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Abstract

is thesis explores data fusion of LIDAR (laser range-finding) with stereo matching,

with a particular emphasis on close-range industrial 3D imaging. Recently there has been

interest in improving the robustness of stereo matching using data fusion with active range

data. ese range data have typically been acquired using time of flight cameras (ToFCs),

however ToFCs offer poor spatial resolution and are noisy. Comparatively little work has been

performed using LIDAR. It is argued that stereo and LIDAR are complementary and there

are numerous advantages to integrating LIDAR into stereo systems. For instance, camera

calibration is a necessary pre-requisite for stereo 3D reconstruction, but the process is often

tedious and requires precise calibration targets. It is shown that a visible-beamLIDAR enables

automatic, accurate (sub-pixel) extrinsic and intrinsic camera calibration without any explicit

targets.

Two methods for using LIDAR to assist dense disparity maps from featureless scenes

were investigated. e first involved using a LIDAR to provide high-confidence seed points

for a region growing stereo matching algorithm. It is shown that these seed points allow

dense matching in scenes which fail to match using stereo alone. Secondly, LIDAR was used

to provide artificial texture in featureless image regions. Texture was generated by combin-

ing real or simulated images of every point the laser hits to form a pseudo-random pattern.

Machine learning was used to determine the image regions that are most likely to be stereo-

matched, reducing the number of LIDAR points required. Results are compared to competing

techniques such as laser speckle, data projection and diffractive optical elements.
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Introduction 1

1.1 Why do we need 3D imaging at close range?

ere is an increasing need for 3D reconstruction of close range targets. Estimates of the market

size of 3D imaging are as much as 17 bn USD by 20211.

Robotic vision systems typically require a knowledge of depth in order to be able to navigate or

tomanipulate objects in the world accurately (Besl, 1988;Hebert, 2000; Blais, 2004). Vehicles such

as those used in the DARPA challenges (run, 2006), the Google car2 or the Oxford Robotics

RobotCar3 use a suite of sensors for both navigation and obstacle avoidance (Figure 1.1). ese

systems must be able to produce dense, accurate 3D information in realtime over a large depth of

field. Navigation is often performed using a class of algorithm called Simultaneous Location and

Mapping (SLAM), which relates 3D information over time to both navigate and localise in an

environment (Newman et al., 2009; Geiger et al., 2013).

In the consumer sector, 3D imaging has been recently used for pose estimation and gesture

detection (Kollorz et al., 2008). Several companies, including Intel4 and Google5, have developed

handheld 3D imaging solutions capable of real-time performance. e Microsoft Xbox Kinect

platform, a 3D imaging system designed for entertainment purposes, has sold millions of units

and has become an attractive low-cost research platform (Khoshelham and Elberink, 2012; Han

et al., 2013).

Imaging, both 2D and 3D, is already used for a variety of industrial tasks such as process in-

spection, quality assurance and defect detection (Newman and Jain, 1995; Malamas et al., 2003).
1http://www.transparencymarketresearch.com/3d-imaging-market.html, accessed 20/9/2016
2https://www.google.com/selfdrivingcar/, accessed 20/9/2016
3http://robotcar.org.uk, accessed 20/9/2016
4http://www.intel.co.uk/content/www/uk/en/architecture-and-technology/realsense-overview.html, accessed

20/9/2016
5https://www.google.com/atap/project-tango/, accessed 20/9/2016
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(a) (b)

Figure .: (a) e autonomous car, ”Stanley” which won the 2005 DARPA Grand Challenge,
covering 132 miles over desert terrain in around seven hours. e car is equipped with an array of
2D line-scan LIDAR units (b), stereo and monocular vision systems, amongst other sensors. e
car is currently on exhibition at the Smithsonian National Air and Space Museum, Washington
DC. Images author’s own work.

e results from the imaging system may be analysed or compared to a reference to provide repeat-

able conformity assessments. e requirements for these kind of inspection systems is often very

high accuracy (sub-mm) and real-time or near real-time measurements. Depending on the applic-

ation, a number of technologies are used including stereo vision, LIDAR and laser triangulation.

In many environments, such as the steel industry, inspection is frequently performed by hand in a

qualitative fashion, requiring skilled operators (Landstrom and urley, 2012).

1.2 Terminology and scope

Due to the overlap between computer vision and photogrammetry, some terminology used in this

thesis is outlined here to avoid confusion.

‘Stereo’ is widely used to describe the paradigm of stereo vision, encompassing a binocular

vision system and an associated image matching algorithm. Similarly, ‘LIDAR‘ is widely used to

describe various different types of laser ranging system. In this thesis, LADAR refers explicitly to

laser-based area time of flight sensors such as flash LIDAR. LIDAR is used to refer to systems

that perform 1D measurements and therefore require scanning of some sort to image a scene.

For convenience, this thesis defines the following terrestrial ranges: very close range as (0-1m),

close range as (1-20m), medium range as (20-100m), long range as (100-1km) and very long range

as (>1km). Industrial process monitoring systems tend to fall into the categories of close tomedium
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range. Long and very long range systems are typical in surveying and large asset management, such

as mining stockpiles.

e output of a 3D imaging system is typically either a ‘2.5D’ image where intensity in the

image is proportional to range or a list of 3D points, a point cloud. In order to convert a range

image to a metric point cloud, some kind of system calibration is required. In the case of stereo

this involves knowledge of the lens characteristics and the inter-camera separation (baseline).

Point clouds are considered to be raw 3D information. Further processing might include con-

version to a solid 3D model (meshing), object segmentation or some other kind of scene interpret-

ation. In this thesis, the focus is on the production of the point cloud rather than any downstream

analysis.

1.3 Goals for a 3D imaging system

A non-exhaustive list of the goals of an ideal imaging system are as follows:

• Measurements should have suitableresolution, referring to the physical separation between

individual measurements.

• Measurements should be accurate, repeatable and precise (see Figure 1.2. Accuracy de-

scribes the difference between a measured quantity and its known value, i.e. compared to

ground truth).

• Generating a 3D model of a scene should be fast, this is dependent on both acquisition time

and processing time.

• e measurement system should be robust, coping with varying illumination conditions,

indoor and outdoor operation, and varying surface reflectances.

• e system should be low cost and compact.

ese performance metrics are necessarily ambiguous and what is deemed ‘sufficient’ for a

particular task is context-specific. A vision system for an autonomous vehicle requires 3D models

to be generated and interpreted in real-time. On the other hand, capturing a model of a static

building can be performed more slowly and the analysis performed offline. Vision systems for

33



. Introduction

Figure .: A popular ”bullseye” representation of the difference between accuracy and precision.

industrial process lines are often able to exploit controlled illumination, whereas this is not possible

for a system that must work outdoors.

e cost and size of measurement systems has tended to decrease over time. e past two dec-

ades have seen tremendous advances in computer systems. Portable electronic devices like smart-

phones and tablet computers have become ubiquitous and most now contain multi-core processors,

discrete graphics processing units (GPUs), high resolution cameras and generous amounts of on-

board storage (gigabytes).

Realtime stereo matching on megapixel imagery has become possible with algorithms running

on high end consumer CPUs and GPUs (see Section 3.2.8). State-of-the-art LIDAR systems

are capable of measuring at 1 Mpts/sec, but this is typically over a full hemisphere and precludes

imaging dynamic scenes. Aside from speed, the accuracy of LIDAR and stereo systems is mostly

limited by geometric constraints, discussed in Chapter 2.

Stereo matching provides high resolution 3D data, but performs poorly if the input images

have poor local intensity variation (texture). Additionally stereo accuracy is strongly dependent

on the ratio of camera baseline to distance with poor results at long range6 if this baseline is fixed.

LIDAR provides high resolution measurements dependent largely on the available signal-to-noise

ratio (SNR), but systems are still relatively expensive and high resolution results take time to acquire.

Time of flight cameras produce realtime results up to around 10m, but spatial resolution is currently

poor and the returned range data is noisy.

Data fusion offers a solution to address the shortcomings of individual systems. Recently there

have been a number of attempts to fuse stereo matching with additional sources of range data such

6Accuracy reduces proportionally to the square of the distance from the camera.
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as LIDAR and time of flight cameras (ToFCs). ese results are promising and show that the

shortcomings of stereo (such as performance in low texture regions) can be addressed, producing

point clouds which are superior to either technology alone. Although much work has been done

investigating data fusion of stereo with ToFCs, comparatively little has been done using LIDAR.

e primary aim of this thesis is to investigate ways that LIDAR can be integrated into stereo

imaging systems in order to enable dense 3D reconstruction in scenes which challenges stereo

matching algorithms.

1.4 Contributions

is thesis presents four main contributions to knowledge in the field:

1. An automatic intrinsic and extrinsic camera calibration algorithm using a visible-beam scan-

ning LIDAR.

2. Data fusion of LIDARwith a region-growing stereomatching algorithm. (Veitch-Michaelis

et al., 2015)

3. Texture projection generated using a scanning LIDAR (Veitch-Michaelis et al., 2016)

4. Machine learning to define areas of poor texture which require additional seedpoints from

LIDAR

(1) Camera calibration is necessary for metric 3D reconstruction using stereo imagery. Current

calibration techniques are very accurate, but the process of acquiring calibration imagery is often

tedious and requires explicit calibration targets. Some experience with the process is also helpful

to ensure that the calibration images are of a high enough quality. By imaging the laser spot of a

visible-beam scanning LIDAR, it is possible to generate highly accurate calibration points without

an explicit target. LIDAR-derived intrinsic and extrinsic calibration is shown to be comparable in

accuracy (sub-pixel) to standard camera calibration routines and may be performed automatically.

(2) Region growing stereo involves taking a set of tentative ‘seed’ correspondences between

the two views before iteratively growing the disparity map around these points. is approach to

stereo matching has proved to be highly accurate and is routinely used for terrestrial, planetary and

rover imagery. However, this approach can fail in image regions with poor texture or in regions
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where there are few seed points. e proposed method uses a LIDAR to provide additional high-

confidence seed points.

(3) Texture projection improves stereo match performance in image regions with uniform in-

tensity. By imaging the laser spot of a LIDAR as it scans, it is possible to generate texture in a

scene by combining images of every point the laser hits. An alternative method is proposed where

the LIDAR spot images are simulated, avoiding issues of scene illumination. Results are compared

to competing techniques such as laser speckle, data projection and diffractive optical elements. (4)

Machine learning was used to determine which regions of the image were unlikely to be matched

using the LIDAR and should be augmented by artificial texture projection.

1.5 Thesis Outline

Chapter 2 discusses several forms of 3D imaging: stereo, structured light, LIDAR, laser triangu-

lation and time of flight cameras. is chapter deals largely with the limitations of each system

from a hardware or geometric perspective. e advantages and disadvantages of each system are

described along with theoretical system performance.

Chapter 3 discusses stereo matching algorithms. e different classes of stereo matcher are

reviewed. Stereo benchmarking is briefly discussed, as ground truth imagery is necessary to com-

pare different algorithms. e remainder of the chapter reviews previous attempts at data fusion

of stereo imagery with range data from time of flight cameras and LIDAR.

Chapter 4 introduces the hardware used for the experiments in this thesis, a stereo system

and combined scanning LIDAR. A geometric model for the LIDAR is suggested, allowing com-

pensation for misalignment of the LIDAR unit on its scanning platform. A method for robustly

locating the LIDAR spot in a camera image is given and the theoretical performance of each system

is discussed.

Chapter 5 discusses camera and LIDAR cross-calibration. First, previous LIDAR-camera

calibration methods are reviewed. en, the intrinsic calibration of the LIDAR using the model

in Chapter 4 is given. e cross-calibration of a stereo camera system and a scanning LIDAR is

introduced. Calibration procedures are given for the various levels of calibration required, from

the case when the cameras are already calibrated to a full intrinsic and extrinsic calibration. Results

are favourably compared to a standard ‘chessboard’ calibration method.
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In Chapter 6, the Gruen-Otto-Chau Adaptive-Least-Squares-Correlation (Gotcha) stereo

matcher Gruen (1985); Otto and Chau (1989); Shin and Muller (2012) is formally described. By

considering heuristics such as image entropy and the distribution of seed points, machine learning

is used to predict how well a particular image is likely to be matched. Using this information, a

routine for generating additional seed points using the LIDAR is described. Results are presented

from several challenging indoor scenes.

Chapter 7 focuses on ‘active’ stereo matching, where additional illumination is used to improve

the texture of a scene. is chapter presents a method for generating texture based on a LIDAR

scan, via both direct LIDAR spot imaging and simulation. A machine learning algorithm for

predicting which parts of an image are likely to be unmatched is developed and used to efficiently

direct the LIDAR during the scan.

Chapter 8 concludes the thesis, summarises the unique contributions of this research and gives

some recommendations for further work.
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eory and Context 2

2.1 Overview

is chapter reviews the theory behind the 3D imaging techniques relevant to this research, primar-

ily stereo and LIDAR. Time of flight cameras are also described, due to their relevance to data

fusion. is chapter primarily deals with the hardware-dependent performance of each type of

system. e performance of stereo systems is also heavily dependent on the software component,

i.e. the image matching algorithm. is is discussed in greater detail in Chapter 3.

e geometry of each type of system is described as this places fundamental limits on the

accuracy and resolution of the 3D measurements. Other important characteristics for comparison

include depth of field and minimum/maximum sensing range. e strengths and weakness of the

types of imaging system are compared and commercial examples are given, where possible.

2.2 Metrics for assessing 3D measurement systems

3D imaging systems have been compared quantitatively in a wide variety of ways including ac-

quisition speed, processing time, depth of field, field of view, range accuracy and range resolution

(Besl, 1988; Hebert, 2000; Amann et al., 2001; Blais, 2004; Berkovic and Shafir, 2012). Optical

measurement systems are active or passive. Active systems measure range by transmitting light

onto a target and performing some analysis on the reflected signal. Passive sensors rely on light

emitted by the target (e.g. thermal infra-red) or external illumination that has scattered off the tar-

get. General inter-comparison between technologies requires spatial context; a system with active

illumination may outperform a LIDAR indoors, but might be unable to measure distances greater

than several metres.
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Qualitative metrics are also important, if harder to define. ese include illumination con-

straints, minimum object reflectivity (an issue for both active and passive systems) and ease of

calibration. While system cost is an important consideration, it is dependent on a wide range of

external factors and it is reasonable to expect systems to become cheaper over time.

Besl (1988) reviewed a variety of active imaging sensors and used the following figure of merit

for comparison:

M =
Lr

ϵR
√
T

(2.1)

where Lr is the depth of field, ϵR the range accuracy and T the time per measurement such

that an image with N total pixels takes time NT to read out. e merit figure is biased towards

high-accuracy rather than high-speed systems. Besl noted that there had been order of magnitude

improvements in acquisition time in the previous decade, though the main bottleneck was data pro-

cessing time. Blais (2004) noted that this merit figure became quickly outdated by improvements

in hardware.

2.3 Stereo Imaging

Distance measurement through triangulation has been used in mapping for millennia. Human

binocular vision was investigated philosophically in the mid 1800s by Wheatstone (1838) who

also detailed plans for the stereoscope, a device used for viewing pairs of images in apparent 3D.

e first instruments for performing correlation on digital imagery were proposed in the 1960s1.

Since then, with the development of Charge Coupled Device (CCD) (Boyle and Smith, 2013) and

Complementary Metal Oxide Semiconductor (CMOS) imaging sensors (Fossum, 1995), stereo

image matching became a focus of photogrammetry and computer vision research (see Chapter 3).

Stereo is routinely used to perform terrain reconstruction from aerial and orbital imagery (Toutin,

2004) and remains a powerful photogrammetric tool (Gruen, 2012). From the perspective of

computer vision research, stereo is attractive for producing dense measurements suitable for simul-

taneous location and mapping (SLAM) and autonomous navigation (Geiger et al., 2013).

Modern image sensors are cost effective, high resolution and are available with sensitivities

in a variety of wavebands. e process of deriving 3D information from two images is that of
1See G. Hobrough’s patents US 2964642 (1960) and US 3145303 (1964)

40



2.3. Stereo Imaging

triangulation. A point in the scene is imaged by two (or more) cameras with an overlapping field

of view. If the camera is suitably calibrated and the pixel coordinates of the point is known in

both images, trivial geometry gives the position of the point in the scene. However, identifying

matching pixels between images is not trivial; this is known as the correspondence problem and

is solved with an algorithm called a stereo matcher. As such, stereo performance is dependent on

both the system geometry and the image matching algorithm. e next section discusses camera

geometry, stereo matching algorithms are discussed in Chapter 3 and calibration is discussed in

Chapter 5.

2.3.1 Camera geometry

In computer vision, cameras are typically represented using a pinhole cameramodel with additional

corrections for radial and tangential lens distortion (Hartley and Zisserman, 2003). e pinhole

model describes an ideal camera with focal length f and principal point (cx, cy). Figure 2.1 shows

an example of a stereo system, modelled using the pinhole geometry.

b

Q

CL

CR

xL

xR
Z

Y
X

f
Figure .: Pinhole geometry for a pair of identical cameras. xL and xR are the image of the
3D point Q. Physically the projection centres CL and CR are in front of the sensor, however as
digital images are normally flipped horizontally and vertically after readout this arrangement is
equivalent.

e focal length is the distance from the pinhole to the image (sensor) plane and the principal

point is the intersection of the optical axis with the image plane. Additional parameters include

the skew, s which introduces a shearing effect in the image and is non-zero for non-square pixels,
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normally s = 0.

A projective geometry maps points X in the world to points x in the image. By assuming that

all rays from the world pass through a common centre of projection, nominally the centre of the

lens, this mapping may be expressed in homogeneous coordinates as a 3x4 projection matrix P:

x = P3x4X where x = (x, y, 1)T and X = (X,Y, Z, 1)T . e structure of P is then:

P =


f s cx 0

0 f cy 0

0 0 1 0

 = K[I|0] (2.2)

K is the intrinsic calibration matrix. Allowing for rotation and translation of the camera with

respect to the world origin:

P =


f 0 cx

0 f cy

0 0 1

 [R|t] = K [R|t] (2.3)

with R a 3x3 rotation matrix and t a 3x1 translation vector. Introducing (u, v) as pixel coordin-

ates on the sensor:

x′ =
fX

Z
(2.4)

y′ =
fY

Z
(2.5)

(u, v) = (x′ − cx, y
′ − cy) (2.6)

where the focal length is in units of pixels. Real lenses introduce distortion which may be

modelled as a combination of radial and tangential components k and p respectively:
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x′′ = x′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ 2p1x

′y′ + p2(r
2 + 2x′2) (2.7)

y′′ = y′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ 2p2x

′y′ + p1(r
2 + 2y′2) (2.8)

r2 = x′2 + y′2 (2.9)

(u, v) = (x′′ − cx, y
′′ − cy) (2.10)

Higher order terms are omitted above; the OpenCV (Bradski, 2000) camera calibration al-

gorithm (calibrateCamera) by default fits k1, k2, k3, p1 and p2 and both Tsai (1987) and Zhang

(2000) ignore tangential distortion. us there are 3 degrees of freedom in the camera matrix

(s = 0), 3 rotational degrees of freedom and 3 translational degrees of freedom. Introducing

distortion adds another 5 degrees of freedom for a total of 14 parameters to specify a camera.

2.3.2 Depth of Field

When a lens is adjusted such that light rays originating from a point at distance D converge on

the sensor plane, the lens is said to be focused at D as shown in Figure 2.2.e acceptable CoC,

C, defines near and far focus limits DN and DF respectively. Objects in the range [DN , DF ] will

be sharply imaged.

C

V
VF DN

A

D

Sensor 
Plane

VN DF

DOF

Figure .: e depth of field of a lens is determined by the desired circle of confusion C which
is related to the near and far distances DN and DF respectively.

Any object points not at this distance will appear blurred or defocused in the image (Potmesil
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and Chakravarty, 1982). e radius of the (blurred) image of a point source is called the circle of

confusion (CoC). In practice some degree of blurring is unavoidable, but the choice of an acceptable

CoC is subjective as it defines the difference between focused and unfocused parts of an image. A

typical choice is the resolution of the sensor, i.e. the physical size of a single pixel (Biemond et al.,

1990).

C is linearly dependent on the size of the lens aperture. e f-number of a lens, N is given as

the ratio of the focal length f to the diameter of the lens, A:

N =
f

A
(2.11)

It can be shown that (Krotkov, 1988):

DF =
Df2

f2 +NC(D − f)
(2.12)

DN =
Df2

f2 −NC(D − f)
(2.13)

In the limit DF → ∞:

D = H =
f2

NC
+ f (2.14)

defining H as the hyperfocal distance. In this case DF = H/2 is called the critical distance.

2.3.3 Epipolar geometry and rectification

Suppose two cameras are viewing a scene. A point in the left image must lie somewhere on a line

in the right image - an epipolar line. e image of the left camera in the right image (and vice

versa) is called an epipolar point. For a calibrated stereo system with the left camera at the origin,

the locations of the epipoles are:

e = KRT t e′ = K′t (2.15)

where K,R and t have the same definitions as in section 2.3.1. If a point X in the world is

imaged as x in the left camera and x′ in the right, then the following is true:
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x′TFx = 0 F = K′−TRKT [e]x (2.16)

e 3 × 3 matrix F that satisfied these conditions is called the fundamental matrix. Under

a particular 2D image transformation, called a rectifying homography (Loop and Zhang, 1999),

the two images can be warped such that epipolar lines are parallel to the rows in the images. It is

convenient to warp the images such that lens distortion is removed and the left and right cameras

have the same focal length.

e epipolar constraint, applied to rectified images, is exploited by most stereo matching al-

gorithms. For rectified images, a feature in the left image must lie somewhere on the same row in

the right image (Figure 2.3). As the majority of stereo matching algorithms require rectified im-

ages, for the remaining discussion it is assumed that images are rectified prior to stereo matching.

Figure .: A stereo pair from the Middlebury Dataset with a number of epipolar lines shown.
As the images have been epipolar rectified, the epipolar lines are horizontal.

2.3.4 Depth reconstruction

With a single calibrated camera, a point on the sensor defines a ray into the scene. At least one

other view of the same point is necessary to remove depth ambiguity. For two views of a scene

that are related by horizontal translation T = (b, 0, 0)T , as in the case of a rectified stereo pair, the

image of a point p = (X,Y, Z)T will be:

xl = f
X

Z
xr = f

X + b

Z
(2.17)
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Defining d = xr − xl as the disparity:

Z = f
b

d
(2.18)

e horizontal shift, b is the baseline between the two cameras and thus disparity is inversely

related to depth. e output of a stereo matching algorithm is a disparity value that maps each

pixel in the left image to the corresponding pixel in the right image. For a typical stereo rig, the

disparity values will be negative.

2.3.5 Theoretical resolution

e range resolution, ∆Z, is determined by the uncertainty in the disparity measurement, ϵd:

∆Z =
bf

d
− bf

d+ ϵd
=

Z2ϵd
bf + Zϵd

≈ Z2

bf
ϵd (2.19)

where the final result is obtained by Taylor expansion about ϵd = 0. is uncertainty is also

referred to as the correlation error since it is determined by the stereo matching algorithm. Stereo

depth error degrades quadratically with distance from the camera baseline. Although increasing

the focal length (at the expense of field of view) or decreasing the pixel size is a possible solution to

lower the error, in practice increasing the camera baseline is simpler. (Gallup et al., 2008) describe

a technique for variable baseline imaging to retain a constant depth accuracy throughout the scene,

though it necessarily requires the baseline to be adjusted for each scene. e authors suggest that

this technique would be applicable to video data where the camera is moving.

is depth uncertainty assumes that the disparity calculated for a particular pixel is correct (i.e.

there is a good correspondence accuracy). e physical size of a pixel gives an upper bound to the

error, providing the stereo matcher is at least pixel-accurate. State of the art stereo matchers return

sub-pixel disparities, but measuring matching accuracy is not trivial. is issue is discussed further

in Section 4.5.

2.3.6 Commercial stereo systems

ere are relatively few commercially available stereo systems that explicitly output disparity in-

formation to the end-user. Table 2.1 shows some examples of currently available devices. e
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disparity speeds listed are assuming that the manufacturer’s matching algorithm, if provided, is

used.

Manufacturer System Res. (Mpx) Range (m) Framerate (fps) Baseline (mm)
PointGrey Bumblebee2 0.8 - 20 120
IDS Ensenso N35 1.3 0-3 10 120
Stereolabs ZED 5.5 0-15 15† 120
Intel Realsense R200 0.17 3.5-10‡ 60 70
Mobile Robots MobileRanger 0.36 - 30 60
Videre Design MEGA-DCS 1.3 - - 80-240
e-Con Systems Capella 0.36 - - 100
LMI Gocator 3100 1.3 0.25 5 -
Ricoh SV-M-S1 1.3 0.8-1.2 30 200

Table 2.1: Commercially available stereo systems. Framerates refers to disparity computation
speed. No maximum range is specified for the Bumblebee2, MobileRanger, Stinger or Capella.
e MEGA-DCS and Capella are not provided with stereo matching software. † Up to 60 fps
with 0.9 MP resolution. ‡ 10m extended range possible outdoors. e Gocator 3100 does not
specify a baseline and specifies resolution .

e Pointgrey Bumblebee2 is provided with the Triclops Software Development Kit (SDK)

which uses correlation with a sum of absolute differences (SAD) cost (see 3.2.4). e Ensenso N35

uses a variant of semi-global matching (see 3.2.6) and incorporates a Blue (465 nm) or IR (850

nm) random dot pattern projector to aid reconstruction. e Stereolabs ZED uses a proprietary

matching algorithm that requires an Nvidia CUDA-enabled graphics card. e Intel Realsense

R200 also has an IR projector and performs matching up to 64 disparity levels on an onboard

Application Specific Integrated Circuit (ASIC). e Mobile Robots MobileRanger also uses SAD

correlation algorithm (up to 64px disparity) running on an FPGA. e MEGA-DCS and Capella

are not provided with matching software. e LMI Gocator 3100 uses a coded light projection

system and requires several images of an object in order to reconstruct it; while the system uses a

two-camera arrangement, the cameras are spectrally filtered and conventional stereo matching is

not required. Ricoh’s SV-M-S1 performs stereo matching on the device at 30fps and an additional

LED texture projection system is available.

2.3.7 Summary

Stereo imaging is cost effective and has been routinely performed at scales ranging from micro-

scopic to orbital distances. e quality of the final depth image is determined by the performance

of the image matching algorithm. From a purely geometric point of view stereo is largely con-
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strained by the baseline and accuracy degradation at long ranges (relative to the baseline length).

As with any imaging system there is an inevitable trade-off between field of view, depth of field

and range accuracy.

2.4 Laser Rangefinding

ough the term LIDAR (LIght Detection And Ranging) was introduced in the 1950s, it was not

used in a laser context until the 1960s. Most early civilian experiments using LIDAR involved met-

eorological phenomena, such as clouds (Collis and Ligda, 1964). Terminology among disciplines

is varied, the term LADAR (LAser Detection And Ranging) is also used, analogous to RADAR

(RAdio Detection And RAnging); in this text LIDAR will be used. Other sources refer to time

of flight (ToF) LIDAR for both pulsed and coherent methods, here ToF explicitly refers to pulsed

LIDAR. Similarly this text is limited exclusively to LIDAR used for range determination.

Around the end of the 1960’s, the first commercial rangefinders became available to surveyors,

such as the AGA Model 8 (Scholdstrom, 1969). ese electronic distance measurement (EDM)

devices used phase shift to determine distances. Modern LIDAR scanners can operate at up to

1Mpts/sec and incorporate position awareness via GPS and inertial measurement units (IMUs).

Wireless connectivity, high resolution panoramic cameras and onboard high capacity flash storage

are increasingly common.

LIDAR is an active sensing method, using pulsed or coherent laser light to measure distance

directly. e determination of a 3D point is straightforward once a distance has been measured,

provided the direction of the beam is known. COTS systems tend to use either visible red (around

650nm) or infrared (1− 1.5µm) light and eye safety is almost always the limiting factor in terms

of laser power (Campbell et al., 2013). For stationary applications, rotating mirrors or prisms are

used to direct the beam to cover a hemispherical region of interest. e positions of the mirrors,

measured for example using an encoder, are used to determine the beam direction. Distance meas-

urements are therefore taken relative to the origin of the scanner, however it is defined by the

manufacturer.

e vast majority of imaging LIDAR systems require the beam to be scanned. For applications

on moving vehicles, a 2D scanner is sufficient as it is possible to exploit the motion of the vehicle

itself to provide data in the third dimension. Figure 2.4 shows two possible mechanisms for beam
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scanning.

(a) (b)

Figure .: (a) Typical hardware arrangement for a scanning LIDAR. e laser is fired at a mirror
or prism which enables 2D in the vertical axis. e 2D assembly is mounted on rotation platform
which providesmotion in the third axis. (b) A vehiclemountedVelodyneHL-64 scanning LIDAR.
(Source: Steve Jurvetson, Flickr, CC License)

e power received by a LIDAR system from a target at distanceR is given by (Shan and Toth,

2008):

PR =
1

4
· PT · τtotal · ρ

(
D

R

)2

(2.20)

where PT is the transmitted power, ρ is the reflectivity of the target,D is the aperture diameter,

τtotal is the transmission factor due to atmospheric attenuation and instrument efficiency.

ere are three classes of laser measurement system that will be discussed:

1. Time of flight LIDAR; direct measurement of photon travel time

2. Coherent LIDAR; indirect measurement of distance via frequency or amplitude information

3. Flash LIDAR or LADAR; area time of flight sensors which use lasers as the illumination

source

2.4.1 Time of Flight

e distance to a target can be obtained by sending a pulse of laser light, measuring the time t until

an echo is detected and using that time to calculate a range, r:
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R =
ct

2n
(2.21)

where n is the refractive index, and c the speed of light in vacuum:

∆R ≥ t∆c

2n
+

c∆t

2n
=

cτ

2n
(2.22)

where τ is the pulse width. e first term is zero for a beam path with a single refractive index.

is places a lower bound on the accuracy since other instrumental errors such as pulse jitter are

ignored.

R

TX

RX
τ

PRF
t

Figure .: Hardware arrangement for a pulsed time of flight LIDAR.

e pulse repetition frequency (PRF) determines both the maximum range of the LIDAR and

the necessary acquisition rate. In order to unambiguously differentiate between returned signals,

there must be enough time between successive pulses for the previous pulse to return to the detector,

though some systems can track multiple pulses. e desired maximum range therefore puts a hard

limit on the sampling time per point, assuming the laser provides a high enough SNR to only

require one return per point. Multiple pulse returns may be averaged to improve range, if it can be

assumed that the returned distances are normally distributed.

Over large distances, for example in satellite remote sensing, the divergence of the laser pulse

causes it to spread out to such an extent that it is reflected from objects at significantly different

distances. is is observed as additional pulses at the detector and is used, for example, to simul-

taneously map tree canopy heights and the underlying terrain (Nelson et al., 1984; Hancock et al.,

2011, 2012).

e speed of light poses a timing challenge for electronics - a 1 mm range difference alters

the time of flight by 6.6 ps. Nevertheless, pulsed LIDAR systems allow measurements of very

long distances with high relative accuracy. For instance the Earth-Lunar distance is now known
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to an accuracy of millimetres (Currie et al., 2011), though this is the result of decades of study. In

principle the maximum range is limited only by SNR and the time needed to wait for the return

signal.

A selection of COTS TOF imaging systems is given in Table 2.2. e systems listed are,

in most cases, the current flagship product from each manufacturer. With the exception of the

Velodyne HL-64 (Figure 2.4b) which achieves a high measurement rate by multiplexing 64 trans-

mitter/reciever pairs, all systems are scanned single-beam. is system is also unique among these

scanners in that it is designed to be vehicle-mounted for real-time imaging.

Manufacturer System Range (m) Meas. Speed (pts/sec) Range Accuracy
Leica Geosystems ScanStation P40 0.4-270 1 M 6 mm at 100m
Riegl VZ-6000 5-6000 220k 15 mm at 150 m
Trimble TX8 0.6-340 1 M 2 mm
Teledyne Optech ILRIS-LR 6-3000 10k 4 mm at 100 m
Velodyne HL-64 1-50/120† 1.3 M 20 mm
Maptek I-Site 8820 2.5-2000 80k 6 mm

Table 2.2: Selection of commercially available ToF imaging systems. All operate in the NIR.
Accuracies and acquisition rates are quoted by the manufacturer and should be considered best-
case. † 50 m for pavement, 120 m for cars/foliage.

2.4.2 Amplitude modulated LIDAR

Coherent, continuous wave (CW) LIDAR provides an alternative means of calculating range via

phase differences between the outgoing and incoming laser beam (Srinivasan and Lumia, 1989;

Adams, 1993). In an Amplitude Modulated (AMCW) system, the outgoing beam amplitude is

modulated at a particular frequency.

TX

RX

Φ

TX

RX

R
Figure .: Schematic of hardware arrangement for an amplitude modulated continuous wave
LIDAR.
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In a homodyne arrangement, the transmitted pulse is used as a reference, mixed with the return

signal; both signals have the same frequency. If a heterodyne system is used, the transmitted beam

is compared to a reference with a slightly different frequency. e detected signal in this case is

a beat signal, at the difference of the two frequencies. e phase difference between the received

beam and the outgoing beam, ϕ, is related to the range as:

R =
ϕ

4π
λ+ nλ (2.23)

where n represents some multiple of the wavelength. e range resolution is determined by

the smallest change in phase, ∆ϕ that can be measured (Wehr and Lohr, 1999). As the signal is

periodic, there is an inherent ambiguity if the phase is greater than 2π:

Rmax =
1

4π
λϕmax =

λ

2
(2.24)

is range is called the ambiguity interval and is lessened due to atmospheric attenuation.

Multiple modulation frequencies or repeat measurements with the transmitted beam phase-shifted

may be used to reduce ambiguity. In the multiple frequency case the longest frequency gives the

maximum range and the shortest frequency determines the range resolution.

As the peak laser power is significantly lower than for pulsed systems, the maximum range

is correspondingly less although ambiguity is more often the limiting factor. Surveying systems,

such as Leica Geosystem’s HDS7000, with typical ranges of a few hundred metres are available.

AMCW LIDARs are able to operate beyond the laser coherence length if a single mode laser is

used, but the SNR rapidly decreases at larger distances (Harris et al., 1998). Table 2.3 highlights

a number of commercially available AMCW systems.

Zöller and Frolich (Z+F)manufacture a range ofAMCWscanners; the current flagship product

is the Imager 5010 series with an ambiguity interval (equation 2.23) of 187 m and an acquisition

rate of 1Mpt/s. e quoted range accuracy is 0.2-10 mm depending on target distance (10-100

m) and reflectance (14-80%). is model is a considerable improvement over the previous Imager

5006 series with an ambiguity interval of 79 m. Faro manufacture two models of AMCW LIDAR

under the Focus3D brand. e X 130 has an ambiguity interval of 0.6-130 m while the X 330 is us-

able from 0.6-330 m. Both are quoted as having a range accuracy of 2 mm and have measurement
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Manufacturer System Range (m) Meas. Speed (pts/sec) Range Accuracy
Leica Geosystems HDS7000 0.4-270 1 M 6mm at 100 m
Leica Geosystems DISTO D810† 0-80 N/A 1-2 mm
Zöller and Frolich Imager 5010 187 1 M 0.2-10 mm
Faro X 330 0.6-330 976 k 2 mm at 10-25 m
Surphaser SR 100 1-7 1 M 0.3 mm at 3 m
Surphaser 105HS 1-130 1 M 0.7 mm at 15 m
Dimetix FLS-C10† 0.05-500 20 1mm

Table 2.3: Selection of commercially available AMCW imaging systems. Accuracies and acquisi-
tion rates are quoted by the manufacturer and should be considered best-case. † 1D sensor, hand-
held. Longer ranges are only achievable with retroreflectors.

speeds of 976kpts/s. Like the Z+F systems, the scanners have location and orientation sensors and

a panoramic camera. Surphaser manufacture high accuracy (sub-mm) systems targeted towards

industrial metrology and offer both short range (1-7 m) and mid-range (1-130 m) solutions.

Handheld ‘laser tape-measures’ such as Leica’s DISTO range have become popular among

consumers and industry alike due to their high accuracy (mm) and comparatively low cost compared

to scanning stations. ese devices are targeted towards surveying or home improvement. e

DISTO D810 measures up to 200 m with an accuracy of 1mm. Dimetix manufacture a range of

industrial 1D LIDAR units based on Leica technology. e FLS-C10 measures up to 500 m with

a reflective target with an accuracy of 1mm at up to 20pts/s.

2.4.3 Frequency modulated LIDAR

In a frequency modulated (FMCW) system, the laser frequency is continually modulated and dis-

tance is determined by measuring the beat frequency between the transmitted and echoed light

(Amann et al., 2001; Pierrottet et al., 2008). e transmitted light is modulated using a triangular

(linear) ramp enabling both distance and velocity of the target to be determined; this is particu-

larly important for a vehicle mounted system where there is typically relative motion between the

target and the detector. A sawtooth modulation may also be used, but in this case only distance

determination is possible. e frequency excursion is given as ∆f and the modulation frequency

as fmod.

Due to the Doppler effect, two beat frequencies are observed and the range and velocity of the

target may be measured. e range is given as:
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R =
c(f1 + f2)

8∆f · fmod
(2.25)

and the velocity as:

v =
λ(f1−f2)

4
(2.26)

Depending on the modulation frequencies, the beat frequency can be selected for the desired

range. is is convenient as the detector bandwidth can be substantially reduced within a range of

interest as the beat frequency may be much lower.

Like AMCW, FMCW LIDAR has an ambiguity interval corresponding to the time it takes

to linearly change (ramp) the frequency from f1 to f2. However, if longer range is required, the

ramp time is simply extended. Resolution is determined by the laser frequency excursion, Δf and

the linearity of the frequency ramp.

ere are very few commercially available FMCW systems. Nikon Metrology’s MV350 is

designed for large scale industrial inspection in the aerospace and maritime industries. It features

a range of up to 50 m with an accuracy of 300 µm at 30 m. Massaro et al. (2014) favourably

compared the Bridger Photonics HRS-3D against an AMCW scanning system (Riegl VZ-400)

for defence applications, but the authors note that the unit is significantly bigger than the AMCW

scanner and has a slower acquisition rate.

2.4.4 Flash LIDAR

Pulsed laser imaging systems, flash LIDAR or LADAR, have been demonstrated using CMOS

single photon avalanche photodiode (SPAD) arrays (Niclass and Charbon, 2005). ese systems

use single photon counting techniques to take an array of distance measurements simultaneously.

e advantage is clear; imaging with the range and accuracy of conventional LIDAR, but without

the need to scan.

Commercial flash LIDAR systems have been space-qualified and flown on the Space Shuttle

for docking experiments; anAdvanced Scientific Concepts (Santa Barbara, CA)DragonEye sensor

was used to image retro reflectors on-board the International Space Station (Stettner, 2010). ere

has been interest in flash LIDAR systems for a variety of space borne applications including guid-
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ance and surface navigation (Pereira do Carmo, 2011), terrestrial autonomous navigation (Juberts

and Barbera, 2004) and defense (Halmos et al., 2001).

Niclass et al. (2011) presented a 340x90 px array with up to 128 m range and 60 mm resolution.

e sensor uses correlation to determine when the laser pulses return to within 208 ps. e cost

of these systems is prohibitively high for most users.

Princeton Lightwave produce several cameras based on InP/InGaAs Geiger-mode avalanche

photodiodes capable of timing photons with a resolution of up to 250 ps with a timing jitter of

500 ps. Models with 32x32 px and 128x32 px are available commercially. e same technology

is used in systems produced by Spectrolab under the brand name SpectroCam. e range of the

systems are between 75-1000 m and are designed to used with common SWIR laser wavelengths,

e.g. 1030 nm or 1064 nm.

2.4.5 Theoretical accuracy

LIDAR range accuracy is inversely proportional to the square of the SNR (Baltsavias, 1999):

ϵR ∝ 1√
SNR

(2.27)

e SNR is given by:

SNR ∝ R0 · PT

B
(2.28)

whereR0 is the unity gain responsivity of the receiving photodiode andB is the effective noise

bandwidth (dependent on the sampling rate and pulse width). For pulsed systems, accuracy is

determined by the response time of the photodetector and the performance of the timing circuits

in the device. A small deviation in the counting system will lead to large offsets in the measured

distance. is has limited commercial devices, typically using picosecond rise-time photodiodes,

to accuracies on the order of 1mm for 1D measurements. e signal to noise ratio for a pulsed

system is:

ϵR ∝ R
√
ρ · τatmos

(2.29)

where τatmos is the transmission through the atmosphere. Laboratory accuracy has recently
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improved to sub-femtosecond timing (< 100µm scale) using optical cross-correlation (Lee et al.,

2010).

For coherent LIDAR, the accuracy is determined by the ability to accurately measure phase

difference in the case of AMCW, or beat frequency in the case of FMCW. e signal to noise

ratio is:

ϵR ∝ R2

ρ · τatmos
(2.30)

2.4.6 Compared to passive systems

e most obvious advantage of active measurement systems like LIDAR is that no ambient light

is required. is enables systems to operate at night or in poor visibility. is is exploited by space-

borne sensors which can operate continuously, compared to passive camera systems which require

sunlight.

e number of photons returned, and therefore the SNR, is dependent on both atmospheric

properties and surface properties. Diffuse surfaces or surfaces which strongly absorb the illuminat-

ing wavelength are challenging to measure, as are transparent or translucent materials2. However a

(passive) stereo system may easily cope with a diffuse target if the image has sufficient local texture.

Boehler et al. (2003) compared a number of LIDAR systems and observed systematic errors when

measuring certain object reflectivities. ese included surfaces with different levels of greyness and

specularly reflective foils. For example, most systems under test over-estimated the distance to an

orange traffic cone. Beraldin (2009) compared measurement uncertainties using three scanning

LIDAR systems using targets with reflectances from 3-89%.

LIDAR scan resolution determines the ability of a system to cope with edges or depth discon-

tinuities. On the other hand, image based systems like stereo perform optimally where there are

depth boundaries as these are often coincident with large intensity gradients in the image.

2.4.7 Summary

LIDAR systems are increasingly commonplace as system costs decrease and measurement speeds

improve. LIDAR is one of fewmethods that allows for robust, high accuracy distancemeasurement

2Reflectance curves for a variety of materials may be found in (Jelalian, 1990)
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outdoors. Typically mm-scale LIDAR accuracy is possible at ranges of 10s to 100s of metres. At

longer ranges (kilometres), pulsed LIDAR systems have little competition, while at shorter ranges

up to several hundred metres CW systems offer superior accuracy. e vast majority of commercial

systems operate either using pulsed or amplitude-modulated light; frequency modulated systems

are promising, but there are few available. LIDAR has two main downsides: the first is cost,

significantly higher than stereo imaging. e second is the inability for most systems to capture

realtime data due to the need to scan.

2.5 Laser Triangulation

Among industrial users, laser triangulation is widely used to acquire 3D information (Hebert,

2000). A laser stripe or spot is projected onto a surface and imaged by a camera. e location

of the imaged stripe changes in proportion to the variation in surface height (Figure 2.7). On

production or conveyor lines this technique allows for 3D imaging by stacking successive scans.

e location of the laser beam determines the distance to the surface, Z, as:

Z =
b

f cot θ − u
(2.31)

where b is the baseline between the camera and the laser, f is the focal length of the camera, u

is the position along the sensor and θ is the angle of projection.

For a fixed baseline system, the accuracy is dependent on the ability to measure θ and u (Bari-

beau and Rioux, 1991). Determination of u corresponds to pixel size and the ability to perform

sub-pixel estimation of the beam location. Depth measurement is also limited by coherent noise

(speckle) caused by the interference of scattered light with random phase.

ϵZ =
1√
2π

λ

ϕ

Z

sin θ (2.32)

where ϕ is the diameter of the lens, λ is the laser wavelength.

Laser triangulation accuracy is excellent; micron level accuracy is achievable. MTI Instruments

produce a variety of surface profiling instruments. e MICROTRAK Pro 2D is a stripe triangu-

lation system with resolution between 3 µm and 200 µm depending on the desired field of view.

NextEngine produce a desktop scanner with a turntable suitable for small objects with an accuracy
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Image SensorLaser
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Figure .: Typical arrangement for a laser triangulation system. e laser here is fixed, but it is
straightforward to extend the system to allow scanning. e laser beam is seen as a stripe on an
imaging sensor and peak detection is used to locate the row corresponding to the beam.

of 0.13 mm.

Handheld triangulation systems exist, though most use structured light. e Polhemus (USA)

FastScan Cobra C1 incorporates an electromagnetic tracking system that determines the orient-

ation of the scanner wirelessly. Scan resolution is 0.5 mm at 200 mm with an accuracy of 0.13

mm.

More advanced systems such as Faro’s Edge ScanArm HD place the scanner at the end of a

mechanical arm. Encoders in the joints determine where the scanner is pointing so the resulting

fused scan is very accurate. e ScanArm HD has a working volume of 1.8 m and is accurate

to 0.034 mm (or larger volumes with decreased accuracy). Repeatability as low as 0.024 mm is

demonstrated.

Triangulation is particularly attractive for industrial users as the systems typically have no mov-

ing parts and give extremely accurate, dense data. Both fixed and handheld systems are widely

available. e working distance of most systems is < 4 m, but this is generally acceptable for scan-

ning on process lines. Accuracies on the order of microns are achievable, but depths of field are

rather small (a few centimetres)3 .

Laurin et al. (1999) developed a ranging system for space operations that combined a fast

3http://www.keyence.co.uk/products/measure/laser-1d/lk-g5000/specs/index.jsp, accessed 20/9/16
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2.6. Time of Flight Cameras

laser triangulation system with time of flight capability at longer range (above 10 m). e laser

was scanned in a Lissajous pattern and took several minutes to image an object at 4000x4000 px

resolution.

2.6 Time of Flight Cameras

Time of Flight Cameras (ToFCs) are a relatively recent class of 3D imaging device. Modulated

infrared light is used to illuminate an entire scene and a CMOS sensor is used to determine the

per-pixel phase shift of the returned light, thereby giving a distance. Early devices were limited by

comparatively poor resolution with sub-MP sensors, however they allowed realtime 3D imaging

before realtime stereo became computationally feasible. eir popularity stems largely from use in

gesture/pose recognition systems where short-range coarse depth information is sufficient (Kollorz

et al., 2008; Ganapathi et al., 2010).

e principle is largely similar to AMCW LIDAR, except banks of infrared LEDs are used

instead of a laser. e illumination is either a pulsed (square wave) or continuous wave light source.

Although in principle direct ToF systems are possible, the vast majority of ToFCs use indirect

methods to calculate the ToF.

Modulation is normally performed at several tens of MHz. Schwarte et al. (1997) and Lange

et al. (1999), presented similar sensors: the Photonic Mixing Device/PMD and the lock-in CCD.

Both are imaging sensors where each ‘multitap’ pixel is capable of storing 4 (or more) distinct

amounts of charge. By sampling the light at four times during eachmodulation period, it is possible

to reconstruct the phase and therefore distance at each pixel.

For such a system, Lange and Seitz (2001) calculate the range accuracy due to shot noise as:

ϵZ =
Z√
8

√
B

2A
(2.33)

Where A is the number of photoelectrons per pixel generated by the modulated light source

and B is the number of photoelectrons per pixel from ambient light and other noise sources. Z =

c/2fmod is the non-ambiguous maximum range with modulation frequency fmod. is is the

absolute accuracy limit for a 4-sample system.
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2.6.1 Calibration Issues

ToFCs are prone to a number of systematic errors (Lindner et al., 2010; Foix et al., 2011). Depth

distortion occurs due to imperfect sinusoidal modulation of the illumination; this is correctable by

a look up table (LUT) as it is a distance dependent effect. Temperature bias is observed requiring

cameras to be temperature stabilised during operation. Variation in integration time, used to de-

termine the phase of the return light, causes a depth bias. It is unclear what causes this effect; one

solution is to either use a fixed integration time or to perform several calibrations with different

times. Imperfect pixels can produce a rotation of the image plane, some manufacturers supply

LUTs to correct this.

Depth accuracy is strongly dependent on the returned light intensity and often this is lower in

the corners of the image. Underexposed areas tend to produce overestimated depths and ToFCs are

in general very sensitive to SNR. ToFCs are also affected bymultipath returns, light scattering from

close objects and motion blurring. Lindner et al. (2010) goes as far as stating that no ToFC should

be used without calibration and suggests using a modified chessboard-style calibration pattern that

includes squares with varying levels of greyness.

Table 2.4 shows a selection of commercially available ToFCs. High resolution (MP) sensors

have recently begun to be mass produced, for instance the latest Microsoft Kinect sensor, a video

gaming accessory. Due to illumination constraints and phase ambiguity, the usable range is limited

to under 4.5m. Fankhauser et al. (2015) tested the Kinect outdoors and found that performance,

with degraded accuracy, was acceptable in overcast conditions, but not in direct sunlight.

Manufacturer System Resolution Range Framerate Accuracy
Swissranger SR4500 175x144px 9m 30fps 20mm
Pmdtec 19k-S3 160x120px 2m 90fps † 5mm
Odos Imaging Real.iz VS-1000 1280x1024px 9m 30fps 10mm
Fotonic X E-Series 160x120px 10m 52fps 10-40mm
Softkinetic DS325 320x340px 1m 60fps 14mm
Microsoft Kinect v2 512x424px 0.5-4.5m 30fps < 3.1mm ‡

Table 2.4: Selection of commercially available ToFCs. Accuracies and acquisition rates are quoted
by the manufacturer and should be considered best-case. † e 19k-S3 is an OEM sensor, this
framerate is achieved using the reference design. ‡ Accuracy estimate by Fankhauser et al. (2015).
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2.7 Summary

ere is no single imaging solution that can provide realtime, dense, accurate 3D data over a large

depth of field, indoors and outdoors. Stereo and LIDAR are usable over a wide range of distances

depending on hardware configuration. Laser triangulation and ToF cameras are only suitable for

short distances (< 10 m typical).

Stereo and LIDAR still dominate the 3D imaging sector and remain the only robust systems

suitable for outdoor use. Time of flight cameras show promise, particularly for environments where

controlled illumination is not a problem; there is limited evidence to support outdoor use, but even

with spectral filtering most units cannot cope with sunlight. In terms of absolute accuracy over

a large depth of field coherent LIDAR is unrivalled (millimetres over hundreds of metres), but

scanning times are still a limiting factor. Until time of flight camera sensors improve in resolution,

stereo imaging still provides the densest data per frame although the speed at which 3D data can

be calculated depends on the matching algorithm used.
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Stereo Matching and Data Fusion 3

3.1 Overview

Chapter 2 outlined the performance of stereo systems in terms of their geometry, such as the

choice of camera separation (baseline) or focal length. While camera geometry places constraints

on system resolution and accuracy, the final quality of the depth map produced by a stereo system

is determined by how well the images are matched. Stereo matching is a mature research field and

there are many algorithms to choose from.

e first part of this chapter discusses the different classes of stereo matching algorithms and

the cost functions that are used to determine image similarity. Stereo algorithm benchmarking is

discussed, as it is necessary to be able to compare the performance of different methods. Finally,

an overview of progress towards real time matching is given.

e second part of this chapter examines data fusion as a process to provide improved 3D data

from multiple imaging sensors. A general definition of data fusion is given with a particular focus

on methods which enhance stereo matching using additional range data from a LIDAR or ToFC.

A literature review of fusion methods is given with an outlook towards novel ways of combining

stereo and LIDAR data.

3.2 Stereo Matching

e purpose of a stereo matcher is to determine which pixels in one image correspond to the pixels

of another image, the correspondence problem. e output from a matching algorithm is a list of

labels for each pixel in one image indicating the corresponding location in the other image. is

output is called a disparity map. Typically a disparity map labels every pixel, though in some cases
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a coarser map is sufficient. When combined with camera calibration information, this disparity

map is sufficient to reconstruct the scene in 3D through application of equations 2.17 and 2.18 for

each pixel with known disparity.

ere are a very large number of stereo matching algorithms, with more proposed each year

(Scharstein and Szeliski, 2002; Mroz and Breckon, 2012). In their evaluation of several common

algorithms Scharstein and Szeliski suggested the following generic structure which remains relev-

ant today: Firstly, a cost function is defined to measure similarity between two pixels. Next, costs

are aggregated over a support region or window for a locally robust similarity measure. e best

disparity for that pixel is chosen using some selection process. Finally, the disparity map may be

checked for consistency, holes may be filled and so on. Some steps may be omitted, for instance a

global algorithm may not perform cost aggregation.

First, an overview of stereo matching costs is given since these are not unique to a particular

matching algorithm. Next, stereo benchmarking on ground truth data is discussed as this is critical

for fair comparison of algorithms. Finally, several classes of matching algorithm are detailed:

• Local matching algorithms; correspondences are determined based on similarity in a small

neighbourhood surrounding each pixel

• Global matching; correspondences are determined based on aminimisation process that tries

to produce an optimal disparity map for a given pair of images

• Semi-global matching; a recent, efficient approximation of global matching

• Region growing; an initial list of correspondences is used to ‘seed‘ the disparity map.

3.2.1 Matching costs

A cost function is used by a matching algorithm to score potential correspondences in terms of

their similarity; the output is a single number. Matching cost is determined by comparing one

pixel x1 in an image I1 with another x2 in another image I2. e simplest cost function is the

absolute intensity difference:

C = |I1(x1)− I2(x2)| (3.1)
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e squared intensity difference is also common. ese functions assume that each image is

radiometrically similar - two corresponding pixels have the same brightness. Birchfield and Tomasi

(1998) proposed a popular cost which is insensitive to image sampling by linearly interpolating the

intensity at each pixel.

In order to increase the robustness of these costs, the input imagemay be filtered or transformed

(Hirschmuller and Scharstein, 2007). Non parametric transforms are defined by their dependence

on the ordering of data values, not the values of the data themselves. Zabih and Woodfill (1994)

suggested two transforms for image matching: rank and census. e rank transform replaces each

pixel with the number of pixels in a local neighbourhood with a lower intensity. e transformed

image is matched using a standard correlation method as described above. e census transform is

similar, but labels each pixel with a bit string which describes whether pixels in the neighbourhood

have a lower intensity than the central one. Census transformed images are efficiently matched

using the Hamming distance, the number of bits that differ between two strings.

In the aggregation step, pixel costs within a neighbourhood or window are combined to produce

a more robust similarity measure. At its simplest, this is the sum of pixel costs within the window

such as the sum of absolute differences (SAD) or sum of squared differences (SSD). Normalised

cross correlation (NCC) is a standard local cost that is insensitive to gain and bias:

C =

∑
u,v I1(u, v) · I2(u+ d, v)√∑

u,v I
2
1 (u, v) ·

∑
u,v I

2
2 (u+ d, v)

(3.2)

for points (u, v) ∈ w1, w2, two windows in the images I1 and I2.

Stereo matchers rely on cost functions returning, over the disparity range, a strong maximum

or minimum at the feature of interest. is occurs when the intensity variation of the region is

strong and unique, i.e. there is good texture in the image. Regions with homogenous or repetitive

texture can cause issues as the matching costs will be similar for multiple disparity values. is is

a particular issue for local algorithms.

3.2.2 Matching assumptions

In order to attempt to reduce the number of mismatched pixels, algorithms may make a number

of assumptions (Marr and Poggio, 1979; Grimson, 1985; Brown et al., 2003):
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• Uniqueness constraint: each pixel corresponds to at most one other pixel (or it is occluded)

• Continuity constraint: the variation in disparity values surrounding a pixel should be smooth.

• Epipolarity: if the images are rectified, matches should lie along the same row in the corres-

ponding image. is is assumed by almost all matchers as it significantly reduces the search

space for each pixel.

• Ordering constraint: points along an epipolar line appear in the same order in each image.

• Radiometric similarity: each image is exposed under the same conditions and all surfaces

are Lambertian scatterers.

e epipolar constraint is primarily applicable to close-range imaging systems. In aerial or

orbital imagery, it is sometimes not possible to obtain a fundamental matrix that maps points in

one image to lines in another. Algorithms developed specifically for this kind of imagery, such as

Gotcha (section 3.2.7) do not necessarily require rectified images as an input.

Stereo matchers should ideally be able to identify occluding regions in an image which implies

the ability to differentiate between a mismatched pixel and a pixel with no correspondence in the

other image. A simple method for occlusion detection is enforcing left-right consistency: the

images are matched from left to right and then from right to left (Zitnick and Kanade, 2000). e

resulting disparity maps should be the same, but negated. Any pixel with a disparity that does not

agree in both directions is marked as occluded or unmatched.

3.2.3 Stereo Benchmarking

As stereo performance is dependent on the geometry of the cameras, algorithms are best bench-

marked by using images with known ground truth. Dense truth imagery is produced using either

LIDAR information such as the KITTI dataset (Geiger et al., 2013) or using structured light, such

as Middlebury (Scharstein and Szeliski, 2002, 2003; Scharstein and Pal, 2007; Hirschmuller and

Scharstein, 2007; Scharstein et al., 2014). Other approaches have used calibration objects with

known geometries such as planes or spheres (Ahmadabadian et al., 2013).

KITI imagery is taken from a vehicle mounted stereo bar (Figure 3.1) and is targeted towards

algorithms for autonomous navigation. Ground truth is available for some stereo pairs and is

generated from an onboard Velodyne LIDAR. Explicit ground truth accuracy is not given in the
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original paper, but is presumably related to the camera-LIDAR cross-calibration and the intrinsic

performance of the LIDAR (±2 cm). e LIDAR data is co-registered to the image data with

some manual intervention.

Figure .: A representative image taken from the KITTI dataset. e images are generally
accepted to bemore challenging thanMiddlebury due tomore varied illumination and the presence
of specular reflections on vehicles.

Middlebury provides images of a variety of indoor scenes (see, for example Figure 3.2; each

scene typically contains multiple illumination variants and the 2014 dataset contains images with

imperfect rectification. Both datasets are freely available to download and users have the option of

submitting code to be benchmarked on images where no public ground truth is available.

(a) (b)

Figure .: (a) Left stereo image and (b) high resolution ground truth disparity map from Middle-
bury 2012.

Both benchmarks score algorithms based on the percentage of incorrectly matched pixels, av-

erage disparity error and algorithm runtime.
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3.2.4 Local stereo matching

Local matching algorithms consider only a small window around each pixel when computing

match cost. e match for each pixel is independent of the match for every other pixel. A ref-

erence window in one image is compared to a number of comparison windows in the image (Fig-

ure 3.3). e best disparity is typically chosen with a greedy algorithm such as winner-take-all

(WTA) where the window with the minimised or maximised cost is chosen as the match:

dmatch = argminC(u, v, d) (3.3)

e neighbourhood is typically rectangular with a fixed size, but it may also be adapted to re-

spond to intensity boundaries in the image (Kanade and Okutomi, 1994). Large windows produce

smooth disparity maps at the expense of recovering short-scale detail.

Disparity

Match Cost

d

Figure .: e Pipes stereo pair from Middlebury 2014. An example neighbourhood (oversized
for clarify) is shown in blue. e sliding window used for cost aggregation is shown in red in the
right image.

Local algorithms are simple to implement and are straightforward to paralellise as each com-

parison is independent. e time taken to construct the disparity map is proportional to the size
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of the image itself, the disparity range of interest, dr, and the window radius r giving a naive com-

plexity of O(hwdrr
2). As only local information is used to match pixels, local algorithms tend to

perform poorly in regions with little texture due to ambiguous matches.

3.2.5 Global stereo matching

Global algorithms aim to generate a disparity map that minimises some function (often called an

energy). If the minimisation is limited to 1D, that is along the rows of the image, then it may

be efficiently solved using dynamic programming (DP) (Ohta and Kanade, 1985; Veksler, 2005).

Dynamic programming algorithms break a problem down into sub-problems and store the results

so that they do not need to be re-computed. Unless intra-row consistency is taken into account,

the disparity map shows characteristic streaking artefacts. Parallelisation is straightforward as the

computation for each row (or group of rows) is independent.

Extending the optimisation to compute an optimal disparity map for the entire image is com-

putationally complex1 Scharstein and Szeliski (2002), but the problem is solvable if the energy

function is chosen carefully Kolmogorov and Zabih (2004). e disparity map is calculated using

iterative methods. Global stereo algorithms have included Markov random fields, belief propaga-

tion (Sun et al., 2003) and graph cuts (Kolmogorov and Zabih, 2001). Global matching algorithms

typically outperform both local and dynamic programming methods at the expense of computation

time and complexity.

3.2.6 Semi-global stereo matching

Semi-global matching (SGM) (Hirschmuller, 2008) is an extension of dynamic programming, ex-

ploiting the fact that 1D optimisation can be solved efficiently. SGM performs cost computation

along a number of paths radiating out from the pixel of interest. e performance of SGM is

excellent, with results that are comparable to global matchers but with better computational cost

(Hirschmuller and Scharstein, 2007). As of 2015, the best performing algorithm in the Middle-

bury stereo benchmark uses a combination of SGM and convolutional neural networks (Zbontar

and LeCun, 2016). Hirschmüller’s original algorithm, as of 2015, ranks eighth.

12D disparity map optimisation falls into the class of Nondeterministic Polynomial-time (NP)-hard problems
which are at least as computationally complex as those in NP Knuth (1974).
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3.2.7 Region growing stereo matching

Region growing algorithms take an initial set of seed correspondences (also called tiepoints or

ground control points) and attempt to ‘grow’ the disparity map from these points. e Gruen-

Otto-Chau Adaptive Least Squares Correlation (Gotcha) (Otto and Chau, 1989; Shin and Muller,

2012). Lhuillier (1998) proposed a similar algorithm that introduces ‘seed areas’ which describe

regions of colour uniformity before propagating the initial correspondences into textured regions.

e tiepoints used by Gotcha are either selected manually or are automatically generated using a

feature detector such as the Scale Invariant Feature Transform (SIFT) (Lowe, 2004). e complex-

ity of region growing algorithms is not constrained by a disparity range which adds some flexibility

over local/global methods, however dense matching requires good local texture for the regions to

expand into.

is method has proved to be accurate and robust, for example when applied to spacecraft

(Day and Muller, 1989; ornhill et al., 1993); close-range industrial (Muller and Anthony, 1987;

Muller et al., 1988); close-range medical (Deacon et al., 1991) and Martian rover imagery (Shin

and Muller, 2012).

e algorithm uses Adaptive Least Squares Correlation (ALSC) (Gruen, 1985) to refine and

determine correspondences to sub- pixel accuracy, providing a disparity estimate and a confidence

score. If a tiepoint is successfully matched, its neighbouring pixels are added to a priority queue,

sorted by match confidence. ALSC is performed on the neighbours of the highest confidence

tiepoint and any matches are added to the tiepoint queue. e process iterates until the queue is

empty. us the disparity is grown from the initial seed points, preferentially matching from the

regions with highest confidence.

Further technical details of the algorithm are given in Section 6.2.

3.2.8 Realtime stereo

By 2003 the best algorithms already performed very well on reference imagery. Real-time solu-

tions had been demonstrated on CPUs, but using low-resolution (320x240 px) images and small

disparity ranges of up to 32 px. Global methods were too demanding to run in real-time on the

hardware of that period and so there was a preference for local algorithms.

Real-time algorithms generally require the use of parallel programming. For most algorithms
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the matching speed is proportional to the number of processing cores available. Almost all new

discrete GPUs have the ability to perform general purpose computing and contain a large number

of cores. Algorithms for GPU matching are normally written in either the Open Computing

Language (OpenCL) 2 or Nvidia’s Compute Unified Display Architecture (CUDA) 3.

Stereo matching algorithms implemented on GPUs include correlation, semi-global matching

(Ernst and Hirschmuller, 2008), dynamic programming (Wang et al., 2006) and belief propagation

(Liang et al., 2011).

Lazaros et al. (2008) presented a good overview of hardware implementations of stereo match-

ers. eir focus was largely on Field Programmable Gate Array (FPGA) based systems as they

provide higher performance than GPUs without the high expense of moving to ASICs. Due to

the simplicity of the algorithm, the majority of FPGA matchers use correlation matching with

SAD costs. Typical image resolutions are VGA (640x480 px) with speeds of around 30 fps.

Jin and Maruyama (2012) demonstrated a two pass algorithm using a census-like cost By 2003

the best algorithms already performed very well on reference imagery. Real-time solutions had

been demonstrated on CPUs, but using low-resolution (320x240 px) images and small disparity

ranges of up to 32 px. Global methods were too demanding to run in real-time on the hardware

of that period and so there was a preference for local algorithms.

Larger disparity ranges require larger FPGAs that inevitably increase system cost. Kalarot and

Morris (2010) presented a dynamic programming matcher on an Altera Stratix III FPGA that

operated at up to 128 disparity levels, but could not scale their design to 256. e same algorithm

running on a GPU did not suffer this limitation, but the performance was slower by approximately

50 %.

TYZX (recently acquired by Intel) produced a stereo system based on the DeepSea 2 ASIC

(Woodfill et al., 2004). e image size is up to 512x2048 px, with correlation matching at 30 fps

up to a maximum of 200fps at 512x480 px. e disparity search window is 52 px and the specified

range is 2.7-35 m.

2https://www.khronos.org/opencl/, accessed 20/9/2016
3http://www.nvidia.com/object/cuda_home_new.html, accessed 20/9/2016
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3.2.9 Summary

Matching requires well-illuminated images, with sufficient reflectance to dominate detector noise.

Unambiguous matching also requires well-textured images. In regions of repetitive or low texture,

potential matching pixels may be assigned similar costs and differentiating between them is difficult.

is is a limitation of stereo as a passive technique and preliminary results from the challenging

2014 Middlebury images suggest there is still significant progress to be made. Alongside LIDAR,

stereo is one of the only 3D imaging methods that works even somewhat reliably outdoors, though

dynamic range can become an issue.

Hardware based stereo is maturing as FPGAs and GPUs become ever more powerful although

FPGAs are memory-limited for large images. While there are many new algorithms published

annually, many authors do not provide easily available source code or executables for their match-

ers. Users must therefore re-implement algorithms or rely on the few open libraries available, e.g.

in OpenCV. Commercially available systems (section 2.1) typically provide proprietary matching

software. Stereo is still very much a research topic and will arguably continue to have limited

commercial penetration until this issue is addressed.

3.3 Data Fusion

Data fusion is a broad term that has a variety of different meanings depending on context and topic

of interest. Most definitions agree that data fusion is a process by which multiple sources of data are

combined to produce a product that is in some way improved from that of each individual sensor.

e Joint Directors of Laboratories ( JDL) Data Fusion Subgroup (Steinberg and Bowman, 2004)

suggested the following definition:

Data fusion is the process of combining data to refine state estimates and predictions.

Some of the most highly cited work in data fusion presents a military perspective, (Hall and

Llinas, 1997), where fusion occurs on a variety of levels representing how ‘close’ to the raw sensor

data the fusion is performed. e approach and terminology used is rather specific to defence

requirements. Wald (1999), in collaboration with the European Association of Remote Sensing

Laboratories, recognised this issue and attempted to define data fusion in a general context:
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Data fusion is a formal framework in which are expressed means and tools for the alliance of

data originating from different sources. It aims at obtaining information of greater quality;

the exact definition of ‘greater quality’ will depend upon the application.

Alongside the definition of the fusion process, definition of the following terms is given:

• Measurement - e outputs of a sensor, containing a number of samples. For imaging, this

is the image itself, containing pixels. It may also be called a signal.

• Object - An object is something which is defined by its properties. at is, something that has

been classified - e.g. building, road or field. An individual property is a feature or attribute.

A pixel may be an object if it has been classified as one.

• State Vector - e combined properties of an object are called a state or feature vector, ideally

forming a unique definition.

• Rules - ese define relationships between objects and their state vectors. e form of a rule

may be an equation or mathematical operator. When rules are applied to a set of objects and

state vectors, decisions are made.

• Topology - e arrangement of sensors, how information is exchanged and the cost of acquir-

ing it.

• Processing - is addresses how the data should be fused and whether the data is suitable for

fusion.

Commonly data fusion is organised into three categories:

1. Pixel - e lowest level, fusion of raw image data. e data may or may not be geometrically

corrected.

2. Feature - Fusion of data after some sort of classification has occurred, such as segmentation.

Features from different sensors are then fused together.

3. Decision - Output from the sensors are processed individually and the results are then com-

bined using a set of rules.

For this work, data fusion is considered at the pixel level.
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3.3.1 Stereo/Range Fusion

In the context of fusing stereo with other data sources, typically LIDAR/ToFCs, there are a number

of stages where data fusion may occur:

• Using range data as an a priori constraint for the stereo matcher to produce an improved

disparity map.

• Fusing the stereo disparity map and the range data a posteriori.

e literature published as fusion of stereo and range data can broadly be partitioned into these

categories. In the first, each point in the LIDAR/ToFC point cloud can be converted to a disparity

(plus uncertainty) in the rectified stereo frame. is disparity range is then used to define the search

window of the stereo matcher. e second method is perhaps the simplest and involves combining

the output stereo disparity map and the LIDAR point cloud projected into disparity space. is

approach is therefore limited to a statistical addition of the two data sets and does not provide any

improvement in computation time.

3.3.2 Previous work in Stereo/Range fusion

A review by Beraldin (2004) discussed the fusion of laser scanning and photogrammetry, though

applications were mostly limited to visual enhancement of the point cloud. Diebel and run

(2006) used a Markov random field to combine a laser scan with a single colour image to produce

a high resolution range map by exploiting coincident colour and depth discontinuities. Recent

literature has been concentrated around ToFCs as a promising technology for realtime scene re-

construction. As such, most techniques use ToFCs as they can quickly generate a rangemap of a

scene in a format that is easily transformed to the stereo disparity space. Alternatively, both outputs

are mapped to 3D world coordinates. at said, provided the output from the range sensor and

the stereo system may be transformed to the same coordinate system, these methods are agnostic

to the type of sensor used.

Similarly, a variety of stereo matching algorithms have been used. e particular choice of

algorithm is dependent on the application - for instance realtime data fusion. If speed is not

considered, the stereo match results below all have similar deficiencies. If matching is done a priori

then the insertion method of the range data is algorithm dependent.
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3.3.3 A priori (pixel level) fusion

In these methods, data is exchanged between the rangefinder and the stereo camera before dispar-

ities are calculated. ese ranges are then used as part of the stereo matching cost.

Romero et al. (2004) used a 2D laser scanner and a trinocular camera system to create seed

disparity values which are propagated through the image. Each laser point is located in image

coordinates. A set of rules determine whether disparity at a pixel is propagated to nearby points

based on local image texture and a search for a matching pixel. e initial disparity seed points

are taken from the laser scanner, then each of their 8 neighbours. is process is complemented

by a stereo matcher which preferentially matches edge regions. e laser seed points are used in

homogeneous regions, and the correlation method is used at edges providing improved coverage.

Results are only given from the methods presented in the paper, no comparison is given with a

standard stereo method or ground truth. However, disparity estimation for textureless regions in

the images are improved greatly compared to using the basic matcher alone. is method is the

only listed here that uses a 2D laser scan.

Hahne andAlexa (2008) built on work byKuhnert and Stommel (2006) (detailed below). eir

setup is functionally identical, with two consumer cameras and a ToFC (160x120px, 7.5m range).

Planar calibration is used for the stereo camera calibration. e authors note that when calibrating

the ToFC, the plane with zero phase-shift does not necessarily coincide with the imaging plane

and that high noise and inaccurate depth measurement causes calibration results to vary. A graph

cut approach was used, with a 400x300x100 (x, y, depth) grid used as the search volume. ToF

camera pixels are then matched to this volume using the calibration results and the result is a 3D

surface that represents the depth-plus-uncertainty from the camera. is surface is then used as the

search volume for the graph cut algorithm, substantially reducing the search space. A consistency

term derived from the ToF rangemap is used in the graph cut algorithm and the result takes a

few minutes to process. e authors note that while the results are improved, there is difficulty in

precisely calibrating the ToF system. Only raw ToF data are shown, but fused results show reduced

noise and improved results near depth discontinuities.

Gudmundsson et al. (2008) presented fusion results of a ToFC with stereo imagery at a range

of 0.9-4m. Each point in the ToF rangemap is mapped to both left and right stereo cameras and

hence a known disparity. is ToF derived disparity map is used to constrain a dynamic program-

75



. Stereo Matching and Data Fusion

ming algorithm on a per-pixel basis. Raw results from ToF and stereo matching are presented

for comparison and in this case the fused matcher successfully reconstructs points on a wall where

stereo alone fails completely.

Zhu et al. (2011) gave an overview of ToF and stereo fusion using belief propagation. A Swis-

sRanger 176x144px camera was used, up to 7.5m. e authors noted that the ToF sensor exhibits

a significant depth bias depending on the reflectance of the target and this is compensated using a

per-pixel lookup table (LUT). e bias is independent of target range and is dependent on integ-

ration time, which is kept to approximately the stereo shutter speed. After refinement, ToF results

are integrated into the matching cost function. Results are presented from raw and refined ToF,

stereo, and ground truth based on a structured light approach. When comparing results to truth,

the fusion method presented achieves greater than 50% improvement compared to raw stereo. e

best results were found when global stereo methods were used in the fusion algorithm, compared

to local methods.

Song et al. (2011) used ToF fusion to image plants at a range of 0.4-1.2m. A variety ofmatchers

were compared and it was found that stereo alone did not provide satisfactory results, particularly

in terms of discontinuity preservation. Graph cuts were chosen for fusion. e rangemap is used

to provide a localised disparity search range; the map is upscaled to the stereo image resolution.

If no ToF range is present at a given pixel, a normal full-scale disparity search is performed. A

quality metric is provided, based on the sharpness of manually selected edges in the image and the

smoothness of calculated leaf surfaces. In general there is a clear improvement when ToF is used

to steer the stereo match algorithm.

Fischer et al. (2011) presents a modification of the SGM algorithm, where the pixelwise cost

function is adapted to include ToF data that has been reprojected onto the left match image. is

approach leverages the speed of local stereo methods and the high accuracy of global methods. A

SwissRanger ToF camera is used and the raw data are filtered to remove spurious points. Valid ToF

data are included in the aggregated cost function based on an inverted Gaussian weighted by the

difference between stereo and ToF disparities. e results demonstrate that over-propagation of

ToF disparities to neighbouring pixels causes block artefacts in the fused result as stereo disparities

are overridden and a 5x5 neighbourhood is optimal. No ground truth comparison was provided,

but fused results overcome the typical failings of stereo in homogeneous regions.
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Badino et al. (2011) presented a fusion method using a Velodyne LIDAR as opposed to a

ToF system, enabling outdoor applications. e LIDAR data is obtained as a spherical range im-

age which is interpolated sequentially in the horizontal and vertical directions while attempting

to preserve discontinuities using an empirical relation. A maximum and minimum range filter is

constructed using dilation and erosion morphological operators respectively. ese maximum and

minimum images are converted to disparity maps and provide a bound on the disparity computed

from stereo. DP is used for stereo matching, with the inclusion of a cost that penalises deviations

from the minimum/maximum disparity maps. Additionally there is a cost term that encapsulates

the confidence of the LIDAR data. e smoothness term is also adjusted to include the expected

disparity gradient at each point. Results in outdoor scenes show smoother results, with fewer dis-

continuities with the prior disparity information. e results are further post processed to remove

outliers and the horizontal streaking effects characteristic of DP. No absolute timing is given, but

the use of LIDAR data enables between 2-5 times faster computation of the final disparity.

Zhang et al. (2013) used the depth map created by a Microsoft Kinect sensor to aid stereo

matching. e data are fused using a belief propagation framework. e stereo system was a

COTS 3D compact camera (a JVC GS-TD1B FHD 3D camcorder) which is first calibrated using

(Zhang, 2000) and then cross-calibrated with the Kinect using (Zhang and Zhang, 2011). Results

were presented from indoor scenes as well as simulations using the Middlebury images for accuracy

evaluation. On the simulated data, the number of ‘bad’ pixels with an disparity error of > 1 px is

reduced from 1.27% (stereo alone) and 10.1% (Kinect alone) to 0.15% (fused) on the Venus stereo

pair.

All of the above approaches follow a common pattern. First, range data and stereo images are

acquired. en, the two data sets are co-registered, often with some form of interpolation such

that each pixel has an associated disparity estimate and confidence. e stereo matcher is run and

the disparity estimate is used to constrain the search in some fashion. is may simply limit the

disparity search range or it may involve an adjusted cost function.

3.3.4 A Posteriori fusion

ese methods fuse data after calculation of range and disparity in an attempt to produce a more

accurate, consolidated map. At its simplest this involves adding the disparity map and the range
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map together with the expectation that the range and disparity maps have complementary coverage.

Kuhnert and Stommel (2006) present one of the first attempts to fuse ToF and stereo, up to an

ambiguity range of 7.5m. e authors note it is only suitable for indoor use, and has a 160x64px

array. Two CCD cameras with VGA resolution were used for stereo acquisition. Two algorithms

were compared: optimised winner-takes-all and simulated annealing, described in Scharstein and

Szeliski (2002), producing maps of disparity and 95% confidence across the frame. e ToF data is

stored in a minimal and maximal rangemap, corresponding to a range interval for each pixel. is

map is upscaled and compared, pixelwise, with the range from the stereo matcher in cartesian 3D

coordinates. e fused output contains only pixels that have an overlapping range in the stereo and

ToF rangemaps. Results are only presented for one scene and while the ToF camera does provide

coverage where the stereo algorithm doesn’t, there is significant pixellation in the final images due

to the low resolution of the ToF system.

Beder et al. (2007) present an approach based on patchlets (Murray and Little, 2005), rectan-

gular surface elements defined at every pixel in a disparity image. ese patchlets encode a best-fit

plane at that point, along with an uncertainty measure. e disparity image and depth map are

both subsampled to enable data fusion. Combining patchlet data from stereo and ToF data gives

the best results, but the speed of the algorithm is not discussed.

Gurram, Lach, Saber, Rhody, and Kerekes (Gurram et al.) applied LIDAR and stereo fusion

to building extraction from aerial distances. Stereo data is used to segment buildings and generate

planar fits to surfaces. Separately, LIDAR point clouds are also segmented to extract building sur-

faces. e data are fused to remove errors from solar shadowing (stereo) and poor edge extraction

(LIDAR).

3.4 Summary

It is clear that ToF cameras are favoured for fusion with stereo over scanning LIDAR. However,

a frequent limitation of ToF data is that it is noisy and difficult to calibrate. Noise is dominated

by the shot/Poisson component, but Zhu et al. (2011) showed that depth is also biased by surface

reflectance. Due to the range and illumination requirements of current ToF cameras, applications

are largely limited to indoor use only.

Almost all autonomous vehicles utilise some kind of stereo vision arrangement, most also in-
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clude LIDAR and/or RADAR units. Fusion is typically performed at the object level for collision

detection purposes. ere is very little literature available concerning fusion of scanning LIDAR

and stereo for imaging purposes. e results from Beder et al. (2007) and Romero et al. (2004)

are encouraging in this respect and demonstrate that outdoor fusion is possible, though there are

issues at translucent surfaces.

Results from across the literature are in agreement; using an additional (active) range sensor to

compensate for stereo’s shortcomings (and vice versa) is viable. Fusion has been studied extensively

in the short range (0-10m), up to the limit of ToFCs. In longer range data, airborne LIDAR has

been combined with stereo to improve building segmentation (Lee et al., 2008) and to aid with

transport network surveying (McCarthy et al., 2007).

Previous efforts in data fusion have focussed on pixel-level, a priori, and a posteriori fusion using

standard stereo match algorithms augmented to include additional range data. Real time operation

has only been realised with multiple-beam scanning LIDAR systems and ToFCs.

ere has been research into providing artificial texture for stereo imagery, e.g. via the projec-

tion of some kind of random pattern. is could also be performed using a LIDAR - an example

of this would be taking the stereo imagery during the LIDAR scan, imaging the laser scan pattern.

Individual pattern points may be used to provide texture in homogeneous areas while also giving

accurate distance measurements in those regions. Alternatively these points may be introduced as

part of a region growing algorithm, such as GOTCHA, as a disparity seed point. ese ideas are

explored in Chapters 6 and 7.
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4.1 Overview

is chapter describes the stereo system and LIDAR system used for this research. e compon-

ents chosen reflect the decision to construct a system that is highly accurate, at the expense of

acquisition speed. e specification of each system is given, along with calibrated values of in-

trinsic and extrinsic parameters. A model is suggested for the LIDAR system, taking into account

positioning errors with respect to the mount.

e hardware is controlled using custom software that enables the user to fine-tune scan para-

meters such as resolution and angular extent. e software enables storage of intermediate images,

captured during the scan at every step. Imaging at every point enables the simulation of random-

ised textures (Chapter 7).

Locating the laser spot is a key element in system cross-calibration (Chapter 5) and data fusion

(Chapter 6). Two simple, but effective approaches for direct spot detection are proposed.

Finally, the theoretical performance of the two systems are compared and ‘real-world’ accuracy

measurements are given.

4.2 Stereo System

e stereo camera system used a pair of Imaging Source1 DMK23UM021 monochrome USB3.0

cameras with a resolution of 1280 ×960 px. e cameras were operated using the manufacturer

provided Windows drivers. ese were supplied without an infrared blocking filter, allowing test-

ing of light sources such as the pattern projector used by the Kinect (Figure 7.5). e cameras

1http://www.theimagingsource.com/, accessed 20/9/2016
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were each fixed to a rotation platform (orlabs2 XT95P11, orlabs RP01) mounted on a sec-

tion of extruded aluminium rail (orlabs XT95). is allowed an adjustable baseline of up to 1m.

A baseline of around 0.5m was chosen, providing an acceptable trade-off between stereo image

overlap and range resolution. Detailed specifications are shown in Table 4.1.

Parameter Value
Sensor ON Semi MT9M021
Sensor Size (mm) (3.52 ×2.64 )
Pixel Size (µ m) 3.75 × 3.75
Frame rate (fps) 45 (full resolution)
Shutter Global
Sensitivity (lux) 0.015
Dynamic Range 8/12 bit
Shutter Speed (s) 1/20000 to 1/4

Table 4.1: Imaging Source DMK23UM021 camera specification.

Two C-mount Computar3 M0814MP lenses were used with a focal length of 8mm, giving a

theoretical single-camera field-of-view of 33.4◦ by 25.4◦ per camera. e lens apertures were set

to f/8, giving a suitable depth of field, and focused at 1 m. is gave a theoretical depth of field,

with a circle of confusion of 1 px, to be 0.67 m - 1.98 m. For a circle of confusion of 2 px, the

depth of field expands to 0.5 m - ∞.

Stereo calibration was performed using the calibrateCamera and stereoCalibrate functions

from the OpenCV library4. Single camera calibration is performed initially for each camera to

provide a robust initial estimation for the stereo calibration step. Further details about this pro-

cedure are provided in Chapter 5. 14 stereo pairs were used for calibration and the results are

summarised in Table 4.2.

4.2.1 Calibration stability

e system was re-calibrated several times over the course of the research period. ere was no

evidence to suggest that, without physical interaction, the calibration degraded over periods of

several months. is is expected, as the cameras were rigidly mounted on quality optomechanical

components in a laboratory with no significant temperature variation or vibration. Unfortunately

OpenCV does not (yet) provide uncertainties on individual estimated parameters, only a single
2https://www.thorlabs.com/, accessed 20/9/2016
3http://computar.com/, accessed 20/9/2016
4http://www.docs.opencv.org/modules/calib3d/doc/calib3d.html, accessed 20/9/2016
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Parameter Left Camera Right Camera
Focal length (mm) 8.38 8.37
Camera centre (px) (657.70, 479.62) (657.87, 489.06)
Distortion coefficients,
(k1, k2, k3, p1, p2)

(−8.17 · 10−2,−0.14, 1.79 · 10−4,
2.65 · 10−4, 3.29)

(−9.57 · 10−2, 0.30,−8.02 · 10−5,
1.47 · 10−3,−0.18)

Horizontal FOV (deg) 31.98 31.99
Vertical FOV (deg) 24,22 24.34
Position (m) (0, 0, 0) (0.46, 4.9 · 10−3, 0.064)
Rotation (deg) (0, 0, 0) (−0.68,−12.11, 1.28)
Reprojection Error (px) 0.10 0.10

Table 4.2: Camera calibration results using OpenCV’s calibration routine.

reprojection error. Although parameter variations were not explicitly measured, verification was

performed by checking vertical disparity values in stereo matching results. Any changes to the

optical system would result in the calculated rectification would no longer be correct and vertical

disparities not close to zero5. is conveniently decouples calibration assessment from any partic-

ular calibration process or target and can be quickly performed online after a stereo pair has been

matched. Alternatively a known (static) target could be used, for instance Habib et al. (2005) used

a wall covered with markers.

Whenever the systemwasmoved, or adjustmentsmade to lens focus or aperture, a re-calibration

was performed. Calibration results reported in this thesis, for example in this chapter and in

Chapter 5, represent the most recent calibration prior to the measurements being acquired. Were

the system mounted on a vehicle or in a more dynamic environment, it is expected that calibration

would either be performed more frequently or adjusted using, for example, bundle adjustment with

self calibration (Fraser, 1997; Chow and Lichti, Chow and Lichti).

4.3 LIDAR System

In order to evaluate different strategies for data fusion, a single point LIDAR was mounted on

a gimbal mount. Unlike conventional scanning LIDAR systems which capture over a full hemi-

sphere, this method enabled the scan pattern to be precisely controlled and limited to just the field

of view of the cameras. Both LIDAR and mount were independently controlled via serial connec-

tion to a computer. e Dimetix6 FLS-C 10 is an accurate LIDAR unit designed for industrial

positioning applications. It has a slow acquisition rate in its most accurate mode, with a maximum
5A typical threshold would be 1px
6http://www.dimetix.com/, accessed 20/9/2016
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speed of 20Hz, however it offers higher accuracy and repeatability at a much lower cost than scan-

ning LIDAR systems. Analogue output at up to 200Hz is possible, but with degraded accuracy.

Detailed specifications are given in Table 4.3 and a dimensional drawing is shown in Figure 4.1.

e unit was connected via RS-232 connected to a local PC.

Parameter Value
Resolution (mm) 0.1
Accuracy (mm) ± 1
Repeatability (mm) ±0.3
Measurement range (m) 0.05 to 65
Laser wavelength (nm) 620-690
Laser beam Divergence (deg) 0.01 by 0.03
Radiant Power (mW) 0.95
Pulse Duration (s) 0.45 ×10−9

Measurement time (s) 0.05 to 4

Table 4.3: Dimetix FLS-C 10 LIDAR specification. Measurement range specified by Dimetix on
natural surfaces.

Figure .: FLS-C 10 LIDAR unit dimensional drawing, courtesy of Dimetix

e LIDAR was mounted on a Newmark Systems Inc.7 GM-12E 2-axis gimbal mount. is

mount has excellent positional accuracy and optical homing switches, which allow repeatable meas-

urements with respect to the camera coordinate system. Specifications are given in Table 4.4. A
7http://www.newmarksystems.com/gimbal-mounts/, accessed 20/9/2016
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dimensional drawing is shown in Figure 4.2. e mount was controlled using an NSC-G2 (New-

mark Systems Inc.) motion controller, connected via RS-232 to a local PC.

Parameter Value
Azimuth Range (deg) ±90
Altitude Range (deg) ±90
Resolution (deg) 2 ×10−4

Accuracy (deg) 0.004
Repeatability (deg) 6× 10−4

Maximum Speed (deg/s) 20

Table 4.4: Newmark GM-12E gimbal mount specification.

Figure .: GM-12E gimbal mount dimensional drawing, used with permission of Newmark
Systems Inc.

Both the LIDAR and stereo bar were fixed using bolts to a thick sheet of MDF. e LIDAR

was positioned in the centre of the stereo bar, but with a vertical separation due to the height of

the mount itself. e complete system is shown in Figure 4.3.
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Figure .: Stereo/LIDAR system.

4.3.1 LIDAR Model

e LIDAR coordinate system is defined to be the same handedness as the stereo system. e

z-axis is positive into the scene, the y-axis is positive downwards (Figure 4.4). Each measurement

consists of a measured range rm, altitude φ and azimuth θ. In this coordinate system, altitude is

the angle between the y-axis and xz-plane and azimuth is the angle between the x- and z-axes.

e FLS-C 10 reports distances measured from the front surface of the unit.

-X

Z
ϵx

rp

θ

rp

-Y

XZ

ϵr

ϵY

r

φ

Figure .: LIDAR system geometry shown from side (left) and above (right). Note that angles
reported by the GM-12E mount are positive upwards and rightwards.

Additional corrections are required as the LIDAR is not perfectly centred on the mount. Also

the LIDAR receiver aperture is offset laterally from the centre of the unit, as shown in Figure 4.1.
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ere are 3 possible translational offsets (ϵx, ϵy, ϵz) from the centre of rotation, 3 angular off-

sets (ϵrx, ϵry, ϵrz) from the coordinate axes and 3 systematic errors in reported distance/direction

(ϵr, ϵθ, ϵφ). Several of these parameters are degenerate: an error in reported azimuth or altitude is

equivalent to a rotation offset of the LIDAR from the coordinate axes; a systematic error in repor-

ted distance is equivalent to a translational offset in the z-direction; rotation about the z-axis does

not affect the measurement once horizontal/vertical translation is corrected. e LIDAR system

geometry may be modelled using 8 parameters (rm, θm, φm, ϵx, ϵy, ϵr, ϵθ, ϵφ) and the coordinate

conversion from polar to Cartesian is given by:


x

y

z

 =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ



cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




ϵx

ϵy

rm + ϵr

 (4.1)

where φ = −φm + ϵφ and θ = −θm + ϵθ.

For this work the LIDAR coordinate system is defined to be the world coordinate system.

Stereo coordinates are therefore related to LIDAR coordinates by a rotation, R and translation t

as shown in Figure 4.5.

R, tZ

Y

X

(A)

(B)

YcZc

Xc

Figure .: Relationship between the camera (A) coordinate system, (Xc, Yc, Zc) and the LIDAR
(B) coordinate system (X,Y, Z).

An example calibration result is given in Table 4.5. Including the offsets in the rotation angles
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were found to cause excessive instability in the fitting process and so were set to zero.

Parameter Value
Translation (x, y, z) (m) (-0.230,-0.254,-0.212)
Rotation about (x, y, z) (deg) (0.01, 0.26, 0.08)
ϵx (mm) 8.4
ϵy (mm) 1.1
ϵr (mm) 4.1
ϵϕ (deg) 0
ϵθ (deg) 0

Table 4.5: LIDAR system calibration parameters. Rotation and translation is given with respect
to the left stereo camera as the LIDAR system is at the origin by definition.

4.3.2 LIDAR Spot Location

A key component of the calibration and data fusion methods presented in this research is the

determination of the location of the LIDAR spot in the stereo images. Experimentally, shutter

speeds of below 1/500 s are sufficient to suppress indoor background light even in the presence of

strong sunlight and shadowing, leaving only the laser spot visible.

e simplest method to determine the spot location is a maximum filter combined with a

threshold, but this tends to suffer from aliasing as only integer pixel locations are given. Using

the pixel with the maximum intensity as an initial location estimate, the laser spot location may

be refined using a 2D Gaussian fit. An example fit is shown in Figure 4.6. e LIDAR emits a

rectangular beam pattern which is approximately gaussian in both axes. e Gaussian fit included

a rotation parameter to compensate for distortion when the beam is incident on surfaces that are

not orthogonal to the beam direction. is operation is computationally expensive, but takes only

around 40 ms on an Intel 2.4 GHz Core 2 Duo processor which is sufficient for real-time usage

with the hardware used.

Detecting occlusions in stereo pairs is possible by calculating the y-disparity between spots

detected in each rectified image and discarding those which differ by more than a pixel.

4.4 Scanning Procedure and Software

Software was developed in C++ using the Qt 8 Graphical User Interface (GUI) framework to scan

the LIDAR whilst simultaneously acquiring stereo imagery. Users are presented with ‘live’ images
8https://www.qt.io/, accessed 20/9/2016
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4.4. Scanning Procedure and Software

Figure .: 2D Gaussian fit to a typical image of a LIDAR spot. Note that the LIDAR beam
profile is not radially symmetric and the image is also distorted by the angle of the surface with
respect to the beam. Exposure time of 1/1000 s at f/8.

from both cameras and can query both the mount and LIDAR for current position information.

Control of each camera, the mount and the LIDAR is delegated to a separate thread for efficiency.

A screenshot of the GUI is shown in Figure 4.7.

Figure .: Stereo/LIDAR scan control software.

Before a scan is acquired, the user may optionally initialise the gimbal mount. e position

of the mount is stored in volatile memory in the mount controller; the orientation of the mount

is assumed to be (φ = 0, θ = 0) when power is applied. e initialisation procedure locates the
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optical home switches in both axes and defines their locations to be the zero points of each axis.

Exposure settings for both cameras are user-defined since the brightness of the intensity tends

to confuse the automatic exposure algorithm. Prior to a scan, well-exposed ambient light imagery

is acquired for stereo matching. e sensor gain was set to zero in all images to reduce noise.

Acquired images are optionally rectified in real-time using the OpenCV library’s image warp-

ing functions and a user-supplied calibration file. Optionally a ‘dark’ frame may be acquired and

subtracted if there are many sources of specular reflection in the scene that might be mis-detected

as the laser spot. is method works well provided that the ambient illumination does not change

during a scan and is therefore limited to indoor operation. Users have the option of saving images

at each point in a scan for the purpose of more detailed analysis, such as more accurate laser peak

detection. Saved images are also required for simulating texture projection. e workflow for the

scanning process is shown in Figure 4.8

Figure .: Flow diagram showing the steps performed in the scanning procedure.

Laser spot location using a thresholded maximum filter is continually performed upon image

acquisition. If the images are rectified, then the filter is applied to the rectified images. Accurate

spot detection using a Gaussian peak detector is currently performed on the saved images. e

maximum pixel location is stored even if the laser is occluded so post-processing is necessary to
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4.4. Scanning Procedure and Software

label points where no laser spot was detected (Section 4.3.2).

If the LIDAR reports an error, the range for that point is stored as zero. Since the minimum

measurable distance is 0.05m, these points are easily filtered post-scan. e cause of the error is not

stored, as the LIDAR does not provide detailed information, but possible reasons are to insufficient

SNR, detector saturation or ambiguous range near a depth boundary.

As a high resolution scan (>100k points) may take several hours to acquire at 20 Hz, the angular

limits of each scan are user-specified. Similarly the altitude/azimuth step between points is user-

specified as necessary.

e scan is performed in a raster fashion. At each step in the scan, the LIDAR range, mount

position and laser spot location in each image are stored in an eXtensibleMarkup Language (XML)

file along with the current UNIX timestamp. At each point, the software blocks first until the

mount has signalled that it has stopped and then until each measurement is taken in parallel. e

same timestamp is also applied to both stereo images that are saved, allowing easy synchronisation

with ranging data. Point values are stored in RAM and then saved to the hard disk upon each

altitude step, i.e. every row. e resulting XML file, combined with any saved images, comprises

the data output for a scan.

e storage requirements for scan data alone is modest, since each point requires 8 floating

point numbers to be stored. A high resolution scan therefore is on the order of megabytes. Storing

all intermediate images requires significantly more disk space with a worst case of 1.3MB per

image. e use of image formats that support lossless compression such as Portable Network

Graphic (PNG) however even with low exposure images, a significant amount of intensity variation

is present and typically only a reduction in file size of 50% is possible. A very low intensity threshold

of 5 enables much more efficient compression and a file size reduction of two orders of magnitude

while retaining enough information to accurately locate the laser spot. An example of this is shown

in Figure 4.9; in this case the raw image has a compressed file size of 494 kB, the thresholded image

has a file size of 4 kB. is is comparable to the operating system’s file allocation size, the minimum

allowable size for a file.
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Figure .: Crop from an intermediate scan image, showing the location of the LIDAR laser spot.
Left: raw image, colour-mapped with a maximum intensity of 30 for emphasis. Right: threshold
of 5 applied.

4.5 Theoretical System Performance

4.5.1 Stereo

Stereo depth resolution is arbitrarily small for sub-pixelmatching, provided thematching algorithm

returns the disparities in a floating point representation. In reality stereo performance is limited

by two factors: the correlation accuracy ϵd and the calibration accuracy ϵc (for a fixed camera geo-

metry). Calibration accuracy determines how well characterised the optics of the camera are and

limits the spatial resolution of the 3D measurements as:

∆x = ϵc
z

f
(4.2)

∆y = ϵc
z

f
(4.3)
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Stereo depth resolution is given by Equation 2.19. e focal length and baseline are known

from the camera calibration (Table 4.2), but the disparity or correlation accuracy is dependent on

the stereo matching algorithm used.

Measuring correlation error directly is difficult as correlation performance is dependent on im-

age texture. Often only an heuristic estimate is possible, defined for a particular set of experimental

data. Direct measurement is possible if ground truth is available, but structured light methods typ-

ically introduce similar uncertainties that scale quadratically with distance. An alternative method

is to measure the depth accuracy on a cooperative target as a function of distance and use that to

indirectly measure ϵd via Equation 2.19.

Stereo imaging a well-textured planar surface provides a straightforward way of estimating

depth accuracy. is is a commonmethod used to evaluate 3D imaging performance, and standards

such as VDI/VDE 2634 Pt. 2 9 which (although not internationally accepted) provide guidelines

for measuring known geometric objects such as spheres and planes. Ahmadabadian et al. (2013),

for example, used calibration spheres with known radii and a calibration cube which allowed both

planarity and perpendicularity measurements. Beraldin (2009) highlighted the need for a set of

common terminology and standards for uncertainty measurements. Experimental results (measur-

ing flatness) were shown using lapped planar target with varying surface reflectances. More com-

plex targets may also include features such as stepped geometries or closely spaced blocks, typically

manufactured using precision CNC machining (Hess et al., 2014).

In the case of planar fitting, a plane is fitted to the reconstructed points and the standard

deviation of the point-plane distances used as the depth error, ∆Z. is method was used to

estimate ϵd for the system used in this research.

A random dot pattern was printed onto white paper and fixed to a wooden board. Recti-

fied stereo images of the pattern were acquired at distances in a range of 0-5.3 m. e images

were matched using Gotcha with default settings: maximum eigenvalue 100, patch size 12 and

8-neighbour matching (justification is given in (Shin and Muller, 2012)).

e data were modelled using Equation 2.19, with b and f given by the stereo calibration,

results are shown in Figure 4.10. A best fit of ϵd = (0.062±0.003) px was calculated with an R2

value of 0.92 showing a good model fit. It should be noted that this result was obtained under ideal

conditions, i.e. matching with strong texture and good illumination, and represents an optimistic
9VDI/VDE 2634/Part2, 2002. Optical 3-D Measuring Systems – Optical Systems based on Area Scanning.
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estimate of the disparity measurement error.

(a) (b)

Figure .: (a) Planar random dot patterns (b) Stereo disparity measurement error obtained
by imaging pattern at various distances. With a focal length of 8 mm and a baseline of 0.46 m,
sub-mm accuracy is possible up to nearly 4m. e characteristic quadratic error curve is clearly
visible.

Given the calibrated field of view, the projected size δs of a pixel in either camera is δs =

Z · tan(0.025◦).

4.5.2 LIDAR

Both the LIDAR and mount have significantly higher resolutions than their specified accuracy. It

is assumed that for the range of distances of interest, under 10 m, the LIDAR signal will have a

high enough SNR that the nominal data sheet accuracy is attainable. In cases where the LIDAR

does not return a distance, it is more likely that this is due to very low SNR or an ambiguous range.

Unlike single-view stereo, it is possible to take repeated LIDAR measurements to obtain a variance

at each point.

All LIDAR measurements are an average of the distances covered by the laser footprint. e

laser size at the exit aperture is not specified byDimetix, but footprint sizes at various distances (5m,

10m, and 30m) are provided. By making an exponential fit to these footprint sizes, an estimate

of the laser spot size in pixels as a function of distance can be made. Figure 4.11 shows that the

expected laser spot radius is less than 10 px for a typical scan. e actual imaged spot size is

generally larger than this due to the intensity of the reflected light, even at short exposures.

While the laser footprint is several pixels wide at close range, the LIDAR can be stepped at

a pitch that is smaller than the extent of a pixel. Additionally, the majority of the return signal
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Figure .: LIDAR laser spot size as a function of distance. At larger distances, for this arrange-
ment > 5m, LIDAR spatial resolution begins to exceed that of stereo.

is concentrated into an area that may only span one or two pixels. Producing a LIDAR map of a

scene with a higher resolution than that of the cameras is possible using this system, but the result

would be smoother at close range than an ideal stereo reconstruction.

Errors on measurements made with the LIDAR system are likely to be dominated by the

accuracy of the LIDAR range (±1 mm). e mount accuracy is sufficiently high, 0.004◦ that even

at 5m the expected x-y deviation is only 0.35 mm which is comparable to the LIDAR repeatability

of 0.3 mm.

4.6 Summary

is chapter provided an overview of the 3D imaging system used in the research. Sensors and

actuators were selected with accuracy as a first priority. Although the acquisition speed of the

system is poor compared to a commercial scanning LIDAR, the expected accuracy is superior and

greater control over individual measurements is possible.

Multithreaded scanning software has been developed to acquire data with user-specified resol-

ution (altitude/azimuth stepping) and angular extent. e software enables a scan of a scene that
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includes intermediate images of the LIDAR spot at each ranged point. resholding followed by

lossless compression is used to limit the storage requirements for each scan.

Laser spot detection has been demonstrated using two techniques: naive threshold and max-

imum filtering, and a least squares Gaussian fit. In both cases, short exposure times are used to

suppress background noise. For scenes with significant specular features, dark frame subtraction

is suggested as an effective method for robust spot location determination.

Both systems were calibrated with the results presented here. Standard calibration techniques

were used to provide a reference camera calibration. A geometric model for the LIDAR was sug-

gested and calibration results given. e expected accuracy and resolution of each system has been

evaluated, including an estimation of the correlation accuracy of Gotcha on cooperative targets.

is estimation suggests that sub-mm accuracy is possible using the stereo system up to around

2m.
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Stereo Camera and LIDAR Inter-Calibration 5

5.1 Overview

Camera calibration is a necessary and important step in stereo 3D reconstruction. is chapter

discussesmethods for camera calibration, stereo rig calibration and stereo-LIDAR cross calibration.

One large drawback with most calibration algorithms is the need to use calibration targets and,

usually, human interaction.

Two common single-camera calibration methods are discussed: the direct linear transform

(DLT) (Abdel-Aziz andKarara, 2015)1 andZhang’smultiple-view algorithm (Zhang, 2000). Next,

an overview of prior close range camera-LIDAR cross-calibration is given including accuracy es-

timates.

Finally a novel calibration approach using a visible scanning LIDAR is proposed. It is shown

that unlike previous methods using LIDAR, this technique is capable of recovering both intrinsic

and extrinsic camera parameters without an explicit calibration target. Results and accuracy meas-

urements are given from real-world scenes and compared to ground truth. Extrinsic using this

method is comparable to the state-of-the-art in terms of point cloud fitting error. It is shown sub-

pixel reprojection errors are achievable using the LIDAR for intrinsic parameter determination.

5.2 Camera calibration

Camera calibration is the procedure which determines the camera intrinsic and extrinsic paramet-

ers described in Section 2.3.1. For accurate reconstruction, a camera or stereo rig should be re-

calibrated every time a mechanical adjustment is made. is includes focus adjustments on most

lenses as rotation of an optical element may change the location of the projection centre. Many
1A reprint of the classic paper (Abdel-Aziz and Karara, 1971) in a modern format. e content is unchanged.
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algorithms exist in both the photogrammetry (Duane, 1971; Faig, 1975) and computer vision com-

munities (Tsai, 1987; Heikkila et al., 1997; Zhang, 2000).

For accurate calibration, a set of image-object correspondences xi ↔ Xi must be known. e

image points, xi are the locations of calibration features within the image. e object points, Xi

are the locations of these calibration features in the world. e image-object correspondences

are usually generated by imaging a cooperative target with known geometry. Methods involving

1D (Zhang, 2004), 2D (planar) and 3D targets exist. 2D targets are usually boards with a printed

geometric pattern such as a checkerboard or grid of circles (Heikkila, 2000). Figure 5.3 shows

setups for 3D and planar 2D calibrations.

(a) (b)

Figure .: Calibration algorithms require known correspondences between the world and the
image. Most methods use either (a) 3D object points (single-view) or (b) 2D planar calibration
targets like checkerboards. e 2D case usually involves calculating the homography that maps
the world plane to the sensor plane; several views are required.

3D targets may be formed of multiple planes, objects with a known shape or control points

fixed to the scene. If a 2D target is used, normally multiple views of the target are required to

avoid degeneracy. If a 3D target is used then calibration can be performed using a single image.

While there are reconstruction methods which can recover stereo geometry up to an unknown scale

factor without requiring calibration points with known world coordinates (Hartley and Zisserman,

2003), they will not be discussed here.

Calibration accuracy is usually measured using the geometric reprojection error. Suppose x̂i

are the image locations of object points Xi under a particular camera model and xi are the actual

image locations. e geometric error d is then:

d(x̂i, xi) = ||x̂i − xi|| (5.1)

98



5.2. Camera calibration

e sum over these distance errors is commonly used as the objective function when performing

an iterative optimisation of the camera parameters. RMS errors of 0.1-0.2px are easily achievable

using calibration toolkits like OpenCV. However taking the raw error figure does not take into

account possible mistakes such as a degenerate solution (e.g. if the scene is entirely coplanar) or if

the calibration points are not distributed well enough to accurately model lens distortion.

5.2.1 The direct linear transform

If accurate image-object correspondences are known, then the direct linear transform (DLT) is a

simple and effective means to determine the camera parameters (Sutherland, 1974; Abdel-Aziz

and Karara, 2015). e basic DLT algorithm solves a series of (overdetermined) linear equations

of the form Ap = 0 where p is a 12× 1 vector representing the 3× 4 camera projection matrix, A

is a 2n× 12 matrix with the ith element:

Ai =

 0 0 0 wi −wiXi −wiYi −wiZi −wi xiXi xiYi xiZi wixi

wiXi wiYi wiZi wi 0i 0i 0i wi yiXi yiYi yiZi wiyi


(5.2)

where (x, y, w)i are the ith homogenous image coordinates (w = 1) and (X,Y, Z)i are the

ith corresponding object or world coordinates. At least 6 correspondences are required. e linear

solution for p is found using singular value decomposition (SVD). If desired, the elements of p

can then be optimised using an iterative algorithm like Levenberg-Marquadt (LM) (Marquardt,

1963) with the geometric (reprojection) error used as the objective function and the linear solution

as an initial guess. Lens distortion is not considered in the initial, linear, stage of the DLT, but

can be included in the non-linear optimisation stage (Hatze, 1988). e projection matrix can be

decomposed into the intrinsic and extrinsic parameter matrices via RQ-factorisation (Press, 2007).

e main difficulty of this approach is determining the image-object correspondences and in

taking accurate independent 3D measurements of the object points.

5.2.2 Calibration using planar targets

A more practical calibration method is to image a single or multi-planar target with known geo-

metry and a printed calibration pattern (Tsai, 1987; Zhang, 2000). e calibration pattern is a
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grid of squares (checkerboard) or circles. e object points are then measured to high accuracy

in 2D (nominally the Z coordinate is set to zero). Similarly corner finding in images is highly

accurate if the images are well exposed, yielding image points with sub-pixel accuracy (< 0.05 px)

Krüger and Wöhler (2011). Neither method makes any assumption of orientation of the pattern

board, although Tsai recommends that the board be at least 30◦with respect to the sensor plane.

An example of a planar calibration target is shown in Figure 5.3.

(a) (b)

Figure .: (a) Planar calibration target for use with (Zhang, 2000). Multiple views with the
target in different orientations are required for calibration. (b) With lens distortion removed. is
particular lens has very low radial distortion, the difference is most obvious on the top of the
calibration pattern.

Tsai’s method differed from contemporary algorithms which typically involved either non-

linear optimisation in a large parameter space or involved only linear equations without lens distor-

tion. e proposed algorithm is a two-stage process combining both classes of algorithm. In the

first step, calibration parameters are linearly approximated (similarly to the DLT). In the second,

the parameters are optimised non-linearly, but only for one or two iterations. e calibration tar-

gets are planar and 3D objects points can be generated by translating the plane on a z-stage.

Zhang’s method, or a derivative of it, is used in several computer vision toolkits including

OpenCV and Matlab 2. e popularity of this method stems from its user-friendliness and its

high accuracy. e calibration target is a checkerboard pattern that is printed and fixed to a planar

surface. A COTS laser printer is sufficient. e user then acquires several images of the target

from various angles and at various distances to the camera. Prior knowledge of the pose of the

target in each view is not necessary.

2http://www.vision.caltech.edu/bouguetj/calib_doc/
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5.2. Camera calibration

For each view of the pattern, a homography is calculated between the planar target and its

image. By considering two separate constraints that these homographies place on the intrinsic

parameters, a set of linear equations is formed and solved. en, including distortion, the para-

meters are optimised using LM. Radial and tangential correction is possible. e algorithm is able

to determine the pose of the calibration target in each view.

Accuracy measurements by Sun and Cooperstock (2005) found that Zhang’s method outper-

forms Tsai in terms of accuracy by a factor of three. A minimum of two views is required, but in

practice to accurately model radial distortion more views with calibration points distributed across

the image is preferred. Zhang recommended between 8-15 images, with at minimum of five.

5.2.3 Stereo camera calibration

Stereo calibration seeks to obtain the epipolar geometry that describes the stereo rig. is amounts

to computing the fundamentalmatrix,F , commonly performed using the 8-point algorithm (Longuet-

Higgins, 1981). is algorithm assumes that image correspondences between the two views are

already known, as is usually the case when calibrating a stereo rig with a common target. e

procedure for estimating F is straightforward.

First, recall that for corresponding image points x′i ↔ xi between the two views, x′Ti Fxi = 0,

defining F (equation 2.16). If the image points are expressed as homogenous coordinates, then it

is possible to expand out the equation for each correspondence:

xx′F11 + xy′F21 + xF31 + yx′F12 + yy′F22 + yF32 + x′F13 + y′F23 + F33 = 0 (5.3)

or equivalently:

[
xx′ xy′ x yx′ yy′ y x′ y′ 1

]
f = 0 (5.4)

where f is a 9 × 1 vector representing F. ese may be stacked together to form a linear set

of equations Af = 0. Subject to the constraint that ||f|| = 1, at least 8 correspondences are

required. e algorithm is sensitive to the relative magnitudes of the input correspondences unless

normalisation is applied first (Hartley, 1997). In order to accurately model lens distortion, these
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points should be distributed across the sensor since distortion is usually much more significant near

image edges.

If the calibration method uses a 3D target then the determination of the position of one camera

with respect to the other is trivial since the pose of each camera relative to the common coordinate

system is known. Otherwise, the perspective-n-point (PNP) algorithm (Quan and Lan, 1999)

can be used to determine the relative position of each camera with respect to each view of the

calibration target. is requires synchronised stereo image pairs of the target which must be fully

visible in both views.

Once the calibration is complete, the stereo images are first undistorted and then rectified as

described in Section 2.3.3.

5.3 Stereo-LIDAR extrinsic calibration

Fusing the output from different range sensors requires extrinsic calibration between them. ere

has been significant prior research into Stereo-LIDAR extrinsic calibration, largely motivated by

robotic or autonomous vehicles. Cross calibration is also required for generating point clouds with

real colour, derived from visible imagery.

Stereo-LIDAR calibration algorithms can be classified into methods which either image the

laser beam directly or scan a calibration target with known geometry.

5.3.1 Direct LIDAR-Stereo correspondences

If the laser beam is visible to the camera, then it is possible to identify the location of the beam

from the image providing 2D-3D point correspondences. Prior work has largely focused on 2D

scanning LIDAR since these scanners project a fixed stripe in the image.

Kwak et al. (2011) proposed using a V-shaped cardboard target and a LIDAR scanner with an

IR beam. Line and point features are manually extracted from the camera image and many images

(at least 50) are required with the target in varying locations and orientations. A second IR camera

is used to locate the laser beam on the target. Reprojection errors of under 5px were reported. Yang

et al. (2012) proposed a similar method using the corner of a room. is method yielded state-of-

the-art reprojection errors of 0.5-2px using only 15 scan-image pairs. IR pass filters were necessary

102



5.3. Stereo-LIDAR extrinsic calibration

to compensate for the relatively poor QE of the cameras in the IR compared to the ambient visible

light. Both methods require planar features in order to achieve good calibration.

5.3.2 Calibration using a planar target

In most cases, the LIDAR beam is not visible to the cameras, as most cameras are fitted with

IR blocking filters. A common solution is to introduce a calibration target that is simultaneously

imaged and scanned with the LIDAR. By locating the target in the image and the LIDAR scan,

it is possible to determine the relative pose of each system.

Zhang and Pless (2004) were the first to propose using a planar checkerboard target. Starting

with a calibrated camera, the target is imaged and scanned with the LIDAR. e camera pose with

respect to the board is calculated using Zhang’s camera calibration algorithm. e position of the

board is detected in the LIDAR scan and used to calculate the rotation and translation between

the camera and LIDAR. With 20 views, the translation error between the camera and the LIDAR

was reported to be 3mm. Vasconcelos et al. (2012) built on this work and proposed an improved,

minimal solution which requires only 3 views rather than 5. Mirzaei et al. (2012) also considered

a minimal solution which included intrinsic calibration of a 3D LIDAR (a Velodyne HDL-64E).

Naroditsky et al. (2011) used a calibration plane with a stripe printed on it. e stripe was iden-

tified in the LIDAR scan by its reflectivity. Reprojection errors were not given, but the translation

error between the camera and LIDAR was given to be 1.9 mm in ‘real-world’ data.

Gong et al. (2013) used an arbitrary trihedral target which does not need to be orthogonal.

Planes found in the scene can be used for calibration, such as wall-floor intersections.

Park et al. (2014) use a polygonal planar board. e entire board does not need to be scanned,

only as much as is necessary to reconstruct its vertices. e vertices are then used as calibration

points. Reprojection errors of 4px are reported using more than 5 views of the target.

All the methods above assume that the camera is pre-calibrated, although if the calibration

routine involves imaging a series of checkerboards in various orientations then Zhang’s algorithm

could be used. User interaction is typically required if multiple views of the target are needed and

in some cases manual feature identification is required.
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5.4 Calibration using a visible scanning LIDAR

e proposed new calibration method uses a visible LIDAR and exploits the fact that the LIDAR

spot is visible in the image. is therefore falls into the first class of algorithms. By scanning the

LIDAR across the scene and imaging the laser spot at each step in the scan, a list of accurate object-

image correspondences is generated. From these correspondences, the stereo-LIDAR system can

be calibrated using the DLT with least-squares refinement. Figure 5.3 shows the LIDAR-camera

arrangement.

Xi

xi

LIDAR

T

Figure .: Using a visible beam LIDAR, it is possible to generate accurate object points, Xi, that
are visible in the camera, xi. e camera world coordinates and LIDAR world coordinates are
related by a rotation and translation, shown here as T. No explicit calibration target is required.

Although this method was developed in the context of a fused stereo/LIDAR system, it also

presents the possibility of accurate, automatic camera intrinsic calibration. e method has several

advantages:

1. As each LIDAR spot is imaged individually, it is straightforward to uniquely map object

and image points.

2. By using a visible beam LIDAR, there is no need for an expensive additional IR camera or

filters and simultaneous visible stereo imagery can also be acquired.

3. Extrinsic calibration with a pre-calibrated stereo rig reduces to a rigid body transform. If a

single camera is used, then PNP may be used to obtain camera pose.

4. Using a steerable LIDAR, it is possible to generate calibration points throughout the image.

is allows for combined intrinsic and extrinsic camera calibration without the need for a
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calibration target.

5. e only required user interaction is choosing the angular range over which to scan and

selecting an appropriate threshold for the LIDAR spot detection.

In the following sections, first LIDAR intrinsic/extrinsic calibration is detailed. is is im-

portant as the accuracy of the object points is dependent on the performance of the LIDAR. is

method is also used for extrinsic calibration with a stereo rig. Next, a method for fully calibrating

a combined stereo-LIDAR system, including camera intrinsic parameters, is given. Real-world

data is used for demonstration and compared to a reference camera calibration. Two errors are

considered: reprojection error of the LIDAR points into the camera images and the fitting error

of stereo 3D points with the LIDAR scan.

5.4.1 LIDAR intrinsic calibration

Determination of the LIDAR intrinsic parameters (ϵx, ϵy, ϵr, ϵθ, ϵφ) requires a set of 3D calibra-

tion points. As the laser beam is visible, these can be produced by using a well calibrated stereo rig.

e LIDAR spot is located in the rectified stereo imagery and triangulated in the stereo coordinate

system. Spot location was described in more detail in section 4.3.2. A 2D Gaussian peak is fitted

to the image of the LIDAR spot and its centre is taken as the location of the object point in the

image.

Imaging the LIDAR spot yields a set of coordinates in stereo world coordinates XSi and

LIDAR world coordinates XLi. Corresponding coordinate pairs are ideally related by a rigid body

transformation:

XLi = RXSi + T + η (5.5)

where R is a 3D rotation and t a 3D translation that maps the stereo point cloud onto the

LIDAR point cloud. is transformation is the extrinsic geometry between the LIDAR system

and the stereo rig. In reality there will be a distance error, η, which accounts for errors in the stereo

calibration, LIDAR spot location and the LIDAR signal-to-noise ratio. e effect of non-zero

intrinsic parameters is to introduce an additional systematic error between the two coordinates

following the transformation:
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σi = XLi − (RXSi + T) + η (5.6)

It is assumed that σi >> η for poorly chosen intrinsic parameters. Using this distance error,

determination of the optimal intrinsic parameters is expressed as a minimisation problem:

argmin
(R,T,ϵx,ϵy ,ϵr,ϵθ,ϵφ)

∑
i

|(XLi − (RXSi + T ))| = argmin
(R,T,ϵx,ϵy ,ϵr,ϵθ,ϵφ)

∑
i

σi (5.7)

e rotation and translation are initially estimated as an affine transform using the OpenCV

function estimateAffine3D which uses RANSAC (Fischler and Bolles, 1981) for robustness. e

other parameters are set to zero initially. Non-linear optimisation of the parameters is then per-

formed using a method such as LM. Although imaging the LIDAR spot tends to produce few

false correspondences, RANSAC is used to select a sample from the point clouds as even a single

blunder point is enough to produce a poor fit.

5.4.2 Extrinsic calibration with a stereo rig

Once the LIDAR intrinsic parameters are known, recalibration with respect to a new (calibrated)

stereo rig is straightforward. In this situation, the aim is to compute only the rotation and trans-

lation that maps the LIDAR point cloud into the stereo coordinate system or vice versa. It is

therefore assumed that both the LIDAR and stereo point clouds are distortion free, but exhibit

normally distributed errors.

As before, the transformation is estimated as an affine transform using OpenCV and then

refined using LM with the objective function:

argmin
(R,T )

∑
i

|(XLi − (RXSi + T))| (5.8)

5.4.3 Extrinsic calibration of a single camera

In this case, the aim is to compute the pose of a single calibrated camera with respect to the LIDAR

point cloud. is method could also be applied to a stereo rig, considering each camera separately.

With a single camera, this type of calibration is normally used to overlay an image onto a point

cloud. e solution in this case is to use the PNP algorithm. Point cloud colouring can then
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performed by mapping LIDAR points back into the image to determine which pixels should be

sampled.

5.4.4 Intrinsic calibration of an unknown camera

Finally, there is the general case of an uncalibrated camera where both intrinsic and extrinsic para-

meters are to be determined. As with the previous methods it is assumed that a list of LIDAR-

image coordinate correspondences are known. e algorithm consists of two stages. First, the

projection matrix, P , is approximated using the DLT. en, lens distortion is included in the

model and the parameters are optimised using LM. Only the first two radial distortion terms are

considered (k1, k2) and tangential distortion is not included. Additionally the skew, s is fixed to

be zero and the aspect ratio is fixed to be one (fx = fy = f ). In order to improve the robustness

of the calibration, RANSAC is used to select calibration points.

e minimisation function is:

argmin
(R,t,f,cx,cy ,k1,k2)

∑
i

|xi −M(RXLi + T)| . (5.9)

where xi are the imaged points and M represents the proposed camera model including lens

distortion. e radial distortion parameters are initially set to zero with the remaining parameters

taken from the estimated projection matrix, P .

5.5 Calibration Results

5.5.1 Experimental Setup

An initial stereo camera calibration using OpenCV’s calibrateCamera and stereoCalibrate func-

tions was performed to act as a benchmark and to produce point clouds from the LIDAR spot

location data. e LIDAR was also calibrated with the results shown in Table 4.5.

For demonstration, two scenes were chosen. e only constraining factor was that the scene

must not be entirely coplanar; fortunately in real-world environments this is rare. Ambient illu-

mination was provided by both fluorescent lighting and diffuse sunlight through a window. e

exposure time for both cameras was set to 1/750 s. is was also necessary to prevent saturation of

the image of the laser. A threshold intensity of 75 was chosen for spot detection. Any image with
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a maximum intensity of < 75 was considered occluded. Similarly any measured points where the

LIDAR returned an error were discarded.

e extent of the LIDAR scan was such that measurements were acquired across the field of

view of both left and right cameras. is was necessary to capture any radial distortion presented

by the lenses. e resolution of the scans varied between 0.1 degrees and 0.25 degrees. Results

from two scenes are given.

e first demonstration scene, ‘wall’, (Figure 5.4) was a wall with a plastic chair placed in front

of it. e chair provides points that are not coplanar and most surfaces in the scene are white

providing good reflectivity for the laser beam.

(a) (b)

Figure .: Wall calibration scene, rectified images.

e second demonstration scene, ‘unstructured’, (Figure 5.5) was an unstructured workshop

environment containing surfaces with a wide range of reflectances. e scene also provided cal-

ibration points at distances between 2-5m in order to demonstrate that the algorithm works at

different distance scales.

5.5.2 Calibration Results and Discussion

For clarity, the calibration routine is described in detail using the first scene (‘wall’) as an example

and results from the other scene follow. Two main accuracy metrics were considered. e first is

point cloud matching accuracy, which is defined as the RMS distance error between the LIDAR

point cloud and the point cloud generated by projecting and transforming the stereo image points.

Note this is the error that is minimised in equation 5.8. is metric is useful for data fusion

since it describes how well the two datasets can be combined. Note that this does require a stereo
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(a) (b)

Figure .: Unstructured calibration scene, rectified images.

calibration of the cameras. e second is reprojection error which is a more common metric for

comparing camera calibration algorithms (equation 5.9). e reprojection error expresses how

accurately a 3D point can be mapped onto a particular pixel.

5.5.2.1 Extrinsic Calibration

Extrinsic calibration requires corresponding points in the stereo and LIDAR world coordinate

frames. It was necessary to filter out LIDAR points which were occluded in each image. Since the

laser was detected in each view, it was possible to compute horizontal and vertical disparity values

for each LIDAR point. Figure 5.6 shows the calculated disparity maps for ‘wall’.

A straightforward way of detecting occlusions is thresholding the vertical disparity image; if

the laser is visible in both images the disparity should be < 1 px. In the horizontal disparity

map (Figure 5.6a), the overlap between the left and right views is seen as a vertical discontinuity at

around x = 1200 px. ere are several blunder points in the centre of the chair and the region of the

wall that has been occluded by the chair is also visible. In the vertical disparity map (Figure 5.6b),

thresholded at 2 px, the occluded regions of the image are well segmented. Some blunder points

are seen around y = 580 px where the error is coincidentally zero. By also considering only

points with a laser spot intensity (Figure 5.6c) above the threshold (75), the filtered disparity map

is obtained (Figure 5.6d). Note that there are still blunder points in the intensity information

near depth discontinuities. ese are caused by the LIDAR beam grazing the edge of an object.

us, both vertical disparity and LIDAR spot intensity are required for robust filtering. Although

some points were incorrectly discarded, such as those on the doll’s head, for calibration it is more
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(a) (b)

(c) (d)

Figure .: Calibration scene ‘wall’, left viewpoint (a) horizontal disparity map, (b) vertical dis-
parity map (thresholded), (c) LIDAR spot intensity, (d) filtered horizontal disparity map.

important that all false positive correspondences are removed.

e filtered disparity map was used to generate a point cloud, using the intrinsic parameters

obtained from Zhang’s method. e unaligned stereo and LIDAR point clouds are shown in

Figure 5.7.

As the stereo and LIDAR system are largely co-aligned, the point clouds are mostly separ-

ated by a translation. e extrinsic parameters were computed using the OpenCV function es-

timateAffine3D with a RANSAC confidence threshold of 0.999. e parameters are shown in

Table 5.1.

Extrinsic Parameter Value
Rotation (x, y, z) (deg) (−1.45, 0.17,−0.15)
Translation (x, y, z) (mm) (−235.26,−237.41,−206.91)

Table 5.1: Calibrated LIDAR-stereo extrinsic parameters. e transformation maps the LIDAR
points into the stereo coordinate system (referenced to the left camera).
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5.5. Calibration Results

Figure .: Unaligned point clouds from calibration ‘wall’. Point cloud colouring denotes distance
from the sensor. e stereo point cloud shows more noise on the rear wall (red planar surface).

Although the ground truth location of the LIDAR with respect to the cameras was unknown,

the retrieved parameters were sensible: the LIDAR was close to being co-aligned with the optical

axis of the left camera and was positioned above, to the right of, and behind the camera. e

system baseline was 0.46 m and the LIDAR was positioned approximately in the middle of the

stereo system. e aligned point clouds are shown in Figure 5.8.

(a) (b)

Figure .: Aligned point cloud from calibration scene 1. (a) side view (b) top view showing good
alignment of the rear wall. e apparently poorer alignment in the top left is a view artefact - the
wall is slightly concave towards the ground.

eRMSfitting error in each axis was found to be (ex, ey, ez) = (−0.13 mm, 0.21 mm,−0.27 mm)

mm.
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5.5.2.2 Intrinsic Calibration

For intrinsic calibration, the vertical disparity is unknown so the calibration relies on robust LIDAR

spot detection. e number of outliers is expected to be small, such that most random samples of

calibration points only contain inliers (and therefore that only a few iterations of RANSAC are

required to reach a good calibration). e algorithm was applied to un-rectified imagery repres-

enting a real-world calibration scenario. A random sample of 20 points was used in each iteration

of RANSAC to fit a prospective camera model. e RMS reprojection error for a correspondence

to be classified as an inlier was set to 1 px. Results are shown in Table 5.2. Paramters are reported

here in pixels, rather than metric units

Parameter Left Truth Left Fit Right Truth Right Fit
Focal length (mm) 8.31 8.32 8.29 8.32
Camera centre (px) (662.5, 479.8) (648.74, 486.1) (657.7, 476.1) (650.0, 490.7)
k1 -0.09 -0.13 -0.08 -0.14
k2 -0.42 -0.54 -0.49 -0.57
RMS error (px) 0.10 0.61 0.10 0.62
Pos. (x,y,z) (mm) (0,0,0) (0,0,0) (443.3, 6.26, 50.0) (463.8, 2.36, -0.34)
Rot. (x,y,z) (deg) (0,0,0) (0,0,0) (-0.99, -10.6, 1.39) (-0.17, -11.8, 1.19)

Table 5.2: Unrectified camera intrinsic and extrinsic parameters derived from LIDAR correspond-
ences in the ‘wall’ scene, compared to truth values derived from a planar checkerboard target.

In general the calculated intrinsic values were close to the ground truth values. e camera

centre was correctly estimated to be near the centre of the image sensor and the dominant radial

distortion coefficient, k1, was also close to the truth value. Differences between the truth value and

the fit can be explained by the fact that any valid calibration is not unique. A difference in camera

centre may be compensated for by shifts in other parameters, for instance. e RMS reprojection

error using the LIDAR was several times larger than when using a checkerboard, but was still

sub-pixel. Reasons for this increased error are suggested in the following discussion. e truth

position and rotation values were derived from the OpenCV stereo calibration routine (prior to

rectification). Figure 5.9 shows the distribution of reprojection error magnitudes in both image

axes.

e error distribution for both cameras appeared to be Gaussian, centred around zero in both

axes, indicating a good model fit. As Figure 5.10 shows, the reprojection error is uniform across

the field of view. ere are some regions of higher error, particularly on the right edge of the chair.

is is likely due to poor detection of the LIDAR spot on the plastic surface.
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(a) (b)

Figure .: Reprojection error distribution for ‘wall’ calibration scene (a) left camera (b) right
camera.

(a) (b)

Figure .: Detected and filtered LIDAR spots for the (a) left and (b) right views of the ‘wall’
scene. Points are coloured by their reprojection error.

e second scene, ‘unstructured’ provides a more difficult calibration target. e volume of

interest is larger, with the furthest points up to 5m away (compared to 2m for ‘wall’). Additionally

there are a wide variety of natural surfaces which post a challenge for spot detection. e LIDAR

backscatter intensity maps, Figure 5.11, show that the LIDAR spot was not located in several

darker regions of the images such as the office chair.

e intensity maps also highlight specularity within the scene. For instance, on the rear wall,

the left image has an average backscatter intensity almost 100 counts higher than the right image.

e image exposures are otherwise similar, ruling out any significant difference in camera setup.

e aligned point clouds are shown in Figure 5.12.
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(a) (b)

Figure .: Detected LIDAR spot intensity for the ‘unstructured’ calibration scene.

(a) (b)

Figure .: Aligned point cloud from ‘unstructured’ calibration scene. (a) side view (b) top view.
e distance from the camera to the nearest point in the cloud is 2.2m

Following the same procedure as for ‘wall‘, the derived intrinsic parameters are shown in

Table 5.3.

Again, the LIDAR-derived intrinsic parameters were in close agreement with the truth values.

As with the other scene, there were differences between individual parameters, but the RMS re-

projection error was less than half a pixel for both cameras. is error is encouraging, but it should

be expected that the error is lower at longer distances as each LIDAR spot fills fewer pixels in the

image. is dataset also contains fewer points than ‘wall’ and the filtering process might have re-

moved more outliers. e RMS reprojection error distribution is shown in Figure 5.13 and errors

overlaid onto the image are shown in Figure 5.14.
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Parameter Left Truth Left Fit Right Truth Right Fit
Focal length (mm) 8.31 8.32 8.29 8.29
Camera centre (px) (662.5, 479.8) (656.2, 481.2) (657.7, 476.1) (647.8, 496.0)
k1 -0.09 -0.13 -0.08 -0.09
k2 -0.42 0.05 -0.49 0.095
RMS error (px) 0.10 0.37 0.10 0.39
Pos. (x,y,z) (mm) (0,0,0) (0,0,0) (443.3, 6.26, 50.0) (446.4, 0.08, -1.36)
Rot. (x,y,z) (deg) (0,0,0) (0,0,0) (-0.99, -10.6, 1.39) (-0.41, -11.72, 2.06)

Table 5.3: Unrectified camera intrinsic and extrinsic parameters derived from LIDAR correspond-
ences in the ‘unstructured’ scene, compared to truth values derived from a planar checkerboard
target.

(a) (b)

Figure .: Reprojection error distribution for ‘unstructured’ calibration scene (a) left camera (b)
right camera.

5.5.3 Conclusions

For extrinsic calibration, using visible LIDAR points for calibration is accurate and simple. With

robust point selection to avoid outliers, point clouds from both demonstration scenes were merged

with accuracies on the order of 1-2mm. is result is reasonable given that the LIDAR has a

specified accuracy of 1mm. Accuracy measurements on cooperative targets (section 4.5) suggest

that the stereo rig should be able to achieve sub-mm accurate distance measurements up to 3m,

however this assumes sub-pixel accurate correspondences. e LIDAR spot spans several pixels;

it is possible that the LIDAR and stereo points are simply not derived from the same point on the

surface, particularly if the surface is specularly reflective.

When used for intrinsic camera calibration, the algorithm is more sensitive to both outlying

points and the distribution of calibration points within the field of view. e problem of choosing

a suitable set of calibration points was solved by using RANSAC and robust filtering. In both

scenes, intrinsic parameters derived from the LIDAR-camera correspondences were in agreement
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(a) (b)

Figure .: Detected and filtered LIDAR spots for the (a) left and (b) right views of the ‘wall’
scene. Points are coloured by their reprojection error.

with the ground truth calibration. ere were deviations from the truth values, but sub-pixel

reprojection errors were achieved in both calibration scenes. When using a calibration target based

on a printed pattern, the combination of high accuracy object and image points leads to accurate

intrinsic parameter estimation. With a LIDAR, spot detection is sub-pixel, but the object point

accuracy is lower and the reprojection error reflects this.

Although the achieved calibration accuracy was not as good as a method involving a target

(0.6 px vs 0.1 px), it is significantly simpler to perform. Using a faster scanning system such as

a galvanometer would allow hundreds to thousands of points to be captured per minute. e

expectation when using this calibration for combined stereo and LIDAR data capture is that it

could be performed automatically for each scan. If a particular scenewould benefit from an adjusted

baseline or focus then calibration data may be derived directly from the scan. is calibration

method would also be well suited for mass-production of stereo imaging systems where each system

requires an individual calibration.

5.6 Summary

Camera calibration is necessary for accurate stereo reconstruction and there are a large range of

algorithms to calculate the intrinsic and extrinsic parameters. Most methods rely on explicit calib-

ration targets which provide highly accurate object and image points. A large downside of these

methods is the need for user interaction.

A novel method of camera calibration was shown using a scanned visible-beamLIDAR.Unlike
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previous methods, no human interaction is required and no explicit calibration targets are required.

By exploiting direct correspondences between the LIDAR 3D points and the 2D image of the laser

spot, it is possible to calculate both intrinsic and extrinsic camera parameters.

Using this method, extrinsic parameters were recovered to high accuracy from two calibration

scenes in real-world environments. For extrinsic calibration, the calculated reprojection and point

cloud fitting errors were comparable to the state-of-the-art. When used for intrinsic parameter es-

timation, sub-pixel reprojection errors were achieved and individual parameters were in agreement

with ground truth. e overall accuracy is strongly dependent on the performance of the LIDAR

and scanning mechanism.
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In Chapter 3, previous methods for data fusion of stereo imagematching with an additional (active)

source of range data were compared. e vast majority of published techniques have used range

data from ToFCs. ToFCs are attractive as they are increasingly affordable and offer real-time dense

3D over a wide field of view. However the accuracy of the data is low, the cameras are sensitive

to ambient illumination and calibration is challenging. LIDAR solves many of the problems of

ToFCs: measurements have higher relative accuracy, longer ranging is possible and measurements

are robust to external illumination. ese advantages come at the expense of acquisition time and

data sparseness.

is chapter presents a data fusion algorithm that combines a scanning LIDAR with a region

growing stereo matching algorithm: Gotcha (Shin and Muller, 2012). By using LIDAR to gen-

erate unambiguous seed points for the region growing process, dense matching is possible in low

texture regions. First the relationship between the number of LIDAR seed points and the number

of matched pixels is explored. en, a more efficient scanning method is described that aims to

reduce redundancy during data capture. is allows for a significant reduction in the number of

LIDAR points while still producing dense matching results.

Results are shown from indoor scenes designed to be challenging for stereo matchers as well

as outdoor data taken from the KITTI dataset (Geiger et al., 2013). Reference match results were

produced using Gotcha and SGM, along with LIDAR-derived ground truth.

6.1 Introduction

Data fusion has been proposed as a viable technique for improving stereo matching by considering

an additional source of range information such as a scanning LIDAR or ToFC.ese active sensing
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techniques performwell in the poorly textured regions that passive stereo systems struggle tomatch.

Previous methods (Section 3.3.2) fall into two categories: a priori methods which consider the

(usually coarse or sparse) range data as a constraint during imagematching; and a posteriori methods

which produce combined point clouds from stereo and the range data. In both cases, it is usually

necessary to acquire range information across the entire scene.

One way of improving match performance in textureless regions is to project some kind of

pattern into the scene (see Chapter 7). e pattern might be a static, random, pattern or a series of

structured patterns. While pattern projection is very effective at close range, there are a number of

limitations: First, these systems are sensitive to ambient illumination. Infrared projection systems,

even with spectral filtering, work poorly in sunlit or outdoor scenes. Projected pattern illumination

decreases with distance according to the inverse square law, limiting usable range as the SNR

decreases. Secondly, pattern spatial resolution decreases with increasing distance which can limit

matching accuracy.

e proposed data fusion method aims to produce accurate, dense, disparity maps while re-

quiring only a comparatively sparse LIDAR scan. Specifically, a region growing stereo matcher

(Gotcha) is used (introduced in Section 3.2.7). Unlike prior research, the efficient algorithm

presented in Section 6.5 aims to minimise the number of LIDAR points required.

is efficient technique was developed specifically for systems that offer control over the dir-

ection of the LIDAR. 3D scanning LIDAR systems are still expensive, costing tens of thousands

of pounds. A lower cost alternative is integrating a 1D LIDAR with a scanning platform such

as a gimbal mount or galvanometer (Chapter 3). ese systems have a much slower scanning

speed compared to the 1 Mpt/s achievable from commercial systems1. On the other hand, 1D sys-

tems can be more accurate and scanning platforms can offer superior angular resolution. Accurate,

visible-beam, 1D LIDAR are available with acquisition speeds of around 100 Hz (e.g. the Jenop-

tik LUMOS 2). Higher speed systems are available using infrared lasers, but these tend to have a

lower accuracy. Since the scan time is directly proportional to the number of acquired points, any

reduction in the number of points is beneficial.

In the following section, an overview of the standard Gotcha stereo matching algorithm is

1Note this is typically over a full hemisphere, so the number of points captured within the field of view of a camera
per frame is generally less.

2https://www.jenoptik.com/products/metrology/laser-distance-sensors/lumos-laser-distance-meter-for-radiating-objects,
accessed 20/9/2016
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given, before a description of its extension is given to include LIDAR seed points.

6.2 Gotcha (Gruen-Otto-Chau ALSC)

Gotcha differs from most stereo matchers in that it does not (initially) consider every pixel in the

images. e algorithm takes as an additional input a list of potential pixel-to-pixel correspondences

between the left and right images. ese correspondences (seedpoints) are generated by matching

features from a detector like SIFT (Lowe, 2004). e algorithm is structured around Gruen’s

Adaptive Least Squares Correlation (ALSC) (Gruen, 1985) which is used to determine whether

two image regions are similar enough to be considered matched. Otto and Chau (1989) described

a region-growing approach where the disparity map is grown by applying ALSC to the initial

seedpoints, then to the nearest 4- or 8-connected neighbours of those which match and so on

until no further matches are possible. e current version of the algorithm is a 5th generation

implementation which includes multi-processor support and, on an Intel 6700K (4 GHz) CPU

with 8 virtual cores, takes approximately 1 minute per megapixel. Although this is not yet fast

enough for realtime performance, the runtime is comparable with many of the top performing

algorithms on the KITTI dataset 3. A flowchart of the algorithm is shown in Figure 6.1.

is section describes firstly the mathematical basis behind ALSC and then the region growing

process that Gotcha employs.

6.2.1 Adaptive Least Squares Correlation

Individual (prospective) correspondences are verified using Adaptive Least Squares Correlation

(ALSC). e result of the algorithm is either a tiepoint with a refined location or a rejected tiepoint.

e ‘adaptive’ moniker refers to the fact that the shape of the match window is changed on each

iteration of the algorithm.

Like traditional correlation algorithms, Gotcha compares the local neighbourhoods (patches)

around the pixels under consideration. e algorithm then attempts to minimise the correlation

error between the left and right patches by performing small transformations to the right patch

which include affine warping and translation.

3http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo, accessed 20/9/2016
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Figure .: High level Gotcha algorithm flowchart. Here, SIFT keypoints are used as seedpoints,
but in general any list of correspondences can be used for initialisation, including manually selected
points.

Let the left image patch be defined as a discrete function f(xL), centred on a pixel xL =

(xL, yL) and the right image patch as g(xR), centred on xR = (xR, yR). It is assumed that the

patches are square with sizem×m pixels, wherem is odd. e values of the functions are obtained

by sampling the image around these origins,−m/2 > xL,R > m/2 and−m/2 > yL,R > m/2. In

the implementation used in this thesis, an optimised version of (Shin and Muller, 2012), sampling

is performed using bilinear interpolation. e initial centre of the right patch is denoted with

a tilde, e.g. x̃R. e goal of the algorithm is to determine the location of g such that ideally

f(xL) = g(xR).

If it is assumed that the image functions are continuous and differentiable, then using Taylor

expansion the relationship between the two patches can be written:

f(xL) = g(̃xR) +
∂g(̃xR)

∂x
dx+

g(̃xR)

∂x
dy + e(̃xR) (6.1)

where e(̃xR) is an error function accounting for noise in each image.

If the right patch is allowed to be affine-distorted (straight lines are preserved) as well as trans-
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lated then the relationship between the two patches is:

xL =


a11 a12 tx

a21 a22 ty

0 0 1

 x̃R + e(̃xR) = Ax̃R + e(̃xR) (6.2)

assuming that the coordinates are expressed in homogenous form. Expanding and differenti-

ating these equations gives closed form expressions for dx and dy.

dx = dtx + a11x̃
R + a12ỹ

R (6.3)

dy = dty + a21x̃
R + a22ỹ

R (6.4)

So equation 6.1 can be written as:

f(xL)−g(̃xR)−e(̃xR) = ∂xg(̃xR)(dtx+a11x̃
R+a12ỹ

R)+∂yg(̃xR)(dty+a21x̃
R+a22ỹ

R) (6.5)

which can be expressed in least squares form:


f(xL

1 )− g(̃xR
1 )

...

f(xL
m2)− g(̃xR

m2)

 = As + e(xR) (6.6)

l = As + e(xR) (6.7)

where A is an m2 × 6 matrix with the ith row:

Ai = [∂xg(̃xR
1 )x, ∂xg(̃xR

1 )y, ∂xg(̃xR
1 ), ∂yg(̃xR

1 )x, ∂yg(̃xR
1 )y, ∂yg(̃xR

1 )] (6.8)

and the solution vector s = [da11, da12, dtx, da21, da22, dty]. Solving for s:

s = (ATA)−1AT l (6.9)

SinceATA is positive-definite, real and symmetric its inversemay be calculated efficiently using

Cholesky decomposition (Otto and Chau, 1989). e solution vector contains updated shift and
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warp parameters for the right patch. ese parameters are used to resample the right patch and the

process iterates, refining the match to sub-pixel accuracy. e largest eigenvalue of the correlation

matrix, MTM is used to determine whether a match has converged. is eigenvalue is referred

to as the similarity. e threshold similarity must be set by the user and is typically defaulted to

around 100 which is suitable for a wide variety of scenes. Gotcha is capable of refining seedpoints

with a significant initial error, as much as ten pixels (Shin and Muller, 2012).

6.2.2 Region growing

Starting with an initial list of seedpoints, Gotcha considers each in turn, applying ALSC to verify

the matches. e ALSC similarity score (a scalar value) is used to insert these initial seeds (and

their neighbours) into a priority queue4 sorted by similarity. In order to improve the quality of

the disparity map, the seedpoint with the highest ASLC similarity is considered at each iteration,

a ‘best-first’ strategy. Intuitively this implies that the regions are grown in the order of match

confidence. e algorithm terminates when the priority queue is empty. e outputs of Gotcha

are vertical and horizontal disparity maps and a confidence map, containing the ALSC similarity

for each matched pixel.

Additional checks can be used to determine whether a match is valid, such as the vertical

disparity (which should be close to zero for well-rectified images). Limitations are also placed on

the number of itertions of ALSC performed per potential match and the distance between the

initial and final patch locations.

Unlike most stereo matchers, Gotcha places no constraint on minimum or maximum disparity.

Stereo pairs with large disparity ranges do not take any longer tomatch than pairs with small ranges.

Assuming each ALSC process takes a constant amount of time, the runtime of the algorithm is

directly proportional to the number of pixels in the image regardless of the range of disparities

present. is assumption is valid provided the number of iterations within one round of ALSC is

fixed or capped (12 iterations is set by default in the software).

Seed points are typically generated using SIFT. A SIFT keypoint is defined as a location in the

image combined with a descriptor vector. SIFT descriptors are 128-dimensional vectors calculated

from local image gradients. A list of keypoints is generated for each of the left and right images,

4A priority queue is a data structure which has the property that each element has a score. e order of the queue
is preserved when new elements are inserted and the element with the highest (or lowest) score is always at the front.
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often several thousand points are produced. e similarity between a set of keypoints is defined to

be the Euclidean distance between their descriptors, i.e. for keypoint descriptors KL
j and KR

k in

the left and right images, the distaance is:

djk =

√√√√i=127∑
i=0

(KL
ji −KR

ki)
2 (6.10)

A brute force approach calculates djk over all the possible pairs of keypoints. e potential

match for each keypoint is its nearest neighbour in the other image. Lowe proposed using the

ratio of distances between the nearest and second-nearest neighbours to prune false matches. If

the ratio of distances between the neighbours is greater than some threshold, t, then the match

is rejected. An empirical threshold of t = 0.8 is widely used in the literature. If the ratio is very

low, then the nearest neighbour is much more similar than the second best candidate and therefore

likely to be an inlier. If the ratio approaches 1, then the match is ambiguous and should be rejected.

is threshold is important when considering homogenous regions, where many descriptors may

have similar values. As a result, seed points generated using this approach tend to be restricted to

uniquely textured regions. For epipolar rectified imagers, to increase the robustness of thematching

process, keypoint pairs are only considered if their y-difference is < 2 px. is constraint is not

applicable if non-epipolar imagery is used.

While Gotcha is able to match image regions accurately, this relies on there being initial seed

points nearby and strong texture for the disparity map to grow into. is is illustrated in Figure 6.2

on a test scene (Bricks).

(a) (b)

Figure .: Bricks scene. (a) matched SIFT keypoints marked in red (b) Gotcha disparity map.
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e distribution of seed points correlates to high texture image regions. ese regions are

isolated by low texture regions, which the disparity map is unable to grow into. It is possible that

the image contains texture that is sufficient to allow region growing, but not unique enough to

allow unambiguous keypoint matching. e next section proposes using LIDAR measurements

to generate unambiguous seed points in the image regions.

6.3 LIDAR seed points

As described in the previous section, Gotcha produces a disparity sheet by region growing, initial-

ised by a set of seed points generated by a feature detector. e matching process is robust, but

these matched seed points are generally only found in highly textured image regions. is does

not necessarily mean that the remainder of the image cannot be matched, simply that it was not

possible to generate unambiguous seed points in those areas. erefore, the following hypothesis is

proposed: if unambiguous seed points are provided in these low texture regions, there may be suf-

ficient local texture to allow dense matching. ese seed points may be generated using a LIDAR

system.

InChapter 4 it was discussed how a scanningLIDAR and camera system can be cross-calibrated.

is allows LIDAR 3D points to be projected onto the 2D camera sensor. ere is a choice

between using seed points directly imaged by the camera or points derived from the LIDAR-

camera calibration. Direct imaging of the LIDAR spot is somewhat more robust, as occlusions

can be detected by thresholding the image to determine whether the LIDAR spot is visible or not.

However, this limits the acquisition rate to that of the camera which is generally several tens of

frames per second. Also this relies on the choice of a suitable threshold for spot detection which

varies given the dynamic range present in any particular scene. An alternative is to calculate the

expected location of the laser spot using the cross-calibration, which allows the use of much faster

LIDAR systems. e projected spot locations may be occluded in either image, but ALSC can be

employed for robust filtering.

e Gotcha algorithm is used unchanged, except that the input seed points are derived from

LIDARmeasurements instead of, or in addition to, SIFT keypoints. e following section presents

results using this approach in indoor and outdoor environments.
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6.4 Results

6.4.1 Indoor scenes

Stereo imagery and LIDAR scans were acquired for five challenging indoor scenes. Ground truth

was derived from the LIDAR scans by direct observation of the LIDAR spot in each image.

Gotcha was used to stereo match the scenes using default settings (section 4.5). Feature points

were generated using SIFT. Match results from SGM are also presented for comparison using

8-way dynamic programming. e four scenes (Bricks, Corner, Potplant and Chair) and their

ground truth images are shown in Figures 6.3, 6.4, 6.5 and 6.6. Although some efforts were taken

to keep image brightness constant between views, through methods such as histogram equalisation,

there are still some illumination differences. ese differences were kept as they provided a more

realistic dataset. Small holes, < 3 px, in the disparity maps were filled using grayscale morphological

opening and closing as a post-processing step. All images were 1.3M px.

For each scene, 10,000 random LIDAR points were withheld for ground truth evaluation and

were not used for disparity map seeding. For each scene, LIDAR points were randomly sampled

from the scan and used as seed points for Gotcha. ese results give an indication of the expected

improvement in the number of matched pixels with respect to the number of seed points used.

Figure 6.8 shows the relationship between the number of random LIDAR seeds and the overall

number of matched pixels.

Table 6.1 lists the number of matched pixels for each scene, comparing Gotcha using SIFT

alone and using SIFT and LIDAR seeds. ese results use the full LIDAR scan for seed points,

but note from Figure 6.8 that in most cases the number of matched pixels had plateaued by around

50-100k LIDAR seed points.

Scene Area (deg2) Res. (deg) Scan points SIFT only (px) SIFT+LIDAR (px)
Bricks 777 0.05 310,800 495,676 778,688
Corner 868 0.1 86,800 233,245 761,204
Chair 632 0.1 63,200 94,694 723,823
Biba 736 0.05 294,400 105,351 729,214
PotPlant 735 0.05 294,000 93,510 465,698

Table 6.1: Number of matched pixels compared to LIDAR seed points used for disparity map
enhancement in each test scene. e rightmost two columns compare the number of matched
pixels between standard Gotcha and Gotcha using SIFT and LIDAR seeds.

Figure 6.9 shows the mean disparity error and error standard deviation for each scene. e
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

(j) (k)

Figure .: Bricks disparitymap. (a, b) Left and right stereo pair (c) LIDAR-derived ground truth
(d) Gotcha disparity using 1080 SIFT seed points. (e) SGM disparity (f - j) Gotcha disparity using
10, 100, 1000, 10000, 100000 random LIDAR seed points.
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

(j) (k)

Figure .: Corner disparity map. (a, b) Left and right stereo pair (c) LIDAR-derived ground
truth (d) Gotcha disparity using 834 SIFT seed points. (e) SGM disparity (f - j) Gotcha disparity
using 10, 100, 1000, 10000, 30000, 60000 random LIDAR seed points.
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

(j) (k)

Figure .: Potplant disparity map. (a, b) Left and right stereo pair (c) LIDAR-derived ground
truth (d) Gotcha disparity using 658 SIFT seed points. (e) SGM disparity (f - j) Gotcha disparity
using 10, 100, 1000, 10000, 50000, 100000 random LIDAR seed points.
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

(j)

Figure .: Chair disparity map. (a, b) Left and right stereo pair (c) LIDAR-derived ground
truth (d) Gotcha disparity using 595 SIFT seed points. (e) SGM disparity (f - j) Gotcha disparity
using 10, 100, 1000, 10000, 60000 random LIDAR seed points.
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

(j) (k)

Figure .: biba disparity map. (a, b) Left and right stereo pair (c) LIDAR-derived ground truth
(d) Gotcha disparity using 96 SIFT seed points. (e) SGM disparity (f - j) Gotcha disparity using
10, 100, 1000, 10000, 10000, 50000 and 150000 random LIDAR seed points.
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Figure .: Relationship between the number of LIDAR seed points and the number of matched
pixels in the disparity map.

disparity error was calculated by comparing the fused disparity maps against the LIDAR ground

truth. To avoid bias, errors were only calculated against the withheld LIDAR measurements (i.e.

those which were not used to seed Gotcha).

(a) (b)

Figure .: Indoor test scenes (a) Mean disparity error and (b) Standard deviation of disparity
error as a function of the number of LIDAR seed points used.
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6.4.2 Outdoor scenes (KITTI)

e KITTI dataset provides cross-calibrated stereo and LIDAR data (see Chapter 2) acquired

from a moving vehicle in a variety of urban scenes. e onboard Velodyne LIDAR on the KITTI

vehicle only covers the lower half of the frame and while around 100 k LIDAR points are captured

per video frame, only around 20 k are in view of the forward-facing stereo cameras.

Raw data were taken from the 2011_09_26 run comprising 107 stereo pairs. Raw datasets5

from KITTI include rectified stereo imagery, LIDAR returns in the LIDAR coordinate system

and an external calibration between the LIDAR and camera coordinate systems. LIDAR-derived

seed points were generated for each image using the calibration files provided. ese LIDAR

points therefore represent ground truth, and are used to derive the official KITTI ground truth

data.

e KITTI organisation also provide benchmark data sets without ground truth, which may

be used for independent stereo matching assessement. Since this assessment relies on withholding

the LIDAR data, it is not currently possible to use the online benchmark utility for stereo matching

algorithms that involve data fusion, even though in practice this is a sensible route for robust scene

reconstruction.

In order to assess matching accuracy, 60% of the LIDAR data were withheld to act as a ground

truth. e remaining 40% of the LIDAR data were used as seeds for stereo matching. e data

were sampled randomly to produce this split. erefore there were around 8k ground truth points

and 12k seeds per stereo pair. e downside of splitting the data is that GOTCHA is not able to

exploit the full set of input seed points and is likely to match fewer pixels. For interest, matching

was also performed using the full set of LIDAR seed points with the caveat that accuracy measure-

ments were not possible.

For each image, the following inputs to Gotcha were used:

• Matched SIFT keypoints alone

• Matched SIFT keypoints and a reduced (40%) set of LIDAR seedpoints, leaving 60% for

ground truth (accuracy) evaluation.

• Matched SIFT keypoints and all available LIDAR seedpoints
5Datasets are located at: http://www.cvlibs.net/datasets/kitti/raw_data.php, accessed 11/11/2016
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e workflow for preparing the raw data and matching is shown in Figure 6.10.

Figure .: Processing workflow for KITTI data using GOTCHA for matching.

All images were also matched using SGM using a census cost with a 9px window for compar-

ison. Figure 6.11 shows a typical KITTI image along with the LIDAR scan location and matching

results from SGM, Gotcha and Gotcha with LIDAR seed points.

For clarity and ease of comparison, LIDARmeasurements were converted into disparities. is

examples highlights the difficulty of outdoor imaging. ere is a high dynamic range in the scene,

from the overexposed sky to deeply shadowed regions at the side of the road. e road itself is a

large, low-texture region. Since there was no control over the LIDAR acquisition rate, or where

the Velodyne LIDAR was aimed, all LIDAR points were used as seeds for evaluation.

ere are several blunders in the SIFT-only disparity map (Figure 6.11d), which have been

circled. ese errors are not present in the SIFT+LIDAR result. e results from SGM were

typically very good, showing excellent reconstruction of the road surface and the rest of the image.

However, SGM (Figure 6.11c) also (incorrectly) matched the sky and the disparity map does not

extend to either edge of the image.

Figure 6.12 shows the error statistics for the various matchers and seed point combinations.

Figure 6.12a shows a histogram of the number of matched pixels over all the images for SIFT,

SIFT+All LIDAR and SGM (this does not take into account matching accuracy). e remaining

subfigures use a reduced set of LIDAR seed points. Figure 6.12b shows the proportion of matched

pixels6 for which ground truth was available, with an error of less than 2 px. Figure 6.12c shows the
6Using the ratio of ‘good’/total matches allows for different numbers of matched pixels in each image with different

matchers
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(a)

(b)

(c)

(d)

(e)

Figure .: Example KITTI image (a) Left stereo image (b) Left stereo image with LIDAR
points overlaid. Each LIDAR measurement is shown with a large 7 px spot for clarity (c) SGM
disparity map (d) Gotcha disparity map using SIFT keypoints (e) Gotcha disparity map using
SIFT and LIDAR seed points. Some obvious disparity map errors are ringed in blue.
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absolute error over all 107 scenes and Figures 6.12d and 6.12e show the per-scene error mean and

standard deviation respectively. Only matched pixels for which ground truth was available were

used for statistical accuracy analysis.

6.4.3 Discussion

e five indoor stereo pairs presented here proved challenging for stereo matching. SGM tended

to perform better than Gotcha using SIFT seeds alone. Gotcha only performed well in the Bricks

scene, but failed to match one of the brick surfaces (centre-left of Figure 6.3d). e reason for this

poor performance is the previously discussed limitation of using image features for region growing.

In poor texture regions, there are too many similar features for reliable initial matching.

In some scenes, there was sufficient texture that only 10 LIDAR seeds were required to produce

a disparity map comparable to using SIFT keypoints (e.g. Corner and Bricks). is hints at the

problem of redundancy, since these densely matched regions did not become significantly improved

until tens of thousands more LIDAR points were used.

e relationship between the number of seed points used and disparity map density was asymp-

totic (Figure 6.8) and this effect was observed for all scenes. Significant disparity map improvement

was observed up to around 100 k seed points, at which point there was a rapidly diminished im-

provement (e.g. PotPlant, Bricks and Biba). Although the Chair and Corner scenes were scanned

at a lower resolution than the others, the data suggests the same trend.

e eventual plateau in the number of matched pixels was consistent with the amount of oc-

clusion in each scene as shown in the ground truth images. In other words, this plateau represents

a disparity map that cannot be improved further. is suggests that an appropriate strategy for

LIDAR seeding would be to scan the scene using at progressively higher resolution until the rate

of change of disparity map density slows below a pre-defined threshold. Experimentally it was not

necessary to scan at a higher resolution than 0.05 degrees. Scanning at higher resolutions using

the gimbal system would have resulted in prohibitively long acquisition times.

As with the number of matched pixels, the disparity map error (Figure 6.9a) showed an asymp-

totic decrease with a plateau above 50-100k seed points. e mean disparity error was sub-pixel

(or approaching sub-pixel) for most scenes, with the exception of Corner.

In the case of outdoor data, obtained from the KITTI dataset, SIFT+LIDAR seed points
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(a) (b)

(c) (d)

(e) (f )

Figure .: (a) Histogram of the number of matched pixels for 107 KITTI stereo pairs using
different matching methods. (b) Proportion of matched ground truth pixels with an error < 2px. (c)
Pixel-wise disparity errors compared to ground truth (d) Mean disparity error for each stereo pair
(e) Disparity error standard deviation for each stereo pair. (f ) Cumulative distribution function for
error standard deviation.
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provided an improvement in the number of matched pixels over both SGM and Gotcha using

SIFT seeds alone (Figure 6.12a). In terms of accuracy, SGM performed best overall, with around

10% more ‘good’ points with <2 px error than Gotcha. Using Gotcha with LIDAR seed points

provided a slight improvement over SIFT alone (Figure 6.12b). e fused result also avoided the

blunders produced by Gotcha or SGM alone. Unlike SGM, Gotcha was able to match to the

edge of the frame and contained generally fewer blunders such as the sky area. All three matching

methods showed similar error characteristics with an overall error distribution centred around zero

pixels and per-scene mean errors around zero pixels with a spread of ±1-2 px. ere was some

evidence for a negative bias when using SGM and a positive bias with Gotcha, both less than

2 px, but it is not clear from where this originated. Considering the error standard deviation,

all three methods show a similar distribution throughout the dataset. SGM and SIFT+LIDAR

both outperform SIFT alone, which is more clearly visible in the cumulative distribution function

(CDF) in Figure 6.12f.

LIDAR and stereo fusion is therefore a viable technique for dense and robust outdoormatching,

in environments where it would be impossible to use competing techniques such as ToFCs.

In the case of autonomous driving, the benefit of using a combined stereo and LIDAR ap-

proach is that the LIDAR scan does not need to have a large vertical range. However for some

applications like mapping, it is more useful to reconstruct the entire frame and this is more easily

achieved using stereo. LIDAR-seeded region growing does not place any particular requirements

on the choice of sensing hardware and could therefore be integrated into existing robotic platforms

without modification.

6.5 Efficient LIDAR scanning

Data fusion naturally introduces redundancy, which may or may not be desirable. Redundancy

occurs if a distance is obtained both from stereo matching and an additional ranging system. An

advantage of redundancy is validation: if two independent measuring systems return the same

distance for a particular point, there is evidence that the measurement is valid. is also enables

one source of range data to act as a filter for the other, and points where there is disagreement

can be removed. A disadvantage of redundancy is that it is inefficient, since active ranging is only

required where stereo matching fails. While this is not so much of an issue for ToFCs and other
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area sensors, for scanned systems the acquisition time is typically linearly dependent on the number

of points to be acquired.

In this section, a coarse-to-fine approach is presented which allows scenes to be matched ef-

ficiently, with a reduced number of LIDAR points compared to scanning the entire scene at full

resolution. Naively, the number of points, n, required to scan a scene at a particular resolution,

r, is n = A/r for a scan area A. However parts of the scene will be occluded and others might

be easily matched using stereo. By avoiding scanning image regions that are already matched or

occluded, the number of LIDAR measurements is reduced.

6.5.1 Selective LIDAR scanning

e goal of coarse-to-fine scanning is to progressively improve the disparity map by scanning the

scene, selectively, at increasingly fine resolutions in unmatched regions. is selective scanning

requires a mapping between pixel coordinates in the image and the direction that the LIDAR

should be pointed. One to one mapping requires the distance for each pixel to be known. Since the

distance for each unmatched pixel is by definition unknown prior to reconstruction, this mapping

must be estimated.

An effective prior is obtained by acquiring a coarse scan of the scene and interpolating between

un-occluded points to calculate the transformation between the two systems. Occlusion is detected

either by direct detection (visible beam LIDAR) or by ALSC verification of the calculated position

of the LIDAR spot.

emapping is calculated via bilinear or bicubic interpolation over the points scattered through-

out the image. ere are two maps, one for each of the axes of the scanner. An example from a

1.6 degree resolution scan of Bricks is shown in Figure 6.13.

e estimation is less accurate near depth discontinuities, but is sufficient for regions with

smoothly varying depth. As the scene is scanned at higher resolutions, low accuracy regions of the

map are refined.

One advantage of obtaining these maps is that the scan can subsequently be limited to the field

of view of the image. An initialisation strategy that has worked well in practice is to define the

scan limits to be well outside the field of view of the cameras, perform a scan at low resolution and

then use the map to automatically determine the optimal scanning range.
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(a) (b)

Figure .: Predicted per-pixel scan angles for the Bricks scene, interpolated from known val-
ues (green points). ese points were generated by scanning the scene at a 1.6 degree resolution.
Several occluded points were identified and not included in the interpolation.

6.5.2 Identifying unmatched regions

Once the disparity map is obtained, it must be analysed to determine where the LIDAR should be

scanned next. For each pixel that is unmatched, the estimated scan angles (section 6.5.1) necessary

to illuminate it with the LIDAR are added to a 2D histogram. is is effectively a transformation

of the disparity map into the (binned) coordinate system of the scanner. e histogram bin size

is determined by the desired scan resolution. A threshold is used to specify which bins represent

unmatched regions of the image. At higher scan resolutions, it is possible to detect potentially

occluded regions in the image by noting where no LIDAR points are detected. is reduces the

possibility that occluded areas are repeatedly scanned when there is no way they can be matched.

Experimentally a good resolution threshold for using an occlusion mask was ≤ 0.2 degrees. e

mask is applied by multiplying a binary occlusion map (Chapter 3) element-wise with the disparity

map before transforming into scanner coordinates.

For each bin that is labelled unmatched, the centre and corners are added to a list of points to

be scanned. Two histograms for the Bricks scene are shown in Figure 6.14.

e points to be scanned during the next iteration are marked in green. Matched or occluded

scan angles are shown in black and these areas are left unscanned on the next iteration.

6.5.3 Results

In this section, results are presented for the indoor scenes shown in Section 6.4. is approach was

not performed for the outdoor data since it was assumed that there was no control over the scan
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(a) (b)

Figure .: Histograms showing the locations of unmatched pixels in terms of the LIDAR scan
angle. In each image, points to be scanned by the LIDAR on the next iteration are marked in
green. (a) Bricks scene scanned at 1.6 degree resolution (b) Bricks scene scanned at 0.8 degree
resolution.

pattern. For each scene, the intermediate scans and resulting disparity maps are shown, along with

the estimated location of unmatched pixels in terms of the LIDAR scan angle. For the example

scenes, a minimum scan resolution was specified which provided a limit on the number of points

acquired and the number of iterations performed. e matching parameters used were the same

as in the previous section. e top row of images in each figure shows the disparity map after each

iteration of the scanning process. e lower row of images shows which regions of the image are

unmatched, transformed into altitude-azimuth space. ese images therefore highlight where the

LIDAR should be scanned in the next iteration. Results are shown for Bricks, Chair, Corner, Biba

and Potplant in Figures 6.15, 6.16,6.17, 6.18 and 6.19 respectively.

Table 6.2 shows the improvement (reduction) in the number of LIDAR points when using a

progressive scan versus a full scan. For comparison, results from using progressive scanning are

given with and without occlusion detection.

Table 6.3 shows the number of matched pixels using a progressive scan, compared to using a

full scan. Results with and without occlusion detection are given.

Table 6.4 compares the accuracy of the disparity maps generated via progressive scanning (in

the best case), compared to using a full set of LIDAR seed points.
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6.5. Efficient LIDAR scanning
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. Stereo and LIDAR data fusion

Scene Area (deg2) Res. (deg) Full (pts) Progr. (pts) Progr.+Occl. (pts)
Bricks 777 0.05 310,800 28,116 21,417
Corner 868 0.1 86,800 25,673 24,019
Chair 632 0.1 63,200 31,838 26,910
Biba 736 0.05 294,400 50,694 39,133
PotPlant 735 0.05 294,000 72,884 50,144

Table 6.2: Number of LIDAR points used for disparity map enhancement in each test scene.
Using a progressive scan significantly decreased the number of LIDAR points needed and further
improvement was seen if occlusion detection is enabled.

Scene Full (px) Progr. (px) Progr.+Occl. (px)
Bricks 778,688 727,772 732,933
Corner 761,204 756,205 749,130
Chair 723,823 706,156 701,743
Biba 729,214 631,215 637,623
PotPlant 465,698 402,651 406,431

Table 6.3: Number of matched pixels for progressive LIDAR scans vs full scans. Occlusion de-
tection did not significantly change the number of matched pixels, but did reduce the number of
LIDAR points needed (see Table 6.2).

Scene Full accuracy (px) Progr.+Occl. accuracy (px)
Bricks 0.35± 3.45 0.27± 4.32
Corner 1.27± 15.4 1.01± 19.62
Chair 0.53± 1.88 0.66± 2.06
Biba 0.70± 5.72 1.31± 9.00
PotPlant 0.40± 3.53 1.00± 7.6

Table 6.4: Stereo matching accuracy when using a full set of LIDAR seed points versus a reduced
set of LIDAR seed points. Results are shown from the final output from the progressive scan. e
same ground truth points were used to evaluate each method.

6.5.4 Discussion

In Section 6.4 it was shown that disparity map enhancement is possible by integrating a scanning

LIDAR into a region growing stereo matcher. Using a simplistic approach, it was shown that

increasing the number of LIDAR points used as seedpoints results in an asymptotic increase in the

number of matched pixels until no further improvement in the disparity map is possible. However,

those results did not take into account redundancy between the stereo matcher and the LIDAR

scan and so many LIDAR measurements were unnecessary.

Using a progressive, coarse-to-fine scan, the number of LIDAR points required was reduced

significantly. For scenes that contained regions of good texture, like Bricks, the number of LIDAR

points was reduced by an order of magnitude (93%) with only a small (6%) reduction in the number
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6.5. Efficient LIDAR scanning

of matched pixels. For images which were challenging to match with stereo alone, like Biba, more

LIDAR points were required but there was still a large reduction (83%) compared to a full scan.

e results also demonstrated that interpolating sparse LIDAR points to determine the scanning

angle for a particular pixel is effective, as the final disparity maps were comparable to those using

scans with many more points.

Occlusion detection allowed for additional robustness, as otherwise occluded pixels are re-

peatedly scanned. In the Potplant scene, this reduced the number of LIDAR points needed by

almost a third. However, this scene was poorly matched overall. is is likely due to a number

of factors such as the thin leaves, poor surface reflectance and perspective differences between the

two image views. Obviously the reduction in the number of LIDAR points is only significant if

there is a large amount of occlusion present in the scene. Applying occlusion detection to Corner,

a largely un-occluded scene, only resulted in 7% fewer points. Since the estimated occlusion map

is only accurate when the scene is scanned at high resolution, a suggested resolution threshold of

0.2 degrees was applied.

is techniquewas specifically developed in order to obtain faster scans using low-cost scanning

systems. For a hypothetical system operating at 100 Hz, this would result in theoretical scan

times of 3.5-10 minutes for all the indoor scenes presented. is speed is not suitable for realtime

applications, but such a system could be used for static, high resolution inspection.

Comparing the accuracy of the two techniques, unsurprisingly using a full set of LIDAR seed

points resulted in more accurate disparity maps. Given the reduction in the number of seed points,

the disparity maps generated via an efficient scan were comparable: in the worst case, degraded by

a factor of two (Potplant, from 3.53 px to 7.6 px). Whether or not this is an acceptable trade-off

(scanning time vs accuracy) depends on the scene.

Commercially available 3D scanning systems usually offer control over scan resolution, but

do not allow any control over where the beam is steered. is precludes any significant reduction

in LIDAR points, due to redundancy, unless the scans at different resolutions are offset spatially.

Using a coarse-to-fine approach might still reduce the scan time significantly since there is a pos-

sibility that a scan at the maximum resolution is not necessary.
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. Stereo and LIDAR data fusion

6.6 Conclusions

In this chapter it was argued that passive stereo matching alone is not sufficient for robust match-

ing of many typical indoor and outdoor environments. A data fusion method was proposed that

integrates a scanning LIDAR into a region growing stereo matcher (Gotcha). Any type of LIDAR

might be used, provided it is cross-calibrated with the cameras. e region growing process allows

disparity map densification in low-texture regions.

Results were presented from challenging indoor scenes as well as a series of outdoor scenes

taken from an autonomous driving dataset. Asymptotic improvement was seen in the disparitymap

as more LIDAR seed points were used, suggesting that no further improvement in the disparity

map was possible. Including results on outdoor data, taken from the KITTI dataset, showed that

Gotcha using LIDAR seeds outperformed both standardGotcha and SGM in terms of the number

of pixels matched with comparable accuracy.

Finally an efficient scanning algorithm was presented that employed a coarse-to-fine scan pat-

tern. is method aimed to reduce redundancy where image regions were already matched and

did not need to be scanned with the LIDAR. A method for estimating the scan angle required

to illuminate a particular pixel with the LIDAR was given. By scanning the scene selectively in

unmatched regions, it was shown that the number of LIDAR seed points required can be reduced

by up to an order of magnitude.
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Robust stereo matching using LIDAR-derived texture 7

Dense stereo matching is dependent on there being unique intensity variations (texture) in the

images. Texture projection is an established method for enabling robust stereo matching of fea-

tureless images, but current methods are limited to short ranges, are untested outdoors, and are

relatively inflexible to changes in the stereo system setup.

Chapter 6 introduced the idea of using data from a LIDAR to seed a region growing stereo

matcher to improve performance in low-texture regions. is chapter extends this idea by propos-

ing that the LIDAR be used to generate texture in images, since each step in the scan can be used

to paint a dot in the stereo images. With many such images, a random pattern may be overlaid

on the original stereo pair. Methods for pattern generation using both visible and NIR LIDAR

systems are given.

Dense matching results from a number of indoor and outdoor scenes are given, using illu-

mination patterns derived from directly imaging the LIDAR spot and from simulating images of

the LIDAR spot. e number of dots required and simulated dot size are investigated. Finally,

a method is given for intelligently texturing an image based on predicting which parts of an im-

age will be matched. Intelligent texturing is shown to significantly reduce the number of LIDAR

points required in a scan.

7.1 Introduction

e human vision system relies on textural cues to determine which parts of two images correspond

(Marr et al., 1991). Yet, there is no accepted definition of image texture. A very broad definition of

texture is that it describes the variation of intensity values in an image or image region. Although it

is straightforward to describe textures using natural language notions such as colour, roughness and
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. Robust stereo matching using LIDAR-derived texture

so on, it is comparatively difficult to express these concepts mathematically. A variety of different

image textures are shown in Figure 7.1.

(a) (b) (c) (d) (e)

Figure .: Examples of different textures, taken from the database provided by (Lazebnik et al.,
2006) Left to right: Carpet, tree bark, marble, corduroy fabric, stone flooring.

Previous work pn texture analysis has focused on object identification, particularly in medical

imaging, and scene segmentation. A common approach is to calculate textural features and apply

some kind of clustering to determine which pixels correspond to the same object (Ojala et al., 1996).

A textural feature or metric aims to convert a series of intensity values, ordered or un-ordered into

a single scalar value (Tamura et al., 1978).

Texture is highly relevant for stereo matching, since all matching algorithms rely on comparing

intensity variation between image regions. Image regions with low intensity variation are challen-

ging to match because they introduce ambiguous matching costs. e problem is not limited to

uniform texture, as repetitive texture can also introduce ambiguities. e low-texture problem is

illustrated in Figure 7.2.

(a) (b)

Figure .: Crop from Biba scene. An epipolar line is marked in red. e green squares show the
correct correspondence and the red square in the right image shows an incorrect correspondence.
e matching costs for the two regions in the right image are very similar.

If local correlation were used to match this image, it would be difficult to determine which of

the two marked image regions on the right correspond to the region on the left. More robust al-

gorithms like dynamic programming and global/semi-global matching offer an improvement over

naive correlation, they do not guarantee good match performance on all scenes. Other algorithms
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have been developed to cope with low texture regions, for example Sach et al. (2009) used edge

detection to locate textureless regions and guide the cost aggregation step during matching.

It is possible to construct a stereo pair that is close to ideal for stereo matching. Here, ideal

is taken to mean that any local region in the left image has an unambiguous match in the right

image. Randomdot stereograms approximately satisfy this definition (Julesz, 1960) and an example

is shown in Figure 7.3.

(a) (b) (c) (d)

Figure .: Random dot stereogram. (a) Left image (b) right image (c) ground truth (d) Gotcha
match result

e left and right images are created by filling two arrays with identical random noise. e

right image is a copy of the left image, shifted by 10 px. e central block is shifted by 60 px.

e space left by moving the block is filled with random values. e Gotcha match result is very

similar to the ground truth with only a few failed regions near the depth boundary. e stereo

match result is not perfect (as shown in the lower left of Figure 7.3d), likely due to self-similarity

of the random pattern.

If such a pattern is visibly projected onto a scene, it enables robust matching in textureless

regions. Usually the pattern is a field of (pseudo) randomly located dots. is type of pattern

can be generated using a number of techniques such as a diffractive optical element (O’Shea et al.,

2003), data projector or from interference phenomena like laser speckle. is approach is exploited

by the Microsoft Kinect v1 (see Chapter 2) to provide robust depth sensing, although it is not a

stereo system.

Recently several manufacturers, such as IDS (Obersulm, Germany), have introduced ‘active’

stereo imaging systems with integrated illumination systems under the Ensenso brand1. Osela

(Lachine, Canada)2 manufacture diffractive optical elements with up to 100000 random dots.

Some examples of texture projection techniques are shown in Figure 7.4.

1https://en.ids-imaging.com/ensenso-stereo-3d-camera.html, accessed 20/9/2016
2http://www.osela.com/products/random-pattern-projector/, accessed 20/9/2016
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. Robust stereo matching using LIDAR-derived texture

(a) (b) (c) (d)

Figure .: Examples of texture projection methods: (a) Diffractive optical element (Kinect), (b)
IDS Ensenso fixed ‘gobo’ pattern (c) laser speckle (d) random dot pattern from a data projector.

One issue with texture projection involving truly random patterns is the possibility that if two

small patches of the pattern are examined, they will be similar or identical. Molinier et al. (2008)

construct their pattern from 5x5 pixel blocks in such a way that all blocks are unique. Lim (2009)

used non-recurring de Brujin sequences (de Brujin, 1975) to generate patterns which have no

repetition along individual epipolar lines. A de Brujin sequence B = (k, n) contains all sequences

of length n drawn from an alphabet, A, with length k, exactly once. For example if A = 0, 1 a valid

sequence B(2, 3) is 00010111.

Konolige (2010) presented a technique for generating ’ideal’ patterns for block matching al-

gorithms also using De Bruijn sequences, but with an additional optimisation step. After an ini-

tial pattern is generated, simulated annealing is used to adjust it such that the average similarity

between any two blocks is minimised. e process also aims to generate patterns that are less af-

fected by blurring and phase noise introduced by spatial offsets between the camera and projector.

ese patterns exploit the fact that if the epipolar constraint is satisfied, and the images are recti-

fied such that matches lie along horizontal scanlines, then the pattern need only be unique in the

horizontal direction.

ese studies quantified performance in different ways. Lim compared results to a ground truth

disparity map, but it was not specified how the ground truth was generated. Konolige compared

the drop-out (the percentage of unmatched pixels) for various patterns and also performed metric

accuracy measurements on the final pattern using a planar target.

7.1.1 Examples of projection methods

For the Bricks scene, stereo images with other pattern projection methods were acquired for com-

parison. e methods used were the Kinect (IR) projector, a data projector displaying a binary
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white noise image and laser speckle generated using a 532 nm laser and a 400 µm fibre.

(a) (b) (c)

(d) (e) (f )

Figure .: Bricks scene using other texture projection methods: (a) Kinect pattern (b) data pro-
jector displaying binary white noise (c) laser speckle. Gotcha match result from (d) Kinect, (e)
data projector, (f ) laser speckle.

Both the Kinect and projector patterns resulted in dense matching in most illuminated, un-

occluded regions. e data projector produced the smoothest disparity map. However, due to the

specular reflection in the upper left of the image, this region failed to match. Note the projector

did not fully cover the field of view of the cameras. e results from speckle projection was poor,

but this is largely due to the difficulty of generating suitable SIFT-derived seed points for Gotcha.

e exact reason for this is unknown, but the authors suspect that it is due to local saturation of the

image by the speckle pattern and interference effects causing different textures to be visible to each

camera. e regions that were matched using laser speckle were consistent with ground truth.

7.1.2 Limitations of current methods

e usable range of any projection system is limited by the signal to noise of the projected pattern,

imaged by the camera. Laser-based projection methods offer superior range compared to LED- or

lamp-based illumination. Since texture projection relies on the pattern being visible to the camera,

the projection system must be able to illuminate the scene sufficiently at any required distance.

Commercial texture projection systems like the Ensenso are limited to a modest range of up to 3m.
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. Robust stereo matching using LIDAR-derived texture

e pattern projector must be customised for the camera system, since it must illuminate the same

field of view. Any changes to the camera system necessitate changes to the pattern.

Outdoor operation in sunny conditions is usually not possible, particularly for systems which

use NIR illumination. A visible blocking filter can be used to improve SNR at the expense of being

able to image the scene in true colour. e Kinect avoids this by having a separate (IR) camera for

depth measurements. However, although this improves SNR for the projected pattern, in sunny

conditions the sensor is easily overwhelmed by background light.

7.2 LIDAR Random Dot Projection

is section describes how a LIDAR system can be used to generate texture in an image. It is

shown that LIDAR can overcome the limitations of conventional texture projection systems. Two

strategies are described: first, a method where the random dot image is generated by imaging the

LIDAR beam during a scan and second, a method where the random dots are ‘painted’ on the

digital image after a scan, given a cross-calibration between the LIDAR and stereo camera system.

Using a LIDAR rather than a static pattern allows for additional robustness since any unmatched

regions can be progressively scanned using the LIDAR until the scene is satisfactorily matched.

Scanning LIDAR has the potential to overcome both SNR and pattern resolution limitations.

LIDAR is able to operate over longer distances than projector-based methods. Since LIDAR

measurements are 1D, the laser power is concentrated into a single spot. Visible spectrum systems

are easily observed using cameras even in bright conditions with the use of very short exposure

times. Most LIDAR scanning systems have a wide field of view so the choice of lens does not

affect the ability to generate a pattern. Finally, LIDAR is able to operate robustly outdoors.

e data fusion approach described in Chapter 6 is also applicable when using a LIDAR to

generate random texture. Specifically each LIDAR point can be passed as a seed for the Gotcha

region growing process. If additional steps are taken (Section 7.3) to predict which parts of the

image region will be matched using stereo alone, the LIDAR can be selectively scanned only in

textureless regions. Overall this means that, depending on the amount of texture present in the

scene, only a sparse LIDAR scan is required for dense, robust matching.
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7.2. LIDAR Random Dot Projection

7.2.1 Random dot image generation

In order to overlay a random dot pattern on the scene using a visible LIDAR, multiple images of

the LIDAR spot can be stacked together. At each point in the scan, a small region of the image is

illuminated using the LIDAR. If the scan covers the entire image, then combining the intermediate

images is equivalent to a single image where the whole scene is illuminated simultaneously. is

requires synchronisation of the cameras with the LIDAR, as discussed in Chapter 4. An example

of this is shown in Figure 7.6 for the Bricks scene.

(a) (b)

Figure .: LIDAR-illuminated Bricks scene formed from a stack of 50000 images, each image
corresponding to a single LIDAR measurement. Due to the very short exposure time (1/1000 s),
ambient illumination is suppressed.

e stacking process is performed by first creating an empty image, Is. For each acquired

image, In, an element-wise maximum is performed between the image stack and the new image.

at is, the stack image is defined as a recurrence relation:

Is,n(u, v) = max (Is,n−1(u, v), n(u, v)) (7.1)

for n scan points where Is,0 is an empty image and (u, v) are the pixel locations in the images.

e maximum operation is preferred over simply summing the images as it prevents background

noise from building up and saturating pixels over the several thousand images required to form the

stack.

Either a full scan, containingmeasurements at all possible scan angles for a particular resolution,

can be acquired or scan angles can be randomly skipped. In the case of a full scan, a random sample

of points can be taken to generate the random dot image.
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. Robust stereo matching using LIDAR-derived texture

e resulting pattern can be matched as-is, but can also be merged with the ambient light

image to make use of existing intensity variation. is is shown in Figure 7.7.

(a) (b)

Figure .: Bricks scene ambient light stereo pair with a LIDAR-derived random dot pattern
overlaid. ere is some shadowing visible in the lower row of bricks near the centre of the image.

To avoid saturation of the original 8-bit images, both pattern image and ambient light image

are cast as 16-bit arrays before being combined. e intensity of the combined image is then

rescaled to 8-bit and histogram equalisation is performed to retain contrast in darker areas not

illuminated by the pattern.

7.2.2 Simulated LIDAR spot images

In some cases it is not possible, or practical, to directly image the laser spot. Synchronisation

with a camera limits the LIDAR acquisition speed to the camera frame rate which could lead to

excessively long scan times. LIDAR systems which are very quickly scanned (or offer no control

over the scan pattern) are also not suitable for direct imaging. Alternatively scanning LIDAR using

IR lasers require cameras sensitive to the NIR which can degrade image quality due to unwanted

additional (invisible) illumination.

In this section, it is suggested how LIDAR random dot images may be simulated. e aim

is to paint texture into an image using only the 3D measurements provided by the LIDAR. If

the LIDAR and stereo system are fully (intrinsically and extrinsically) cross-calibrated, then it is

straightforward to map 3D measurements from the LIDAR into 2D locations on the sensor planes.

is procedure is described in Chapter 5 and was used to generate seed points fromKITTI LIDAR

data (Section 6.4.2). Along with the location of the LIDAR spot, the visual representation of the

spot also should be simulated.
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e intensity profile of a LIDAR spot is approximately gaussian, which can be verified by

examining individual images acquired synchronously during a scan (Chapter 3). erefore an

appropriate method for simulating a LIDAR random dot pattern is to paint a gaussian intensity

pattern onto an image at each point the LIDAR should illuminate. Analogously to the previous

section, a simulated pattern may be expressed as a sum over 2D gaussians:

In = Is +

n∑
i=0

(Gi) (7.2)

Where In is the final pattern intensity at (u, v), Is is an initial image and Gi is a 2D Gaussian

function centred on the ith spot.

e peak intensity of the LIDAR spot is dependent on the reflectance of the surface at the

wavelength of the laser, for a fixed exposure time. Some LIDAR systems allow measurement

of the return signal power which can be used to scale the intensity. Additionally in real images,

the laser spot may be distorted due to the angle of incidence between the surface and the laser

beam. is cannot be emulated in simulated imagery without a priori knowledge of the scene’s 3D

structure. Nevertheless, a comparison between a real and simulated image, Figure 7.8, shows that

despite these limitations the pattern looks very similar. e following section discusses the effect

of spot diameter.

A Gaussian spot pattern was chosen to mimic LIDAR, however in principle any pattern (suit-

ably localised) could be painted in the image. One option could be to paint locally unique textures

to reduce the risk of ambiguous matching. is is less of an issue for Gotcha, since the pattern

points may be used as seeds which inherently avoids initial ambiguity when matching.

7.2.3 Effect of spot diameter

e minimum physical diameter of the LIDAR spot varies with distance and is dependent on the

divergence of the laser beam. However, the area covered by each pixel also increases with distance

and the imaged spot diameter is dependent on surface reflectance, exposure time and instantaneous

laser power. Even if the spot diameter is large, an arbitrarily small exposure time can be used so

that only the peak intensity is visible (or detected above a threshold).

Figure 7.9 shows the change in the number of matched pixels as a result of changing the

simulated spot radius for indoor and outdoor imagery.
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(a) (b)

(c)

Figure .: Real versus simulated LIDAR-derived random dot images. (a) Left ambient light
image (b) Stack of 28000 LIDAR spot images, (c) simulated image of the same pattern using 5 px
diameter spots.

(a) (b)

Figure .: Relationship between simulated LIDAR spot diameter and the relative number of
pixels matched. (a) Results using indoor scenes with varying number of LIDAR spots (b) Average
outdoor results (KITTI imagery) with around 20 k spots per image.

In both indoor and outdoor imagery, there was a degradation in match performance with larger

spot diameters, above 5 px. is is probably caused by overlapping patterns as the spot density

increases. Below this threshold the best performance was observed with a spot diameters of 2 px

for indoor imagery and 4-5 px for outdoor imagery. is suggests that the choice of diameter is

scene specific and if a system is used to repeatedly acquire imagery of the same scene type, some

experimentation to determine the best spot size is desirable.
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7.2.3.1 Number of LIDAR points required

A statistical analysis of the number required of LIDAR points needed is challenging since it de-

pends on a lot of factors that are scene-specific. For an image to be matched, there must be suf-

ficient textural information present in a particular pair of correlation windows. Not every pixel in

the windows needs to be directly illuminated by the LIDAR.

Consider an image of a fronto-parallel plane, uniformly illuminated using only a LIDAR. e

probability that a pixel is (partially) illuminated is:

pi =
Nπr2s
A

(7.3)

assuming that rs is the spot radius, A is the image area and N is the number of LIDAR points.

For N = 10000, rs = 2 px and A = 1.3M px, pi ≈ 10%. e probability of illumination

is strongly dependent on the LIDAR spot size. Increasing rs to 3 px more than doubles the

probability of illumination. In reality, the spot is often ellipsoidal rather than circular, there are

occlusions and the LIDAR might not scan the entire image. is approximation also breaks down

when spots begin to overlap, but nevertheless serves as a good indication of how dense a pattern

will be.

e illumination probability also suggests that a relatively small number of LIDAR points

are required. It is possible to calculate the number of points required such that all pixels should

theoretically be illuminated. For the 1.3M px example above, this occurs at around 100 k points.

Since a projected pattern should have both dark and light regions, fewer points are required and

this is investigated empirically in the next section.

7.2.4 Matching results

Results are presented from some of the scenes introduced in Chapter 6. Images from every point

in the LIDAR scan were acquired for Bricks, Chair, Corner allowing a comparison between real

and simulated random patterns.

For each scene, match results were obtained using different numbers of randomly sampled

LIDAR points. Matching was performed using Gotcha using default settings (Section 4.5) and

the only seed points used were derived from the sampled LIDAR points. Each random dot pat-
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tern was generated sequentially such that each contained all the points from the previous patterns.

Simulated dot patterns were generated using a spot size of 2 px.

Matching is shown for real LIDAR random dot (RLRD), simulated LIDAR random dot

(SLRD) and with/without combining the ambient light image. Figures 7.10, 7.11 and 7.12 show

the number of matched pixels for Bricks, Chair and Corner respectively. Disparity maps are shown

with various numbers of LIDAR points used in Figures 7.13, 7.14 and 7.15 for Bricks, Chair and

Corner respectively.

Figure .: Bricks scene match results using random patterns with different numbers of dots.

Figure .: Chair scene match results using random patterns with different numbers of dots.
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Figure .: Corner scene match results using random patterns with different numbers of dots.

(a) (b) (c) (d) (e)

Figure .: Bricks scene matched using Gotcha with various random dot patterns. From top to
bottom, RLRD, SLRD, RLRD+Ambient, SLRD+Ambient. From left to right (a-e), 2000, 6000,
10000, 20000, 50000 LIDAR points.
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Figure .: Chair scene matched using Gotcha with various random dot patterns. From top to
bottom, RLRD, SLRD, RLRD+Ambient, SLRD+Ambient. From left to right (a-e), 3000, 6000,
12000, 24000, 36000 LIDAR points.

(a) (b) (c) (d) (e)

Figure .: Corner scene matched using Gotcha with various random dot patterns. From top to
bottom, RLRD, SLRD, RLRD+Ambient, SLRD+Ambient. From left to right (a-e), 2000, 6000,
10000, 20000, 40000 LIDAR points.
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7.2.4.1 Outdoor data (KITTI)

As the KITTI data provides a fixed number of LIDAR points per stereo pair, all were used for

random pattern generation and disparity map seeding. is data represents both a real-world

application of the LIDAR random dot technique and a demonstration of the efficacy of simulated

patterns when an invisible laser is used. Also, this demonstrates that the technique may be applied

to existing systems and previously acquired data. A comparison between the match result for

ambient illumination (see Chapter 6) and SLRD combined with ambient illumination is shown

in Figure 7.16.

(a)

(b)

(c)

Figure .: (a) KITTI Disparity map from ambient illumination only, using Gotcha with SIFT
seeds. (b) from ambient illumination only, using Gotcha with SIFT and LIDAR seeds. (c) from
ambient illumination and SLRD, using Gotcha with LIDAR seeds. A spot diameter of 6 px was
used for this result.
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7.2.5 Discussion

For all scenes, the addition of random texture significantly improved the match results. e best

match results were observed when RLRD patterns were combined with ambient light imagery.

is is unsurprising since these were the most realistic representations of the scenes and the most

texture was available for matching. SLRD patterns provided considerably better match results than

ambient light alone and were largely comparable to the results using RLRD. However as SLRD

does not fully capture scene geometry and does not allow for spot distortion due to perspective

effects, this may explain the poorer results seen in Corner and Bricks.

In outdoor imagery, the results were largely similar to when ambient imagery is used with

LIDAR seed points. In Figure 7.16c there was a clear improvement in the left hand region of the

image, although some regions of the road were incorrectly matched.

Similarly to the results in Chapter 6, the number of matched pixels was found to increase

asymptotically with the number of LIDAR points. However in some cases, such as Corner, worse

results were seen as the number of points increased, even when using real imagery. In this scene,

degradation is visible in the disparity map on the left-hand wall. On the other hand the rear wall,

which was fronto-parallel to the camera, remained well matched.

In all scenes, the most consistent disparity map improvement was seen when around 10k points

were used, regardless of which type of pattern was used and whether or not the ambient image was

included. is reflects the fact that above this number of points, there were relatively few un-

textured regions left in the image. Additionally this suggests there was sufficient texture on the

scale of a correlation window (12 px square). For instance, when only 2-3k points were used the

disparity maps contained a lot of holes from regions that were not illuminated with the pattern.

In some scenes, such as Bricks (Figure 7.10) and Corner (7.12), SLRD and ambient texture

performed relatively poorly. If a scene contains good local ambient texture, as is the case with

Bricks, it is possible that adding additional texture on top may degrade matching performance.

is is particularly the case with SLRD as the simulated spots do not fully capture the interaction

with the laser beam and the local surface of the scene. In this particular case, a solution would be

to exclusively paint texture into image regions which are not already sufficiently textured.

As discussed in Section 3.3.2, a prior range information such as LIDAR measurements may

be combined with image intensity information to produce more accurate disparity maps than with
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intensity alone. To date, most popular stereomatching algorithms, both local and global, have been

used for data fusion. MRF frameworks in particular show promise (Zhu, Wang, Yang, Davis, and

Pan, Zhu et al.). e use of an MRF using LIDAR seed points as a high-confidence a priori input

with ambient image texture would likely be more accurate3 than Gotcha with simulated texture, at

the expense of computation time.

e naive approach of texturing the entire image has the same issues with redundancy described

in Section 6.5. e next section discusses a strategy for intelligently texturing an image using a

LIDAR scan by predicting which regions of an image will fail to be matched.

7.3 Match prediction

In this section, a binary classifier is developed to predict which pixels in an image are likely to be

stereo matched. e motivation is to reduce redundancy by selectively providing texture in image

regions where the matcher is predicted to fail. e classifier was developed with Gotcha in mind,

but training could be performed using a different stereo matcher without loss of generality.

In the case of region-growing stereo specifically, if it is possible to determine which regions of

the image are unlikely to be matched, then the LIDAR can be scanned selectively in those areas.

An appropriate method for selective LIDAR scanning was introduced in Section 6.5.

e performance of Gotcha depends on both the initial seed points and the texture in the

image. Intuitively, there are two ways in which pixels are matched. e first trivial case is when

a pixel is itself a seed point. e second is that the region growing process is able to expand the

disparity map from a seed point to a particular pixel.

e following section describes how the initial distribution of seed points, combined withmeas-

ures of local image texture, can accurately predict the matching performance of a stereo matcher.

7.3.1 Measures of image texture

Texture features can be classified into first and second order statistics. Higher orders exist, but

they are rarely used. First order statistics consider intensities only and can be derived from image

histograms. Second order statistics were popularised by Haralick et al. (1973), who introduced

the gray level co-occurence matrix (GLCM) from which many features can be computed. Second
3Zhu demonstrated a typical 60% accuracy improvement in test imagery compared to stereo alone
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order (‘Haralick’) features are commonly used for texture classification and comparison. For the

purposes of this work, first order features were found to be sufficient.

7.3.1.1 Image gradient

Stereo match performance is often well correlated with the presence of edges in an image as edges

are by definition formed by regions of high intensity variation. Edge detection methods, such as

the widely used Canny detector (Canny, 1986), normally involve computing the image intensity

gradient. Approximations of the gradient function are obtained by convolving the image with a

kernel. Examples of this include the Roberts cross, Scharr, Sobel and Prewitt operators (Petrou

and Petrou, 2010).

A different convolution kernel is required for the horizontal and vertical directions and the

resulting gradient images can be combined to form a gradient magnitude image and a gradient

direction. An example of the Sobel operator applied to an image is shown in Figure 7.17.

Figure .: Sobel filtering applied to the Bricks scene. e Sobel magnitude is the output of the
Sobel operator and is always positive.

7.3.1.2 Image entropy

Entropy is a measure of how much information is contained in a signal (Shannon, 1948). Entropy

is a statistical measure of randomness in a system. e first order (histogram) entropy is defined

for an image as:
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E = −
∑

(pi log(pi)) (7.4)

Where pi is the number of pixels with intensity value i within the region of interest (that is, p

represents the region histogram).

e entropy can also calculated using the grey-level co-occurrence matrix (GLCM) (Haralick

et al., 1973). e GLCM Cij is an N ×N matrix where N is the number of grey levels present in

the image (i.e. 255 for an 8-bit image). A GLCM is defined for a particular displacement operator,

e.g. d = (x, y). Given an image I(u, v), e entry C[i, j] is defined as the number of pixels for

which I(u, v) = i and I(u+ x, v + y) = j. e entropy can then be defined as:

E = −
∑
i

∑
j

Cij logCij (7.5)

is definition varies slightly from the first and is slightly more challenging to calculate, as it

requires a choice of displacement operator. For texture analysis, the operator is typically chosen to

be large enough to cover the type of texture to be identified.

For simplicity and speed, the first order entropy was used. Histogram computation is compar-

atively fast as it is linear in the number of intensity levels, rather than quadratic. Figure 7.18 shows

the 5x5 local entropy for an example image.

Figure .: Local entropy map for Bricks with a 5 x 5 neighbourhood.

Like the gradient operator, higher values of image entropy correlate to well-textured image
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regions such as the bricks. e computer chassis behind the bricks, with a largely uniform intensity,

has a low entropy. Unlike the gradient, no spatial information is preserved by the entropy.

7.3.1.3 SIFT keypoint distance

ere is a strong correlation between the distribution of initial Gotcha seed points and the final

disparity map. is is expected, since these seed points are typically located in high texture regions.

e seed point distribution also encodes coarse information about occlusions, as occluded features

are not matched in the initial stage of Gotcha.

Seed point density was not chosen as a texture metric because it requires specifying a region of

interest. An alternative metric is the distance to the nearest seed point (DNSP). Given a list of i

pixels (xi, yi) and a list of j seed point locations (xsj , ysj), the DNSP for each pixel is equal to:

DNSP(xi,yi) = argmin
i
(
√

(xsi − x)2 + (ysi − y)2) (7.6)

is is a nearest neighbour search and, computationally, is equivalent to constructing a Voronoi

tessellation (Aurenhammer, 1991) from the seed points. e DNSP is therefore the distance from

each pixel in a Voronoi cell to the seed point corresponding to that cell. Figure 7.19 shows an

example of a left stereo image, matched SIFT seed points and the resulting DNSP.

7.3.1.4 Benchmark results

Stereo pairs from the Middlebury dataset (Section 3.2.3) were used to provide training data for the

classifier. For each stereo pair, the image entropy, gradient magnitude (Sobel) and per-pixel DNSP

was calculated. Each stereo pair was matched using Gotcha with the same (default) settings and

the disparity maps were converted into binary representations where a ‘1’ pixel indicates a match

was found.

Comparisons between pairs of texturemetrics, showing howmany pixels aremarked asmatched

or unmatched are shown in Figure 7.20.

Comparing the performance of each parameter individually, entropy performs well with separ-

ated maxima for matched and unmatched pixels. Using the Sobel gradient magnitude alone is not

sufficient, but when combined with for example entropy Figures 7.20a and 7.20b the two distribu-
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(a) (b)

(c)

Figure .: (a)Matched SIFT keypoints (red dots) in the Bricks scene (b) Voronoi cells produced
from the set of matched keypoints. Larger cells imply a further distance to the next closest seed.
(c) Per-pixel DNSP generated using matched keypoints.

tions are more distinct. e results suggest that DNSP is a good metric for determining whether

a pixel will be matched (DNSP <∼ 30 px), but is best combined with entropy.

Empirically, matched points tend to have a DNSP of under 35-40 px, an entropy greater than

2 and a gradient magnitude less than 0.02. e local entropy window size did not affect the results

significantly.

7.3.2 Prediction

Predicting whether a pixel will be matched or not, given a number of textural cues, can be posed

as a binary classification problem. ere are many techniques for binary classification. Among

the more popular are neural networks, k-nearest neighbours, support vector machines (SVMs),

decision trees and random forests. e performance of a particular classifier can be characterised

using a confusion matrix, defining the following properties:
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(a) (b)

(c) (d)

(e) (f )

Figure .: Number of pixels matched and unmatched (out of 14M pixels) for various combina-
tions of local 5 x 5 entropy, gradient magnitude and DNSP. (a) entropy vs gradient, matched, (b)
entropy vs gradient, unmatched, (c) DNSP vs entropy, matched, (d) DNSP vs entropy, unmatched,
(e) DNSP vs gradient, matched, (f ) DNSP vs gradient, unmatched.

172



7.3. Match prediction

• True positive (TP)

• True negative (TN)

• False positive (FP)

• False negative (FN)

A positive result was defined as a pixel being matched. Using these figures, further metrics can

be calculated such as the precision:

P =
TP

TP + FP (7.7)

and recall:

R =
TP

TP + FN (7.8)

False negative results, pixels which are incorrectly marked as unmatched, might cause the

LIDAR to be scanned where it does not need to be. On the other hand if there are many false

positive classifications, large areas of the image may remain unmatched. us both high precision

and recall scores are desirable, but a high precision is more important.

ree binary classifiers were evaluated: linear support vector machine (SVM), random forest

(RF) and nearest neighbour (NN). e performance of each classifier with respect to varying the

size of the training data is shown in Figure 7.21. Training was performed 10 times for each sample

size. Training points were randomly sampled and then tested on 1 M randomly sampled points

held back from the training set.

e performance of the NN and RF classifiers appeared to be stable above 10k training points.

e SVM performed similarly, but there was a stronger dependence on the set of training points

used. Training sizes orders of magnitude larger than this did not yield significantly better classi-

fication performance. Given the smooth shaped clusters shown in Figure 7.20, this result should

be expected. Using 10k training points, the classification time per pixel was 14.3 µs for RF, 34.3

µs for NN and 45.2 µs for SVM. Classification is well-suited to parallelisation, since each pixel is

labelled independently.
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(a) (b)

Figure .: Precision and recall curves for RF, NN and SVM classifiers as a function of the
number of training points.

When applied to test images, small holes in the predicted map were filled. Next, binary erosion

were performed to remove any remaining isolated points in the predicted map. Representative

predicted matching maps for the 5 scenes in Section 6.4 are shown in Figure 7.22, classified using

a RF trained on 50k points.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure .: BinarisedGotcha disparity maps for Bricks, Chair, Corner, PotPlant and Biba scenes
(a-e). Disparity maps predicted using a random forest classifier trained on 50k points (f-j). White
areas denote matched regions.

e classifier tended to be overly optimistic with regard to howmuch of the image wasmatched,

but unmatched regions were generally well identified.
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7.3.3 Intelligent image texturing

Using the classifier, it was possible to selectively texture images in predicted unmatched regions.

In order to best exploit existing image texture, stereo pairs were matched without any additional

illumination. In parallel with this, the classification result was used to produce a masked random

dot pattern in featureless regions only. e masked pattern for Bricks is shown in Figure 7.23.

(a) (b)

Figure .: Masked LIDAR random dot pattern for Bricks. e pattern is generated only in
image regions that are classified as featureless.

e disparity maps from the stereo images with ambient illumination were combined with

the disparity maps from the selective texture projection images. If any holes in the disparity map

remained, they were filled using the iterative scanning technique described in Section 6.5.2. An

example workflow for Bricks is shown in Figure 7.24.

In this case, the initial number of LIDAR points used was 12000 which was reduced to 3957

after image classification. After gap filling, 7983 LIDAR points were used in total. In comparison,

using a progressive LIDAR scan with occlusion detection (Section 6.5.3) required 21417 points.

is is a reduction in LIDAR points of over 60%. is technique is most effective when there is

significant texture available in the scene. Otherwise, texturing the entire image is an appropriate

strategy for robust matching.

7.4 Conclusions

In this chapter, two methods for texturing an image using a LIDAR were described. It was shown

that texture projection using a LIDAR enables robust and dense disparity map generation. Ran-
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Figure .: Workflow for intelligent image texturing using the Bricks scene as an example. e
final unmatched regions on the left and right edges are parts of the image which are occluded.

dom dot patterns were created by combining images acquired of a visible LIDAR spot or by sim-

ulating the images of the spot given a system cross-calibration. Both methods were found to be

effective, particularly when the pattern is combined with ambient light imagery.

A binary classifier was developed that was capable of predicting which parts of a stereo pair

would be unmatched using Gotcha. e classifier was used to generate masked random dot pat-

terns exclusively in featureless image regions. Matching this pattern and ambient light imagery

allowed for exploitation of natural image texture, supplemented with artificial texture where neces-

sary.

Results from indoor and outdoor scenes were presented, demonstrating that LIDAR texture

generation is versatile and can be applied to pre-existing systems without modification. It was

found that a relatively sparse scan is sufficient, with an asymptotic improvement in the number of

matched pixels as the number of LIDAR points increased. For the test imagery, relatively sparse

scans containing less than 20 k points were suitable. Selectively texturing the image reduced the

number of LIDAR points required, though this relies on there being some texture in the ambient

imagery.

is further reduction in the number of LIDAR points required is commercially relevant.

Dense, fast-scanning, commercial systems produce vast quantities of data per scene and reducing
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the number of points necessary for analysis may enable real-time applications. Bespoke LIDAR

scanning systems using galvanometers or gimbals in combination with an accurate 1D LIDAR are

quite slow. However these systems are more accurate and are significantly cheaper to construct

compared to COTS 3D scanning LIDAR systems. e bottleneck is typically the LIDAR units

which are available with sampling rates of up to around 100 Hz. Scans requiring tens or hundreds

of thousands of points are therefore impractical for many real-world applications. Using the tech-

niques in this chapter, less than 20 k LIDAR points were required for dense matching in all the test

scenes. Such a scan would take around 5-6 minutes using a 100 Hz system which is approaching

the limit of acceptability for static industrial inspection tasks.
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From a survey of previous studies of data fusion of stereo matching with additional range inform-

ation for the purpose of disparity map improvement (Section 3.3.2), it is clear that most previous

research focused on ToFCs. Comparatively little research had been performed into using LIDAR.

Most solutions aimed to solve the issues of stereo matching in featureless regions by either directly

filling in unmatched regions, a posteriori, or by constraining the stereo matching process based on

additional range information a priori.

is work explored data fusion of stereo with LIDAR in detail, considering the complement-

arity of the two techniques. Stereo matching can provide dense reconstruction in well textured

regions and LIDAR can provide sparse, but accurate and robust measurements elsewhere. Two ap-

proaches were taken: in Chapter 6, LIDAR measurements were used, a priori, to generate robust

correspondences to seed a region growing stereo matcher (Gotcha, Section 6.2). In Chapter 7,

LIDAR was used to generate artificial texture in featureless regions. In both cases significant im-

provements in the number of matched pixels were observed compared to matching images with

ambient illumination alone.

Imaging the LIDAR spot directly (Section 4.3.2) provides robust correspondences between the

two views and this fact has been repeatedly exploited for the purposes of fast and accurate camera

calibration (Section 5.4), tiepoint generation for stereo region growing (Section 6.3) and texture

projection (Section 7.2). LIDAR spot imaging is not limited to visible light, but visible systems

allow the scene to be imaged in colour, whereas a NIR system would require a removable bandpass

filter. In Chapters 6 and 7 it was shown that provided a cross-calibration exists between the stereo

and LIDAR systems, the LIDAR spot need not be directly visible.

Since stereo matching excels when the input images contain strong texture, it was proposed

that the LIDAR should be scanned where stereo matching was expected to fail. By progressively
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scanning the LIDAR at increasingly high angular resolution in unmatched regions and/or predict-

ing which parts of an image would be unmatched prior to starting the scan, the number of LIDAR

scan points required for a particular scene required to densely reconstruct scenes (Sections 6.5 and

7.3) was reduced. Indoor and outdoor stereo matching benchmark datasets were used for testing

as well as several novel challenging indoor scenes. Stereo image matching was performed using

Gotcha and SGM for comparison. A key observation was that many scenes which were appar-

ently featureless, to the extent that stereo matching failed, still contained sufficient local texture to

enable matching guided via LIDAR-derived correspondences.

System design choices are dictated by project requirements and there are wide variety of camera

arrangements and LIDAR systems to choose from. With this in mind, the methods presented for

disparity map improvement are largely agnostic to the hardware used. e LIDAR and scanning

system used for this work were chosen with accuracy as a priority, rather than acquisition speed.

e ability to selectively point the LIDAR, combined with efficient scanning patterns, significantly

reduced scanning times, depending on the scene. e calibration method in Chapter 5 requires a

visible LIDAR system, but places no specific requirements on the cameras used.

e scanning system described in Chapter 4 is not suitable for real-time operation, for example

onboard a moving vehicle. It is nevertheless a cheaper and more accurate alternative to COTS scan-

ning LIDAR systems which currently cost tens of thousands of pounds. If the system acquisition

speed was improved to more than 1k pt/s, resulting in scan times of seconds to minutes, it would

be usable for tasks like industrial inspection of static objects. On the other hand, LIDAR-seeded

stereo matching and texture projection were shown to be possible using existing sensor platforms

such as the KITTI robotic car (using a Velodyne LIDAR), without modification.

Overall this research has demonstrated that integration of scanning LIDAR measurements

into stereo camera systems is beneficial: providing accurate ground truth, intrinsic and extrinsic

self-calibration and improved disparity maps in featureless or low-texture scenes. As systems in-

tegrating multiple depth sensors are becoming increasingly common, the results from this work

reinforce the advantages of merging active range data with passive stereo imaging.

8.1 Thesis Contributions

In summary, this thesis provides three main contributions to the field:
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1. (Chapter 5) A method of calibrating either a single camera or a stereo camera system using

a visible-beam scanning LIDAR. e LIDAR is used to generate robust calibration points

and both intrinsic and extrinsic calibration is possible without an explicit calibration target.

2. (Chapter 6) A method for integrating a scanning LIDAR into a region-growing stereo

matching algorithm (Gotcha). By using LIDAR measurements as seed correspondences,

it is possible to both improve matching in featureless regions while reducing the number of

LIDAR points needed to densely reconstruct the scene.

3. (Chapter 7) A method for using a scanning LIDAR to generate texture in featureless image

regions. Alongside this, a classifier was developed which was capable of identifying which

parts of an image were likely to be unmatched. Classification results were then used to guide

the LIDAR scan initially to avoid redundant measurements.

8.2 Recommendations for further work

Testing was performed in a laboratory environment, with the exception of the use of Middlebury

and KITTI benchmark data. While effort was taken to develop scenes that were particularly

challenging for stereo matching, it would be beneficial to acquire data from a wider variety of

environment types. Due to the acquisition speed of the system, outdoor testing was only performed

on benchmark data and given the suitability of LIDAR for long range, outdoor measurements,

such scenes would be useful. In addition to this, the data fusion algorithms should be tested using

different LIDAR and camera systems.

e acquisition speed of the system could be improved in a number of ways. A galvanometer

scanner would allow a much more compact system with improved scanning speeds. Similarly the

LIDAR used was chosen for precision and accuracy, and is slow at only 20 Hz. Faster 1D LIDAR

systems are available, for example from Acuity (Portland, USA) 1. A major bottleneck for direct

LIDAR spot imaging is the camera frame rate. High end machine vision cameras offer 150 fps

at full resolution, or higher if only part of the sensor is read out. Exploiting this to only read out

the sensor region where the laser spot is predicted to fall would improve performance up to several

1http://www.acuitylaser.com, accessed 20/8/2016
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hundred fps. is could be achieved using the mapping between LIDAR spot location and scan

angle described in Section 6.5.1.

e use of a visible LIDAR system provided several advantages over a NIR system, namely that

the laser spot was easily identified in colour imagery which is useful for texturing and calibration.

On the other hand, as shown in the PotPlant scene (Figure 6.5), vegetation was not reconstructed

well. Further testing is suggested, using a wider variety of plants with differing leaf sizes and

geometries. Alternatively a NIR LIDAR system could be used, to take advantage of better leaf

reflectance.

A ‘black box’ camera calibration system that requires no significant human interaction or op-

erator expertise would be well suited for commercial development. So far, the calibration routine

was only tested using high quality, low-distortion machine vision lenses. e method should also

be applicable to fisheye lenses, with an appropriate choice of camera model. ese lenses pose

a greater challenge for calibration due their more complicated distortion characteristics and very

wide field of view. Since calibration points should ideally be distributed across the field of view,

this would require a scanner with a suitably large angular scan range.

Stereo matching prediction was only used to direct where the LIDAR should be scanned, but

this kind of classification could also be applied to other fields such as planetary mapping. Match

prediction could also be used as a diagnostic tool to optimise scene illumination, for example by

identifying image regions that do not contain sufficient texture. e classifier was only trained using

Gotcha and a small number of textural metrics, which are unlikely to be optimal. Other texture

metrics could be explored and the classifier applied to different stereo matching algorithms.

In general the methods described in this thesis could be used to reduce the number of LIDAR

points required in data fusion applications. As real-time scanning LIDAR systems generate vast

quantities of data (potentially millions of 3D points every second), a reduction in the number of

necessary points is beneficial. For instance, an autonomous vehicle controller might choose to

discard every other LIDAR point if it was determined that it would not negatively impact scene

reconstruction.

Ultimately a more extensive analysis of the trade-off between acquisition time (many measure-

ments) and accuracy (fewer, slower, measurements) should be performed. To avoid the significant

capital outlay for a scanning LIDAR system, this could be performed by acquiring a high accur-

acy scan with a slower, lower cost, system and simulating a faster system by degrading the data
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artificially.

8.3 Open problems

e goal of the ‘ideal’ imaging system described in Section 1.3 has not yet been realised. Although

there have been significant advances in stereo matching algorithms over the past 20 years, solving

the correspondence problem is still challenging and will likely remain so for the near future. Ste-

reo vision systems will continue to be relevant as colour imagery provides important contextual

information that is lacking from pure range sensors.

COTS 3D scanning LIDAR systems are still not affordable formany applications and are bulky.

It is reasonable to assume that LIDAR systems will become progressively miniaturised using, for

example Microelectromechanical Systems (MEMS) technology. Flash LIDAR (Section 2.4.4)

is not yet available as a COTS product, but will likely benefit from economy of scale once the

technology matures. Due to physical and geometric limitations, ranging methods like ToFCs and

laser triangulation remain suited to specific applications such as indoor or close-range operation.

In light of this, data fusion is an attractive and proven solution to deal with the deficiencies of

different sensors. Large emerging markets such as autonomous vehicles and portable electronics

are likely to be the main driver behind these new technological developments.
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