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Abstract

In this thesis, we investigate two explicit families of geometric structures that occur on hy-
perbolic groups. After recalling some introductory material, we begin by giving an overview
of the theory of special cube complexes, with a particular focus on properties of subgroups of
hyperbolic special groups. We then describe an explicit algorithm, based on Stallings’ notion
of folding for graphs, to construct a local isometry between cube complexes that represents
the inclusion of a subgroup H < G, and show that this terminates if and only if the subgroup
is quasiconvex. This provides a potential method by which quasiconvexity for various sub-
groups could be verified.

In the second part of the thesis, we investigate another family of geometric structures:
negatively curved simplicial complexes. We show that groups satisfying a “uniform” C’(1/6)
small cancellation condition have such a structure, and then move on to prove a gluing theo-
rem (with cyclic edge groups) for these complexes. Using this theorem, we extend the family
of groups known to be CAT(-1) to include hyperbolic limit groups, hyperbolic graphs of free
groups with cyclic edge groups, and more generally hyperbolic groups whose JS] components

are 2-dimensionally CAT(—1).
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Chapter 1

Introduction

Indisputably one of the most outstanding achievements of twentieth or twenty-first century
mathematics has been Bill Thurston’s geometrization program for three-dimensional mani-
folds. First proposed by Thurston in the 1980s, the geometrization conjecture states that ev-
ery 3-manifold can be decomposed by cutting along spheres and tori into pieces which admit
one of precisely eight different geometries. Perhaps the richest and most interesting of these
eight options is hyperbolic geometry, which describes manifolds whose universal cover is hy-
perbolic 3-space H3. It turns out that any compact 3-manifold which is aspherical (contains
no essential spheres) and atoroidal (contains no essential tori) is hyperbolic. This is known
as Thurston’s hyperbolization theorem, proved by Thurston in the special case of Haken mani-
folds (see [Thu86] and subsequent papers) and in general by Perelman as part of his resolution
of the geometrization conjecture (see [Per02]). What the hyperbolization theorem hints at is
some sort of underlying “genericity” of hyperbolic geometry; to ensure that a 3-manifold is
hyperbolic, it suffices simply to rule out certain “obvious” ways in which it could fail to be so.
The deep underlying fact is that this prevalence of negative curvature extends well beyond the
realm of 3-dimensional geometry.

Motivated by the geometry of hyperbolic manifolds, Mikhail Gromov defined in [Gro87]
the notion of a word-hyperbolic (or simply hyperbolic) group. A hyperbolic group shares some
characteristics with the fundamental group of a hyperbolic manifold; in particular, it pos-
sesses an intrinsic notion of negative curvature. However the class of hyperbolic groups is
much more general than the class of fundamental groups of hyperbolic 3-manifolds, and they

are central objects of study in geometric group theory.
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As with hyperbolic manifolds, hyperbolic groups are known to have a certain genericity;
Gromov himself observed that (roughly speaking) in group presentations with a fixed gener-
ating set and q relations, the probability that the corresponding group is hyperbolic goes to 1
as the lengths of the relations go to infinity. However, a direct analogue of the hyperbolization
theorem for hyperbolic groups remains elusive. One possible such analogue is proposed in

the following question.

Question 1.0.1. Let I" be a group which is type F, and contains no Baumslag-Solitar sub-

groups. Is I hyperbolic?

It is worth unpicking this question to understand exactly how it relates to the hyper-
bolization theorem. A group is said to have type F if it has a classifying space with finitely
many cells in each dimension; in particular, it is the fundamental group of an aspherical CW
complex (with finite n-skeleta), and so this hypothesis is analogous to the “aspherical” hy-
pothesis in the hyperbolization theorem. A Baumslag-Solitar group is a group with presenta-
tion (a,b | a~'b™a = b"); these groups are all known not to be hyperbolic, and ruling them
out is analogous to the “atoroidal” hypothesis in the hyperbolization theorem. An affirmative
answer to Question 1.0.1 would therefore be a direct analogue of the hyperbolization theorem
for 3-manifolds, but in the much broader context of all infinite discrete groups. This would
provide perhaps the best vindication yet of Gromov’s original definition of a hyperbolic group,
and indeed would provide an alternative definition, since the converse holds for all hyperbolic
groups.

On the other hand, a counterexample to Question 1.0.1 would be of great interest; it
would be a group which fails to be hyperbolic for a completely new and unforeseen reason.
Moreover, there are known ways to construct a possible counterexample, given the existence
of other pathological hyperbolic groups. Suppose, for example, that there exists a hyperbolic
group G, with a subgroup H thatis malnormal (it intersects all its distinct conjugates trivially)
and distorted (roughly speaking, the corresponding subgraph of the Cayley graph of G fails
to be convex). Then, if H is of type Fo,, the double of G along H would be a counterexample
to Question 1.0.1 (see Theorem 4.4.3 for a precise statement). This motivates the following

question.

Question 1.0.2. Does there exist a hyperbolic group G with a finitely generated subgroup H

which is malnormal and distorted in G?
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We shall discuss Question 1.0.2 further in Section 4.4, but it provides a good justification
for an effort to understand not only the geometry of negatively curved groups, but also the
geometry of their subgroups. Question 1.0.2 is known to have a negative answer only for a
few special cases—for example, finitely generated subgroups of free groups are all quasicon-
vex (that is, undistorted), and so the question is trivially answered in this case. Subgroups of
free groups are, in fact, very well understood from a geometrical perspective, since they corre-
spond to immersions (locally injective homomorphisms) between graphs, and it is reasonable
to ask if this straightforward characterisation extends to a more general class of spaces. In re-
cent years, a class of spaces has emerged that could provide the answer. These are the special
cube complexes, defined by Haglund and Wise [HWO08], and a good candidate for the higher
dimensional generalisation of graphs. A special cube complex is a piecewise Euclidean cube
complex whose hyperplanes avoid various pathologies (see Chapter 3 for more details), and
a group is called special if it is the fundamental group of a special cube complex. Special,
and virtually special, groups have a number of interesting properties, particularly from the
point of view of subgroup separability, which is a property inherited from graphs. Their most
prominent recent application has been in the proof of the Virtual Haken and Virtual Fiber-
ing theorems for 3-manifolds. After geometrization, these were two of the biggest remaining
open questions in 3-dimensional topology, and both were recently resolved by Agol [Ago13]
building on work of Wise [Wis12a, Wis12b], Kahn-Markovic [KM12] and others (see Section
3.8.2 for more details).

The structure theory of special cube complexes, and the variety of tools available for
working with them, was central to this work, and much recent attention has been given to
finding special cube complexes associated to a wide variety of groups. An answer to Question
1.0.2 in the special cube complex case would therefore be a very reasonable objective, and our
work in Chapter 4 has this in mind.

As mentioned above, a positive solution to Question 1.0.1 would provide an additional
justification for the role of hyperbolicity as the predominant notion of negative curvature in
group theory. However, hyperbolicity is not the only option. It is a coarse notion—it is not
sensitive to the geometry of the group on small scales—and one common theme within ge-
ometric group theory is to understand the relationship between this and more local notions
of negative curvature. One such notion is the CAT(k) condition. A space is called CAT(k) if
geodesic triangles in the space are “thinner” than those in the simply connected surface of

constant sectional curvature k (for example, hyperbolic space H? for k = —1); and a group is
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called CAT(k) if it possesses a geometric action (that is, a properly discontinuous, cocompact
action by isometries) on a CAT(k) space. For example, the universal cover of a special cube
complex is a CAT(0) space (indeed, a CAT(0) cube complex), and so virtually (compact) spe-
cial groups are CAT(0). One can in fact say more in this setting. If the CAT(0) cube complex
does not contain an isometrically embedded copy of two-dimensional Euclidean space, then
the group is actually hyperbolic (see Section 2.4.3). This is another example of the genericity
of hyperbolic groups, this time in the context of groups acting on cube complexes. However,

the following question is still unanswered.
Question 1.0.3. Does there exist a hyperbolic group which is not CAT(0), or not CAT(—1)?

The opposite implications are well understood: every CAT(—1) group, and every CAT(0)
group where the space in question has no flat planes, is hyperbolic. That Question 1.0.3 re-
mains open is somewhat surprising—it means that, as far as is known, the “coarseness” which
is central to the definition of a hyperbolic group may be superfluous; an equivalent definition
may be that it is a group exhibiting a geometric action on a CAT(—1) space, or a CAT(0) space
without flat planes. Again, either a positive or negative answer to this question in general
would be of great interest.

The three questions above lie at the very heart of geometric group theory, and could form
a research agenda for many decades. Our contribution in this thesis is, firstly, to suggest a
method for approaching Question 1.0.2 in the setting of special cube complexes, and sec-
ondly, to partially answer Question 1.0.3 by extending the class of hyperbolic groups known
to be CAT(-1).

The thesis is organised as follows. Chapter 2 summarises the introductory material which
forms the mathematical background to the remaining chapters. We begin by recalling the no-
tions of a graph of groups and graph of spaces, then discuss various notions of negative cur-
vature for groups and metric spaces, particularly the CAT(k) condition and §-hyperbolicity.
Of central importance are two families of metric complex—non-positively curved cube com-
plexes, and negatively curved simplicial complexes—so we give an account of the crucial
properties of each family, with a focus on the interplay between group-theoretic and geo-
metric concepts.

In Chapter 3, we focus on cube complexes. In particular, we outline the theory of special
cube complexes (as originally described by Haglund and Wise [HWO08]), and in Chapter 4 we

describe a way to generalise the folding algorithm of Stallings to (a sub-class of) special cube
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complexes, exploiting the fact that they may be given a hierarchy; that is, decomposed as a
graph of spaces with vertex spaces of lower complexity than the original space. Stallings’ fold-
ing techniques provide a strong understanding of the geometry of subgroups of free groups,
and our generalisation could provide similar insight into the geometry of subgroups of fun-
damental groups of special cube complexes. In particular, we give a proof that the folding
algorithm terminates if and only if the subgroup is quasiconvex. Hence, analysing the geom-
etry of the situation where the algorithm does not terminate gives a potential approach to
answering Question 1.0.2 in the case of special cube complexes. We suggest some possible
ways to do this in Section 4.4.

In Chapters 5 and 6, we shift our focus to Question 1.0.3. To this end, we leave cube com-
plexes behind and look instead at 2-dimensional negatively curved simplicial complexes. As a
warm-up, in Chapter 5 we exploit some of the flexibility of hyperbolic geometry to constructa
negatively curved metric on the presentation complex of groups satisfying a uniform C'(1/6)
small cancellation condition, thus proving that such groups are CAT(—1) (a result first proved
by Gromov). Finally in Chapter 6, we prove a combination theorem for negatively curved 2-
complexes. This allows us once again to exploit hierarchical decompositions for certain fam-
ilies of groups, thus extending the class of groups known to be CAT(—1) to include hyperbolic
limit groups, hyperbolic graphs of free groups with cyclic edge groups, and more generally
hyperbolic groups whose JS] components are 2-dimensionally CAT(-1). A substantial part
of Chapter 6 formed the basis for a paper which has appeared in the Journal of the London
Mathematical Society [Bro16].

We assume that the reader is familiar with elementary geometry (including hyperbolic

geometry), topology and group theory.



Chapter 2

Preliminaries

In this chapter, we summarize the mathematical theory which gives the context for the re-
maining chapters. We begin with a brief account of graphs of groups and spaces, before cov-
ering in more detail some of the theory of CAT(k) spaces and hyperbolic groups. The material
in Section 2.1 is covered more thoroughly in [Ser03] and [Hat02], and the remaining sections

are covered comprehensively in the first two parts of [BH99].

2.1 Graphs of groups and graphs of spaces

Throughout this thesis, we will be interested in obtaining new groups and spaces by gluing
together others. The best formalism for this is the algebraic notion of a graph of groups, and

the analogous topological notion of a graph of spaces. We recall the essential definitions.

2.1.1 Graphs

We assume the reader is familiar with the topological notion of a graph. For convenience, we
also recall Serre’s definition of a graph, in which each edge e is replaced by a pair of edges
corresponding to the two possible orientations of e. This simplifies notation later, as we can

bypass the technicality of edges incident at a certain vertex having different orientations.

Definition 2.1.1. A graph consists of a set V of vertices, a set E of edges, and maps t: E — V,

1: E—V,": E— Esatisfying é # e, é=-eand 1(e) = 1(&).

We may recover a topological graph from the above by taking a vertex for each v € V, and

then for each unordered pair (e, &), we take a 1-cell whose ends are glued to ((e) and 7(e). An

13
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orientation is a fixed choice of either e or € from each pair. We will sometimes write an edge
as e = uv, meaningt(e) = u, 7(e) = v.

An immersion of (topological) graphs is a combinatorial map (i.e. graph homomorphism)
which is locally injective. Immersions of graphs are 7;-injective [Sta83]. A graph is simplicial
if it has no loops or double edges, and a core graph for a graph is a subgraph with no vertices

of degree 1, such that the inclusion map is a 7;-isomorphism.

2.1.2 Graphs of groups

A graph of groups B consists of a graph I'g together with the following: for each vertex v of I'g,
a vertex group B,; and for each edge e of I'p, an edge group B, (where B; = B,) and a pair of
injective edge maps 0.: Be — B,(¢), 0s: Be — Br(¢) (note that, using Serre’s notation, we only
need define one of the two maps). We refer to 9, (B,) as an edge subgroup of B,,).

For a vertex vy of I'g, a loop based at vy in the graph of groups B is a sequence

c= (bOy el’bl’eZ) bZ)"-’bn—ly €n» bn)

where 7(e;) = t(e;+1) = v; for all i, vy = vy, and b; € B,,. We may multiply two loops ¢, ¢’ based

at vg by the obvious rule

!/ ! ! ! ! !/ !/ !/
(bO) €1,...,€n, bn) : (b()) e]w-«)em’bm) = (bO) el’“-en’bnborel,“-’em) bm)~

We impose the following equivalence relation on the set of paths:

(..e,05(b),8,...)=(..,00(D),...).

This makes the set of closed paths based at v, into a group, called the fundamental group

of the graph of groups B based at vy, and written 71 (B, vg) (for more details see [Ser03]).

Definition 2.1.2. A loop ¢ = (bg,e1,b1,€2,b2,...,bs_1, €, by) in a graph of groups B is called

reduced if:
e If n=0, then by # 1.
» Forevery i, if e;11 = €; then b; ¢ 05(Be).

Theorem 2.1.3. Ifc is a reduced loop, then c # 1 in (B, vy). Moreover, the natural homomor-

phism B,, — m1(B, vo) is injective.
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The fundamental group is independent of the basepoint, and so the above theorem in

fact implies that there are injective homomorphisms B, — 71 (B, vp) for all vertices v.

Definition 2.1.4. Let G be a group. If there exists a graph of groups B such that G = 1 (B, vy),
then B is called a graph of groups decomposition or a splitting of G. If the edge groups of G are
all of a given type, then B is said to be a splitting over subgroups of that type; for example, a

splitting over free or cyclic subgroups.

It will be helpful for us to recall the following terminology. See Definition 2.5.7 for the

definition of an almost malnormal subgroup.
Definition 2.1.5. A graph of groups B is called thin if the following two conditions hold:
1. For every vertex v of I'g, every edge subgroup of B, is almost malnormal.

2. For every vertex v of I'g, any two conjugates of distinct edge subgroups of B, have finite

intersection.

Remark 2.1.6. Graphs of groups correspond to group actions on trees, and the study of this
correspondence is the subject of Bass—Serre theory, for which we refer the reader to [Ser03].
If G acts on a tree T without inversions, then we may construct a quotient graph of groups
whose fundamental group is G, whose underlying graph is the quotient T'/G and whose vertex
and edge groups correspond to stabilisers of the vertices and edges of T. Any subgroup H
of G also acts on T, and the corresponding quotient graph of groups is called the induced
splitting for H. An action of a group on a tree is said to be k-acylindrical if the stabiliser of any
embedded length k + 1 path is trivial. Wise defines an action of a group on a tree to be thin if
the stabiliser of any length 2 path is finite [Wis02]. This is a slight weakening of 1-acylindrical,
and is equivalent to Definition 2.1.5; indeed, edge stabilisers in the action on the Bass-Serre
tree are precisely conjugates of edge groups, and so a stabiliser of a length 2 path would be an
intersection between two such conjugates. It follows that the induced splitting for a subgroup

of a thin graph of groups is also thin.

2.1.3 Graphs of spaces

Throughout, if not explicitly specified, we will assume all our spaces are CW complexes (they

will usually be explicit polyhedral complexes).

Definition 2.1.7. A graph of spaces (X, x) consists of the following:
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1. A graph 'y, called the underlying graph.
2. For each vertex v of I'x, a connected vertex space X,,.

3. For each edge pair (e, e) of I'x, a connected edge space X, = Xz and a pair (0,,0;z) of

m1-injective attaching maps from X, to X, X7(e) (= Xy(2)) respectively.

Given the above data, we associate a space X, called the total space, as follows. Take a
copy of X, for each v, and a copy of X, x [0,1] for each edge pair (e, €). Now glue X, x {0} to
Xi(e) using 0., and glue X, x {1} to X;(¢) using d;. The edge space X, is embedded inside X as
Xe % {%}. We will occasionally refer to X, x [0, 1] as an edge cylinder.

We will say that the total space X has a graph of spaces decomposition, or simply is a
graph of spaces. There is an ambiguity here, since a given topological space may possess two
different graph of spaces decompositions, so the decomposition in question will always be
made clear.

To each graph of spaces, we may naturally associate a graph of groups with the same
underlying graph, by replacing vertex and edge spaces with their fundamental groups and the
attaching maps with the induced maps on fundamental groups (after choosing basepoints).
The fundamental group of the graph of groups (as defined above) is then isomorphic to the
fundamental group of the total space. When we discuss vertex groups and edge groups of a
graph of spaces, we are referring to the vertex and edge groups of this corresponding graph of
groups.

Given a graph of spaces X, there is a natural projection ¢x: X — I'x which maps each
vertex space X, to the vertex v, and each copy of X, x [0,1] to the edge e by projection onto
the second factor. A map f: X — X' of graphs of spaces is a map that respects the graph of
spaces decomposition, in the sense that there is a graph homomorphism y: I'y — 'y such
thatyopx =@xof.

If X is a graph of spaces and X — X is a covering map, then X inherits a graph of spaces
structure. The vertex and edge spaces are the connected components of preimages of vertex
and edge spaces of X, and the restriction of the covering map to a vertex (or edge) space of X
is a covering map to the corresponding vertex (or edge) space of X. This induced structure as
a graph of spaces corresponds to the induced splitting as a graph of groups of the subgroup

11(X).
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There may be many graphs of spaces associated to the same graph of groups, but for-
tunately we have strong control over their homotopy type, thanks to the following lemma of

Scott and Wall.

Lemma 2.1.8 ([SW79]). Let X and Y be two graphs of spaces associated to the same graph of
groups. Suppose all the vertex and edge spaces of X and Y are aspherical. Then X and Y are

aspherical, and hence homotopy equivalent.

In some accounts of the theory of graphs of groups and graphs of spaces (for example
[Hat02]), a graph of groups is chosen first and then a graph of spaces is constructed by choos-
ing a K (G, 1) for each vertex group G, a K (G, 1) for each edge group G, and then realising
the attaching maps by 77} -injective maps between these spaces. The above lemma then essen-
tially says that this construction is well-defined up to homotopy. In particular, we can safely
replace vertex and edge spaces of a graph of spaces with homotopy equivalent spaces, and at-
taching maps with freely homotopic maps, without changing the homotopy type of the graph
of spaces. We will make implicit use of this fact regularly in Chapters 4 and 6.

The theory of graphs of groups and graphs of spaces will be of central importance in all of
the forthcoming chapters. In Chapter 3 we will discuss Wise’s Hierarchy Theorem for special
cube complexes (Theorems 3.8.2 and 3.8.6), and this will inform the work in Chapter 4 where
we work in the more restricted setting of a graph of graphs. The work on negatively curved
complexes in Chapter 6 is also designed to apply to groups with a certain type of graph of

groups decomposition.

2.2 CAT(k) spaces

The CAT (k) criterion gives a method for describing the curvature of a metric space by com-
paring triangles in the space to triangles in a space of fixed constant curvature. The theory
of CAT (k) spaces is well developed, and although we only summarise some of the essential
details here, full details and proofs can be found in [BH99, Chapter II]. Our initial setting is a
geodesic metric space, which is a metric space in which every pair of points is connected by a

(not necessarily unique) geodesic.
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2.2.1 The CAT (k) criterion

For any k < 0, we denote by M’ the space obtained by multiplying the metric on n-
dimensional hyperbolic space H” by 1/v/—k. For k = 0, M} denotes Euclidean space E”,
and for k > 0, M} denotes the rescaled sphere obtained by multiplying the metric on the
n-dimensional unit sphere S” by 1/v/k.

A geodesic triangle A(a, b, ¢) in a geodesic metric space Y consists of three points a, b, ¢
and a choice of three geodesics [a, b], [b, c], [c, al. Given such a geodesic triangle and k < 0,
there is a unique (up to isometry) triangle A(d, b, ¢) in M,ZC with the same edge lengths. For
k > 0, the same holds provided d(a, b) + d(b,c) + d(c,a) < 27/Vk. The triangle A is called
a comparison triangle for A. For any point p on an edge (say, [a, b]) of A, there is a unique
point 5 on the corresponding edge [a, b] of A such that d(a, p) = d(a, p), and p is called the

comparison point for p.

Definition 2.2.1. For k < 0, a geodesic metric space Y is called CAT(k) if any geodesic triangle
in Y is thinner than the comparison triangle in M?2, in the sense that d (p,q) = d(p,q) for
any two points p and g in A (see Figure 2.1). For k > 0, we require this only for triangles of

perimeter less than 27/ V'k.

a q c a > c

q

Figure 2.1: The right triangle is a comparison triangle for the left, and the left hand
triangle is thinner than the right, as d(p, q) < d(p, ) for any choice of points p and
g. Note that equality is permitted.

Definition 2.2.2. A geodesic metric space is said to be locally CAT(k) if every point has a
neighbourhood which is CAT(k). A space which is locally CAT(0) is called non-positively

curved, and a space which is locally CAT (k) for some k < 0 is called negatively curved.

We summarize some basic properties of CAT (k) spaces for k < 0 below (there are analo-

gous properties when k > 0, provided we restrict to balls of diameter less than 7/ v/k).

Theorem 2.2.3 (Properties of CAT (k) spaces). Let X be a CAT(k) space, for k <0. Then
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* X is uniquely geodesic (each pair of points is connected by precisely one geodesic).
e Every local geodesic in X is a geodesic.
* X is contractible.

Example 2.2.4. [BH99, Theorem II.1A.6] A smooth Riemannian manifold is locally CAT (k) if

and only if has sectional curvature < k. In particular, M}’ is CAT(k") for all k' > k.

Remark 2.2.5. It follows directly from the above example that a space which is (locally) CAT (k)
for some k is (locally) CAT (k") for all k' = k.

Example 2.2.6. A metric graph is locally CAT (k) for all k € R, and a tree is CAT (k) for all k e R.

Remark 2.2.7. If a space is (locally) CAT (k) for some k < 0, then by multiplying the metric by
v —k we obtain a (locally) CAT(—1) space. That is, up to rescaling the metric (in particular, up
to homeomorphism), a space which is (locally) CAT (k) for some k < 0 is (locally) CAT (k) for

all k < 0. The same is true for k > 0.

2.2.2 Local isometries

When working with locally CAT (k) spaces, it is useful to have a well-behaved family of maps

between such spaces. This is provided by the following definition.

Definition 2.2.8. Let X and Y be metric spaces. Amap f: X — Y is called a local isometry if
for every x € X, there is a neighbourhood of x on which f restricts to an isometric embedding.

A subspace Z of Y is called locally convex if the inclusion map Z — Y is a local isometry.

Remark 2.2.9. If Y is locally CAT(k), and there is a space X equipped with a local isometry to
Y, then X is also locally CAT (k).

2.2.3 The Cartan-Hadamard Theorem

Already, we have both local and global notions of negative (and non-positive) curvature.

These are related by the following fundamental theorem:

Theorem 2.2.10 (The Cartan-Hadamard Theorem [BH99, Theorem I1.4.1]). Let X be a
geodesic metric space which is locally CAT(k), for k < 0. Then the universal cover X is CAT(k).
In particular, a space which is locally CAT (k) and simply connected is CAT (k).
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By considering geodesics in X and Y, we see the following. This will be of particular
interest when we define quasiconvex subgroups (see Theorem 2.5.6), especially when applied

to cube complexes (see Section 3.5).

Corollary 2.2.11. IfY is locally CAT(k), for k < 0, and X is equipped with a local isometry
f: X — Y, then any lift f: X — Y is an isometric embedding. Hence X is locally CAT(k), and

moreover the induced map on fundamental groups f.: m1(X, x) — m1 (Y, f(x)) is an injection.

It follows from the above that, for k < 0, any local isometry into a CAT (k) space is in fact
an isometric embedding, and (together with Theorem 2.2.3) a locally convex subspace of a

CAT (k) space is convex.

2.2.4 Mj—complexes

We saw in Example 2.2.4 that the spaces M’ are CAT (k). A useful way to build more examples
of (locally) CAT(k) spaces is to take polyhedra from M}’ and glue them together in a com-
patible way. We will be predominantly interested in the cases where the polyhedra are neg-
atively curved metric simplices or regular Euclidean cubes, and so we will not worry about
the (rather technical) general definition of an M} -polyhedron; the concerned reader should

consult [BH99, Chapter 1.7].

Definition 2.2.12. An M-polyhedral complexis a CW complexwhose cells are M}’ -polyhedra,

attached by isometries of their faces.

Remark 2.2.13. As defined above, an My-polyhedral complex may fail to be a complete
geodesic space. Consider, for example, the metric graph with vertices N and an edge of length
1/2" connecting n to n + 1 for each #; this isan M ,i complex for any k, and is isometric to the
interval [0, 1) which is not complete. There are various assumptions which one may impose
on an Mj-polyhedral complex X to rule out similar pathological behaviour. It is a theorem
of Bridson that, under the assumption that X has finitely many isometry types of cells, X
is a complete geodesic space, although it may not be locally compact or proper. See [BH99,
Chapter 1.7] for more details. In this thesis, all the complexes we consider will be finite dimen-
sional, complete, and locally compact, in which case it follows from the Hopf~-Rinow theorem

that they are proper geodesic spaces.

We refer to spaces which are isometric to an M_;, M, or M;-polyhedral complex as piece-

wise hyperbolic, piecewise Euclidean or piecewise spherical respectively.
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Example 2.2.14. Recall that an M}’ -simplex is the convex hull of n + 1 points in general posi-
tion in M} (if k > 0, these points are required to lie within an open ball of radius 7/ Vk). These
n+ 1 points are the vertices of the simplex, and its faces are precisely the lower dimensional
simplices obtained by taking the convex hull of a subset of the vertices. An Mj-polyhedral

complex whose cells are all M;’-simplices (for various n) is called an M -simplicial complex.

Remark 2.2.15. In general, by a simplicial complex, we will mean a CW complex whose cells
are simplices, and where the attaching maps are induced by isometries between faces. This
is an abuse of language, because the underlying combinatorial complex may not in fact be
simplicial; in general, it is a A-complex in the sense of Hatcher (see [Hat02]). In particular,
we assume neither that the attaching maps are injective, nor that the intersection between
any two simplices is either empty or a single face. If a simplicial complex does satisfy these
additional conditions, we say that it is simple. Any Mj-simplicial complex can be subdivided
to make it simple, and so our definition will not cause any geometric problems. However,
we will generally assume that vertex links are simple when considering cube complexes (see

Section 2.3).

Example 2.2.16. A cube complexis an Mj-polyhedral complex all of whose cells are Euclidean
cubes [0,1]" of various dimensions. (We sometimes identify the cubes with [—1,1]" rather

than [0,1]™).

We will investigate cube complexes in more detail in Section 2.3; for now, we restrict our

attention to Mj-simplicial complexes.

2.2.5 The link condition in simplicial complexes

To study the geometry of an Mj-simplicial complex, it is very often necessary to focus on the
local geometry around a vertex of the complex. For this, we need the notion of the link of a
vertex, which is a description of the space of possible directions at that vertex. It is easiest to
define in a purely combinatorial way. Note that we do not, a priori, assume links are simple

(see Remark 2.2.15).

Definition 2.2.17 (Link of a vertex in an Mj-simplicial complex). Let v be a vertex in an M-
simplicial complex K. The link of v in K, written Lk(v, K), is a simplicial complex with a vertex
e for each edge e of K" with i(e) = v, and an r-simplex with vertices ey, ..., e, whenever

€o, ..., e, form the corner of an r + 1-simplex at v.



CHAPTER 2. PRELIMINARIES 22

Theorem 2.2.18. Ifv is a vertex of an My.-simplicial complex K, then Lk(v, K) possesses a piece-

wise spherical metric (that is, it is an M{' -simplicial complex.)

Idea of proof. Individual simplices of Lk(v, K) are in correspondence with Lk(v, S), where Sis a
simplex of K containing v. We can think of Lk(v, S) as the intersection with S of a small sphere
in M ]’Cl centred at v, and it is thus endowed with a spherical metric. It follows that the metrics
on adjacent simplices of Lk(v, K) are compatible, and so there is a well-defined, piecewise

spherical metric on the whole of Lk(v, K). See [BH99, Chapter 1.7] for full details. O

Individual points of Lk(v, S) correspond to initial segments of geodesics through v, and
with this metric, the distance between two such points is equal to the angle between the corre-
sponding geodesics. Thus, the metric on links gives us a well-defined notion of angle between
geodesics through vertices in K; in particular, it gives us a notion of angle between edges in-
cident at K. Note that the angle between two geodesics issuing from a vertex may be greater
than 7, and in the case where the link is disconnected, it may take the value co. For more

details, see [BH99].

Remark 2.2.19. A simplicial path y in K is locally geodesic if and only if, at each vertex x along
the path, the angle between the incoming and outgoing edges of y at x is at least 7. We call
this the angle subtended by y at x. A closed simplicial path which is locally geodesic is called

a closed geodesic.

The following crucial result, observed by Gromov [Gro87] and proved by Bridson [Bri91],

is what makes M-polyhedral complexes so important in the study of CAT (k) spaces.

Theorem 2.2.20 (The link condition for Mj.-simplicial complexes). Let K be an M} -simplicial
complex with finitely many isometry types of simplices. Then K is locally CAT (k) if and only if
for each vertex v € K, Lk(v, K) is CAT(1).

Proof. See [BH99, Chapter IL.5]. O

Remark 2.2.21. In the case where K is 2-dimensional, the links of vertices are metric graphs,
which are CAT(1) precisely when they do not contain any essential loops of length less than

27. This makes it particularly easy to check the link condition in the 2-dimensional case.

Remark 2.2.22. Given a CAT(1) space X, the space obtained by connecting two points x, y € X
with an arc of length [ is CAT(1) if and only if d(x, y) + [ = 2z. This is because no new non-

degenerate triangles of perimeter < 2 are introduced. This is a useful fact when checking
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that links remain CAT(1)—and hence, spaces remain locally CAT (k) for some k—after gluing

operations.

For k < 0, we will sometimes refer to an Mj-simplicial complex which is locally CAT(k)

as a negatively curved complex (of curvature k).

2.3 Cube complexes

We now turn our attention to the case where all of the cells in an Mg-polyhedral complex are
Euclidean cubes. We shall see (Theorem 2.3.8) that this will enable us to reduce the link con-
dition to a purely combinatorial statement, a theme which will be investigated more deeply
in Chapter 3. We begin by defining the link of a vertex in this setting, which is no different
from the Mj-simplicial complex case. Again, the definition makes sense even if the link is not

simple, although this will be an important additional condition shortly.

Definition 2.3.1 (Link of a vertex in a cube complex.). Let v be a vertex in an cube complex
X. The link of v in X, written Lk(v, X), is a simplicial complex with a vertex e for each edge
e of KV with i(e) = v, and an r-simplex with vertices ey, ..., e, whenever ey, ..., e, form the

corner of an r + 1-cube at v. See Figure 2.2.

<~

Figure 2.2: The link of a vertex in a cube complex.

Just as for a simplicial complex, we also obtain a piecewise spherical metric on the link;
the proof is the same (see Theorem 2.2.18). In the cube complex case, however, we can give

much more information about the geometry of the link.

Definition 2.3.2. A piecewise spherical simplicial complex L is called all-right if every edge of

Lhaslength 7/2.

Remark 2.3.3. If L is an all-right simplicial complex, then links of vertices of L are also all-
right (with their piecewise spherical metrics as defined in Theorem 2.2.18). This is because a

spherical triangle with all sides of length 7/2 has all three vertex angles equal to /2.
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Since every face angle in a cube is equal to /2, we obtain the following theorem.

Theorem 2.3.4. Let v be a vertex in a cube complex X. Then Lk(v, X) is an all-right piecewise

spherical simplicial complex.

Theorem 2.3.4 implies that to use the link condition in cube complexes, it is enough to
understand when all-right piecewise spherical simplicial complexes are CAT(1). This under-

standing is provided by Theorem 2.3.6 below.

Definition 2.3.5. A simplicial complex is called flag if, for r = 2, every set of r + 1 vertices

which is pairwise connected by edges spans an r-simplex.
Theorem 2.3.6. A simple, all-right simplicial complex is CAT(1) if and only if it is flag.

The link condition for M-simplicial complexes (Theorem 2.2.20) carries over to cube

complexes in the obvious way. We first make the following definition.

Definition 2.3.7. A cube complex X is called simple if the links of vertices are simple in the

sense of Remark 2.2.15.
Applying Theorems 2.3.4 and 2.3.6, we therefore obtain:

Theorem 2.3.8 (The link condition for cube complexes). Let X be a finite-dimensional simple
cube complex. Then X is non-positively curved if and only if for each vertex v e X, Lk(v, X) isa

flag complex.

It follows in particular that any covering space of a non-positively curved cube complex
is non-positively curved, and the universal cover of any non-positively curved cube complex
is a CAT(0) cube complex. This is because the links of vertices in the covering space are iso-

morphic to the links of their projections.

Remark 2.3.9. From now on, we will always assume that cube complexes are simple unless

we specify otherwise. This is a harmless assumption in the non-positively curved case.

Example 2.3.10. Every connected orientable surface without boundary of genus = 1 has the
structure of a non-positively curved cube complex. For the torus, this is the usual cube com-
plex structure with a single square. For higher genus surfaces, it is the cube complex structure
induced by the covering map to the genus 2 surface, which is non-positively curved as shown

in Figure 2.3.
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Figure 2.3: A non-positively curved square complex structure on the genus 2 sur-
face. Five squares meet at each vertex, so the links are all pentagons, which are
flag.

Thus, we have described non-positive curvature for cube complexes in purely combi-
natorial terms. Indeed, Theorem 2.3.8 is often used as a quick definition for non-positively
curved cube complexes. In view of Theorem 2.2.10, the corresponding global notion is as

follows.

Definition 2.3.11. A cube complex X is called CAT(0) if it is non-positively curved and simply

connected.

2.3.1 Local isometries of cube complexes

When working with cube complexes, we will usually assume that maps are combinatorial,
that is, they map cubes to cubes of the same dimension. The following theorem gives a com-

binatorial criterion for such a map to be a local isometry.

Theorem 2.3.12. Let X and Y be cube complexes. A combinatorial map f: X — Y is a local
isometry if and only if, for every vertex v of X, the induced map Lk(v) — Lk(f (v)) is injective
and maps Lk(v) onto a full subcomplex of Lk(f (v)) (that is, if f(ao), ..., f(an) are the vertices

of an n-simplex in Lk(f (v)), then ay, ..., a, are the vertices of an n-simplex in Lk(v)).

Note that when X and Y are non-positively curved, their links are flag, and this guaran-
tees the second condition for n = 2. Hence, in this case, it is enough to require that if f(a) and

f(b) are adjacent in Lk(f(v)) then a and b are adjacent in Lk(v).
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2.4 Negative curvature and group theory

As discussed in Chapter 1, understanding non-positive and negative curvature in terms of
group theory is the central theme in this thesis. One key tool which allows us to translate
between geometry and group theory is given by Definition 2.4.4. We begin by recalling some

fundamental properties of group actions on metric spaces.
Definition 2.4.1. A metric space X is called proper if every closed ball is compact.

Definition 2.4.2. Let G be a group acting by isometries on a metric space X. The action is
called cocompact if the orbit space X/G is compact. It is called properly discontinuous if every

point x € X has a neighbourhood U such that {ge G | gUN U # &} is finite.

Remark 2.4.3. The definition given above of a properly discontinuous group action is not
standard—indeed, our definition is sometimes called wandering [TL97], and it is inspired by
the action of the fundamental group of a compact space on its universal cover. The more
common definition of properly discontinuous is that for any compact subset K c X, there
are only finitely many g € G such that gk n K # &. This latter definition is in fact weaker
for actions on metric spaces, but the definitions coincide for actions of (discrete) groups on

proper metric spaces, which is a sufficiently general setting for the work in this thesis.

2.4.1 Geometric actions and the Svarc-Milnor lemma

The following notion allows us to translate geometric properties between groups and spaces:

Definition 2.4.4. We say a finitely generated group acts on a metric space geometrically if it

acts by isometries, properly discontinuously and cocompactly.

We can now make the following definition, which we restrict to complexes to avoid am-

biguity later.

Definition 2.4.5. A group is called CAT(k) if it acts geometrically on a CAT (k) complex. A
group is called freely CAT (k) if it acts freely and geometrically on a CAT(k) complex.

In light of Remark 2.2.7, Definition 2.4.5 gives us essentially one notion of negative cur-
vature for a group, CAT(-1), as well as a notion of non-positive curvature, CAT(0). However,
both of these notions rely on the existence of a particular metric space equipped with a spec-

ified geometric action of the group. Indeed, a CAT(-1) group, say, typically possesses many
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geometric actions on spaces which are not CAT(—1). It would seem preferable to have a notion

which is intrinsic to the group. For this, we first need to recall the following notion.

Definition 2.4.6. A quasi-isometric embedding between metric spaces X and Y is a map

f: X — Y for which there exist fixed constants C = 0, K > 1 such that:

e forall x;, x; € X:

1
Ed(xbxz) -C=d(f(x1), f(x2)) =Kd(x1,x2)+C

A quasi-isometric embedding is called a quasi-isometry if it additionally satisfies:
» forevery ye Y, thereis an x € X such that d(f(x), y) < A.
That s, f is an isometry “up to a fixed additive and multiplicative error”.

It is straightforward to show that the existence of a quasi-isometry between spaces X
and Y is an equivalence relation. The following fundamental result then allows us to discuss

geometric properties of a group without specifying a particular space on which the group acts.

Theorem 2.4.7 (The Svarc-Milnor Lemma). Suppose G is a group acting geometrically on a
proper geodesic space X. Then G is finitely generated by a set S, and the Cayley graph of G with
respect to S, equipped with the path metric, is quasi-isometric to X. The quasi-isometry is given

by g — g-x forany fixed x € X.

2.4.2 Hyperbolic spaces and groups

Definition 2.4.8. For some § > 0, a metric space X is called §-hyperbolic if it satisfies the 6-
slim triangles condition: namely, that each side of any geodesic triangle in X is contained in
the 6-neighbourhood of the other two sides. See Figure 2.4. A space is called hyperbolic if it is

0-hyperbolic for some 6.

Definition 2.4.9. A 6-hyperbolic groupis a group whose Cayley graph is a 6-hyperbolic metric
space. A group is called word hyperbolic (or simply hyperbolic) if it is §-hyperbolic for some 6.

Theorem 2.4.10. If there is a quasi-isometric embedding f: X — Y, and Y is 6 -hyperbolic,
then there exists 5’ > 0 such that X is &' -hyperbolic. Hence, hyperbolicity of metric spaces is

invariant under quasi-isometry.
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Figure 2.4: X satisfies the 0-slim triangles condition if, for every geodesic triangle
in X, each side is contained in the §-neighbourhood of the other two sides.

Remark 2.4.11. It follows from Theorems 2.4.10 and 2.4.7 that if G is a hyperbolic group, then
any proper geodesic space equipped with a geometric action of G is §-hyperbolic for some §.
In particular, the Cayley graph of G is a hyperbolic metric space whatever finite generating set
we choose. In this sense, hyperbolicity is a property intrinsic to the group; we do not need to

specify a particular action on a particular metric space in order to define it.

2.4.3 Relationships between the notions of negative curvature

Hyperbolicity is the most commonly studied notion of negative curvature in group theory,
largely thanks to Remark 2.4.11. However, as we discussed in Chapter 1, the interplay be-
tween hyperbolicity and the CAT(—1) and CAT(0) notions is still an area of active research. We
summarize here what is already known.

The strongest of the three notions is CAT(—1). Firstly, it follows from Remark 2.2.5 that

any CAT(-1) group is CAT(0). Moreover, we have the following theorem.
Theorem 2.4.12. Let G be a CAT(—1) group. Then G is word hyperbolic.

Proof. It is enough to show that any CAT(—1) metric space X is 6-hyperbolic. Let A(a, b, ¢)
be a geodesic triangle in X. Choose a side, say [a, b], of X. Fix a point p € [a, b]. For any
g € la,c] U [b,c], by Definition 2.2.1, d(p, q) < d(p, q) where p, g are the comparison points
on the comparison triangle A in H2. Now, it is an exercise (see [BH99, Chapter IIL.H.1]) to see
that H? is § -hyperbolic, and hence we can choose g such that d(p, q) < 6. This completes the

proof. a

On the other hand, the following is an open question.
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Question 2.4.13. Let G be hyperbolic. Is G CAT(-1)?

As mentioned earlier, we will answer this question for some classes of groups in Chapters
5 and 6.
To understand the interplay between hyperbolicity and the CAT(0) condition, recall first

the following basic fact about hyperbolic groups.

Theorem 2.4.14 (|[BH99, Corollary II1.I'.3.10]). Let G be hyperbolic. Then G contains no sub-

group isomorphictoZ x Z.

Clearly, Z x Z is a CAT(0) group; it acts geometrically on the Euclidean plane Mg. Hence,
there exist CAT(0) groups which are not hyperbolic. On the other hand, we have the following

theorem.

Theorem 2.4.15 (The Flat Plane Theorem [BH99, Theorem III.H.1.5]). Let G be a group acting
geometrically on a CAT(0) space X. Then G is hyperbolic if and only if X does not contain an

isometrically embedded Euclidean plane.

One would like to make the hypothesis on the group G, rather than the space X. In this

case, we have the following.

Theorem 2.4.16 (The Flat Torus Theorem [BH99, Theorem I1.7.1]). Let G be a group contain-
ing a Z x Z subgroup, which acts geometrically on a CAT(0) space X. Then the Z x Z subgroup

stabilises an isometrically embedded Euclidean plane in X.

On the other hand, the converse to Theorem 2.4.16 is unknown; even in the cube complex
case: it is not known that every group which acts geometrically on a CAT(0) space containing
an embedded flat plane must in fact contain a Z x Z subgroup. In other words, given a CAT(0)
group G and corresponding CAT(0) space X, ruling out flat planes in X is enough to ensure
0-hyperbolicity of G, but ruling out Z x Z subgroups in G is not known to be enough. If this
were known, it would provide an affirmative answer to Question 1.0.1 in the setting of groups
acting geometrically on a CAT(0) space (since the quotient would give a classifying space). For
more details, see [McC09] or [BH99].

The situation is even less clear if we are provided with a hyperbolic group to begin with.

A weaker form of Question 2.4.13, the following is also an open question.

Question 2.4.17. Let G be hyperbolic. Is G CAT(0)?
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It is worth pointing out that the groups we consider in Chapter 6 are already known to be
CAT(0), and so we do not make any progress with Question 2.4.17 in this thesis. Nonetheless,
this is also a very active area of research, particularly in the setting of cube complexes; many
classes of hyperbolic groups have recently been shown to act geometrically on a CAT(0) cube
complex, a process which has become known as cubulation. Indeed, it turns out that a group
acting on a CAT(0) cube complex is of much more interest than a general CAT(0) space, and
the reasons for this come down to the theory of special cube complexes. As we mentioned in
Chapter 1, special cube complexes have a variety of interesting properties, particularly regard-
ing subgroup separability, as well as a powerful structure theory which allows us to arrange

them in a hierarchy. We will discuss them in detail in Chapter 3.

2.4.4 Torsion and the fundamental group

The definition of a geometric action (Definition 2.4.4) is motivated by the action of the funda-
mental group of a compact space X on its universal cover. In this case, the action is not only
geometric but also free—that is, it has no fixed points. The following fact simplifies matters in

the case of torsion-free groups.

Lemma 2.4.18. If a group G is torsion free, then any geometric action on a space X is a free

action.

Proof. For any x € X, the stabiliser of x under the action is a subgroup of G. Since the action
is properly discontinuous and by isometries, this stabiliser is finite. Since G is torsion-free, it

must therefore be trivial. O

The converse to Lemma 2.4.18 is not true in general, as not every group possessing a free
geometric action on a space is torsion-free. However, we can obtain a partial converse in a
strong enough context. Recall that a K(G, 1) complex for a group G is a CW complex whose
fundamental group is G and whose universal cover is contractible. Now recall the following

fact (see [Hat02]):
Theorem 2.4.19. Ifa group G has a finite K(G, 1) complex, then it is torsion free.
Hence, we have the following partial converse to Lemma 2.4.18.

Lemma 2.4.20. Suppose a group G acts freely and geometrically on a contractible, finite dimen-

sional CW complex. Then G is torsion free. In particular (by Theorem 2.2.3) any group which
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acts freely and geometrically on a CAT (k) complex for k < 0, for example the fundamental group

of a compact CAT (k) complex, is torsion free.

2.4.5 Dimensions of groups

We make the following explicit for the avoidance of ambiguity:

Definition 2.4.21. The geometric dimension of a group G is the minimum dimension of a
K(G,1). The CAT(-1) dimension of G is the minimum dimension of a compact CAT(—1) com-

plexwhich is a K(G, 1).

Remark 2.4.22. The requirement that the K(G, 1) be compact in the definition of CAT(-1)
dimension is to ensure that a group cannot have a defined CAT(-1) dimension unless it is
CAT(-1). Indeed, a version of Rips’ construction can be used to build groups which have
a non-compact CAT(-1) K(G, 1), but which are not finitely presented (see [BH99, I.5]). In

particular, they are not hyperbolic, and so cannot be CAT(—1).

Remark 2.4.23. The CAT(-1) dimension of a group is at least the geometric dimension, but
they may not be equal; Brady and Crisp [BCO07] give examples of groups with geometric di-

mension 2 but CAT(-1) dimension 3.

Recall that any group with finite geometric dimension is torsion-free (Theorem 2.4.19).
In particular, a group with finite CAT(—1) dimension is in fact freely CAT(-1), and a group has
CAT(-1) dimension 2 if and only if it is the fundamental group of a compact negatively curved

simplicial 2-complex, the main objects of study in Chapters 5 and 6.

2.5 Subgroups of negatively curved groups

Now that we have various notions on negative curvature in group theory, it is natural to won-
der about the behaviour of subgroups with respect to these notions. A good candidate for a

“well-behaved” family of subgroups is described in the following section.

2.5.1 Quasiconvexity

Definition 2.5.1. A subspace Y of a geodesic metric space X is called quasiconvex if there
exists k > 0 such that any geodesic in X whose endpoints lie in Y is contained in the k-

neighbourhood of Y. A subgroup H of a finitely generated group G with generating set S is
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called quasiconvex with respect to S if the corresponding subspace of the Cayley graph I's(G)

is a quasiconvex subspace.

In general, quasiconvexity of a subgroup depends on the generating set—for example,
the subgroup of Z x Z generated by (1,1) is quasiconvex with respect to the generating set
{(1,0), (1, 1)} but not with respect to the generating set {(1,0), (0,1)}. However, if the ambi-
ent group is hyperbolic, quasiconvexity is a well-defined notion. To be precise, the following

holds. See [BH99, III.T".3] for details.

Theorem 2.5.2. Let G be a hyperbolic group, and H a subgroup of G. The following are equiv-

alent:
1. There exists a finite generating set S of G such that H is quasiconvex with respect to S.
2. For every generating set S of G, H is quasiconvex with respect to S.

3. There exists a proper geodesic space X, a geometric action of G on X, and a point x € X,

such that the orbit H - x is a quasiconvex subspace of X.

4. For any proper geodesic space X with a geometric action of G, and any point x € X, the

orbit H - x is a quasiconvex subspace of X.

5. For any finite generating set S of G, the subspace of I's(G) corresponding to H is quasi-

isometrically embedded.
If any of the above hold, we say H is a quasiconvex subgroup of G.

Sketch proof. By Theorem 2.4.7, Cayley graphs of G and geodesic spaces equipped with ge-
ometric actions of G are all quasi-isometric. Quasi-isometries of d-hyperbolic spaces pre-
serve quasiconvexity of subspaces, since they take geodesics to quasi-geodesics, and in 6-
hyperbolic spaces, quasi-geodesics are uniformly close to geodesics (see [BH99, III.H.1.7]).

Hence, we see the equivalence of 1—4. For 5, see [BH99, II1.T".3.5]). O

Definition 2.5.3. A subgroup H of a hyperbolic group G is called distorted if it is not quasi-

convex.

Theorem 2.5.4. If G is a hyperbolic group and H < G is a quasiconvex subgroup, then H is
hyperbolic.
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Remark 2.5.5. If G is a hyperbolic group, G’ < G is a finite index subgroup and H < G’ is
quasiconvex in G/, then H is quasiconvex in G. This also follows from the characterisation of

quasiconvex subgroups as those which are quasi-isometrically embedded in the Cayley graph.

The Cartan—-Hadamard Theorem (see Section 2.2.3) hints at a way to construct quasi-
convex subgroups in the context of non-positively curved spaces. Indeed, Corollary 2.2.11
provides a CAT(0) space Y, a convex subspace f(X) € Y, and a geometric action of a group
m1(Y) with a subgroup ; (X) which is cocompact and acts invariantly on the subcomplex. It
follows that the orbit under 71 (X) of some choice of basepoint in f (X) is quasiconvex, and
hence that 7, (X) is a quasiconvex subgroup. In summary, we have the following extension of

Corollary 2.2.11 in the hyperbolic case.

Theorem 2.5.6. Let f: X — Y be a local isometry between compact geodesic spaces X and Y,

where Y is non-positively curved and 1 (Y) is hyperbolic. Then:
* X is non-positively curved.
* Theinduced map f. on fundamental groups is injective.
o fi. (M (X)) cmy(Y) is a quasiconvex subgroup.

Proof. Consider the induced map X — Y. By Corollary 2.2.11, this is an isometric embedding,
and it follows that X is CAT(0) and hence X is non-positively curved. The second conclusion
is given explicitly in Corollary 2.2.11.

For the third conclusion, consider the action of 7;(Y) on the universal cover Y. This
action is geometric because it is a covering space action, and by Corollary 2.2.11, the sub-
space f(X) — Y is a convex subspace. Moreover, since Y is compact, the induced action of
[« (1 (X)) on f (X) is cocompact. Therefore, it is quasi-isometric to the orbit f; (71 (X)) - y for

some choice of basepoint y, and by Theorem 2.5.2, f. (1 (X)) is a quasiconvex subgroup. O

We will discuss the importance of quasiconvex subgroups in the cube complex setting in

Section 3.5.

2.5.2 Malnormality and finite width

The definition of quasiconvexity is geometrically inspired. The following is a related, but al-

gebraic, property of subgroups.
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Definition 2.5.7. A subgroup H < G is called malnormalif g~ Hgn H = {1} for any g ¢ H, and

almost malnormal if g~' Hg n H is finite for any g ¢ H.
Note that in a torsion-free group, almost malnormal and malnormal are equivalent.

Remark 2.5.8. Malnormality is defined as an algebraic condition, but in a sufficiently strong
geometric context, it is closely linked to geometric properties. For example, if X is a surface in
a 3-manifold M, then a failure of malnormality of 77 (X) in 7 (M) corresponds to the existence
of an annulus C with a map C — M taking the boundary components of C to essential closed
curves in Z, but such that the image of C is not homotopic into Z. If X is the boundary of
M, then malnormality of 7, (Z) in 7, (M) is indeed equivalent to the non-existence of such an

annulus, and M is called acylindrical.
Definition 2.5.7 can be generalised as follows, as studied by Gitik et al. in [GMRS98].

Definition 2.5.9. Two conjugates g, 'Hg, g 'Hg, of a subgroup H < G are called distinct
conjugates if Hg, # Hg». The width of H is the maximal number of distinct conjugates of H

whose pairwise intersections are infinite. If H is finite, the width is defined to be zero.

Remark 2.5.10. Note that the definition is a slight abuse of notation, since “distinct conju-
gates” may actually be the same subgroup of G. Note also that almost malnormal subgroups
are precisely those with width 1. It is not hard to see that infinite index normal subgroups

have infinite width, while any finite index subgroup has finite width.

The relationship between finite width and quasiconvexity is given by the following theo-

rem, which is the main result of [GMRS98].
Theorem 2.5.11. Quasiconvex subgroups of hyperbolic groups have finite width.

The converse to this theorem is an open question (for finitely generated subgroups), of

which Question 1.0.2 is a special case. We will discuss this further in Section 4.4.



Chapter 3

Special cube complexes

We introduced cube complexes in the previous chapter, as an example of a setting where non-
positive curvature can be reduced to a purely combinatorial notion. In this chapter, we will
describe a far-reaching application of this combinatorial structure, in an account of some of
the theory developed in [HW08] and [Wis12a]. A good starting point is the well-understood
case of 1-dimensional CAT(0) cube complexes: trees.

Let I" be a group acting on a tree. If I' acts freely (that is, only the identity element fixes
any point), then I' is in fact a free group. More generally, if T is allowed to fix points, then it can
be given a graph of groups structure, whose vertex and edge groups correspond to the vertex
and edge stabilisers of the action (this is the starting point of Bass—Serre theory; see [Ser03]).

To generalise this to actions on higher dimensional CAT(0) cube complexes, one might
reasonably start by looking for some examples of groups which possess actions on CAT(0)
cube complexes which are particularly easy to describe; indeed, we could look for groups
which arise as fundamental groups of certain “easy” non-positively curved cube complexes.
To this end, in Section 3.2 we will introduce right-angled Artin groups as the fundamental
groups of a particular class of non-positively curved cube complexes called Salvetti complexes.
Next, to widen our range of examples, we apply Corollary 2.2.11 and look for cube complexes
admitting a local isometry to a Salvetti complex. This can be arranged by imposing restric-
tions on the hyperplanes, and inspires the definition of a special cube complex (Section 3.3).
We thereby obtain an important foundational theorem: namely, that special cube complexes
are precisely those whose fundamental groups are subgroups of right-angled Artin groups

(Theorem 3.3.15).

35
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In Section 3.4, we will discuss the group-theoretic property of subgroup separability, and
describe how this property is motivated by geometric ideas; and in Sections 3.5 and 3.6 we will
discuss the quasiconvex subgroups of fundamental groups of special cube complexes, proving
that they are separable, and finding some explicit examples by looking again at hyperplanes.
Moreover, we will be able to give sufficient conditions for a cube complex to be special in
terms of the separability of certain subgroups.

In Section 3.8, we will indicate a few ways in which the theory of special cube complexes
has been developed further, including the landmark applications to 3-manifold topology. An
important development is the existence of a hierarchy for virtually special groups (see Corol-
lary 3.8.4), and this provides a potential inductive framework for solving many problems in
topology and group theory. We pick up on this idea further in Chapter 4.

The seminal paper which introduced special cube complexes was [HWO08], and the ac-
count we give here (up to Section 3.6) is based on that paper. This followed earlier work of
Daniel Wise in which he proved subgroup separability properties for a variety of classes of
groups (for example [Wis00] and [Wis02]). Subgroup separability was also studied earlier by
Scott (see [Sco78]) and earlier still by Marshall Hall (see [Hal49]). A good reference for further
details on the combinatorial geometry of cube complexes is [Hag08]. Much of Wise’s work is
summarised very readably in [Wis12a], which is the primary reference for the hierarchy ma-
terial outlined in Section 3.8, and more detail is given in [Wis12b]. A good reference for the

applications to 3-manifolds is [AFW15].

3.1 Cube complexes and their hyperplanes

Let X be a cube complex. In this chapter, we identify each n-cube with [-1,1]", and we refer
to 0-cells, 1-cells and 2-cells as vertices, edges and squares respectively. A cube complex whose
cells have dimension at most 2 is called a square complex.

Each n-cube of X has n midcubes, given by setting one of the n coordinates to 0. A mid-
cube in an n-cube is isometric to an n — 1-cube. The inclusion of one cube of X as the face
of another induces an inclusion of the corresponding midcubes. Taking the disjoint union
of midcubes and gluing faces according to these induced inclusion maps, we obtain a family
of cube complexes H, each equipped with a natural map ¢g: H — X sending cubes of H to

midcubes of X. We say H is a hyperplane of X (see Figure 3.1 and Section 3.3 for more details).
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An equivalent way to describe hyperplanes is as follows. Call two edges of X elementar-
ily parallel if they are opposite sides of a square of X. This generates an equivalence relation
on the edges of X, called parallelism. There is then an exact correspondence between hyper-
planes and parallelism classes of edges; the set of midcubes of edges in a parallelism class
is precisely the vertex set of a hyperplane. We say the hyperplane is dual to an edge in the

corresponding parallelism class.

Figure 3.1: A cube complex, with the six hyperplanes shown. The two edges
marked by the arrow are identified. The largest parallelism class of edges corre-
sponds to the blue hyperplane, and contains all seven vertical edges and the three
rightmost horizontal edges.

3.1.1 Sageev’s dual cube complex construction

The following construction of Sageev [Sag95] provides an additional reason to work with cube
complexes, rather than any other type of combinatorial structure. It has been applied recently

to many different groups.

Definition 3.1.1. A wallspace (X,#') is a space X with a set of bipartitions # = {{W;, V;} | X =
W;u'V; Vi e #} (called wall partitions) of the space into halfspaces W; and V;, such that any

two points in X are both in the same halfspace for all but finitely many wall partitions.

Theorem 3.1.2. Let G be a group acting on a wallspace (X, %), where the action permutes the
wall partitions. Then there exists a CAT(0) cube complex C, called the dual cube complex fo

(X, %), with an action of G on C.

Wallspaces are highly ubiquitous in geometry, with wall partitions arising from (for ex-
ample) incompressible immersed surfaces in a 3-manifold, and in group theory, where (for ex-
ample) the subgroup C < A % B gives rise to a wall partition. By choosing “sufficiently many”
walls, the action on the dual cube complex can be controlled. For more details, see Section
3.8 and [Wis12a]. Note, however, that the cube complexes arising from Sageev’s construction

are typically very high-dimensional. Thus, if one wishes to obtain optimal information about
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the dimension of groups, it may be preferable to study different combinatorial stuctures, as

we show in Chapters 5 and 6.

3.2 Right-angled Artin groups

The following class of groups is constructed by associating a simple presentation to a simpli-

cial graph.

Definition 3.2.1. Let I" be a graph with vertices V(I'). The right-angled Artin group corre-
sponding to I' is

Ar=(VID|{vwr'w™ | vwe EM}).

Free and free abelian groups are both examples of right-angled Artin groups, correspond-

ing respectively to graphs with no edges and complete graphs (see Figure 3.2).

b c b c b c
[ ] [ ]
[ ] [ ]

a d a d a d
Ar=F, Ar ={a,c) x{b,d) Ar=274

Figure 3.2: Examples of right-angled Artin groups

Remark 3.2.2. The simplicity of this construction ensures that right-angled Artin groups have
many appealing properties. For example, if I' is a finite graph then Ar is linear (see [HW99])—
indeed, any finitely generated right-angled Artin group can be embedded in SL,,(Z) for some
m. Therefore, a group is linear if it can be realised as a subgroup of a finitely generated right-
angled Artin group. As we will see later, this is a much less restrictive condition than it first

appears (see Theorem 3.3.15).

3.2.1 Salvetti complexes

The reason right-angled Artin groups are interesting when studying cube complexes is that
we can construct a cube complex with any given right-angled Artin group as its fundamental
group. We describe the construction for the case where I is finite, but the infinite case is

similar.
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Construction 3.2.3. As before, let I be a graph with vertices v4,...,v,. The Salvetti complex
for the group Ar is constructed via a subcomplex S’ of the n-dimensional unit cube spanned
by xi,...,x,. The r-cube spanned by x;,,...,x;, is included in S’ if and only if the vertices
Vi,,..., Vi, of I are pairwise connected. In the resulting cube complex §’, the link of the origin
is the unique flag complex with 1-skeleton I'. Identifying opposite sides of the n-cube, S’
becomes a subcomplex S(I') of the n-dimensional torus. This is defined to be the Salvetti

complex of Ar.

The Salvetti complex is built from a bouquet of n loops, and contains a 2-torus spanned
by a pair of loops if and only if the corresponding vertices are joined by an edge in I'. Indeed,
this fully describes the 2-skeleton of S(I'), and so 7 (S(I')) = Ar. Furthermore, we can show

that S(I') is non-positively curved.
Proposition 3.2.4. S(I) is non-positively curved.

By Theorem 2.3.8, it is enough to show that the link L of the single vertex of S(I') is a flag
complex. L has vertex set {v7, ..., v5}. Consider an r-cube in §' (from Construction 3.2.3)
spanned by x;,,...,x;,. This contributes 2" r — 1-simplices to L, which are the links of the
27 vertices of the r-cube in §'. So, the vertex set of each simplex corresponds to a choice
of superscripts in {v;—;, e vl.ir}, and moreover any such choice appears as the vertex set of a
simplex. In particular, since the subcomplex obtained by taking all superscripts as + is flag (as

in Construction 3.2.3), the whole complex L is flag.

X2

A
ANE .

Figure 3.3: Example of a graph I' and corresponding Salvetti complex S(I'). Side
identifications are indicated by arrows. The three hyperplanes are labelled H;, H,
and Hs.

By Corollary 2.2.11, we know that if we can find a cube complex X which admits a local

isometry to the Salvetti complex S(I'), then 7} (X) will be isomorphic to a subgroup of the



CHAPTER 3. SPECIAL CUBE COMPLEXES 40

eA /\f

Figure 3.4: Edges e and f have a consistent orientation.

right-angled Artin group Ar. As we will see in the next section, special cube complexes are

designed precisely to ensure that this local isometry exists.

3.3 Special cube complexes

In order to give the definition of a special cube complex, we must first look in more detail at
the behaviour of hyperplanes. Recall that hyperplanes correspond to parallelism classes of
edges. We may choose an orientation on any edge e of X. If e is elementarily parallel to f, it
is opposite f in a square of X, and e and f may be given a consistent orientation (see Figure

3.4).

Definition 3.3.1. If every edge in a parallelism class can be oriented consistently, the corre-
sponding hyperplane is called fwo-sided. Otherwise, it is called one-sided. A one-sided hyper-

plane is shown in the leftmost picture of Figure 3.6.
There is also a more sophisticated way to describe two-sidedness.

Definition 3.3.2. For a hyperplane H in a cube complex X, the cubical neighbourhood of H,
denoted Upy, is the union of cubes in X intersecting H (that is, the union of cubes whose

midcubes comprise H).

Definition 3.3.3. Let M be a midcube of a cube C of X. There is an obvious retraction map
r: C — M, which we may think of as an interval bundle Ny; — M. Since the retraction map
commutes with the inclusion of one cube as the face of another, we may piece together these
bundles for all midcubes in a given hyperplane H. The resulting bundle is the normal bundle
Np, which restricts to Nys over each cube M of H, and is equipped with a map yg: Ny — X

with image Upg. See Figure 3.5 for an example.

A hyperplane H is two-sided if and only if Ny is isometric to H x [-1,1]. In this case,
the boundary d Ny has two components, ON;{I = H x {1} and GNI_{ = H x {—1}, each isometric

to H, and we identify H with the 0-section H x {0} of the bundle (see Figure 3.5). Otherwise,



CHAPTER 3. SPECIAL CUBE COMPLEXES 41

Ny is isometric to a twisted interval bundle, Ny has one component, and the hyperplane is

one-sided.

Figure 3.5: The map yy from the normal (product) bundle N over a hyperplane
H into a cube complex X. The restriction of this map to the 0-section (shown in
blue) is precisely the map ¢ : H — X.

From now on, we will assume that all edges dual to a given two-sided hyperplane are

consistently oriented.

Definition 3.3.4 (Hyperplane pathologies). Consider two-sided hyperplanes H; and H» in X
with dual edges e; and e, respectively, which are both incident at some vertex v of X. If e;
and e, form the corner of a square at v, then we say H; and H, intersect. If e; and e, do not
form the corner of a square at v, we say H; and H» osculate at v. If Hy = Hy, then we use the
terms self-intersect and self-osculate accordingly. If H self-osculates and the corresponding
edges are both oriented towards (or both away from) v, we say the self-osculation is direct,
otherwise it is indirect. Finally, a pair of distinct hyperplanes is said to interosculate if they

both intersect and osculate. See Figure 3.6.

Remark 3.3.5. Intersection of two hyperplanes H;, H; is equivalent to non-injectivity of the
map H; U H, — X, and osculation of two hyperplanes implies that the map 0Ny, UdNpy, —
X is non-injective. Direct self-osculation of H implies non-injectivity of either N}, — X or
ONI_{ — X, and indirect self-osculation implies that there is an intersection of the images of

these two maps.

A OROT

Figure 3.6: Hyperplane pathologies. From left to right: one-sidedness, self-
intersection, direct self-osculation, indirect self-osculation and interosculation.
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Definition 3.3.6. A special cube complex X is a non-positively curved cube complex such that:
1. All hyperplanes are two-sided.
2. No hyperplane self-intersects.
3. No hyperplane directly self-osculates.
4. No pair of hyperplanes interosculate.

That is, special cube complexes are those non-positively curved cube complexes which

display none of the behaviour shown in Figure 3.6 (except perhaps indirect self-osculation).

Remark 3.3.7. Haglund and Wise do not insist that special cube complexes are non-positively
curved. In fact, any simple cube complex satisfying the given hyperplane conditions can be

made non-positively curved without altering the 2-skeleton. See [HW08].
We start with two easy lemmas.
Lemma 3.3.8. Salvetti complexes are special.

Proof. We know from Section 3.2.1 that Salvetti complexes are non-positively curved. Each
hyperplane is dual to a unique oriented edge, with both endpoints at the single vertex v. This
guarantees 2-sidedness, and rules out self-intersection and direct self-osculation (although
every hyperplane indirectly self-osculates). For interosculation, observe that if a pair of hy-
perplanes H;, H; intersect with corresponding dual edges e, e, then the reversed edges ¢,

¢, also span a square at v, hence osculation is impossible for hyperplanes which intersect. O
Lemma 3.3.9. Covering spaces of special cube complexes are special.

Proof. Let X be special and p: X — X be a covering map. By definition p is a local isometry,
so there is a natural induced cube complex structure on X, which is non-positively curved by
Theorem 2.2.10. Hyperplanes in X project to hyperplanes in X—more specifically, if e and f
are parallel edges in X, then p(e) and p(f) are parallel edges in X. It is straightforward to see
that any of the forbidden hyperplane pathologies in X would project to the same pathology in

X. Thus no pathology can occur in X, and so it is special. O

Definition 3.3.10. A group is called (compact) special if it is the fundamental group of a (com-

pact) special cube complex.
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Example 3.3.11. Any orientable surface of genus = 1 is homeomorphic to a special cube com-
plex. This is clearly true for the torus (as it is a Salvetti complex for the right angled Artin group
Z?). All higher genus surfaces cover the genus 2 surface, so by Lemma 3.3.9 it is enough to
show that this is special, and it is easy to check by hand that the cube complex structure illus-
trated in Figure 2.3 is special. (This is not optimal; there is a retraction onto a square complex

with only four squares.)

Example 3.3.12. The non-orientable surface of Euler characteristic —1 is not homeomorphic
to a special cube complex. This can be shown by an Euler characteristic argument, consider-

ing the possible cases for the degrees of vertices in the cube complex structure.

Example 3.3.13. Any CAT(0) cube complex is special. The proof of this uses the fact that
hyperplane neighbourhoods are convex subcomplexes, which follows from Lemma 3.6.1 to-

gether with Corollary 2.2.11. For full details, see [HWO08].

Definition 3.3.14. A property is said to virtually hold in a group if it holds in a finite-index

subgroup, and similarly in a space if it holds in a finite-sheeted covering space.

In particular, we will often refer to virtually special cube complexes, which are cube com-
plexes with a finite-sheeted special covering space.

By the above, we know that right-angled Artin groups are special, and subgroups of spe-
cial groups are special. We are now ready to state the main theorem of this section, the proof

of which will motivate each of the conditions in Definition 3.3.6.

Theorem 3.3.15. A group G is the fundamental group of a special cube complex if and only if

G is a subgroup of a right-angled Artin group.

Proof. The reverse implication follows from the remarks above, since if G is a subgroup of a
right-angled Artin group, it is the fundamental group of a covering space of a Salvetti complex,
which is a special by Lemmas 3.3.8 and 3.3.9.

Let X be a special cube complex with fundamental group G. We will construct a local
isometry from X to the Salvetti complex of a right-angled Artin group, and this will prove the
forward implication by Corollary 2.2.11.

Define I'(X) to be the graph with vertices for each hyperplane of X and an edge between
two vertices when the hyperplanes they represent intersect in X. Since no hyperplanes self-

intersect, this will be a simplicial graph.
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Consider the Salvetti complex S = S(I'(X)). We construct a combinatorial map X — S.
First, map all the vertices in X to the single vertex in S. Next, we must map edges. Since
all the hyperplanes of X are two-sided, we may fix a consistent orientation on all edges of S.
Suppose some edge e in X is dual to a hyperplane H;. Then H; corresponds to a vertex v; of
I'(X), which corresponds in turn to the oriented edge x; in the Salvetti complex S. We map e
to x; preserving the orientation.

To map the squares of X to S, we observe that if two edges e; and e; in X span a square
C then their dual hyperplanes H; and H; intersect in C, and hence the vertices v; and v; are
joined by an edge in I'(X), so there is a corresponding square C’ in S spanned by x; and x;. We
can therefore extend the map to C, mapping it to C'.

Now, since X is non-positively curved, the links of all its vertices are flag, and the same
is true for S. Hence, once we have mapped the edges and faces of X into S, the image of the
2-skeleton of any k-cube in X will be the 2-skeleton of a k-cube in S. Therefore, we can extend
the map across k-cubes, obtaining a map ®x defined on all of X.

To verify that ®x is a local isometry, by Theorem 2.3.12 it is enough to check that ®x is
injective on links, and that whenever the image of ®x on a given link contains two adjacent
vertices, their preimages were adjacent in the original link. So firstly, suppose two vertices a,
b € Lk(v) are mapped to the same vertex in Lk(® x(v)). By construction of the map ®x, this
means the edges in X corresponding to a and b are parallel (that is, they have the same dual
hyperplane), and moreover, are both oriented away from or both towards v. Therefore, the
corresponding hyperplane self-intersects or directly self-osculates, which is a contradiction.

Finally, suppose that a, b € Lk(v) are vertices whose images in Lk(®x(v)) are joined by
an edge. By construction of T, this means the hyperplanes dual to a and b intersect. If a and
b are not joined by an edge in Lk(v), then they osculate at v, so they interosculate, which is

forbidden. So a and b are joined by an edge, as required. O

By Remark 3.2.2, the fact that virtually linear groups are linear, and the fact that finitely

generated linear groups are residually finite [Mal40], we obtain the following.

Corollary 3.3.16. Virtually compact special groups are linear. In particular, they are residually

finite.
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3.4 Subgroup separability

The proof of Theorem 3.3.15 provides a neat justification for each of the conditions in the
definition of a special cube complex. However, it was not the original motivation for the con-
struction. This was to enable a generalisation of a standard technique to prove subgroup sepa-
rability. In this section we will discuss this technique and its consequences for special groups.
Later, we will be able to use subgroup separability to give a criterion for determining virtual

specialness.

Definition 3.4.1. A subset H of a group G is called separable if, for any x € G — H, there exists

a finite index subgroup G’ < G containing H but not containing x.
Sometimes it will be convenient to express this in the following way:

Definition 3.4.2. The profinite topology on a group G is the topology whose closed basis is

given by cosets of finite index subgroups of G.

Then a subset is separable if and only if it is closed in the profinite topology. Note that

this applies to subsets of G, rather than just subgroups.

Remark 3.4.3. Given any group homomorphism ¢: G — H, if H < H is a finite-index sub-
group, then the preimage ¢! (H’) must have finite index in G. Therefore, group homomor-
phisms are continuous in the profinite topology. Similarly, if g € G, then gG' is a coset of a
finite index subgroup only if G’ is a finite index subgroup, so left multiplication is continuous,

asis right multiplication. This makes it easy to find continuous maps in the profinite topology.

Definition 3.4.4. A group G is called residually finite if the trivial subgroup is separable, and

subgroup separable if all its finitely generated subgroups are separable.

Proposition 3.4.5. Let H < G' < G where G' is finite index in G. Then any subgroup of H which
is closed in G' is also closed in H and in G. Moreover, if G' is subgroup separable, then so are H

and G.

Proof. Itis straightforward to check this using the profinite topology. For an alternative proof,

see (for example) [Sco78]. O

Example 3.4.6. Finite groups are subgroup separable, because every subgroup is finite index
and hence closed. The infinite cyclic group is also subgroup separable, because the only sub-

group not of finite index is the trivial subgroup, which is the intersection of all finite index
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subgroups and hence closed. Hence, virtually infinite cyclic groups are subgroup separable

by Proposition 3.4.5.

Example 3.4.7. Finitely generated abelian groups are subgroup separable. To see this, first
note that they are all residually finite, by their classification. Now let H be a subgroup of the
finitely generated abelian group G. Since G is abelian, H is normal, and the quotient G/ H is
finitely generated abelian; hence H is the preimage under the quotient map of the closed set

{1} € G/ H, and is therefore closed in G.
In the following lemma, H is said to be a virtual retract of G.

Lemma 3.4.8 (The virtual retract criterion). Let G be residually finite, G' < G a finite index
subgroup, H < G' < G, and let p: G — H be a retraction (i.e. a homomorphism satisfying

p(h) = h forall he H). Then H is separable in both G' and G.

Proof. Let f: G' — G' be the map sending g to g~'p(g). Observe that f is continuous in the
profinite topology (see Remark 3.4.3). Applying Proposition 3.4.5 to the trivial subgroup, {1} is

closed in G’ and so f~!({1}) = His closed in G/, and hence in G. O

3.4.1 Topological motivation

Our interest in subgroup separability comes from topology. As we will see later, proving sep-
arability for a subgroup H of a group G = m;(X) often relies on taking some immersion (that
is, locally injective map) Y — X representing H, and factoring it as the composition of an in-
clusion and a finite-sheeted covering map. In other words, we will lift an immersion to an
embedding in a finite covering space, and deduce separability. In fact, this can be thought of

as a characterisation of separability, as noticed by Peter Scott in [Sco78]:

Theorem 3.4.9. Let X be any cell complex, G = m1(X), and Xy — X a covering map correspond-
ing to a finitely generated subgroup H < G. Then H is separable if any only if, for any compact
subcomplex C < Xy, the covering map Xy — X factors through a finite-sheeted cover X' — X

such that C projects homeomorphically into X'.

Therefore, if we have an immersion Y — X, and we know the corresponding subgroup of
71 (X) is separable, we will be able to lift this immersion to an embedding in a finite cover. This
tool is used time and again in the later development of the theory of special cube complexes

(see Theorem 3.6.6, Section 3.8, and [Wis12a] for more examples).
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3.4.2 Free groups

One of the first results concerning subgroup separability was provided by Marshall Hall in

[Hal49]:
Theorem 3.4.10. Free groups are subgroup separable.

Proof. Let F be a free group, with a finitely generated subgroup H. Let B be a bouquet of
circles such that F = n;(B), and consider the covering map Xy — B corresponding to H. In
general, Xy is an infinite graph with 71 (Xy) = H. However, since H is finitely generated, there
is a finite, connected subgraph C of Xy with 7, (C) = H.

The covering map Xy — B restricts to an immersion ¢: C — B. Let us colour B with a
different colour for each edge, and also fix an orientation for each edge. Pulling back under ¢,
we obtain a colouring and orientation of C.

Consider the subgraph C; of C containing every vertex and all edges of some fixed colour
(red, say). Every vertex of C; has degree at most two, so the connected components are di-
rected cycles, paths or isolated vertices. For each isolated vertex v of C;, add in ared loop at v.
For each component of C; which is a non-closed path P, add in to C a red edge e connecting
the endpoints, oriented to make P U e a directed circle. After doing this for each colour, the
resulting graph C’ has an incoming and outgoing edge of every colour at every vertex, and so
itis a covering map. Note that there is also a naturally defined (non-combinatorial) retraction
map r: C' — C given by mapping each new edge continuously onto the monochromatic path
or vertex to which we added it. Moreover G’ = 71 (C’) is a finite index subgroup of F (since C’
is a finite cover).

The retraction r induces a retraction G' — H. Thus H is separable in G by Lemma 3.4.8

(and the fact that free groups are residually finite—see [Sta83]). O

Remark 3.4.11. This proof is a model for future proofs of subgroup separability, via the
stronger property of a subgroup being a virtual retract. We began by taking a covering space
Xy corresponding to H. We then found a finite cover C’, with a retraction realising H as a vir-
tual retract. To do this, we found a finite subcomplex C of Xy, with an immersion to B given
by restricting the covering map. We then completed C to a covering space C’ (by adding extra
edges). C contained all the nontrivial topology of Xy, and will be referred to as a compact core

of Xpg. Scott used a similar technique to prove the following result in [Sco78].

Theorem 3.4.12. Surface groups are subgroup separable.
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Special cube complexes were originally constructed in order to generalise this technique
to a more sophisticated combinatorial setting (see Section 3.4.3 and [Wis12a]). In particular,
given a restricted covering map (or any other local isometry) between special cube complexes,
we will be able to factor this map as the composition of an inclusion and a finite-sheeted

covering map, where the inclusion will have a retraction as a left inverse.

Remark 3.4.13. Hall’s original proof of Theorem 3.4.10 does not use the virtual retraction
criterion for subgroup separability; instead, it keeps track of a representative loop for a chosen
element x € F— H, enlarging C to contain a non-closed path mapping to this loop, which then
does not represent an element of 771 (C’). One advantage of the virtual retraction criterion is to
remove the need to keep track of such an element. A disadvantage is that it assumes residual
finiteness: indeed, one way to prove residual finiteness for free groups is to repeat the above
proof in the particular case where C is a subdivided line mapping to a fixed element of F.
Note also that in Scott’s reformulation (Theorem 3.4.9), one condition was for the map
Xy — X to factor through the finite cover C'. This indeed holds in our proof of Theorem

3.4.10, since H < G/, but we did not need to use it explicitly in the proof.

3.4.3 Canonical completion and retraction

The first step in studying the separability properties of special cube complexes is to find a
method for “completing” a map between special cube complexes to a covering map. In the
one dimensional case, where the image complex was a bouquet of circles, this was achieved by
adding extra edges. We mimic this in Construction 3.4.16 below. To simplify matters slightly,
we use the following terminology: a cube complex B is called fully special if it is special and,
in addition, hyperplanes do not indirectly self-osculate. That is, there is at most one edge in
each parallelism class incident at each vertex of B. This is not a significant restriction—see
Remark 3.5.13.

We will require the following categorical notion:

Definition 3.4.14. Given objects X, Y and Z, and morphisms f: X - Zand g: Y — Z, the
fibre product X x 7 Y is defined to be {(x,y) € X x Y | f(x) = g(3»}, equipped with the projec-

tions p; and p; to X and Y. The following diagram commutes.
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Xx, ¥ sy

ml lg

X T> VA
Remark 3.4.15. When X and Y are cube complexes, there is an inherited cube complex struc-
ture on the fibre product. In the case of graphs, this was used extensively by Stallings (see
[Sta83]), who noticed that if X, Y and Z are graphs and f and g are immersions, then one
connected component of the fibre product represents the subgroup 71 (X) N1 (Y) < m1(Z2).

This leads to a quick proof that the intersection of finitely generated free subgroups of a free

group is finitely generated.

Construction 3.4.16. Let f: A — B be a local isometry from a compact cube complex A to
a fully special compact cube complex B. Then we wish to construct a special cube complex
C = C(A, B), equipped with a finite-sheeted covering map p: C — B, an inclusion j: A— C

and a retraction r: C — A as in the following diagram':

C=C(AB)

First, let B* be the Salvetti complex S(I'(B)), with ®g: B — B* defined as in the proof of

B

Theorem 3.3.15. We will begin by constructing a cube complex C* = C(A, B*). The 1-skeleton
of B* is a bouquet of circles x1,..., x,;, so as in the proof of Theorem 3.4.10, there is a graph C’,
a covering map p*, an inclusion j* and a retraction r* as in the diagram below. We take C’ as
the 1-skeleton of C*. Note that the vertices of C’ are in one-to-one correspondence with the
vertices of A. We regard the edges of C’ as coloured by colours xy,...,x, (according to their

image in B*).

C/

7 p
/f\

Since B is fully special, A has at most one edge at any vertex mapping to any given par-

AD B*(l)

allelism class of B, and hence the subgraph A of C’ has at most one edge of any colour

incident at any vertex. Therefore, referring back to the construction in the proof of Theorem

I This diagram does not commute, because r is defined on the whole of C, but the other maps do commute.
The rest of the diagrams in the construction behave similarly.
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3.4.10, the single-coloured components of C’ are all either loops or double edges; in the latter
case, exactly one of these edges is in A,

Consider a square S of B*, with boundary x;x ] xl._1

x]TI. This loop lifts as a path 7 at each
vertex of C'. By definition, the hyperplanes H;, H; corresponding to x;, x; intersect in B, and
so they cannot osculate in A. Therefore, if some vertex v € A has an incident edge of each
colour x;, xj, these edges span a square, and in C’, the four edges become double edges. This
means that if two consecutive edges of 7 are non-loops, 7 is in fact a closed path. If not, then
both lifts in 77 of at least one of x; and x; are loops. Again, this means 7 is a closed path. Hence,
we can attach a square to 7, mapping under p* to S. All squares of A will appear in this way, so
the inclusion j* extends to A®). Each square takes one of three forms depending on whether

0, 2 or 4 of its edges are loops, and the retraction r* sends such a square onto a square, edge or

vertex of A respectively. In this way, we extend C’ = C*V) to a square complex C* @ satisfying:

C* 2)

Using the fact that squares in C*® take one of three forms, it is easy to verify that we may

A@ B*®@

always glue in higher-dimensional cubes to obtain a non-positively curved complex C*, and

that the maps extend across these cubes (for full details, see [HW08]).

C*=C(A,B")
L
/CDBOf

We complete the construction using the fibre product. C(A, B) is defined to be B x =

A B*

C(A, B*). This is summarised in the following diagram (as before, all the maps commute ex-

cept for the retractions).

Bxpg: C(A,B*) =77 7777=- -2
\ T~
\\ \ \\\s
\ collapse B "
\ C(A,B) : — C(A,BY)
\\
\

N' ] /7 7
- s

J/ //
\ \ (/// r* .
N p A p

h / ot

SN
B

Dp
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Note that the vertices of C(A, B) are in correspondence with B® x A®: the map labelled
“collapse B” restricts to vertices as a projection onto the second factor, and p as a projection
onto the first factor, as in Definition 3.4.14. The inclusion j is the map that takes an edge vw
of Ato the edge (f(v), v)(f (w), w) of Bx g+« C(A,B*) = C(A, B). The bold diagram in the centre

contains the desired canonical completion and retraction.

Definition 3.4.17. The map j in the construction above is called the canonical completion of
the map f. Sometimes we will also refer to the complex C(A, B) by this name. The map r is

called the canonical retraction.

3.5 Quasiconvexity in cube complexes

We have shown that a local isometry f: A — B between (fully) special cube complexes can be
factored as a composition of an inclusion (the canonical completion) and a covering map. To
deduce that f, (771 (A)) is a separable subgroup of 7 (B), we need this covering map to be finite
sheeted, and if B is compact this requires A to be compact. In the graph case this is easy: for
any finitely generated subgroup H < m;(B), we can take a core graph of the covering space
corresponding to H, so that the canonical completion is a finite graph and hence the covering
space is finite sheeted.

In the cube complex case, it is not enough to merely take a compact core; the map we
are to complete must be a map of cube complexes, so at the very least, the core must be a
subcomplex. Moreover, since the canonical completion is only defined for local isometries,
we require the core to be locally convex (otherwise, the restriction of the cover fails to be alocal
isometry). Rephrasing this (via Corollary 2.2.11) in terms of the universal cover B, we wish to
find a subcomplex Y of B which is convex, and invariant and cocompact under the action of
H on B. Then, H will be the fundamental group of the compact cube complex A = Y/H, and
we can apply the canonical completion to show that H is separable.

This motivates the following definition.

Definition 3.5.1. Let G act geometrically on a CAT(0) cube complex X. A subgroup H of G is
called combinatorially convex cocompact (or CCC) if there is a convex subcomplex ¥ on which

H acts cocompactly.
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However, there is a problem with this approach. The property of being CCC depends on
the choice of complex X; a priori, a subgroup H < G might be CCC with respect to one action

of G but not another. The following example illustrates this.

Example 3.5.2. Consider Z x Z acting in the standard way on R? (the standard action being
given by (a, b) - (x,y) = (x+ a, b+ y)), with a cube complex structure given by unit square tiles
and vertices at Z x Z. The diagonal subgroup D is not CCC, since any invariant subcomplex
must contain the diagonal line y = x, and no subcomplex containing this line is convex, except
for R? itself, upon which the action of D is not cocompact.

However, if we change the action to, say, (a,b) - (x,y) = (x+a—b,y+a+ b), then D acts

cocompactly on the y axis. Hence, with respect to this action, D is CCC.

It is not a coincidence that this is reminiscent of the ambiguity in defining a quasicon-
vex subgroup that we saw in Section 2.5.1, and indeed, restricting to hyperbolic groups again

resolves the ambiguity.

Theorem 3.5.3. IfG is a hyperbolic group acting geometrically on a CAT(0) cube complex, then
the quasiconvex subgroups of G coincide precisely with the CCC subgroups. In particular, the

property of being CCC is independent of the choice of action on a CAT(0) cube complex.

The full proof of the above theorem relies on the work of Haglund [Hag08], and we will
give some more details in Section 3.5.1. In fact, we have already seen one direction of this the-
orem. Since a CCC subgroup corresponds to an isometrically embedded CAT(0) cube com-
plex, applying Theorem 2.5.6 gives another proof that CCC subgroups are quasiconvex. How-
ever, the other direction involves a strengthening from the coarse notion of quasiconvexity to
the full convexity in the definition of CCC, and this is where Haglund’s work is required.

To summarise the importance of quasiconvex subgroups in hyperbolic cube complexes,

we give the following restatement of Theorems 3.5.3 and 2.5.6.

Theorem 3.5.4. Let X be a compact, non-positively curved cube complex with hyperbolic fun-
damental group G. Then a subgroup H of G is quasiconvex if and only if there exists a compact
cube complex Y equipped with a local isometry f: Y — X, such that f induces the inclusion

H — G of fundamental groups.
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3.5.1 Convex subcomplexes of CAT(0) cube complexes

In this section, we recall from Haglund’s paper [Hag08] some results concerning convex sub-
complexes of CAT(0) cube complexes. These will play an important role in Chapter 4, but their
main relevance to the current chapter is to give some insight into the proof of Theorem 3.5.3.
Given a CAT(0) cube complex X, the main idea behind proving the results in this section is
to disregard the intrinsic metric on the cube complex coming from the Euclidean metrics on
each cube (as in Section 2.2.4), and instead to consider the combinatorial distance function
on X given by length of edge paths in X.

First, recall that since CAT(0) cube complexes are special (Example 3.3.13), hyperplanes
are 2-sided, and hence removing an open hyperplane neighbourhood Uy divides X into two

disjoint complexes, each equipped with a natural inclusion map to X.

Definition 3.5.5. If H is a hyperplane in a CAT(0) cube complex X, the two connected com-

ponents of X — Uy are called the halfspaces corresponding to H.

It is straightforward to show that halfspaces, as well as hyperplane neighbourhoods, are

convex subcomplexes (see Lemma 3.6.1 and [Hag08]).

Theorem 3.5.6 ([Hag08, Proposition 2.17]). IfC is a convex subcomplex of a CAT(0) cube com-

plex X, then C coincides with the intersection of halfspaces containing C.
Haglund also introduces the following coarser notion of convexity:

Definition 3.5.7. Let X be a CAT(0) cube complex. A combinatorial geodesic between two ver-
tices x and y is a path in the 1-skeleton XV of minimal length. A subcomplex C c X is called
combinatorially quasiconvex if there exists K = 0 such that, for any two vertices x, y € C, any
combinatorial geodesic connecting x and y is contained within the K-neighbourhood of C. If
G is a group acting geometrically on X, then a subgroup H c G is called combinatorially qua-

siconvex if there exists a point x € X such that the orbit H- x is combinatorially quasiconvex.

Remark 3.5.8. Combinatorial quasiconvexity is independent of the choice of basepoint, and
moreover it is equivalent to ordinary quasiconvexity if G is a hyperbolic group (equivalently, if

Xisa hyperbolic space), since quasi-geodesics are close to geodesics (see [BH99, I11.H.1.7]).

Lemma 3.5.9 ([Hag08, Lemma 2.25]). Let Y and C be two subcomplexes of a CAT(0) cube
complex X, such that Y is combinatorially quasiconvex and C is contained within the R-

neighbourhood of Y for some R. Then C is combinatorially quasiconvex.
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Moreover, the following result gives a strong relationship between combinatorial quasi-
convexity and full convexity. The convex hull of a subset C is the intersection of all halfspaces

containing C; by Theorem 3.5.6 this is equivalent to the usual notion of convex hull.

Theorem 3.5.10 ([Hag08, Theorem 2.28]). LetX bea uniformly locally finite CAT(0) cube com-
plex, and let C be a combinatorially quasiconvex subcomplex. Then there exists R such that the

convex hull of C is contained within the R-neighbourhood of C.
In the context of groups acting on CAT(0) cube complexes, we have the following.

Corollary 3.5.11 ([Hag08, Corollary 2.29]). Let X be a CAT(0) cube complex, let G be a group
acting geometricallyon X, and let H ¢ G be a subgroup. Then H is combinatorially quasiconvex

ifand only if H is CCC.

Together with Remark 3.5.8, Corollary 3.5.11 implies Theorem 3.5.3.

3.5.2 Separability of quasiconvex subgroups

We are now ready to state the following theorem.

Theorem 3.5.12. Let X be a compact, fully special cube complex. Let G = m1(X). Then every
combinatorially convex cocompact (with respect to the universal covering action) subgroup H

of G is separable.

Proof. Since H is CCC, we may find a convex subcomplex Y of X on which H acts cocom-
pactly. Let A be the compact cube complex Y/ H. There is a well-defined combinatorial map
f: A— X, mapping 7 (A) isomorphically onto H. Since Y is convey, it follows that f is a local

isometry. We may therefore apply the canonical completion to f, as in the following diagram:

Y [

X
q _ CAX) ‘

Y/ H=A X

Since G is residually finite (Corollary 3.3.16), p is a finite sheeted cover and r is a retract,
we may apply Lemma 3.4.8 to p.(j. (H)) < p«(m1(C(4, X))) < G to see that H = 1 (A) is sepa-

rable in G, as required. O
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Remark 3.5.13. The restriction to fully special complexes does not restrict the class of groups:
taking the first subdivision (where we divide each edge in two, each square into four and so on)
of any special cube complex gives one which is fully special (and has simplicial 1-skeleton).
Moreover, by Proposition 3.4.5, it is sufficient to prove subgroup separability by showing that

it holds in a finite index subgroup, and hence we obtain:

Corollary 3.5.14. Let X be a virtually compact special cube complex with fundamental group
G. Then every combinatorially convex cocompact (with respect to the universal covering action)

subgroup of G is separable.
Finally we can use Theorem 3.5.3 to deduce:

Corollary 3.5.15. Let X be a virtually compact special cube complex with 6 -hyperbolic funda-

mental group G. Then every quasiconvex subgroup of G is separable.
Haglund and Wise [HW08] also prove a converse to this:

Theorem 3.5.16. Let X be a compact non-positively curved cube complex with 6 -hyperbolic
fundamental group G. If every quasiconvex subgroup of G is separable, then X is virtually

special.

The proofis postponed to the following section.

3.6 Hyperplane subgroups

We have shown that quasiconvex (or CCC) subgroups of virtually compact special groups are
separable, but for this to be useful, we would like to be able to apply it to some explicit sub-
groups. Recall that when G = 7;(X) acts on X, a subgroup is CCC if it preserves a convex
subcomplex Z. We have already introduced one type of subcomplex: the regular neighbour-
hood of a hyperplane. Lemma 3.6.1 implies that, in the universal cover, this subcomplex will
be convex, and hence hyperplanes will provide explicit examples of CCC subgroups. It is also

an important ingredient in the proof of the results in Section 3.5.1.

Lemma 3.6.1. Let H be a hyperplane in a non-positively curved cube complex X. The map y g

is a local isometry.

Proof. In the two-sided case, there is a map yp: Ny = H x [-1,1] — X, whose image is Up.

Each vertex v of H x [-1,1] has exactly one edge e, dual to H (that is, the fibre over a vertex
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of H). Pick two non-adjacent vertices a, b of the link of some vertex v € H x [-1,1]. Neither
corresponds to the edge e,, since this edge bounds a square with all the other edges at v. The
vertices yg(a), xu(b) € Lk(y z(v)) are both adjacent to the vertex s € Lk(y g (v)) corresponding
to yu(ey). Hence if yy(a) and yp(b) are adjacent, then s, yy(a) and yy(b) form a 3-cycle.
Since X is non-positively curved, the corresponding three squares bound a 3-cube, which is
in Uy since one of its edges is y ;(e,). But this cube must be the image of a cube in H x [-1,1]
spanned by e, and the edges corresponding to a and b, which is a contradiction as a and
b are not adjacent. Hence, yg(a) and yg(b) are not adjacent, and y g is a local isometry by
Theorem 2.3.12. The one-sided case is identical (since the twisted interval bundle is locally

isometric to H x [—1,1]). O

Remark 3.6.2. The hypothesis that yy is injective is equivalent to assuming the hyperplane
does not self-intersect or self-osculate, and so it will always be satisfied in the (fully) special
case. Note, however, that we did not need this assumption to show that y y is a local isometry.
This is a subtle distinction: all hyperplane neighbourhoods Uy are the image of a local isom-
etry yu: Ny — Uy, but this is not always the same map as the inclusion Uy — X, and so not
all hyperplane neighbourhoods are locally convex as subcomplexes.

The bundle Ny over H has the same fundamental group as H, and so by Corollary 2.2.11,
x g induces an injection 71 (H) — 1 (X). This holds for any hyperplane, though when yy is
non-injective, the subgroup will not necessarily be the same as the one induced by the inclu-

sion Ug — X.

Definition 3.6.3. For each hyperplane H, the subgroup y s, (71 (H)) < 71 (X) is called the hy-
perplane subgroup of H.

Lemma 3.6.4. Hyperplane subgroups of compact non-positively curved cube complexes are

CCC.

Proof. Let H be a hyperplane in a compact non-positively curved cube complex X. The map
xr: Ny — X is alocal isometry by Lemma 3.6, and so by Corollary 2.2.11 it lifts to an isome-
try onto a convex subcomplex of X, upon which the hyperplane subgroup acts cocompactly

(since the quotient is the compact cube complex Upy). O

Applying Corollary 3.5.14, we obtain:

Corollary 3.6.5. Hyperplane subgroups of compact virtually special cube complexes are sepa-

rable.
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As in the previous section, there is a converse to this:

Theorem 3.6.6. Let X be a compact non-positively curved cube complex. Suppose all the hy-
perplane subgroups nty (H) are separable, and all the hyperplane double cosets n1(H)gn (K) are

separable for intersecting pairs H, K of hyperplanes. Then X is virtually special.

Idea of proof. We use the characterisation of separability from Theorem 3.4.9. For each hyper-
plane H of X, we can find an index 2 cover in which H is two-sided. Then we may find a further
finite cover (say X/) in which y g lifts to an embedding, which rules out self-intersection and
self-osculation. Since X is compact there are only finitely many hyperplanes, so we can find a
finite cover factoring through X for every hyperplane H.

To rule out interosculation uses the double coset separability hypothesis, which allows
us to find a finite cover in which pairs of interosculating hyperplanes are lifted to pairs of

hyperplanes which cross, but do not osculate. For more details on this step, see [HW08]. O

The following theorem is due to Minasyan [Min06].

Theorem 3.6.7. If G is a hyperbolic group in which all quasiconvex subgroups are separable,

then all double cosets of quasiconvex subgroups are separable.

Proof of Theorem 3.5.16. X is acompact non-positively curved cube complex with §-hyperbolic
fundamental group G, in which every quasiconvex subgroup of G is separable. Hyperplane
subgroups are quasiconvex by Lemma 3.6.4, and Theorem 3.5.3. Hence by Theorem 3.6.7, all

hyperplane double cosets are separable. Then by Theorem 3.6.6, X is virtually special. O

3.7 VH complexes

Before the definition of special cube complexes, Wise had studied the following class of square

complexes (see [Wis02]).

Definition 3.7.1. A VH complex is a square complex with two distinct families of edges: ver-
tical edges and horizontal edges, such that the boundary of each square alternates between

horizontal and vertical edges.

It follows immediately from Definition 3.7.1 that VH complexes also have two families
of hyperplanes: vertical hyperplanes which are dual only to horizontal edges, and horizontal
hyperplanes which are dual only to vertical edges. After either taking a double cover or sub-

dividing (for example, in the case of a Mobius strip [Wis06]), all hyperplanes are two-sided.
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Such a VH complex is called non-singular, and it has a natural structure as a graph of spaces.
Vertex spaces correspond to the connected components of the vertical 1-skeleton, and edge
spaces correspond to vertical hyperplanes. Both edge and vertex spaces are graphs. If the VH
complexis simple, then it is non-positively curved (by Remark 2.2.21), and the attaching maps
in the graph of spaces are immersions. Such a graph of spaces is also called a graph of graphs,

and these are the main objects of study in Chapter 4 (see Definition 4.2.1).

Definition 3.7.2. A simple, non-singular VH complex is called thin if the corresponding graph
of spaces is thin in the sense of Definition 2.1.5. It is called clean if the attaching maps are

embeddings.
The main result of [Wis02] is:

Theorem 3.7.3. Let X be a compact, thin VH complex. Then X has a finite sheeted cover which

is clean.

Note that hyperplanes of a non-singular VH complex cannot self-intersect, and cleanness
rules out direct self osculation (at least for vertical hyperplanes). This suggests the following,

which was proved in [HWO08].

Proposition 3.7.4. A compact, virtually clean VH complex X is virtually special.
Combining Theorem 3.7.3 and Proposition 3.7.4, we obtain:

Theorem 3.7.5. Any compact, thin VH complex is virtually special.

Remark 3.7.6. In a sense, Theorem 3.7.3 is a separability theorem; it says that the immersed
edge spaces in X can all be lifted to embeddings in a finite sheeted cover. The separability
theorems for special cube complexes may be thought of as a higher dimensional generalisa-
tion, and indeed this was the original motivation for the definition of a special cube complex
(as mentioned earlier). Indeed, by Theorem 3.7.5, Corollary 3.6.5 is an exact generalisation of

Theorem 3.7.3.

3.8 Further developments

We have described some of the foundational results concerning special cube complexes, as
originally developed in [HWO08]. However, it is beyond the scope of this thesis to explain in

detail those applications which have been of the most recent interest. In this final section, we
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will give a brief introduction to two important, but more difficult, aspects of the theory: Wise’s

Hierarchy Theorems for special cube complexes, and the applications to 3-manifold topology.

3.8.1 Hierarchies

A good reason to look for embedded, codimension 1 subcomplexes of any complex is that we
can cut the complex along such a subcomplex, simplifying it, and elucidating its structure.
Via the Seifert-van Kampen theorem, we can also elucidate the structure of the fundamental
group. Hyperplanes in a special cube complex are particularly well suited to this goal.

If X is a compact fully special cube complex with a hyperplane H, then removing the
open cubical neighbourhood Uy gives a cube complex with either one component Y, or two
components Y and Z. By the Seifert—-van Kampen theorem, ; (X) splits as either an HNN
extension 71 (Y)*¢ or an amalgamated product 7, (Y) *¢ m1(Z), where C = m;(H) is the hy-
perplane subgroup corresponding to H. Since the total number of cells decreases at each
stage, we may continue until all components are simply connected (for example, they may be

individual edges or cubes).

Definition 3.8.1. The class 2.# of groups with a quasiconvex hierarchy is defined to be the

smallest class such that:
1. 1e272
2. If G= Ax*c B, Cis aquasiconvex subgroup of G, and A, B € 2.7, then G € 2.7.
3. If G= Ax¢, C is a quasiconvex subgroup of G, and A€ 2.7, then G 2.4

Theorem 3.8.2. If X is a compact special cube complex and G = m1(X) is §-hyperbolic, then
Ge2A.

Proof. By Remark 3.5.13, we can assume without loss of generality that X is fully special. For
any hyperplane H, we need to show that X — Uy is fully special. The hyperplane pathologies
are easily ruled out, because they do not occur in X. To see that X — Uy is non-positively
curved, note that when removing the open neighbourhood Up, for each vertex v in the image
of 0Ny, there is precisely one vertex removed from Lk(v) (as X is fully special), and every
simplex which is removed has v as a vertex. Thus Lk(v) remains flag, as required. Hence, by
the Seifert-van Kampen theorem, we can decompose G = m;(X) as G= A*¢c B or G = Axc,

where C = w1 (H). Quasiconvexity of C < G follows from the fact that hyperplane subgroups
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are quasiconvex in the hyperbolic case (Lemma 3.6.4 and Theorem 3.5.3). The result then

follows by induction on the number of cubes. a

In fact, we may strengthen this theorem using malnormality (see Section 2.5.2). We need

the following lemma.

Lemma 3.8.3. Let X be a compact fully special cube complex with hyperbolic fundamental

group G. Then there is a finite cover X in which all hyperplane subgroups are malnormal.

Proof. Let H = m;(Y) be a hyperplane subgroup of G. Then H < G is quasiconvex
(Lemma 3.6.4 and Theorem 3.5.3), and hence by Theorem 2.5.11, it has finite width. Let
g 'Hg,..., g Hgr be a maximal set of distinct conjugates for H. We can separate H from
each g; in a finite index subgroup, and hence (by taking the intersection of these), we can
separate H from the set of all g; in a finite index subgroup H'. As H' contains H and not g;,
it has empty intersection with the coset Hg;, and hence no element of H' conjugates H to a
subgroup with infinite intersection with H. That is, H is an almost malnormal subgroup of
H'. Since G is torsion-free by Lemma 2.4.20, H is in fact a malnormal subgroup of H'.

For each hyperplane subgroup H; = m;(Y;), form the finite-index subgroup H l’ as above,
and consider the intersection K’ of all H!. This is finite index. Moreover, since a finitely gen-
erated group contains finitely many subgroups of a given index, the intersection of K’ with all
its conjugates is a finite index normal subgroup K < G.

Now consider the finite sheeted regular covering space XX — X corresponding to K. This
factors through the cover X”i — X corresponding to H; for every i. Let D; = m1(Z;) be a
hyperplane subgroup of K, where Z; projects to Y;. Then, by normality of K, D; is conjugate
(in G) to K; = H; n K. If K; nontrivially intersects a conjugate k~K;k for k € K, then k™' H; k
nontrivially intersects H;. As K < H', this contradicts malnormality of H; in H; unless k €
K;. Therefore, K; is a malnormal subgroup of K, and since D; is conjugate to K;, D; is also

malnormal in K. Therefore, X = XX is our required finite covering space. O

We say a group is in .4 27 (or has a malnormal quasiconvex hierarchy) if it is in QA4
with the additional hypothesis that the edge groups C are malnormal. Then, by combining

Theorem 3.8.2 with Lemma 3.8.3, we immediately obtain:

Corollary 3.8.4. Let X be a virtually compact special cube complex with 6 -hyperbolic funda-

mental group G. Then G has a finite index subgroup with a malnormal quasiconvex hierarchy.



CHAPTER 3. SPECIAL CUBE COMPLEXES 61

Corollary 3.8.4 is very useful, because it gives us a strong basis for inductive proofs: if we
can prove a property holds for the trivial group, and that it is stable under taking malnormal
quasiconvex amalgams and HNN extensions, then it will virtually hold for any virtually special
group. In Section 4.4.1, we will describe a problem which we hope can be tackled using this
approach. However, Theorem 3.8.2 and Corollary 3.8.4 are far from the pinnacle of achieve-
ment in the theory of special cube complexes. Remarkably, both results have a converse. In

particular, we have:

Theorem 3.8.5. Let G be a 0 -hyperbolic group with an (almost) malnormal quasiconvex hier-

archy. Then G is virtually the fundamental group of a compact special cube complex.

Theorem 3.8.6. Let G be a6 -hyperbolic group with a quasiconvex hierarchy. Then G is virtually

the fundamental group of a compact special cube complex.

Theorem 3.8.5 requires two principal ingredients: firstly, we must find a cube complex
structure on the space given by amalgamating two virtually special cube complexes along a
subspace corresponding to a malnormal, quasiconvex subgroup (see [HW15]); and secondly,
we must ensure that this cube complex structure can itself be taken to be virtually special (see
[HW12]). Finally, Theorem 3.8.6 is deduced from Theorem 3.8.5 using a deep theorem called

the Malnormal Special Quotient Theorem, described in [Wis12a] and [Wis12b].

3.8.2 3-manifolds

One of the most significant applications of special cube complexes has been towards the the-
ory of three-dimensional manifolds. As we discussed in Chapter 1, much of the research into
3-manifolds over the last few decades has been guided by an article of Thurston [Thu82],
in which he posed a list of twenty-four questions, including the (now proven) Geometriza-
tion Conjecture. As a consequence of this, combined with the JS] decomposition theorem,
any prime 3-manifold is known to be built from pieces which are either Seifert-fibred or hy-
perbolic. Seifert-fibred manifolds are circle bundles over 2-dimensional orbifolds, and their
structure is reasonably well understood. Hence, after Perelman’s proof of geometrization, the
remaining task was to understand hyperbolic 3-manifolds—those whose universal cover is
H3.

Two in particular of Thurston’s questions remained unanswered in early 2012, and these

both concerned hyperbolic manifolds. Recall that an embedded surface X in a 3-manifold
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M is called incompressible if it is not a disk or a 2-sphere, and it is 7;-injective. A Haken 3-
manifold is one which contains an incompressible surface. This is a useful notion because,
as we saw with cube complexes, it enables us to cut along the surface and decompose the
manifold into smaller pieces, thus obtaining a Haken hierarchy for M. A 3-manifold is called

fibred if it is a surface bundle over a circle. Thurston’s questions are the following:
Question 3.8.7. Is every closed hyperbolic 3-manifold virtually Haken?
Question 3.8.8. Is every closed hyperbolic 3-manifold virtually fibred?

The motivation for Wise’s work towards Theorem 3.8.6 was to settle Question 3.8.8 in the
case of Haken manifolds. In particular, if M is Haken, its Haken hierarchy is quasiconvex,
and so it is virtually compact special by Theorem 3.8.6. By a theorem of Agol (see [Ago08]), it
is then virtually fibred. However, the true culmination of the theory has been to apply these
ideas to non-Haken manifolds, which do not automatically possess a suitable hierarchy. In
[KM12], Kahn and Markovic showed that any hyperbolic 3-manifold M contains a suitably
large set of immersed, quasiconvex surfaces, and Bergeron and Wise [BW12] were able to ap-
ply Sageev’s construction (see Section 3.1.1) to find a geometric action of G = n;(M) on a
CAT(0) cube complex. Agol then proved the following remarkable theorem (see [Ago13]), sig-

nificantly strengthening Theorem 3.5.16:

Theorem 3.8.9. Let G be a 6 -hyperbolic group acting geometrically on a CAT(0) cube complex.

Then G is virtually compact special.

In particular, G = m; (M) is virtually compact special for any hyperbolic 3-manifold, and
hence M is virtually fibred by Agol’s previous theorem [Ago08]. To see that M is virtually
Haken, we may argue as follows. Take a special cube complex X corresponding to a finite in-
dex subgroup of G, and take the finite cover M’ of M corresponding to the same subgroup.
The group isomorphism between 7, (M’) and 7;(X) can be realised by a continuous map
f: M' — X, since the spaces are both aspherical; moreover, this map can be homotoped so
that it is transverse to the hyperplanes of X. Now, the preimage of any codimension 1 hy-
perplane H of X is an embedded surface f~!(H) = g in M'. If £ is compressible, we may
repeatedly homotope f and decrease the genus of X p; this terminates either with an incom-
pressible surface, or a collection of spheres (which we can remove by a further homotopy of

f because M’ is aspherical). In the former case, M’ is Haken, as required. In the latter case,
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f(M’) does not intersect H, and so we can cut X along H and repeat the argument with an-
other hyperplane; since X is compact, we will eventually reach a hyperplane whose preimage
is an incompressible surface, or else M’ is trivial. Therefore, M’ is Haken in this case too, and
M is virtually Haken. Indeed, we could now deduce from Wise’s answer to Question 3.8.8 in
the Haken case that M is also virtually fibred, as an alternative to using Agol’s result [Ago08]
that virtually compact special cube complexes are virtually fibred. Both of Thurston’s ques-

tions are thus answered in the affirmative.



Chapter 4

Folding cube complexes

We have already seen that an essential ingredient in the study of negatively curved groups is to
understand their quasiconvex subgroups. As well as hyperbolic groups in general (see Theo-
rem 2.5.4), we have seen this in particular in the case of hyperbolic cube complexes. Theorem
3.5.4 summarises exactly why they are so important: a local isometry from a compact cube
complex to a non-positively curved cube complex with hyperbolic fundamental group corre-
sponds exactly to the inclusion of a quasiconvex subgroup.

The main purpose of this chapter is to devise a folding algorithm that allows us to ex-
plicitly construct a map of complexes corresponding to the inclusion of some subgroup, and
hence check whether or not it is quasiconvex. That is, given a non-positively curved cube
complex X, with G = 7;(X) hyperbolic and H c G quasiconvex, we can construct a cube
complex Y equipped with a local isometry Y — X which induces the inclusion H — G on
fundamental group. The main theorem describing this algorithm is Theorem 4.3.9. Under-
standing the geometry of the complex Y could therefore be used to show that certain families
of subgroups are quasiconvex, and as we discussed in Chapter 1, an important open ques-
tion (Question 1.0.2) asks whether this holds for malnormal subgroups. This problem was our
original motivation for describing the algorithm, and we discuss a potential application to it
in Section 4.4.

Folding was originally introduced by Stallings in the context of graphs, and we will begin
by describing the procedure in this case. Our main folding algorithm will then be described in
terms of a graph of groups, inspired by the graph of groups description of special cube com-

plexes given in Wise’s Hierarchy Theorem (Theorem 3.8.2). There have been other accounts

64
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of folding for a graph of groups [KWMO05, Dun98, BF91], but we exploit the explicit geometric
structure of cube complexes to give a more geometric formulation than previous authors.
We will focus on the two dimensional case for technical simplicity, but the higher dimen-
sional generalisation is conceptually straightforward, and we shall discuss it in Section 4.5.
More recently, Beeker and Lazarovich [BL16] have also described a folding algorithm for gen-
eral CAT(0) cube complexes, which takes place on the wallspace level (see Section 3.1.1). Our

algorithm can be thought of as a more explicit version of theirs in the two dimensional case.

4.1 Folding for graphs

The fundamental tool used throughout this chapter is that of folding graphs. First made ex-
plicit by Stallings [Sta83], folding gives a way to factor any map between graphs as a product
of elementary maps known as folds, and an immersion.

Let X be a graph, and let e; and e; be distinct edges such that e; # & and t(e1) = t(e2) = v.
Consider the quotient of X obtained by identifying the edges e; and ey, and the vertices 7(e;)
and 7(e;). This gives a graph X’ with one less edge than X, and one less vertex in the case
where 7(e;) # 7(e2). The map X — X' is called a fold. Sometimes we say X' is obtained by

folding together e; and e».

Figure 4.1: Two folds on a graph. Only the first is a homotopy equivalence.

Remark 4.1.1. In the notation above, a fold X — X’ is a homotopy equivalence if and only if

T(e1) #1(e2).
The main theorem obtained by Stallings [Sta83] is:

Theorem 4.1.2. Any homomorphism of finite graphs factors as a product of finitely many folds

and an immersion.

Given a homomorphism ¢: Y — X between graphs, it is not difficult to see how one
constructs a sequence of folds as in Theorem 4.1.2. If ¢ is an immersion, there is nothing to
prove, so assume that ¢ fails to be injective on the link of some v € Y. This means there are

two edges e; and e, at v both mapping to the same edge e of X, and hence ¢ factors through
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the graph Y’ obtained by folding together e; and e;. Since Y’ has one fewer edge than Y, we

can repeat this process only finitely many times.

Definition 4.1.3. Suppose we have two graphs A, B, with immersions a: A — X, f: B — X,
and chosen basepoints a € A, b € B mapping to the same point x in X. The wedge sum
Wy = AV 4=p B is naturally equipped with a map ¥, to X (restricting to ¢ and  on A and
B respectively), and we may apply Theorem 4.1.2 to obtain a graph Z equipped with an im-
mersion ¥ to X.

We say Z is obtained by folding together A and B at a and b, with respect to the maps «
and B. There are natural maps (induced by the inclusion to the wedge product) is: A — Z
and ig: B— Zsuchthatwoiy = a, yoip = B. These maps are necessarily immersions but are

not in general injective.

Lemma 4.1.4. Suppose Z is obtained by folding together graphs A and B, where B is a tree.

Then there exists a homotopy retraction Z — A.

Proof. The natural map i4: A — Z is an immersion, hence 7;-injective. However, it is equal
to the composition of a 7, -isomorphism A — W, (in the notation above) with a 7 -surjection
Wy — Z. Hence i, is a 1 -isomorphism. It follows that i4 is injective, and that Z retracts onto

ia(4) = A O
The following lemma will be useful in Section 4.3.

Lemma 4.1.5. Let A, B, C and X be graphs with immersions a, 3, y between them as in the
diagram below. Let a € A and b € B satisfy a(a) = B(b). Let Z be obtained by folding together A

and B at a and b with respect to the mapsy o« andy o f3:

Then there exists an immersion ¢: Z — C, as shown, such that the diagram commutes. Hence,
by uniqueness of Stallings folding, Z is the graph obtained by folding together A and B at a and

b with respect to the maps a and f.
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Proof. Recall Z is obtained by applying folding moves to the wedge product Wy = Av - B,
to make the map yo: Wy — X restricting to yoa on A and yo f on B an immersion. Since
a(a) = B(b), there is a well-defined map ¢y: Wy — C defined by a on A and 8 on B. The
diagram below commutes for j = 0 (we omit the indices on the maps i, ig). Now let W; be
the graph obtained after j elementary folds on Wy, and let  ; be the corresponding map to Z.

Assume for induction that ¢ j: W; — C is defined and makes the diagram below commute:

A Joa

i oy,
Xf\

B Yop

If W; # Z then v is not an immersion, so there are two coincident edges e, ¢’ mapping under
¥ j to the same edge in X. Since y is an immersion and the diagram commutes, this happens
if and only if they map under ¢; to the same edge in C. Hence ¢ ;. is defined on the graph
obtained by folding together e and e’. We see that the process of folding together A and B with
respect to the maps a and f is identical to the process with respect to the maps yoa and yo §3;

in particular, ¥ ; is an immersion iff ¢ ; is an immersion. This completes the proof. O

Remark 4.1.6. Categorically, Lemma 4.1.5 says precisely that Z is the pushout of the diagram

I

;)

* ——

o N

[

in the category of graphs equipped with immersions to X, where * mapsto a€ Aand b € B,
as described in [Sta83]. It can also be formed in the category of graphs as the pushout of A —
P — B, where P is the connected component of the pullback of A — X — B which contains

(a,b).

Remark 4.1.7. We will usually apply Lemma 4.1.5 in the following context. Suppose there is
another graph C’ such that the given immersions from A and B to X factor through C’ as well

as C; that s, there exista’: A— C', f': B— C',y': C' - X suchthatyoa=y'oa’,yof=y'0p.
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Then the graph obtained by folding together A and B with respect to the maps a, § is the same

as the graph obtained by folding together A and B with respect to the maps o', §'.

4.2 Graphs of graphs

Definition 4.2.1. A graph of spaces in which all the vertex and edge spaces are graphs, and

the attaching maps are combinatorial immersions of graphs, is called a graph of graphs.

As we discussed in Section 3.7, graphs of graphs are precisely simple non-singular VH
complexes. The vertical edges are edges of vertex spaces of Y, and the horizontal edges are
edges of the form {a} x I contained in the mapped-in copy of Y, x I for some edge space Y,. We
denote such an edge {a} x I by [a]. The boundary of each square alternates between horizontal

and vertical edges.

Remark 4.2.2. A priori, itis not clear that any graph of free groups can be realised by a graph of
graphs, since choosing arbitrary graphs for the vertex spaces, it may not be possible to choose

edge spaces equipped with immersions to the vertex spaces on either side.

In light of the fact that thinness of a compact graph of graphs is enough to imply virtual
specialness (Theorem 3.7.5), we will assume throughout this chapter that graphs of graphs
are thin. Moreover, thinness can be assumed in the hierarchy for special cube complexes
(Theorem 3.8.2), and so it is a reasonable assumption for the higher dimensional case too
(see Section 4.5).

Since our algorithm will be designed to determine quasiconvexity, and this is stable un-
der taking the intersection with a finite index subgroup, we may also exploit Proposition 3.7.4
and assume that our graphs of graphs are clean (see Remark 4.3.22). The geometric interpre-

tation of these two properties is contained in the following lemma.

Lemma 4.2.3. Let X be a clean, thin graph of graphs. Then the intersection of the images of two

edge spaces in any vertex space X, is simply connected.

Proof. Suppose not. Then there is an embedded loop in X, in the image of two edge spaces.
This corresponds (up to conjugacy) to an element of 71 (X,) in the intersection of two edge

subgroups, which is infinite order as 7 (X,) is free. This contradicts thinness. O

The following technical lemma will be important later. Note that if A is a graph and B is
a subgraph, A— B denotes the smallest subgraph of A containing only those edges which are

not edges of B.
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Lemma 4.2.4. Let A be a connected graph, and let k > 0. Suppose there is a family of connected
subgraphs By, ..., By, such that UB; = A, and for each i # j, the intersection B; N Bj is a forest,

each of whose components has diameter at most k. Furthermore, assume that there exists a core

unique
i

graph C for A which intersects every B;. For each i, denote by B the (possibly disconnected

or empty) subgraph B; —U;; Bj obtained by deleting from B; the intersections with each other

unique
i .

Bj. Then each subgraph B; is contained in the k-neighbourhood of CU B

Proof. A-C is a forest. Denote its components by T, ..., Tj,. In each Tj, there is a single
vertex v; which intersects C. It is enough to show that for each j, T;— Ni(v;) intersects exactly
one B;.

Since B; is connected and C is a core graph, B;n T} is connected for every i and j. There-
fore, if B; and By intersect inside T}, this intersection is connected and hence has diame-
ter at most k. Since C intersects both B; and By, and these are connected, it follows that
vj € Bin BN T;. Therefore, any point of T; outside the k-neighbourhood of v; is contained

in at most one (and hence, exactly one) B;. O

4.2.1 Lollipops

The following simple class of subgraphs will be used in our folding algorithm.

Definition 4.2.5. Let I" be a graph with a vertex a. A lollipop of length n based at a is an
embedding A: £ — T of a graph ¢ consisting of a path of length k (where 0 < k < %) from a
vertex a to a vertex a’, together with a cycle of length n — 2k through ', such that A(a) = a.

See Figure 4.2. We often refer to the graph ¢, or its image A(¢), as a lollipop.

a

Figure 4.2: A lollipop of length 17 based at a.

It will be crucial in our applications that lollipops are embedded into graphs. However,
this is not a serious limitation, since any non-embedded lollipop may easily be replaced with

a union of embedded ones. Indeed, any immersed based loop in a graph is homotopic to
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a concatenation of embedded lollipops with the same basepoint. In particular, homotopy
classes of embedded lollipops generate the fundamental group of a connected graph. The
union of generating lollipops is the core of the graph, and if we then add in a tree consisting

of a path from the basepoint to each leaf, the union is the whole graph.

4.3 Folding graphs of graphs

In order to develop a notion of folding in the setting of graphs of graphs, we must define some
elementary folds. As in the graph case, these are all designed to correct a local failure of local
isometry for a morphism of graphs of graphs. There are at least two notions for such a mor-
phism, and one such notion is given in Definition 4.3.1. We will, in fact, use a more restrictive

notion when we develop the folding algorithm; see Remark 4.3.3.

Definition 4.3.1. Let Y and X be graphs of graphs. A morphism is a continuous map f: Y —
X which respects the graph of spaces structure and the graph structure of vertex and edge
spaces. That is, it induces graph homomorphisms ]_C Ty —=Tx, fu: Yy — Xy, and fe: Yo — X,
where we write v, ¢ for f(v), f(e). Amorphism is called a local isometry if it is alocal isometry

of cube complexes.

Remark 4.3.2. There are four possible ways that a morphism f, as defined above, can fail to

be alocal isometry.

Case 1) f identifies two vertical edges. That is, for some vertex space Y, f,, identifies

two coincident edges of Y.

Case 2) f identifies two coincident horizontal edges [a], [a'] where a and a’ are in the

same edge space of Y.

Case 3) f identifies two coincident horizontal edges [al, [a'] where a and a’ are in dif-

ferent edge spaces of Y.

Case 4) For some vertex s of Y, f fails to map Link(s) to a full subcomplex of Link(f(s)).
This means that there is a pair of coincident edges in Y which do not span a

square in Y but whose images span a square in X.

Remark 4.3.3. The four cases in Remark 4.3.2 are reminiscent of the corresponding situation

for graphs, where a map fails to be an immersion if and only if it identifies two coincident
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edges at some vertex. Accordingly, we may try to define a fold for graphs of graphs to be the
simplest possible map which “corrects” one of the four cases. For example, to correct Case 4
we may glue in the corresponding square to Y (considered as a VH complex), and to correct
one of the other three cases we simply perform the corresponding fold on the 1-skeleton.
However, this approach is problematic, since after performing a basic fold on a vertex space
to correct an occurrence of Case 1, the attaching maps of incident edge spaces may no longer
be immersions, and hence the complex is no longer a graph of graphs. In order to remain
within this category, and hence retain the link with the other notions of folding that have
been developed for graphs of groups [BF91, Dun98, KWMO05], we will insist throughout that

morphisms restrict to immersions on vertex spaces.

Definition 4.3.4. A morphism between graphs of graphs is called a local immersion if it re-

stricts to an immersion on vertex spaces.

It is easy to verify that a local immersion between graphs of graphs also restricts to an
immersion on edge spaces. A morphism is a local immersion if and only if Case 1 of Remark
4.3.2 does not occur, and a local immersion is a local isometry if and only if none of Case 2,
Case 3 or Case 4 occurs. Being locally injective is stronger than being a local immersion: a

locally injective map can only fail to be a local isometry due to Case 4.

Definition 4.3.5. Given alocal immersion f: ¥ — X of graphs of graphs, a morphism ¢: ¥ —

Y’ of graphs of graphs is called a fold (with respect to f) if:

* (is m-surjective.

There is a local immersion f': Y’ — X satisfying f'op = f.
¢ induces a surjection from the set of hyperplanes of Y to the set of hyperplanes of Y’.
* ¢ is not the identity map.

It follows from the second condition of Definition 4.3.5 that a fold ¢ is itself a local im-
mersion. Combining the first two conditions in Definition 4.3.5, we see that the images of the
induced maps f.: 71(Y) — 71(X) and f]: m,(Y') — m,(X) are equal. The third condition will
be needed to understand when a sequence of folds terminates. In practice, we will define and
use just two more specific types of fold, each designed to correct a failure of the map f to be a

local isometry (see Section 4.3.2.
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4.3.1 Outline of the folding algorithm

In this section, we give a brief outline of the folding algorithm which will be formalised in
Theorem 4.3.9 and its proof.

Let H be a subgroup of 7;(X). To begin, we take a set S of n generators for H, and let
f: B— X be a corresponding map of a bouquet of # circles. Since B is a graph, we may apply
Stallings folding to obtain a graph Y° equipped with an immersion f to the 1-skeleton of X.

Since X is a graph of graphs, there is an induced graph of graphs structure on Y°. Edge
spaces are points (so the corresponding subspaces of Y are edges of the form point x I), and
vertex spaces are graphs which immerse under f to vertex spaces of X. In particular, Y is
clean and f is locally injective. It can fail to be a local isometry only due to Case 4 above.

In general, if Y is a graph of graphs equipped with a morphism to X that is locally injec-
tive but not a local isometry, this means there is a pair of coincident edges—an edge a in Y,
and a horizontal edge [b] corresponding to b € Y,—which is mapped by f to the corner of a
square in X. To correct this, we must perform a folding move which glues in the correspond-
ing square in Y. However, such a move may introduce additional instances of Case 4 at some
adjacent edge to a. To control this, we would like to attach squares to some chosen subgraph
of Y,,, which may just consist of the edge a, or may be larger.

The method we shall adopt is to select a loop (in general, a lollipop) ! containing a and
mapping under f into the edge subspace d.(X,) < X;,. This loop intersects d.(Ye), but is not
contained in it.

Attaching a square to a, and then continuing to attach squares where necessary to the
other edges in the loop, has the effect of adding an entire strip of new squares to the complex,
along that section of / which was outside 0.(Y,). The opposite side of this strip of new squares
must be attached to the opposite vertex space (that is, Y; (), and this corresponds to folding
together a copy of the loop [ and the opposite vertex space, with respect to the appropriate
maps to X. Similarly, the new edge space is that obtained by folding together a copy of the
loop [ with the old edge space. A typical effect would be to simply add an arc to the vertex
space, however, this may introduce instances of Case 1, so in general, the new vertex space
may have undergone further folding. By using Definition 4.1.3, we circumvent the need to
deal with this directly. However, Case 2, Case 3 and Case 4 may still occur.

To correct Case 2 observe that, for any path connecting the pair of offending vertices

in the corresponding edge space, the image of this path under the attaching map is a loop
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I. Thus, pulling lollipops across this edge space will eventually be sufficient to remove this
instance of Case 2.

To correct Case 3, we must identify the two offending edge spaces into a single edge
space, by folding them together. Since this fold induces a Stallings fold on the underlying
graph, it will only be needed finitely many times.

Our folding algorithm will work as follows. Firstly, we check if Case 3 occurs, and if so,
we perform the above fold to correct it. Otherwise, we pull across a suitable loop to correct
a failure of local isometry due to Case 2 or Case 4. Each fold will be defined using the fold-
ing together (i.e. pushout) construction on vertex spaces (Definition 4.1.3), which prevents
new occurrences of Case 1 (and hence keeps us in the category of graphs of graphs equipped
with local immersions). Since Case 3 occurs only finitely many times, all folds will eventually
consist of pulling loops across edge spaces.

Having verified that the above moves are indeed folds, it will follow that the map induced
on fundamental group by f still has image H. We will be able to use finite presentability of
H to deduce that eventually, in the finitely presented case, we arrive at a complex whose fun-
damental group is H (see Section 4.3.5). By a local finiteness argument, we will show that the
folding process corrects all failures of local isometry in arbitrarily large subcomplexes, and
hence we can construct the direct limit complex Y, which maps to X via a local isometry (af-
ter possibly pulling across some trees); see Section 4.3.4. We will also show that the algorithm
terminates (that is, Y, is compact) if and only if H is quasiconvex. The proof of this part will
make use of Haglund’s characterisation of convex subcomplexes in CAT(0) cube complexes
(see Section 3.5.1), together with the fact that folding cannot introduce new hyperplanes.

We shall now describe each folding move more precisely.

4.3.2 The folding moves

Let f: Y — X be alocal immersion of graphs of graphs, where X is clean.

Basic underlying graph fold

Suppose f fails to be a local isometry due to Case 3. Let d and e be edges of I'y with ((d) =
t(e) = u, such that f identifies a horizontal edge [y,] in Y; x I with a coincident horizontal

edge [y.] in Y, x I. Then the graph of graphs Y is obtained as follows.
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Let Y, be the graph obtained by folding together Y, and Y, at y; and y,, with respect to
the maps 0,4 and 0,. The resulting immersion d,,: Y, — Y,, is the new attaching map, and an
application of Lemma 4.1.5 (in the spirit of Remark 4.1.7) gives us the immersion f: Y, — X,.

Let Y, be the graph obtained by identifying 0 ;(y4) € Y;(4) = Y and 0s(ye) € Yr(e) = V5,
and then applying Stallings folds to make the induced map to X, an immersion (in the case
where v # w this is the same as the graph obtained by folding together Y, and Y,, with respect
to the two maps to X,). The resulting immersion to X, is f;. Note that the natural maps
iw: Yy — Y, and i,: Y, — Y] are immersions.

We may arrange all these maps into a commutative diagram as follows.

a,
Yy ————— Y,

LA, A

X,
S \\

Xu > Xe

- 2

A further application of Lemma 4.1.5, using the right hand half of the diagram, gives us

the attaching map 9.
Lemma 4.3.6. The map ¢ above is a fold.

Proof. The map ¢ is clearly surjective (in particular, induces a surjection on the set of hyper-
planes), and the map f’: Y — X satisfies f o = f by commutativity of the diagram. Hence, it
only remains to show that ¢ is 71 -surjective, and for this it suffices to show that any element
of a vertex group of Y’ has a preimage in 7, (Y). This is clearly true for every vertex group
except H,, = m1(Y,), so suppose b € H,,. Since Y, is obtained by folding together Y, and Y,,
b has a preimage in H,, * H, (where H, denotes m,(Y.)). Let (p1,q1, ..., pr,»gr) be a normal
form in H,, * H, for this preimage (so p; € Hy, q; € Hy, and only p; and g, may equal the
identity). Now consider the (not necessarily reduced) loop in the graph of groups for Y given
by (pl,d, l,e,q1,6,1,d,p>, ..., pr, d1,e, qr). The corresponding element of 7, (Y) is clearly a

preimage for b, which completes the proof. O

Note that after performing this fold, the map f’ is still a local immersion of graphs of

graphs (since f} is an immersion by construction).
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Pulling a subgraph across an edge space

To correct failures of local isometry due to Case 2 or Case 4, we may select a subgraph of a
vertex space of Y which maps into the edge subspace of the corresponding vertex space of X,
and add it into the appropriate edge space of Y. This move modifies both that edge space and
the vertex space on the other end of that edge space, which is why we refer to it as "pulling the
subgraph across the edge space".

To be precise, we consider pullbacks of edge spaces inside vertex spaces. As before, let
f:Y — X bealocal immersion of graphs of graphs, where X is clean.

For each edge space Y, attached to some vertex space Y, consider the pullback:

Y, «——P
o
Xu NP Xe
By the existence of the map f and the connectedness of the edge space Y., we know
that 0.(Y,) must be contained in some connected component of P. Denote this connected
component by P,. Note that P, embeds in Y}, but we do not need to assume that Y, does.
Let Y, Y, and P, be as above, and let i: Q — Y, be the inclusion of a subgraph of Y,

which factors through P,. Assume that the intersection i(Q) N d.(Ye) is non-empty. Thus,

there are vertices @ € Q and y € Y, such that i(a) = 0.(Y.). The following diagram commutes:

]

v, &— - p,

) \Q/ 2
™

Xﬂ(T)Xg

The fold ¢: Y — Y’ which we now define is called pulling Q across Y,. Y' is the graph of graphs

obtained as follows:

* Let Y, be the graph obtained by folding together Y, and Q at y and a, with respect to the
maps 0, and i. The resulting immersion Y, — Y, is the new attaching map 4,,. By com-
mutativity of the diagram, the immersions from Y, and Q to X, which factor through

Yy, also factor through X,. Therefore, applying Lemma 4.1.5 guarantees existence of the
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immersion f.

XE(a—e)Xg

e Let Ylj (where v = 7(e)) be the graph obtained by folding together Y, and Q at z =9;(y)
and a, with respect to the maps f,: Y, — X, and 0z 0 f: Q — X,. The resulting immer-

sion to X, is f;, and the following diagram commutes:

Xy

Xy

See Figure 4.3 for a pictorial version of this diagram which illustrates the folding move.

* The attaching map 97 is defined by two more applications of Lemma 4.1.5, since the

immersions from Y, and Q to X, which factor through X, also factor through Y.

* The folding map ¢: Y — Y’ is induced by the maps iy,: Y, — ¥, and iy,: Y, — ¥, and

the identity maps on all other vertex and edge spaces.
Lemma 4.3.7. The map ¢ defined above is a fold.

Proof. To see that ¢ induces a surjection on the set of hyperplanes, recall that vertical hyper-
planes of Y’ are in correspondence with edge spaces, and hence clearly no additional such
hyperplanes are introduced by ¢. Horizontal hyperplanes correspond to parallelism classes
of vertical edges. The only such edges in Y’ not necessarily in the image of ¢ are those edges
in the copy of Q which is folded together with Y, and by construction, each such edge is el-
ementarily parallel in Y’ to the corresponding edge in i(Q). Hence, each hyperplane of Y’

contains the image under ¢ of some hyperplane of Y, as required.
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Xy B Xy

Figure 4.3: Pulling a subgraph across an edge space. We leave it to the reader to
specify suitable immersions; for example, the immersion from P, to X,. See the
commutative diagram above for the names of all the maps shown.

The second condition in Definition 4.3.5 is satisfied by construction, so it remains to
show that ¢ is also 7 -surjective. As before, we argue using the definition of the fundamental
group of the graph of groups. Let ¢ be the induced map on fundamental groups.

Let b be an element of the vertex group H,, in the graph of groups corresponding to Y’.
Since Y} is obtained by folding together Y, and Q, the map ¢.,: H, — H,, factors as the inclu-
sion H, — H, * A and a surjection H, * A— H,, where A =,(Q). Suppose (h;,a, ..., hr,a;)
is a normal form for a preimage of b in H, * F (where h; € H,, f; € f,, and only h; and a, are
allowed to equal the identity). We may also consider the a; as elements of H,, via the inclu-
sion map Q — Y},. So, consider the loop (1, ¢, ay,e, ..., h;, €, a,) in the graph of groups for Y.
This may not be reduced, however, its image under ¢ in Y’ is equivalent to (hy,ay, ..., hy, a;),

and hence to b. It follows that ¢ is m;-surjective. O

Note that, after pulling a subgraph across an edge space as above, the map f': V' — X
still restricts to immersions on vertex spaces (because flj is an immersion), and so, as before,

we remain in the category of graphs of graphs equipped with local immersions to X.

Remark 4.3.8. We will apply the above construction in the case that Q is an embedded lol-

lipop. However, in most accounts of folding graphs of groups (such as [KWMO05]), the entire
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pullback P, is pulled across. This is a natural thing to do insofar as it corrects more occur-

rences of Case 4, however, any choice of subgraph will do provided the subgraphs chosen ex-

haust P, as the folding process continues. We will appeal to local finiteness to see that pulling

across lollipops (followed possibly by trees) is sufficient.

4.3.3 The folding algorithm

We are now ready to state the main theorem of this chapter.

Theorem 4.3.9. Let X be a clean, thin, compact graph of graphs, with G = n1(X), and let H =

(S) < G be a finitely generated subgroup. Then there is an algorithm that generates a (finite or

infinite) sequence Y°, Y, ... of compact graphs of graphs, equipped with morphisms f': Y —

X, such that:

1

2.

Each map f' is a local immersion.

The induced maps on fundamental groups f! all have image H.
YY is a topological graph.

Foreach i, thereis a fold p': Y' — Y*! (such that f*' o' = 7).

The algorithm terminates (i.e. the sequence is finite Y°, ..., Y") ifand only if H is quasi-

convex. In this case, f}* is an isomorphism onto H.

0 1
The direct limit Y of Y° Pyv 2, . exists, and the corresponding map f*: Y®° - X

induces an isomorphism f2° onto H.

If H is finitely presented, then there exists m such that, for all i = 0, the fold ™" is a

homotopy equivalence and the map f™*" is an isomorphism onto H.

Remark 4.3.10. It follows from the Bestvina-Feighn combination theorem [BF92] that every

compact, thin graph of graphs has hyperbolic fundamental group, and so G above is automat-

ically hyperbolic.

Proof. The remainder of this section is dedicated to the proof of Theorem 4.3.9. We shall

describe the algorithm inductively.
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Base case (initial setup of the algorithm)

Each generator s € S can be realised as a combinatorial immersed loop in the 1-skeleton XV,
based at x. Let B be a finite bouquet of circles, with basepoint b, equipped with a combina-
torial map f2 to X that realises S. We may apply Stallings folding (Theorem 4.1.2) to obtain a
graph Y° mapping by an immersion f° into X. The graph of graphs structure on X induces a
graph of graphs structure on Y°. Each edge space of Y is a point y, equipped with two maps
0., 05 into the vertex spaces on either side. Call the two images z,, z; respectively—we may

regard these as “basepoints” of the two edge subspaces.

Inductive step

Let fi: Y’ — X be a local immersion of graphs of graphs. Assume f' is not a local isometry,
so that at least one of Case 2, Case 3 or Case 4 holds. Note that f%: Y° — X satisfies these
hypothesis (unless f is a local isometry, in which case the folding sequence ends with Y?).

We apply a fold from Y’ to Y?*! as follows.

If Y? satisfies Case 3, then we may perform a basic underlying graph fold ¢, to obtain a
graph of graphs Y*! with a map f*! to X. This map still restricts to an immersion on vertex
spaces. Note that since this fold reduces the number of edges of the underlying graph, it will
only ever be applicable finitely many times.

Otherwise, Y' satisfies either Case 2 or Case 4. Now, let £ be the set of all lollipops

satisfying the following conditions:
+ A: ¢ — Y]} is an embedded lollipop in a vertex space Y of Y.
* For some e with i(e) = u, A is based at some z € 9, (Y,) and factors through Pé.

e A: ¢ — Y/} doesnotliftto d,: Y/ — Y/ (thatis, A(¢) is not already the image of a lollipop

in Y/, though it may be the image of a path).

For each lollipop in £ we may define the complexity to be dy.(z., z) + n, where n is the
length of the lollipop.

If f satisfies Case 2, there is an edge space Y/ of Y with distinct vertices a, b such that
the horizontal edges [a] and [b] have a common endpoint y € Y;! (where u = i(e)), and such
that f(a) = f(b) in X,. Then for y an immersed path in Yei connecting a and b, 0.0y is an
immersed loop in Y; based at y, which does not lift as a loop to Y,)i. It follows that . is

nonempty.
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In the case that f satisfies Case 4 but not Case 2, it is possible that £ is empty. In this case,
we skip ahead to the final stage of the algorithm—see below. Otherwise, £ is nonempty. Let
A: ¢ — X, be alollipop in £ of minimal complexity, and perform the fold ¢’ pulling this
lollipop across the edge space Y/, to obtain a graph of spaces Y'*! with a map fi*! to X.
Again, f'*! restricts to an immersion on vertex spaces.

Continuing this process indefinitely, we either obtain an infinite sequence of complexes
as described in the statement of the theorem, or we reach a position where £ is empty. In this

case, we move to the final stage below.

Final stage

Suppose now that we have reached a complex Y, with amap f* to X which is locally injective,
and that % is empty. If 7 is a local isometry, then we stop with Y as the final graph of graphs
in the sequence. Otherwise, f fails to be a local isometry due to Case 4. Below we write Y for
i,

Choose a vertex around which f fails to be a local isometry; say the vertex y in a vertex
space Y;,. Then there is horizontal edge [a] (where a € Y,) and a vertical edge b at y, which
do not span a square in Y, but whose images under f span a square in X. Since £ is empty
and 9, (Y,) is connected, removing b from P, separates P, into two components, one of which
is a tree T’, and the other contains 9,(Y), as in the following diagram. Now pull the tree

T=BUT cP,cY,across Y, to obtain a graph of graphs Y.

Xu

Y, is obtained from Y, by folding it together with a tree T. Since T is a tree, Lemma 4.1.4
applies, so we may consider Y, as a subgraph of Y, and every immersed loop in Y} is in fact
contained in Y,,. Therefore, Y, is a core graph for YU’. It follows that % remains empty in Y’,

and f’: Y/ — X may still only fail to be a local isometry due to Case 4.



CHAPTER 4. FOLDING CUBE COMPLEXES 81

So, we keep applying the above move, pulling trees across edge spaces to correct fail-
ures of local isometry due to Case 4, to obtain a sequence of graphs of graphs Y’ = Y, Yi*! =
Y',Y*2, y*3 and so on, with folds ¢ : Y/ — Y/*! between them. We claim that we may only
perform the move finitely many times, and hence the algorithm terminates.

Consider some sequence of vertex spaces Y,, Y *!, .... By the above argument, Y, em-
beds as a core graph in all Yl{ for j > i. Since X is thin and f induces an immersion on vertex
spaces, we may apply Lemma 4.2.3 to deduce that the family of connected components of
pullbacks of edge spaces {P, | i(e) = u} in each YL{ forms a family of subgraphs satisfying the
conditions of Lemma 4.2.4, where the core graph C is the identical image of Y/}, and k is uni-
form. Fix some j > i and denote Y, = YL{ for simplicity.

Now, suppose T is a tree in Y;, to be pulled across some edge space Y,. This means that
T is contained within P, but is edge-disjoint from the subgraph 0.(Y,). In the notation of
Lemma 4.2.4, P;mique — C must be inside d,(Ye). To see this, note that it is edge-disjoint from

C and thus consists entirely of edges which have been pulled across in the final stage of the

algorithm; therefore, every edge in P;mique — C is in the image of some edge space, and this
edge space must be that corresponding to e by the definition of P;mique.
It follows that T is edge-disjoint from Pémique — C, but contained within P,. Thus, by

Lemma 4.2.4, it is inside the k-neighbourhood of C. By local finiteness, there are therefore
only finitely many such trees T which are ever available to pull across edge spaces incident to
Y., and similarly for all other vertex spaces. Therefore, only finitely many such moves may be
applied.

It follows that, after pulling across finitely many trees, we arrive at a graph of spaces Y”
(for some n > i), where there are no trees left to pull across edge spaces: in particular, Case
4 no longer applies, and so the map f” is a local isometry. This finishes the algorithm in the

case where % is eventually empty.

4.3.4 Termination, stabilisation and the limit complex

The algorithm described above satisfies the first four conclusions of Theorem 4.3.9, by con-
struction and the definition of a fold. One direction of conclusion 5 follows directly from
Theorem 3.5.4; namely, if the algorithm terminates, then H is quasiconvex. For the reverse
direction, if H is quasiconvex then Theorem 3.5.4 guarantees that there exists a cube complex

Y equipped with a local isometry to X inducing H < G; we must demonstrate that our algo-
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rithm will, at some point, arrive at this complex. To show this, we will first describe the direct
limit construction given as conclusion 6 in Theorem 4.3.9. If the algorithm terminates, then
the direct limit obviously exists, so assume from now on that it does not terminate.

To define the direct limit of Y° L vl L ... we need to show that the algorithm locally
stabilises, in the sense that for any fixed subspace, the folding maps eventually induce isome-
tries. This is made precise for vertex spaces in Lemma 4.3.11.

In any graph I with a vertex x, we let Bg (x) denote the induced subgraph on vertices of

distance at most R from x.

Lemma 4.3.11. LetT" denote the underlying graph of Y', and let k be such that theT' are the
same for all i = k (i.e. the underlying graph has stabilised). Choose a vertex v of T*. Consider
the vertex spaces Y| for i > k and the maps ¢',: Y] — Y*! obtained by restricting the folding
maps @'. Choose a vertex y* of Y*, and denote by y', its image under the folding maps in each
Y.. Then for any R > 0, the ball of radius R around y* eventually stabilises in the following
sense: there exists N such that, for all j = 1, the map (pl,,\”j o 0@l from Y} to Y,fv *J restricts
to a graph isomorphism from Bg (yY) to Bg (yf,wj).

Proof. Y} immerses into Xy, which is locally finite, and so a labelling of the edges of X, in-
duces a finite labelling of the edges of Y. Thus Bg ( y,l,) is a uniformly locally finite graph of
fixed radius, and so it is uniquely determined by a uniformly finite set of labelled loops based
at y!i, (for example, the standard generating set with respect to a spanning tree), together with
a finite set of labelled paths (corresponding to the degree 1 vertices). The folding process
preserves labelled loops and paths. For fixed R, it follows that for large enough N, the set of
labelled based loops and paths in B ( y,’,) is the same for every i = N, and since they immerse,

the graphs are therefore isomorphic by Theorem 4.1.2. O

Remark 4.3.12. We may extend the above lemma to the whole graph of spaces Y’ (for some
i > k) as follows. Again, choose vertices y!, in each vertex space Y/, such that ¢’ (y’) = yi*l.
Now, define Ylé to be the following subspace of Y. The vertex spaces of Ylé are the subspaces
Bpg (y,’,) of Y. For the edge spaces, let Y;R be the intersection 9, (BR (yf(e))) n 6;1 (BR (y;'(e)))
(that is, we take the edge spaces as large as possible with the given vertex spaces). By the same
argument as before (applied to all edge spaces and vertex spaces), we may find N(R) such that

the folding maps ¢’ restrict to the identity map Y}% — Y}g“ for i > N(R), and we may define Yy

to be the complex YIQ foralli > N(R).
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There is a natural inclusion Y € Yg, ;. Let Y be the direct limit of Y < Yg41 < ---. This
is a graph of spaces with the underlying graph I'¥, and is equipped with a natural map to X. If
the folding algorithm terminates, the terminal complex is compact and hence equal to Y for
all large enough R, and indeed equal to Y*°. We may think of Y*° as the “limit” of the folding

algorithm, even when it does not terminate.

Proposition 4.3.13. Y is clean.

Proof. If Y*° is not clean, then Case 2 of Remark 4.3.2 applies in Y*°, and so we may pick R
such that Case 2 applies in YV® and all Y’ for i > N(R). This means there is a lollipop of
uniformly bounded complexity (say, complexity K) in &£ at stage i for each i > N(R). Since
we choose lollipops of minimal complexity in £ to pull across, this means that for all i >
N(R), Y' is obtained from Y~! by pulling a lollipop of complexity < K across an edge space.
In particular, the vertex spaces may never extend beyond a distance K of the union of the
basepoints z.. Therefore Y*° is bounded, and local finiteness implies that Y*° is compact and
the algorithm terminates. But this only happens if £ is eventually empty, which contradicts

our assumption. O

The above proof formalises the notion that “all lollipops are eventually pulled across”,
which is also fundamental to the next proposition. The proofis, in essence, an infinite version

of the final stage of the algorithm in the case where it terminates (Section 4.3.3).

Proposition 4.3.14. The natural map f*>: Y*° — X induces the inclusion H c G of fundamen-

tal groups.

Proof. If f*° is a local isometry, the proposition follows from Corollary 2.2.11. However, f
may not yet be a local isometry; although every lollipop has been pulled across, there may
still be trees in P, — d.(Y,), just as in the final stage of the algorithm in the terminating case
(see Section 4.3.3). We may therefore apply the same move as before, pulling trees across edge
spaces to correct each failure of local isometry, each time pulling across the trees closest to the
basepoints of the vertex spaces. It follows from Lemma 4.1.4 that we obtain a nested sequence
Y® =Yy Y =Y, Y, Y3... of graphs of graphs in this way, with folds ¢;: Y; — Y;,1, and since
the vertex and edge spaces are only altered by folding with trees, the vertex and edge groups
remain the same and Lemma 2.1.8 implies that the Y; are all homotopy equivalent. Then,
the direct limit ¥ of ¥y c Y; c ... is a graph of graphs homotopy equivalent to Y (in fact,

it deformation retracts to Y°°) equipped with a natural map f to X which is a local isometry
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(by local finiteness and the fact that we pulled across trees in order of their distance from the

basepoints). The result follows. O

We are now ready to complete the proof of Conclusion 5 of Theorem 4.3.9. We work in
the universal cover, and we must establish some more notation to proceed.

Recall that we began by folding a bouquet of circles B, with basepoint b, to obtain a graph
Y%, equipped with amap f°: Y* — X. Denote by b’ the image (under the sequence of folding
maps) of b in Y. By the definition of a fold, every b’ has the same image (under f?) in X;
call this x. We also fix a basepoint X of X, such that p(X) = x where p: X — X is the universal
covering map.

Letq': Yi — Y the universal cover of Y, and choose basepoints bieyi projecting to b'.
By the lifting criterion, the maps ¢’ o g': Yi — Yi*L eachlift to maps (}; Yi — Yi*1 between
the universal covers, and moreover we may choose these maps to send bi to bi*1, Likewise,
eachmap fiogi: Yi — X lifts toamap f: Yi — X, which sends b’ to %. Having fixed these
maps, we hereafter abuse notation and refer to all of the b as b, and to all of the I;’ as b.

Since Y is the direct limit of the Y, there is a natural map F’S: Y% — X which also fits
into the commutative diagram, and likewise a natural map f7: v-X (where Y is the complex
constructed in the proof of Proposition 4.3.14).

In summary, the following diagram commutes.

X ~

I / L\ /
. le foo _
—>YiT>Yi+1—> Yy — N v
@' N
lqt . J/q”l p J/qoo J/
Lyl Py | sy g

fi+1 M
f v f
X

Consider the map F This is a locally injective combinatorial map, but it may not be
injective if f7 is not a local isometry. Denote the image F (171) c X by Z!. Our first claim is

the following.

Lemma 4.3.15. If H is quasiconvex, Z° is combinatorially quasiconvex. Moreover, it is con-

tained within a bounded neighbourhood of the H-orbit H - X.
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Proof. Since Y° is a compact graph with basepoint b, YO is contained within a bounded
neighbourhood of the set (¢°) " (b) of lifts of b. We claim that, in fact, f0 ((qo)_l (b)) is the
H-orbit H-X. Then, by Lemma 3.5.9, it is enough to show that }?6 ((qo)_l (b)) is combinatori-
ally quasiconvex. The proof is elementary covering space theory, but we outline the argument
for convenience.

First, we show H-X c }VO ((6]0)71 (b)). Choose some point z € H-X. There is a unique
element h € H such that 1 X = z. Recall that Y is obtained by folding from B, a bouquet of
circles labelled by the generators in a generating set S for H. Hence, we may choose a closed
path in Y° which maps under f° to a representative loop for & in X. This path lifts to Y0, with
one endpoint lifting to the selected basepoint E, and the other lifting to some w € (6]0)_1 (b).
By commutativity of the diagram above (with i = 0), we must have F)(w) = z, as required.

Next, we show f0 ((qo)_l (b)) c H-. Every point w € f0 ((qo)_l (b) is the endpoint of the
lift to b of some closed path in Y° based at b. This path maps under f° to a representative
loop in X for some & € H, and hence lifts to X as a closed path from ¥ to some z in H-X. In
particular, commutativity of the diagram implies that F’(w) = z, and hence }‘VO ((qo)_1 (b)) =
H - X, as required.

Finally, by hyperbolicity of G (Remark 4.3.10) and Remark 3.5.8, quasiconvexity of H im-

plies that H - X is combinatorially quasiconvex. This completes the proof of the lemma. O

By Lemma 4.3.15 and Theorem 3.5.10, the combinatorial convex hull Z of Z° is contained
within a bounded neighbourhood of Z 0 In particular, since Z 0 is contained within a bounded
neighbourhood of an H orbit, the action of H on Z is cocompact. Recall that Z is the inter-
section of a family of halfspaces. To complete the proof that the algorithm terminates in the
quasiconvex case, we first show that every image Z' is contained within Z. This is the content

of the following lemma.

Lemma 4.3.16. If} is a halfspace of X, and Z' c b, then Z'*! c b.

Proof. By construction (indeed, by the definition of a fold) ¢’ is surjective on the set of hy-

perplanes of Y’. It follows that the induced folding map @ : Yi— yitlis surjective on the
set of hyperplanes of Yi. Now let 7 be the hyperplane corresponding to the halfspace b, and
denote by h° the other halfspace corresponding to #. If Z! c b, then in particular ¥ € b, and
so by construction of the map ffﬁ, we have that Z'*1 nh # @. Hence, if Z/*! ¢ b, then since

Z*1 is connected, it must intersect the hyperplane .7.
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Since ; is surjective on the set of hyperplanes, there must be a hyperplane % in Y such
that Fﬁ o@; (X) c A . But, by commutativity of the diagram above, we have ;‘v’ = Fﬁ o i,

and hence f! (#) c .#. In particular, Z' intersects .#, which contradicts our assumption. []

By Lemma 4.3.16 and induction, the map f‘;’ has image contained in Z. Moreover, ap-
plying the same argument to the folds used to build ¥ from Y, the map falso has image
contained in Z. However, the latter map is the lift to the universal cover of a local isometry
of cube complexes, which is an isometric embedding by Corollary 2.2.11. Since Z is cocom-
pact under the action of H, it follows that 17/ is cocompact under the universal covering action,
and hence Y is compact. This is a contradiction, which completes the proof that the folding
algorithm terminates in the case that H is quasiconvex.

Conclusion 6 of Theorem 4.3.9 follows from Remark 4.3.12 and Proposition 4.3.14. It

remains only to prove Conclusion 7, and this is dealt with in the following section.

Remark 4.3.17. There is a slight inconsistency in our notation between the terminating and
non-terminating cases. In the terminating case, the limit Y*° is equipped with alocal isometry
to X, because both loops and trees are pulled across as part of the algorithm. In the non-
terminating case, only loops have been pulled across in the definition of Y°°, and so it does
not have alocal isometry to X, even though it is a deformation retract of a space ¥ which does.
It would be straightforward to rectify this by pulling across trees at the same time as loops in
the main stage of the algorithm, but we have chosen not to do this in order to keep the folding

process as canonical as possible.

4.3.5 Folding and presentations

We have described how to construct, step by step, a possibly infinite graph of graphs Y*° corre-
sponding to any finitely generated subgroup of a graph of graphs X, where we constructed Y*°
as a direct limit of spaces Y. We would now like to associate a group presentation (S; | R;)
to each of the complexes Y'. Recall from Section 4.3.3 that we began with a generating set S
for H, and Y, was made by folding the corresponding bouquet of circles. Since all the folding
maps are m;-surjective, we may therefore use S; = S for all i > 0, and Ry = &. Then either
R;11 = R; (in the case that the fold (pi is a homotopy equivalence), or R; is obtained from
R;_; by adding a finite number of relations (each elementary graph fold is either a homotopy
equivalence, or it kills one loop, and our folds are finite combinations of these). Note that, if

R=Uj>1 Ri, thenm (Y*®)=H=(S | R).
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We recall the following theorem:

Theorem 4.3.18. [Mil04, Theorem 2.10] Let H be a finitely presentable group, with a presen-
tation (S | R), where S is finite and R is infinite. Then there is a finite subset R' of R such that

H=(S|R).

In our setting, this implies that if H is finitely presented, then for some i, 7, (Y*) = H. In
particular, all subsequent folding moves are 7;-isomorphisms, and hence homotopy equiva-
lences by Whitehead’s theorem (asphericity of each Y’ follows from non-positive curvature).

This proves Conclusion 7, and hence completes the proof of Theorem 4.3.9. O

We close this section with some remarks about our algorithm, and how it relates to other

accounts in the literature.

Corollary 4.3.19. If X is a compact, thin VH complex, G = m,(X), and H < G intersects each

vertical hyperplane subgroup of G in a finitely generated group, then H is quasiconvex.

Proof. The intersections between H and vertical hyperplane subgroups of G are precisely the
edge groups of Y°. If they are all finitely generated, then it is clear that the folding algorithm

terminates, so the result follows from Theorem 4.3.9. O

Remark 4.3.20. Corollary 4.3.19 is a special case of the main result of Beeker and Lazarovich’s
paper [BL16, Theorem 1.2], which is an alternative description of folding for cube complexes.
Our corollary is weaker in that it is restricted to VH complexes, but it is worth noting that we
do not need to assume finitely generated intersection of H with every hyperplane, but just

with the vertical hyperplanes.

Remark 4.3.21. As well as the above account for cube complexes, there have also been multi-
ple other generalisations of Stallings folding to graphs of groups. Bestvina and Feighn’s ac-
count [BF91] is built using equivariant Stallings folding on the Bass—Serre tree, as is Dun-
woody’s generalisation [Dun98]. Our account is more closely related to that of Kapovich, Wei-
dmann and Miasnikov [KWMO05], which iteratively constructs generating sets for the vertex

groups of the graph of groups being folded.

Remark 4.3.22. We have described the folding algorithm in the case where X is clean. How-
ever, if X is thin but not clean, then by Theorem 3.7.3 there is a finite sheeted cover X’ which
is clean. So, suppose G is the fundamental group of a thin graph of graphs, let H < G be a

subgroup, and let G’ be the finite index subgroup corresponding to the clean cover. Since
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a subgroup is quasiconvex if and only if its intersection with some finite index subgroup is
quasiconvex, we may apply our algorithm to Hn G’ < G’ to obtain a map of cube complexes
Y’ — X’ inducing Hn G’ — G, and hence determine quasiconvexity of H < G. This does not
automatically give us a local isometry between cube complexes Y — X realising H < G, how-
ever we can construct such a cube complex Y from the diagram Y’ — X’ — X. This is similar

to the construction of the intermediate covering space between HN G’ and G representing H.

4.4 Folding for subgroups of finite width

4.4.1 Motivation: quasiconvexity of finite width subgroups

An important ingredient in the proof that virtually special groups possess a malnormal qua-
siconvex hierarchy was the theorem of Gitik-Mitra-Rips—-Sageev (Theorem 2.5.11) that quasi-
convex subgroups of hyperbolic groups have finite width. A natural question is whether the

converse holds; that is:

Question 4.4.1. Are all finitely generated finite width subgroups of hyperbolic groups quasi-

convex?

Remark 4.4.2. The finite generation assumption is necessary, because quasiconvex sub-
groups of hyperbolic groups are hyperbolic (Theorem 2.5.4); in particular, they are finitely

generated.

This is a slightly more general version of Question 1.0.2, and as we discussed in Chap-
ter 1, a good motivation for studying it is that either a positive or a negative answer would
be of interest. If positive, this would give a purely algebraic definition of quasiconvexity in
the 6-hyperbolic setting, compared to the existing notions which are heavily dependent on
additional geometric structure. In the context of Chapter 3 it would, in particular, unite the
twin assumptions of malnormality and quasiconvexity which are required in the definition of
a malnormal quasiconvex hierarchy (see Section 3.8.1).

Although the question seems ambitious in the general setting of hyperbolic groups, there
is reason to believe it might have a positive answer in many cases. For free groups and surface
groups, the answer is obvious as every subgroup is quasiconvex. Less obviously, it also holds
for hyperbolic 3-manifold groups (by the Tameness Theorem proved by Agol [Ago04] and in-
dependently by Calegari-Gabai [CG06]). For example, in the case of a 3-manifold M with a

surface boundary X, we mentioned in Remark 2.5.8 that malnormality of 7;(X) in 71 (M) is
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equivalent to M being acylindrical. In this case, it is a theorem of Thurston that if M is also
irreducible and atoroidal, it possesses a hyperbolic metric in which X is totally geodesic (for
an account, see [Bon02]). This is stronger than quasiconvexity; indeed, it implies that the lift
of = to M is convex. The close relationship between the theory of special cube complexes and
3-manifolds, which we described in Section 3.8.2, then gives a heuristic reason to believe that
the question might have a positive answer in the special cube complex case.

Mitra’s work provides another step towards an affirmative answer to Question 4.4.1. The
main theorem of [Mit04] is that if a hyperbolic group G splits over a subgroup H, and the
attaching maps are quasi-isometric embeddings, then H is of finite width in G if and only if
it is quasiconvex in G. A slightly weaker statement was given, with an alternative proof, in
[Kap01]. In the final section of [Mit04], Mitra also provides suggestions as to how to approach
Question 4.4.1 in more generality.

On the other hand, a negative answer to Question 4.4.1 would also be a very interesting
result. One reason is that it would provide a new example of a non-quasiconvex subgroup of
a hyperbolic group; such subgroups do exist, but most examples arise as the subgroup K in a
short exact sequence:

1-K—-T—-Q—1,

where T is hyperbolic and Q is infinite; in particular, K is actually an infinite-index normal
subgroup, very far from having finite width (indeed, by Theorem 2.5.11, this is exactly how
they are known to be non-quasiconvex).

One source of such examples is due to Rips [Rip82], where I is a C'(1/6) small cancel-
lation group (see Chapter 5 or [LS77, Chapter V] for an introduction to small cancellation
theory), and Q is any finitely presented group. Another example arises when I' is the funda-
mental group of a certain type of fibred 3-manifold: take Z x [0, 1] for some hyperbolic surface
%, and identify the ends Z x {0} and X x {1} by a pseudo-Anosov homeomorphism of X. The
resulting manifold is fibred as a = bundle over S!, and the fibration gives rise to a short exact
sequence as above, with K =71 (Z) and Q = Z.

Itis also possible to construct a short exact sequence as above where I' is the fundamental
group of a compact thin VH complex, as Haglund and Wise showed in [HWO08]. This gives at
least one example where our folding algorithm would not terminate, although performing the

algorithm explicitly would be rather difficult given the complexity of the example.
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If a negative answer to Question 4.4.1 could be found in the case where the subgroup
was not only finite width but malnormal, then this would lead to another very interesting
example of a non-hyperbolic group—in fact, it is close to a counterexample to the first funda-
mental open question we mentioned, Question 1.0.1. This follows from Theorem 4.4.3 below,
of which we give a proof for convenience. Recall that a group is said to be of type F,, if it has
a classifying space with a finite n-skeleton; fype F if it has a classifying space with finite n
skeleton for all n, and type F if it has a finite classifying space. Hyperbolic groups are of type

Fo,, and of type F if they are torsion-free.

Theorem 4.4.3. Suppose H is a type F,, malnormal subgroup of a hyperbolic group T, but H is
not quasiconvex inT'. Then the double D =T xgT is a non-hyperbolic group of type Fy+1 with

no Baumslag-Solitar subgroups.
The proof depends on the following lemma of Bass-Serre theory (see Remark 2.1.6).

Lemma 4.4.4. Suppose a Baumslag-Solitar group BS(m,n) = (a,t | t1a"t=a") acts 1-

acylindrically on a tree without edge inversions. Then it stablises a vertex.

Proof. Isometries of a tree without edge-inversions are either hyperbolic (translate along a
unique axis) or elliptic (fix a vertex). It is elementary to check that if s™!ps = g, and q is hy-
perbolic, then p is hyperbolic, the translation lengths of g and p are equal, and if L is the axis
of g then sL is the axis of p. So assume first that a is hyperbolic. Then a” and a” must have
the same translation length, which implies that m = +n, and moreover ¢t must fix the axis of
a. Hence the whole group acts on L, and therefore admits a map to D, whose kernel (which
is infinite) fixes L pointwise. This contradicts acylindricity of the action.

The other case is that a is elliptic, so fixes a vertex v. If ¢ also fixes v, then the proof is
complete, so assume v and tv are distinct vertices. Now, a’™" fixes v, but since a™" = ta™ !,
we have a™tv = ta™ v = tv, so a™" also fixes tv and hence the line from v to tv. This
contradicts 1-acylindricity unless v and tv are adjacent. In this latter case, since the action
is without inversions, d(v, t>v) = 2, and a similar argument with a™" shows that this also

contradicts 1-acylindricity. This completes the proof of the lemma. O

Proof of Theorem 4.4.3. Firstly, we build a classifying space for D. Take classifying spaces for I'
with finitely many cells in each dimension, and a classifying space for H with finite rn-skeleton.
Now we may build a graph of spaces for I' ;I using these as the vertex and edge spaces

respectively. The n+1 cells of this space are of two types; either n+1 cells in the vertex spaces,
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or n-cells in the edge space crossed with an interval. Thus, the total space has finite n + 1-
skeleton, and by Lemma 2.1.8 it is aspherical and hence a classifying space for D.

Now, if D has a Baumslag—Solitar subgroup, by Lemma 4.4.4 it is conjugate into a vertex
group, since malnormality of H in I' guarantees 1-acylindricity (see Remark 2.1.6). However,
hyperbolic groups cannot contain Baumslag—Solitar subgroups, so this is a contradiction.

Finally, we show that D cannot be hyperbolic. Suppose it is, and let X be the Cayley
graph of D with the generating set given by the union of two copies of a finite generating set
of I'. This has a subgraph Xy corresponding to the subgroup H, and two subgraphs X;, X,
corresponding to each vertex subgroup I'. Note that X N X» = Xy. Let 0 be the hyperbolicity
constant for X.

Since X is not quasiconvex in I, for any R we may choose two points x, y in Xy such
that, for i = 1,2, any choice of geodesic y; in X; joining x and y is not contained in the R-
neighbourhood of Xy. These two paths are also geodesics in X, by uniqueness of normal
forms (or by the fact that I' is a retract of D). Hence, they form a geodesic bigon.

Let z; be a point on y; such that d(z;, Xg) > R, and let z, be the closest point on >
to z;. It follows immediately from §-thinness that the two sides of a geodesic bigon in any
6-hyperbolic metric space are of distance at most §, and hence d(z;, z2) < 0.

However, by the Svarc-Milnor Lemma (Theorem 2.4.7), X is quasi-isometric to the uni-
versal cover of the classifying space for D. Therefore, any path joining z; to z; must pass
within some uniform distance r of Xy, and hence has length atleast R—r. Thus, for R> 0+,

we obtain a contradiction. This completes the proof of the theorem. O

If we could find a distorted, malnormal subgroup of a hyperbolic group which was type
F, then Theorem 4.4.3 would provide a counterexample to Question 1.0.1. Indeed, if I were
compact special, then H and I would both be type F, and D would be a counterexample to
the weaker claim that any type F group without Baumslag-Solitar subgroups is hyperbolic.

Even in the case where the subgroup is just finitely generated and I is not necessarily
torsion-free, D would be a finitely presented non-hyperbolic group without Baumslag—Solitar
subgroups, and very few such examples are known (they are due to Brady, and arise as finitely
presented subgroups of hyperbolic groups which are not of type Fs3). If such a subgroup could
be found that were finitely presented, then D would be the first known example of a type F3

non-hyperbolic group without Baumslag—Solitar subgroups.
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Note that if H is malnormal and quasiconvex, then D =T * 4 I" is known to be hyperbolic

by the Bestvina-Feighn combination theorem [BF92].

4.4.2 Asymptotic injectivity radius

Our original motivation for describing the folding algorithm was to understand the geome-
try of finite width subgroups, with a view to answering Question 4.4.1. The following lemma

shows that finite width does have geometric consequences.

Lemma 4.4.5. LetT be a finite graph, let G = 1 ('), and let H < G be a subgroup of finite width
k. Let p: T — T be an immersion realising the inclusion H < G. Then ' contains only finitely

many distinct embedded combinatorial loops of each length.

Proof. Suppose there are infinitely many embedded loops in I’ of length n. Since T is finite,
we may choose aset [y,..., [;;1 of k+1 embedded loops of length 7 in I/, all mapping under p
to the same loop [ in I'. Choose a vertex w € [, and for each i let y; be the lift of w to [/;. Denote
y = y1, let p; be the constant path at y;, and for each i > 2 let p; be a path in I” from y to y;.
We take the fundamental groups of I' and I with respect to w and y respectively.

If there is a pair , j such that p; and p; represent elements in the same right coset of H
in G, then p,pjfl represents an element of H, and so it is a loop in I". This is a contradiction
because the points y; and y; are distinct. Thus, the element [/] of 71, (I') represented by / is an
infinite order element in the intersection of any pair of conjugates of H by the elements of G

represented by the p;. This contradicts the fact that H has width k. O

The following corollary is immediate, and gives a geometric consequence of finite width

in the case where I"' is an infinite graph.

Corollary 4.4.6. LetT andT’ be as in Lemma 4.4.5, and fix basepoints x e T, x' € I'. Then the
injectivity radius of T' is asymptotically infinite, in the sense that for any n, there exists R such

thatT' — B(x', R) contains no embedded loops of length < n.

Lemma 4.4.5 and Corollary 4.4.6 both generalise in the obvious way to a local isometry
between cube complexes, however one might hope to apply them in the graph case by looking

at vertex spaces, as in the following subsection.
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4.4.3 Potential approach: asymptotic geometry of the vertex spaces

Lemma4.4.7. Let G be the fundamental group of a graph of groups and let H < G be a subgroup

of finite width. Then the vertex groups of H are finite width subgroups of the vertex groups of G.

Proof. Let H, be a vertex group of (the induced graph of groups for) H, and G, the corre-
sponding vertex group of G. These are subgroups of H and G respectively, and H, = HNn G,
(up to conjugacy). It is a general fact that if A < B and A has width k in B, then for any other
subgroup C < B we have that An C has width < k in C. Indeed, if An C has width > kin C,
we can choose k + 1 elements py, ..., pr+1 in C, such that for every pair i # j, p,'p]_.l ¢ A but

p;tApin p]‘.lAp j is infinite. This contradicts the fact that A has width k in B. O

This suggests one of the possible approaches to understanding finite width subgroups
of graphs of graphs: studying the geometry of graphs with asymptotically infinite injectivity
radius. In the setting of our folding algorithm, we may bring more to bear on this problem.
Using the thinness of X, and the fact that each infinite vertex space of Y*° is comprised of a
small initial section (the image of Y°) combined with finitely many connected edge spaces,
we obtain the following (we omit a rigourous proof, but the properties all follow quickly from

the folding algorithm).

Proposition 4.4.8. Consider the setting of Theorem 4.3.9 in the case where the folding algo-
rithm does not terminate. Assume H has finite width in G, and choose a vertex space Y, of

Y =Y. ThenY, is a graph satisfying the following conditions.
* Y, is uniformly locally finite.

* Y, is a union of subgraphs Y, = CUY, U --- UY, where C, is finite, and the pairwise

intersections of different Y, are forests whose components have uniformly bounded size.

o The fundamental group H, = m1(Y,) is generated by the subgroups corresponding to C,
and the Y,,.

* Y, (and each Y,,) has asymptotically infinite injectivity radius in the sense of Corollary

4.4.6.

In light of Proposition 4.4.8, it is helpful to consider the different subgraphs Y, to
correspond to colours on the graph Y,,; this induces a multiple colouring on the edges of

Y, (possibly excluding some edges of C,). One may then consider the representation of
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some long, monochromatic loop [ in Y, as a product of generators from the generating set
CyUY, U - UY,, as a disc diagram with boundary /, and with each 2-cell corresponding
to a loop which is either monochromatic or contained within C,. By choosing [ to be a loop
outside of some large neighbourhood of the basepoint in Y}, we may arrange for an arbitrarily
strong small cancellation constant in a large neighbourhood of the boundary loop in this disc
diagram. One could hope to derive a contradiction directly from this.

Alternatively, one could try to find information about the distortion of H < G as follows.
First, in each vertex space Y;,, choose a generating set of the subgraph C,,. Now, for the given
product decomposition of /, we have a certain number of generators from C, and a certain
number of monochromatic loops, each of which has its own product decomposition in some
adjacent vertex space. Using the small cancellation of each vertex space, one might be able
to find a function linking the length of the loop ! to the number of generators from the full
collection of subgraphs C,, (from all vertex spaces) required to express it as an element of H.
This function would be closely related to the distortion of H in G. For this approach to work,
it seems necessary to have a better understanding of the injectivity radius growth in vertex

spaces, and we hope that future work will make progress here.

Remark 4.4.9. There are only finitely many embedded loops of each length in the complex X
of Theorem 4.3.9, and so we can always use separability to take a finite sheeted covering space
with arbitrarily high injectivity radius, regardless of finite width. Such a cover would typically
have many more edge spaces than X. This implies that any approach to Question 4.4.1 using
the small cancellation style ideas outlined above would certainly have to make use of the fact
that the small cancellation constant was asymptotically very small, while the number of edge

spaces remains the same.

4.4.4 Other potential approaches

We close this section with a few further ideas for how one could use the folding algorithm to

approach Question 4.4.1.

Remark 4.4.10. Itis not difficult to see that, considering the Y; as cube complexes, the folding
process does not add any hyperplanes but rather enlarges existing hyperplanes. It follows
that if the algorithm does not terminate, then Y is an infinite cube complex with finitely
many hyperplanes. In particular, there are finitely many horizontal hyperplanes, as well as

the vertical hyperplanes which correspond to edge spaces. It seems likely that an approach



CHAPTER 4. FOLDING CUBE COMPLEXES 95

to Question 4.4.1 would have to make good use of the fact that both these sets were finite. It
is not obvious whether or not such a special cube complex exists with asymptotically infinite
injectivity radius (see Corollary 4.4.6). If one could construct such a cube complex, it would
be a finite width, non-convex cocompact subgroup of a finitely generated right angled Artin

group.

Remark 4.4.11. In the finitely presented case, all folds eventually consist of pulling across
loops, and all folds are eventually homotopy equivalences. However, there are still two types
of such fold. Injective foldsinduce an injection Y’ — Y*1, and surjective foldsinduce a surjec-
tion on vertex spaces. This depends on whether the loop ¢ being pulled across from one vertex
space, Y, to another, Y,, lifts as a path to P; c Y,,. In this case, Y, does not embed in the new
vertex space Y}, but rather surjects onto it. If one could eventually rule out surjective folds—
either by imposing hypotheses or by changing the order with which loops are chosen—then
the associated generating sets of the vertex groups would be easier, and this would simplify

the analysis of the product decompositions we discussed in the previous section.

4.5 Higher dimensional folding

Theorem 4.3.9 only applies to graphs of graphs—a subclass of compact special cube com-
plexes. In order to generalise it to a folding algorithm which works for higher dimensional
special cube complexes, we may exploit Corollary 3.8.4 and use induction on the level in the
malnormal quasiconvex hierarchy (graphs of graphs providing the first non-trivial case). In
this section, we outline how such an induction might work in the case where the subgroup is
known to be quasiconvex. We move freely between the algebraic notion of a malnormal qua-
siconvex amalgam (or HNN extension) and the corresponding geometric notion of a compact
special cube complex with a specified hyperplane.

Let G be a virtually compact special hyperbolic group, and let G’ be the finite index sub-
group of G in 4 2.7 . Let h denote the height of G’ with respect to .# 27 —that is, G’ is an
amalgam A#*¢ B or HNN extension A*¢c, where A and B have height -1, and C is malnormal
and quasiconvex in G'. We proceed by induction on h.

Suppose, for induction, that if G is a group admitting a malnormal quasiconvex hierar-
chy of height n — 1, with corresponding cube complex X, and if Y — X is a suitably defined
morphism, then there is a sequence of folds (in a suitable sense) taking Y to Y’, where Y’ — X

is alocal isometry and 7, (Y’) is quasiconvex if and only if Y’ is compact if and only if the fold-
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ing sequence is finite. If the case n = 0 corresponds to Stallings folding for free groups, then
Theorem 4.3.9 provides the case n = 1.

Now to prove the above for height n, we would like to mimic the proof of Theorem 4.3.9.
So, we begin with a special cube complex X with fundamental group G = A *¢ B, and a qua-
siconvex subgroup H < G. We aim to construct a sequence Yy, Y; --- of cube complexes (with
induced graph of spaces decompositions) as in the statement of Theorem 4.3.9. To begin, we
define our elementary folds.

Just as in Remark 4.3.2, there are different ways in which a morphism f: ¥ — X can fail
to be alocal isometry. If f fails to be a local isometry on a vertex space, then our inductive hy-
pothesis can be applied to fold that vertex space. If f is alocal isometry on all vertex spaces but
still fails to be a local isometry globally, then it may be non-injective on some link. This can be
corrected by identifying vertices in an edge space and a vertex space (or a pair of edge/vertex
spaces) and folding using the inductive hypothesis. The final possibility is that f fails to map
onto a full subcomplex somewhere, and as before, this is corrected by pulling (some subcom-
plex of) the appropriate component of a pullback across an edge space, just as before. Again,
the inductive hypothesis will allow us to build the new vertex and edge spaces by folding.

Having defined these folds, the algorithm should proceed just as before—we begin with
a folded bouquet of circles, and apply the above folds to correct each failure of local isometry.
Local finiteness arguments should still ensure the existence of the limit complex. The princi-
pal subtlety is the need to deal with the fact that, even if H is quasiconvex, the vertex groups
of Y’ may not be quasiconvex subgroups of the vertex groups of X at each stage i (since we
lose the free group-specific fact that every finitely generated subgroup is quasiconvex). Thus,
we either have to fold in such a way that this quasiconvexity can be ensured (which may be
impossible), or we have to fold “diagonally”, by carrying out a certain amount of folding on a
vertex space, enough to stabilise a large enough subcomplex that we can pull around a chosen
loop to an adjacent vertex space, but without waiting for the folding algorithm on the vertex
space to terminate. Provided that this can be achieved, writing down the folding algorithm

precisely in higher dimensions should be doable.



Chapter 5

Negatively curved metrics on small

cancellation groups

In Section 2.4.3, we discussed one of the most fundamental open questions in geometric
group theory: to what extent do the various definitions of negative curvature for groups co-
incide? For the remainder of the thesis, we leave cube complexes behind, and return to one
of the other notions of negative curvature, namely the CAT(-1) condition. In Chapter 6, we
will fully settle the ambiguity between the notions of negative curvature in the case of limit
groups, by proving that they are hyperbolic if and only if they are CAT(—1) (for a stronger
statement, see Theorem 6.3.10). The geometric objects we work with are negatively curved
simplicial 2-complexes. In the current chapter, to get a feel for these objects, we use them to
prove Theorem 5.1.4 below. A presentation is called uniformly C'(1/6) if pieces (overlaps be-
tween relators) are all shorter than a sixth of the length of the shortest relator. Our theorem is

then:

Theorem (Theorem 5.1.4). Let G be a group with a uniformly C'(1/6) presentation. Then G

acts geometrically on a 2-dimensional CAT(-1) space.

Although the uniform C’(1/6) condition we use is in general stronger than the standard
C'(1/6) condition, it still holds for an important class of C’(1/6) groups; namely, random

groups in the density model at density < 1/12. We therefore have the following corollary:

Corollary (Corollary 5.1.6). Random groups in the density model, for density d < 1/12, act

geometrically on a 2-dimensional CAT(-1) space.
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Wise showed in [Wis04] that C’(1/6) groups are CAT(0), and hence so are random groups
at density < 1/12. Ollivier and Wise then improved this to density < 1/6 [OW11]. However,
since both results use cubulation, the CAT(0) spaces obtained are of high dimension, and so
Corollary 5.1.6 represents an improvement in dimension as well as curvature.

Our proof consists of two steps. Firstly, we find an explicit hyperbolic 2-complex struc-
ture on the universal cover of a presentation complex for our group, using singular hyperbolic
polygons. The resulting complex has some points of local positive curvature, but we are able

to perform folds to remove this positive curvature and obtain our desired complex.

Remark 5.0.1. After completing this proof, we became aware that this argument was known
to Gromov [Gro01], and a more general version of it (in the context of small cancellation over
graphs of groups) is described in [Mar13]. The latter paper deals with a CAT(0) metric, but the
author points out that the argument also works in the CAT(—1) case. We would like to thank

Alexandre Martin and Anthony Genevois for bringing these two papers to our attention.

5.1 Preliminaries

Recall from Section 2.2.4 the definition of an Mj-simplicial complex. In this chapter we refer
to an My-simplicial complex which is locally CAT(k), where k < 0, as a negatively curved sim-
plicial complex (of curvature k), or just a negatively curved complex. Both in this chapter and
in Chapter 6, we will assume that all complexes are locally finite (see Remark 6.1.7), and will

be concerned only with 2-dimensional complexes (see Remark 6.1.2).

5.1.1 Small cancellation conditions

A good reference for classical small cancellation theoryis [LS77], and we refer the reader there

for full details. We only state here what is necessary for us to give our main theorem.

Definition 5.1.1. Let R = {r1, ..., r,,} be a set of cyclically reduced words on an alphabet SLIS™,
closed under taking cyclic permutations and inverses. A piecein R is a word w which appears

as an initial segment of at least two elements of R.

Definition 5.1.2. Let 22 = (S | R) be a presentation for a group G. Without loss of generality,
assume R is closed under taking cyclic permutations and inverses. We say &2 is C'(1/6) if every

piece in R has length strictly less than 1/6 of the length of any relator in which it appears. Now
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let g be the minimal length of any relator in R. We say & is uniformly C'(1/6) if every piece in

R has length strictly less than g/6, and moreover no element of R is a proper power.

Remark 5.1.3. Groups which are C'(1/6) are torsion-free if and only if no relator is a proper
power, and proper powers are forbidden by our uniform C’(1/6) condition; hence, any uni-
formly C’'(1/6) group is torsion-free. This is necessary for our argument, since we produce
a free action on a CAT(—1) space, and all groups possessing such an action are torsion-free.
However, we do not know whether the uniform small cancellation condition can be relaxed to

the standard C’(1/6) condition in the torsion-free case.
Our main theorem is the following.

Theorem 5.1.4. Let G be a group with a uniformly C'(1/6) presentation, (S | R). Then G has
CAT(-1) dimension 2.

Remark 5.1.5. Random groups in the density model, for density < 1/12, satisfy the ordinary
(non-uniform) C’(1/6) condition [Gro93]. Since they have all relations of equal length, they
satisfy the uniform C’(1/6) condition too. This provides an assurance that the uniform con-
dition is not too much of a restriction; indeed we obtain the following immediate corollary of

Theorem 5.1.4.

Corollary 5.1.6. Random groups at density < 1/12 have CAT (-1) dimension 2.

5.1.2 Geometry of regular polygons

The first part of our argument relies on choosing suitable metrics on the 2-cells in the pre-
sentation complex. These metrics are based on small regular hyperbolic polygons, however
since sufficiently small hyperbolic polygons closely resemble Euclidean polygons, we will ar-
gue in the Euclidean case for technical simplicity. Proposition 5.1.11 makes the conversion to
a hyperbolic metric explicit.

We first establish some terminology about such polygons.

Definition 5.1.7. Let P be a regular (hyperbolic or Euclidean polygon). A diagonal is a
geodesic connecting two (possibly consecutive) vertices of P. A segment of P is the smaller
of the two pieces obtained by cutting P along a diagonal (in the case where the diagonal is
an edge of P, the segment is also this single edge). The diagonal is said to subtend the cor-

responding segment. The length of the segment is the number of edges of P it contains, and
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Figure 5.1: The extremal angle between diagonals of length < 3 in a regular 19-
gon. No internal angle between diagonals in the picture is less than the highlighted
angle.

the length of the diagonal is the length of the corresponding segment. The radius of a regular

polygon is the distance from the centre to any boundary vertex.

Definition 5.1.8. Let P be an n-gon, and let d;, d» be two diagonals of length less than n/2.
Suppose d; and d» intersect at a point p. Precisely one of the connected components of P —
(dy, U dy) contains the centre of P, and the angle at p which is inside this component is called

the internal angle between d; and d».

Lemma 5.1.9. Consider two intersecting diagonals in a regular Euclidean n + 1-gon, each of

length at most |n/6]). The minimal internal angle between such diagonals is > 27 /3.

Proof. Clearly, the case realising the minimal internal angle is where the two diagonals share
an endpoint and are of the maximal permitted length. To see this, take any other intersection
of diagonals d, d», where d; has endpoints v; and w;. Without loss of generality, the clockwise
order of the endpoints around the boundary of the polygon is vy, vy, wi, ws. If d; is not of
maximal length, then increase its length by keeping w; fixed and moving v; anticlockwise.
This clearly decreases the internal angle between d; and d,. Similarly, increase the length
of d, by fixing v, and moving w, clockwise; this also decreases the angle. Finally, fix d; and
rotate d» by moving both v» and w, clockwise, until v» coincides with w,. This process also
decreases angle, and we have arrived at the extremal case.

Since six consecutive maximal length diagonals fail to complete a hexagon, the internal

angle between each pair must be > 27/3. See Figure 5.1. O
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)

Figure 5.2: A right-angled triangle in a regular hyperbolic 67 + 1-gon (for the case
n=3).

Remark 5.1.10. Lemma 5.1.9 also applies to sufficiently small regular hyperbolic polygons,
since the metric differs from a Euclidean metric by an arbitrarily small amount. The following

proposition makes this more precise:

Proposition 5.1.11. For each integer n > 6, there exists r > 0 such that Lemma 5.1.9 also holds

for regular hyperbolic n-gons of radius <r.

Proof. It is enough to show that, for any n = 1 and s = 1, we may pick r small enough that the
angle between two diagonals of length n, with a common endpoint, in a regular hyperbolic
(6n + s)-gon of radius r, is > 27/3 (that is, the picture in Figure 5.1 still applies). Clearly, the
extremal case is s = 1, so it suffices to consider this case. Take a right-angled triangle with one
vertex at the centre o of such a polygon, one vertex at the endpoint of a diagonal of length n,
and one vertex at the midpoint of this diagonal. Denote by a and 0 the two non-right angles in

this triangle, as in Figure 5.2. Our goal is to calculate the range of values of r such that 6 > /3.

_n_

Since this triangle is obtained by bisecting the isosceles triangle with angle 27 x &,

we

nmw

see that @ = e

It then follows from the second hyperbolic cosine rule that

cosh(r) = cot(0) cot (Gn = 1) .

We would like to find r such that 8 > n/3; equivalently, cot(0) < 1/ V/3. Hence

h
coshin) 1,3

cot(2L
1
r<cosh™! (—cot( nr ))

6n+1
V3 6n+1
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Figure 5.3: A singular 16-gon. The 2-simplices are all isometric and isosceles, with
angle (say) /6 at the centre and radius r, so this is a picture of D(16,12,r).

Denote the right hand side of the above inequality by rmax(n). This decreases roughly
logarithmically with n. For illustration: rpax(1) = 0.62, rmax(10) = 0.20, rmax(100) = 0.06 and
max (1000) = 0.02.

5.1.3 Singular polygons

A regular hyperbolic or Euclidean n-gon, with radius r, can be regarded as a simplicial com-
plexwith a vertex o at the centre, and n isometric isosceles 2-simplices with two sides of length
r either side of an angle of 27/ n, identified in a cycle around o. Denote such an isosceles 2-
simplex by T'(n, r).

For any integer m, we may obtain a singular 2-complex structure on a disc by identifying
m copies of T'(n, r) in the analogous manner. For m < n, the central vertex o has local positive
curvature: that is, its link is a loop of length < 27 (see Remark 2.2.21). For m = n, this is the
usual regular n-gon, and for m > n, the central vertex o has local negative curvature: the link

has length > 27. We denote this singular disc by D(m, n, r). See Figure 5.3.

Remark 5.1.12. For any k < n/2, we may define a segment of length k in D(m, n,r) in exactly
the same way as for the regular n-gon D(n, n, r). The isometry type of such a segment depends
on n, r, and the underlying metric (i.e. hyperbolic or Euclidean), but it does not depend on

m. Moreover, Lemma 5.1.9 still holds. See Figure 5.4.

5.2 Proof of the main theorem

Proof of Theorem 5.1.4. By Definition 5.1.2 no relator from R is a proper power. Also assume,

without loss of generality, that the relators are distinct up to cyclic permutation and inverses
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\/

Figure 5.4: A segment in a singular D(m, n, r) is isometric to a segment of the same
length in D(n, n, ).

(if not, we can simply delete relators until this is the case). The small cancellation condition
now reduces to the intuitive condition that, in the disjoint set of labelled cycles corresponding
to the relators, the maximum length of any labelled path which appears at least twice is < g/6,
where g is the minimum length of any relator. For the rest of the proof, we refer to these
labelled cycles (with either orientation) as relators.

Denote by X the presentation complex corresponding to (S | R). This consists of a bou-
quet of circles B, labelled by S, and for each relator r; a disc D; whose boundary is attached to
the path labelled by r;. We equip X with the following metric. Applying Proposition 5.1.11, we
may choose r such that Lemma 5.1.9 holds for the regular hyperbolic g-gon of radius r. For
each i =1, let g; = |r;|, and metrize each disc projecting to D; by a singular hyperbolic g;-gon
D(gi, g, ). Since the boundary of D(g;, g,7) is a g;-cycle with all edges of length some con-
stant A, the metrics on each disc induce a well-defined metric on X. Moreover, by equipping
each disc with the simplicial complex structure depicted in Figure 5.3, we obtain a simplicial
complex structure on X. Denote by Y the universal cover of X with the induced metric, and
by Z the preimage in Y of the bouquet B.

A piece from the presentation corresponds to a maximal path in Z which is contained
in the boundary of two distinct discs (either two distinct lifts of the same D;, or lifts of two
different D;). We refer to such paths also as “pieces”. Each such piece subtends a segment
of each of these two discs, and these two segments are isometric by construction. Therefore,
we may subdivide to make the segments into simplicial subcomplexes, and pass to a quotient
complex of Y in which the two segments are identified. We will refer to such an identifica-
tion as a “fold”. Note also that, after such an identification, the images of the two affected
boundary loops both still bound well-defined, isometric discs; in particular, we can safely ap-

ply the same operation again to other segments whether or not they intersect the pair already
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folded. Of course, we may need to subdivide Y again if we wish to retain a simplicial complex
structure.

So, let Y denote the quotient space obtained by folding the corresponding pair of seg-
ments for every piece in Y. Denote by Z the image of Z under this map. We claim that Y is a
CAT(-1) space with a geometric action of G.

Firstly, although we identify infinitely many pieces, Y is alocally finite complex and there
is an upper bound on the length of pieces. Thus there are only finitely many pieces containing
each vertex of Z, and so Y is a well defined, locally finite, piecewise hyperbolic simplicial 2-
complex. It is therefore sufficient to check the link condition on vertices.

There are two types of vertex to consider: those which are images of vertices in Z, and
those which are not; i.e. images of points in the interior of discs of Y. So first, let v’ be a vertex
in the image of Z, and let v be the vertex of Z mapping to v'. This is unique, since vertices in
Z are never identified under Y — Y.

Topologically, Lky (v) is a graph with two vertices s* for each s € S, and an edge s~ t*
whenever st appears as a subword in any relator. These edges all have the same length, equal
to the interior angles in the discs. There are additional vertices corresponding to the simplicial
subdivision of the discs, but these have degree 2 and we ignore them.

The quotient ¥ — Y induces a map Lky (v) — Lky(v"), and we can describe this map
very precisely. For each pair st which appears as a subword of some piece (or whose inverse
appears), there are at least two edges connecting s~ and t*; one edge for each appearance of
st in a relator. In Lky(v"), all of these edges are folded (in the genuine Stallings sense) to a
single edge.

The other operation performed by the map Lky (v) — Lky(v') corresponds to the case
where v is the initial or final vertex of a piece in Z. Suppose there is a piece p ending with
s, and let £, ..., tx be the set of all generators which occur in the set of relators immediately
following the piece p. Then, for each i, there is an edge in Lky(v) from s~ to ¢, and the
map Lky (v) — Lky(v') is a metric fold which identifies a short initial subpath of each of these
edges. This second operation is a homotopy equivalence; in particular, any unbased loop in
Lky(v') has a preimage (up to homotopy equivalence) in the graph obtained by identifying
multiple edges in Lky (v). Lemma 5.1.9 implies that, even if initial and final subpaths of some
edge of Lky (v) have been folded in this way, the length of the central path is still > 27/3.

We may therefore express the map from Lky (v) — ka(v’ ) as a composition of two folding

maps, one folding multiple edges, and one folding short initial segments of edges, as shown
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tt s tt S tt s

Figure 5.5: A planar example of the map on links of vertices of the first type. Thick
red paths show regions where the map just applied was non-injective.

in Figure 5.5. The intermediate graph contains no bigons, and since the second map is a
homotopy equivalence, all loops in the final graph must contain at least three unidentified
central subpaths of edges, and thus have length > 27 as required.

We now address the second type of vertexin Y. Let v’ € Y be a vertex which is the image
under Y — Y ofa pointin Y — Z. If v/ is the image of one of the singular points in the centre of
a disc, then its link is a circle of length = 2. This is because no segments intersect this point,
so its link is unaltered by the map Y — Y. Hence we may assume v’ is not of this type.

Let vy, ..., Vi be the set of all points in ¥ mapping to v;; note that this is indeed finite by
local finiteness of Y. For each i, let D; be the disc in Y containing v; in its interior. The link
L= ka(v’ ) is a quotient of a disjoint union of k round circles C, U --- LI Cx.. We abuse notation
and refer to the image of each C; in L as C;.

The quotient map ¢: C; U---UCy — Lisinduced by the process of folding segmentsin Y.
If such a segment contains one of the vertices v;, then v; is contained either in the diagonal
bounding the segment or in its interior. The map is therefore a multiple composition of two
possible operations: identifications of subarcs of length 7 between the C;, or identifications
of complete circles C;. The latter operation does not affect L and so we can assume that it
does not occur. We now show that L cannot contain any closed geodesics of length < 27z. This
is trivial in the case k = 1, so assume k = 2.

The map ¢ consists of repeatedly identifying length 7 subarcs of different C;. Now, each
v; is the point of intersection of a number of diagonals bounding segments in D;. The inter-
section of all these segments is a polygonal region in D; bounded by two of these diagonals,
and it follows from Lemma 5.1.9 that the subarc «; of C; corresponding to this intersection

has length at least 27/3 (see Figure 5.6).
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Figure 5.6: The link of the vertex v; in the disk D;. Lemma 5.1.9 implies that both
arcs a; and f; have length > 27/3.

Each identification of arcs under ¢ is induced by an isometry between segments in discs
D; and D;. It follows that ¢ isometrically identifies the arcs a; for all i. Refer to the image of
these arcs in L as a. In particular, the set C; n--- N C,, < L is nonempty.

Also, for each i, there is an open arc in L which is contained in the image of only C;, and
not C; for j # i. Call this arc §; (see Figure 5.6), using the same name to refer to the image in
L or the subarc in C;.

Consider the subgraph Ly = L —J; B; obtained by deleting every §; from L. This is equal
to the subgraph U; j (Ci NnC j), and each C; N Cj is a connected arc containing a. Moreover,
intersections of three or more C; are also connected arcs containing a. It follows that Ly is
simply connected.

Now let ¢ be a geodesic loop in L. Since Ly is simply connected, ¢ contains at least one
Bi. If ¢ contains only one f; (say, 1), then C; —1; is a geodesic path of length 27 —| ;| between
the endpoints of §; in Ly, and so must coincide with ¢ by simple connectedness of Ly; hence
¢ coincides with C; and has length 27. If £ contains at least three 3;, then it has length > 27
since each f; has length > 27/3.

The remaining case is that ¢ contains precisely two ;; say f; and . Since L is a tree,
each component of ¢ —{f; U B,} is contained in C; U C,, and hence ¢ c C; UC,. Now C;uUCy
L is obtained from the circles C; and C, by identifying arcs of length 7, all containing the
common arc a. If only a single arc of length 7 is identified, then the 1-complex C, U C; clearly
contains no loops of length < 27, in particular ¢ has length at least 2. Otherwise, C; and C,
intersect in L an arc longer than 7. In this situation, there must be two intersecting segments

in D; which are identified respectively with two overlapping segments in D,. Therefore, there
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U1 U2

Figure 5.7: If the red and blue pairs of segments are identified, then the union of
the corresponding pieces is also a piece, and so the grey segments are also identi-
fied.

is a larger piece whose corresponding pair of segments was not identified (see Figure 5.7).
This contradicts the construction of the map ¥ — Y.

Hence, Y is CAT(-1). Since the action of G takes pieces to pieces, the invariance of the
metric under the action of G is clear. Since Y was the universal cover of X, it follows that
the action of G on Y is also a universal covering action; in particular, it is geometric. This
completes the proof.

O

Remark 5.2.1. Proposition 5.1.11 enables us to compute an approximate volume for the neg-
atively curved complex constructed when we prove Theorem 5.1.4. The radius of each disc
used in the construction is approximately rmax(g/6), and the area of D(g;, g,r) is approxi-
mately 7r?g;/g (approximating a flat polygon as a Euclidean disc). Hence, the area of the
metrized presentation complex, before any folding is carried out, is approximately equal to

2igi

A= X T Fmax(g/6)%,

where

B (1 nm )
I'max(72) = cosh (\/§COt(6n+1)'

Of course, this is a slight overestimate, and decreases when folding is applied in a way that de-
pends precisely on the pieces of the presentation. We expect that it is asymptotically accurate

for large g and large small cancellation constant.



Chapter 6

A gluing theorem for negatively curved

complexes

In Chapter 5, we described an explicit negatively curved metric on certain small cancella-
tion groups using negatively curved 2-complexes. The aim was to provide a partial answer to
Question 2.4.13, which asked whether every hyperbolic group was CAT(-1). In this chapter,
we combine this with the setting of a thin graph of spaces (which was central to Chapter 4), in
order to answer Question 2.4.13 in a different context. The main class of groups we are inter-
ested in are limit groups, introduced by Sela [Sel01] and widely studied due to their usefulness
in understanding homomorphisms from a finitely generated group to a free group (for more
details, see Section 6.3 and the references therein). Limit groups were shown in [AB06] to be

CAT(0), and we improve this to the following theorem.
Theorem 6.3.1. Let G be a limit group. Then G is CAT(-1) if and only if G is hyperbolic.

To prove this, continuing to work with negatively curved 2-complexes, we devise a gluing
theorem (Theorem 6.2.1), in the spirit of the gluing theorems presented in [BH99, I1.11]. Es-
sentially, we would like to take two negatively curved 2-complexes, glue them together along a
tube, and find a hyperbolic metric on the resulting complex. Imposing a hyperbolic metric on
the tube is problematic, since hyperbolic annuli have a non-geodesic boundary component.
To get around this issue, we modify the metric on the two complexes, concentrating negative
curvature at vertices, and giving “room” to glue in the tube. Care is needed to ensure that the
pieces we glue on do not themselves combine to give positive curvature, and this is dealt with

in Lemma 6.1.18.
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The most closely related theorem to ours in the literature is Bestvina and Feighn’s glu-
ing theorem [BF92] for 6-hyperbolic spaces, and thus for hyperbolic groups. Our theorem is
complementary to theirs; our hypotheses are stronger, but so is our conclusion.

We present the proof of the gluing theorem in Section 6.2, and then in Section 6.3 we
introduce limit groups. After giving some background and listing some useful properties,
we will exploit the rich structure theory of limit groups to allow us to apply our gluing the-
orem, and hence to prove Theorem 6.3.1. In Section 6.4 we provide two more applications
of the gluing theorem, showing that it can be applied to the JSJ decomposition of a torsion-
free hyperbolic group (Theorem 6.4.4), and deducing that hyperbolic graphs of free groups
with cyclic edge groups are CAT(—1) (Theorem 6.4.8). A consequence of the application to the
JSJ decomposition, together with the Strong Accessibility Theorem of Louder—Touikan [LTar]
(see also [DPO01]), is that we may reduce the question of whether a hyperbolic group is two-
dimensionally CAT(-1) to its rigid subgroups (those which do not admit a non-trivial free or

cyclic splitting).

Remark 6.0.2. This chapter has appeared as the main part of the paper [Brol6]. We would
like to thank the editors, and the anonymous referee for several helpful comments which have

improved the exposition.

6.1 Preliminaries

6.1.1 Metrizing graphs of spaces

Our definition of a graph of spaces (Section 2.1.3) is purely topological, and a priori, a graph
of spaces X is not equipped with a metric. However, if we have a metric on each vertex and
edge space, then we may metrize the cylinders X, x [0,1] using the product metric (with the
standard metric on [0, 1]), and then the quotient pseudometric on X will be a true metric if
the attaching maps are suitably nice. A sufficient condition is that they be local isometries, in
the sense of Definition 2.2.8.

However, even in the case that the attaching maps are not local isometries—or even when
metrics on the edge spaces are not specified—a graph of spaces may possess other metrics.
Theorem 6.2.1 defines a metric on a graph of spaces which does not come from a product

metric on the edge space cylinders.
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6.1.2 Thinness

As we saw in Chapters 3 and 4, malnormality of edge groups in vertex groups (or thinness) is
a common assumption made on graphs of groups in certain contexts. In the gluing theorem
presented in this chapter, we will make this assumption on a subset of the vertex groups of
the graph of groups. This is a stronger condition than the “annuli flare” condition used by
Bestvina and Feighn in their gluing theorem for §-hyperbolic spaces [BF92], which could be
thought of as a coarse analogue of our theorem. As discussed in Section 4.4, the geometric
consequences of malnormality for a subgroup are not fully understood (in particular, the cir-
cumstances under which it implies quasiconvexity), and it may be possible to replace it with
a weaker assumption in the future. See Remark 6.5.3 for more details.

The technique at the heart of our proof of Theorem 6.2.1 is to replace simplices in a neg-
atively curved complex by comparison simplices taken from a rescaled hyperbolic space; re-
placing hyperbolic simplices with simplices from, say, M%/Z' This is outlined in the following

section.

6.1.3 Excess angle and comparison simplices

Remark 6.1.1. Let k <0 and let S be an M?-simplex with 1-skeleton S. Then for any k' <0,
there exists a M2,-simplex S with 1-skeleton S'V) isometric to S?; indeed, $'V is a compar-
ison triangle for SV, Each angle of §' is strictly larger than the corresponding angle of S if
k < k' <0, and strictly smaller if k' < k < 0. We say S’ is a comparison simplex for S of curvature

k' (or a comparison M?, -simplex for S).

Remark 6.1.2. Remark 6.1.1 does not have a direct analogue for higher dimensional
simplices—although we may define a comparison simplex in dimension 7, it might not ex-
ist if the difference between k' and k is too great. Indeed, given any —1 < k < 0, it is easy to
construct a hyperbolic 3-simplex S for which there is no k-comparison simplex; we can even
construct one with any 2-simplex as its base (this is a generalisation of a construction men-
tioned in [CD95]). Take a hyperbolic plane P. Let A be a hyperbolic triangle in P with vertices
x, y and z. Denote by c the incentre of A, and the inradius by r. Now, embed P isometrically
in H3, and take a point p in H® — P some small distance ¢ from c. Consider the 3-simplex S
with vertices x, y, z, p. One face of S is the simplex bounded by A, and call the other three
faces X, Y and Z according to the vertex opposite them in S. In Z, note that d ([x, yl, p) < +e

(the 2-simplex Z has bounded height), and it follows that d (x, p) + d(y, p) < d(x,y) +2r+2¢. It
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i

Figure 6.1: The hyperbolic 3-simplex on the left has no Euclidean comparison
simplex.

follows from two applications of the reverse triangle inequality that any comparison simplex
Z must also have height d ([)'c, il ﬁ) bounded by r + €. The same is true for X and Y. Now, let
us try to construct a comparison simplex S for S with curvature k. Begin with a k-comparison
simplex A for A. Its inradius 7 is greater than r. Set e = 7 — r. Now, in the purported compar-
ison simplex S, the point p is of distance < r + ¢ from each edge (%, yI, [7,Z], [z, X]. It follows

that the inradius 7 of A is less than r + ¢; a contradiction. See Figure 6.1.

Definition 6.1.3. If K is a negatively curved simplicial 2-complex, then we may form a combi-
natorially isomorphic complex K’ by replacing each M,%-simplex S with the comparison sim-
plex S of curvature k', where k < k' < 0. Then K’ is an M-simplicial 2-complex, which we call
the comparison My -complex for K. Note that gluing maps between faces of simplices remain

isometries, and so this is a well-defined M} -simplicial complex.

There is a natural combinatorial isomorphism ": K — K’, which can be realised by a
homeomorphism. We also use the same notation for the induced combinatorial isomorphism

"+ Lk(v, K) — Lk(v', K') for each vertex v e K©,

Lemma 6.1.4. Let K and K’ be as in Definition 6.1.3. Then K' is locally CAT(k'); in particular,

it is a negatively curved 2-complex.

Proof. By Remark 6.1.1, angles at vertices in K’ are larger than in K. Since links in K and K’
are metric graphs, it follows that the map’: Lk(v, K) — Lk(v/, K') strictly increases the distance
between pairs of points. Remark 2.2.21 then implies that links in K’ are CAT(1), and hence K’
is locally CAT (k). O

We quantify this as follows.
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Definition 6.1.5. For a negatively curved simplicial 2-complex K and comparison complex

K’, the excess angle 6 is defined by:
6(K',K) =inf{6' - 6}

where 6 ranges over all vertex angles of 2-simplices S « K and 6’ is the corresponding angle in

the comparison simplex S’ c K. Equivalently:
8(K',K) = inf{drx k(@ V) = dixw (@, b) | a, be Lk(v, )0, v e K}

If K is finite (or more generally, if the set Shapes(K) of isometry types of simplices is

finite), then § (K, K) > 0.

Remark 6.1.6. Suppose y = (e, ..., ey) is a locally geodesic simplicial path in K, with i(e;) =
vi-1, T(e;)) = v fori=1,...,n. Theny' = (e'l, ..., €,) is a local geodesic in K’, and for each

i=1,..., n—1the angle subtended by y at v} is at least 7 + 26 (K", K); that is:
Ay, Kk (e}, €},,)=m+26(K,K).

In the case where y is a closed local geodesic, the same also holds for the angle at v = v},

between e, and €] and so ' is still a closed geodesic.

Remark 6.1.7. We will typically use the excess angle only in the spirit of Remark 6.1.6 above.
In this setting, we could relax the requirement that K or Shapes(K) is finite, provided we insist
that K is locally finite. This is because we only need to consider the finitely many angles

around the finite subset of K consisting of simplices which intersect y.

Remark 6.1.8. The process of replacing hyperbolic simplices by simplices of different curva-
ture is equivalent to rescaling the 1-skeleton by a constant factor and keeping the curvature
fixed, by definition of the rescaled spaces M;'. We have chosen the former approach here,
though the latter may have advantages in future; for example, calculating explicit volumes for

the complexes constructed.

Remark 6.1.9. In this chapter, we will rarely specify the exact value of the curvature for a sim-
plicial 2-complex, and indeed we will not always ensure that all the simplices in such a com-

plex have equal curvature. This is not a problem provided that the curvatures are all negative
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and bounded above, since letting k be the upper bound (i.e. the curvature of smallest abso-
lute value which appears among the different simplices) and replacing every simplex with its
k-comparison simplex, we obtain a simplicial 2-complex with isometric 1-skeleton, greater or

equal face angles, and all simplices of equal curvature.

6.1.4 Hyperbolic triangles, quadrilaterals and annuli

Remark 6.1.10. For any angle 0 <6 < m, any a, b > 0, and any k < 0, there exists a 2-simplex in
M,ZC with angle 8 between two sides of length a, b. For brevity, we will sometimes refer to such

a simplex as an (a,0, b)-fin.

Figure 6.2: An (a, 6, b)-fin.

Definition 6.1.11. A Lambert quadrilateral is a quadrilateral in M,% (for k < 0) with three an-
gles equal to 7/2, as illustrated in Figure 6.3. The bottom edge, called the base, has length a,
and the top edge, called the summit, has length c. The single angle 0 not equal to 7/2 is called

the summit angle.

Figure 6.3: A Lambert quadrilateral

Lemma 6.1.12. In a Lambert quadrilateral with k = -1,

where labels are as in Figure 6.3.
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Proof. We will give a short proof using the hyperbolic sine and cosine rules. Many such iden-
tities can also be found in [Bea83, Chapter 7], proved using the definition of the hyperbolic
metric on the upper half plane.

Divide the quadrilateral along diagonals, and label as follows:

Note that S+ ' = /2 =y +7/, and hence cosy =siny’, and cos ' = sin §. Firstly, applying the
(hyperbolic) Pythagorean theorem in triangles PQR and PSR gives

coshacoshb =coshx =coshccoshd. 6.1)

The cosine rule in triangle QRS gives

cosh ¢ = cosh bcosh y —sinh bsinh ycosy

= cosh bcosh y —sinh bsinh ysiny’. (6.2)

The sine rule in the right-angled triangle PQS gives

sinh ysiny’ = sinhd,

and substituting this into (6.2) gives

cosh ¢ = cosh bcosh y —sinh bsinh d. (6.3)
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Similarly applying the cosine rule to triangle PQS and substituting for cos ' = sin § using the

sine rule in triangle QRS, we obtain

cosh a = coshd cosh y —sinh bsinh d sinf. (6.4)

Now, from (6.1), we have

coshd = coshbcosha

coshc

and substituting this into (6.4) gives
h bcosh h
cosha = COShDCOSnAcosny sinh bsinh dsin6.
coshc
h
= cosh ¢ = cosh bcosh y —sinh bsinh dsinf ( cos C). (6.5)
cosha
Finally, equating (6.3) and (6.5) we obtain
. . . . . coshc
cosh bcosh y —sinh bsinh d = cosh bcosh y — sinh bsinh d sin6 ( )
cosha
. coshc
. 1=sinf ( )
cosha
. cosha
— sinf =

coshc

as required. O

Lemma 6.1.13. A Lambert quadrilateral inH = MEI with summit length c and summit angle

0 exists if and only if 0, < 0 < /2, where

6 =sin™ (coshc) '

Proof. Recall that for any two non-crossing geodesics in H, there is a unique geodesic perpen-
dicular to both. Now, construct a geodesic segment C of length ¢ in H, with a perpendicular
geodesic B at one end, and a perpendicular geodesic B’ at the other end. Clearly B’ and B
do not cross, but no (non-degenerate) Lambert quadrilateral exists with summit C, since the
unique geodesic perpendicular to B and B’ is C. Now continuously decrease the angle 6 be-
tween C and B’. By convexity of the metric, the unique geodesic perpendicular to B and B’

will form a Lambert quadrilateral on the same side of C as the angle 8, until 6 reaches the
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value 6, at which B and B’ form an ideal hyperbolic triangle with C. This can be calculated

(for example) by setting a = 0 in the formula from Lemma 6.1.12:

0. =sin""! :
¢ = sl (coshc)

as required. O

Note that, given such ¢ and 0, the quadrilateral is then uniquely determined. Note also
that the fact that the minimal distance between B and B’ increases continuously from zero
as 0 increases from 6, follows directly from the formula in Lemma 6.1.12. For an alternative
proof of Lemma 6.1.14 below, we could show first that this distance is a continuous function
of the distance between the points B and B’ in the boundary circle of the hyperbolic plane
(which is straightforward to verify), and then perturb a right-angled ideal triangle to obtain

the required Lambert quadrilateral.

Lemma 6.1.14. For any 0 < 0 < &, and for any a, ¢ such that ¢ > a > 0, there exists k <0 and
a Lambert quadrilateral in M,2C with base length a, summit length c and summit angle greater

than0/2.

Proof. First, let

so that g =0;. For any a < ¢, we have

cosha 1 (9)
> > n >

— - =sj
cosh¢ coshc

and hence

5"

m_ . _yfcosha) O
— >sin —|>=
cosh¢

Applying Lemma 6.1.13, we see that a Lambert quadrilateral exists in Mfl with base length

@, summit length ¢ and summit angle sin™! (%) > 0/2. By multiplying the metric by a
factor c/ ¢, we obtain a Lambert quadrilateral in M 2 where k = — (¢/¢)?, satisfying the required

conditions. O

Lemma 6.1.15. For any0 <0 < m, and any A, C such that C > A > 0, there exists k <0 and a

locally CAT (k) annulus with one locally geodesic boundary component of length A, and one
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boundary component of length C which is locally geodesic everywhere except for one point

where it subtends an angle greater than 0.

Proof. Apply Lemma 6.1.14 with the same 8, a = A/2 and ¢ = C/2. Now take two copies of the
resulting Lambert quadrilateral, and glue together two pairs of sides to obtain the required

annulus (see Figure 6.4). O

Remark 6.1.16. We have not been able to find any previous reference to the existence of a
rectangle as in Lemma 6.1.14 (and hence an annulus as in Lemma 6.1.15), and it is worth
pointing out that the existence of such a rectangle runs counter to the common intuition that,
in the hyperbolic case, small rectangles are “approximately Euclidean”. In fact, as in the proof
of Lemma 6.1.14, we can find a hyperbolic rectangle with arbitrarily low area (since the area

is equal to the difference between 27 and the sum of the interior angles), and yet arbitrarily

T

high ratio between the lengths of a pair of opposite sides.

Figure 6.4: Gluing two Lambert quadrilaterals to obtain an annulus. Identify the
two sides of the left picture. The bottom edge of the annulus has length A, the top
edge has length C, and the angle in the top edge is > 6.

6.1.5 Transversality

As discussed at the beginning of the chapter, we would like to build new negatively curved
complexes by gluing fins and annuli to existing ones. To avoid introducing positive curvature,
for example by identifying a pair of adjacent sides in two fins, we would like to glue along paths

that intersect transversely. The following lemma ensures that this can always be arranged.

Definition 6.1.17. Lety = (ey, ..., e,) and Y’ = (e}, ..., €,,) be two closed geodesics in K. We
say y and y' intersect transversely if e; # e;. and é; # e;. for all i and j (that is, the two loops do
not share an edge). Similarly, we say y intersects itself transversely if e; # e; and e; # e; for all

i#].
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Lemma 6.1.18. Let K be a negatively curved simplicial 2-complex of curvature k. Let
{yW, ..., ¥y} be a collection of simplicial closed geodesics such that the corresponding cyclic

subgroups of w1 (K) form a malnormal family. Then there is a 2-complex K such that:
* K is a negatively curved simplicial complex of curvature k, where k < k < 0;
* thereis an inclusion i: K — K and a deformation retractionr: K — K;

* thereare closed geodesics 7V, ..., ¥'™ in K, such that r () = y©, which intersect them-

selves and each other transversely.

Proof. The complex K will be obtained from K by gluing on fins to shorten the intersection
between the closed geodesics Y. We will ensure that there is “room” to glue these fins by
repeatedly taking the comparison complex and obtaining an excess angle at the vertices.

Let y¥) = (egi), e eg()l.)). Let I be the number of repetitions (ignoring orientation) in the

(i)
{%

that is, I counts d — 1 for each edge of K that occurs d times in the union of the Y. Thus,

list

i:L“”nszL“”nuﬁ;

I counts the number of failures of transversality of the set of geodesics; if I = 0, then the Y
intersect themselves and each other transversely, and the conclusions of the lemma hold al-
ready. To prove the lemma, we will show that if 7 > 0, it is always possible to find a complex
satisfying all the conclusions of the lemma other than transverse intersection of the geodesics,
but with I reduced by 1 compared to K. The required result follows from this by induction.

So, suppose I > 0. The first stage is to replace K by a comparison complex K’ of curvature
(say) k/2. Since the isomorphism ’: K — K’ is a homeomorphism and preserves the Y, we
may safely proceed with K’ instead of K. Let § be the excess angle §(K, K"); if Shapes(K) is
not finite, then we may ensure é > 0 by taking the infimum in Definition 6.1.5 only over the
finitely many angles at vertices contained in the y”) (see Remark 6.1.7).

Since I > 0, we may assume that there are two closed geodesics y = {ey, ..., er}, ' =
{e!,..., €}, obtained by relabelling and possibly reversing the y'”, such that e; = €} with ori-
entation (note that y and y' may be distinct relabellings or reversals of the same y'¥). Without
loss of generality, r < s.

Now, suppose that, for all z € Z, e, nmoq, = € . In the case that y and y’ are rela-

zmod s

bellings of different ¥, this implies that the loops are both powers of a common loop, con-

tradicting the malnormal family assumption. If y and y’ are relabellings without reversal of
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the same 7, then this again implies that Y is a proper power of a loop, which contradicts
the assumption. The only remaining case is that y and ' are relabellings of the same ), but
one of them is reversed; that is, e’1 (= e;) = e, for some ¢ > 1. It follows that e; = e;_1, e3 = €;_»
and so on—hence, Yy must contain either an edge e = & (which is forbidden by definition) or
an adjacent pair e, &, which contradicts the fact that the loops are local geodesics.

It follows that there is some j < s such that e; = e;. but ej; # e;.ﬂ. Let a = |ej| and

b= . Now, form a complex K* from K’ by gluing an (a,7 — &, b)-fin, also of curvature

/
€ii1

k/2, along e; and e;.ﬂ (see Figure 6.5). For any closed geodesic ¢ in K’ containing (e;., e}ﬂ),

theloop ¢* in K* obtained from ¢ by replacing (e;., e;. +1) with the new edge e’ (along the top of
the fin) is a local geodesic in K*, and there is a clear deformation retraction to K’ sending ¢*

to ¢. So, consider K* together with the set of closed geodesics obtained from {yV, ..., y(™}

/

s /
by replacing any occurrence of (e ein

) with e’. This satisfies the second conclusion of the
lemma, and the first half of the final conclusion; moreover, the value of I is strictly lower than
for the original set of loops and the complex K (because we have removed at least one edge in
the intersection between y and y’). It remains only to check that K* is negatively curved.

K*isan M?

&/»-Simplicial complex by construction, so we may check that it is negatively

curved using the link condition. The only three links to check are those at v;_1, and v;,

/
Uj+1

since all the others are unchanged from K’. To obtain Lk (v;_;, K*) and Lk( K +), we have

V}+1'
simply glued a leaf to the corresponding links in K’, and to obtain Lk ( vj, K +), we have (in light
of Remark 6.1.6), glued an edge of length 7 — 6 between two vertices of distance = 7 + 29 in
Lk (v, K'). Neither of these can introduce a failure of the CAT(1) condition (by Remark 2.2.22)

and so K™ is negatively curved. This completes the proof. O

Figure 6.5: Gluing on a fin

Remark 6.1.19. It is not difficult to see that we may improve the above lemma to make the
geodesics not only transverse, but disjoint. Indeed, if two geodesics intersect transversely at
a vertex v, we can make them locally disjoint by gluing a fin along one of the two geodesics at

v. Alternatively, it can be seen as an application of Theorem 6.2.1 in the next section, in the
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special case where the underlying graph is a star with vertex spaces K for the central vertex,

circles for the leaves, and circles for each edge space attached to each of the loops Y.

6.2 The gluing theorem

We are now ready to state our main gluing theorem. As explained in the subsequent remarks,
the statement below is not the strongest available; however, it allows for a straightforward

application to the limit group situation (see Section 6.3 for more details).
Theorem 6.2.1. Let X be a graph of spaces with finite underlying graph T, such that:
1. Vertex spaces are one of three types:

type P single points,
type N simplicial circles, or

type M connected negatively curved simplicial 2-complexes that are neither points

nor circles.

2. Edge spaces are either circles or points.
3. Each circular edge space connects a type N vertex space to a type M vertex space.
4. Theimages of attaching maps of circular edge spaces are (simplicial) closed geodesics.

5. For each type M vertex group in the corresponding graph of groups, the family of sub-

groups corresponding to incident edge groups is a malnormal family.

Then X is homotopy equivalent to a negatively curved simplicial 2-complex X. Moreover, if X

has compact vertex spaces, then X is compact.

Remark 6.2.2. We believe that the assumption in condition 1 that type N vertex spaces are
circles can be relaxed, although this is not necessary for our applications; see Remark 6.5.1.
Condition 3 in fact requires only that two type N vertex spaces are not connected by a circular
edge space, since if a circular edge space connected two type M vertex spaces we could then
subdivide the corresponding edge of I' and insert a circular vertex space in between. Condi-
tion 4 is always achievable; indeed, if K is a locally CAT(—1) space, then every conjugacy class
in 71 (K) is represented by a unique closed geodesic (see [BH99]). If K is a simplicial complex,

then by subdivision we may assume this closed geodesic is simplicial. Conjugacy classes in
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71 (K) correspond to free homotopy classes of unbased loops in K, and hence each attaching

map is homotopic to an isometry to a simplicial closed geodesic.

Remark 6.2.3. Condition 5 can also be unravelled a little. As mentioned above, in each vertex
space, the loops corresponding to circular edge spaces determine conjugacy classes in the
fundamental group. As in Lemma 6.1.18, the malnormal family assumption then says that,
whichever representatives of these conjugacy classes are chosen when defining the graph of
groups, the corresponding edge subgroups have trivial intersection. The other requirement is
that the subgroups are individually malnormal; which, for cyclic subgroups of a torsion-free
CAT(-1) group, is equivalent to requiring that they are maximal cyclic—that is, not generated
by a proper power. This is because torsion-free CAT(—1) groups, being hyperbolic, cannot

contain any Baumslag-Solitar subgroup.

Proof of Theorem 6.2.1. To begin, we consider X as a topological graph of spaces, with speci-
fied metric on the type M vertex spaces only. We will describe how to metrize the rest of the
vertex and edge spaces in the proof.

Consider a type M vertex space X, of X. Note that X, together with the set
{0, (Xe) | ecEMD), le)=v, X, = Sl} of images of incident circular edge spaces satisfies the
conditions of Lemma 6.1.18. We may therefore find a negatively curved 2-complex X,,
equipped with a deformation retraction r,: X, — X, inclusion i,: X, — X,, and a transverse
set ofloops {y.| e€ E(I), () = v, Xe = S'} such that r, (y.) = d¢ (X,). Without loss of general-
ity (by taking a comparison complex if necessary) we may assume that X, has an excess angle
0, > 0 around each loop vy, (as in Remark 6.1.6) so that the angle subtended through each
vertex by each loop v, is at least 7 + 26 ,,.

Now consider a type N vertex space X,,. For each circular incident edge space X, with
7(e) = w, the attaching map 0; is a d to 1 covering map for some d = d(e). Choose a positive

number a,, satisfying

! (Ye)

ayw <mln{%

‘ ecEM), t(e) = w}.

We will now describe how to modify the complex X into the complex X. By Lemma 2.1.8,

the two complexes will be homotopy equivalent.

1. Replace each type M vertex space X, with X,, as above, then replace each attaching map

i, 00, with a homotopic map to the closed geodesic y,.

2. Metrize each type N vertex space X, to have length a,,.
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3. For each circular edge space X, by condition 3, we may assume t(e) = v and 7(e) = w
where X, is type N. After the above, the two ends of X, x [0, 1] are identified with closed
geodesics of length (y.) and a,d(e). Since ayd(e) < I(y.), there exists by Lemma
6.1.15 a negatively curved annulus A, with one geodesic boundary component of length
ayd(e), and one boundary component of length [ (y,) subtending an angle greater than
7 — 0, at a vertex and geodesic elsewhere. Therefore, we may replace X, x [0,1] with (a
copy of) A, such that the metrics on A,, X, and X,, are all compatible (ensuring we

position the vertex of A, at some vertex of X,).
4. Triangulate A, to ensure it is simplicial.
5. For each type P vertex space X,, take a point X,,.

6. For each edge e such that X, is a point, attach a line between X,(,) and X;(¢). Note that
the endpoints of this line (that is, the attaching maps), as well as its length, are irrelevant

from the perspective of homotopy, since the vertex spaces are path connected.

Topologically, to obtain X from X we have simply replaced edge cylinders and vertex
spaces with homotopy equivalent spaces, and attaching maps with homotopic maps. It fol-
lows from Lemma 2.1.8 that X and X are homotopy equivalent. Note that X is still, topolog-
ically, a graph of spaces, and it supports a global metric, but this is no longer the standard
metric on a graph of spaces as described in Section 6.1.1.

We must now check that X is a negatively curved simplicial 2-complex. By construction,
itis a simplicial 2-complex, all of whose simplices are negatively curved. It is sufficient, there-
fore, to check the link condition on vertices (possibly after an application of Remark 6.1.9). We
already have that each vertex space X,, and each annulus A,, is negatively curved, so it suf-
fices to check the link condition for vertices at which the annuli A, are glued to vertex spaces.

For vertices in type N vertex spaces, links consist of two vertices connected by several
(possibly subdivided) arcs, of length 7. These satisfy the link condition, since all circles in the
space have length at least 2.

Now let X, be a type M vertex space, and let x be a vertex of X, contained in at least one
Ye. To obtain Lk(x, X) from Lk(x, X,), we glue on a number of arcs of length > 7 — §,,. We may

prove by induction that the resulting space remains CAT(1).
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Firstly, recall from above that the geodesics vy, subtend angles of at least 7 + 26, at each
vertex. In particular, the first arc glued on to Lk(x, X,,) connects two points of distance at least
m+20,, and is itself of length > 7 — § ,; Remark 2.2.22 then says that the space remains CAT(1).

For subsequent arcs, let us assume for induction that after gluing on r — 1 arcs, the space
is still CAT(1). Now suppose the rth arc is to be glued between points a and b. By Lemma
6.1.18), a and b are distinct from any previous points to which arcs have been glued, and
hence any path between a and b which is not contained in Lk(x, X,,) must begin and end with
an edge from Lk(x, X,). All such edges have length at least §,, and hence any such path has
length at least 26, + 1 — 6, = m + 0 ,. On the other hand, any path connecting a and b which
does lie in Lk(x, X,) is of length at least # + 20, as noted before. Thus Remark 2.2.22 applies
again, and so the space again remains CAT(1).

Therefore, the link condition holds for X, and so X is a negatively curved simplicial com-
plex. Moreover, it is clear by construction that if all type M vertex spaces of X are compact,

then X is compact. This completes the proof. O

6.3 Limit groups
The motivating application for Theorem 6.2.1 was to prove the following theorem.

Theorem 6.3.1. Let G be a limit group. Then G is CAT(-1) if and only if G is § -hyperbolic.

This is a simplified version of Theorem 6.3.10, which will follow quickly from one of the
defining characterisations of a limit group (see Theorem 6.3.6), but before we launch into this
we will give some context as to the relevance and usefulness of limit groups. To this end, we

begin by stating the simplest definition.

Definition 6.3.2. A limit group (also finitely generated fully residually free group) is a finitely
generated group G such that, for any finite subset S c G, there is a homomorphism h: G — F

to a non-abelian free group [ such that # is injective on S.

Limit groups were first introduced in the study of equations over free groups; their im-
portance lies in the fact that, in the study of the sets of solutions of these equations, limit
groups correspond to irreducible varieties. The original definition (motivating the name) was
given by Sela [Sel01], and is quite different (although equivalent) to Definition 6.3.2. We re-
fer the interested reader to [Sel01], alongside [BF09] and [Wil09], for more information and

references.
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We will use several facts concerning limit groups without proof, and we state these below
for convenience. Properties 1, 3 and 5 are easy to see from the definition, and proofs of all the

others can be found in [Sel01] or [BF09] except where otherwise indicated.
Theorem 6.3.3 (Properties of limit groups). Let G be a limit group. Then:

1. G istorsion-free.

2. [Sel01, Corollary 4.4] G is finitely presented.

3. Every finitely generated subgroup of G is a limit group.

4. [Sel01, Corollary 4.4] Every abelian subgroup of G is finitely generated.

5. [Sel01, Lemma 1.4] Every non-trivial abelian subgroup of G is contained in a unique

maximal abelian subgroup.
6. [Sel01, Lemma 1.4] Every maximal abelian subgroup of G is malnormal.

7. [Sel01, Lemma 2.1] If G = A x¢ B for C abelian, then any non-cyclic abelian subgroup

M < G is conjugate into A or B.
8. [ABO6] G is CAT(0).

Much of the work that has been done on limit groups, including the proof of 8 above,
depends upon a powerful structure theory. For full details of this (often expressed in terms
of constructible limit groups), the reader is referred again to [Sel01] and subsequent papers in
that series, as well as the expositions [BF09, Wil09, CGO05] (see also [KM98a] and subsequent
papers). A particularly elegant result that comes out of this theory is Theorem 6.3.6 below,
proved in [KM98b] and [CGO05]. To state it, we must first introduce the following notion. Our

overview follows that given in [Wil08].

Definition 6.3.4. Let G’ be a group, let g € G/, and let C(g) denote the centralizer of g. Let

n = 1. Then the group G’ *¢(g) (C(g) x Z") is called a centralizer extension of G' by C(g).

Definition 6.3.5. A group is said to be an iterated centralizer extension if it is either a finitely
generated free group, or can be obtained from one by taking repeated centralizer extensions.
The class of iterated centralizer extensions is denoted ICE; sometimes we will refer to a group
in ICE as an ICE group. An ICE group obtained by taking a free group and then taking a cen-

tralizer extension n times is said to have height n.
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Theorem 6.3.6 ([KM98b, CGO05]). Limit groups coincide with finitely generated subgroups of
ICE groups.

Remark 6.3.7. [see also [Wil08, Remark 1.14]] If G is an ICE group (and hence a limit group
by Theorem 6.3.6) which is not free, then it follows from property 5 of Theorem 6.3.3 that
centralizers in G are abelian. Since G is in ICE, there is an ICE group G’ such that G = G' *¢(g)
(C(g) x ™). If C(g) is non-cyclic, then by property 7, C(g) is conjugate into one of the two
components in the iterated centralizer decomposition of G’; by induction, it follows that C(g)
is conjugate into some previously attached C(g’) x Z™. At this stage, we could therefore have
attached C(g’) x Z*" instead. It follows that, when building limit groups, we may assume all

centralizer extensions are by (infinite) cyclic centralizers.

A consequence of Theorem 6.3.6 is that there is a natural graph of spaces decomposition
for any ICE group G. If G is free, it is a single vertex space: a compact graph with fundamental
group G. Otherwise, G = G’ *(g) ((g) X Z”), where we can assume (by induction) that G’ =
71(Y") for some graph of spaces Y'. Then G has a graph of spaces decomposition Y with
underlying graph an edge, one vertex space M = Y’, one vertex space N which is an n + 1-
torus T"*!, and edge space a circle A. The attaching maps send A to a closed curve y ¢ M
representing g in 71 (M) = G', and to a coordinate circle of N = T"*1. We may assume without
loss of generality that M and N are simplicial, the attaching maps are combinatorial local

isometries, and their images are simplicial closed geodesics.

Remark 6.3.8. The above graph of spaces decomposition for an ICE group G induces a graph
of spaces decomposition for any subgroup H < G. Therefore, any limit group H has a graph of
spaces decomposition X with edge spaces either circles or points, and vertex spaces covering
spaces of either M or N. Moreover, since all limit groups are finitely generated, we can assume

that X has finite underlying graph.
We are now ready to prove the following consequence of Theorem 6.2.1.

Theorem 6.3.9. Let H be a limit group which does not contain any subgroup isomorphic to Z?,
and let X be the graph of spaces induced by an embedding of H into an ICE group. Then there

exists a compact negatively curved simplicial 2-complex X which is homotopy equivalent to X.

Proof. The proof uses Theorem 6.3.6, along with Theorem 6.2.1 and induction on height.
Clearly the result holds if H embeds into an ICE group of height 0. So suppose that H

embeds into an ICE group G = 1 (M * 4 N) of height n, and assume that the result is proved
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for all limit groups that do not contain Z? and that embed in ICE groups of height < n — 1.
The graph of spaces X for H has two types of vertex space: those mapping to M and those
mapping to N. Call these type M and type N respectively.

Edge spaces of X are either lines or circles. Since H is finitely generated, this implies
that the vertex groups are all finitely generated. Since H does not contain Z2, each type M
vertex group is therefore a limit group that does not contain Z?, and each type N vertex space
is homotopy equivalent to either a point or a circle. By the inductive hypothesis, each type
M vertex space is therefore homotopy equivalent to a compact negatively curved simplicial
2-complex.

By Lemma 2.1.8, we may replace vertex and edge spaces X,, X, of X with homotopy

1

equivalent spaces X, X/, to obtain a graph of spaces X’ with the same homotopy type as X.

We do this as follows:

1. For each edge space X, which is a line, let X, be a point.
2. For each edge space X, which is a circle, let X}, be a circle.

3. For each type N vertex space X, which is homotopy equivalent to a point, let X], be a

point.

4. For each type N vertex space X, which is homotopy equivalent to a circle, let X], be a

circle.

5. For each type M vertex space X,, apply the inductive hypothesis to find a homotopy

equivalent compact negatively curved simplicial 2-complex X],.

As in the proof of Theorem 6.2.1, the attaching maps are defined by composing the at-
taching maps in X with the homotopy equivalences applied to the vertex spaces, followed by
a further homotopy to ensure that the images of attaching maps of circular edge spaces are
closed geodesics. That is, once we have fixed an edge and vertex space, we choose as our at-
taching map a local isometry which represents the corresponding attaching map in the graph
of groups. As before, for those edge spaces which are points, this can be any map.

At this stage, X’ is a compact graph of spaces satisfying conditions 1 to 4 of Theorem
6.2.1. To show that it also satisfies condition 5, note that the set of non-trivial incident edge
subgroups in a type M vertex group of X' is a set of cyclic subgroups of a limit group. We claim

that these cyclic subgroups are maximal cyclic. By Remark 6.3.7 this is true in the ICE group
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G, and so it follows from the definition of the induced splitting that edge subgroups are also
maximal cyclic in type M vertex groups of X'. Since H does not contain Z2, they are therefore
maximal abelian, and so malnormality of individual edge subgroups follows from property 6
of Theorem 6.3.3.

It remains to show that if @ and b generate two distinct edge subgroups of a type M ver-
tex group H, = 1 (X)) of X', then conjugates of (a) ¢ H, and conjugates of (b) < H, have
trivial intersection in H,,. Since the ICE group G has only one edge group (which we may take
without loss of generality to be (a)) it follows from the definition of the induced splitting that
a and b are conjugate as elements of G, say g"'ag = b, and that the conjugating element g
is contained in the vertex group G, (= m;(M)) of G, but not in the subgroup H. If a and b
are also conjugate in H, say h~'ah = b, then a commutes with gh~! in G. Since (by defini-
tion of a centralizer extension) Cg, (a) = (a), it follows that gh’1 € {(a); in particular, g € H,
which is a contradiction. Therefore, a and b cannot be conjugate in H. Likewise, if a and b1
are conjugate in H, say h™'ah = b™", then it follows that « commutes with (gh™!)* in G, and
hence (gh‘l)2 € (a). Since (a) is maximal cyclic, we again see that gh~! € (a), and obtain a
contradiction as before.

Now, suppose ¢ € H, satisfies t 'aPt = b?. Since H, does not contain Z?, property 5
implies that the two cyclic subgroups generated by t~!at and b must coincide; but since the
edge groups are maximal cyclic, neither t~'at nor b is a proper power. Thus ¢t 'at = b*!,
which is a contradiction according to the previous paragraph. It follows that conjugates of
(a) ¢ Hy, and conjugates of (b) ¢ H, have trivial intersection as required.

It follows that X’ satisfies all the conditions of Theorem 6.2.1, and so we can apply it to

find the complex X as required. O
In summary, we have proved the following theorem:
Theorem 6.3.10. Let G be a limit group. Then the following are equivalent:
1. G is hyperbolic.
2. GisCAT(-1).
3. G has CAT(-1) dimension 2.

4. G does not contain 72.
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Proof. 3 = 2 follows from our definition of CAT(-1) dimension (Remark 2.4.22). 1 — 4

and 2 = 1 are true for any group. 4 = 3 is precisely Theorem 6.3.9. O

Note in particular that this provides an alternative proof of the fact due to Sela [Sel01,
Corollary 4.4] that a limit group G is hyperbolic if and only if every abelian subgroup is cyclic.

Sela’s proof also uses a combination theorem, namely that of Bestvina and Feighn [BF92].

Remark 6.3.11. In combination with the fact that limit groups are CAT(0) (item 8 of Theorem
6.3.3), Theorem 6.3.10 provides a complete answer in the limit group case to the questions
posed in Section 2.4.3 about the relationships between the different notions of negative cur-
vature. That is, it shows that being CAT(0) without s subgroups, CAT(—1), and hyperbolic are

all equivalent notions of negative curvature for limit groups.

6.4 Further applications of the gluing theorem

There are several contexts in which cyclic splittings of groups are of interest, and our gluing
theorem therefore has the potential to shift the question of whether such groups are CAT(-1)
to their vertex groups under a cyclic splitting. With this in mind, we can give two more conse-
quences of Theorem 6.2.1. The first consequence concerns JS] decompositions, for which we
will need to recall some technical background. The second consequence concerns graphs of

free groups with cyclic edge groups, and this will follow quickly from the JSJ material.

6.4.1 JSJ decompositions of torsion-free hyperbolic groups

JSJ decompositions were originally invented to study toroidal decompositions of 3-manifolds
(JS79, Joh79], and can be thought of as the second stage in the decomposition of a 3-
manifold—the stage after cutting along essential spheres. Analogous notions for groups have
been studied by Bowditch [Bow98] (in the case of hyperbolic groups) and Rips-Sela [RS97] (in
the case of general finitely presented groups), among many other generalisations. We will give
only the details essential for our argument, and for these we follow [Bow98].

Dunwoody’s Accessibility Theorem [Dun85] shows that any hyperbolic group can be de-
composed as a graph of groups whose vertex groups are either finite or one-ended, and whose
edge groups are finite. In the torsion-free case, this reduces to a decomposition with trivial
edge groups and one-ended, hyperbolic vertex groups (this is also called the Grushko decom-

position). Analogously to the 3-manifold setting, the JS] decomposition then describes how
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to decompose these components further, and in the torsion-free case, this is a decomposition
along infinite cyclic subgroups.

The following statement is a special case of [Bow98, Theorem 0.1]:

Theorem 6.4.1 (JS] decomposition for torsion-free hyperbolic groups). Let I' be a torsion-
free, one-ended hyperbolic group. Then T is the fundamental group of a well-defined, finite,

canonical graph of groups with infinite cyclic edge groups and vertex groups of three types:

type S fundamental groups of non-elementary surfaces, whose incident edge groups cor-

respond precisely to the subgroups generated by the boundary components;
type N infinite cyclic groups, and
type M non-elementary hyperbolic groups not of type S or type N.

These three types are mutually exclusive, and no two of the same type are adjacent.

In the above statement, a cyclic splitting of I is called canonical if it has a common re-
finement with any other cyclic splitting of I', where a refinement of a splitting is obtained by
taking further splittings of vertex groups so that the images of attaching maps in the original
splitting are still contained in vertex groups. In this sense, a canonical splitting contains in-
formation about any cyclic splitting of the group. The splitting in the JS] decomposition is
well-defined because it is the deepest canonical splitting possible; it has no further canonical

refinement.

Remark 6.4.2. In Bowditch’s original statement, it is taken as a condition that I" is not a co-
compact Fuchsian group, which, in the torsion-free case, is the same thing as a closed hyper-
bolic surface group. We do not need to rule out this case, but note that its JS] decomposition
consists of just one vertex group, of type S, with no incident edge groups. Indeed, a closed sur-
face group cannot have a non-trivial canonical splitting—each cyclic splitting corresponds to
a simple closed curve on the surface, and given any such curve, we can always choose another
simple closed curve which cannot be homotoped disjoint from it. Then the two splittings de-

fined by these two curves can never admit a common refinement.

We would like to apply our gluing theorem to the JSJ decomposition of a hyperbolic
group. For our theorem to apply, we will need to assume (as before) that the type M vertex
spaces have CAT(—1) dimension 2; however, no further assumptions are required due to the

following fact.
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Lemma 6.4.3. For each type M or type S vertex group in the JS] decomposition of a hyperbolic

group T, the images of incident edge groups form a malnormal family of subgroups.

Proof. In the type S case, this follows from Theorem 6.4.1—in particular, the subgroups con-
cerned are the subgroups generated by the boundary components, and these always form
a malnormal family. In the type M case, it follows from the proof of the fact that the ac-
tion of I' on the Bass—Serre tree corresponding to the JSJ] decomposition is 2-acylindrical (see

[GL11]). O

The next proposition then follows quickly from Theorem 6.2.1 and Lemma 6.4.3.

Proposition 6.4.4. Let ' be a torsion-free, one-ended hyperbolic group. Suppose that all the
type M vertex groups in the JS] decomposition of T are fundamental groups of (compact) neg-
atively curved 2-complexes. Then T is also the fundamental group of a (compact) negatively

curved 2-complex.

Proof. We construct a graph of spaces corresponding to the JS] decomposition of I'. By defini-
tion of the JS] decomposition, we may choose a circle for each edge space. By assumption, we
can choose (compact) negatively curved 2-complexes for the type M vertex spaces, and we can
clearly also choose (compact) negatively curved 2-complexes for the type S vertex spaces. We
choose a circle for each type N vertex space. If a type M and type S vertex space are adjacent,
we insert an additional type N vertex space in between, so that each type M or S vertex space
is then only adjacent to type N vertex spaces. Thus the first three conditions of Theorem 6.2.1
hold (where type S vertex spaces are included in the type M vertex spaces of Theorem 6.2.1).
Remark 6.2.2 implies that we may assume that the images of attaching maps are then simpli-
cial closed geodesics, hence condition 4 also holds, and Lemma 6.4.3 gives condition 5. Hence

Theorem 6.2.1 applies, and the result follows. O

In the JSJ decomposition, we do not necessarily know any more about the type M vertex
groups of I' than we know about I' itself. In particular, they may themselves have a non-trivial
JSJ decomposition, or even a free decomposition. However, we may appeal to the following

theorem ([LTar], see also [DP01]).

Theorem 6.4.5 (Strong Accessibility Theorem). LetT" be a torsion-free hyperbolic group. Con-
sider the hierarchy obtained by taking either the free (if freely decomposable) or JS] decomposi-
tion of T', and then taking a free or JS] decomposition of the resulting vertex groups, and so on.

Then this hierarchy is finite.
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Definition 6.4.6. A torsion-free hyperbolic group is called rigid if it does not have a non-trivial

free or cyclic splitting.

The Strong Accessibility Theorem says that if we continue decomposing vertex spaces
using free products or JSJ] decompositions, we must eventually terminate at a decomposition
whose vertex groups are rigid (note that vertex groups are always hyperbolic—this is clear for
free decompositions, and in the JSJ case is given by Theorem 6.4.1). In the context of our

gluing theorem, it implies the following proposition.

Proposition 6.4.7. A torsion-free hyperbolic group T' has CAT(—1) dimension 2 if each rigid
subgroup of T has CAT(-1) dimension 2.

6.4.2 Graphs of free groups with cyclic edge groups

In the above subsection, we saw how the gluing theorem can be applied to JS] decompositions
of hyperbolic groups. However, we could only conclude that a group was CAT(—1) if the vertex
groups in the JS] decomposition were CAT(—1) of dimension 2, which is a strong requirement.
Here we describe a context where this requirement is met.

In [HW10], Hsu and Wise show that a group G which splits as a finite graph of finitely gen-
erated free groups with cyclic edge groups is CAT(0) if and only if it contains no non-Euclidean
Baumslag-Solitar subgroups. Their method uses Sageev’s construction, and as such gives little
control over the CAT(0) dimension. If G is also hyperbolic (so that it contains no Baumslag—
Solitar subgroups at all), then we may improve their result in two ways: firstly, showing G is
in fact CAT(-1), and secondly, showing that the CAT(—1) dimension (and hence the CAT(0)

dimension) is equal to 2.

Theorem 6.4.8. Let G be a hyperbolic group which splits as a finite graph of finitely generated
free groups with cyclic edge groups. Then G has CAT(-1) dimension 2.

To prove this, it is tempting to try to apply Theorem 6.2.1 directly to the graph of spaces
corresponding to the given graph of free groups. However, it may not be possible to ensure
that incident edge groups form malnormal families in vertex groups. We circumvent this dif-

ficulty by appealing to the JS] machinery of the previous subsection.

Proof of Theorem 6.4.8. We would like to apply Proposition 6.4.7, and so we need to check that
each rigid subgroup of G has CAT(—1) dimension 2. So, let H be a rigid subgroup of G, and

consider the splitting of H induced by the decomposition of G as a graph of free groups with
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cyclic edge groups. Since H is rigid, this induced splitting must consist of a single vertex group,
so H is a subgroup of a vertex group of the original splitting. Hence H is free (indeed, since H

cannot split freely, it is trivial), and so certainly has CAT(—1) dimension 2, as required. O

6.5 Remarks

Remark 6.5.1. Theorem 6.2.1 was designed for the limit groups case. However, Theorem 6.5.2
below is a slightly more general theorem which follows from the same argument. The essential
difference is to allow any negatively curved 2-complex as a type N vertex space. In the proof of
Theorem 6.2.1, we used the fact that the type N vertex spaces were circles twice: firstly, we gave
them a specific length which was sufficiently small for there to exist some negatively curved
annulus A,; and secondly, we explicitly described the structure of the links in X of vertices in
type N vertex spaces to verify the link condition. To prove Theorem 6.5.2, we may rescale the
type N vertex spaces so that all the closed geodesics y, are sufficiently short for there to exist
suitable annuli A,. The proof then proceeds as before, and we may appeal to Remark 2.2.22 to
verify the link condition for vertices in type N vertex spaces in the resulting complex. We do

not know whether this generalisation has any applications beyond those of Theorem 6.2.1.
Theorem 6.5.2. Let X be a graph of groups with underlying graphT. Suppose:

1. T is bipartite, with corresponding vertex sets M and N;

2. vertex groups of X are fundamental groups of negatively curved 2-complexes;

3. edge groups of X are infinite cyclic or trivial, and

4. for vertex groups corresponding to vertices in M, the incident edge groups form a malnor-

mal family of subgroups.

Then X has a corresponding graph of spaces homotopy equivalent to a negatively curved 2-

complex.

Remark 6.5.3. We expect that the malnormal family assumption we make in our main theo-
rem can be relaxed. Indeed, it is used only to show that it is possible to make the correspond-
ing set of closed geodesics transverse (Lemma 6.1.18), which in turn is used only to ensure
that there is a safe place to attach the corner of a hyperbolic annulus (see the proof of The-

orem 6.2.1). It is easy to design a hyperbolic annulus with reflex angle of, say, 7 + d; in the
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geodesic side, and an angle in the other side of 7 — 62, provided 6, > §;. Using such annuli
for edge cylinders, we may attach multiple annuli along the same closed geodesic in a vertex
space. It may be that such a technique allows us to replace the malnormal family assumption
with a weaker assumption, such as k-acylindricity for larger k, or the “annuli flare condition”

used in [BF92].

Remark 6.5.4. Remark 6.1.1 does not directly generalise to n-dimensional simplices, as we
showed in Remark 6.1.2. Moreover, even when comparison simplices can be found (which
can be ensured by choosing k' sufficiently close to k), the dihedral angles may decrease when
passing to a comparison simplex of lesser negative curvature (i.e. k < k' < 0). This means
that Remark 6.1.6 may not hold in dimensions > 2, and consequently our proof of Theorem
6.2.1 is valid only in two dimensions. To prove a higher dimensional version, one would need
to generalise “excess angle” to dimensions > 2 using the notion of a complex with extra large
links. An Mj-complex is said to have extra large links if the systole of the link of each vertex
is strictly greater than 27, and moreover the links themselves are complexes with extra large
links. It has the useful feature that it is stable under small perturbations of the metric (see
[Mou88] or [Dav08]). However, it is not clear whether it is always possible to preserve this
property under gluings, or even subdivision (for example, to make some loop simplicial). See

[CD95, CDM97, Riv05] for more information.

Remark 6.5.5. We have indicated the applicability of our method to families of hyperbolic
groups built hierarchically, namely limit groups, and graphs of free groups with cyclic edge
groups (via the JSJ decomposition). There are many other families of hyperbolic groups built
in a similarly hierarchical way—for example, hyperbolic special groups (see Section 3.8.1)—
and these may lend themselves to investigation using similar techniques. It does not seem un-
reasonable to seek a more general CAT(—1) gluing theorem, valid for larger classes of graphs of
spaces—for example, the case where the edge groups are not cyclic; where the vertex spaces
are of dimension > 2 (as discussed above), or where the groups are allowed to have torsion;
however, it appears that any such generalisation requires an understanding of the higher di-

mensional case, and is thus subject to the difficulties described above.
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