is still active at time r, where r = max (|r1| , |r2| , |r2 − r1|)−1.
Denote this event by Er, and let N0 be the number of cells active at time zero. The model
specification implies that N0 ∼ Poi (λµL) (Rodriguez-Iturbe et al., 1987).

In this case, for r ≥ 0 we have P (Er) =
∑∞

k=0 P (Er|N0 = k) P(N0 = k)

=
∞∑
k=0

[1− P (all k active cells terminated by time r) |N0 = k] (λµL)k e−λµL/k!

=
∞∑
k=0

[
1−

(
1− e−r/µL

)k]
(λµL)k e−λµL/k! ,

the last step following from the independence of the exponentially distributed cell du-
rations. This expression simplifies to 1 − exp

[
−λµLe−r/µL

]
so that, if r1 and r2 are

not both equal to zero, P (Ut,t+r1,t+r2 = 1) = 1 − exp
[
−λµLe−[max(|r1|,|r2|,|r2−r1|)−1]/µL

]
.

From (26) therefore, |c3(r1, r2)| ≤ M
{

1− exp
[
−λµLe−[max(|r1|,|r2|,|r2−r1|)−1]/µL

]}
so that∑∞

r1=−∞
∑∞

r2=−∞ r
2
2 |c3(r1, r2)| will be finite if

∞∑
r1=−∞

∞∑
r2=−∞

r2
2

{
1− exp

[
−λµLe−[max(|r1|,|r2|,|r2−r1|)−1]/µL

]}
<∞ . (27)

Strictly speaking, the term for r1 = r1 = 0 here does not correspond to P (Ut,t,t = 1);
however, the difference between the two quantities is finite so it suffices to demonstrate
(27). Now,

max (|r1|, |r2|, |r2 − r1|) =



r1 0 ≤ r2 ≤ r1

−r1 r1 ≤ r2 ≤ 0
r2 0 ≤ r1 < r2

−r2 r2 < r1 ≤ 0
r1 − r2 r1 > 0, r2 < 0
r2 − r1 r1 < 0, r2 > 0
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We therefore split the sum on the left-hand side of (27) into components corresponding
to each of these six regions. It is straightforward to show that the contributions from the
first two regions (0 ≤ r2 ≤ r1 and r1 ≤ r2 ≤ 0) are equal; similarly that the contributions
from the other two pairs of regions are equal. Thus the left-hand side of (27) can be
written as

2

{
∞∑
r1=0

r1∑
r2=0

r2
2

[
1− exp

(
−λµLe−(r1−1)/µL

)]
+
∞∑
r2=1

r2−1∑
r1=0

r2
2

[
1− exp

(
−λµLe−(r2−1)/µL

)]
+

−1∑
r2=−∞

∞∑
r1=1

r2
2

[
1− exp

(
−λµLe−(r1−r2−1)/µL

)]}

= 2

{
∞∑
r1=0

r1(r1 + 1)(2r1 + 1)

6

[
1− exp

(
−λµLe−(r1−1)/µL

)]
+
∞∑
r2=1

r3
2

[
1− exp

(
−λµLe−(r2−1)/µL

)]
+
∞∑
r2=1

∞∑
r1=1

r2
2

[
1− exp

(
−λµLe−(r1+r2−1)/µL

)]}

where we have reversed the sign of r2 in the final term. The first two terms are finite by
Lemma 2. Substituting v = r1 + r2 in place of r1 in the final term, we get

∞∑
r2=1

∞∑
v=r2+1

r2
2

[
1− exp

(
−λµLe−(v−1)/µL

)]
=

∞∑
v=2

v−1∑
r2=1

r2
2

[
1− exp

(
−λµLe−(v−1)/µL

)]
=

∞∑
v=2

v(v − 1)(2v − 1)

6

[
1− exp

(
−λµLe−(v−1)/µL

)]
,

which is also finite by Lemma 2. Condition C4 is thus established.
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