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Abstract 
Energy and climate policy-making requires strong quantitative scientific evidence to devise 

robust and consistent long-term decarbonisation strategies. Energy system modelling can 

provide crucial insights into the inherent uncertainty in such strategies, which needs to be 

understood when designing appropriate policy measures.  

This study contributes to the growing research area of uncertainty analysis in energy system 

models. We combine consistent and realistic narratives on several technology dimensions 

with a global sensitivity analysis in a national, bottom-up, optimizing energy system model. 

This produces structured insights into the impact of low-carbon technology and resource 

availability on the long-term development of the UK energy system under ambitious 

decarbonisation pathways. We explore a variety of result metrics to present policy-relevant 

results in a useful and concise manner. The results provide valuable information on the 

variability of fuel and technology use across the uncertainty space (e.g. a strong variation 

in natural gas demand). We demonstrate the complementarities and substitutability of 

technologies (e.g. the dependency of hydrogen technologies on the availability of CCS). 

We highlight critical low-carbon options and hedging strategies (e.g. the early 

decarbonisation of the electricity sector or the stronger use of renewable sources as a 

hedging against failure in other technologies) and demonstrate timing and path 

dependencies (e.g. the importance of early decarbonisation action in the presence of 

multiple technology uncertainty). The results also show how the availability of a given 

technology can have wider impacts elsewhere in the energy system, thus complicating the 

management of a long-term energy transition. 

Keywords: Energy systems analysis; sensitivity analysis; uncertainty; emission reduction; 

low-carbon technologies; 

1. Introduction 

Quantitative energy modelling currently plays a fundamental role in informing decision-making in 

energy and climate policies on efficient long-term decarbonisation strategies, both on a global (IEA, 

2015a) and national level (Ekins et al., 2011). Given the uncertainty and complexity of future low-

carbon pathways, these energy-economic studies usually present their results as a small set of 

qualitatively different scenarios which can be described as “plausible, challenging and relevant stories 

about how the future might unfold” (Raskin et al., 2005).  

In brief, the modelling/policy process works as follows.  Decision makers rely upon policy reports for 

objective and balanced information. The development of a policy report is supported by the results of a 

modelling exercise. And these reports are used to help set long-term target levels for emission reduction, 

energy efficiency or use of renewable energies and outline the major technology strategies to fulfil these 

objectives. But particularly when analysing national policy reports, it becomes obvious that they usually 

rely on a small set of scenarios (e.g. DECC, 2011a; EWI et al., 2010) derived from deterministic energy 

system models. While acknowledging the need to deliver clear and concise messages to policy makers, 
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it is apparent that such analyses are limited in terms of their description of uncertainty in the projected 

decarbonisation pathways they report. This may lead to an overreliance on certain technologies or 

mitigation strategies which feature strongly in the presented scenarios (availability bias).  

While climate analysis has already progressed considerably in terms of uncertainty analysis (cf. for 

example IPCC (2014)), it still seems to be an emerging technique in energy systems studies. Different 

approaches to represent uncertainty in energy-economic models can be observed in literature. The most 

common methods are Sensitivity Analyses evaluating the variability of the model output as a function 

of changing input parameters in deterministic models (Saltelli et al., 2010). In order to further include 

interactions between input parameters, Global Sensitivity Techniques, which vary several uncertain 

input parameters at a time to explore the interaction effects, in some cases through probabilistic and 

Monte Carlo methods, have been developed (Wainwright et al., 2014). Recent studies with global 

sensitivity approaches in energy systems research are van Vuuren et al. (2008), Anthoff & Tol (2013), 

Anderson et al. (2014), Branger et al. (2015), Pye et al. (2015) and Usher (2016). Other methods include 

Stochastic Modelling (Krey et al., 2007; Keppo & van der Zwaan, 2012, Usher & Strachan, 2012; 

Labriet et al., 2012; Syri et al., 2008; Kanudia & Loulou, 1998; Seljom & Tomasgarda, 2015), 

Modelling to Generate Alternatives (MGA) (DeCarolis, 2011; Trutnevyte, 2013; Voll et al., 2015) and 

Multi-model comparisons (Knopf et al., 2013; Tavoni et al., 2013; Weyant & Kriegler, 2014; Kriegler 

et al., 2015).  

Some background on these modelling techniques is provided in Table A-1 in the Annex. Most of these 

advanced uncertainty methods lead to a rising number of scenarios. This surely leads to a better 

exploration of the uncertainty space, but at the same time it has to be made sure that such studies produce 

relevant and transparent policy insights (Trutnevyte et al., 2016.) 

This study contributes to the growing research area of uncertainty analysis in energy system models. 

Using the approach of a global sensitivity analysis in a national, bottom-up, optimizing energy system 

model, the aim is to identify which low-carbon technologies and resources have the most influence on 

the long-term development of the UK energy system under ambitious decarbonisation pathways. Our 

motivation stems from the fact that most forward looking scenarios rely on the rapid scaling up of 

technologies, that currently either occupy a fairly small niche, but have not yet demonstrated the 

capability of such growth or entered commercial markets. While it seems likely that at least one of the 

technologies will be able to scale up, it seems equally likely that at least one of the technologies will 

suffer an unforeseen setback. Our analysis aims to see how sensitive the outcomes are to the failure of 

one or more key technologies, what are the interactions between the technologies and at what point 

reaching targets may become difficult. We emphasise the relevance to policy by (1) basing the 

quantitative scenario analysis on consistent and, in the UK context, realistic narratives for each 

technology dimension; (2) limiting the analysis to a manageable number of scenarios such as to have 

sufficient variability to assess the effect of technology uncertainty, while still being able to analyse each 

scenario in detail and (3) exploring various metrics to present the results across the scenario matrix in 

an insightful and concise manner. The limited number of dimensions of uncertainty allows us to conduct 

a global sensitivity analysis by computing scenarios for the all the combinations of the combinations of 

parameters. 

The paper is structured as follows. Chapter 2 provides an overview of the methodology, including a 

description of the modelling framework, the qualitative technology narratives and the approach for the 

sensitivity analysis. The result metrics for the quantitative scenario analysis are presented in Chapter 3 

focusing on the reference case, variability in fuel use, emissions and cost indicators as well as insights 
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on technology complementarity and substitutability. The paper concludes with a discussion of findings 

and policy implications in Chapter 4. 

2. Methodological approach 

2.1. The national energy system model UKTM 

We use the new national UK TIMES energy system model (UKTM)(Daly et al., 2015; Fais et al., 2016a) 

to conduct a quantitative scenario analysis. UKTM has been developed at the UCL Energy Institute 

over the past two years as the successor to the UK MARKAL model (Kannan et al., 2007). It is based 

on the model generator TIMES (The Integrated MARKAL-EFOM System), which is developed and 

maintained by the Energy Technology Systems Analysis Programme (ETSAP) of the International 

Energy Agency (IEA) (Loulou et al., 2005).  

UKTM is a technology-oriented, dynamic, linear programming optimisation model representing the 

entire UK energy system from imports and domestic production of fuel resources, through fuel 

processing and supply, explicit representation of infrastructures, conversion to secondary energy 

carriers (including electricity, heat and hydrogen), end-use technologies and energy service demands. 

Generally, it minimizes the total welfare costs (under perfect foresight) to meet exogenously defined 

sector energy demands under a range of input assumptions and additional constraints.  The model 

delivers a cost optimal, system-wide solution for the energy transition over the coming decades.  

The model is divided into three supply side sectors (resources & trade, processing & infrastructure and 

electricity generation) and five demand sectors (residential, services, industry, transport and 

agriculture). All sectors are calibrated to the base year 2010, for which the existing stock of energy 

technologies and their characteristics are known and taken into account. A large variety of future supply 

and demand technologies are represented by techno-economic parameters such as capacity factor, 

energy efficiency, economic lifetime, capital costs, O&M costs etc. The investment cost assumptions 

for the most important electricity generation technologies are presented in Table A-2 in the Annex. The 

model also includes assumptions for attributes not directly connected to individual technologies, such 

as energy prices, resource availability and the potentials of renewable energy sources. UKTM has a 

temporal resolution of 16 time-slices (four seasons and four intra-day times-slices). In addition to all 

energy flows, UKTM tracks CO2, CH4, N2O and HFC emissions. For more information on UKTM see 

Fais et al. (2016b). 

In addition to its academic use, UKTM is the central long-term energy system pathway model used for 

policy analysis at the Department of Energy and Climate Change (DECC) and the Committee on 

Climate Change (CCC). 

2.2. Technology uncertainty dimensions 

To arrive at a comprehensive picture of the potential impacts of technology (and resource) uncertainty 

on the decarbonisation pathways in the UK, 5 key low-carbon technology dimensions have been chosen 

for the sensitivity analysis: nuclear energy, carbon capture and storage, bioenergy, renewable electricity 

and demand-side change. For each dimension, a consistent narrative for, both, the central case and the 

sensitivity variant, has been developed and then further translated into quantitative model input 

assumptions (Table 1). 

Nuclear energy (N) 

According to the most recent government cost estimates, nuclear energy is currently the low-carbon 

technology with the lowest generation costs in the UK (DECC, 2013) and is therefore at the centre of 
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the government’s decarbonisation strategy with a contribution of up to 75 GW by 2050 (compared to 

the current 11 GW) according to the UK’s Carbon Plan (scenario “Higher nuclear; less energy 

efficiency”; DECC, 2011a).  

But even though nuclear power constitutes a proven technology and has contributed to electricity 

generation in the UK for more than five decades, a number of uncertainties surround its future 

development, most importantly with respect to costs and public acceptance. Nuclear power costs have 

recently risen considerably, leading to long delays in starting construction as well as difficulties in 

finding investors.  The future competitiveness of nuclear power with other low-carbon technologies is 

far from certain (Birmingham Policy Commission, 2012; Tyndall Centre, 2013). Public acceptance of 

nuclear energy is generally relatively high in the UK compared to other countries (Poortinga et al., 

2013), but it remains to be seen whether the possible delays and significant cost increases for the first 

planned new-built plant since 1995 at Hinkley C could have a deteriorating effect.  

Accordingly, in the central case, assuming that investments in nuclear energy are rejuvenated and public 

opinion is favourable, nuclear capacity is allowed to grow to a maximum of 33 GW until 2050 in line 

with the current central government estimate based on the Dynamic Dispatch Model (DDM) (DECC, 

2012a) and the core scenario of the Carbon Plan (DECC, 2011a). In contrast, under the technology 

variant nuclear (N), based on the aforementioned barriers in terms of financial investors and public 

acceptance, we analyze the extreme case of no new nuclear projects being realized in the UK until 2050.  

Carbon capture and storage (C) 

Carbon capture and storage (CCS) is the only technology with which the continued use of fossil fuels 

in electricity generation and industrial processes is compatible with a low-carbon transition.  CCS is 

therefore seen as a crucial component of a long-term emission reduction pathway in the UK. The 

important role of CCS technologies had also been recognized by the UK government in their CCS 

Roadmap from 2012 (DECC, 2012b).  

At the same time, CCS technology is at an early stage of development and has not been yet technically 

proven at full scale. The important risk factors concerning the future deployment include technology 

and constructions risk, the future competitiveness compared to other low-carbon options, the financial 

feasibility of CCS projects, infrastructure and storage risks, the regulatory framework, as well as the 

public acceptance of CCS (Watson et al., 2012). The high uncertainty is reflected in the current political 

situation in the UK where the CCS Commercialisation Competition, providing £1 billion capital 

funding, has just been cancelled (HM Government, 2015).  

Thus, in the central case of this sensitivity analysis, it is assumed that these challenges are overcome 

and CCS technologies in electricity generation, industry and hydrogen production are commercially 

available from 2020 onwards (CCS plants with bioenergy from 2030). In addition, for all CCS 

technologies an annual capacity growth constraint of 10% is applied. In light of the considerable risks, 

the technology variant carbon capture and storage (C) assumes that CCS technologies will unavailable 

in the UK before 2050.  

Bioenergy (B) 

Bioenergy can play a crucial role in decarbonisation strategies as it is highly versatile. With usage 

options in electricity, heat and transport, biomass offers dispatchable, predictable and controllable 

energy output. Moreover, the potential of biomass with CCS to deliver negative emissions is often 

highlighted as a crucial carbon reduction technology (IPCC, 2014). On the other hand, concerns are 

voiced regarding the sustainability of biomass production for energy and its impacts on food production 



5 
 

and other environmental targets, such as biodiversity (Immerzeel et al., 2014). Additionally, the actual 

emission reductions achievable with bioenergy may be considerably lower if the lifecycle impacts are 

taken into account (IEA, 2011 and IEA, 2012). 

The bioenergy potentials and costs in this scenario analysis are based on the Committee on Climate 

Change’s Bioenergy Review for the UK (CCC, 2011a). In our central case, we use the medium scenario 

“Extended Land Use” with total bioenergy potential reaching about 1300 PJ per year in 2030 compared 

to a biomass use of about 400 PJ in 2015.  The potential covers both imports and domestic resources of 

dedicated energy crops, forestry and agricultural residues as well as waste. In this scenario, less than 

10% of the UK’s arable land would be used for dedicated energy crops. This potential is then held 

constant until 2050 assuming that both the maximum sustainable yield for domestic resources and the 

maximum import volume are reached (in contrast to the CCC report where falling bioenergy imports 

are expected). In the technology variant bioenergy (B), the projection for the domestic biomass 

resources is based on the scenario “Constrained Land Use”, reflecting lower crop yields and tighter 

social and environmental constraints on biomass production where only 5% of the UK’s arable land are 

used for dedicated energy crops. We also assume that no bioenergy imports are available in the UK 

from 2020 onwards, limiting the available biomass to around 380 PJ per year over the model horizon. 

In both cases, biomass resources are assumed to be carbon-neutral following the bioenergy emission 

accounting approach of the EU Renewable Energy Directive (EC, 2009). The optimization approach is 

free to choose where and when the bioenergy is used, allowing us to explore the competition between 

different sectors and technologies and the most cost-efficient deployment areas.  

Renewable electricity (R) 

The UK has considerable potential for renewable electricity generation, most importantly for onshore 

and offshore wind energy (DECC, 2011b). As of writing, the UK currently has the highest installed 

capacity of offshore wind turbines in the world (DECC, 2014a) and has experienced significant growth 

in solar PV installations (BEIS, 2016). However, several issues affecting the UK renewable industry 

need to be highlighted. Most importantly, concerns are raised regarding the stability of government 

support (Raconteur, 2014; renewableUK, 2015a), most clearly demonstrated in the recent deep cuts to 

solar and onshore wind subsidies (DECC, 2015).  The change in subsidy level has strongly affected 

local supply chains. Wind power faces considerable local opposition in the UK, mostly due to the visual 

impacts (McLaren Loring, 2007; Haggett, 2011).  Uncertainty also exist regarding the future cost 

development of both less mature technologies, such as marine or geothermal energy, and more mature 

technologies such as offshore wind farms as they move to more challenging environments further away 

from shore (Heptonstall et al., 2012; Higgins and Foley, 2014; Perveen et al., 2014). Lastly, the issue 

of integrating large amounts of intermittent and decentralized renewable generation into the UK power 

system needs to be recognised, leading to additional costs and possible constraints on their overall use 

(Strbac et al., 2015).  

In the scenario analysis, both the future potential and cost assumptions are varied. In the central case, a 

high technical resource potential (> 400 GW) and learning effects are implemented for renewable 

sources in the UK, while under the technology variant renewable electricity (R) the renewable potential 

is restricted to 51 GW (without hydropower) - reflecting acceptability as well as system integration 

issues - and costs remain at the current level (see Table A-3 in the Annex for more detail). 

Some limitations need to be mentioned regarding the representation of intermittent renewables in 

UKTM. While the necessary back-up capacity for intermittent renewables is accounted for, it has to be 

noted that the spatial (UK as one region) and temporal granularity of our model (with 16 time-slices) is 

not ideal for capturing the impacts of decentralized generation as well as the interplay between varying 

demand and supply. Some system effects and costs (in terms of required storage capacity, grid 
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expansion and demand response) are not fully reflected in a whole energy system model such as UKTM 

requiring details operational simulation. 

Demand-side change (D) 

While the other technology dimensions focus primarily on supply technologies or resource availability, 

the dimension of demand-side change (D) is introduced to acknowledge the importance of the demand 

side for emission mitigation. While a variety of studies have identified substantial abatement potentials 

at comparatively low or even negative costs in the industry, buildings and transport sectors (cf. for 

example McKinsey, 2007 and IEA, 2015b), in reality many of these potentials are not exploited and the 

rate of diffusion of novel technologies is considerably lower than what would be expected from the 

socially cost-optimal perspective. This phenomenon, referred to as the energy paradox or the energy-

efficiency gap, can be explained by a variety of market failures and barriers, such as limited information, 

transaction cost, risk adversity or market heterogeneity (Jaffe & Stavins, 1994). 

In energy system optimisation models, such barriers are incorporated by either limiting market share, 

applying hurdle rates or constraining the diffusion rate of innovative technologies (Mundaca et al., 

2010; Dodds & McDowall, 2014; Yang et al., 2015). 

In this scenario analysis, the dimension D focuses on the diffusion rates of demand-side technologies 

and the demand response to changing energy service prices. Historic diffusion rates in energy systems 

have been analysed in several studies (cf. for example Grübler et al., 1999 and Wilson et al., 2013). 

Usually, growth rates between 10% and 15% are applied to all new demand technologies in UKTM. 

However, given the evidence of diffusion rates of less than ten percent in some studies (cf. for example 

Höök et al., 2012), these rates are halved to 5% to 7.5% for innovative and highly efficient demand-

side technologies under the technology variant D2. Moreover, the long-run own-price elasticities that 

are attached to the different energy service demand categories, are lowered to -0.01 to -0.5 instead of -

0.03 and -0.7 in the central case (based on Pye et al. (2014)). 

                                                           
2  Lower diffusion rates are applied to: 

 Buildings: heat pumps, solar heating systems, micro-CHPs, conservation technologies; hydrogen 

pipelines to the residential and services sectors are disabled 

 Transport: hydrogen and electric (including plug-in hybrids) vehicles 

 Industry: all process technologies which are beyond the current state of the art; hydrogen as well as high-

efficiency boilers 
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Table 1: Overview of technology dimensions 

  

2.3. Scenario matrix 

The quantified descriptions of the five technology dimensions (Table 1) are implemented in a 

comparative scenario analysis with UKTM. To explore the uncertainty space of the availability of the 

key low-carbon technology options in the UK, we conducted a global sensitivity analysis with scenarios 

for all possible combinations of the five dimensions. With 5 dimensions, each with 2 possible values, a 

scenario matrix of 32 (25) scenarios is established. This allows us to assess both the individual effects 

of each dimension, and also to understand the interaction effects of the availability of several low-

carbon options. In the results chapter, the scenarios are denoted by the one-letter abbreviation of each 

dimension that is restricted, e.g. the scenario where only nuclear energy is restricted is labelled N, the 

scenario where all 5 dimensions are restricted is labelled NCBRD. 

Apart from the technology assumptions described in Table 1, the standard input parameters of UKTM 

are used in the scenario analysis (Fais et al., 2016b). The projections for energy service demands are 

based on government forecasts of the development of household growth, employment, transport 

demand etc. and are in line with average annual growth rates of 2.1% for GDP and 0.4% for population 

(based on the DECC EEP model3 and ONS (2013) (low migration variant)). The assumptions for fossil 

fuel prices are taken from DECC (2014c). With respect to future technology costs, exogenous learning 

rates are applied, especially in the case of less mature electricity and hydrogen technologies, assuming 

that the UK is a price taker for globally developing technologies. A global discount rate of 3.5% p.a. 

for the first 30 years and 3% afterwards is used based on HM Treasury (2011). In addition, sector-

specific discount rates are included to reflect the varying private costs of capital by sector (10% for all 

energy supply sectors as well as the industry, agriculture and service sectors, 7% for transport and 5% 

for the residential sector; based on Strachan & Usher (2010) and CCC (2011)). 

All scenarios take the UK legislation on GHG emission limits into account, comprising the four five-

yearly carbon budgets that have been fixed so far until 2027 (CCC, 2013) and the long-term target of 

an 80% reduction until 2050 compared to 1990 (HM Government, 2008). In order to give the model 

flexibility with respect to the timing of emission reductions after the already implemented carbon 

                                                           
3  A description of the DECC EEP model can be found in DECC (2014b). The actual model runs underlying 

the demand projections for UKTM have not been published. 

Dimension Central Case Sensitivity

Nuclear (N)
New nuclear capacity limited to 
33 GW until 2050 

No additions after 2010

Carbon capture 
and storage (C)

• Capacity growth limited to 10% p.a.
• Maximum capacity of 45 GW in 

electricity generation 
• Available in 2020 (2030 for bio-CCS)

CCS does not become available in the 
UK

Bioenergy (B)
Total potential (imports + domestic):
1300 PJ per year

380 PJ per year

Renewable
electricity (R)

• High technical potential (> 400 GW)
• learning effects for all technologies

• Restricted potential (49 GW)
• higher cost assumptions for offshore 

wind & solar PV
• marine & geothermal not available

Demand-side 
change (D)

• Medium elasticities (-0.03 to -0.7)
• growth constraints of 10 / 15% p.a. 

on all technologies

• Low elasticities (-0.01 to -0.5)
• growth constraints lowered to 5% / 

7.5% for innovative and energy-
efficient technologies
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budgets, the long-term target is applied via a cumulative budget constraint covering the period from 

2028 to 2050 which results in the same total quantity of emissions as would a linear reduction pathway 

to 80% until 2050. Thus, the model also has the option to comply with the cumulative budget through 

early action, i.e. by realizing deeper emission cuts in earlier periods allowing a higher emission level in 

later periods. This means, that the cumulative target can be fulfilled without actually reaching an 80% 

reduction until 2050 if in earlier periods the emission reduction exceeds the linear reduction pathway.  

3. Results of the uncertainty analysis 

This section gives an overview on the most important outcomes of the uncertainty analysis focusing on 

the variability between the scenarios and the issue of complementarity or substitutability of 

technologies. First of all, it needs to be pointed out that for three of the most extreme cases, NCBR, 

NCRD and NCBRD, no feasible model solution fulfilling the given constraints (most importantly the 

cumulative carbon constraint) can be generated such that these scenarios are excluded from the results 

analysis. This result should not, however, be forgotten, as it suggests that with our assumptions the 

UK’s carbon target can only be met if at least some of the technologies in our analysis perform 

according to expectations and have the ability to diffuse strongly. The infeasible cases highlight the 

circumstances under which the UK’s achievement of its climate goals would be highly unlikely. If all 

other analysed technology options fail, under a higher biomass potential or less restricted demand-side 

diffusion, the model fails to reach the UK’s carbon target under the given scenario assumptions.  

3.1. The reference case 

In order to set the reference point for the uncertainty analysis, this section briefly describes the energy 

system results for the reference case, in which all technologies follow the Central Case assumptions 

(Figure 1). The most significant changes occur in the electricity system with a complete phase-out of 

electricity generation from coal by 2025. With respect to electricity generation, the contribution of 

natural gas is also gradually reduced to almost zero by 2050, while a capacity of 16 GW of gas-powered 

plants is still required in 2050 as back-up capacity. In 2050, generation is strongly dominated by nuclear 

power (66%) and bio-CCS (20%), whereas wind power and other renewable source only play a minor 

role. Only limited electrification of the end-use sectors can be observed in the reference case with the 

total amount of electricity generated being at almost the same level in 2050 as in 2015. Until 2025, there 

is even a reduction in electricity demand due to efficiency gains (most importantly for lighting), a 

reduction in the use of night-storage heaters and falling demand levels in the industrial sector.  

Given the significant decarbonisation efforts in the electricity system, less drastic adjustments are 

required in the end-use sectors. Final energy consumption is reduced by about 16% between 2015 and 

2050 with the strongest reduction in the industrial sector. In terms of fuel use, final energy demand is 

still dominated by fossil fuels with a share of 62% in 2050 (compared to 81% in 2015). Due to the 

limited availability of biomass and its strong use for bio-CCS in the supply side, the role of bioenergy 

in the end-use sectors remains comparatively small. A gradual uptake of hydrogen, produced in 

centralized CCS plants and covering about 11% of final energy demand in 2050, occurs in car and light 

duty vehicle transport as well as in some industrial sectors for low-temperature heat generation. Overall, 

this relates to a reduction in primary energy consumption of 5% between 2015 and 2050. Total fossil 

fuel consumption is reduced by almost 40% in this period, but still covers more than half of primary 

energy consumption in 2050. The substantial reduction before 2025 is predominantly due to the phase-

out of inefficient coal power generation and a declining energy demand in the industry sector (mostly 

because of falling production levels).  
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Figure 1:  Overview on the reference case 

As explained in Section 2.3, implementing the 80% emission reduction target as a cumulative budget 

constraint gives the optimization approach more freedom with respect to the timing of the mitigation 

efforts. In the reference case, total GHG emissions decline by 76% by 2050 compared to 1990. The 

reference case complies with the cumulative carbon budget constraint and favours early action. Higher 

emission cuts are realised than a linear reduction path would imply, especially between 2030 and 2040, 

so avoiding investments in additional costly abatement options to reach the ambitious level of -80% in 

2050. As expected, emission mitigation is dominated by the electricity sector which is carbon-neutral 

by 2030 and accounts for 100 Mt of CO2eq of negative emissions in 2050 (due to the use of carbon-

neutral biomass with CCS). With respect to the end-use sectors, the highest reductions between 2015 

and 2050 are achieved in the industry (59%) and residential sector (49%) such that in 2050, the 

remaining GHG emissions are dominated by the transport sector. The carbon price (given in the model 

as the shadow price of the carbon constraint) rises from £27/tCO2eq in 2020 to £244/t CO2eq4 in 2050.  

It becomes obvious that in the reference case, decarbonisation is highly dependent on large-scale 

technologies such as nuclear power plants and bio-CCS. This enables a delay to mitigation efforts in 

the end-use sectors, most importantly in the transport sector. Yet, from a policy perspective, this can be 

an unbalanced and especially risky strategy as it depends on technologies and combination of 

                                                           
4  All monetary values stated in this paper are in real terms, with 2010 as base year. 
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technologies and resources with highly uncertain future costs and availability, which in some cases, 

have so far not even reached commercialization.  

3.2. Insights on variability across the whole scenario matrix  

Variability in fuel use 

Exploring the variability in fuel use across the entire scenario matrix provides insights into the long-

term uncertainty of decarbonisation pathways as a function of technology availability and performance. 

The analysis focuses on the variability at the endpoint of the model horizon, as represented in the box-

and-whisker plots for the most important fuel demands in 2050 shown in Figure 1. 

The strongest variability in 2050 can be observed for the use of natural gas, both in terms of the 

interquartile range which spans 1,500 PJ and in terms of the minimum (630 PJ) and the maximum value 

(5,500 PJ). Generally, restricting the various dimensions has a dampening effect on the use of natural 

gas (i.e. the median value is below the value in the reference case). As can be expected, the non-

availability of CCS has the strongest negative impact, whereas the gas demand is increased in scenarios 

which feature CCS but have restrictions on other low-carbon electricity options (i.e. scenarios with R 

and N). However, while there are scenarios with increased gas use in electricity generation, final use of 

gas is reduced in almost all of the restricted cases, as many of the restrictions imply that stronger 

mitigation efforts are required on the demand-side compared to the reference case. Taking into account 

the uncertainty in technology development, this result suggests that the pressure on demand side 

mitigation may be even stronger than normally shown by scenarios exercises in which all technologies 

perform as expected. 

Given the relevance of oil products in the transport sector, there is significantly less variability in oil 

use across the scenarios. Compared to 2010, oil demand is reduced between 38% and 74% with road 

transport fully covered by hydrogen and electricity in the more restricted cases, but substantial shares 

of petroleum products still required in aviation and shipping due to the limited availability of biofuels. 

Use of oil is at its lowest when low-carbon electricity generation is strongly restricted (scenario NCR), 

such that the transport sector has to contribute strongly to emission mitigation (through a high use of 

hydrogen and a small contribution of biofuels).  

While no clear trend towards stronger electrification can be observed in the reference case, emission 

mitigation through a higher use of electricity becomes more relevant in the restricted scenarios, with a 

variety of factors and combination of factors incentivising stronger electricity use. Both a limitation of 

the potential for negative emissions on the supply side (through restrictions on CCS and/or the 

bioenergy potential) and constraints on the rate of demand-side change lead to a higher electrification 

of the end-use sectors with the possibility of a doubling of electricity demand compared to 2010 in some 

of the extreme cases. The most significant increases in electricity use occur in the residential sector 

through an increased use of heat pumps, which provide up to 61% of residential heat demand in 2050. 

In some of the most restricted scenarios (CBRD and NCBD), electric vehicles cover up to 80% of car 

travel demand in 2050, but in general decarbonisation in the transport sector relies much more strongly 

on hybrid vehicles and hydrogen for heavy duty trucks. Less clear electrification trends can be observed 

in the industry and services sector. Electricity prices are not set exogenously but are determined within 

the model as the marginal costs of electricity generation. Restricting low-carbon generation options 

leads, as can be expected, to a significant increase in these prices. However, in some of the more 

restricted scenarios, electricity use will increase anyway as electrification becomes one of the last 

options for emission mitigation.  
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Figure 2: Box-and-whisker plots on fuel use in 2050 across all 28 scenarios5 

The use of hydrogen, produced from biomass and/or in plants equipped with CCS, constitutes an 

alternative decarbonisation strategy for the demand side. However, the uncertainty analysis shows that 

most of the restricted scenarios have a lower demand for hydrogen in 2050 than in the reference case. 

The CCS dimension has the strongest impact with hardly any hydrogen entering the UK system in 

scenarios without CCS. Apart from that, the dimension of demand-side change limits the uptake of 

hydrogen technologies, especially in the transport sector. The highest contribution to final energy 

demand (with a maximum of 18% in 2050) occurs in the cases with restricted biomass potentials. 

Restricted availability of biomass limits the deployment of bio-CCS in electricity generation and puts 

more pressure on the end-use sectors to decarbonise.  

To explore the use of renewable sources across the uncertainty scenario matrix, biomass and other 

renewable energies are included in the fuel-specific box-and-whisker plots in Figure 2 and the 

variability in the renewable share in gross final energy consumption, differentiated by electricity, heat 

and transport, is depicted in Figure 3 (left-hand side). Note that the shares in heat and transport only 

contain the direct use of renewable resources in these sectors and not the use of renewable electricity. 

To emphasise the importance of biomass in decarbonisation strategies, is the results show how biomass 

is fully exploited in all scenarios up to the maximum available in any scenario. However, the other 

restrictions placed on the other dimensions have the effect of influencing where the biomass is used. 

For example, while biomass is mainly used in electricity generation if CCS is available, given the 

opportunity to generate negative emissions through bio-CCS, an almost complete shift to the end-use 

sectors, most importantly in the industry and commercial sector occurs in scenarios without CCS. 

Bioenergy, if not further restricted, can then cover up to 22% of total final energy demand in 2050.  

While other renewables do not play a significant role in electricity generation in the reference case, their 

contribution rises in almost all of the restricted cases. Substantial amounts of on- and offshore wind 

energy are deployed as soon as one of the other low-carbon electricity options is restricted, reaching an 

installed capacity of up to 105 GW in 2050 (in cases with high availability of renewable options). 

                                                           
5  All box-and-whisker plots shown in this paper depict the interquartile range in the box, while the whiskers 

represent the maximum and minimum value. 
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Sizeable amounts of solar energy, with a maximum capacity of 45 GW, are only utilized in some of the 

more restricted cases (where both nuclear energy and CCS are unavailable), while marine energy only 

reaches a non-negligible role in the most restrictive cases for the electricity system (without limiting 

the renewable dimension, i.e. NCB and NCBD). Accordingly, the renewable share in electricity 

generation varies substantially between 18% and 97% in 2050, with an intermittent share of up to 80%. 

A variety of studies have shown that renewable shares of up to 80% would be technically feasible 

(Pfenninger & Keirstead (2015), CCC (2011b) for the UK, European Climate Foundation (2010) for 

the European Union) – at a manageable cost. The necessary back-up capacity for intermittent 

renewables reaches up to 50 GW of natural gas or hydrogen fuelled gas turbines in some of the scenario 

runs. As mentioned above, other system effects and costs of the increase in intermittent renewables are 

not fully reflected in a whole energy system model like UKTM. In light of the strong competition for 

bioenergy resources, biofuels for end-use do not become a central decarbonisation strategy in any of 

the scenarios. The renewable share in heating is strongly dominated by the use of heat pumps in 

buildings, while high contributions from biomass are only obtained in scenarios where bio-CCS is not 

available. On the whole, the renewable share in gross final energy consumption varies between 14% 

and 61% in 2050 and is at its lowest in scenario R. 

Finally, we analyse the reduction in final energy consumption across the scenario matrix as the last 

dimension on variability in fuel use (right-hand side of Figure 3). The reduction in final energy demand 

by 2050 compared to 2010 lies between 13% and 37%. The strongest reduction efforts occur in two 

types of scenarios: (1) in cases without CCS, but strong potential for low-carbon electricity generation 

and (2) in very restricted cases. While in the first group the residential sector is the most relevant for 

the additional savings, the transport sector plays a pivotal role in the very restricted scenarios. 

Constraining demand-side change only has a dampening effect on energy efficiency in the less restricted 

cases. Compared to the reference case, the strongest additional savings are realized in the residential 

and transport sector, whereas in the industrial sector the potential for energy efficiency measures is 

already almost fully exploited allowing further demand reductions only in a few extreme cases. In 

contrast, based on the underlying growth in the sector’s GVA, a considerable increase in energy demand 

is still expected in the services sector, ranging between 17% and 33% in 2050. Interestingly, the 

technology restrictions tend to raise the commercial fuel consumption, which is mainly driven by the 

lower demand elasticities and restricted uptake of efficiency measures under variant D as well as an 

increased use of biomass in scenarios without CCS.  

From a policy perspective this sensitivity analysis suggests important hedging strategies to achieve 

long-term deep decarbonisation. Even if the usual reference case with broad technology availability 

proposes a strong focus on the electricity sector with large-scale technologies like CCS and nuclear, the 

sensitivity analysis points towards a stronger use of renewable sources as well as stronger efforts in 

terms of energy efficiency in the buildings and transport sectors to ensure that long-term mitigation 

targets are reached in the presence of technology uncertainty.  
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Figure 3: Box-and-whisker plots on the renewable share in gross final energy consumption (left) and 

reduction in final energy consumption (right) across all 28 scenarios 

GHG emission reduction 

With respect to emission mitigation we first investigate the overall reduction trajectory. Implementing 

the 80% reduction target for 2050 as a cumulative budget (between 2028 and 2050), offers insights into 

the dependency of the optimal timing of the abatement actions on the technology availability. Figure 4 

shows the minimum and maximum GHG emission in each period as well as the two most extreme 

pathways (in terms of emission reduction in 2050). There is a considerable spread in the reduction 

reached in 2050 from 67% (NCR) to 76% (REF) compared to 1990. Please note that all scenarios with 

a feasible solution comply with the cumulative budget set in the model. However, none of the scenarios 

fulfils the budget by reaching the politically set 80% reduction target in 2050. Instead, early action is 

favoured such that especially between 2030 and 2040 higher emission cuts are realised than a linear 

reduction path would imply thereby avoiding investments in additional, costly abatement options in 

2050 (as reflected in the difference between the hypothetical linear reduction path way  shown by the 

dotted line and the actual emission pathways shown in Figure 4). The tendency for early action clearly 

increases with the number of technology restrictions in the scenarios. This highlights that bringing 

forward ambitious mitigation efforts is a clear hedging strategy against technology failure. Note that 

more scenarios would be infeasible if the climate target was implemented by a fixed linear reduction 

pathway such that the model would have to reach -80% by 2050. The still significant emission level in 

the more restricted cases (around 250 Mt CO2eq in 2050) also raises concerns regarding the ability of 

the system to arrive at net-zero carbon emissions in the long term.  

 
Figure 4:  Range in GHG emission reduction pathways across all 28 scenarios (“LINEAR” shows the 

hypothetical linear reduction pathway to reach an actual -80% reduction in 2050) 
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Strong variations can be observed in the sector-wise contribution to emission reduction across the 28 

scenarios (Figure 5). While the electricity sector reaches carbon-neutrality by 2035 in all scenarios, the 

long-term ability to generate negative emissions through bio-CCS strongly depends on the availability 

of CCS and biomass. In the residential sector, mitigation efforts increase in almost all restricted cases 

compared to the reference case, especially through the exploitation of all available conservation 

measures and stronger electrification. The service sector exhibits the highest level of variation, even 

with the possibility of an increase in emissions compared to 2010 in cases with limited demand-side 

change (including higher demand levels) and electrification potential. In the industrial sector, increased 

mitigation efforts occur especially in the cases with limited biomass availability, but good potential for 

low-carbon electricity generation. In contrast, particularly in the very restricted cases without CCS, the 

industry sector’s contribution to emission abatement is limited compared to the central case. The 

transport sector is the only end-use sector that still makes a sizeable contribution to GHG emissions in 

all scenarios in 2050. Contrary to the other end-use sectors, transport sector abatement efforts increase 

in most of the very restricted cases compared to the reference case through a stronger focus on efficiency 

measures.  

 
Figure 5:  GHG emission reduction (left) and share in total emissions in 2050 (right) by sector across all 28 

scenarios 

Cost indicators 

Apart from technology deployment and fuel use, the model results also allow a comparison of the 

different scenarios in terms of the implications for costs. Two types of cost metrics are analysed: (1) 

total societal welfare costs, which are defined as the net total surplus of producers and consumers and 

comprise the entire costs of a specific energy system in a certain region and a certain period, covering 

capital costs for energy conversion and transport technologies, fixed operating and maintenance costs 

as well as fuel and certificate costs; (2) the carbon price, given in the model as the shadow price of the 

budget constraint on GHG emissions.  

In order to assess the importance of the single or combined effect of the various technology dimensions, 

we examine the change in cumulative welfare costs compared to the reference case (Figure 6). The 

cumulative cost increase is still relatively low (up to 2.4% compared to REF) in the scenarios where 

only one dimension is restricted. While limiting renewable electricity options has little impact, the 

strongest additional cost burden results from constraining the availability of CCS or biomass. 

Interestingly, given its strong deployment in the reference case, removing nuclear energy from the 

available technology options has no significant cost impact since other low-carbon electricity options, 

most importantly wind energy, are available at similar cost levels.  
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Looking at the cases with two restrictions shows that the combined cost effect of two dimensions is 

usually higher than the sum of the two individual effects, with the exemption of scenario CB, as the 

principal effect of both these dimensions is limiting the deployment of bio-CCS plants. The strongest 

cost burden (up to 4.4% compared to REF) is caused by a combination of the dimensions C or B with 

a limited demand-side change (D) – putting strong constraints both on the supply and demand side. 

Among the scenarios with three technology restrictions, the highest impact on welfare costs is induced 

either by severely limiting low-carbon supply-side options (case NCR) or by a combined constraint on 

crucial supply- and demand-side options (case CBD).  

The extreme cases with four technology restrictions demonstrate which of the dimensions are crucial to 

keep the system-wide cost impacts at a moderate level when all other analysed technology options are 

constrained. For the three cases with a feasible solution, the increase in cumulative welfare cost, 

compared to the reference case, is less than 7% in case NBRD and around 13% in case NCBD revealing 

that both the availability of CCS and renewable electricity options would keep the cost increase below 

15%. In contrast, costs increase a lot more in the case with nuclear energy (CBRD), while reaching the 

long-term emissions target is not even feasible with a higher biomass potential or less restricted demand-

side change when all other large-scale supply-side options fail. This emphasizes the importance of the 

electricity sector in decarbonisation efforts as the long-term target can only be complied with if at least 

one of the central low-carbon electricity options is available at a significant level.  

 
Figure 6:  Change in total welfare costs (discounted, cumulated from 2010 to 2050) compared to the 

reference case  

Similar to societal welfare costs, carbon prices vary considerably across the scenario matrix with values 

in 2050 of £244/t CO2eq in the central case and £7000/t CO2eq in scenario NRC (see Table A-4 in the 

Annex). Regarding the scenarios with 4 technology restrictions, the carbon price in scenarios NBRD 

and NCBD is significantly lower than in NRC (with £1500/tCO2eq and £3100/tCO2eq), highlighting 

once more the importance of having either CCS or renewable electricity options available to limit the 
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decarbonisation costs. The scenario CBRD is a clear outlier, reaching a carbon price of almost 

£38,000/tCO2eq in 2050. This also shows that the carbon price, being at the margin, is much more 

sensitive to technology changes than the total welfare is. Adding, for example, a biomass or CCS 

restriction on top of any combination of other restrictions (including none – the central case) always at 

least doubles the carbon price. Please note that the carbon price would be significantly higher, if the 

carbon target was implemented by enforcing an actual reduction of 80% until 2050 (and a linear 

reduction pathway) instead of the cumulative budget approach used in this analysis. The results of the 

carbon price also raise concerns regarding the political feasibility of reaching the long-term climate 

goals in a technology-constrained world. Even if all of the scenarios shown in Figure 6 complying with 

the cumulative carbon budget were technically feasible, the resulting carbon prices would in most 

likelihood not be politically enforceable (cf. also Strachan & Usher, 2012).  

The ranking of scenarios according to welfare cost or carbon price are generally quite similar. A few 

noteworthy exemptions provide some indications with respect to the shape of the abatement cost curve. 

For example, the scenarios CR and CBR rank much worse in terms of carbon price than welfare costs 

indicating a steep abatement cost curve, while for the scenarios BD and NBD it’s the opposite case.  

We finish our discussion on costs with regression results for the cumulated welfare costs, with the 

dimensions and their interactions as independent variables6. The coefficients in Figure 7 give an 

estimate of how much the existence of given scenario dimensions, or the interactions between 

dimensions, adds to the cost metric across the full scenario set. CBD, for example, would refer to the 

specific interactions effects between drivers C, B and D, excluding the effects these drivers have by 

themselves and the interaction effects the pairs of these drivers have (i.e. CB, CD, BD). Thus, the 

numbers in Figure 7 can be interpreted as follows: for one dimension they show the increase in costs 

that occurs when this restriction alone is added to the scenarios (e.g. welfare costs increase by about 

£20 billion when nuclear energy is restricted), for several dimensions they show the cost increase caused 

by the interaction effect (on top of the effect of the individual dimensions; hence, welfare costs also 

increase by about £40 billion due to the interaction of N and C, on top of the cost increases caused by 

N and C individually).  

                                                           
6  The design of a simple OLS-regression is used here with 

 𝑊𝐶 =  𝛼 + 𝛽1 ∗ 𝑁 + ⋯ + 𝛽𝑛 ∗ 𝐷 + 𝛾1 ∗ 𝑁𝐶 + ⋯ + 𝛾𝑛 ∗ 𝑅𝐷 + 𝛿1 ∗ 𝐵𝑅𝐷 + ⋯ + 𝛿𝑛 ∗ 𝑁𝑅𝐷 + 𝜃1 ∗ 𝑁𝐵𝑅𝐷 + 𝜃2 ∗ 𝑁𝐶𝐵𝐷;  

with WC = cumulated welfare costs; the independent variables represent the 5 dimensions and their 

interactions and have a value of 1 if the dimension is restricted and of 0 otherwise. In addition to the infeasible 

scenarios, the scenario CBRD is excluded as it is an outlier and would strongly bias the results. As the 

difference in technology dimensions is the only thing that is varied between the scenarios, the regression has 

an R2 value of one, i.e. the difference in technology dimensions and their interaction effects can perfectly 

describe the cost of the system  
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Figure 7:  Coefficients of an OLS-regression on cumulated welfare costs 

While the results confirm the general trends discussed above, it also highlights better the role of the 

interactions between the drivers. For example, scenarios CBD and CBR have comparable costs, but the 

regression analysis highlights how the welfare costs of the latter are especially driven by the interaction 

between the three drivers, whereas for the former, the impact of the individual drivers and the 

interactions between two driver elements explains most of the cost. It also shows that some dimensions 

only have a significant impact when combined with other restrictions. For example, restricting 

renewables alone, or in combination with only one other dimension, does not have a strong impact on 

welfare costs, whereas the interaction effects of dimension R with two other dimensions tend to be 

particularly high. Thus, restricting the development of renewable electricity generation will drive the 

costs of the UK energy transition significantly if other options, like nuclear energy or CCS, turn out to 

fail. This emphasizes again the importance of a balanced portfolio of low-carbon technology options. 

3.3. Insights on technology use 

Complementarity and substitutability of technologies 

To gather further insights into the impact of uncertainty in the availability of low-carbon options on the 

long-term development of the UK energy system, we now look at technology complementarity and 

substitutability. To do this we assess which technologies are generally only used in combination with 

one another and which can easily substitute for each other. We calculate the correlation coefficients 

between the 5 technology dimensions (with a value of zero if the technology is restricted and of 1 if 

not) and the use of the most important fuels in 2050 (total or by sector). In Table 2 all coefficients with 

an absolute value over 0.5 are highlighted which are further explored in the following text. 
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As already pointed out in Section 3.2, the use of natural gas is highly variable across the scenario matrix. 

A strong positive correlation of gas use, especially in hydrogen production, with CCS availability can 

be observed, highlighting the fact that significant gas use is only possible, in the long-term, if CCS is 

available. In contrast, less gas is needed if nuclear energy and renewable electricity options succeed in 

the long-term.  Finally, gas demand is not strongly correlated with the resource potential  of  bioenergy. 

In the residential sector (and to a lesser extent in the industrial sector), there is a strong positive 

correlation between dimension B and gas use, indicating that if higher amounts of bioenergy are 

available, there is less pressure to reduce gas use in heating in the end-use sectors.  

Further investigation into the trend towards electrification reveals that total electricity demand in 2050 

is only significantly correlated with biomass availability, i.e. if the bioenergy potential is strongly 

limited, greater electrification is required, especially in the industry and residential sector, while no such 

trend is observable when restricting the other dimensions. At the sector level, a more considerable 

uptake of electric heating and other devices takes place in the services and residential sectors if demand-

side change is constrained, balancing mostly the higher overall energy demand and the slower 

realization of conservation measures. In transport, electricity use is negatively correlated with CCS 

availability, highlighting that in the scenario analysis at hand, the long-term decarbonisation of the 

transport sector relies mainly on hydrogen, while a substantial uptake of electric vehicles only occurs if 

the option to produce hydrogen in CCS plants does not exist. The negative correlation between 

electricity use in hydrogen production and dimension C is of little relevance, given the generally low 

level of hydrogen produced from electricity.  

Amongst the highest correlations between technology dimensions and fuel use in 2050 is the positive 

one between hydrogen use and CCS, emphasizing that CCS is essential to enable a strong contribution 

of hydrogen to the UK decarbonisation pathway. While in electricity generation a broader portfolio of 

low-carbon options is available, hydrogen generation strongly depends on CCS or bioenergy, where 

strong competition with other sectors needs to be taken into account.   

Regarding the use of biomass, it has already been mentioned that the full potential is always exploited 

independent of the scenario assumptions. Accordingly, all correlations of total biomass use and the 

other technology dimensions are close to zero. In contrast, on the sector level, bioenergy demand is 

significantly correlated with CCS availability. Hence, a substantial amount of biomass is only used in 

electricity generation if the option of generating negative emissions through bio-CCS is given. In all 

scenarios without CCS, biomass in the end-use sectors is increased considerably, explaining the strong 

negative correlations, especially in the industry sector. However, this is not the case for the transport 

sectors, where biofuels never play a substantial long-term role.  
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Table 2: Correlation coefficients between technology dimensions and fuel use in 2050 (coefficients ≥ 0.5 are 

highlighted) 

  

In addition to the significant correlations highlighted in Table 2, it is also interesting to examine some 

of the “non-correlations” which might be rather unexpected. First of all, the use of CCS is not correlated 

with biomass availability (correlation between dimension B and sequestered CO2 emissions). Thus, 

even if the possibility for bio-CCS is limited, the total use of CCS is not affected. Secondly, the 

insignificant correlation between the level of electrification and CCS availability indicates that while a 

limited bioenergy potential drives a higher electricity use, this is not the case for CCS. Lastly, there is 

a relatively low correlation between the available biomass resources and the use of bioenergy in industry 

showing that the industrial biomass demand is comparatively robust against changes in the biomass 

availability. 

 Technology diffusion 

Another interesting dimension of future technology use are the diffusion rates of key decarbonisation 

technologies showing how ambitious some of the trajectories would have to be. Here, a special look is 

taken at some of the end-use sectors which have to deliver a significant contribution to emission 

abatement, especially in the case of multiple technology failure on the supply side.  

In car transport (Figure 8), most scenarios feature high diffusion rates for hybrid vehicles (including 

plug-in hybrids) reaching a market share of around 40% (at the median) in 2030. In most scenarios, 

their market share starts to decline after 2040 (from up to 90%), as more ambitious decarbonisation 

technologies diffuse more strongly. The share of electric cars remains below 20% in most scenarios, 

with some considerable exceptions of contributions of up to 30% in 2030 and 80% in 2050 (e.g. in 

scenario CBRD or NCBD). Hydrogen vehicles have, on average, a slightly higher market share then 

                                        Dimension  

   Demand
N C B R D

Gas, total -0.50 0.73 -0.12 -0.50 -0.05 

Gas, ELC -0.44 0.45 -0.27 -0.37 -0.20 

Gas, HYG -0.27 0.66 -0.29 -0.26 0.25

Gas, residential 0.00 0.24 0.61 -0.08 -0.11 

Gas, services -0.10 0.35 -0.12 -0.15 0.01

Gas, industry -0.24 0.22 0.44 -0.22 0.01

Gas, transport 0.03 -0.32 0.45 -0.19 -0.30 

Electricity, total 0.18 -0.12 -0.57 0.26 -0.40 

Electricity, residential 0.11 0.06 -0.51 0.24 -0.50 

Electricity, services 0.12 0.41 -0.36 0.15 -0.59 

Electricity, industry 0.18 0.14 -0.53 0.16 -0.28 

Electricity, transport 0.08 -0.90 -0.27 0.22 0.13

Electricity, HYG 0.31 -0.70 -0.13 0.25 0.15

Hydrogen, total -0.27 0.66 -0.28 -0.26 0.24

Hydrogen, end use -0.13 0.78 -0.18 -0.11 0.43

Renewables, total -0.31 -0.46 -0.31 0.75 -0.13 

Renewables, ELC -0.31 -0.46 -0.31 0.75 -0.14 

Biomass, total -0.01 -0.01 0.92 -0.01 0.12

Biomass, ELC -0.10 0.64 0.67 -0.13 0.03

Biomass, end-use 0.04 -0.75 0.60 0.06 0.11

Biomass, residential -0.07 -0.61 0.48 -0.05 0.31

Biomass, services 0.03 -0.76 0.46 0.02 0.11

Biomass, industry 0.11 -0.95 0.20 0.15 0.14

Biomass, transport 0.03 -0.21 0.95 0.03 -0.03 

CCS (sequestered emissions) -0.31 0.91 -0.02 -0.28 -0.04 
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electric cars, but only reach a maximum of around 50% in 2050 (e.g. in scenario NBRD). The very wide 

range across the technologies suggest that alternative transport futures can be imagined and these are 

likely to depend not only on the success of the transport technologies themselves, but also on the success 

of the technologies that are further up the supply chain (e.g. H2 production, CCS, low carbon electricity). 

 

 
Figure 8: Diffusion rates in car transport across the scenario matrix (MED=median, grey area indicates the 

interquartile range) 

In the residential sector (Figure 9), the abatement strategy relies strongly on heat pumps which exhibit 

highly ambitious diffusion rates reaching the maximally allowed share in the model of 60% already by 

2040. This is mirrored by a gradual decline in the use of gas boilers, where the median share drops from 

over 80% in 2010 to 22% in 2050. However, in some of the less constrained scenarios, gas boilers still 

contribute up to 58% to residential heating in 2050. The share of hydrogen-based heating systems (both 

boilers and fuel cell micro-CHPs) in the residential sector remains negligible in most scenarios. Apart 

from that, moderate contributions of stand-alone electric heating systems and night storage heaters can 

be observed in most scenarios. The share of district heating in the residential sector remains below 10%. 

 
Figure 9:  Diffusion rates in residential heating across the scenario matrix (MED=median, grey area 

indicates the interquartile range) 

4. Conclusions  

This analysis has shown how uncertainties in key low-carbon options, covering nuclear energy, CCS, 

bioenergy, renewable electricity technologies as well as demand-side change, can influence long-term 

decarbonisation pathways of the energy system and how multiple technology failures can interact to 

produce impacts that are more than additive. Using a technology-oriented, comprehensive energy 

system model allowed us to cover all the relevant repercussions within the energy system and to assess 

trade-offs between sectors and mitigation efforts. The approach of a global sensitivity analysis, applied 

here to a case study of the UK, can be easily transferred to other national or supranational settings. 

By systematically varying the availability of one or several crucial mitigation options, critical insights 

can be gained on: 
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 Variability across the uncertainty space. The analysis has identified an enormous range in the 

demand for natural gas across the scenario matrix, while other fuel uses are less variable. Also, the 

sector-wise contribution to emission abatement is highly sensitive to technology failure.  

 Complementarity and substitutability of technologies. Some technology options only play a 

significant role in the decarbonisation pathway if other technologies are also available, seen, for 

example, in the strong dependency of hydrogen technologies on the prevalence of CCS. At the same 

time, some technologies can easily be substituted by others without entailing a significant cost 

increase. E.g., the analysis at hand indicates that in the UK energy system, replacing nuclear energy 

with other low-carbon electricity options would not cause a significant rise in electricity generation 

cost. From a risk perspective, the reliance on bio-CCS in some scenarios is interesting as it combines 

the unproved CCS with a resource with uncertain availability.  

 Critical low-carbon options and hedging strategies. The use of some mitigation options is 

comparatively robust across the sensitivity analysis, e.g. the early decarbonisation of the electricity 

sector or considerable energy efficiency measures in the buildings and industry sector. The 

evaluation of cost parameters also reveals which options are most relevant to avoid a prohibitive 

cost burden in the case of multiple technology failure (especially CCS and renewable electricity 

options in this analysis). The sensitivity approach can also help to identify “failed” low-carbon 

technologies which never play a substantial role, such as ocean (wave and tidal) technologies in the 

present case. Moreover, the sensitivity analysis can reveal crucial hedging strategies in the presence 

of technology uncertainty that the reference case alone might not show, like a higher use of 

renewable sources or stronger focus on energy efficiency. For some of these options, such as 

efficiency measures in the buildings sector, policy measures will have to overcome significant 

investment barriers, but the technologies involved are a lot more mature and less risky than some of 

the options chosen in the reference case.  

 Timing and path dependencies. While the analysis at hand has mostly focused on the endpoint of the 

model horizon, i.e. 2050, the sensitivity approach can also be used to assess the timing and pathways 

of the decarbonisation challenge. The scenario analysis clearly highlights that multiple technology 

uncertainty strongly increases the importance of early action in emission mitigation. Furthermore, 

analysing the diffusion rates of critical technologies indicates the ambition of low-carbon pathways 

under uncertainty.  

In terms of future research, there are several possibilities to advance work sensitivity analysis presented 

here. First of all, the approach could be extended to account for further uncertainties. Here, integrative 

techniques, e.g. by including policy makers and other stakeholders or using expert elicitation (Usher & 

Strachan, 2013), to identify the key uncertainties in the energy system should be further developed and 

tested. Secondly, while this analysis focuses on strong narratives and “in/out” options of technologies 

like CCS or nuclear, the economic and performance parameters of such technologies could also be 

varied over sensible ranges to explore robust ranges and tipping points in technology use. Thirdly, in 

order to examine the uncertainty space further, alternative uncertainty approaches should be applied to 

national energy systems analyses, e.g. stochastic methods or an assessment of the near-optimal solution 

space through MGA. 

For policy makers, a deeper understanding of the main uncertainties in mitigation strategies as well as 

their interdependencies is crucial to formulate more robust decarbonisation strategies. The analysis has 

shown how multiple technology failures could put the achievement of long-term emission reduction 

targets in the UK at considerable risk. It has also shown how the failure or success, of a given technology 

can have wider impacts elsewhere in the energy system, thus complicating the management of a long-
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term energy transition. Further investigation is needed regarding the appropriate policy response to such 

an uncertain environment, i.e. should the government support a broad technology portfolio or move to 

“picking winners” early on? Sensitivity analysis, such as the one at hand, help to identify the key low-

carbon technologies and resources to which the low-carbon transition is particularly vulnerable and to 

raise the awareness in policy making to the extent of the uncertainty challenge.  
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Annex 

Table A-1:  Background on modelling techniques to represent uncertainty in energy-economic models 

Sensitivity 
analysis 

The most commonly used method to evaluate uncertainty in deterministic models 
analysing the variability of the model output as a function of changing input 
parameters. In most cases, local or one-at-a-time sensitivity analyses are conducted, 
which, however, do not capture the interactions between input parameters (Saltelli 
et al., 2010). This has led to a couple of studies using global sensitivity techniques, 
which vary several uncertain input parameters at a time to explore the interaction 
effects, in some cases through probabilistic and Monte Carlo methods (Wainwright 
et al., 2014). Recent studies in energy systems research include van Vuuren et al. 
(2008), Anthoff & Tol (2013), Anderson et al. (2014), Branger et al. (2015), Pye et al. 
(2015) and Usher (2016) 

Stochastic 
modelling 

Stochastic modelling moves away from the deterministic approach still applied in 
sensitivity analysis and deals explicitly with optimal decision-making under 
uncertainty by applying probabilities to unknown future parameters (Beale, 1955; 
Loulou & Lehtila, 2012). This has the advantage of accounting for the cost of 
uncertainty, relaxing the assumption of perfect foresight and analysing hedging 
strategies. Stochastic programming has been applied to a large variety of input 
assumptions in energy systems modelling, like energy prices (Krey et al., 2007), 
resource availability (Usher & Strachan, 2012), technology parameters (Labriet et 
al., 2012), climate sensitivity (Syri et al., 2008), the stringency of mitigation targets 
(Kanudia & Loulou, 1998) and the stochasticity of intermittent renewable resources 
(Seljom & Tomasgarda, 2015). 

Modelling to 
Generate 
Alternatives 
(MGA) 

An optimization technique that explores the near-optimal solution space for feasible 
solutions that are maximally different from the optimal pathway (Brill et al., 1990). 
This technique takes into account that the single solution of an optimization 
approach never reflects the full uncertainty and practical constraints of the real-
world system and allows to assess both common features and significant differences 
in the near-optimal solution space. Originally mostly applied in land and water 
management (e.g. Chang et al., (1982)), first applications in long-term energy 
optimization models can be found (DeCarolis, 2011; Trutnevyte, 2013; Voll et al. 
2015). 

Multi-model 
comparisons 

Multi-model comparisons are increasingly applied to examine both parameter and 
structural (or model) uncertainty. Such studies involve running a predefined set of 
scenarios in several modelling frameworks (mostly Integrated Assessment Models) 
with diverse model structures and input parameters (with different degrees of 
harmonization) (Edenhofer et al., 2006). The aim is to arrive at a range of plausible 
mitigation pathways, to explore the impact of different model structures and to 
assess the relevance of different input parameters. Multi-model comparison studies 
have been pioneered by the Energy Modelling Forum (EMF) (Weyant, 1993; Knopf 
et al., 2013; Kriegler et al., 2014), but have since also been carried out through 
projects like AMPERE (Kriegler et al., 2015), LIMITS (Tavoni et al., 2013) and the 
Asian Modeling Exercise (AME) (Calvin et al., 2012). A recent review can be found in 
Weyant & Kriegler (2014). 
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Table A-2:  Investment cost assumptions for electricity generation technologies in UKTM (selection) [£/kW] 

 

Table A-3:  Assumptions under technology dimension renewable electricity (R)  

 

2020 2030 2040 2050

Coal CCS 2707 2707 2700 2700

Gas, OCGT 287 287 286 286

Gas, CCGT 561 561 561 561

Gas, CCGT CCS 1185 1185 1179 1179

Nuclear 4019 4019 3973 3973

Biomass combustion, large 2324 2280 2275 2275

Biomass combustion, CCS 3626 3626 3610 3610

Biogas, gas engine 3885 3791 3780 3780

Wind, onshore

  Central case 1477 1408 1398 1398

  Restricted 1477 1408 1398 1398

Wind, offshore

  Central case 2229 1982 1764 1764

  Restricted 2472 2472 2472 2472

Solar farms

  Central case 786 523 523 523

  Restricted 980 980 980 980

Solar, rooftop

  Central case 1499 1190 1190 1190

  Restricted 1713 1713 1713 1713

Source Central Case Sensitivity renewable electricity  (R) 

Onshore wind

Potential: 36.9 GW (Enviros, 2005)

Capital cost: Current DDM assumptions (DECC, 

2012a), -12% between 2010 and 2050 (to 

1400 £/kW)

Potential: 15 GW (Enviros, 2005)

Capital cost: same as in central

Offshore wind

Potential: 327 GW (Enviros, 2005); limited to 

49 GW until 2030 (amount leased so far) 

Capital cost: -35% between 2010 and 2050 (to 

1800 £/kW) (Mott McDonald, 2010) 

Potential: 16 GW (current total with planning 

permission (renewableUK, 2015b)

Capital cost: no learning effects after 2015, costs 

at 2500 £/kW in 2050

Solar PV

Potential: 45 GW (current DDM assumptions)

Capital cost: Current DDM assumptions, -47% 

/ -34% between 2010 and 2050 (to 520 / 1190 

£/kW (farm / rooftop))

Potential: 20 GW (National Grid, 2012)

Capital cost: no learning effects after 2015, costs 

at 980 / 1700 £/kW (farm / rooftop)

Marine

Potential: 27 GW (Carbon Trust, 2011)

Capital cost: Current DDM assumptions, with 

7500 £/kW (wave) & 3900 £/kW (tidal stream) 

in 2050

Not available

Geothermal

Potential: 2 GW (current DDM assumptions)

Capital cost: Current DDM assumptions, with 

3900 £/kW in 2050

Not available
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Table A-4: Development of the carbon price [£/t CO2eq] in the 28 scenarios 

 

2020 2030 2040 2050
Increase in 2050 

compared to REF

REF 27 128 180 244

N 24 139 196 266 9%

C 26 320 450 612 150%

B 27 273 384 522 114%

R 25 128 180 244 0%

D 25 190 267 363 49%

NC 26 383 540 734 200%

NB 25 295 415 564 131%

NR 24 144 202 275 13%

ND 24 204 287 390 60%

CB 25 453 639 868 255%

CR 26 393 554 752 208%

CD 25 400 564 767 214%

BR 26 287 405 550 125%

BD 24 380 535 727 198%

RD 27 192 271 368 50%

NCB 25 890 1255 1705 598%

NCR 31 3689 5200 7063 2791%

NCD 26 621 875 1189 387%

NBR 24 356 502 681 179%

NBD 25 438 618 840 244%

NRD 24 213 301 408 67%

CBR 35 1819 2565 3484 1326%

CBD 24 886 1249 1696 594%

CRD 28 816 1150 1562 539%

BRD 24 455 641 871 257%

NCBD 25 1637 2307 3134 1183%

NBRD 25 775 1092 1484 507%

CBRD 33 19668 27724 37661 15313%


