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KEY POINTS:  32 

 33 

Question: What can a detailed clinical and molecular genetic study of patients with CNGB1-related 34 

retinitis pigmentosa reveal about the disease presentation and progression? 35 

 36 

Findings: This case series of 10 patients identified childhood onset of nyctalopia with preserved 37 

visual acuity and central photoreceptors into adulthood. 38 

 39 

Meaning: This case series suggests RP due to variants in CNGB1 is slowly progressive with a long 40 

potential treatment window. 41 

 42 
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Abstract 56 

IMPORTANCE: There is limited published data on the phenotype of retinitis pigmentosa (RP) 57 

related to CNGB1 variants. These data are needed both for prognostic counseling of patients and for 58 

understanding potential treatment windows.  59 

OBJECTIVE: To describe the detailed clinical and molecular genetic findings in a series of RP 60 

patients with likely pathogenic variants in CNGB1. 61 

DESIGN, SETTING AND PARTICIPANTS: Ten patients from nine families underwent full 62 

ophthalmologic examination. Molecular investigations included whole exome analysis in 6 patients. 63 

The study was conducted from April 17, 2013 to March 3, 2016 with final follow-up completed on 64 

March 2, 2016 and data analyzed from October 27, 2014 to March 29, 2016. 65 

MAIN OUTCOMES: Results of ophthalmologic examination and molecular genetic analysis of 66 

CNGB1. 67 

RESULTS: Seven females and three males from 9 families with a mean age of 47.4 ± 13.2 years old 68 

were included in this study having been identified to have CNGB1 variants; there was a mean 69 

follow-up length of 3.7 ± 2.8 years. The first clinical presentation was with nyctalopia in childhood 70 

with visual field loss documented later at a mean age of 33.2 ± 8.0 years. All patients had preserved 71 

visual acuity into adulthood with a mean of 0.1 LogMAR, Snellen equivalent 20/25 in each eye 72 

(range 0 to 0.3, Snellen 20/20 to 20/40 in the right eye and -0.1 to 0.3, Snellen 20/16 to 20/40 in the 73 

left eye). Fundus examination revealed mid-peripheral retinal pigment epithelial atrophy and intra-74 

retinal pigment migration. Optical coherence tomography of the macula demonstrated complete 75 

preservation of the inner segment ellipsoid band in one patient with variable lateral extent in others, 76 

corresponding with the diameter of a paracentral ring of increased fundus autofluorescence. 77 

Electrophysiological testing in 6 patients confirmed a rod-cone dystrophy phenotype. 78 

Molecular investigations identified a previously reported missense variant (p.N986I) and 7 variants 79 

not previously reported in disease including 4 nonsense (p.(Q88*), p.(Q222*), p.(Q318*), 80 

p.(R729*)), 2 frameshift (p.(A1048fs*13), p.(L849Afs*3)) and a splice site variant (c.761+2T>A).  81 
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CONCLUSIONS AND RELEVANCE: These data suggest that visual acuity and foveal structure 82 

are preserved into adult life such that a lengthy window of opportunity should exist for intervention 83 

with novel therapies." 84 

 85 

86 
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Introduction 87 

Retinitis Pigmentosa (RP) is an inherited disorder characterized by a progressive retinal dystrophy 88 

with primarily rod photoreceptor dysfunction at presentation. It is highly heterogeneous and affects 89 

about 1 in 4000 individuals worldwide.1-4 Clinically, RP is characterized by night blindness, 90 

progressive constriction of peripheral visual fields and ultimately, in the majority of patients, 91 

reduced visual acuity. The fundus typically shows mid-peripheral intra-retinal pigment migration 92 

associated with retinal pigment epithelium (RPE) atrophy, attenuated retinal vessels and pallor of 93 

the optic nerve head.4-6 94 

Approximately 15–20% of cases are autosomal dominant, 15% recessive, 7% are X-linked, 43% are 95 

sporadic/simplex cases the majority of which are most likely to be autosomal recessive and 15% are 96 

unknown.6,7 Rarely, RP may be caused by mutations in mitochondrial DNA.4 Genes associated with 97 

RP encode proteins that have a key role in retinal structure and function including 98 

phototransduction or the visual cycle. Some are ubiquitously expressed but have a phenotype 99 

confined to the eye. 6,8,9 100 

Variants in genes encoding the two rod cyclic nucleotide-gated (CNG) channel subunits have been 101 

associated with arRP.8,10 CNG channels are non-selective cation channels localized to the plasma 102 

membrane of rod and cone photoreceptors which translate light-mediated changes of second 103 

messenger cyclic guanosine monophosphate (cGMP) into voltage signals.11,12 CNG channels in rods 104 

form heterotetramers consisting of three α-subunits (CNGA1) and one β-subunit (CNGB1); 105 

whereas the cone channel is formed by two α-subunits (CNGA3) and two β-subunit (CNGB3).13,14 106 

Variants in CNGB1 are an uncommon cause of RP, accounting for approximately 4% of arRP cases; 107 

there are limited reports describing the associated phenotypes.10,15-20 The present report describes 108 

the detailed clinical features of ten affected patients harboring likely pathogenic variants in CNGB1. 109 

 110 

Materials and Methods: 111 
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Patients 112 

Ten patients from nine families were ascertained from the inherited retinal clinics of Moorfields 113 

Eye Hospital and Great Ormond Street Hospital for Children. Informed written consent and 114 

peripheral blood samples were obtained for genetic analysis from all subjects according to approved 115 

protocols of the Research Management Committees of Moorfields Eye Hospital and Great Ormond 116 

Street Hospital for Children, in agreement with the Declaration of Helsinki. 117 

An accurate family history of each patient was recorded and all underwent a complete ophthalmic 118 

examination, which included best-corrected visual acuity (BCVA), slit-lamp biomicroscopy of the 119 

anterior segment and dilated fundus examination. Retinal fundus photographs were obtained by 120 

conventional 35° fundus color photographs (Topcon Great Britain Ltd) and in one patient by ultra-121 

widefield (up to 200°) confocal laser scanning ophthalmoscopy (Optos plc, Dunfermline, Scotland). 122 

FAF imaging (30° and 55°) was performed with a confocal scanning laser ophthalmoscope (OCT-123 

SLO Spectralis, Heidelberg Retina Angiograph 2, Heidelberg Engineering, Dossenheim, Germany). 124 

An optically pumped solid-state laser (488 nm) was used for excitation and a 500 nm barrier filter 125 

was used to modulate the reflected light. Spectral-domain OCT was performed with the OCT-SLO 126 

Spectralis, Heidelberg Retina Angiograph (Heidelberg Engineering, Dossenheim, Germany). OCT 127 

imaging was acquired by a broadband 870-nm superluminescent diode that scanned the retina at 128 

40,000 A-scans per second with an optical depth resolution of 7 μm. In particular, the central 129 

subfield thickness (CST) and morphology of the inner segment ellipsoid (ISe) band of the 130 

photoreceptors were assessed in the maculae of both eyes of all patients. CST was measured using 131 

the automated Heidelberg Spectralis viewing module (version 6.3.4.0) with slices visually inspected 132 

for segmentation accuracy. 133 

Full-field electroretinography (ERG, 6 patients) and pattern electroretinography (PERG, 5 patients) 134 

were performed to incorporate the ISCEV Standards.21,22 ERGs were recorded under dark-adapted 135 

(DA) conditions to flash strengths of 0.01 and 10.0 cd.s.m-2; light-adapted (LA) ERGs to flash 136 

strength of 3.0 cd.s.m-2 (30Hz and 2Hz). An additional larger field PERG (30º x24º) was recorded in 137 
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2 patients as previously described.23 138 

 139 

Molecular investigation 140 

Genomic DNA was isolated from peripheral blood lymphocytes using the Puregene kit (Gentra 141 

Puregene Blood Extraction Kit, QIAGEN, Manchester, UK). Whole exome sequencing was 142 

performed on patients 1-5 and 9 as part of the National Institute for Health Research (NIHR) 143 

BioResource funded Specialist Pathology: Evaluating Exomes in Diagnostics (SPEED) study 144 

(Cambridge Biomedical Centre, UK). As part of this study, more than 600 unrelated patients from 145 

Moorfields Eye Hospital and Great Ormond Street Hospital with a range of inherited retinal 146 

diseases underwent whole-exome sequencing or whole-genome sequencing with patients 1-5 and 9 147 

all from the exome cohort. Exome enrichment was performed using ROCHE NimbleGen SeqCap 148 

EZ 64 Mb Human Exome Library version 3.0 (ROCHE NimbleGen, Inc., Madison, WI, USA). The 149 

libraries were sequenced on an Illumina HiSeq 2000. Reads were aligned to the GRCh37 reference 150 

genome using novoalign version 2.08.03. Duplicate reads were marked using Picard tools 151 

MarkDuplicates. Calling was performed using the haplotype caller module of GATK 152 

(https://www.broadinstitute.org/gatk, version 3.3-0), creating gVCF formatted files for each sample. 153 

The individual gVCF files for the exomes discussed in this study, in combination with 154 

approximately 3,000 clinical exomes (University College London exomes consortium), were 155 

combined into merged VCF files for each chromosome containing on average 100 samples each. 156 

The final variant calling was performed using the GATK GenotypeGVCFs module jointly for all 157 

samples (cases and controls). Variant quality scores were then re-calibrated according to GATK 158 

best practices separately for indels and SNPs. Resulting variants were annotated using ANNOVAR 159 

based on Ensembl gene and transcript definitions. Candidate variants were filtered based on 160 

function (non synonymous, presumed loss-of-function or splicing, defined as intronic sites within 5 161 

bp of an exon-intron junction) and minor allele frequency (< 0.5% minor allele frequency in our 162 
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internal control group, as well as the NHLBI GO Exome Sequencing Project dataset, EVS, 163 

available at http://evs.gs.washington.edu/EVS/). 164 

Next generation sequencing of the coding regions of 105 genes for patients 7 and 8 and more 165 

recently for 176 retinal genes for patient 10 was performed at the Manchester Centre for Genomic 166 

Medicine (Manchester, UK) with enrichment using a SureSelect Target Enrichment Kit (Agilent 167 

Technologies Inc., Santa Clara, USA) then run on a SOLiD 4 sequencer (Life Technologies, Grant 168 

Island, NY, USA).24 More then 500 unrelated patients with a range of inherited retinal dystrophies 169 

recruited from Moorfields Eye Hospital have undergone this molecular investigation. 170 

Confirmatory bi-directional Sanger sequencing of CNGB1 was performed in all probands and 171 

available family members. DNA was amplified using specifically designed primers by polymerase 172 

chain reaction (PCR) and the resulting fragments sequenced using standard protocols.  173 

Variant nomenclature was assigned in accordance with GenBank Accession number NM_001297.4 174 

with nucleotide position 1 corresponding to the A of the ATG initiation codon. Variants were 175 

identified as novel if not previously reported in the literature and if absent from dbSNP (available at 176 

http://www.ncbi.nlm.nih.gov/projects/SNP/); EVS; and the Exome Aggregation Consortium database 177 

(ExAC, available at http://exac.broadinstitute.org) containing 61,486 exomes, all accessed 21st 178 

March 2016. Where relevant, potential splice site disruption was assessed using Splice Site 179 

Prediction by Neural Network (available at http://www.fruitfly.org/seq_tools/splice.html). 180 

 181 

Results 182 

Clinical Evaluation 183 

The series consisted of 10 patients (7 females and 3 males). Eight were Caucasian British, one 184 

Bangladeshi (patient 4) and one Afghani (patient 9). The clinical findings are summarized in Table 185 

1, with family pedigrees and identified variants shown in Figure 1. Mean age at last review was 186 
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47.4 ± 13.2 years (range 15-65) with a mean follow-up of 3.7 ± 2.8 years (range 0-11). The initial 187 

symptom in all patients was nyctalopia with onset from infancy to 14 years of age. No patient 188 

reported photophobia. A fine nystagmus was observed in one patient (patient 9). Symptomatic 189 

peripheral visual field loss occurred later, at a mean age of 33.2 ± 8.0 years (range 13-40), although 190 

it was detectable on formal kinetic perimetry in patient 9 at age 12 years. Six of 10 patients 191 

developed visually significant posterior subcapsular lens opacities in both eyes during follow-up 192 

with subsequent cataract surgery. 193 

Mean BCVA was 0.1 LogMAR (20/25 Snellen) in the right eye (range 0 to 0.3, Snellen 20/20 to 194 

20/40) and 0.1 LogMAR in the left eye (range -0.1 to 0.3, Snellen 20/16 to 20/40). Myopic 195 

refractive errors were present in three of the patients for whom data were available. Confrontation 196 

visual field testing demonstrated variable peripheral field loss in all subjects. There was sparing of 197 

the central 20-30 degrees in 7 patients; sparing of the central 10-20 degrees in 1 patient; and sparing 198 

of the central 5-10 degrees in 2 patients, with documented slow progression during follow-up.  199 

Fundus examination of all but patient 9, revealed arteriolar attenuation, optic disc pallor, retinal 200 

pigment epithelium (RPE) atrophy and mid-peripheral intra-retinal pigment migration. For patient 201 

9, the youngest patient, narrow retinal vessels and mid-peripheral RPE mottling were the only 202 

observable abnormalities at age 18 years. (Figure 2) Peri-foveal RPE atrophy was additionally 203 

present in patients 1, 4 and 10. 204 

FAF imaging showed a loss of autofluorescence in the mid-periphery with macular or perimacular 205 

rings of increased autofluorescence in all patients. Patient 9 with initial preserved autofluorescence 206 

developed a macular ring of increased autofluorescence over a 5-year follow up period (Figure 2). 207 

Three patients (patients 1, 4 and 10), had an additional patchy peri-foveal ring of reduced 208 

autofluorescence corresponding to their peri-foveal RPE atrophy. 209 

One patient with a large paracentral ring of FAF had complete preservation of the inner segment 210 

ellipsoid (ISe) band evident on OCT (Figure 2, patient 8). In others the lateral extent of the ISe band 211 

corresponded with the diameter of the ring of increased signal on FAF with the most severe loss of 212 
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ISe band in patients 1 and 10. In addition, both eyes of patient 3, 6 and the left eye of patient 7 had 213 

an epiretinal membrane; patient 5 had bilateral vitreomacular traction (VMT) associated with 214 

macular edema and patient 10 a small left lamellar macular hole without apparent VMT. Interval 215 

OCT imaging over a 5 year period in patient 9 demonstrated a marked reduction in the diameter of 216 

the ISe band (Figure 2). Mean CST thickness, excluding patient 5 (macular edema) and patient 9 217 

(information unavailable), was 302.3 μm ± 35.0 μm in the right eye and 295.3  ± 33.0 μm in the left 218 

eye compared to mean normative values of 270.2 ± 22.5 μm.25 Excluding those patients with all 219 

concurrent macular pathology resulted in similar values for the CST for patients 1, 2, 4, 7 (RE), 8 220 

and 10 (RE) of 297.7 ± 37.1 μm in the right eye and 291.8 ± 42.8 μm in the left eye.  221 

Full-field ERG and PERG were performed in 6 patients at the mean age of 40 ± 13.2 years old. 222 

Full-field ERG performed in patient 9 at the age of 13 years old showed profoundly attenuated rod-223 

specific responses (dark-adapted 0.01) with subnormal and delayed cone responses. In the other 5 224 

patients, rod-specific responses (dark-adapted 0.01) were undetectable bilaterally; the brighter flash 225 

dark-adapted ERGs (dark-adapted 3.0 and dark-adapted 10.0) showed markedly reduced or 226 

undetectable function from both eyes (figure 3). Light-adapted 30Hz flicker ERGs and single-flash 227 

cone ERG b-waves were delayed and subnormal in most, subnormal without delay in patient 8 and 228 

with only a residual single flash cone ERG detectable in patient 7. The PERG P50 responses in 5 229 

patients ranged from undetectable to normal (table 1, figure 3). Patients 7 and 8 underwent large 230 

field PERG testing with lack of enlargement of the response for patient 7 indicating marked 231 

paracentral retinal dysfunction and the expected enlargement relative to the standard PERG for 232 

patient 8 indicating relative preservation of paracentral macular function (figure 3). 233 

 234 

CNGB1 Screening 235 

Likely pathogenic variants in CNGB1 were identified in all 9 probands and, after segregation 236 

analysis, in a further 3 affected family members, one of whom was also available for examination 237 

(patient 6). One previously reported variant, c.2957A>T (p.(N986I)) in exon 29, was identified in 238 
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patients 2, 3, 5, 7 and 8 (Figure 1).16 Four novel variants were detected; 3 nonsense, c.262C>T 239 

(p.(Q88*)) in exon 3, c.664C>T (p.(Q222*)) in exon 10, c.2185C>T (p.(R729*)) in exon 22 and 240 

one splice site variant c.761+2T>A in intron 10 predicted to abolish the canonical splice donor site. 241 

These were all absent from the ExAC database. In addition 3 variants were detected not previously 242 

reported in an affected patient before but present at a very low allele frequency in the ExAC 243 

database; c.952C>T (p.(Q318*)) in exon 13 (1/120768 alleles), c.3142_3143insGTGG 244 

(p.(A1048fs*13)) in exon 31 (2/120522 alleles) and c.2544dupG (p.(L849Afs*3)) in exon 26 245 

(4/120644 alleles). For patient 3 (GC19136) and patients 5-6 (GC635), further segregation to 246 

establish phase was not possible from either antecedents or children; however the 2 variants found 247 

did segregate with additional affected individuals in both families (Figure 1).   248 

 249 

Discussion 250 

This report describes the findings in 10 patients (7 female, 3 male) from 9 families with a typical 251 

RP phenotype and likely pathogenic variants in CNGB1. Seven likely pathogenic variants not 252 

previously reported in an affected patient were identified. 253 

There are limited published data of the CNGB1 retinal phenotype.10,15-20 To our knowledge, only 7 254 

families have been identified with recessive RP due to CNGB1 comprising 3 missense variants, 3 255 

splice site variants and 1 frameshift variant. Of the 4 families with clinical detail, there was a 256 

childhood onset of nyctalopia with a later development of peripheral visual field loss reported in 4 257 

patients at ages 10, 20 and 30 (2 patients) years.10,15,17,19 Severe loss of visual acuity was present in 258 

3 patients at age 24, 57 and 67 years. There were fundus abnormalities typical of RP with mid-259 

peripheral RPE atrophy and intra-retinal bone-spicule pigmentation and variable macular atrophy. 260 

Two patients had undetectable rod responses on ERG and severely abnormal cone responses aged 261 

24 and 30 years; 1 patient had undetectable ERG responses at age 44 years. PERG was not 262 

performed. The patients in the present series had similar features; onset of nyctalopia was in 263 

childhood with symptomatic visual field loss occurring later; central visual acuity was preserved 264 
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well into adult life; there were fundus abnormalities consistent with RP; and electrophysiology 265 

demonstrated a rod-cone dystrophy phenotype. Pattern ERGs showed variable degrees of central or 266 

paracentral macular involvement and could be relatively preserved in patients with ERG evidence 267 

of severe generalized photoreceptor dysfunction.  268 

This is the first report to describe retinal imaging (other than fundus appearance); all patients 269 

demonstrated reduced mid-peripheral autofluorescence with macular rings of increased 270 

autofluorescence corresponding to the size of remaining ISe band. Abnormal para-foveal rings of 271 

increased FAF have been reported in approximately 59% of RP patients. 26 All patients in the 272 

present series demonstrated such abnormal rings, the largest FAF ring surrounded an area that 273 

included most of the vascular arcades in a patient with OCT evidence of preserved outer retina 274 

(patient 8, figure 2) and relatively preserved PERG (figure 3). The diameter of smaller FAF rings 275 

corresponded with the lateral limit of the remaining OCT ISe band, consistent with previous studies 276 

of RP patients that have shown spatial correspondence or correlation between these parameters.27,28 277 

Central subfield thickness was within normal limits. The findings of our study suggest that RP 278 

associated with variants in CNGB1 has a good prognosis for central vision despite the early onset of 279 

night blindness. The good visual prognosis is reflected by preserved central macular thickness and 280 

morphology of the inner segment ellipsoid band of the photoreceptors even in adult patients.  281 

A total of 8 different variants in CNGB1 were identified. The previously reported missense variant, 282 

p.(N986I), was detected in 5 patients, all British Caucasian, suggesting it to be a common CNGB1 283 

variant in this population.16 It is found in 133/120,752 alleles with no homozygotes in the ExAC 284 

database (minor allele frequency, MAF 0.0011), including 84/66,728 non-Finnish European alleles 285 

(MAF 0.0013). Patient 1, bi-allelic for nonsense variants, had a more severe phenotype compared to 286 

the other patients; the BCVA was 0.3 LogMAR (Snellen 20/40) at age of 47 years old and the 287 

visual field was restricted to the central 10 degrees in both eyes. This patient is predicted 288 

nullizygous for CNGB1 due to nonsense mediated decay of the transcribed mRNA as are patients 4, 289 

9 and 10 suggesting that there is no direct correlation between predicted nullizygous variants and 290 
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phenotype severity.29 Of the previously reported patients with clinical detail, 2 had splice site 291 

variants (c.413-1G>A and c.3444+1G>A) and visual loss at ages 24 and 67 years respectively; 2 292 

with missense variants had preserved central vision in to at least their 4th decades.10,15,17,19 The 293 

splice site variants have both been shown in vitro to lead to aberrant splicing and premature 294 

termination codons.19,30 At this time, there is no demonstrable genotype-phenotype correlation. 295 

Further functional work and larger numbers of patients may help elucidate potential associations. 296 

  297 

The slowly progressive RP phenotype in CNGB1 patients is consistent with the prior canine and 298 

murine model studies.31,32,33  In Papillon dogs with a homozygous frameshift variant in CNGB1, 299 

there was marked reduction or absence of rod ERG responses with a partial preservation of cone 300 

ERGs.31 OCT imaging of the central macula, when fully developed (approximately 8 weeks of age), 301 

showed retinal layer thickness comparable to a normal control with a gradually progressive thinning 302 

of the outer nuclear layer with age, confirming a slow retinal degeneration. In Cngb1-/- mice, a 303 

progressive loss of rod photoreceptor function was noted with a later degeneration of cone 304 

photoreceptors.32 The degeneration was slow with loss of 20-30% of rods at 4 months, 30-50% at 6 305 

months and 80-90% at 1 year. Although the rods degenerated early, cone photoreceptors started to 306 

degenerate only at 6 months, and were still present at 11 months.32,33  307 

 308 

To conclude, this report exparvnds the phenotype of patients with RP due to variants in CNGB1 and 309 

describes 7 additional pathogenic variants. The phenotype, similar to previous reports and animal 310 

models, indicates slow degeneration and there is therefore a lengthy window of opportunity for 311 

therapeutic intervention. The results from proof of concept gene therapy studies in a Cngb1 312 

knockout mouse model leads to optimism that human RP associated with variants in CNGB1 may 313 

ultimately be treated successfully using a similar approach.34 314 

 315 

 316 
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 449 
 450 
 451 
 452 
 Table 1.  Summary of Clinical Findings in CNGB1 patients.  453 
 454 

Patient 

(family) 

Age     
at last     
review, 
years 

Length 
review, 
years 

Age of onset 

(symptoms) 

Latest BCVA Visual 
Field to 

confronta
tion 

OCT Age in years at 

electrophysiology,  

findings RE LE 

1 

(GC2533) 
54 4 

8yrs  
 (night blindness) 

30yrs   
(loss of peripheral 

vision) 

 
0.3 

(20/40)

 
0.3 

(20/40) 

5°-10° 
central 

Centrally 
preserved ISe 
band 

Not performed 

2 

(GC20388) 
40 - 

childhood  
(night blindness) 

30yrs 
 (loss of peripheral 

vision)  

 
0.3 

(20/40)

 
0.2 

(20/32) 

20°-30° 
central 

Centrally 
preserved ISe 
band 

Not performed 

3 

(GC19136) 
55 3 

childhood 
 (night blindness) 

40yrs  
(loss of peripheral 

vision) 

 
 

0.0 
(20/20) 

 

 
 

-0.1 
(20/16) 
 

20°-30° 
central 

Centrally 
preserved ISe 
band BE ERM 

 
Subnormal PERG; 
undetectable rod ERG, 
subnormal cone ERG 
(ERG performed and reported 
elsewhere) 

4 

(GC19695) 
50 4 

childhood 
 (night blindness) 

39yrs  
(loss of peripheral 

vision) 

 
0.0 

(20/20)

 
-0.1 

(20/16) 

20°-30° 
central 

Centrally 
preserved ISe 
band 

38, subnormal RE PERG, 
normal LE PERG;  
undetectable rod ERG, 
subnormal bright flash ERG; 
subnormal & delayed cone 
ERGs 

5 

(GC635) 
65 3 

childhood  
(night blindness) 

38yrs 
 (loss of peripheral 

vision) 

 
 

0.2 
(20/32) 

 

 
 

0.2 
(20/32) 

 

20°-30° 
central 

Centrally 
preserved ISe 
band BE CMO 
BE VMT 

53, undetectable PERG; 
undetectable rod ERG; 
subnormal bright flash ERG; 
delayed & subnormal cone 
ERGs 

6 

(GC635) 
60 4 

childhood  
(night blindness) 

 40yrs  
(loss of peripheral 

vision) 

 
    0.0 
(20/20)

 
     -0.1 

(20/16) 

10°-20° 
central 

 
Centrally 
preserved ISe 
band  

Not performed 

7 

(GC20934) 
43 1 

childhood  
 (night blindness) 

 40yrs  
(loss of peripheral 

vision) 

   0.0 
(20/20) 

    0.0 
 (20/20) 

20°-30° 
central 

Centrally 
preserved ISe 
band  LE ERM 

42, subnormal PERG; 
undetectable rod ERG; 
undetectable bright flash and 
flicker ERG; residual single 
flash cone ERG 

8 

(GC21053) 
40 2 

childhood 
(night blindness) 

 
 32yrs  

(loss of peripheral 
vision) 

0.2 
(20/32)

0.2 
(20/32) 30° central 

 
ISe band 
preserved 
throughout 
macula 
 

39, subnormal PERG; 
undetectable rod ERG, 
subnormal bright flash ERG, 
subnormal cone ERGs.  
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BE, both eyes; RE right eye; LE left eye; BCVA best corrected visual acuity LogMAR (Snellen); OCT 455 

optical coherence tomography; PERG pattern electroretinography; ERG electroretinography; ERM epiretinal 456 

membrane; ISe, inner segment ellipsoid; CMO cystoid macular edema, VMT vitreomacular traction, LMH 457 

lamellar macular hole  458 

 459 

Figure legends 460 

 461 

Figure 1 462 

Title: Pedigrees of 9 families with variants 463 

 464 

Figure 2 465 

Title: Retinal imaging in CNGB1 related retinal dystrophy 466 

Color fundus photographs, fundus autofluorescence (FAF) imaging  and optical coherence 467 

tomography (OCT) for patients 3, 4, 5, 8 and 9. (A) patient 3, (B) patient 4 and (C) patient 5, all 468 

right eye (RE): mid-peripheral retinal pigment epithelium (RPE) atrophy with bone spicule 469 

hyperpigmentation, reduced autofluorescence in mid-periphery with ring of increased macula 470 

autofluorescence corresponding to preserved inner segment ellipsoid (ISe) band on OCT; patient 3 471 

epiretinal membrane also present on OCT; patient 4 reduced peri-foveal dots of autofluorescence 472 

also present; patient 5 vitreomacular traction with retinal cysts of inner nuclear layer also present on 473 

FAF imaging and OCT. (D) patient 8 left eye (LE), mid-peripheral RPE atrophy and pigmentary 474 

change as before but with a large ring of increased autofluorescence outside of the macula on FAF 475 

9 

 
18  

5 

infancy 
(night blindness) 

 
13 yrs 

(loss of peripheral 
vision) 

0.1 
(20/25)

0.1 
(20/25) 

25°-30° 
central 

 
Centrally 
preserved ISe 
band  

13, PERG not performed; 
profoundly attenuated rod ERGs, 
subnormal & delayed cone 
ERGs 

 

10 

(GC17300) 

 

49 11 

childhood 
(night blindness) 

 
30yrs 

(loss of peripheral 
vision) 

0.0 
(20/20)

0.18 
(20/30) 

5°-10° 
central 

Centrally 
preserved ISe 
band LE LMH 

Not performed 
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imaging, anterior to which reduced autofluorescence is present, and on OCT imaging, preserved 476 

retinal layers. (E) patient 9 RE and LE color fundus imaging from 2011 demonstrates narrowing of 477 

the vessels only, FAF imaging normal in 2011 but in 2016, rings of increased autofluorescence 478 

present in both eyes, partially preserved ISe band in 2011 with reduction in size demonstrated in 479 

2016 480 

 481 

Figure 3 482 

Title: Electroretinography in CNGB1 related retinitis pigmentosa. Full-field and pattern ERGs 483 

in patients 4 (age 38 years), 5 (age 53 years), 7 (age 42 years) and 8 (age 39 years) and traces from 484 

a representative normal subject for comparison. The ERGs showed a high degree of interocular 485 

symmetry and are shown for one eye only; responses are consistent with rod-cone dystrophy. PERG 486 

was normal in one eye of case 4 (mildly subnormal in the other eye; data not shown) and showed 487 

reduction indicating symmetrical mild-severe macular dysfunction in the other patients.  488 
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