
Understanding Sharded Caching Systems
Lorenzo Saino, Ioannis Psaras and George Pavlou

Department of Electronic and Electrical Engineering
University College London, London, UK

Email: {l.saino,i.psaras,g.pavlou}@ucl.ac.uk

Abstract—Sharding is a method for allocating data items to
nodes of a distributed caching or storage system based on the
result of a hash function computed on the item identifier. It
is ubiquitously used in key-value stores, CDNs and many other
applications. Despite considerable work has focused on the design
and the implementation of such systems, there is limited under-
standing of their performance in realistic operational conditions
from a theoretical standpoint. In this paper we fill this gap
by providing a thorough modeling of sharded caching systems,
focusing particularly on load balancing and caching performance
aspects. Our analysis provides important insights that can be
applied to optimize the design and configuration of sharded
caching systems.

I. INTRODUCTION

Sharding1 is a widely used technique to horizontally scale
storage and caching systems and to address both processing
and storage capacity bottlenecks. According to this technique,
a large set of items is partitioned into a set of segments, named
shards, based on the result of a hash function computed on
the identifier of the item. Each shard is then mapped to a
physical storage or caching device. This technique practically
enables to partition data across members of a cluster and to
identify the member of the cluster responsible for a given item
by simply computing a hash function. Normally, sharding is
used in conjunction with consistent hashing [3] to minimize
the remapping of items as a result of cluster members joining
or leaving the system.

Sharding is widely used in a variety of applications. It is
for example ubiquitously implemented in database systems2,
Web caches in enterprise networks [2], [4], CDNs [3], [5]
and key-value stores [6]. It is also used to partition large
forwarding tables across network cards of a router [7] or across
different routers of a network [8]. More recently, sharding has
been applied to single-node key-value store implementations
in order to partition items across memory regions and CPU
cores [9].

However, despite a lot of work on the design and implemen-
tation of sharded systems, there is little theoretical understand-
ing of sharding properties under realistic conditions. In this
paper, we shed light on the performance of such systems. Our
contribution focuses on two main aspects of sharded caching
systems: load balancing and caching performance.

1The term sharding is sometimes referred to, in literature, as hash parti-
tioning [1] or hash routing [2]. Throughout this paper, we use these terms
interchangeably.

2To the best of our knowledge all major database implementations, both
relational and NoSQL, currently support sharding.

With respect to load balancing, we first investigate how
skewed distributions of item request frequency and hetero-
geneous item size affect imbalance. We then focus on un-
derstanding how item chunking and frontend caches can be
used to mitigate it. Our findings show that the skewness
of item popularity distribution considerably increases load
imbalance. On the other hand both item chunking and frontend
caches are effective solutions. We derive practical formulas for
dimensioning frontend caches for load imbalance reduction.

With respect to caching performance, we analyze the be-
havior of a system of shards, each performing caching deci-
sions independently. Our main finding is that under realistic
operational conditions a system of sharded caches yields
approximately the same cache hit ratio of a single cache as
large as the cumulative size of all shards of the system. This
result has important practical implications because it makes
possible to model a sharded caching system as a single cache,
hence making its analysis considerably more tractable.

The remainder of the paper is organized as follows. In Sec.
II, we introduce the system model adopted throughout this
paper. We analyze the performance of sharded systems with
respect to load balancing in Sec. III and caching performance
in Sec. IV. Finally, we draw our conclusions in Sec. V.

II. SYSTEM MODEL

In this section we describe the system model adopted
throughout this paper and explain assumptions and notation,
which we report in Tab. I.

TABLE I: Summary of notation

Symbol Notation
N Number of items
K Number of shards
C Cache size
L Fraction of requests served by a shard
Xi Variable valued 1 if item i assigned to shard, 0 otherwise
Λ IRM demand
pi Probability of item i being requested
hi Cache hit ratio of item i

α Zipf exponent of item request frequency distribution

H
(α)
N Generalized N -th order harmonic number

T Characteristic time of a cache

Consistently with previous work, we assume that item
requests conform to the Independent Reference Model (IRM)
[10], which implies that the probability of each item being

{l.saino,i.psaras,g.pavlou}@ucl.ac.uk


requested is stationary and independent of previous requests.
Requests are issued for items 1, . . . , N of a fixed catalog of
size N with probability Λ = {p1, p2, . . . , pN}.

The system comprises K shards, with K < N , each
equipped with the same amount of caching space of C <
bN/Kc items. We assume that items are mapped uniformly to
shards according to a hash function fH : [1 . . . N ]→ [1 . . .K].
Therefore, we can model the assignment of an item i to a shard
using a Bernoulli random variable Xi such that:

fXi(x) =

{
1
K , x = 1

1− 1
K , x = 0

III. LOAD BALANCING

In this section we investigate how well the randomized
assignment of items spreads load across shards. This analysis
applies to both caching and storage systems.

This problem is an instance of a heavily loaded single-
choice weighted balls-in-bins game. A single-choice balls-in-
bins game consists in placing each of N balls into one of K
bins chosen independently and uniformly at random (i.u.r.).
In the weighted case, each ball has a different weight, which
in our case is the probability of an item being requested. In
the heavily loaded case, which is the case of our interest, the
number of balls is considerably larger than the number of bins,
i.e., N � K.

The study of balls-in-bins games has received considerable
attention in the past. Unfortunately, there is very little work
investigating the specific case of weighted balls-in-bins games,
and, to the best of our knowledge, there no previous work
satisfactorily addressing the specific problem of our interest
(i.e., the heavily loaded weighted case). There is instead a
large amount of work addressing the unweighted case. In this
context, Raab and Steger [11] showed that if N ≥ K log(K),
the most loaded bin receives N/K+Θ(

√
N log(K)/K) balls

with a probability not smaller than 1−N−θ for an arbitrarily
chosen constant θ ≥ 1. This is the tightest bound currently
known.

Limiting our analysis to the assumption of uniform pop-
ularity distribution would not allow us to understand the
load balancing dynamics of sharded systems under realistic
operational conditions. In fact, as we show below, skewness in
item popularity distribution strongly impacts load imbalance.

In addition to considering realistic item popularity distri-
butions in our model, we also make novel contributions by
shedding light on the impact of heterogeneous item size, item
chunking and frontend caching on load imbalance.

In line with previous work [4], we quantify load imbalance
by using the coefficient of variation of load across shards
cv(L)3, where L is a random variable corresponding to the
fraction of requests processed by a single shard. Other studies
(e.g., [3], [6]), instead, quantify load imbalance as the ratio
between the load of the most loaded shard and the average
load of a shard E[L]. The latter metric is normally adopted in

3The coefficient of variation of a random variable is the ratio between its
standard deviation and its mean value: cv(L) =

√
Var(L)/E[L].

experimental work [6], where it can be easily measured, or in
theoretical work assuming uniform item popularity distribution
[3], where it can be tightly bounded using standard Cher-
noff arguments. Unfortunately, in theoretical work assuming
non-uniform item popularity distribution like ours, Chernoff
bounds cannot be easily applied. As a consequence it is not
possible to derive tight bounds on the load of the most loaded
shard. For this reason we adopt the coefficient of variation as
the metric to quantify load imbalance.

A. Base analysis

We start analyzing load balancing performance without
making any assumption regarding item popularity distribution.

Adopting the notation introduced above, we can express the
fraction of requests that each shard receives as:

L =

N∑
i=1

Xi pi (1)

Since X1, . . . , XN are i.i.d. random variables, the expected
value and variance of L can be calculated as:

E[L] = E

[
N∑
i=1

Xi pi

]
=

N∑
i=1

E[Xi] pi =
1

K

Var(L) = Var

(
N∑
i=1

Xi pi

)
=

N∑
i=1

Var(Xi) p
2
i =

K − 1

K2

N∑
i=1

p2i

We can now derive cv(L) as:

cv(L) =

√
Var(L)

E[L]
=
√
K − 1

√√√√ N∑
i=1

p2i (2)

We can immediately observe from Eq. 2 that the load
imbalance increases proportionally to the square root of the
number of shards K and to the skewness of item popular-
ity (quantified by

∑N
i=1 p

2
i ). Regarding the impact of item

popularity skewness on load imbalance, the minimum value
of cv(L) occurs when all items are equally probable, i.e.,
pi = 1/N ∀i ∈ [1 . . . N ], while the maximum is when one
item is requested with probability 1 and all other items with
probability 0. We formalize these considerations by deriving
the following bounds for cv(L).

Theorem 1. Let L be the fraction of requests a shard receives
in a system of K shards subject to an arbitrary IRM demand
over a catalog of N items. Then:√

K − 1

N
≤ cv(L) ≤

√
K − 1 (3)

Proof. The theorem can be proved immediately by jointly
applying Hölder’s inequality and Minkowski’s inequality to
bound

∑N
i=1 p

2
i :

1

N

(
N∑
i=1

pi

)2

≤
N∑
i=1

p2i ≤

(
N∑
i=1

pi

)2



Substituting
∑N
i=1 pi = 1 (which holds since pi is the

probability of an item i ∈ [1 . . . N ] being requested), we can
rewrite the inequality as:

1

N
≤

N∑
i=1

p2i ≤ 1 (4)

Substituting Eq. 2 into Eq. 4 and rearranging, we obtain Eq.
3

The above bounds, derived without assuming anything about
item popularity, are however of little practical interest since
they can span few orders of magnitude in realistic conditions
(i.e., N ≥ 106). In the following section, we derive more
useful results by making assumptions on the distribution of
item popularity.

B. Impact of item popularity distribution

We extend our analysis by assuming that item popularity
follows a Zipf distribution, which is known to model very
well the workloads of applications of our interest, such as
Web content distribution [12] and key-value stores [6], [13].
According to this distribution, the probability of an item being
requested is:

pi =
i−α∑N
i=1 i

−α
=

i−α

H
(α)
N

(5)

where H
(α)
N is the generalized N th order harmonic number

and α > 0 is a parameter affecting the skewness of the
distribution. The greater α, the greater is the skewness. The
value of α which best fits real operational systems varies, but
measurement studies report values in the interval [0.6, 1.1].

In the remainder of this section we provide a closed-form
approximation for cv(L) under a Zipf-distributed demand that
we will use to derive the results presented in Sec. III-E

Theorem 2. Let L be the fraction of requests a shard receives
in a system of K shards subject to an IRM demand over a
catalog of N items and item request probability distributed
following a Zipf distribution with parameter α. Then:

cv(L) ≈



√
K − 1

√
(N + 1)1−2α − 1 · (1− α)√
1− 2α · [(N + 1)1−α − 1]

α 6=
{

1
2 , 1
}

√
(K − 1) log(N + 1)

2(
√
N + 1− 1)

α = 1
2

√
N(K − 1)

(N + 1) log2(N + 1)
α = 1

(6)

Proof. We start by deriving an approximated closed-form
expression of H(α)

N . We do so by approximating H
(α)
N with

its integral expression evaluated over the interval [1, N + 1]:
N∑
i=1

1

iα
= H

(α)
N ≈

∫ N+1

1

dx

xα
=

{
(N+1)1−α−1

1−α , α 6= 1

log(N + 1), α = 1
(7)

We then use Eq. 7 to approximate
∑N
i=1 p

2
i for the three cases

α /∈
{

1
2 , 1
}

, α = 1
2 and α = 1:

N∑
i=1

p2i

∣∣∣∣
α/∈{ 1

2 ,1}
=

N∑
i=1

(
i−α∑N
j=1 j

−α

)2

=
H

(2α)
N(

H
(α)
N

)2
≈
[
(N + 1)1−2α − 1

]
(1− α)2

[(N + 1)1−α − 1]
2

(1− 2α)
(8)

N∑
i=1

p2i

∣∣∣∣
α= 1

2

=

N∑
i=1

(
i−1∑N
j=1 j

−1

)2

=
H

(1)
N(

H
( 1

2 )
N

)2

≈ log(N + 1)

4
(√
N + 1− 1

)2 (9)

N∑
i=1

p2i

∣∣∣∣
α=1

=

N∑
i=1

(
i−1∑N
j=1 j

−1

)2

=
H

(2)
N(

H
(1)
N

)2
≈ N

(N + 1) log2(N + 1)
(10)

It should be noted that Eq. 9 and Eq. 10 could be also
obtained by deriving the limits of Eq. 8 for α→ 1

2 and α→ 1
respectively applying L’Hôpital’s rule.

Finally, applying the approximations of Eq. 8, Eq. 9 and
Eq. 10 to Eq. 2, we obtain Eq. 6.

To better understand the impact of number of shards and
item popularity distribution on load imbalance we show in
Fig. 1 the value of cv(L) calculated using Eq. 6 for various
values of α and K.

0.5 0.6 0.7 0.8 0.9 1.0 1.1
α

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

c v
(L

)

K=16
K=32
K=64
K=128

Fig. 1: cv(L) vs. α and K (N = 106)

Analyzing Eq. 6 and Fig. 1, we can observe that the
load imbalance is pretty close to 0 for low values of α,
increases monotonically as α and K increase and decreases
monotonically as N increases. In particular, it should be noted
that item popularity skewness considerably affects the load
imbalance. This effect has been already widely experienced in
operational systems [6], [14], [15]. Our findings demonstrate
that unweighted balls-in-bins analyses investigating purely



the number of items assigned to each shard cannot capture
accurately load imbalance dynamics under realistic demands.

C. Impact of heterogeneous item size

If all items have the same size, the fraction of requests
processed by a shard corresponds to the fraction of overall
traffic it serves. However, if items have heterogeneous sizes,
load imbalance in terms of number of requests and amount
of traffic served do not coincide anymore. In this section we
evaluate the load imbalance in terms of fraction of traffic
served assuming that contents have heterogeneous size. Since
previous work did not identify any significant correlation
between item size and access frequency in the applications
of our interest [12], [13], we assume in our analysis that item
size and access frequency are independent.

Theorem 3. Let L(µ,σ) be the throughput served by a
shard of a system of K shards subject to demand Λ =
{p1, p2, . . . , pN}, where the size of each item is a variable
with mean µ and variance σ2. Then:

cv
(
L(µ,σ)

)
=
√
K

√(
1− 1

K

)
+
σ2

µ2

√√√√ N∑
i=1

p2i (11)

Proof. Since we assume that item size and access frequency
are independent, we can define L(µ,σ) as:

L(µ,σ) = λ

N∑
i=1

Xi Si pi

where Si is an arbitrary random variable with mean µ and
variance σ2, representing the size of item i and λ is the overall
rate of requests served by the system.

Since we assumed that Xi and Si are independent we have:

E[Xi · Si] = E[Xi] · E[Si] =
µ

K

Var(Xi · Si) = E[X2
i · S2

i ]− E[Xi · Si]2

=
1

K

[(
1− 1

K

)
µ2 + σ2

]
Since X1S1, . . . , XNSN are i.i.d., expected value and vari-

ance of L(µ,σ) can be calculated as:

E[L(µ,σ)] = E

[
λ

N∑
i=1

XiSipi

]
= λ

N∑
i=1

E[XiSi] pi =
λµ

K

Var(L(µ,σ)) = Var

(
λ

N∑
i=1

XiSipi

)
= λ2

N∑
i=1

Var(XiSi) p
2
i

=
λ2

K

[(
1− 1

K

)
µ2 + σ2

] N∑
i=1

p2i

Deriving cv(L(µ,σ)) =
√

Var(L(µ,σ))/E[L(µ,σ)] we obtain
Eq. 11.

We can observe from Eq. 11 that load imbalance still
increases with

√
K as for the homogeneous item size case. In

addition and more importantly, load imbalance also increases
with the coefficient of variation of item size cv(S) = σ/µ.

D. Impact of chunking

The analysis carried out above shows the emergence of load
imbalance as α and K increase. One way to mitigate this is
to split items into chunks and map each chunk to a shard
independently. Splitting large items into independent chunks
and handling each chunk independently is a common practice
in many systems. In this section we quantify the benefit of
chunking on load balancing.

Theorem 4. Let LM be the load of a shard in a system where
each item is split into M chunks and each chunk is mapped to
a shard independently. Chunking reduces the load imbalance
by
√
M , i.e.,

cv (LM ) =
cv(L)√
M

(12)

Proof. We can reasonably assume that chunks of the same
item are requested with the same probability and let Xi,j be
a Bernoulli random variable taking value 1 if chunk j of item
i is mapped to the shard under analysis and 0 otherwise. The
load at each shard can then be modeled as:

LM =

N∑
i=1

M∑
j=i

Xi,j
pi
M

=
1

M

N∑
i=1

Yi pi

where Yi =
∑M
j=1Xi,j ∼ B(M, 1

K ) is a binomial random
variable.

Since Y1, . . . , YN are i.i.d., cv(LM ) can be easily calculated
as:

cv (LM ) =

√
Var(LM )

E[LM ]

=

√
1
M2

∑N
i=1 Var(Yi) p2i

1
M

∑N
i=1 E[Yi] pi

=

√
(K − 1)

∑N
i=1 p

2
i√

M
(13)

Substituting Eq. 2 into Eq. 13, we obtain Eq 12.

Theorem 4 shows that chunking is a very practical and
effective solution to reduce load imbalance.

E. Impact of frontend cache

We conclude our analysis of load balancing aspects by
investigating whether placing a frontend cache (or an array
of frontend caches) in front of a sharded system can reduce
the load imbalance experienced by shards.

Intuitively this seems to be the case, since, as we observed
above, skewness in item popularity strongly increases load
imbalance but at the same time, it can be addressed effectively
by caching.



Fan et al. [16] already investigated this aspect concluding
that a small frontend cache of O(K logK) items operating
according to a Perfect-LFU replacement policy is in fact
sufficient to reduce load imbalance. However, their analysis
only addresses the load imbalance caused by an adversarial
workload with knowledge of the mapping between items and
shards attempting to swamp a specific shard.

Our work, differently from [16], addresses the more com-
mon case of a non-adversarial workload with Zipf-distributed
item popularity. We conclude that a frontend cache is in
fact effective in reducing load imbalance as long as properly
dimensioned.

For simplicity, the following analysis assumes a single
frontend cache, depicted in Fig. 2. However, it can be trivially
shown that the results derived here equally apply to the case
of an array of equally sized frontend caches as long as
the distribution of item request frequency is identical at all
frontend nodes.

SHARDED SYSTEM

FRONTEND
CACHE

Fig. 2: Single frontend cache

Let hi be the hit probability of item i at the frontend cache.
The fraction of requests handled by a shard can then be written
as:

L =

∑N
i=1Xi pi (1− hi)∑N
i=1 pi (1− hi)

(14)

It immediately follows that its coefficient of variation is:

cv(L) =

√
Var(L)

E[L]
=
√
K − 1

√∑N
i=1 p

2
i (1− hi)2∑N

i=1 pi(1− hi)
(15)

We proceed in our analysis assuming a perfect frontend
cache of size C < N that always caches the C most popular
items. This corresponds to a Perfect-LFU replacement policy
since we assume an IRM workload. We reserve the extension
of this analysis to include alternative replacement policies for
future work.

Assuming that p1 ≤ p2 ≤ . . . ≤ pN , then a perfect frontend
cache permanently stores items 1, . . . , C. Denoting LC as the
load after filtering from a frontend cache of C items, we can
write cv(LC) as:

cv(LC) =
√
K − 1

√∑N
i=C+1 p

2
i∑N

i=C+1 pi
(16)

We further assume that item popularity follows a Zipf
distribution with parameter α > 0 and apply the approximation
of Eq. 7 to derive the following closed-form expression for
cv(LC).

cv(LC) ≈



√
K − 1

√
(N+1)1−2α−(C+1)1−2α

1−2α
(N+1)1−α−(C+1)1−α

1−α

if α /∈ { 12 , 1}

√
K − 1

√
log(N+1)−log(C+1)

2(
√
N+1−

√
C+1)

if α = 1
2

√
K − 1

√
N−C

(N+1)(C+1)

log(N+1)−log(C+1) if α = 1

(17)
We can now present our main theorem and discuss its

implications.

Theorem 5. Let LC be the load at a shard subject to a
Zipf-distributed IRM demand with skewness parameter α pre-
filtered by a frontend perfect cache of size C, with C < N .
Then cv(LC) is a convex function with respect to C and has
a global minimum for:

C∗ = argmin
C

cv(LC) = γ(N + 1)− 1 (18)

where, if α /∈ { 12 , 1}, γ is the unique solution of:

2(1− α)γ2α−1 − (1− 2α)γα−1 − 1 = 0 (19)

in the open interval γ ∈ (0, 1), otherwise:

γ =

− 1
4 W−1

(
− 1

2e
− 1

2

)−2
≈ 0.08 if α = 1

2

− 1
2 ·W0

(
−2e−2

)
≈ 0.2032 if α = 1

(20)

where W0 and W−1 denote respectively the main and lower
branches of the Lambert W function.

Proof. We start deriving the partial derivative of cv(LC) with
respect to C for the three cases α /∈ { 12 , 1}, α = 1

2 and α = 1,
which we report in Eq. 21.

First, we analyze the case α /∈ { 12 , 1}. Solving the inequality
∂cv(LC)/∂C ≥ 0 and substituting γ = C+1

N+1 yields:

1− α
1− 2α

[
2(1− α)γ2α−1 − (1− 2α)γα−1 − 1

]
≥ 0

Now, we analyze the behaviour of ∂cv(LC)/∂C to demon-
strate that cv(L) has a unique global minimum for C = C∗.

Since by definition 0 ≤ C < N , we can immediately
observe that γ ∈ (0, 1). More specifically, γ → 0+ when
C → 0 and N → +∞, while γ → 1− when C → N . The
values of ∂cv(LC)/∂C at the boundaries of the γ interval are:

lim
γ→0+

∂cv(LC)

∂C
=

{
− 1−α

1−2α if α > 1

−∞ if α ∈
(
0, 12
)
∪
(
1
2 , 1
)

lim
γ→1−

∂cv(LC)

∂C
= 0 ∀α ∈ R+\

{
1

2
, 1

}



∂cv(LC)

∂C
≈



√
K − 1(1− α)

[
2 1−α
1−2α

(
(N + 1)1−2α − (C + 1)1−2α

)
− (C + 1)−α

(
(N + 1)1−α − (C + 1)1−α

)]
2
√

(N+1)1−2α−(C+1)1−2α

1−2α (C + 1)α [(N + 1)1−α − (C + 1)1−α]
2

if α /∈ { 12 , 1}

√
K − 1

[
log
(
N+1
C+1

)
−
√

N+1
C+1 + 1

]
4
√
C + 1

(√
N + 1−

√
C + 1

)2√
log
(
N+1
C+1

) if α = 1
2

√
K − 1

[
(N − C)− 1

2 (N + 1) log
(
N+1
C+1

)]
(C + 1)2(N + 1) log2

(
N+1
C+1

)√
N−C

(N+1)(C+1)

if α = 1

(21)

Since by definition α > 0, then:

lim
γ→0+

∂cv(LC)

∂C
< 0 ∀α ∈ R+\

{
1

2
, 1

}
.

We now investigate under what conditions ∂
∂cv(LC )

∂C

∂γ ≥ 0
and observe that:

∂ ∂cv(LC)
∂C

∂γ
≥ 0⇔ (1− α)2γα−2(−2γα + 1) ≥ 0

⇔ γ ≤ 2−
1
α

This shows that ∂cv(LC)/∂C is negative for γ → 0+, strictly
increases for 0 < γ < 2−

1
α , reaches a global maximum for

γ = 2−
1
α and then strictly decreases for 2−

1
α < γ < 1 tending

to 0 for γ → 1−.
From this analysis we can conclude that ∂cv(LC)/∂C is

strictly positive at its global maximum (γ = 2−
1
α ). Since

∂cv(LC)/∂C is continuous over γ ∈ (0, 1), applying the
intermediate value theorem we can conclude that there exists
at least a value of γ ∈ (0, 2−

1
α ) for which ∂cv(LC)/∂C = 0.

Since over that interval ∂cv(LC)/∂C is strictly increasing,
that root is unique and it is a local minimum of cv(LC). Also,
this analysis shows that ∂cv(LC)/∂C cannot have roots for
2−

1
α < γ < 1. Therefore, the minimum of cv(L) is global.
Finally, since we know that the only root of ∂cv(LC)/∂C

is the global minimum of cv(LC), we obtain Eq. 19 by
rearranging ∂cv(LC)/∂C = 0.

We now focus on the two remaining cases: α = 1
2 , 1.

Solving the inequality ∂cv(LC)/∂C ≥ 0 and substituting, as
above, γ = C+1

N+1 yields:

∂cv(LC)

∂C
≥ 0⇔ γ ≥

− 1
4 W−1

(
− 1

2e
− 1

2

)−2
if α = 1

2

− 1
2 ·W0

(
−2e−2

)
if α = 1

From this inequality it is immediately evident that cv(LC) has
a global minimum when γ is equal to the right hand side part,
which corresponds to Eq. 20.

From Theorem 5 we can observe that the global minimum
of cv(LC) does not depend on the absolute values of C or N
but on the quantity γ = C+1

N+1 , as well as α. In Fig. 3 we plot all

values of γ for which we observe a global minimum of cv(LC)
for various values of α, which represent the skewness of item
popularity distribution. Typical workloads can be modeled
with α ∈ [0.6, 1.1]. In that interval, the values of γ that
minimize load imbalance are comprised between 0.11 and
0.24. This implies that even in the worst case scenario, the
frontend cache should be smaller than 11% of the size of item
population to ensure that any addition of caching space reduces
load imbalance. In practice such frontend caches are rarely
larger than 1% of the item population. Hence, we conclude
that any typical frontend cache reduces load imbalance.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

γ

Fig. 3: Relationship between γ and α parameters

As a further step in our evaluation, we quantify the actual
reduction of load imbalance achieved by a perfect frontend
cache and plot results in Fig. 4 for various values of α and
cache/catalog ratio C/N in the case of N = 106. In the plot,
the lines labeled as Exact have been drawn using Eq. 16 while
the lines labeled as Model have been drawn using Eq. 17.

This analysis allows us to draw three main conclusions. First
of all, the load imbalance model, which relies on the approx-
imation of Theorem 2, is very accurate. This is demonstrated
by the almost perfect agreement between Exact and Model
results in Fig. 4. Second, the imbalance reduction is greater
for more skewed item distributions. This is expected because,
as discussed above, more uniform distributions induce lower
load imbalance and therefore there is less improvement that



0.005 0.010 0.015
C/N

0.0

0.5

1.0

1.5

2.0

c v
(L

C
)

α = 0.6
α = 0.8
α = 1
α = 1.2

Exact
Model

Fig. 4: Impact of a frontend perfect cache on load imbalance

a frontend cache can provide. Finally, and most importantly
from a practical standpoint, even a very small cache of around
0.5% of content catalog is sufficient to carry out a substantial
reduction in load imbalance. Further increasing cache size still
reduces load imbalance but less substantially.

IV. CACHE HIT RATIO

We now focus on investigating the performance of a sharded
system in terms of cache hit ratio, assuming that each shard is
not a permanent store but evicts items according to a replace-
ment policy independently from other shards. In particular, our
objective is to compare the performance of a system of caching
shards with that of a single cache with capacity equal to the
cumulative capacity of all the shards of the system. We assume
that each shard has equal size C, with C < bK/Nc items and
all shards operate according to the same replacement policy.

Our analysis relies on results from Che’s approximation
which we briefly recall here. Che’s approximation was origi-
nally proposed in [17] to model the cache hit ratio of an LRU
cache subject to an IRM demand. It was recently generalized
by Martina et al. [18] to support a wider variety of replacement
policies, precisely FIFO, RANDOM and q-LRU (i.e., LRU
with insertion probability q).

This approximation introduces the concept of characteristic
time T of a cache, which corresponds to the time that an item
spends in an LRU cache from its last request (which pushes it
at the top of the cache) to its eviction. The characteristic time is
a random variable specific to each item. Approximating it with
a single constant value for all items, as proposed by Che et
al. [17], still yields remarkably accurate results [18], [19] and
widely simplifies performance analysis because it decouples
the dynamics of a specific item from all other items.

A formal definition of the characteristic time adopted in
Che’s approximation [17] and its generalization of [18] is the
following.

Definition 1. The characteristic time T of a cache is, for
LRU and q-LRU caches, the average time elapsed between
the last request for an item and its eviction from the cache

or, for FIFO and RANDOM caches, the average time elapsed
between insertion and eviction of an item.

Because of the IRM demand assumption, the probability
that an item is in the cache pin is equal by definition to its hit
probability phit, as a consequence of the arrival theorem of a
Poisson process. Applying Che’s approximation, it is possible
to determine the hit ratio of each item i simply knowing the
request probability of that item pi and the characteristic time
of the cache T . In the specific case of the LRU replacement
policy, this corresponds to:

phit(pi, T ) = pin(pi, T ) = 1− e−piT (22)

Finally, the characteristic time of a cache T can be computed
by solving the following equation:

N∑
i=1

pin(pi, T ) = C (23)

For all cache replacement policies listed above (i.e., LRU,
FIFO, RANDOM and q-LRU), this equation does not have a
closed-form solution, but can be easily solved numerically. We
refer the reader to [18] for equations to derive hit ratios for
those replacement policies under Che’s approximation.

We formally define a cache replacement policy to which
Che’s approximation can be applied as follows.

Definition 2. A cache replacement policy is defined by char-
acteristic time if the steady-state per-item hit ratio of a cache
operating under such policy subject to an IRM demand is
exclusively an increasing function of the request probability
of the item and the characteristic time of the cache.

We note that a special consideration needs to made for the
LFU replacement policy. While LFU cannot be defined by
characteristic time, it was shown in [18] that it yields steady-
state cache hit ratio performance identical to a q-LRU cache
when q → 0. Therefore, all considerations regarding policies
defined by characteristic time equally apply to LFU.

After these initial considerations, we present the following
theorem and devote the remainder of this section to prove it
and to discuss its applicability in realistic operational condi-
tions.

Theorem 6. Let CS be a caching shard of capacity C
belonging to a system of K shards, all with the same capacity
and operating under the same replacement policy R defined
by characteristic time. The overall system is subject to an IRM
demand Λ = {p1, p2, . . . , pN} and items 1, . . . , N are mapped
to shards 1, . . . ,K uniformly. Then, for large C, the cache hit
ratio of CS converges to the cache hit ratio of a single cache
of size K · C operating under replacement policy R subject
to demand Λ.

Proof. We denote TS as the characteristic time of a shard
of size C belonging to a system of K shards and T as the
characteristic time of a single cache of size K · C subject to
the same demand of the overall sharded system. Assuming



uniform assignment of items to shards and applying Eq. 23
we obtain:

ψ (TS) =

N∑
i=1

pin(Xi pi, TS) = C (24)

φ(T ) =

N∑
i=1

pin(pi, T ) = K · C (25)

where TS is a random variable whose outcome depends on
Xi, while T is constant. It should be noted that pin(·) in Eq.
24 and 25 are the same function because both caches operate
according to the same replacement policy and pin depends
only on pi and T because we assumed that such policy is
determined by characteristic time.

By definition, if an item is never requested it cannot be
in the cache, hence pin(0, T ) = 0. Since Xi ∈ {0, 1}, then
pin(Xi pi, TS) ≡ Xi pin(pi, TS). We can then rewrite Eq. 24
as:

ψ (TS) =

N∑
i=1

Xi pin(pi, TS) = C (26)

Let TS be the value of TS for which E[ψ(TS)] = C.
Therefore:

E
[
ψ
(
TS
)]

= E

[
N∑
i=1

Xi pin(pi, TS)

]

=
1

K

N∑
i=1

pin(pi, TS) = C (27)

We now proceed showing that TS ≈ TS for large C. First,
we note that since by definition pin(pi, TS) ∈ [0, 1], ∀i ∈
[1 . . . N ], the following inequality holds:

N∑
i=1

[
pin(pi, TS)

]2 ≤ N∑
i=1

pin(pi, TS) (28)

Jointly applying this inequality and Eq. 27, we derive the
following upper bound of Var(ψ(TS)):

Var
(
ψ
(
TS
))

= Var

(
N∑
i=1

Xi pin(pi, TS)

)

=
K − 1

K2

N∑
i=1

(
pin(pi, TS)

)2
≤ K − 1

K2

N∑
i=1

pin(pi, TS)

=

(
1− 1

K

)
C (29)

Then, jointly applying Chebyshev’s inequality and Eq. 29 to
ψ(TS) we obtain:

P (
∣∣ψ(TS)− E

[
ψ(TS)

]∣∣ ≥ εC) ≤ Var(ψ(TS))

ε2C2

≤ 1− 1/K

ε2C2
E
[
ψ(TS)

]
=

(
1− 1

K

)
1

ε2C
(30)

From Eq. 30, we can immediately observe that fluctuations
of ψ(TS) around its mean increase with the number of shards
K and decrease as the cache size C increases. If single caches
of the system are large enough and/or there is a reasonably
small number of shards, ψ(TS) fluctuates very little around
its mean. In these cases we can then reasonably assume that
TS ≈ TS .

Applying this result to Eq. 27 and rearranging, we obtain:
N∑
i=1

pin(pi, TS) = K · C (31)

Finally, comparing Eq. 31 with Eq. 25, it can be immediately
proved that the characteristic time of a cache of size C in
a system of K caching shards is approximately equal to the
characteristic time of a single cache of K ·C size. Therefore:

T
(C)
S = ψ−1(C) ≈ φ−1(KC) = T (KC) (32)

We further validate the approximation of Theorem 6 numer-
ically and draw results in Fig. 5a and 5b, where we show the
value of TS for different values of K for the cases of LRU
and FIFO/RANDOM caches subject to a demand with Zipf-
distributed item popularity. The results are consistent with our
analysis. The mean value of TS is not affected by variations in
number of shards K and is the same as in the case of a single
cache (K = 1). The standard deviation of TS , represented by
the error bars, increases with K, as expected, but it remains
low in comparison to the mean value of TS .

The insensitivity of TS against K is also expectedly re-
flected in caching performance. We measured the cache hit
ratio yielded by systems of shards subject to a Zipf-distributed
IRM demand (with α = 0.8), operating under the LRU, FIFO
and Perfect-LFU replacement policies for various caching
sizes and values of K. The results, plotted in Fig. 5c, show
again insensitivity of cache hit ratio with respect to K, further
validating our analysis.

V. CONCLUSIONS

In this paper, we presented novel and practical results
shedding light on the performance of sharded caching systems.
Our analysis focused primarily on load balancing and caching
performance aspects. With respect to load balancing, we
characterized load imbalance among shards caused by content
popularity skewness and heterogeneous item sizing. We also
quantified how item chunking and the deployment of small
frontend caches can reduce such imbalance. With respect to



1 2 4 8 16 32 64 128
Number of shards - K

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
N

or
m

al
iz

ed
 c

ha
ra

ct
er

is
tic

 ti
m

e 
- 
T
S

K
C

α=0.6 α=0.8 α=1.0

(a) Characteristic time (TS) vs. number of
shards (K) and α (LRU case)

1 2 4 8 16 32 64 128
Number of shards - K

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

N
or

m
al

iz
ed

 c
ha

ra
ct

er
is

tic
 ti

m
e 

- 
T
S

K
C

α=0.6 α=0.8 α=1.0

(b) Characteristic time (TS) vs. number of
shards (K) and α (FIFO/RANDOM case)

2000 4000 6000 8000 10000
Cumulative cache size - K ·C

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

C
ac

he
 h

it 
ra

tio

K=1
K=4
K=16
K=64

LRU
FIFO
LFU

(c) Cache hit ratio for single cache and
systems of shards

Fig. 5: Caching performance of sharded systems

caching performance, we characterized the cache hit ratio of
sharded systems and showed that sharding does not affect
caching performance if caches are large enough. We believe
that our result are easily applicable and can improve the design
of such systems.

ACKNOWLEDGEMENTS

We would like to thank Emilio Leonardi for insightful
comments on earlier drafts of this paper.

The research leading to these results was funded by the
UK Engineering and Physical Sciences Research Council
(EPSRC) under grant no. EP/K019589/1 (the COMIT Project)
and the EU-Japan initiative under European Commission FP7
grant agreement no. 608518 and NICT contract no. 167 (the
GreenICN Project).

REFERENCES

[1] D. Zhou, B. Fan, H. Lim, D. G. Andersen, M. Kaminsky, M. Mitzen-
macher, R. Wang, and A. Singh, “Scaling up clustered network appli-
ances with ScaleBricks,” in Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication (SIGCOMM’15). New
York, NY, USA: ACM, 2015, pp. 241–254.

[2] K. Ross, “Hash routing for collections of shared web caches,” IEEE
Network, vol. 11, no. 6, pp. 37–44, Nov 1997.

[3] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web,” in Pro-
ceedings of the Twenty-ninth Annual ACM Symposium on Theory of
Computing (STOC’97). New York, NY, USA: ACM, 1997, pp. 654–
663.

[4] D. G. Thaler and C. V. Ravishankar, “Using name-based mappings to
increase hit rates,” IEEE/ACM Transactions on Networking, vol. 6, no. 1,
pp. 1–14, Feb. 1998.

[5] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 3, pp. 52–
66, Jul. 2015.

[6] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D. A. Freedman, K. Bir-
man, and R. van Renesse, “Characterizing load imbalance in real-world
networked caches,” in Proceedings of the 13th ACM Workshop on Hot
Topics in Networks (HotNets-XIII). New York, NY, USA: ACM, 2014,
pp. 8:1–8:7.

[7] D. Perino, M. Varvello, L. Linguaglossa, R. Laufer, and R. Boislaigue,
“Caesar: A content router for high-speed forwarding on content names,”
in Proceedings of the Tenth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS’14). New York, NY,
USA: ACM, 2014, pp. 137–148.

[8] H.-g. Choi, J. Yoo, T. Chung, N. Choi, T. Kwon, and Y. Choi, “CoRC:
Coordinated Routing and Caching for Named Data Networking,” in
Proceedings of the Tenth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS’14). New York, NY,
USA: ACM, 2014, pp. 161–172.

[9] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A
holistic approach to fast in-memory key-value storage,” in Proceedings
of the 11th USENIX Conference on Networked Systems Design and
Implementation (NSDI’14). Berkeley, CA, USA: USENIX Association,
2014, pp. 429–444.

[10] E. G. Coffman, Jr. and P. J. Denning, Operating Systems Theory.
Prentice Hall Professional Technical Reference, 1973.

[11] M. Raab and A. Steger, “Balls into bins - a simple and tight analysis,”
in Randomization and Approximation Techniques in Computer Science,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1998, vol. 1518, pp. 159–170.

[12] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: evidence and implications,” in Proceedings
of the Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’99), vol. 1, Mar 1999.

[13] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Work-
load analysis of a large-scale key-value store,” in Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS ’12).
New York, NY, USA: ACM, 2012, pp. 53–64.

[14] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling Memcache at Facebook,” in Proceedings
of the 10th USENIX Conference on Networked Systems Design and
Implementation (NSDI’13). Berkeley, CA, USA: USENIX Association,
2013, pp. 385–398.

[15] Y.-J. Hong and M. Thottethodi, “Understanding and mitigating the
impact of load imbalance in the memory caching tier,” in Proceedings
of the 4th Annual Symposium on Cloud Computing (SOCC’13). New
York, NY, USA: ACM, 2013, pp. 13:1–13:17.

[16] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky, “Small cache,
big effect: Provable load balancing for randomly partitioned cluster ser-
vices,” in Proceedings of the 2nd ACM Symposium on Cloud Computing
(SOCC’11). New York, NY, USA: ACM, 2011, pp. 23:1–23:12.

[17] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE Journal on Selected
Areas of Communications, vol. 20, no. 7, pp. 1305–1314, Sep. 2006.

[18] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in Proceedings of the 2014
IEEE Conference on Computer Communications (INFOCOM’14), April
2014, pp. 2040–2048.

[19] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate ap-
proximation for LRU cache performance,” in Proceedings of the 24th
International Teletraffic Congress (ITC’12). International Teletraffic
Congress, 2012, pp. 8:1–8:8.


	Introduction
	System model
	Load balancing
	Base analysis
	Impact of item popularity distribution
	Impact of heterogeneous item size
	Impact of chunking
	Impact of frontend cache

	Cache hit ratio
	Conclusions
	References

