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Abstract. In this paper, we demonstrate that various cryptographic
constructions — including ones for broadcast, attribute-based, and hier-
archical identity-based encryption — can rely for security on only the
static subgroup hiding assumption when instantiated in composite-order
bilinear groups, as opposed to the dynamic q-type assumptions on which
their security previously was based. This specific goal is accomplished
by more generally extending the recent Déjà Q framework (Chase and
Meiklejohn, Eurocrypt 2014) in two main directions. First, by teasing out
common properties of existing reductions, we expand the q-type assump-
tions that can be covered by the framework; i.e., we demonstrate broader
classes of assumptions that can be reduced to subgroup hiding. Second,
while the original framework applied only to asymmetric composite-order
bilinear groups, we provide a reduction to subgroup hiding that works in
symmetric (as well as asymmetric) composite-order groups. As a bonus,
our new reduction achieves a tightness of log(q) rather than q.

1 Introduction

In cryptography, the provable security paradigm crucially relies on the existence
of hard mathematical problems. To prove the security of a candidate crypto-
graphic construction, one must demonstrate that any adversary that can break
its security can be used to construct another adversary that can break the un-
derlying mathematical problem; if the problem is assumed to be hard, then it
logically follows that the construction is secure.

To be confident in the security of a construction, we must therefore also
be confident in the underlying assumption; i.e., the assumption that the given
mathematical problem is hard. Cryptographic assumptions come in many forms,
and confidence in them can be gained through various means: one can perform
cryptanalysis on the problem and attempt to break it, prove its security in the
generic group model [41], or generalize multiple assumptions using a construct
like the uber-assumption [12,16] to provide general lower bounds on security.

As a field, cryptography has in the past decade become increasingly tolerant
of assumptions that are new, not particularly well understood, and in some cases
even “hard to untangle from the constructions which utilize them” [27]. While
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there are of course good reasons for doing so (e.g., driving the state of the art
forward), and it is demonstrably impossible to reduce every construction to a
simple assumption like DDH, the growth in the volume and complexity of new
assumptions nevertheless provides an opportunity to revisit this landscape of
assumptions and attempt to simplify and systematize it where possible.

Our specific focus in this paper is the class of q-type assumptions, in which the
assumption is not static, but rather can grow dynamically; e.g., the decisional q-
wBDHI (weak Bilinear Diffie-Hellman Inversion) assumption [12] says that given

(g, gc, gb, gb
2

, . . . , gb
q

), it should be hard to distinguish e(g, g)b
q+1c from random.

These assumptions are closely tied to the schemes that rely on them for security,
as the value q is often equal to the number of oracle calls that can be made in
a reduction; e.g., in identity-based encryption (IBE), a distinct value from the
assumption is used within the reduction to respond to each of q key extraction
queries. Moreover, q-type assumptions become stronger as q grows, and the time
to recover the discrete logarithm scales inversely with q [23].

In a recent paper [19], Chase and Meiklejohn demonstrated the potential
to move away from q-type assumptions by demonstrating that certain types of
q-type assumptions (under the umbrella of the uber-assumption) were implied
by the static subgroup hiding assumption [14] in asymmetric composite-order
groups. Specifically, they demonstrated a reduction — with looseness q— to the
subgroup hiding assumption from all q-type assumptions that either (1) gave out
functions on only one side of the pairing and asked the adversary to distinguish
elements in the source group or (2) gave out functions on both sides of the pairing
and asked the adversary to compute an element in the source group. Following
Wee [45], we dub their set of techniques and results the “Déjà Q framework.”

1.1 Our contributions

In this paper, we seek to expand the applicability of the Déjà Q framework to
encompass wider classes of assumptions and to apply to settings that are used
more commonly in cryptographic constructions. In particular, we provide the
following three main contributions:

Broader classes of assumptions. In terms of specific schemes and assump-
tions, the original Déjà Q framework implied that the Dodis-Yampolskiy
PRF [24] and the q-SDH assumption [11] could be reduced to subgroup hid-
ing. To broaden not only the class of assumptions but also the concrete ap-
plicability of the framework, we capture computational and decisional uber-
assumptions in the target group, including commonly used q-type assump-
tions such as q-BDHE [12] and q-wBDHI. We also demonstrate techniques
for translating concrete schemes — in particular, the BGW broadcast encryp-
tion scheme [13], the BBG hierarchical identity-based encryption scheme [12],
the Waters attribute-based encryption scheme [42], and the ACF identity-
based key encapsulation mechanism [1] — that rely on the symmetric versions
of these assumptions for security into asymmetric composite-order bilinear
groups, where they can then be reduced to subgroup hiding.
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Tighter reductions. We provide a new reduction from both computational
and decisional uber-assumptions in the target group to subgroup hiding.
Our new reduction requires adding at least one additional prime to the fac-
torization of N , but it achieves logarithmic — rather than linear — tightness.
These results can then be applied to any scheme based on these assumptions,
including the ones mentioned above, which directly gives a tightly (or almost
tightly, depending on ones preferred terminology) secure instantiation, albeit
in a somewhat inefficient setting.

Symmetric and asymmetric groups. The original Déjà Q framework could
operate only in asymmetric composite-order bilinear groups (or composite-
order groups where no pairing existed), of which only one construction is
known [15,38]. Our new proof works in both symmetric and asymmetric
settings, thus allowing us to consider the more “usual” instantiations of
composite-order bilinear groups.

1.2 Our techniques

In terms of the techniques we use, our proof in Section 3 that computational
and decisional uber-assumptions in the target group can be reduced to subgroup
hiding is closely based on the proof in the original Déjà Q framework for compu-
tational uber-assumptions in the source group. To achieve this, we observe that
reductions frequently treat group generators in separate ways; i.e., separate sets
of generators are used to answer separate types of queries, and the reduction
crucially relies on this separation to ensure that the adversary can’t test the re-
lationships between different objects as they (separately) incorporate additional
randomness or otherwise shift in value. By explicitly acknowledging this usage
in our statement of the uber-assumption, we can treat the separate generators
in different ways in our reductions and thus extend the results to the target
group. To further demonstrate how to securely move symmetric constructions
into the asymmetric setting, where they can then be covered by these results,
we rely on a recent set of techniques due to Abe et al. [4] for doing automated
symmetric-to-asymmetric translations.

Next, in Section 4, we consider a modified version of this proof strategy,
where in each game hop we double the amount of randomness included in the
assumption. To do this, we require three subgroups instead of two, meaning
we can write G = G1 × G2 × G3. As in the original Déjà Q framework, we
start by shifting the variables used in the q-type assumption from G1 into G2

and G3, which following the usual dual-system technique we can argue goes
unnoticed by subgroup hiding [14]. We then change the variables in G2 and G3

to take on entirely new values, which again following the dual-system technique
we can argue goes unnoticed by parameter hiding [30]. Now, however, instead
of continuing to shift the same variables from G1 into G2 and change them one
by one, we shift the new variables from G3 into G2, so that G2 has effectively
doubled the number of new variables it contains. By repeating this process of
shifting all the variables from G2 into G3, changing them, and shifting them
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back, we achieve the same outcome as the original framework of having ` sets of
variables in G2, but using log2(`) game transitions instead of `.

While one additional subgroup suffices to achieve this tighter reduction in
asymmetric bilinear groups, our reduction relies on the use of subgroup gen-
erators that would break subgroup hiding in symmetric groups. To address
this, our new reduction brings in certain aspects of the more traditional ap-
plication of the dual-system technique to constructions (rather than assump-
tions) [33,32,30,10,21], and in particular a recent result due to Wee [45] that
used an adaption of the Déjà Q framework to reduce both an IBE scheme and a
broadcast encryption scheme to subgroup hiding. We thus demonstrate that by
folding in random values from a fourth subgroup, we can sufficiently “mask” the
subgroups to push through the same reduction in symmetric groups. Thus, while
our results in Section 3 apply to versions of concrete constructions translated
into the asymmetric setting (but otherwise unmodified), our results in Section 4
provide tighter reductions for the (original) symmetric versions in which addi-
tional randomness is incorporated when instantiated in groups with two addi-
tional subgroups, or for asymmetric versions with an additional subgroup (but
no additional randomness).

1.3 Related work

Our work closely builds on the Déjà Q framework due to Chase and Meikle-
john [19]. In order to go beyond the original set of contributions, we draw on
certain aspects of the dual-system technique [43,33,32], the notion of parameter
hiding [30,31], and the general notion of subgroup hiding [9]. For our results in
the symmetric setting, we draw on ideas in a recent work by Wee [45], who ex-
tended the original Déjà Q framework but focused specifically on constructions
for broadcast encryption and IBE.

The search for tight reductions goes back to the paper of Bellare and Rog-
away [8], and the results are extensive. To compare with the results most sim-
ilar to ours, we focus on results for pairing-based primitives, where much re-
lated work has provided (almost) tight reductions for various primitives, includ-
ing identity-based encryption [22,3,10,29,36], inner product encryption [39], au-
thenticated key exchange [7], and quasi-adaptive non-interactive zero-knowledge
proofs [37,25]. Each of these results focuses on a specific construction, and em-
ploys a specific set of techniques to achieve tight security. (One exception is a
paper by Attrapadung, Hanoaka, and Yamada [6] that gives an abstraction from
which several different IBE variants can be constructed. This work, however, is
still focused on IBE and on a particular construction approach.) By presenting
our results at the level of assumptions, we can instead prove tight security for
an entire class of constructions; i.e., constructions that are instantiated in ap-
propriate groups and have been previously proved secure under an appropriate
class of q-type assumptions. To the best of our knowledge, we are thus the first
to use the dual-system technique to provide a tightly secure reduction in a more
general setting. Finally, we note that while much of the previous work has fo-
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cused on reductions whose running time is linear in the security parameter, our
reduction is linear in log(q), which in practice may be a much smaller number.

2 Definitions and Notation

2.1 Preliminaries

If x is a binary string then |x| denotes its bit length. If S is a finite set then |S|
denotes its size and x

$←− S denotes sampling a member uniformly from S and
assigning it to x. λ ∈ N denotes the security parameter and 1λ denotes its unary
representation. [n] denotes the set {1, . . . , n}.

Algorithms are randomized unless explicitly noted otherwise. “PT” stands
for “polynomial-time.” By y ← A(x1, . . . , xn;R) we denote running algorithm
A on inputs x1, . . . , xn and random coins R and assigning its output to y. By

y
$←− A(x1, . . . , xn) we denote y ← A(x1, . . . , xn;R) for coins R sampled uni-

formly at random. By [A(x1, . . . , xn)] we denote the set of values that have
positive probability of being output by A on inputs x1, . . . , xn. Adversaries are
algorithms.

We use games in definitions of security and in proofs. A game G has a main
procedure whose output is the output of the game. Pr[G] denotes the probability
that this output is true.

2.2 Basic bilinear groups

A bilinear group is a tuple G = (N,G,H,GT , e), where N is either prime or
composite, |G| = |H| = kN and |GT | = `N for k, ` ∈ N, all elements of G, H,
and GT are of order at most N , and e : G × H → GT is a bilinear map: it is
efficiently computable, satisfies e(Ax, By) = e(A,B)xy for all A ∈ G, B ∈ H,
and x, y ∈ Z/NZ (bilinearity), and if e(A,B) = 1 for all B ∈ H then A = 1 and
vice versa if this holds for all A ∈ G (non-degeneracy). We use BilinearGen to
denote the algorithm by which bilinear groups are generated.

When G and H are cyclic, the description of the group may include their
respective generators g and h. If the groups can be decomposed as G = G1 ×
G2 and H = H1 × H2, the description of the group may include information
about these subgroups and their generators; additionally, the number of cyclic
subgroups may be provided as an argument n to BilinearGen.

2.3 Subgroup hiding and parameter hiding

We highlight two structural properties of bilinear groups — subgroup hiding and
parameter hiding — that are essential to the Déjà Q framework, using adapted
versions of the definitions given by Chase and Meiklejohn [19].
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Assumption 2.1 (Subgroup hiding) For n ∈ N and a bilinear group gener-

ation algorithm BilinearGen(·, ·), define Advsgh
A (λ) = 2Pr[SGHA

µ (λ)] − 1, where

SGHA
µ (λ) is defined as follows:

main SGHA
µ (λ)

b
$←− {0, 1}; (N,G,H,GT , e, µ)

$←− BilinearGen(1λ, n)

if (b = 0) then w
$←− G

if (b = 1) then w
$←− G1

b′
$←− A(N,G,H,GT , e, µ, w)

return (b′ = b)

Then subgroup hiding holds in G1 with auxiliary information µ if for all PT
adversaries A there exists a negligible function ν(·) such that Advsgh

A (λ) < ν(λ).

Subgroup hiding is defined analogously for G2, G1,T , and G2,T (where G1,T

and G2,T are cyclic subgroups of GT ), and the auxiliary information µ is designed
to capture additional subgroup generators that may also be given out (with
the observation that revealing certain subgroup generators might allow one to
trivially distinguish subgroups when using a canceling pairing, so one must be
careful with what µ contains). If we switch between different subgroups rather
than one subgroup and the full group — e.g., between G2 and G23, as we do in
Section 4 — then we say subgroup hiding holds between the subgroups.

To elaborate on the point about µ, subgroup hiding can be trivially broken
if the adversary has knowledge of certain generators; e.g., if an adversary is
given a value w and asked to determine if it is in G or G1, knowledge of the
generator h2 allows it to check if e(w, h2) = 1 and trivially break subgroup
hiding. To avoid this, the many variants of subgroup hiding used in the literature
often specify which subgroup elements the adversary can see [26,35,34,28,17,40],
and the rules about which generators can be given out have been codified in
the general subgroup decision assumption due to Bellare, Waters, and Yilek [9].
The variants of subgroup hiding that we use in Sections 3 and 4 are specific
instantations of this general assumption.

Definition 2.1 (Extended parameter hiding). For m,n ∈ N and a bilinear
group (N,G,H,GT , e, µ) ∈ [BilinearGen(1λ, n)], we say extended parameter hid-
ing holds with respect to a family of functions F , auxiliary information aux, and
a pair of subgroups (Gi1 , Gi2) if for all gi1 ∈ Gi1 and gi2 ∈ Gi2 , the distribution

{gf(~x)i1
g
f(~x)
i2

, a(~x)}f∈F,a∈aux is identical to {gf(~x)i1
g
f(~x′)
i2

, a(~x)}f∈F,a∈aux for ~x, ~x′
$←−

(Z/NZ)m.
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Chase and Meiklejohn proved [19, Lemma 5.2] that their original definition
of extended parameter hiding (which used n = 2) holds in composite-order
bilinear groups with respect to all polynomial functions and the version of aux
that we require in Section 3. In Section 4, however, we consider a group with
n > 2 subgroups and we want parameter hiding to hold across subgroups beyond
G1 and G2. We thus prove that parameter hiding still holds in this setting as
long as the orders of Gi1 and Gi2 have no primes in common and the auxiliary
information is not in Gi2 .

Lemma 2.1. For all m,n ∈ N, and for all bilinear groups (N,G,H,GT , e) ∈
[BilinearGen(1λ, n)] where N = p1 · . . . · pn, (i1, i2) such that 1 ≤ i1, i2 ≤ n,
and for the class F of all polynomials f(·) over Z/NZ, if gcd(pi1 , pi2) = 1 and
if for all a ∈ aux, a(·) ∈ A such that gcd(|A|, pi2) = 1, then the distribution

over {gf(~x)i1
g
f(~x)
i2

, a(~x)}f∈F,a∈aux is identical to the distribution over {gf(~x)i1
g
f(~x′)
i2

,

a(~x)}f∈F,a∈aux for ~x, ~x′1
$←− (Z/NZ)m.

Proof. For any polynomial f(·), one can compute g
f(~x)
i1

knowing just the value

of xj mod pi1 for all j, 1 ≤ j ≤ m, and can similarly compute g
f(~x)
i2

knowing
just the value of xj mod pi2 for all j, 1 ≤ j ≤ m. If gcd(pi1 , pi2) = 1 and the
functions in aux reveal no information about xj mod pi2 , then by the Chinese
Remainder theorem the values of xj mod pi2 are independent of all the other
values, so this is identical to using an independent x′j for the gi2 values. ut

3 Uber-assumptions in the target group

In this section, we consider how to capture new classes of assumptions within
the Déjà Q framework [19]. In particular, we first prove in Section 3.1 that de-
cisional and computational uber-assumptions in the target group are implied —
through the repeated application of subgroup hiding and parameter hiding —
by assumptions with significant amounts of randomness folded into particular
subgroups. (The framework previously covered only computational assumptions
in the source group, which are implied by computational assumptions in the
target group, or “one-sided” decisional assumptions in the source group; i.e.,
assumptions where meaningful functions could be given out on only one side of
the pairing.)

Next, in Section 3.2, we show that the computational variant of the transi-
tioned uber-assumption is so weak that it holds by a statistical argument; thus,
the computational uber-assumption can be implied solely by subgroup hiding.
By relying on an additional mild subgroup hiding assumption in the target, we
can show the same results for decisional variants as well; i.e., we can show that
the decisional uber-assumption is implied by three variants of subgroup hiding.

Finally, in Section 3.3, we observe that many examples of uber-assumptions
(including widely used q-type assumptions) have been used only in symmetric
bilinear groups to date, making it difficult to cover them directly with our anal-
ysis. (In Section 4, we do provide ways to cover the symmetric setting, but this
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requires an extra prime in the order of the group.) We thus demonstrate how
to convert popular symmetric assumptions into asymmetric variants using tech-
niques due to Abe et al. [4]. All of our converted symmetric schemes — e.g., the
BGW broadcast encryption scheme [13] and the Waters attribute-based encryp-
tion scheme [42] — rely for security on q-type decisional uber-assumptions of the
appropriate form, so our results demonstrate the security of these schemes when
instantiated in groups where subgroup hiding holds.

3.1 Reducing asymmetric assumptions to weaker variants

In the uber-assumption [19, Assumption 4.1], the adversary is given three sets
of values with respect to a set of c variables ~x: a generator g ∈ G raised to
a set of functions R(~x), a generator h ∈ H raised to a set of functions S(~x),
and the value e(g, h) raised to a set of functions T (~x) (where gR(~x) is used as
shorthand for {gρi(~x)}ri=1 for R = 〈ρ1(~x), . . . , ρr(~x)〉, and similarly for S and T ).
The adversary is then asked to either compute e(g, h)f(~x) (in the computational
assumption in the target group) or distinguish it from random.

This definition captures a broad range of q-type assumptions, but in some
cases it may be instructive to explicitly identify the qualities of the assump-
tion that are used in the reduction. In particular, constructions that use the
dual-system technique must add noise into group elements in such a way that
valuable information is hidden but one can nevertheless continue to correctly
perform operations (e.g., decryption) without noticing the added noise. This is
often accomplished by using two separate generators that are primarily used for
separate operations — e.g., in the case of identity-based encryption, one genera-
tor is used to create the parameters and the other to form the challenge cipher-
text — and this separation is acknowledged in the assumption. For example, the
(symmetric) q-BDHE assumption [12] says that given (g, gs, {gai}i∈[2q],i6=q+1), it

should be hard to distinguish e(g, g)a
q+1s from random.

We thus modify slightly the original definition of the uber-assumption to (1)

make explicit the role of two generators h and ĥ, the former of which we move
into a subgroup to provide the necessary correctness and the latter of which
we keep in the full group to provide the necessary hiding guarantee, and (2)
combine computational and decisional assumptions into the same definition so
we can cover them both in our main theorem.

Assumption 3.1 (Uber-assumption) Define the advantage of an adversary

A by Advcomp-uberA (λ) = Pr[comp-UBERA
c,R,S,T,f (λ)] in the computational case

and Advdec-uberA (λ) = 2Pr[dec-UBERA
c,R,S,T,f (λ)−1 in the decisional case, where

type-UBERA
c,R,S,T,f (λ) is defined as follows for type ∈ {comp, dec}:
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main type-UBERA
c,R,S,T,f (λ)

(N,G,H,GT , e)
$←− BilinearGen(1λ, 2); g

$←− G, h, ĥ
$←− H

x1, . . . , xc
$←− Z/NZ

inputs← (N,G,H,GT , e, g, ĥ, g
R(~x), hS(~x), e(g, h)T (~x))

chal← e(g, ĥ)f(~x)

return type-play(λ, inputs, chal)

comp-play(λ, inputs, chal)

y
$←− A(1λ, inputs)

return (y = chal)

dec-play(λ, inputs, chal)

b
$←− {0, 1}

if (b = 0) then y
$←− GT

if (b = 1) then y ← chal

b′
$←− A(1λ, inputs, y)

return (b′ = b)

Then the uber-assumption in the target group holds if for all PT algorithms A
there exists a negligible function ν(·) such that Advuber

A (λ) < ν(λ).

We now proceed to prove a theorem analogous to the one in the original Déjà
Q framework [20, Theorem 4.8], but which treats these different bases in H in
different ways. For ease of exposition, we make explicit the original assumption
used in this proof, which (with our additional generator ĥ added) is as follows:

Assumption 3.2 For a bilinear group G = (N,G,H,GT , e) ∈ [BilinearGen(1λ, 2)],
` ∈ N, and classes of functions R, S, T , and f (as defined in the uber-assumption
in Assumption 3.1), given

inputs = (G, g1g
∑`

i=1
ri

2 , ĥ, {gρk(~x)1 g

∑`

i=1
riρk(~xi)

2 }rk=1, h
S(~x)
1 , e(g1, h1)T (~x))

for g1
$←− G1, g2

$←− G2 \ {1}, ĥ
$←− H, h1

$←− H1 \ {1}, and r1, . . . , r`,
$←− Z/NZ,

~x, ~x1, . . . , ~x`
$←− (Z/NZ)c, no PT adversary has more than negligible advantage

when playing type-play(λ, inputs, e(g1, ĥ)f(~x)e(g2, ĥ)
∑`

i=1
rif(~xi)).

Theorem 3.3. For a bilinear group G = (N,G,H,GT , e) ∈ [BilinearGen(1λ, 2)],
consider the uber-assumption in the target group parameterized by (c,R, S, T, f).
Then this is implied by Assumption 3.2 if

1. subgroup hiding holds in G1 with µ = {g2, h1};
2. subgroup hiding holds in H1 with µ = {g1}; and

3. extended parameter hiding holds with respect to F = R ∪ {f} and aux =

{hσ(·)1 }σ∈S∪T for all h1 ∈ H1.
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In particular, for ` ∈ N we have that

Advuber
A (λ) ≤ Advsgh

B0
(λ) + Advsgh

C0
(λ) + `Advsgh

Bi
(λ) + Adv3.2

A (λ).

A proof of this theorem can be found in the full version of the paper [18].
Intuitively, the outline is similar to that of the original proof: to start, all elements
in G are first shifted into G1, and elements using h as the base are shifted into
H1. Elements using ĥ remain in the full group H (this is our main point of
divergence from the original Déjà Q proof). We argue that both of these changes
go unnoticed by subgroup hiding. Then, the elements in G1 are added into G2,
which we again argue goes unnoticed by subgroup hiding. The elements in G2

are then switched to use a new set of variables ~x1, which we argue is identical by
parameter hiding. Now, we repeat this process of adding the original elements
from G1 into G2 and switching them to a new set of variables, until — after `
transitions — we end up with ` sets of variables in G2.

3.2 Reducing asymmetric assumptions to subgroup hiding

We now deal separately with the case of computational and decisional assump-
tions, as decisional assumptions require an extra assumption on the indistin-
guishability of random elements in G2,T and random elements in GT (we use
Gi,T to denote the ith subgroup of GT ). For both, however, we first recall two
relevant components from the Déjà Q framework: the matrix V defined as

V =



1 ρ1(~x1) ρ2(~x1) · · · ρq(~x1) f(~x1)
1 ρ1(~x2) ρ2(~x2) · · · ρq(~x2) f(~x2)

...
...

. . . ...
.... . .

1 ρ1(~x`) ρ2(~x`) · · · ρq(~x`) f(~x`)

 (1)

and a lemma that relates the linear independence of the polynomials with the
invertibility of V as follows:

Lemma 3.1. [19] For all λ ∈ N, if the functions in R ∪ {f} are linearly in-
dependent and of maximum degree poly(λ), ` = q + 2 for q = poly(λ), and
N = p1 · . . . · pn for n = poly(λ) distinct primes p1, . . . , pn ∈ Ω(2poly(λ)), then
with all but negligible probability the matrix V is invertible.

We also make explicit the argument used in the Déjà Q framework concerning
the multiplication of this matrix with a random vector.

Lemma 3.2. If V is invertible, then the distribution over ~r·V for r1, . . . , rq+2
$←−

Z/NZ is uniformly random.

Proof. Define ~y ← ~r · V , and consider the set of all vectors of length q + 2 over
Z/NZ. Since ~r and ~y are both members of this set, multiplication by V maps
the set to itself; as V is furthermore invertible, it is a permutation over this set.
Thus, sampling ~r uniformly at random and multiplying by V yields a vector ~y
that is also distributed uniformly at random. ut
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Computational assumptions. For computational assumptions, we can now
argue directly that, by transitioning to Assumption 3.2, we reach an assumption
so weak that it holds by a statistical argument. Thus, the computational uber-
assumption reduces directly to subgroup hiding.

Proposition 3.1. For a bilinear group G of order N , the computational uber-
assumption parameterized by (c,R, S, T, f) holds in the target group if

1. subgroup hiding holds in G1 with µ = {g2, h1};
2. subgroup hiding holds in H1 with µ = {g1};
3. extended parameter hiding holds with respect to F = R ∪ f and aux =

{hσ(·)1 }∀σ∈S∪T for all h1 ∈ H1;

4. N = p1 · . . . · pn for distinct primes p1, . . . , pn ∈ Ω(2poly(λ)); and

5. the polynomials in R∪ f are linearly independent and have maximum degree
poly(λ).

Proof. By requirements (1)-(3), Theorem 3.3 tells us that the original assump-
tion is implied by the computational variant of Assumption 3.2. We make the

problem strictly easier if we assume that g1 and ~x are public, in which case g
R(~x)
1 ,

h
S(~x)
1 , and e(g1, h1)T (~x) provide no additional information, and A can compute

the G1,T component of chal directly.

We thus consider a problem where A is given g

∑
ri

2 and {g
∑q+2

i=1
riρk(~xi)

2 }rk=0

and we must argue that it is hard for it to compute e(g2, ĥ)
∑q+2

i=1
rif(~xi). If we let

` = q + 2, requirements (4)-(5) and Lemma 3.1 imply that V is invertible with
all but negligible probability, and Lemma 3.2 then tells us that the distribution
over ~y ← ~r · V is uniformly random. As A is given values in G2 raised to the
first q + 1 entries of ~y and is asked to compute e(g2, ĥ) raised to the last, it is
thus given uniformly random values and asked to compute something uniformly
random, which it has at most negligible probability in doing. ut

Decisional assumptions. Finally, to enable an argument about the decisional
assumption in the target, we introduce the following assumption:

Assumption 3.4 For ` ∈ N and a bilinear group G = (N,G,H,GT , e) ∈
[BilinearGen(1λ, 2)], consider the inputs given to A in Assumption 3.2. Given

the same set of inputs, it is difficult to distinguish e(g1, ĥ)f(~x)e(g2, ĥ)
∑`

i=1
rif(~xi)

from e(g1, ĥ)f(~x) ·R for R
$←− G2,T .

We now prove the following lemma:

Lemma 3.3. If subgroup hiding holds in G2,T with µ = {g1, g2, h1}, then As-
sumption 3.2 is implied by Assumption 3.4.

11



main GA
3.2(λ) / GA

0 (λ) / GA
1 (λ)

if (b = 0) then chal
$←− GT // GA

3.2(λ)

if (b = 0) then R
$←− GT ; chal← e(g1, ĥ)f(~x) ·R // GA

0 (λ)

if (b = 0) then R
$←− G2,T ; chal← e(g1, ĥ)f(~x) ·R // GA

1 (λ)

Fig. 1: Games for the proof of Lemma 3.3. Each game introduces the boxed code on its
corresponding line.

Proof. Let A be a PT adversary playing game GA
3.2(λ), and let Adv3.4

A (λ) denote
its advantage in the game specified in Assumption 3.4. We build a PT adversary
B such that

Adv3.2
A (λ) ≤ Advsgh

B (λ) + Adv3.4
A (λ)

for all λ ∈ N, from which the theorem follows. To do this, we build B such that

Pr[GA
3.2(λ)]− Pr[GA

0 (λ)] = 0 (2)

Pr[GA
0 (λ)]− Pr[GA

1 (λ)] ≤ Advsgh
B (λ) (3)

Pr[GA
1 (λ)] = Adv3.4

A (λ). (4)

We then have that

Adv3.2
A (λ) = Pr[GA

3.2(λ)]

= (Pr[GA
3.2(λ)]− Pr[GA

0 (λ)]) + (Pr[GA
0 (λ)]− Pr[GA

1 (λ)]) + Pr[GA
1 (λ)]

≤ Advsgh
B (λ) + Adv3.4

A (λ).

Equation 2: GA
3.2(λ) to GA

0 (λ)
This follows trivially, as the values chal · A and chal are identically distributed

for chal
$←− GT and A ∈ G1,T .

Equation 3: GA
0 (λ) to GA

1 (λ)
B behaves as follows:

12



B(1λ, N,G,H,GT , e, g1, g2, h1, w)

b
$←− {0, 1}

~x, ~x1, . . . , ~x`
$←− (Z/NZ)c, r1, . . . , r`

$←− Z/NZ

vk ← g
ρk(~x)
1 g

∑`

j=1
rjρk(~xj)

2 ∀k ∈ [r] (Here we define ρ0 = 1.)

yk ← h
σk(~x)
1 ∀k ∈ [s]

zk ← e(g1, h1)τk(~x) ∀k ∈ [t]

inputs← (N,G,H,GT , e, ĥ, v0, . . . , vr, y1, . . . , ys, z1, . . . , zt)

if (b = 0) then chal← e(g1, ĥ)f(~x) · w

if (b = 1) then chal← e(g1, ĥ)f(~x)e(g2, ĥ)

∑`

j=1
rjf(~xj)

b′
$←− A(1λ, inputs, chal)

return (b′ = b)

If w
$←− GT , then this is identical to GA

0 (λ). If w
$←− G2,T , then this is identical

to GA
1 (λ). ut

Proposition 3.2. For a bilinear group G of order N , the decisional uber-assumption
parameterized by (c,R, S, T, f) holds in the target group if

1. subgroup hiding holds in G1 with µ = {g2, h1};
2. subgroup hiding holds in H1 with µ = {g1};
3. subgroup hiding holds in G2,T with µ = {g1, g2, h1};
4. extended parameter hiding holds with respect to F = R ∪ f and aux =

{hσ(·)1 }∀σ∈S∪T for all h1 ∈ H1;

5. N = p1 · . . . · pn for distinct primes p1, . . . , pn ∈ Ω(2poly(λ)); and

6. the polynomials in R∪ f are linearly independent and have maximum degree
poly(λ).

Proof. By requirements (1)-(4), Theorem 3.3 and Lemma 3.3 tell us that the
original assumption is implied by Assumption 3.4. We make the problem strictly

easier if we assume that g1 and ~x is public, in which case g
R(~x)
1 , h

S(~x)
1 , and

e(g1, h1)T (~x) provide no additional information, and A can compute the G1,T

component of chal directly (which is the same in either case).

We thus consider a problem where A is given g

∑
ri

2 and {g
∑q+2

i=1
riρk(~xi)

2 }rk=0

and we must argue that it is hard for it to distinguish e(g2, ĥ)
∑q+2

i=1
rif(~xi) from

random. If we let ` = q+ 2, requirements (5)-(6) and Lemmas 3.1 and 3.2 imply
that the distribution over ~y ← ~r · V is uniformly random with all but negligible
probability. As A is given values in G2 raised to the first q + 1 entries of ~y and
is asked to distinguish e(g2, ĥ) raised to the last from random, it is thus given
uniformly random values and asked to distinguish two uniformly random things,
which it has at most negligible advantage in doing. ut
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3.3 Converting symmetric uber-assumptions

As mentioned earlier, most schemes that rely on q-type assumptions do so in
the symmetric setting, whereas our analysis above works only in the asymmetric
setting. To nevertheless capture these useful examples of q-type assumptions, we
use the technique of Abe et al. [4] to convert the assumptions from the symmetric
to the asymmetric setting so that they can be covered by our analysis.

To perform this conversion, we must of course do so in a way that respects
the underlying reduction; i.e., we must ensure that the asymmetric variant of the
scheme can still be proved secure under the asymmetric variant of the assump-
tion. The main technique for doing this revolves around the idea of dependency
graphs that reflect the usage of all values in the source groups and how they
interact with each other and with the pairing. Thus, all of the dependencies in
both the scheme and its security reduction are represented in a directed graph
Γ , with pairings represented by two nodes (one for each side of the pairing). To
find an asymmetric variant that respects these dependencies, one must search
for a valid split of Γ into Γ0 and Γ1; this is defined as a split in which

– No nodes or edges are lost; i.e., merging Γ0 and Γ1 recovers Γ ,

– For every pair of pairing nodes, if one node is in Γ0, the other node is
exclusively in Γ1, and

– For every node X in each split graph, the ancestor subgraph of X in Γ is
included in the same graph.

For more details on this technique and the process of automating it, we refer
to the original paper of Abe et al. or to a paper by Akinyele et al. [5] that
proposes a tool, AutoGroup+, that improves on the tool developed by Abe et al.
and applies the technique to additional schemes.

To demonstrate the coverage of our analysis, we have identified four influen-
tial schemes that rely on symmetric uber-assumptions and demonstrated their
conversion to asymmetric variants that fit into the class of uber-assumptions our
analysis can cover. These are:

– The general construction of the Boneh-Gentry-Waters broadcast encryption
scheme [13], based on the q-BDHE assumption;

– the Boneh-Boyen-Goh hierarchical identity-based encryption scheme with
constant-sized ciphertexts [12], based on the q-wBDHI assumption;

– the version of Waters’ attribute-based encryption scheme [42] that uses the
q-BDHE assumption (as opposed to the more efficient construction that uses
the q-parallel BDHE assumption [44], which we cannot cover); and

– the Abdalla-Catalano-Fiore identity-based key encapsulation mechanism [1],
based on the q-wBDHI assumption.

These schemes are given in Table 1, along with the assumptions they rely
on for security, and the number of elements in both the symmetric and the
asymmetric variants of the public key. As an example of our analysis, we include
in Figure 2 the dependency graph for the Boneh-Boyen-Goh HIBE. In the graph,
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Scheme Assumption
Elements in public key

symmetric asymmetric

BGW [13] q-BDHE 2q +A 4q +A
BBG [12] q-wBDHI q + 4 2q + 7
Waters [42] q-BDHE 3 + U 5 + 2U
ACF [1] q-wBDHI 2 + 2q 3 + 2q

Table 1: Examples of schemes whose reductions are compatible with the desired con-
version from symmetric to asymmetric assumptions, along with the assumptions they
rely on and the numbers of group elements in both the symmetric and asymmetric
variants of the public key. The value A refers to the number of parallel instances of the
system being run in the BGW scheme, and the value U refers to the maximum number
of system attributes in Waters’ scheme.

the shape of the node indicates which side of the split each element goes on:
triangle nodes are in G, inverted triangle nodes are in H, and diamond nodes
are replicated across G and H. Pairing equations are denoted by pn[i], where
n ∈ N indicates a particular usages of the pairing and i ∈ {0, 1} indicates the
side of the pairing in which the element is used. The nodes with an i included
represent multiple (related) values; e.g., the node yi represents {gαi}i.

The original q-wBDHI assumption states that given (g, gc, gα, gα
2

, . . . , gα
q

),

it should be hard to distinguish e(g, g)α
q+1c from random. Looking at the graph

in Figure 2, in which these quantities are represented by yi and gc, we see that the
yi nodes must be replicated across G and H but gc can remain in only one source
group. Writing hc as ĥ, the asymmetric q-wBDHI assumption thus states that
given (g, h, ĥ, gα, hα, . . . , gα

q

, hα
q

), it should be hard to distinguish e(g, ĥ)α
q+1

from random. This same converted version of the assumption also works for
the Abdalla-Catalano-Fiore IB-KEM (whose dependency graph is included in
Appendix A).

A similar analysis works for the schemes that rely on the q-BDHE assumption
(whose dependency graphs are also included in Appendix A), which states that

given (g, gc, {gαi}i∈[2q],i6=q+1), it should be hard to distinguish e(g, g)α
q+1c from

random. Here we find that the asymmetric variant states that — again, rewriting
hc as ĥ— given (g, h, ĥ, {gαi

, hα
i}i∈[2q],i6=q+1, it should be hard to distinguish

e(g, ĥ)α
q+1

from random.

As each of the converted assumptions fits the set of requirements for the
uber-assumption needed for Proposition 3.2, we thus obtain as a corollary that,
when instantiated in asymmetric composite-order bilinear groups, the security of
each of these schemes can rely solely on (three variants of) the subgroup hiding
assumption.
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g

yi

g3 hi

g1

B

gc

g2

a1

C

a0

bi

p0[0]

p2[0]

p1[1]

mskp0[1]

p1[0]

p2[1]

Fig. 2: Dependency graph for the BBG HIBE scheme [12]. The public key consists of g,
g1, g2, g3, and hi, the master secret key is denoted msk, and the secret keys consist of
a0, a1, and bi. Encryption uses the pairing p0 and produces B and C, and decryption
uses the pairings p1 and p2. In the reduction, yi and gc are derived from the q-wBDHI
assumption.

4 Tighter Reductions in (A)symmetric Groups

The results in the previous section already demonstrate a broader application of
the Déjà Q framework, but two fundamental restrictions remain: it can be applied
directly to assumptions only in asymmetric composite-order bilinear groups, and
it introduces a looseness of q into the reduction. In this section, we address both
of these restrictions. In particular, we show that by adding more primes into the
factorization of N , we can achieve a tighter reduction — one with log(q) looseness
instead of q— in symmetric composite-order bilinear groups.

Our inspiration for the conversion to symmetric groups comes from Wee [45],
who applied the Déjà Q framework at the level of constructions rather than
assumptions, and thus was able to make use of two key features of traditional
dual-system reductions: fresh randomness across queries and a third subgroup
used to hide additional information. To maintain the most generality, we continue
in Section 4.1 to work at the level of assumptions, but we nevertheless attempt
to capture these additional features by using a variant of the uber-assumption
in which extra randomness is added into components in G. We then define an
assumption with significant randomness added into various subgroups inG (anal-
ogous to Assumption 3.2). Finally, we diverge completely from [45] and prove
that — in only a logarithmic number of game hops — this assumption implies
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these additionally randomized computational and decisional uber-assumptions
in the target group.

Next, in Section 4.2, we show — in a manner almost completely analogous to
that in Section 3.2 — that the computational variant of the transitioned uber-
assumption is so weak that it holds by a statistical argument; thus the com-
putational randomized uber-assumption is implied by two variants of subgroup
hiding. In the case of the decisional uber-assumption, we transition to an as-
sumption analogous to Assumption 3.4 and show that it is implied by three
variants of subgroup hiding.

Finally, in Section 4.3, we briefly discuss the implications of our results for the
concrete schemes presented in Section 3.3. Although our discussion here is not
as formal as our symmetric-to-asymmetric conversions, we nevertheless suggest
ways to transform existing schemes to provide them with tight reductions to
subgroup hiding.

4.1 Reducing randomized assumptions to weaker variants

We begin by formalizing the randomized uber-assumption as follows:

Assumption 4.1 (Randomized uber-assumption) Define the advantage of

an adversary A by Advcomp-r-uberA (λ) = Pr[comp-RandUBERA
c,R,S,T,f (λ)] in the

computational case and Advdec-r-uberA (λ) = 2Pr[dec-RandUBERA
c,R,S,T,f (λ)]− 1

in the decisional case, where for type ∈ {comp, dec}, type-RandUBERA
c,R,S,T,f (λ)

is defined as follows (with the omitted end games comp-play and dec-play the
same as in Definition 3.1):

main type-RandUBERA
c,R,S,T,f (λ)

(N,G,H,GT , e)
$←− BilinearGen(1λ, 4); g

$←− G, g4
$←− G4, h123, ĥ

$←− H123

x1, . . . , xc, χ1, . . . , χr
$←− Z/NZ

inputs← (N,G,H,GT , e, g, g4, ĥ, g
R(~x)g~χ4 , h

S(~x)
123 , e(g, h123)T (~x))

chal← e(g, ĥ)f(~x)

return type-play(λ, inputs, chal)

The the randomized uber-assumption in the target group holds if for PT algo-
rithms A there exists a negligible function ν(·) such that Advr-uber

A (λ) < ν(λ).

The main difference from the regular uber-assumption is the additional ran-
domness in G4 (hence the name), and the fact that h and ĥ are now sampled
from the subgroup H123 rather than the full group H. As discussed further in
Section 4.3, this latter change is needed to balance out the former, as the can-
celing property of the pairing means that we can still obtain meaningful values
in GT (i.e., values without added randomness) by pairing an element with a
random G4 component with an element in H123. To maintain full generality,
we also continue to write G and H separately, but in a symmetric pairing they
would be the same group.

17



Assumption 4.2 For G = (N,G,H,GT , e) ∈ [BilinearGen(1λ, 4)] a bilinear
group , ` ∈ N, and classes of functions R, S, T , and f (as defined in the uber-
assumption in Assumption 4.1), given

inputs = (G, g1g
∑`

i=1
ri

2 gχ4 , g4, ĥ, {g
ρk(~x)
1 g

∑`

i=1
riρk(~xi)

2 gχk

4 }rk=1, h
S(~x)
1 , e(g1, h1)T (~x)),

for g1
$←− G1, g2

$←− G2 \ {1}, g4
$←− G4, h1

$←− H1 \ {1}, ĥ
$←− H123; ~x, . . . , ~x`

$←−
(Z/NZ)c, r1, . . . , r`, χ, χ1, . . . , χr

$←− Z/NZ, there does not exist a PT adversary
with better than negligible advantage when playing the game type-play(λ, inputs,

e(g1, ĥ)f(~x)e(g2, ĥ)
∑`

i=1
rif(~xi)).

In addition to the extra subgroups, our new reduction also makes use of a
different class of functions for extended parameter hiding. In particular, our old
proof added variables into G2 one at a time, which allowed us to fold in a freshly
random coefficient rj in this step. As we now add many variables at a time,
however, the extra randomness added by the subgroup hiding transition is not
sufficient, so we instead use parameter hiding to argue that the randomness can
be “freshened up” in the new subgroup instead. In the main parameter hiding
step, we thus want to transition the quantity

∑
j rjρk(~xj) to

∑
j r
′
jρk(~x′j), which

we accomplish using the set of functions defined as

F =

{
p′(y1, ~y1, . . . , ym, ~ym) =

m∑
i=1

ymp(~ym)

}
p∈R∪{f}

. (5)

Theorem 4.3. For a bilinear group (N,G,H,GT , e) ∈ [BilinearGen(1λ, 4)], con-
sider the randomized uber-assumption parameterized by (c,R, S, T, f). Then this
is implied by Assumption 4.2 if

1. subgroup hiding holds between H1 and H123 with µ = {g4, h123};
2. subgroup hiding holds between G24 and G34 with µ = {g1, g24, g4, h1, h123};
3. extended parameter hiding holds with respect to R∪{f}, with respect to aux =

{gρ(·)3 , h
σ(·)
1 }ρ∈R∪{f},σ∈S∪T for all g3 ∈ G3 and h1 ∈ H1, and subgroups

(G1, G2);

4. extended parameter hiding holds with respect to R ∪ {f}, with respect to

aux = {hσ(·)1 }σ∈S∪T for all h1 ∈ H1, and subgroups (G1, G3); and

5. extended parameter hiding holds with respect to the F defined in Equation 5,
aux = ∅, and subgroups (G2, G3).

In particular, we have that

Advr-uber
A (λ) ≤ Advsgh

C0
(λ) + Advsgh

C1
(λ) + log2(`)(Advsgh

Bi
(λ) + Advsgh

Bi+1
(λ))

+Adv4.2
A (λ).

Our two subgroup hiding variants are valid instantiations of the general sub-
group decision assumption [9] discussed in Section 2. Similarly, we proved in
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Lemma 2.1 that in composite-order groups extended parameter hiding holds for
all polynomials and the aux and subgroups that we use here, so the three variants
all hold and are listed separately solely for insight into the reduction.

A proof of this theorem can be found in the full version of the paper [18]. To
start, all elements using h as the base are shifted into the H1 subgroup, but
elements using ĥ or in G remain unchanged. Using the first two variants of
parameter hiding, we now switch the variables in G2 to ~x′ and in G3 to ~x′′,
and — using subgroup hiding — fold the ~x′′ elements into G2. At this point we
now have the original variables ~x in G1, two new sets of variables in G2, nothing
in G3, and random values in G4.

Our reduction now proceeds by exploiting this “semi-functional” subgroup
G3 and the masking effect provided by the randomness in G4. First, a shadow
copy of all of the variables in G2 is added to G3, which we argue goes unnoticed
by subgroup hiding. Second, the variables in G3 are changed to a new set of
variables, which is identical by the third variant of parameter hiding. Finally, we
fold all of the new variables back into G2, which we again argue goes unnoticed
by subgroup hiding. By working with all of the variables at once — as opposed
to the one-at-a-time approach of the original Déjà Q framework — we double the
number of new variables in the G2 subgroup after each iteration, so after only
log2(`) transitions we end up with ` sets of variables in the G2 subgroup.

As described, we move new variables from G3 to G2 while using the generator
g2 to compute the existing variables in the G2 subgroup. In symmetric groups
with a canceling pairing, however, one could use knowledge of this generator to
violate subgroup hiding by checking if e(g2, w) = 1. The G4 subgroup is thus
needed to mask this transition, so in symmetric groups we transition from G34

to G24 instead, and argue that the randomness in G4 “absorbs” the variables
that are added there. In an asymmetric setting, however, knowledge of g2 does
not provide the ability to distinguish G2 and G3, so the masking effect of G4

is unnecessary and the same reduction goes through without it. We thus state
the simplified version of Theorem 4.3 for asymmetric groups as the following
corollary:

Corollary 4.1. For (N,G,H,GT , e) ∈ [BilinearGen(1λ, 3)] an asymmetric bilin-
ear group , consider the uber-assumption parameterized by (c,R, S, T, f). Then
this is implied by a version of Assumption 3.2 (using BilinearGen(1λ, 3)) if

1. subgroup hiding holds between H and H1 with µ = { };
2. subgroup hiding holds between G2 and G3 with µ = {g1, g2, h1};
3. extended parameter hiding holds with respect to R∪{f}, with respect to aux =

{gρ(·)3 , h
σ(·)
1 }ρ∈R∪{f},σ∈S∪T for all g3 ∈ G3 and h1 ∈ H1, and subgroups

(G1, G2);

4. extended parameter hiding holds with respect to R ∪ {f}, with respect to

aux = {hσ(·)1 }σ∈S∪T for all h1 ∈ H1, and subgroups (G1, G3); and

5. extended parameter hiding holds with respect to the F defined in Equation 5,
aux = ∅, and subgroups (G2, G3).
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In particular, we have that

Advuber
A (λ) ≤ Advsgh

C0
(λ) + Advsgh

C1
(λ) + log2(`)(Advsgh

Bi
(λ) + Advsgh

Bi+1
(λ))

+Adv3.2
A (λ).

Thus, under the conditions in Propositions 3.1 and 3.2, we get tight reductions
in the asymmetric setting with N = p1p2p3.

For the rest of this section we will focus on the symmetric setting.

4.2 Reducing randomized assumptions to subgroup hiding

As in Section 3, we now treat computational and decisional assumptions sepa-
rately.

Computational assumptions. Our argument that the computational ran-
domized uber-assumption holds is nearly identical to our previous argument
that the (regular) computational uber-assumption holds.

Proposition 4.1. For a bilinear group G of order N , the computational uber-
assumption parameterized by (c,R, S, T, f) holds in the target group if

1. subgroup hiding holds between H1 and H123 with µ = {g4, h123};
2. subgroup hiding holds between G34 and G24 with µ = {g1, g24, g4, h1, h123};
3. extended parameter hiding holds with respect to R∪{f}, with respect to aux =

{gρ(·)3 , h
σ(·)
1 }ρ∈R∪{f},σ∈S∪T for all g3 ∈ G3 and h1 ∈ H1, and subgroups

(G1, G2);

4. extended parameter hiding holds with respect to R ∪ {f}, with respect to

aux = {hσ(·)1 }σ∈S∪T for all h1 ∈ H1, and subgroups (G1, G3);

5. extended parameter hiding holds with respect to the F defined in Equation 5,
aux = ∅, and subgroups (G2, G3);

6. N = p1 · . . . · pn for distinct primes p1, . . . , pn ∈ Ω(2poly(λ)); and

7. the polynomials in R∪ f are linearly independent and have maximum degree
poly(λ).

Proof. By requirements (1)-(5), Theorem 4.3 tells us that the computational
uber-assumption is implied by the computational variant of Assumption 4.2. We
make the problem strictly easier if we assume that g1, g4, ~x, and ~χ are public, in

which case g
R(~x)
1 , g~χ4 , h

S(~x)
1 and e(g1, h1)T (~x) provide no additional information.

In this case A can also compute the G1,T component of chal directly, so we need

only to argue that it is hard for it to compute e(g2, ĥ)
∑q+2

i=1
rif(~xi). The rest of

the argument can thus proceed as in the proof of Proposition 3.1. ut
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Decisional assumptions. To enable an argument about the decisional as-
sumption in the target group, we introduce an assumption analogous to As-
sumption 3.4.

Assumption 4.4 For a bilinear group (N,G,H,GT , e) ∈ [BilinearGen(1λ, 4)],
` ∈ N, consider the values given to A in Assumption 4.2. Given the same

set of values, it is difficult to distinguish e(g1, ĥ1)f(~x)e(g2, ĥ2)
∑`

i=1
rif(~xi) from

e(g1, ĥ1)f(~x) ·R for R
$←− G2,T .

We now prove the following lemma:

Lemma 4.1. If subgroup hiding holds in G2,T with µ = {g1, g2, g4, h1, h123},
then Assumption 4.2 is implied by Assumption 4.4.

Proof. Let A be a PT adversary playing game GA
4.2(λ), and let Adv4.2

A (λ) denote
its advantage in the game specified in Assumption 4.2. We build a PT adversary
B such that

Adv4.2
A (λ) ≤ Advsgh

B (λ) + Adv4.4
A (λ)

for all λ ∈ N, from which the theorem follows. To do this, we build B such that

Pr[GA
4.2(λ)]− Pr[GA

4.4(λ)] ≤ Advsgh
B (λ) (6)

We then have that

Adv4.2
A (λ) ≤ Advsgh

B (λ) + Adv4.2
A (λ).

Equation 6: GA
4.2(λ) to GA

4.4(λ)
B behaves as follows (again assuming ρ0 = 1):

B(1λ, N,G,H,GT , e, g1, g2, g4, h1, w)

b
$←− {0, 1}

~x, ~x1, . . . , ~x`
$←− (Z/NZ)c, r1, . . . , r`, χ1, . . . , χr

$←− Z/NZ

vk ← g
ρk(~x)
1 g

∑`

j=1
rjρk(~xj)

2 gχk

4 ∀k ∈ [r]

yk ← h
σk(~x)
1 ∀k ∈ [s]

zk ← e(g1, h1)τk(~x) ∀k ∈ [t]

inputs← (N,G,H,GT , e, g4, ĥ, v0, . . . , vr, y1, . . . , ys, z1, . . . , zt)

if (b = 0) then chal← e(g1, ĥ)f(~x) · w

if (b = 1) then chal← e(g1, ĥ)f(~x)e(g2, ĥ)

∑`

j=1
rjf(~xj)

b′
$←− A(1λ, inputs, chal)

return (b′ = b)

If w
$←− GT , then this is identical to GA

4.2(λ). If w
$←− G2,T , then this is identical

to GA
4.4(λ). ut

Proposition 4.2. For a bilinear group G of order N , the decisional uber-assumption
parameterized by (c,R, S, T, f) holds in the target group if
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1. subgroup hiding holds between H123 and H1 with µ = {g4, h123};
2. subgroup hiding holds between G24 and G34 with µ = {g1, g24, g4, h1, h123};
3. subgroup hiding holds in G2,T with µ = {g1, g2, g4, h1, h123};
4. extended parameter hiding holds with respect to R∪{f}, with respect to aux =

{gρ(·)3 , h
σ(·)
1 }ρ∈R∪{f},σ∈S∪T for all g3 ∈ G3 and h1 ∈ H1, and subgroups

(G1, G2);

5. extended parameter hiding holds with respect to R ∪ {f}, with respect to

aux = {hσ(·)1 }σ∈S∪T for all h1 ∈ H1, and subgroups (G1, G3);

6. extended parameter hiding holds with respect to the F defined in Equation 5,
aux = ∅, and subgroups (G2, G3);

7. N = p1 · . . . · pn for distinct primes p1, . . . , pn ∈ Ω(2poly(λ)); and

8. the polynomials in R∪ f are linearly independent and have maximum degree
poly(λ).

Proof. By requirements (1)-(6), Theorem 4.3 and Lemma 4.1 tell us that the
original assumption is implied by Assumption 4.2. We make the problem strictly

easier if we assume that g1, g4, ~x, and ~χ are public, in which case g
R(~x)
1 , g~χ4 ,

h
S(~x)
1 and e(g1, h1)T (~x) provide no additional information. In this case A can also

compute the G1,T component of chal directly (which is the same in either case),

so we need only to argue that it is hard for it to distinguish e(g2, ĥ)
∑q+2

i=1
rif(~xi)

from random. The rest of the argument can thus proceed as in the proof of
Proposition 3.2. ut

4.3 Application to existing schemes

In Section 3.3, we demonstrated how to convert schemes that rely on symmet-
ric version of the uber-assumption to work in asymmetric groups and thus be
covered by our overall results in Section 3. Here, we briefly demonstrate how to
convert schemes to be covered by our results in this section as well.

Suppose we have a scheme and corresponding reduction that work in asym-
metric groups and performs only group operations, pairings, and equality tests
between group elements. We can then modify both the scheme and reduction as
follows: instead of sampling elements from H we sample them from H123; when
we multiply any elements in G we also include a freshly random element in G4;
and when we compare two elements g and g′ in G for equality, rather than return
(g = g′) we return (e(g, h123) = e(g′, h123)). In particular, this last alteration —
combined with the fact that e(g4, h123) = 1 and an asymmetric scheme only ever
pairs elements of G with elements of H — allows us to preserve the functionality
of the original scheme despite the fact that additional randomness is added into
the G4 subgroup.

If the original assumption relied on for security is a case of the uber-assumption
(Definition 3.1), then the resulting assumption is a case of the randomized uber-
assumption (Definition 4.1). Thus, the concrete schemes presented in Section 3.3
can be instantiated either in asymmetric groups of order N = p1p2p3 under the
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asymmetric variants of their original (symmetric) assumptions, or in symmetric
groups of order N = p1p2p3p4 under the randomized variants. In either case,
the results of Theorem 4.3 and Corollary 4.1 imply a tight reduction to the
appropriate variants of the subgroup hiding assumption.

A Dependency Graphs from Section 3.3

In this section, we include the rest of the dependency graphs for the converted
schemes in Table 1. As a reminder from Section 3.3 (in which we included the
graph for the Boneh-Boyen-Goh HIBE), the shape of the node indicates which
side of the split each element goes on: triangle nodes are in G, inverted triangle
nodes are in H, and diamond nodes are replicated across G and H. Pairing
equations are denoted by pn[i], where n ∈ N indicates a particular usage of the
pairing and i ∈ {0, 1} indicates the side of the pairing in which the element is
used. The nodes with an i included represent multiple (related) values; e.g., the

node gi represents {gαi}i.

g

gi p0[0] gc

C0vidi p1[0]

p2[0] Ci

p0[1]

p2[1]

p1[1]

Fig. 3: Dependency graph for the BGW broadcast encryption scheme [13]. The public
key consists of g, gi and vi, and the secret key of di. Encryption uses the pairing p0
and produces C0 and Ci, and decryption uses the pairings p1 and p2. In the reduction,
gi are derived from the q-BDHE assumption.
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g

Bi g1 gc

Cgij

p1[0]

hi

skID

p0[0]

p4[0]p2[0] p3[0]

p4[1]

p0[1] p1[1] p2[1] p3[1]

Fig. 4: Dependency graph for the ACF IB-KEM [2]. The master public key consists of
g, gij, and g1. Secret key derivation uses hi as the auxiliary information and skID as
the secret key for identity ID. The pairing p0 and the ciphertext C are used in the
encapsulation process, decapsulation uses the pairings p1, p2, and p3, and the key is
calculated from the encapsulation using p4. In the reduction, Bi and gc are derived
from the q-wBDHI assumption.

g

ga gi

hi

msk

L C'

gc p0[1] p1[0]

K

Ci Kx

p5[0]p5[1] p0[0] p1[1]

p2[1] p3[1]

p4[1]

p2[0] p4[0]

p3[0]

Fig. 5: Dependency graph for the Waters ABE scheme [42]. The public key consists of
g, ga, and hi, and is computed using the pairing p0. msk denotes the master secret
key and the secret key consists of K, Kx, and L. Encryption uses the pairing p1 and
produces C′ and Ci, and decryption uses the pairings p2, p3, and p4. In the reduction,
gi and gc are derived from the q-BDHE assumption, and the pairing p5 is used to
simulate the pairing p0.
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