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People are often aware of their mistakes, and report levels of confidence in their choices that correlate
with objective performance. These metacognitive assessments of decision quality are important for the
guidance of behavior, particularly when external feedback is absent or sporadic. However, a computa-
tional framework that accounts for both confidence and error detection is lacking. In addition, accounts
of dissociations between performance and metacognition have often relied on ad hoc assumptions,
precluding a unified account of intact and impaired self-evaluation. Here we present a general Bayesian
framework in which self-evaluation is cast as a “second-order” inference on a coupled but distinct
decision system, computationally equivalent to inferring the performance of another actor. Second-order
computation may ensue whenever there is a separation between internal states supporting decisions and
confidence estimates over space and/or time. We contrast second-order computation against simpler
first-order models in which the same internal state supports both decisions and confidence estimates.
Through simulations we show that second-order computation provides a unified account of different
types of self-evaluation often considered in separate literatures, such as confidence and error detection,
and generates novel predictions about the contribution of one’s own actions to metacognitive judgments.
In addition, the model provides insight into why subjects’ metacognition may sometimes be better or
worse than task performance. We suggest that second-order computation may underpin self-evaluative
judgments across a range of domains.
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People are often aware of their mistakes, and report levels of
confidence in their choices that correlate with objective perfor-
mance. These assessments of decision quality are important for the
guidance of behavior, particularly when external feedback is ab-
sent or sporadic, and such metacognitive abilities are particularly
well-developed in humans (Beran, Brandl, Perner, & Proust, 2012;

Metcalfe, 1996; Norman & Shallice, 1986; Shea et al., 2014).
Understanding the relationship between self-evaluations and per-
formance is a key goal for multiple interlocking research areas
including judgment and decision-making (Lichtenstein, Fischhoff,
& Phillips, 1982), education (Veenman, Wilhelm, & Beishuizen,
2004), social psychology (Heatherton, 2011), consciousness sci-
ence (Lau & Rosenthal, 2011), and clinical disorders (David,
Bedford, Wiffen, & Gilleen, 2012; Goldstein et al., 2009).
However, an appropriate computational framework that sub-
sumes both confidence and error detection is lacking (Yeung &
Summerfield, 2012). In addition, accounts of dissociations be-
tween performance and metacognition have often relied on ad
hoc assumptions, precluding a unified account of intact and
impaired metacognition.

In the laboratory, the mechanisms underpinning self-evaluation
of performance have been investigated by asking subjects to judge
their confidence in simple decisions. As we will outline in further
detail below, decision confidence can be defined as a subjective
probability of a decision being correct (Aitchison et al., 2015;
Pouget et al., 2016), and is one of many forms of uncertainty that
the brain may encode (Bach & Dolan, 2012; Meyniel, Schluneg-
ger, & Dehaene, 2015). Decision confidence can be elicited
through a variety of measures including self-reports, postdecision
wagers, and opt-out responses (see Kepecs & Mainen, 2012, for a
review), and previous studies show that variability in decision
confidence tracks changes in objective performance (Henmon,
1911; Nelson & Narens, 1990; Peirce & Jastrow, 1885) and
supports the recognition of task errors (Gehring, Goss, Coles,
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Meyer, & Donchin, 1993; Rabbitt, 1966; Rabbitt & Rodgers, 1977;
Yeung, Botvinick, & Cohen, 2004).

Formal models of decision confidence have focused on the role
played by the decision variable—an internal subjective state that is
influenced by incoming sensory evidence (Kepecs, Uchida, Zari-
wala, & Mainen, 2008; Kiani & Shadlen, 2009; Merkle & Van
Zandt, 2006; Ratcliff & Starns, 2009; Vickers, 1979). For instance,
in signal detection theoretic models, the absolute distance of the
decision variable from a criterion is a proxy for confidence (Cart-
wright & Festinger, 1943; Ferrell & McGoey, 1980; Kepecs et al.,
2008; Macmillan & Creelman, 2005; Suantak, Bolger, & Ferrell,
1996; Treisman & Faulkner, 1984). Dynamic extensions of signal
detection theory accumulate evidence for or against a particular
choice (Link & Heath, 1975; Gold & Shadlen, 2002), and several
variants of this approach have linked the state of the decision
variable at decision time to confidence (Kiani & Shadlen, 2009;
Merkle & Van Zandt, 2006; Moreno-Bote, 2010; Ratcliff & Starns,
2009; Vickers, 1979; see Fetsch, Kiani, & Shadlen, 2015; Yeung
& Summerfield, 2012 for reviews). Empirically, putative neural
correlates of decision variables are also correlated with subjective
confidence (De Martino, Fleming, Garrett, & Dolan, 2013; Gher-
man & Philiastides, 2015; Kiani & Shadlen, 2009; Komura, Nik-
kuni, Hirashima, Uetake, & Miyamoto, 2013; Zizlsperger, Sauvi-
gny, Händel, & Haarmeier, 2014).

However, a close coupling between decision variables and con-
fidence is potentially in tension with a burgeoning literature iden-
tifying dissociations between performance and metacognition.
There are systematic differences between factors affecting task
performance and confidence in perceptual decisions, including
attentional or stimulus manipulations (Bona & Silvanto, 2014;
Graziano & Sigman, 2009; Lau & Passingham, 2006; Rahnev et
al., 2011; Vlassova, Donkin, & Pearson, 2014; Wilimzig,
Tsuchiya, Fahle, Einhäuser, & Koch, 2008), individual differences
(Baird, Cieslak, Smallwood, Grafton, & Schooler, 2015; Barttfeld
et al., 2013; Fleming, Weil, Nagy, Dolan, & Rees, 2010; McCurdy
et al., 2013; Song et al., 2011), developmental trajectory (E. C.
Palmer, David, & Fleming, 2014; L. G. Weil et al., 2013) and brain
lesions or reversible inactivation in both humans (Del Cul, De-
haene, Reyes, Bravo, & Slachevsky, 2009; Fleming, Ryu, Golfi-
nos, & Blackmon, 2014; Rounis, Maniscalco, Rothwell, Passing-
ham, & Lau, 2010), nonhuman primates (Komura et al., 2013), and
rodents (Lak et al., 2014). In addition, psychiatric and neurological
disorders are often associated with impairments in self-evaluation
(David et al., 2012; Fleming et al., 2014; Goldstein et al., 2009;
Pannu & Kaszniak, 2005; Schmitz & Johnson, 2007; Weiskrantz,
Warrington, Sanders, & Marshall, 1974).

Such dissociations may arise for a number of reasons. First, the
evidence contributing to decisions may be subject to further pro-
cessing that introduces additional variability into confidence re-
ports. This further processing may occur over space and/or time.
For instance, metacognitive reports may require a neural “read-
out” of confidence from decision circuitry (Insabato, Pannunzi,
Rolls, & Deco, 2010; Maniscalco & Lau, 2012; Shimamura, 2000).
Alternatively, confidence may be affected by continued processing
of predecision evidence in time (Baranski & Petrusic, 1998; Mo-
ran, Teodorescu, & Usher, 2015; Rabbitt & Vyas, 1981; Resulaj,
Kiani, Wolpert, & Shadlen, 2009; S. Yu, Pleskac, & Zeigenfuse,
2015) or the receipt of new postdecision evidence (Bronfman et
al., 2015; Kvam, Pleskac, Yu, & Busemeyer, 2015; Navajas,

Bahrami, & Latham, 2016). Second, evidence contributing to
decisions may be inaccessible to confidence reports. A canonical
example is blindsight, in which cortically blind individuals may
perform visual discrimination tasks well above chance but be
unable to self-evaluate their performance, having a poor impres-
sion of whether they performed well or badly on individual trials
(Ko & Lau, 2012; Persaud, McLeod, & Cowey, 2007; Persaud et
al., 2011; Schmid et al., 2010; Weiskrantz, 1998; Weiskrantz et al.,
1974). Third, evidence contributing to confidence reports may be
inaccessible to decision-making. A classic example of this phe-
nomenon is error detection, in which human subjects rapidly signal
errors made in simple laboratory tasks (Rabbitt, 1966; Rabbitt &
Rodgers, 1977). The presence of the “error-related negativity”
(ERN) in the scalp EEG signal around the time of the response is
consistent with a rapid evaluation that one’s impending response is
likely to be incorrect (Gehring et al., 1993). Together these find-
ings suggest an architecture in which evidence supporting deci-
sions and confidence is maintained at least partly separately and in
parallel (Baranski & Petrusic, 2001; Charles, King, & Dehaene,
2014; Del Cul et al., 2009; Ro, Shelton, Lee, & Chang, 2004;
Schmid et al., 2010).

This variety of performance-confidence dissociations has hith-
erto precluded a unified account of metacognition in decision-
making. Here we set out to account for such dissociations in a
general framework in which confidence operates as a second-order
computation about one’s own performance. Our core proposal is
that within a single individual, samples of sensory evidence un-
derpinning decisions and confidence judgments are distinct but
coupled. Such a distinction between decision and confidence vari-
ables arises necessarily in many of the situations considered above,
and once this is formally recognized, sound statistical inference
differs in key ways from that prescribed by first-order signal
detection theory (Green & Swets, 1966). In our analysis, self-
evaluation of decision performance is achieved by leveraging the
confidence sample and one’s own actions to infer the performance
of the coupled decision system, over time and/or space. We de-
velop these ideas in a Bayesian ideal observer model, at Marr’s
computational level, jumping off from the standard signal detec-
tion theory framework that has served as the foundation for much
work in perception and metacognition. These more abstract com-
putational considerations would, of course, be complimented by
more implementational considerations at Marr’s other levels of
analysis, as indeed has proved a highly synergistic program in the
case of signal detection theory and its real-time generalizations
such as the sequential likelihood ratio test (Gold & Shadlen, 2002;
Link & Heath, 1975).

It will turn out that this framework, inspired by the dissociations
reviewed above, holds key implications for metacognitive compu-
tation in general. First, second-order computation naturally accom-
modates different behavioral manifestations of metacognition such
as confidence and error detection within a common framework.
The intuition, which will be formalized below, is that a secondary
view on the decision problem is required for a system to view itself
in error (Charles et al., 2014; James, 1950; Pasquali, Timmermans,
& Cleeremans, 2010; Rabbitt, 1966). Error monitoring and confi-
dence have typically been studied in separate literatures (Yeung &
Summerfield, 2012), but here a continuum of confidence ranging
from being certain of committing an error to being sure of being
correct emerges naturally from the model architecture. Second, a
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second-order account predicts that one’s own actions will contrib-
ute to self-evaluation. The intuition here is that rather than actions
simply signaling the output of a decision pathway, they may
themselves carry information about the subject’s internal states
that is otherwise inaccessible to confidence reports.

In the sections that follow we compare the qualitative predic-
tions of second-order computation to those made by first-order
accounts with and without postdecisional processing, and evaluate
these predictions against the empirical literature on decision con-
fidence and error monitoring. We will show that first-order models
are special cases of second-order computation that arise under
particular noise conditions (see Figure 1). Our analysis thus clar-
ifies the situations in which these simpler architectures are suit-
able, and the sorts of approximations being made by adopting them
when these conditions are not satisfied. We go on to demonstrate
how a second-order perspective accounts for individual differences
in metacognitive bias and accuracy, and may explain cases in
which metacognition is sometimes better than task performance.
We close by outlining the implications of this framework for future

empirical studies and discuss possible neural implementations of
second-order computation.

Model Overview

We consider three classes of model of how a subject generates
a report of confidence in his or her decision. All models have the
same basic ingredients. First, we define a categorical world state,
d, such as whether a stimulus is moving left (d � �1) or right (d �
1). Second, the subject makes a response a to indicate their
perceived state of the world (i.e., left, a � �1, or right, a � 1). On
each “trial” internal states X � [Xact Xconf] denote the decision and
confidence variables. To make a decision, the subject chooses
“right” if Xact � 0, and left otherwise:

a � � 1 if Xact � 0
�1 otherwise

(1)

We define the subject’s confidence z as a degree of belief that a
particular choice was correct (i.e., choice a reflected the true state

Figure 1. Schematic graphical models of self-evaluation. Upper panels show graphical models (with variance/
covariance parameters omitted for clarity). In each model, a categorical world state (e.g., stimulus � left [�1]
or right [1]) gives rise to a binary action (left or right). Building on signal detection theory, we assume both
stimuli give rise to internal decision variables that are Gaussian distributed along a unitary decision axis. To
make an action, the observer choose “right” if the decision variable is greater than 0, and “left” otherwise. Lower
panels depict a computation of confidence on a single trial of each model, in which the observer responds “right”.
(A) First-order model. The world state generates a decision variable Xact that supports both actions and
confidence reports. (B) Postdecisional first-order model. As in (A), but allowing the confidence variable (Xconf)
to sample additional evidence about the world state, which in this case leads to recognition of an error
(confidence � 0.5). (C) Second-order model. The decision and confidence variables are represented as two
correlated hidden states. A computation of decision confidence proceeds by first inferring the distribution of
possible decision variables conditional on the confidence variable (shown by the probability distribution in the
inset), and marginalizing conditional on the subject’s action to arrive at an appropriate confidence level.

93SELF-EVALUATION OF DECISION-MAKING



of the world d), given a particular set of internal states X, model m
and model parameters �:

z � P(a � d | X, a, �, m) (2)

In all model simulations we assume Gaussian noise for how
internal states X are generated from world states d. However, the
models differ in how these states are coupled, and how confidence
is computed, as described in the following sections.

First-Order Model

In the simplest “first-order” model we assume that the decision
and confidence variables are identical, such that the same internal
state supports both choices and confidence. First, the decision
variable Xact is obtained from a Gaussian distribution conditional
on the world state:

Xact � N(d, �2) (3)

The confidence variable Xconf � Xact. Confidence is then a
transformation of the posterior belief in d conditional on the action
taken (or equivalently, the sign of Xact):

z � P(a � d | Xconf, a, �2) �� P(d � 1 | Xconf, �2) if a � 1

1 � P(d � 1 | Xconf, �2) if a � �1

(4)

where Bayes’ rule provides the posterior probability of a particular
world state (assuming flat priors on d):

P�d | Xconf, �2� �
P(Xconf | d, �2)

�dP(Xconf | d, �2)
(5)

Postdecisional Model

In the postdecisional model, the confidence variable Xconf is
derived from Xact plus additional information about the world
state, Xnew:

Xconf � Xact � Xnew (6)

For ease of exposition we define Xnew as an additional sample of
evidence1, Xnew � N(d, �2). One can imagine different generative
models—the key property here is that the true world state d is
conditionally independent from the action a (and its decision
variable Xact), given the confidence decision variable Xconf. Infor-
mally, Xconf should provide all the information contained in Xact.
This will be satisfied, for instance, if Xact and Xconf are both states
of a perfect accumulator (with Xconf read out later, see, e.g.,
Resulaj et al., 2009; van den Berg et al., 2016), but not if the
accumulator is lossy or if Xconf arises from a noisy readout of Xact,
degrading the signal with additional noise.

The observer then derives confidence in a similar fashion to the
first-order model above:

z � P�a � d | Xconf, a, 2�2�

�� P�d � 1 | Xconf, 2�2� if a � 1

1 � P�d � 1 | Xconf, 2�2� if a � �1
(7)

Note that the first-order model is a special case of the postde-
cisional model when Xact � Xconf.

Second-Order Model

The second-order model is subtly but importantly different from
the first-order and postdecisional models. Unlike in the first-order
case, confidence is not derived directly from Xconf – instead Xconf

is leveraged, together with the observed action a and knowledge of
the covariance between Xconf and Xact, to infer the state of the
decider at the time of choice.

We first describe a second-order model of confidence in another
individual’s performance to provide the intuition for the within-
subject case, and to demonstrate the symmetry between evaluating
one’s own actions and those of another actor. Consider two indi-
viduals, an Actor (act) and Confidence-rater (conf). The actor is
carrying out a two-choice discrimination task as described above.
Both receive internal samples Xact and Xconf generated from binary
world state d (e.g., a stimulus moving left or right). We model
these samples as draws from a bivariate Gaussian with covariance
matrix 	:

� Xact

Xconf
� � N(d, �) (8)

� � � �act
2 ��act�conf

��act�conf �conf
2 � (9)

The covariance matrix has 3 parameters: �act, �conf, and 
. �act

and �conf control the noise of the signal for the Actor and the
Confidence-rater, respectively. The correlation parameter 
 gov-
erns the association between the two samples: capturing, for in-
stance, the fact that the variance in the two observers’ samples of
the stimulus will be partly common (attributable to objective
variation in the stimulus) and partly distinct (attributable, e.g., to
distinct sensory and neural noise). The Confidence-rater’s job is to
say how confident she is in the Actor responding correctly, or the
posterior probability that the Actor’s action a was appropriate for
the inferred state of the world d, conditional on beliefs about
different sources of variability. To do this, the observer infers (for
the purpose of marginalizing) the state of the decision variable
driving choice (Xact) from the confidence variable (Xconf):

z � P(a � d | Xconf, a, �) � � P(d � 1 | Xconf, a, �) if a � 1
1 � P(d � 1 | Xconf, a, �) if a � �1

(10)

where P(d | Xconf, a, 	) � P(d | Xconf, 	)P(a | Xconf, d, 	)

�P(d | Xconf, �) 	 P�a | Xact, ��P(Xact | Xconf, d, �) dXact

(11)

1 We do not explicitly consider the within-trial dynamics of the decision
variable here though we appreciate their importance for a complete account
of confidence (Fetsch et al., 2015). Just as sequential sampling models
represent dynamic extensions of signal detection theory (Gold & Shadlen,
2002; Link & Heath, 1975; Pleskac & Busemeyer, 2010; Ratcliff, 1978),
the framework we consider here may be naturally extended to incorporate
sequential samples of evidence. Because the primary aim of this paper is to
contrast first- and second-order computation, we restrict ourselves to the
simpler, static cases, returning in the Discussion to consider the issue of
dynamics in greater detail.
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The core of our proposal is that individuals generate confidence
in their own performance by applying an analogous computation to
their own actions (Figure 1C). Importantly, in Equation 10 the
probability of being correct is determined not only by Xconf but
also one’s own action a and beliefs about the fidelity of the
decision and confidence variables, captured by 	. In other words,
second-order inference reflects an active process of inferring the
state of the decider, rather than a passive sensitivity to the diffi-
culty of the decision. In Appendix A we derive analytic solutions
to this equation for two-choice decision scenarios assuming Gauss-
ian noise.

In the between-subjects case, we might expect limited correla-
tion between the confidence and decision variables, as depicted in
Figure 2A. In the within-subject case, this correlation may be
higher, although one evidence stream may be noisier than the
other, thereby weakening the information that either the Actor or
the Confidence-rater has about the true world state (Figure 2B).
The model architecture is agnostic about how the relationship
between Xact and Xconf arises: it may be that they remain segre-
gated in the brain (e.g., in parallel pathways); Xconf may depend on
the same neural activity as Xact at a later time point, or Xconf may
reflect a noisy read-out of Xact. The many possible relationships
between Xact and Xconf are flexibly accommodated via the param-
eters of the covariance matrix 	. In the special case in which 
 �
1 and �act � �conf, the second-order model reduces to the first-
order case, as on any given trial the same evidence supports both
actions and confidence (Figure 2C).

We note that these model variants are naturally nested, with
each representing an extension of the previous case. The first-order
model is a special case of the postdecisional model in which the
decision and confidence variables are identical, and the postdeci-
sional model is a special case of the second-order model in which
Xconf is a sufficient statistic for Xact with respect to d (e.g., when
evidence is accumulated without forgetting). Indeed, variants of
the first-order or postdecisional models outlined above are
optimal under limited cases in which the confidence computa-
tion has direct access to the actor’s decision variable. However,
the computational considerations we highlight here apply to all
but the simplest cases in which internal states underpinning

performance are transparently accessible to those underpinning
confidence.

Results (1): Features of Second-Order Computation

In this section we describe qualitative features of first- and
second-order computation, and relate these to key findings in the
empirical literature.

Relationship Between Decision Confidence, Accuracy,
and Stimulus Strength

We begin with internal representations supporting decision con-
fidence. Decision confidence typically increases with stimulus
evidence for correct judgments, but decreases with stimulus evi-
dence for errors (“X-pattern”, Figure 3; Kepecs et al., 2008; Lak et
al., 2014; Sanders et al., 2016; although see Kiani et al., 2014).
Here we show that all three model variants are able to reproduce
this pattern, and therefore observing an X-pattern in behavior is not
diagnostic of first- or second-order computation.

First-Order Model

To simulate confidence as a function of stimulus strength we
modified all models such that the sample mean depends on stim-
ulus strength � (varying between 0 and 1;  � d�; see Appendix
B for details of this and other simulations). The upper panel in
Figure 3A shows that the first-order model reproduces the quali-
tative X-pattern observed in the behavioral data despite the con-
fidence and decision variables being identical. The intuition for
this pattern is as follows. A given direction d and stimulus strength
� leads to a range of samples Xact, and the possibility of erroneous
responses. As � increases, the likely values of |Xconf| (�|Xact|)
following an incorrect response therefore decrease in magnitude.
To take a concrete example, suppose we have a leftward trial
(d � �1). If the subject’s sample Xact is � 0.05, she will errone-
ously respond “right” and derive confidence from a monotonic
transformation of |Xconf|. But this subjective sample may have
arisen from many different objective stimulus strengths �, includ-
ing both correct and error trials, and occur more often with some

Figure 2. Illustration of effects of second-order model parameters on decision and confidence variables. Each
panel shows samples of the decision variable (Xact) and the confidence variable (Xconf) drawn from models with
different parameter settings. The correlation coefficient 
 increases from (A) to (C). Panel (B) shows the effect
of selectively increasing the variability in the confidence variable (compare the width of the marginal distribu-
tions of Xconf and Xact). The parameter settings in panel (C) mimic a first-order model in which Xact and Xconf

are identical. See the online article for the color version of this figure.
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than others. When the experimenter then plots the subject’s con-
fidence as a function of the externally manipulated variable �, a
divergent pattern of confidence emerges for correct and error trials.
In other words, the X-pattern is due to the necessity of relating
observed confidence to � (which is unknown to the subject) rather
than to Xconf (which is unknown to the experimenter).

However, if it were possible to determine the decision variable
on individual trials, we would predict that confidence always
scales monotonically with |Xconf| for both correct and error trials in
the first-order case (Figure 3A, lower panel). The internal state
representation of a first-order model does not show the X-pattern.2

Postdecisional Model

The same X-pattern is obtained for confidence derived from
simulations of the postdecisional model (Figure 3B). However, in
this case the model’s internal state diverges as a function of choice
accuracy attributable to cases in which the decision and confidence
variables dissociate (cf. Figure 1B). In other words, if it were
possible for the experimenter to know Xconf on a single trial, a
postdecisional account would predict divergent relationships be-
tween confidence and Xconf on correct and error trials (Figure 3B,
lower panel).

Second-Order Model

Finally, the behavioral X-pattern also emerges from a second-
order computation of confidence, but for different reasons (Figure
3C). Here the model detects its own errors by applying second-
order inference. Specifically, given a sample Xconf, the model
generates a probability that its action matched the most likely state
of the world. In this case, confidence decreases on error trials with
increasing � because there tends to be increasing evidence (from
Xconf) that the action taken was inappropriate. As in the postdeci-

sional model, an interaction with choice accuracy is also observed
in the model’s internal state (Figure 3C, lower panel).

In summary, all models are able to account for the X-pattern
relating confidence to stimulus strength as a function of accuracy, but
do so for different reasons. The pattern emerges in the first-order
model because of an imprecise mapping between the experimenter-
observed variable � and internal state Xact; it emerges in the post-
decisional and second-order models because of the effect exerted by
beliefs counter to one’s choice on the posterior probability of having
made a correct action. The internal states of the postdecisional and
second-order models also show an X-pattern.

Relationship Between Confidence and Error Detection

Human subjects are able to rapidly detect errors made in simple
laboratory tasks (Rabbitt, 1966; Rabbitt & Rodgers, 1977). Other
work has investigated the dynamics of changes of mind—a switch
from an initial, often erroneous response to an alternative, correct
response (Resulaj et al., 2009). Both error detection and changes of
mind can be formalized as a subjective probability of success for
a chosen action being lower than that of an alternative action,
which in two-choice discrimination corresponds to a decision
confidence level less than 0.5.

It is notable that such representations are precluded in the
simplest first-order model because the same evidence drives both

2 Kepecs and colleagues have shown that spike rates of single neurons in
orbitofrontal cortex, a putative neural correlate of confidence, show an
X-pattern as a function of external stimulus strength (Kepecs et al., 2008).
Given that the internal state of a first-order model does not show this
pattern, it is tempting to instead conclude that a more complex model is
needed to account for these findings. However, this conclusion does not
necessarily follow: again, the experimenter has access only to stimulus
strength rather than the animal’s decision variable, and similar consider-
ations apply as when interpreting behavioural data.

Figure 3. Internal representations supporting decision confidence. Simulations of first-order (A), postdeci-
sional (B), and second-order (C) models showing how confidence changes as a function of stimulus strength and
decision accuracy. The upper panels show confidence as a function of objective stimulus strength; the lower
panels show confidence as a function of the internal state of each model. See the online article for the color
version of this figure.

96 FLEMING AND DAW



choices and confidence, resulting in a lower bound on confidence
of 0.5 (Figure 4A). In other words, if a single decision variable
indicates that the alternative option is preferable, then the action
also follows suit; dissociations between actions and confidence do
not occur and confidence is monotonic in |Xconf|. In contrast, in
both the postdecisional and second-order models (Figure 4B, C),
confidence maps out a space from being sure that an error has been
committed to being sure of a correct response, due to regimes in
which the model infers that its action a was at odds with the most
probable direction d, and there is no longer a monotonic mapping
between |Xconf| and confidence. Finally, Figure 4C illustrates a
feature of second-order computation that we will return to below:
even when the confidence variable provides equivocal evidence
about the world (Xconf � 0), the model’s confidence is not neces-
sarily at chance (0.5). Instead, for the parameters used in this
simulation, confidence when Xconf � 0 is around 0.7, due to the
confidence computation also incorporating knowledge about the
average reliability of actions, that is, �act (Drugowitsch, Moreno-
Bote, & Pouget, 2014). In summary, postdecisional and second-
order models are able to reproduce error-detection-like behavior
(P(correct) � 0.5), but the simplest first-order model cannot.

The internal representations of the second-order model that
support error detection are illustrated in Figure 4D. Here we
sampled moderately correlated samples of Xact and Xconf from
world state d � 1 (i.e., the true stimulus class is “right”). By
applying a neutral decision criterion, the observer erroneously
responds “left” whenever Xact is less than zero. However, whether

this error will be detected depends on whether Xconf provides
enough (positive) evidence in support of the alternative, correct
response (orange samples in Figure 4D). The proportion of de-
tected errors is itself governed by the covariance of Xconf and Xact.
Figure 4E simulates the proportion of detected errors for a constant
performance level (�act � 1; �84% correct). Error detection is
highest when �conf is low, because the confidence variable pro-
vides accurate information about the true world state. Notably
error detection also depends on the correlation between the sam-
ples—as 
 approaches 1 (lower right quadrant of the heatmap) the
model reduces to the first-order case and error detection is again
precluded.

These simulations of error detection are of course an oversim-
plification—the criterion for whether to report an error is itself
under subject control, and may be adjusted above or below 0.5 in
the face of changing incentives (Neyman & Pearson, 1933; Stein-
hauser & Yeung, 2010). The aim here is simply to show that both
postdecisional and second-order models naturally handle error
detection and changes of mind by modeling cases in which the
confidence and decision variables disagree.

Influences of Self-Generated Actions on Confidence

A counterintuitive but important feature of second-order com-
putation is that one’s own actions may causally affect subsequent
confidence ratings, particularly if Xact and Xconf are only weakly
coupled. This influence arises because actions carry information

Figure 4. Internal representations supporting error detection. (A) Confidence as a function of the decision
variable and uncertainty parameter � in the first-order model. (B, C) Confidence as a function of the confidence
variable, chosen action and uncertainty parameter �conf in the postdecisional model (B) and second-order model
(C). (D) Simulation of how error detection emerges from correlated samples in the second-order model. Samples
are generated from a true world state d � 1 with parameter settings �act � 1, �conf � 1 and 
 � 0.6. The model
makes errors when Xact falls to the left of the neutral (0) criterion. A subset of these objective errors are
“detected” due to the confidence variable providing evidence that the alternative action is preferred, generating
a confidence level of less than 0.5. (D) Heat map revealing how the proportion of detected errors in (C) varies
according to model parameters �conf and 
. Objective accuracy (governed by �act) is constant. See the online
article for the color version of this figure.
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about the subject’s internal states, leading a rational observer to
incorporate her own actions as additional data when computing
confidence. Consider Figure 5A. Plotted on the y axis is the
posterior probability that the current world state is rightward (d �
1) as a function of confidence variable Xconf. Intuitively, as Xconf

becomes more positive, the model gains greater evidence that d �
1. However, having taken an action a, this inference is modulated,
such that a leftward action reduces the belief in rightward world
states, whereas a rightward action boosts it.

To further explore this effect, we simulated the model’s confi-
dence after “clamping” Xconf at 0. In the first-order case (gray line
in Figure 5B and 5C), the model is equivocal about the world state
and confidence remains at 0.5. However, after an action is made,
the second-order model leverages this new information to modu-
late its belief in d. The extent to which this modulation occurs is
dependent on (beliefs about) the covariance of Xact and Xconf. As
the confidence variable becomes more noisy (�conf increases),
the information provided by Xconf is less reliable and actions are
given more weight (Figure 5B). Conversely, as the correlation
between Xact and Xconf increases (
 increases), actions provide
less new information about the possible values of d, and the
modulation of confidence by action decreases (Figure 5C).

This feature of the model leads to a counterintuitive empirical
prediction: elicitation of actions should affect confidence judg-
ments. For instance, if subjects are asked to rate their confidence
before their response (i.e., confidence in making a hypothetical
response), then they may compute their confidence without con-
ditioning on self-action (which is precluded in this case unless
subjects covertly choose and then rate; Figure 6A). This leads to
two effects (Figure 6B). First, the difference in confidence be-

tween correct and error trials should be greater (metacognitive
sensitivity should increase) when ratings are given after a decision
than before, due to the additional diagnostic information provided
by the action. Second, ratings given after a decision should be
systematically lowered compared to those given before (Figures
7A and B show that these qualitative effects are obtained across a
large range of second-order model parameters). In contrast, actions
do not provide any additional diagnostic information about hidden
states in first-order accounts, and in the absence of additional
postdecision evidence, confidence levels are equivalent whether
elicited pre- or postdecision (Figure 6C).

Empirical observation of a pattern similar to that depicted in
Figure 6B would therefore provide support for a second-order
model of confidence. While revising our manuscript for publica-
tion (and after developing these simulations) we became aware of
a published dataset that directly tested and confirmed our predic-
tions (Figure 6D). Siedlecka et al. (2016) asked subjects to provide
confidence ratings about whether a target word presented on the
screen was the solution to a previously studied anagram. In a
between-subjects design, participants were assigned to one of
three conditions: deciding if a target word was an anagram and
then judging confidence (target-decision-metacognitive judg-
ment, tDM); judging confidence after seeing the target but before
making a decision (tMD); or rating confidence before seeing the
target word (MtD). Here we focus on the difference between the
tDM and tMD conditions, as they represent direct analogues of our
choose-rate and rate-choose simulations. In Figure 6D we replot
their data alongside the second-order model simulation at con-
stant stimulus strength (Figure 6E). Siedlecka et al. (2016)
found that metacognitive sensitivity was greater in the tDM

Figure 5. Influence of choices on second-order model confidence. (A) Posterior probability of a rightward
world state as a function of confidence variable Xconf and the chosen action. (B, C) The lefthand panels show the
influence of actions on the posterior probability of d � 1 for a constant, uninformative sample (Xconf � 0). The
righthand panels show the corresponding confidence level. In all panels gray lines show expected confidence
from a first-order model for comparison. (B) As the confidence variable becomes less informative (�conf

increases), actions have a greater effect on posterior beliefs. (C) As the correlation between Xact and Xconf

increases, actions provide less new information about the possible values of d, and their influence on confidence
reduces. Constant parameters in all panels are set at �act � 1, �conf � 1, 
 � 0.4.
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than the tMD conditions, in accordance with the predictions of
a second-order model in which actions inform confidence
ratings. In addition, confidence was overall lower in the choose-
rate case, although unlike the effect on metacognitive sensitiv-
ity, this was not statistically significant. As can be seen by
comparing Figure 6D and E, the second-order model simulation
qualitatively captures the patterns observed in Siedlecka et al.’s
experiment.

Conclusions

In this section we have explored features of first- and second-
order models of confidence, and compared their qualitative pre-
dictions against empirical findings on confidence and error detec-
tion. We find that although all models can reproduce relationships
between stimulus strength, accuracy, and confidence, only postde-
cisional and second-order models permit levels of confidence that

Figure 7. Effects of choice on confidence across a range of second-order model parameter settings. (A) Plots of bias
as a function of model parameters �conf (left panel) and 
 (right panel). Across a range of parameter settings confidence
is decreased in the choose-rate condition. In the �conf simulation, 
 � 0.6, whereas in the 
 simulation, �conf � 1. (B)
Similar to (A) for metacognitive sensitivity (the difference between correct and error confidence). Across a range of
parameter settings metacognitive sensitivity is increased in the choose-rate condition.

Figure 6. Predicted effects of choice on confidence. (A) Graphical models for choose-rate and rate-choose
experiments illustrating the influence of actions on confidence in the choose-rate condition. (B) Simulation of
confidence from choose-rate and rate-choose experiments as a function of stimulus strength and decision accuracy for
the second-order model (�act � 1, �conf � 1, 
 � 0.6). Overall confidence (bias) decreases relative to the rate-choose
condition when choices are made before confidence ratings (choose-rate), whereas the difference in confidence
between correct and error trials (metacognitive sensitivity) increases. (C) As in (B) for the first-order model (�act �
1). Here the predictions for confidence from the choose-rate and rate-choose models are identical and the dotted lines
are obscured. (D) Data replotted from Siedlecka et al. (2016), with permission, in which choice and rating order were
manipulated. (E) Simulations of second-order model predictions at constant stimulus strength, plotted using same
conventions as (D). See the online article for the color version of this figure.
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may support error detection, and only a second-order account
naturally accommodates findings that actions themselves influ-
ence confidence judgments. These results are summarized in
Table 1.

Results (2): Dissociations Between Performance
and Confidence

Modeling Dissociations Between Performance
and Confidence

Metacognitive accuracy refers to the relationship between self-
evaluation and performance, and comprises two components: sen-
sitivity and bias3 (Fleming & Lau, 2014). Metacognitive sensitiv-
ity refers to the extent to which a subject can discriminate correct
from incorrect performance on a first-order task, and can be
assessed with Type II receiver operating characteristic (ROC)
analysis (Clarke, Birdsall, & Tanner, 1959; Galvin, Podd, Drga, &
Whitmore, 2003) or meta-d=, which indexes metacognitive sensi-
tivity in units of decision d= (Maniscalco & Lau, 2012, 2014). The
logic is that if an observer has good sensitivity, she will be able to
discriminate between her own correct and incorrect responses
through offering up suitable confidence reports—lower confidence
when incorrect, and higher confidence when correct. Metacogni-
tive bias is the tendency to give higher overall confidence ratings,
all else being equal. Note that bias is potentially independent of
sensitivity—a subject might have high overall confidence but be
unable to discriminate between correct and error trials.

In this section we show that second-order computation naturally
accommodates changes in metacognitive sensitivity and bias
through alterations in covariance parameters and beliefs about
covariance parameters (hyperparameters), respectively, and han-
dles cases in which metacognitive sensitivity is either better or
worse than performance.

Metacognitive Sensitivity

Two distinct (but not mutually exclusive) sets of parameter
changes may lead to reductions in the second-order model’s meta-
cognitive sensitivity. In the first, metacognitive sensitivity is im-
poverished (Type II ROC area is reduced) as the noise in the
confidence variable �conf is increased (Figure 8A). In the second,
�conf remains constant but the correlation between Xconf and Xact is
increased, leading to decreased metacognitive sensitivity despite
task performance remaining constant (Figure 8B). In other words,
while the precision of the confidence variable remains constant,
increased coupling between the confidence and decision variables

reduces the model’s ability to detect when its behavior may have
been inappropriate (cf. Figure 4D).

Accounting for Hyper- and Hypo-Metacognitive
Sensitivity

In signal detection theoretic approaches to metacognition, Type
I performance provides a theoretical upper bound on the Type II
ROC (Galvin et al., 2003). In other words, it is not possible, under
these accounts, for more signal to be available to the Confidence-
rater than available to the Actor. Maniscalco and Lau provided an
elegant method for comparing metacognitive sensitivity and per-
formance by characterizing metacognitive sensitivity in units of
Type I d=, which they label meta-d= (Maniscalco & Lau, 2012). In
this approach, an ideal observer’s meta-d= equals d=, or the ratio
meta-d=/d= � 1. Suboptimal or hypo-metacognitive sensitivity re-
sults in values of meta-d=/d= � 1 (Barrett, Dienes, & Seth, 2013;
Maniscalco & Lau, 2014). Maniscalco and Lau suggested that
empirical values of meta-d=/d= � 1 (“hyper”-metacognitive sensi-
tivity) may be attributable to artifacts of estimation error or crite-
rion variability. But in our experience, such values are routinely
observed in empirical studies (see Figure 8E), and recent work has
highlighted that in certain circumstances hyper-metacognitive sen-
sitivity may be more common than previously assumed (Charles,
Van Opstal, Marti, & Dehaene, 2013; Scott, Dienes, Barrett, Bor,
& Seth, 2014).

Building on the simulations of error detection considered
above, we can understand how hyper-metacognitive sensitivity
may naturally arise as a consequence of postdecisional and/or
second-order computation. If the confidence variable provides
additional valid information about the world state (in the
second-order model, when 
 � 1 and �conf is low), the model
reliably detects its own errors (Figures 4D, 8A and 8B). This
may lead to circumstances in which metacognition is “better”
than performance, that is, meta-d= � d=. To demonstrate this we
randomly sampled simulated data sets generated from a partic-
ular combination of �act (d=) and �conf (holding 
 constant at
0.5), and fitted meta-d= to each dataset. Figure 8C plots d=
against meta-d=, color-coded according to the ratio of model
parameters �conf /�act. It can be seen that when this ratio is
small, values of meta-d= � d= are routinely obtained. Further-
more, when we interrogate the relationship between the propor-
tion of detected errors (i.e., errors with confidence �0.5),
hyper-metacognitive sensitivity is associated with the emer-
gence of error detection in the model (Figure 8D). These results
demonstrate that both hypo- and hyper-metacognitive sensitiv-
ity are accommodated by a second-order framework.

Bias/Calibration

Up until now we have assumed that the covariance parame-
ters associated with internal states are identical to those enter-
ing into the model inversion step when computing confidence.
This is presumably an oversimplification. Instead, a subject’s
beliefs (hyperparameters) about these parameters may be mal-
leable, leading to systematic over- or underconfidence (Adams,

3 The related terms resolution and calibration are often employed in
studies of probability judgments.

Table 1
Summary of Model Variants and Their Ability to Accommodate
Qualitative Features of Empirical Data

Variant First-order Post-decisional Second-order

X-pattern in confidence Yes Yes Yes
Error detection No Yes Yes
Effects of choice on

confidence No No Yes
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Stephan, Brown, Frith, & Friston, 2013; Drugowitsch et al.,
2014), and potentially accounting for systematic biases in self-
evaluation.

To illustrate how changing hyperparameters leads to bias, in
Figure 9 we plot the model’s aggregate performance (propor-
tion correct) conditioned on 10 levels of confidence for differ-
ent settings of beliefs about parameters �act, �conf and 
.
Importantly, for all simulations the actual parameters used to

generate internal samples and decisions were fixed at �act �
1.5, �conf � 1, 
 � 0.6. The deviation of the curves from the
identity line show that subtly different beliefs about the true
underlying parameters are sufficient to produce a range of
patterns of systematic over- or underconfidence, typical of the
probability distortions observed in the experimental literature
(Drugowitsch et al., 2014; Harvey, 1997; Zhang & Maloney,
2012).

Figure 8. Modeling changes in metacognitive sensitivity in a second-order framework. (A) Simulated Type II
ROCs for different levels of noise in the confidence variable, �conf. As Xconf becomes more variable, metacog-
nitive sensitivity is reduced despite task performance remaining constant. (B) Simulated Type II ROCs for
different levels of 
. As the correlation between the confidence and decision variables is increased, metacognitive
sensitivity is decreased. (C) Relationship between d= and meta-d= of simulated data sets color-coded by settings
of model parameters �conf and �act (
 � 0.5). Cases of “hyper”-metacognitive sensitivity in which meta-d= �
d= are associated with parameter ratios less than 1, indicating greater variability in the decision variable
compared to the confidence variable. (D) Relationship between meta-d=/d= of simulated data sets and proportion
of detected errors in each dataset. Cases of meta-d=/d= � 1 (log(meta-d=/d=) � 0) are associated with an increase
in the number of detected errors. E) Plot of d= against meta-d= obtained from data pooled across a number of
empirical studies (Fleming et al., 2010; Fleming, Huijgen, & Dolan, 2012; E. C. Palmer et al., 2014; L. G. Weil
et al., 2013), demonstrating the substantial frequency of hyper-metacognitive sensitivity observed in these data
sets. See the online article for the color version of this figure.

Figure 9. Modeling changes in metacognitive bias in a second-order framework. Simulated performance levels
conditioned on 10 equally spaced confidence bins for different beliefs about parameters (A) �act, (B) �conf, or
(C) 
. In each panel we manipulated beliefs about the relevant parameter while holding the other two parameters
constant. For all simulations the actual parameters used to generate samples were fixed at �act � 1.5, �conf �
1, 
 � 0.6. See the online article for the color version of this figure.
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Discussion

We have proposed that metacognitive judgments of decision-
making may depend on second-order computation about behavior,
computationally equivalent to inferring the performance of another
actor. A key insight is that as soon as one recognizes a distinction
between the decision variable controlling behavior, versus the
information guiding the confidence judgment, then except in spe-
cial cases, correctly judging confidence requires inferring the
causes of one’s own behavior. This general formalism subsumes
several cases in which the internal states underlying performance
and confidence may differ, such as dissociations over space and
time. Second-order computation accounts for different behavioral
manifestations of metacognition such as confidence and error
detection within a single computational scheme. Furthermore, by
positing coupled hidden states, a second-order framework natu-
rally handles dissociations between performance and metacogni-
tion.

Nested within a second-order framework are simpler first-order
accounts. We find that while first-order models can reproduce the
empirical interrelationship of confidence, stimulus strength, and
accuracy, only postdecisional and second-order models reproduce
confidence levels that support error detection, and only the second-
order model accommodates findings that actions themselves influ-
ence confidence judgments. Thus while we do not wish to propose
that second-order computation always underpins confidence re-
ports, some features of empirical data are at least consistent with
the operation of second-order computation in a subset of cases.
Although intentionally broad in scope, a second-order framework
nevertheless makes concrete empirical predictions, including the
influence of actions upon decision confidence and the commonal-
ity between neural mechanisms supporting confidence and error
detection. Here we consider in greater detail how our model relates
to previous models of error detection and confidence, and explore
possible neural implementations of second-order computation.

Relationship to Previous Models of Metacognition in
Decision-Making

Models of error detection. A second-order framework sug-
gests that errors are detected as a mismatch between an inference
on the world state and the selected action. This approach is
consistent with earlier accounts of error monitoring that emphasize
the comparison between intentions and actions (Charles et al.,
2014; Coles, Scheffers, & Holroyd, 2001; Holroyd & Coles, 2002;
Holroyd, Yeung, Coles, & Cohen, 2005; Rabbitt & Rodgers,
1977). Although initially this literature focused on binary error
signaling, there has been increasing recognition that similar prin-
ciples may also underpin graded confidence judgments (Boldt &
Yeung, 2015; Scheffers & Coles, 2000; Yeung & Summerfield,
2012). One influential model of error detection suggests that
activation of two competing responses leads to conflict (and asso-
ciated activation in the anterior cingulate cortex), and this conflict
triggers the detection of an impending error (Yeung et al., 2004).
An alternative perspective is that error detection relies instead on
computing the likelihood of an error occurring in a given context
(Alexander & Brown, 2011; Brown & Braver, 2005). The current
framework provides a potential bridge between these accounts—
error detection relies on “conflict” between two streams of evi-

dence (see Figure 4C), but rather than the model signaling this
conflict per se, it harnesses this disagreement to infer a probability
that an error will occur.

Holroyd and colleagues proposed a neural network model of
error detection which assigned value to state-action conjunctions
by reinforcement learning (Holroyd et al., 2005; Holroyd & Coles,
2002). Once the model has been trained, actions that are inappro-
priate for a given state became associated with negative values,
leading to a negative prediction error (and associated error-related
negativity) at the time of response. This scheme also shares com-
monalities with second-order computation in that confidence is
conditional on both state and action variables. However, it differs
in that second-order computation does not explicitly represent
stimulus–response conjunctions. Instead such associations are im-
plicit in inverting a generative model of action when evaluating
one’s performance.

Models of confidence. Several previous models of confidence
have built upon evidence accumulation models of decision-
making, accounting for key interrelationships between choice,
confidence and response time (De Martino et al., 2013; Kiani &
Shadlen, 2009; Kiani, Corthell, & Shadlen, 2014; Merkle & Van
Zandt, 2006; Pleskac & Busemeyer, 2010; Ratcliff & Starns, 2009;
Vickers, 1979). One instance where decoupling of information
underlying decision and confidence arises is when a single repre-
sentation of decision evidence evolves over time, as in our post-
decisional model simulations. This idea—a sort of bridge along the
way from first to second-order models—has been used to model
confidence and changes of mind (Moran et al., 2015; Pleskac &
Busemeyer, 2010; Resulaj et al., 2009; van den Berg et al., 2016),
and can also be seen as a special case of the framework we present
here. (In particular, as we discuss further below, our analysis
indicates that even in this first-order-like case, a confidence judg-
ment should be informed by the chosen action, unless the accu-
mulation is perfect and without decay). We note the relationship
between decision time and confidence is likely to be complicated,
and dependent on the task and goal of the observer (Koizumi et al.,
2015; Pleskac & Busemeyer, 2010). However, a compelling ave-
nue for future work is to unfold second-order computation in time,
propagating multiple hidden states, just as the drift-diffusion
model represents a temporal unfolding of classical signal detection
(Ratcliff, 1978). Initial work along these lines has explored how
the propagation of multiple internal decision variables holds prom-
ise for unifying accounts of decisions and subjective reports (Del
Cul et al., 2009; Fuss & Navarro, 2013; Kvam et al., 2015;
Zandbelt, Purcell, Palmeri, Logan, & Schall, 2014). Such models
may provide computational insights not only into the dynamics of
self-evaluation, but also the evaluation of the decisions of others
(Patel, Fleming, & Kilner, 2012).

There is ongoing debate over whether confidence computation
is best accommodated by serial or parallel architectures (Fleming
& Dolan, 2012; Maniscalco & Lau, 2014; Pleskac & Busemeyer,
2010). Maniscalco and Lau found that a signal detection model in
which confidence is derived from a noisy hierarchical representa-
tion of evidence supporting a choice provided a better fit to rating
data than alternatives in which evidence for choices and confi-
dence evolved in parallel (Maniscalco & Lau, 2016). Similarly,
Pleskac & Busemeyer’s 2-stage dynamic signal detection (2DSD)
model proposes that a decision variable continues accumulating
beyond the decision time, at which point confidence is determined
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by its relation to a set of response criteria (Pleskac & Busemeyer,
2010). This model accounts for a number of relationships between
decision time, postdecision time and confidence. However, serial
accumulation may not be sufficient to account for cases in which
error detection is very fast, consistent with a parallel representation
of evidence against the decision (Charles et al., 2014; Rabbitt,
1966). Del Cul and colleagues suggested that information for
decisions and subjective reports is accumulated in parallel, and this
architecture was able to mimic a selective alteration in subjective
reports due to prefrontal brain damage (Del Cul et al., 2009).

A second-order approach offers a broader perspective on this
debate, subsuming several special cases. Specifically, depending
on the covariance of the model’s internal states, confidence ratings
may appear to be determined by a hierarchical or parallel archi-
tecture. For instance, if �act � �conf and 
 is high, the model will
appear hierarchical, in that confidence depends on the same evi-
dence as actions, albeit with added noise. Conversely, if 
 is low,
the model operates in a parallel fashion, and as �act approaches
zero, cases of “blind insight” may occur in which the model is
aware of making erroneous or correct actions despite performing at
or near chance (Scott et al., 2014). Finally, there may be domains
or tasks in which confidence reports show a particularly high
degree of sophistication in tracking task performance, which
would suggest that decision and confidence variables are tightly
coupled, with little opportunity for dissociations (e.g., Barthelme
& Mamassian, 2010; Meyniel, Sigman, & Mainen, 2015; Peters &
Lau, 2015).

A further implication of second-order computation is that com-
mon mechanisms should support both confidence judgments and
monitoring of errors. Most previous work on error monitoring has
focused on discrete cases in which actions diverge from intentions
under time pressure. The canonical finding is that an error-related
negativity (ERN) originating in the anterior cingulate cortex is
observed time-locked to the onset of the erroneous response (De-
haene, Posner, & Tucker, 1994; Gehring et al., 1993). In contrast,
studies of confidence have tended to focus on cases in which
perceptual uncertainty is manipulated but response requirements
are trivial (although see Faisal & Wolpert, 2009; Fleming, Malo-
ney, & Daw, 2013). There is now increasing recognition that
multiple sources of variability affect the strength of error- and
confidence signals in the brain; for instance, neural signatures of
error detection are also modulated by the degree of sensory un-
certainty of the subject (Charles et al., 2013; Navarro-Cebrian,
Knight, & Kayser, 2013; Scheffers & Coles, 2000). In support of
this idea, Boldt and Yeung recently provided direct evidence for a
common neural substrate for confidence and error detection. By
applying multivariate decoding analyses to EEG data recorded
during a visual discrimination task, they showed that neural mark-
ers of error detection were also predictive of varying levels of
confidence in correct choices (Boldt & Yeung, 2015).

Varieties of Metacognitive Inaccuracy

The ability to discriminate one’s own correct and incorrect
responses can be quantified by Type II ROC analysis (Clarke et al.,
1959; Galvin et al., 2003; Maniscalco & Lau, 2012, 2014). Re-
cently Maniscalco and Lau developed an elegant measure of
metacognitive sensitivity, meta-d=, that quantifies the Type II ROC
area in units of first-order d= (Maniscalco & Lau, 2012). As shown

in Figure 8, there may be a number of reasons for low meta-d= in
the current framework. Increased noise in the confidence variable
may impair inference on world states and therefore impair classi-
fication of correct or incorrect responses. Conversely, an increase
in correlation between the decision and confidence variables may
lead to impaired insight, due to the model not being able to
“recognize” when it may have been in error.

It is instructive to contrast the signal detection model underpin-
ning meta-d= with the Bayesian framework outlined here. Whereas
meta-d= is primarily a tool for estimating metacognitive sensitivity,
second-order computation provides an underlying generative
model for confidence and an explanatory framework for different
types of dissociation between performance and confidence. In
addition, whereas confidence in the meta-d= model is specified in
arbitrary units, second-order computation models decision confi-
dence as a probability, thus allowing specification of parameters
determining not only metacognitive sensitivity but also the extent
of over- or underconfidence. It is therefore useful to view meta-d=
as complementary to our framework. Just as d= provides a bias-free
measure of perceptual sensitivity that depends on a number of
underlying processes, meta-d= provides a summary of an individ-
ual’s metacognitive sensitivity that is determined by the joint
contribution of internal states and the computations applied to
those states.

Multiple drivers of metacognitive sensitivity are also recognized
by the stochastic detection and retrieval model (SDRM) of confi-
dence in memory (Jang et al., 2012), which assumes that two
samplings of evidence occur per stimulus, one leading to memory
retrieval, and the other leading to a confidence rating. One impor-
tant difference between second-order computation and the SDRM
is that in the former, decision confidence is a probability of success
derived from inverting a generative model of action, whereas in the
latter, confidence is generated by comparing samples to additional
criterion parameters. An intriguing consequence is that in the
SDRM, an increase in 
 leads to increased metacognitive sensi-
tivity, due to a tighter association between confidence and perfor-
mance, whereas in second-order computation, an increase in 

leads to a decrease in sensitivity, due to the model being unable to
see itself in error (Figures 3D and 8B). Empirical work combined
with model comparison could test these predictions.

Our model accommodates dissociations between decision-
making and metacognition through alterations in the precision and
coupling of internal states, such as the decision and confidence
variables. However it is also possible that decision-making and
metacognition have different inferential goals, and may be differ-
entially sensitive to different types of information. Introducing
these normative constraints into models of metacognition is an
important goal for future work. For instance, it would be of interest
to explore whether differential sensitivity to evidence for or
against a choice (Koizumi et al., 2015; Maniscalco et al., 2016;
Zylberberg et al., 2012), and differential effects of attention on
performance and confidence (Rahnev et al., 2011; Solovey et al.,
2015) could be accommodated in a Bayesian framework with
appropriate constraints. The current framework may also provide a
benchmark from which to assess other apparent suboptimalities in
confidence that are normative when appropriate computational
considerations are taken into account (e.g., the effects of actions on
subsequent confidence ratings). Finally, we have shown that mis-
matches between the subject’s beliefs (hyperparameters) about
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different sources of uncertainty and the true parameters can lead to
systematic over- and underconfidence (Adams et al., 2013; Dru-
gowitsch et al., 2014), and thus potentially account for variability
across individuals in metacognitive bias. How such hyperparam-
eters are learnt over time is an important topic for future investi-
gation.

Influence of Choices on Confidence Judgments

A counterintuitive feature of second-order computation is that
actions influence subsequent confidence ratings, all else being
equal. This influence arises because actions contribute information
about possible world states, leading a rational observer to incor-
porate his own actions as additional data when computing confi-
dence (cf. Bem, 1967). This feature of the model has several
empirical implications. A practical implication is that it pays to be
cautious when comparing data from studies in which confidence is
elicited with or without a preceding action. Several behavioral
paradigms have been developed for eliciting decision confidence
in both humans and nonhuman animals (Kepecs & Mainen, 2012).
In retrospective judgment paradigms, an action intervenes between
the stimulus and the confidence rating whereas in opt-out and
simultaneous-report paradigms, confidence is elicited in parallel to
or instead of the decision itself. Measures of confidence from these
paradigms are often taken to be equivalent. However the current
model predicts subtle differences in the role played by actions in
retrospective judgment designs where the subject’s own responses
may contribute additional evidence to the computation of confi-
dence. Although perhaps counterintuitive, this is rational under the
model architecture: to the extent that the confidence and decision
variable have partially distinct information, the subject may gain
additional information about the world state by “observing” her
own actions.

A second-order framework makes concrete predictions about
the effect of choices on confidence ratings—namely a decrease in
overall confidence and an increase in sensitivity. In addition to the
results of Siedlecka et al. (2016) that we document in Figure 6,
other recent findings are consistent with these predictions. Manip-
ulating the order of identification responses and subjective aware-
ness ratings (including confidence and visibility scales) revealed
increases in metacognitive sensitivity when identification re-
sponses preceded the rating (Wierzchoń et al., 2014). Zehetleitner
and Rausch (2013) similarly compared first-order subjective rat-
ings of a stimulus with second-order confidence in a previous
decision, and found that the latter was associated with greater
metacognitive sensitivity. Finally, Kvam and colleagues compared
a choice with a no-choice (arbitrary mouse click) condition in a
random-dot motion discrimination task (Kvam et al., 2015). They
found that confidence judgments were less extreme and more
accurate in the choice compared to the no-choice condition (see
also Ronis & Yates, 1987; Sniezek et al., 1990 for similar find-
ings); however, in this case effects of choice were modeled as
interfering with a second stage of evidence accumulation, as sen-
sory evidence continued to be available after the decision was
made. Finally, in a recent study we tested for the influence of
action-specific information on confidence in a near-threshold vi-
sual discrimination task by applying single-pulse TMS to the
premotor cortex (Fleming et al., 2015). When stimulation was
incongruent with the subjects’ actions, confidence judgments on

correct trials were decreased, whereas congruent stimulation led to
increased confidence. Performance remained unchanged. This pat-
tern is potentially consistent with a contribution of action infor-
mation to second-order computation.

The role of action in a second-order framework also reveals
subtleties in the relationship between confidence and visibility
judgments. In consciousness studies, confidence ratings are often
considered proxies for perceptual awareness (Peirce & Jastrow,
1885). For instance, King and Dehaene (2014) suggest that within
a signal detection framework, visibility is equivalent to assessing
confidence in a detection response, and their model is able to
account for several classical characteristics of conscious and un-
conscious perception. However, to the extent that subjects are
applying second-order computation to assess their confidence in
their response, we might observe that subjects leverage the infor-
mation content of the response itself to inform their confidence
ratings. For instance, blindsight patients with lesions to visual
cortex may nevertheless develop a “hunch” that their response was
correct, without acknowledging the existence of a corresponding
visual conscious experience (Persaud et al., 2011). As described
above, similar effects may also lead to changes in visibility ratings
following responses in psychophysics experiments in healthy ob-
servers (Wierzchon et al., 2014). More broadly, these consider-
ations suggest subtleties in inferring perceptual awareness from
confidence ratings about the observer’s response, and alternative
approaches for determining perceptual awareness may be pre-
ferred, such as forced-choice discrimination of stimulus visibility
(Peters & Lau, 2015).

We note that there are certain cases in which one would not
expect an influence of action on metacognitive judgments. For
instance, if the confidence variable has access to the same infor-
mation as the decision variable, then there is nothing more to learn
from the identity of the action. This is the case in the postdeci-
sional model shown in Figure 1B—the confidence variable is
determined by the sum of pre- and postdecision evidence (equiv-
alent to accumulating log-odds correct), and the action provides no
further information beyond that provided by the predecision evi-
dence (formally, d is conditionally independent of a given Xconf).
However, even in these cases of sequential evidence accumulation,
effects of action may be obtained in practice. For instance, if the
influence of predecision evidence decays over time, this would
weaken the cross-talk between the decision and confidence vari-
ables, and actions would again carry weight when inferring the
world state. In other words, if I make a perceptual decision based
on some sensory evidence, but then go on to forget this evidence
at a later point in time, I am left with only my decision when
inferring what the world state might have been. Interestingly
empirical data are potentially consistent with this prediction.
Jazayeri and Movshon (2007) found that estimates of the direction
of a random dot motion stimulus were biased in the direction of a
previous binary choice. Such effects may be consistent with ratio-
nal inference on possible world states in the face of imperfect
integration or the inevitable decay of sensory evidence over time
(Stocker & Simoncelli, 2008).

More broadly, the influence of one’s own actions on self-
evaluation dovetails with the proposal that preferences and beliefs
are constructed rather than revealed by judgments and decisions
(Lichtenstein & Slovic, 2006). Postchoice preference change oc-
curs when subjects increase their estimate of the value of an object
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after choosing it, while simultaneously decreasing the values of
rejected items (Brehm, 1956; Sharot, De Martino, & Dolan, 2009).
Although this phenomenon is famously theorized to result from
subjects’ attempts to reduce cognitive dissonance, it can also be
viewed in terms of rational inference in a model analogous to
ours. Akin to perceptual categories, choice values are not per-
fectly known to the subject, but are probabilistic (De Martino et
al., 2013; Lebreton et al., 2015; McFadden, 1980). To the extent
that a subject’s reports reflect posterior beliefs about the value
of the items, it becomes rational to incorporate one’s own
actions if one has limited access to the decision variable un-
derpinning choice, thereby leading to boosts in valuation after
an object is chosen.

Neural Implementation of Metacognition

The models considered here suggest an organizing framework
for nascent findings on the neural basis of confidence and self-
evaluation. In particular, correlates of confidence should be found
across multiple putative internal states, including both those di-
rectly supporting actions and those supporting confidence ratings.
Empirical studies in humans and nonhuman primates show that
neural precursors of a decision are modulated by the eventual
degree of confidence of the subject (Gherman & Philiastides,
2015; Kiani & Shadlen, 2009; Komura et al., 2013; Zizlsperger et
al., 2014), and microstimulation of neurons encoding sensory
evidence leads to biases in both choices and confidence ratings
(Fetsch, Kiani, Newsome, & Shadlen, 2014). However, while
confidence may covary with the activity of putative decision
variables, the current framework predicts that metacognitive re-
ports of confidence will critically depend on additional correlated
states. Indeed, the mere fact that one brain area may “read-out” the
decision variable from upstream neural populations may lead to a
natural separation between decision and confidence variables. A
study by Komura and colleagues is consistent with this proposal.
In a motion discrimination task, the firing rate of pulvinar
neurons correlated with the likelihood the monkey would
choose an opt-out response. Inactivation of these neurons with
muscimol led to an increase in opt-out responses without af-
fecting first-order decision performance, as if the monkey lost
confidence in its decision (Komura et al., 2013). This is poten-
tially consistent with a confidence variable being encoded in
cortico-thalamic loops (Kanai, Komura, Shipp, & Friston,
2015), and similar findings have been obtained through OFC
inactivation in rodents (Lak et al., 2014).

A related line of work has identified a central role for the human
prefrontal cortex (PFC) in metacognition (see Fleming & Dolan,
2012 for a review). Damage to the PFC leads to deficits in
self-evaluation and impairments on a variety of tasks taxing meta-
cognition (Pannu & Kaszniak, 2005; Schmitz & Johnson, 2007;
Schnyer et al., 2004). Crucially these deficits may manifest in the
absence of any changes in first-order performance: for instance,
applying repetitive transcranial magnetic stimulation to the dorso-
lateral PFC in humans alters confidence but not performance in a
visual discrimination task (Rounis et al., 2010), and patients with
lesions to anterior sectors of the PFC show a reduced correspon-
dence between confidence and accuracy (reduced Type II ROC
area) on a perceptual task despite performance remaining unaf-
fected (Fleming et al., 2014). In addition, studies using functional

imaging in humans and single-unit recording in nonhuman pri-
mates and rodents have identified correlates of confidence in
prefrontal cortex and interconnected subcortical regions (De
Martino et al., 2013; Fleming et al., 2012; Hebart, Schriever,
Donner, & Haynes, 2016; Hilgenstock, Weiss, & Witte, 2014;
Kepecs et al., 2008; Lak et al., 2014; Middlebrooks & Sommer,
2012). In relation to the current framework, these findings may
be consistent with prefrontal involvement in representing a
confidence variable and/or hyperparameters about sources of
decision uncertainty (Lau, 2008), and/or in representing the
output of a confidence computation for subsequent report
(Fleming & Dolan, 2012).

Second-order computation requires integration of state informa-
tion (e.g., Xconf) with knowledge about the selected action. Impor-
tantly this convergence should be flexible and domain-general.4

Consider a task where auditory stimuli are arbitrarily mapped to
eye movements, and visual stimuli to hand movements. To com-
pute confidence in the model in Figure 1C one would need to
combine information about each sensory modality with corollary
discharge (or proprioceptive feedback) from the relevant motor
system. One solution to this problem would be to maintain global
representations of sensory evidence in a response-independent
frame of reference (Heekeren, Marrett, Ruff, Bandettini, & Un-
gerleider, 2006; Ho, Brown, & Serences, 2009; O’Connell, Dock-
ree, & Kelly, 2012; Tosoni, Galati, Romani, & Corbetta, 2008).
The frontopolar cortex (FPC; Brodmann area 10) in primates is
one potential convergence zone for integrating state and action
information in the service of second-order computation. The FPC
receives multimodal inputs from higher-order sensory and motor
regions in the parietal, frontal, and temporal lobes (Burman, Reser,
Yu, & Rosa, 2011; Neubert, Mars, Thomas, Sallet, & Rushworth,
2014; Ramnani & Owen, 2004), and convergent evidence supports
its role in human metacognition (Baird, Smallwood, Gorgolewski,
& Margulies, 2013; De Martino et al., 2013; Del Cul et al., 2009;
Fleming et al., 2010, 2012; 2014; Hilgenstock et al., 2014; Mc-
Curdy et al., 2013; Miele, Wager, Mitchell, & Metcalfe, 2011;
Yokoyama et al., 2010). One study in monkeys shows that FPC
neurons code the chosen response at the time of feedback in a
decision task, but do so differentially depending on whether the
response was correct or erroneous. Critically these signatures
emerge before external feedback is given, potentially consistent
with an evaluation of whether the action taken was appropriate
(Tsujimoto, Genovesio, & Wise, 2010, 2011). Another candi-
date neural nexus for state-action integration is the dorsomedial
prefrontal cortex (dmPFC; encompassing the paracingulate cor-
tex and pre-supplementary motor area). Studies of error detec-
tion observe increased activity in dmPFC when errors are made
on simple choice reaction time (RT) tasks in the absence of
external feedback (Carter et al., 1998; Dehaene et al., 1994;
Gehring et al., 1993), and the dmPFC is in turn interconnected
with insula and FPC, suggesting a possible circuit for metacog-
nitive evaluation (Baird et al., 2013; Hilgenstock et al., 2014).

4 Similarly Timmermans et al. (2012) point out that metacognition
“requires that the first-order representations that are responsible for per-
formance be accessed in a manner that is independent from their expression
in behaviour” (p. 1416).
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Finally, the model of metacognition we outline here has much in
common with schemes for recursive inference in social cognition
(Goodman & Baker, 2009; Shafto, Goodman, & Frank, 2012).
Confidence is formed through second-order evaluation of a cou-
pled but distinct decision system, computationally equivalent to
inferring the performance of another actor. While here we have
focused on the implications of this framework for self-directed
metacognition, to the extent that self- and other-evaluation rely
on common mechanisms, brain networks previously linked to
theory of mind (ToM) may also play a role in metacognition
(Carruthers, 2009). Previous studies have identified similarities
in neural activity for self- and other-judgments (Decety &
Sommerville, 2003; C. D. Frith & Frith, 1999; Jenkins et al.,
2008; Mitchell, Banaji, & Macrae, 2006) albeit with a focus on
personal-level judgments about beliefs, attitudes or personality
characteristics. It will be of interest to determine whether these
ToM networks are additionally recruited when inferring sub-
personal states such as one’s confidence in percepts or memo-
ries.

Relationship Between Metacognitive Monitoring
and Control

Computing confidence in a decision is a type of metacognitive
monitoring, and may be distinct from processes supporting meta-
cognitive control (Nelson & Narens, 1990). However, accurately
inferring one’s confidence in a task is important for the future
control of behavior. For instance, a child studying for an exam will
perform better if they have an accurate impression of how much
there is still to learn (Veenman et al., 2004). In the absence of
external feedback, such estimates may be furnished by second-
order computation, which outputs a subjective probability of suc-
cess. This probability provides a useful indicator of whether a
previous decision should be corrected (Resulaj et al., 2009),
whether a subsequent step in a chain of decisions should be
initiated (Dehaene & Sigman, 2012), whether to make the task
easier by offloading intentions into the environment (Gilbert,
2015), or more generally when it is advantageous to deliberate
(Keramati et al., 2011) or engage cognitive control (Boureau et al.,
2015; Shenhav, Botvinick, & Cohen, 2013). Here we focus on the
generation of confidence in a single task, but one could envisage
replicating this architecture to maintain internal estimates of long-
run confidence over a number of tasks (Donoso, Collins, & Koech-
lin, 2014). We would therefore predict a close relationship be-
tween metacognitive estimates of confidence and the strategic
control of decision-making.

Metacognition and Clinical Insight

A common factor in a range of neurological and psychiatric
disorders is a loss of insight (David et al., 2012)—the ability to
recognize and describe one’s own behavior, cognition, and mental
states. For instance, a patient with addiction may not recognize a
need for treatment due to impaired insight into his or her addictive
behaviors (Goldstein et al., 2009), consistent with impairments of
metacognitive sensitivity in this population (Moeller et al., 2016).
Deficits in metacognitive sensitivity have also been documented in
pathological gambling (Brevers et al., 2014) and brain injury
(Fleming et al., 2014; Ham et al., 2014; Pannu & Kaszniak, 2005),

and have been suggested to underpin a variety of impairments in
schizophrenia, ADHD and anosagnosia (Klein et al., 2013).
Second-order computation provides a possible framework within
which to understand such deficits. For instance, loss of insight may
correspond to a pathologically increased coupling between internal
states, reducing the ability for error detection (Figure 4D), a
reduction in the precision of the confidence variable (Figure
8A), aberrant beliefs (hyperparameters) about different sources
of uncertainty (see Figure 9), or any combination of these
factors. Actions would occur but the subject would have little
knowledge of why they occurred, or whether they were appro-
priate for the current situation. Restoring insight in such cases
may therefore be aided by a better understanding of the com-
putational and neural basis of metacognition.

Limitations and Future Directions

We have focused on modeling a two-choice perceptual discrim-
ination for computational simplicity. However, the key feature of
the model is qualitative—second-order states are harnessed to infer
confidence in first-order decisions. This holds promise for gener-
alizing the framework to other domains, such as memory- or
value-based choices. In addition, we have not considered the role
of learning or prior beliefs about the task structure in constructing
self-evaluations. For instance, expectations about possible world
states (P(d)) should influence the computation of confidence
(Sherman, Seth, Barrett, & Kanai, 2015). We have also not
touched upon how subjects learn the model of the task in the first
place (corresponding to reduction in uncertainty at the rule or
strategy level, Bach & Dolan, 2012; Donoso et al., 2014) or learn
beliefs (hyperparameters) about self-ability, but these are likely to
be important for understanding the dynamics of self-evaluation
over longer timescales. Moreover such learning is likely to be
influenced by our interactions with other individuals, allowing
coordination of confidence at the group level (Bahrami et al.,
2012; Shea et al., 2014).

In many laboratory decision-making tasks (and in the simu-
lations carried out here), actions are binary, such as a button
press or eye movement. In practice, however, even simple
actions are constructed by specifying the kinematics and forces
needed to produce a particular motor output. Indeed, individuals
have been shown to take action kinematics into consideration
when judging the confidence of another individual (Patel et al.,
2012), and the specifics of action planning impacts upon error-
related brain activity (Bernstein, Scheffers, & Coles, 1995;
Torrecillos, Albouy, Brochier, & Malfait, 2014). An interesting
avenue for future investigation is the extent to which this
richness of action specification is incorporated into decision
confidence, and how this information is routed to metacognitive
computations.

Finally, as touched upon above, our model is situated at the
computational level (Marr, 1982) and remains agnostic about
algorithmic or mechanistic implementation. Future efforts could
harness our framework to guide construction of finer-grained
Bayesian models incorporating temporal dynamics or candidate
neural network implementations (Beck et al., 2008; Fiser, Berkes,
Orbán, & Lengyel, 2010; Insabato et al., 2010; Ma & Jazayeri,
2014; Pasquali et al., 2010; Rao, 2004).
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Conclusions

The model outlined in this paper casts self-evaluation as a
second-order inference on the efficacy of one’s own behavior.
Such a model has the potential to provide common ground for
comparing data from different paradigms such as confidence and
error detection, and provides a normative framework for under-
standing a range of dissociations between metacognition and per-
formance. In addition, it predicts a novel role for actions in
contributing to estimates of decision confidence. We have outlined
the implications of second-order computation for behavioral con-
trol and for candidate neurobiological implementations of meta-
cognition. We hope this will provide a conceptual and theoretical
framework for studies of metacognitive computation, and motivate
a number of empirical hypotheses to be tested in future research.
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Appendix A

Derivation of Second-Order Confidence

The second-order model posits that the decision and confidence
variables are draws from a multivariate Gaussian with covariance
matrix 	:

� Xact

Xconf
� � N(d, �)

� � � �act
2 ��act�conf

��act�conf �conf
2 �

To compute confidence, z, the observer infers (for the purpose
of marginalizing) the state of the decision variable driving choice
(Xact) from the confidence variable (Xconf).

z � P(a � d | Xconf, a, �) � � P(d � 1 | Xconf, a, �) if a � 1
1 � P(d � 1 | Xconf, a, �) if a � �1

In the following we unpack computation of P(d | Xconf, a, 	),
suppressing covariance parameters 	 for clarity. As in the first-
order model, confidence depends on the posterior over d computed
using Bayes rule:

P(d | Xconf, a) �
P(d | Xconf)P(a | Xconf, d)

�dP(d | Xconf)P(a | Xconf, d)

Starting with the second term, P(a | Xconf, d):

P(a | Xconf, d) � 	 P(a | Xact)P(Xact | Xconf, d) dXact

�	
0

	

P(Xact | Xconf, d) dXact if a � 1

� 	
�	

0

P(Xact | Xconf, d) dXact if a � �1

where the latter two expressions are due to the threshold response
rule, a � 1 whenever Xact � 0. This expression is a cumulative
density function of the conditional density of a multivariate Gauss-
ian, which itself is a univariate Gaussian with the following mean
and standard deviation:

P�Xact | Xconf, d� � N(
Xact|Xconf
, �Xact|Xconf

)

where 
Xact|Xconf
� d �

�act

�conf
��Xconf � d�

�Xact|Xconf
� 
(1 � �2)�act

2

The first term is the normalized likelihood of Xconf given d:

P(d | Xconf) �
P(Xconf | d)

�dP(Xconf | d)

i.e., Bayes’ rule with the uniform prior P(d) canceled, where
P(Xconf | d) � �(Xconf, d, �conf) and � () is the standard Gaussian
density function:

�(x, 
, �) � 1
�
2�

e
�(x � 
)2

2�2

Appendix B

Simulation Details

Internal Representations Supporting
Decision Confidence

To produce the plots in Figure 3 we simulated 10,000 trials at
each of 7 levels of stimulus strength � � [0 0.032 0.064 0.128
0.256 0.512 1.0]. For the first-order and postdecisional models
� � 1. For the second-order model, parameter settings were �act �
1, �conf � 0.5 and 
 � 0.4. Confidence was sorted according to
whether the model’s response was correct or incorrect. For all
models we also binned confidence into tertiles of the unsigned
confidence variable |Xconf|.

Internal Representations Supporting Error Monitoring

For each cell of the second-order model parameter grid in Figure
4D we simulated 10,000 trials and recorded the proportion of

errors that were detected (errors with confidence levels of less than
0.5). �act (and therefore the objective error rate) was kept constant.

Influence of Actions on Confidence

To examine the effects of actions on subsequent ratings we
simulated two conditions, “rate-choose” and “choose-rate” for
both the first- and second-order models. Confidence in the rate-
choose condition was defined as the posterior probability of a
future decision being correct (the max over possible actions; Kvam
et al., 2015):

confidence � max[P(d � 1 | Xconf) P(d � �1 | Xconf)]

To create Figure 6B and 6C we simulated 10,000 trials at each
of 7 levels of stimulus strength � � [0 0.032 0.064 0.128 0.256

(Appendices continue)
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0.512 1.0] with �act � 1, �conf � 1 and 
 � 0.6. To determine the
choice-dependence of bias and metacognitive sensitivity on
second-order model parameters we simulated 10,000 trials at a
single level of stimulus strength � � 1 while varying 
 and �conf.
�act was fixed at 1, ensuring constant performance. 
 varied across
10 levels equally spaced between 0.1 and 0.9 while keeping �conf

fixed at 1; �conf varied across 10 levels equally spaced between 0.5
and 1.5 while keeping 
 fixed at 0.6. Bias was calculated as the
mean confidence level collapsing across correct and error trials;
metacognitive sensitivity was calculated as the difference between
mean confidence on correct and incorrect trials.

Modeling Dissociations Between Performance
and Confidence

Type II ROCs were plotted by sweeping confidence criteria
across 20 evenly spaced steps from 0 to 1 and calculating Type II
hit rates (the proportion of high confidence trials when the model
is correct) and false alarm rates (the proportion of high confidence
trials when the model is incorrect; see Fleming & Lau, 2014;
Galvin et al., 2003 for further details); 10,000 trials were simulated
at each parameter setting.

To construct Figure 8C and 8D, 100 data sets were simulated
each containing 1000 trials. �conf and �act were each generated

from independent uniform random draws on the interval [1.5 2.5].
For both simulated and empirical data sets, meta-d= was fit using
maximum likelihood methods instantiated in the code provided by
Maniscalco & Lau (www.columbia.edu/~bsm2105/Type2sdt/).

The data sets contributing to Figure 8E have been published in
full elsewhere (Fleming et al., 2010, 2012; E. C. Palmer et al.,
2014; L. G. Weil et al., 2013). Briefly, each study administered a
perceptual decision task with trial-by-trial confidence ratings elic-
ited postdecision on an arbitrary numerical scale ranging from 1 to
6. The number of trials available for analysis ranged from 250 to
500 per subject. In all studies, task difficulty was controlled by a
one-up two-down staircase that targeted a performance level of
approximately 71% correct. Three of the four studies employed a
2-interval forced choice detection task in which subjects were
asked to report which interval contained a pop-out Gabor patch
(Fleming et al., 2010; E. C. Palmer et al., 2014; L. G. Weil et al.,
2013); one study employed a face/house discrimination task
(Fleming et al., 2012).
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