
Formal Methods of Argumentation as
Models of Engineering Design

Decisions and Processes

Jann Müller

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

December 4, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79552109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

I, Jann Müller, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated

in the work.

Abstract

Complex engineering projects comprise many individual design decisions. As these

decisions are made over the course of months, even years, and across different teams of

engineers, it is common for them to be based on different, possibly conflicting assump-

tions. The longer these inconsistencies go undetected, the costlier they are to resolve.

Therefore it is important to spot them as early as possible. There is currently no soft-

ware aimed explicitly at detecting inconsistencies in interrelated design decisions.

This thesis is a step towards the development of such tools. We use formal meth-

ods of argumentation, a branch of artificial intelligence, as the foundation of a logical

model of design decisions capable of handling inconsistency. It has three parts. First,

argumentation is used to model the pros and cons of individual decisions and to reason

about the possible worlds in which these arguments are justified. In the second part we

study sequences of interrelated decisions. We identify cases where the arguments in

one decision invalidate the justification for another decision, and develop a measure of

the impact that choosing a specific option has on the consistency of the overall design.

The final part of the thesis is concerned with non-deductive arguments, which are used

in design debates, for example to draw analogies between past and current problems.

Our model integrates deductive and non-deductive arguments side-by-side.

This work is supported by our collaboration with the engineering department of

Queen’s University Belfast and an industrial partner. The thesis contains two case

studies of realistic problems and parts of it were implemented as software prototypes.

We also give theoretical results demonstrating the internal consistency of our model.

Acknowledgements

There are a number of people who, in various ways, are just as responsible for the suc-

cessful completion of this project as I am. I would like to extend my sincere gratitude

to everyone who has supported my work on this project over the last few years.

First I would like to thank Prof. Anthony Hunter who supervised my thesis at

UCL. Besides being the most knowledgeable mentor he has always shown enthusiasm

and willingness to discuss new ideas, as well as a great deal of patience. He was always

willing to dedicate time to this project, both in personal meetings and when reviewing

the latest drafts. I do not think there could be a better supervisor.

Then I would like to thank my wife Mary-Anne, who thought I would submit “a

couple of months” after we first met. She too has been very patient with this thesis, and

her encouragement (and help with the children) greatly contributed to its successful

completion.

I want to thank my former coworkers at SAP: Phil, Alan, Fergal, Mary, and our

friends from East Germany, for creating a stimulating environment for my research, and

for being good colleagues all around. Further I want to thank David Payne at QUB for

sharing the results of his experiments, and Fiona Browne for good advice throughout

the project. With my old friend Christian Hoffmann I had many conversations that

helped shaped both our views on uncertainty and I thank him for that. I am also grateful

to my second supervisor Prof. John Dowell for his insights on engineering design, and

to Tobias Trapp for working with me on an interesting application of the theory.

Finally I want to thank Pat and Carmel for support and proof-reading, and my

parents for supporting me in my academic endeavours.

This work is supported by SAP AG and the Invest NI Collaborative Grant for R&D

- RD1208002.

Contents

1 Introduction 12

1.1 Overview . 12

1.2 Decision Processes . 12

1.2.1 Decisions in Context: Motivating Examples 12

1.2.2 Requirements for a Formal Model of Decision Processes 14

1.2.3 Decision Models . 16

1.2.4 Formal Methods of Argumentation 18

1.3 Thesis Overview . 19

1.4 Contributions . 20

1.5 Publications . 21

1.5.1 Main authorship . 21

1.5.2 Co-authorship . 22

2 Background 23

2.1 Introduction . 23

2.2 Abstract Argumentation . 24

2.3 Aspic+ . 28

2.3.1 Formal Definition of Aspic+ 28

2.3.2 ASPIC+ Conventions . 32

2.3.3 Discussion . 35

2.4 Additional Definitions . 36

2.5 Discussion . 40

2.5.1 Grounded and Preferred Semantics 40

2.5.2 Alternatives to ASPIC+ . 41

Contents 6

3 Argument-Based Decision Making 43

3.1 Introduction . 43

3.2 Two Models of Decision Making . 45

3.2.1 Multi-Criteria Decision Making 45

3.2.2 Decision Making under Uncertainty 47

3.2.3 Documentation of Decisions 49

3.2.4 Problems with Current Approach 50

3.3 Argument-Based Decision Framework (ADF) 52

3.3.1 Overview . 52

3.3.2 Decision Frames . 53

3.3.3 Multi-Criteria Decision Making 57

3.3.4 Decision Making With Uncertainty 62

3.3.5 Decision Rules . 69

3.4 Accepting a Decision . 81

3.4.1 On the Deactivation of Rules in ASPIC+ 81

3.4.2 Results on Deactivating Rules 88

3.4.3 Enforcing a Point of View . 94

3.4.4 Accepting a Decision . 95

3.5 Related Work . 97

3.5.1 Multi-Criteria Decision Making 98

3.5.2 Decision Making With Uncertainty 100

3.5.3 Qualitative Decision Theory 103

3.5.4 Enforcement . 104

3.6 Conclusion . 105

3.6.1 Discussion . 105

3.6.2 Future Work . 107

4 Argument-based Decision Process 108

4.1 Introduction . 108

4.2 Use Case . 109

4.2.1 Overview . 110

4.2.2 Stage 1: Preliminary Design 110

Contents 7

4.2.3 Stage 2: Detailed Design . 111

4.2.4 Stage 3: Preliminary Design Revisited 112

4.2.5 Stage 4: Another Process Running in Parallel 112

4.2.6 Stage 5: Joining the Two Processes 113

4.2.7 Conclusions Drawn from Use Case 113

4.3 A Model of Decision Processes . 113

4.3.1 Outcome of Decision Stage 115

4.3.2 Embedding Decisions Results 118

4.3.3 Embed and Extract . 123

4.4 Impact Analysis . 127

4.4.1 Impact Analysis Based on Argument Strength 130

4.4.2 Impact Analysis Based on Knowledge Added or Removed . . . 137

4.4.3 Impact Analysis for Decision Sequences 140

4.4.4 Progress in Decision Sequences 149

4.4.5 Summary . 153

4.5 Practical Implications . 154

4.5.1 Decision Outcomes Represent Design Documents 154

4.5.2 Impact Analysis . 155

4.5.3 Visualising Decision Processes 155

4.6 Discussion . 158

4.6.1 Related Work . 158

5 Argument Schemes 165

5.1 Introduction . 165

5.2 Non-Deductive Arguments . 166

5.2.1 Argument Schemes . 167

5.2.2 Interpreting Experimental Data 173

5.2.3 Critical Questions . 175

5.2.4 Summary . 176

5.3 Meta-ASPIC . 176

5.3.1 Definition of Meta-ASPIC . 178

5.3.2 Object- and Meta-Level Arguments 188

Contents 8

5.4 Case Study: Choosing a Drilling Technique 198

5.4.1 Conventional or Orbital Drilling? 199

5.4.2 Experiment Results . 199

5.4.3 Interpreting Experimental Data Using Meta-ASPIC 200

5.4.4 Software Prototype . 204

5.4.5 Summary . 217

5.5 Related Work . 218

5.5.1 Argument Schemes . 218

5.5.2 Meta-Argumentation . 219

5.5.3 Bipolar Argumentation . 221

5.5.4 Evidence-Based Argumentation 222

5.6 Discussion . 226

6 Discussion 228

6.1 Future Work . 228

6.2 Discussion . 229

Appendices 232

A Functions & Symbols 232

Bibliography 234

List of Figures

2.1 Graph for Example 1 . 24

2.2 Extension semantics . 25

3.1 Joining Two Structures . 52

3.2 Argument graph for Example 11. 53

3.3 Argument graph for Example 13. 57

3.4 Argument graph for Example 16. 64

3.5 Argument graph for Example 26 . 84

3.6 Argument graphs for Example 28. 87

3.7 Argument graph for Example 29. 87

3.8 Argument graph for Example 29, part II. 88

3.9 Application of deactivate′ for Example 29 89

3.10 Proof of Propage 19 . 92

3.11 Argument graph for reactivation, see Example 30 94

4.1 Conceptual relationship of decision processes and outcomes 127

4.2 Conflicts after a decision was changed (Example 37) 129

4.3 Impact of changing from S to S′ – page 143 145

4.4 DEEPFLOW: Visualisation of a set of design documents. 155

4.5 Visualisation of example process. 157

5.1 Reified graph of the meta-ASPIC system from Figure 5.2 on page 185 . 182

5.2 Meta-ASPIC graph with argument schemes 185

5.3 Reified graph of meta-ASPIC system with argument schemes. 186

5.4 Argument graphs for Example 57 . 193

5.5 Argument graphs for Example 58 . 194

List of Figures 10

5.6 Rule parts and rule types in Haskell 205

5.7 Generated SQL query for publication(X ,Y) 207

5.8 Generated SQL query for COUNT(publication(X ,Y)≤ 3) 207

5.9 Relationship of D+,D and D′ in Theorem 7 217

List of Tables

3.1 Multi Criteria Decision Making . 47

3.2 Decision Making Problem under Uncertainty (Example 9) 48

3.3 Rules for Example 12 . 54

3.4 Decision Frame for Engineering Example 56

3.5 Rules for Example 17 . 65

3.6 Additional rules for Example 22 . 71

3.7 Arguments to be enforced in Example 31 97

4.1 Arguments in the Decision Process . 120

4.2 Arguments in Example 37 . 129

4.3 Arguments for Section 4.4.3.1 . 145

5.1 List of arguments in Figure 5.2 . 186

5.2 Conventional vs Orbital Drilling – Experiment Results 201

A.1 Symbols and Functions . 233

Chapter 1

Introduction

1.1 Overview
In this chapter we identify the problem solved in this thesis and give an overview of the

solution. We start by characterising the engineering design process in Section 1.2.1.

We then derive a list of requirements for a formal model of design processes (1.2.2),

which establishes the scope of the thesis. We discuss some traditional tools for decision

analysis (1.2.3) and justify our choice of argumentation as the foundation of our model

of design processes (1.2.4). The chapter is completed by an overview of the thesis (1.3),

a list of contributions of this thesis to the state of the art (1.4) and a list of peer-reviewed

publications that form parts of the work presented here (1.5).

1.2 Decision Processes
Decisions are ubiquitous in our professional and private lifes. Some decisions are made

in isolation – what car to buy, where to go for lunch, whether to take an umbrella.

However, many decisions are made in the context of decision processes. The term

describes sequences of related decisions with a product as the overall result. We use

the word product rather loosely here and mean any kind of design, specification etc.

that is the outcome of a number of individual decisions.

1.2.1 Decisions in Context: Motivating Examples

Decision theory, the science of decision-making, is concerned primarily with isolated

decisions. However, decisions in practice rarely exist without context: They are influ-

enced by earlier decisions and in turn will impact later decisions. This is especially true

in engineering design, where decisions are part of a long-running process that can span

1.2. Decision Processes 13

months or years.

The theory of engineering design distinguishes two kinds of thought processes;

intuitive thinking and discursive thinking [1, page 48]. The former is characterised by

sudden, unforeseeable insights resulting from unconscious “thinking”. The latter, on

the other hand, “is a conscious process that can be communicated and influenced” [1,

page 48f], characterised by its systematic structure comprising a series of steps. Since

intuition has the disadvantage of being unpredictable, a stronger reliance on discursive

methods is advisable [1, page 55]. Further, the discursive method stimulates intuition,

indicating that the two are symbiotic.

The systematic approach requires a precise definition of goals and boundary con-

ditions, which is a prerequisite for breaking down a large problem into a sequence of

smaller tasks. If requirements and constraints are clearly stated, then the systematic

approach may help in minimising errors resulting from prejudice (experience) of the

designers [1, page 55f]. A crucial part of both kinds of thought processes is document-

ing any decisions that were made.

The value of documentation does not only lie in the support it provides for dis-

cursive thought processes. Accurate project documentation provides a degree of pro-

tection from litigation and, more importantly, constitutes a competetitive advantage to

its owners [2, page 118]. Design documentation is often incomplete [3]: Decisions are

justified retroactively, so the documentation contains mostly arguments in favour of the

option that was chosen, and does not represent the full picture of the pros and cons of

all options available at the time. As a result of this bias, design documents do not give

comprehensive evidence of the design process - they only document the outcome of

that process.

Engineering design processes consist of sequences of decisions, ranging from

small to complex, which collectively determine the final design. At this point we will

introduce some terminology. Every decision requires a set of at least two distinct op-

tions; the set of options is the outcome of the previous step in the process, namely the

actual design, in which different possibilities are systematically produced. The deci-

sion making itself then is rather mechanical, as it is an evaluation of the design options

according to some clearly defined goals and requirements. Decisions thus mark the

boundaries of various stages in the design process.

1.2. Decision Processes 14

We can find further evidence for this view in the literature. Pahl and Beitz [1] state

that “without decisions there can be no progress” [1, page 54]. In their methodology,

each of the successive phases of the design process is ended by a decision. This decision

determines whether to advance to the next stage, or to repeat the current stage with an

adapted list of requirements, if no satisfactory solution has been found [1, page 66]. The

“Total Design” approach by Pugh [4] exhibits a similar structure, although this method

only involves a single decision phase at the transition from concept design to detailed

design [4, page 11]. The design process by Ertas and Jones [5] features decisions at

two distinct stages, first after the feasibility assessment of the initial conceptualisation,

and again after the preliminary and detailed design phases. At both of those stages,

the decision determines whether to proceed to the next step or to repeat the previous

steps. The need for automated tools to support decision making in engineering design

has long been recognised [6].

It is clear that while there is no universal definition of “the” engineering design

process, a consensus exists that decision making plays a crucial role in transitioning

from one phase to the next, and thus in making progress towards the eventual design. It

is also clear that knowledge is re-used throughout the decision process, be it in written

form (design documents, requirements, experimental data) or in the minds of engineers.

1.2.2 Requirements for a Formal Model of Decision Processes

Decisions are made within a set of constraints that change regulary. Within those con-

straints, options are chosen intuitively, not by purely mechanical means. Further, de-

cision making processes are distributed across several teams or individuals. Earlier

decisions influence later ones, both in their range of available options and in their

constraints. Knowledge is re-used throughout the process in two forms: As concrete

artifacts (specifications, requirements, experimental data, etc.) and intangibly as the

knowledge of people involved in the decision making process. In addition, there are

trade-offs that have to be made in enineering design, as one tries to balance cost and,

broadly, quality (including aesthetics, quality control, margins of error).

There have been efforts to support the knowledge-specific tasks of decision pro-

cesses in order to increase product quality and to avoid redundant work, for example as

part of knowledge management in engineering [7]. Previous approaches that recorded

1.2. Decision Processes 15

the reasoning behind design decisions have not found widespread industry acceptance

[8, 9], broadly because the effort required for their implementation was unproportional

to the benefits they provided. The survey by Lee [8] suggests that this is due in part to

their lack of automated reasoning facilities, which made it more difficult to apply the

knowledge stored in those systems.1

Based on this discussion we identify the following requirements for a knowledge-

based model of engineering design processes.

RQ1 Represent design decisions with the pros and cons for each of their options, in-

cluding the reasoning that was applied to arrive at the pros and cons and possible

worlds in which the underlying assumptions hold.

RQ2 Reason about decisions so represented, specifically by characterising the decision

rules used to arrive at the decision, and determining the effect that “choosing an

option” has on the knowledge base.

RQ3 Formulate sequences of decision problems in which decisions made at one stage

influence the range of options and constraints for decisions made later in the

process, and assess the impact of changing a previous decision.

RQ4 Combine various forms of reasoning such as deductive arguments, empirical ev-

idence, intuition and heuristics.

The individual decisions mentioned in RQ1 and RQ2 are the smallest “building blocks”

of design processes. By requiring that the effects of choosing an option should be

discoverable through inference (RQ2) we address the central weakness of previous

approaches to modeling engineering design processes, which were entirely syntactical

in nature - no inferences could be made. As a result, they required a high amount of user

input. Through the ability to make automated inferences, any knowledge expressed

in our model becomes reusable. RQ3 is the central requirement, placing individual

decisions (as in RQ1) in the context of the engineering processes that we are trying

to model. And finally RQ4 addresses the fact that most arguments made by human

beings are not expressible in classical logic, because they rely on a number of implicit

assumptions.
1cf. Krause et al.: “(...) the application of knowledge is the most essential task of knowledge man-

agement.” [7, p.215]

1.2. Decision Processes 16

1.2.3 Decision Models

In this section we discuss the traditional approach to decision modelling and point out

where it fails to meet the requirements set in Section 1.2.2.

Decision theory is a rich research area on its own. We will attempt to briefly

characterise some of the assumptions made by most of the popular decision models,

bearing in mind that all of those methods focus on individual decisions only and thus

fail to satisfy requirements RQ2 and RQ3.

1.2.3.1 Decision Making Under Uncertainty

The first axiomatic account of decision theory is given by Savage [10]. It breaks with

the dominating, frequentist interpretation of probabilities and introduces a subjective,

bayesian alternative. The debate over the two interpretations is still on-going, but we

can make some observations about decision theory that are acceptable regardless of

one’s interpretation of probability.

In the probabilistic approach to decision theory, the decision maker’s goal is to

maximise utility [11]. The abstract concept of utility is expressed as a function from

possible outcomes to the real numbers. In financial decisions, utility is often identified

with returns, even though this does not appear to be an accurate reflection of human

preferences [12].

The third fundamental concept in decision theory, besides utility and possible out-

comes, is the set of possible worlds. This is an expression of the uncertainty inherent

in most decisions. Each possible world is associated with a probability. The three

concepts are tied together by a function that relates options and possible worlds to out-

comes.

An analysis of classical decision theory from the viewpoint of our requirements

(Section 1.2.2) reveals three shortcomings. First, the assumption that the probabilities

of possible worlds can be quantified has already been shown to be problematic, and in

many debates no quantitative information about the proabilities of possible worlds is

available.

The second problem is with the mapping of options and possible worlds to out-

comes in the form of real-valued functions. Such functions are in general not a re-

usable representation of knowledge since the only way that two real-valued functions

1.2. Decision Processes 17

can be combined is by combining their results. Hence, there is no meaningful infer-

ence that can be performed automatically. In order to assess the impact of, say, changed

assumptions on the utility functions, the thought processes that led to the original as-

signments have to be performed again (by a human being), because they are lost as

soon as the number is decided on. The probabilistic-quantitative approach to decision

theory therefore fails to meet requirement RQ2.

Thirdly, decision theory as outlined above does not have a notion of decision pro-

cesses (E.g. as in 1.2.1) and thus cannot meet requirement RQ3. Because of the models’

lack of support for automated inferences, any concept of decision processes would of-

fer no additional value, no knowledge that is not already apparent by simply viewing

each of the decisions on its own.

1.2.3.2 Multi-Criteria Decision Making

A complementary approach to decision theory is multi-criteria decision making. Here,

the decision maker’s preferences are given on multiple dimensions rather than with

a single utility function. The key question is how to choose an option if no option

completely dominates (outperforms) the others. In this approach, uncertainty does not

play as prominent a role as it does in the utility approach discussed above. However,

multi-criteria decision making also does not meet requirements RQ1 to RQ3, for the

same reasons as the utility approach.

1.2.3.3 Summary & Critique

Regardless of its usefulness for our particular purpose, decision theory has been ques-

tioned on general grounds also. Quantitative decision theory as a descriptive model

of human decision behaviour has drawn some criticism because of the assumptions it

makes. The tendency of people to apply heuristics in decision making [12] (for ex-

ample to overvalue outcomes that are certain over those that are probable) inspired the

development of prospect theory (Kahneman and Tversky [13]). The assumption that

decision makers act rationally has been drawn into question by studies in cognitive

psychology, e.g. Stewart et al. [14] and Gigerenzer [15]. Certain phenomena such as

the purchase of insurance policies and lottery tickets as well as the high popularity of

government bonds cannot adequately be described with expected utility models [16].

In conclusion, decision theory as described above does not have a representation

1.2. Decision Processes 18

of the knowledge from which its utilities, outcomes etc. are derived, which prevents its

models from being re-used. Because of that, neither decision making under uncertainty

nor multi-criteria decision making are suitable starting points for our search of a model

that meets the requirements we listed above.

1.2.4 Formal Methods of Argumentation

In this section we introduce formal methods of argumentation and sketch informally

how they might address our requirements. An overview of relevant work in argumen-

tation can be found in Chapter 2.

Argumentation is a field within Artificial Intelligence (AI) research that uses the

concept of arguments (consisting of claims and support) to reason about inconsistent

knowledge bases [17, 18]. Apart from being a research area in its own right, argumen-

tation has been applied to problems in agent-based communication [19, 20, 21, 22],

satellite image analysis [23], medicine [24, 25], law [26, 27] and others.

Common uses ofw argumentation systems include: To identify conflict-free (ac-

ceptable) subsets of inconsistent knowledge bases; to organise conflicting knowledge

in a way that highlights how conflicting conclusions can be inferred; to reason with

alternative notions of conflict (i.e. ones that do not necessarily lead to absurdity in the

form of a∧¬a).

The suitability of argumentation-based methods for our requirements will be dis-

cussed in detail below, but first we will explain how argumentation addresses one crit-

ical requirement that is not met by other decision models (in Section 1.2.3), namely

the re-usability of knowledge implied by (RQ2). The key to reusability is being able to

combine two elements of the same type (the one that is re-used and the new one) into

a new element of the same type – that is to have an associative binary operation. In

argumentation, this operation is simply the set union of knowledge bases. Any incon-

sistencies that emerge from the combination of two sets of propositions will be dealt

with by the argumentation system. We will return to this point on several occasions

throughout this thesis, but for now we can summarise that argumentation systems fulfil

requirement RQ2 automatically.

Having identitified formal methods of argumentation as a potential foundation for

a model of decision processes, we can now assess what previous work exists in this

1.3. Thesis Overview 19

area, and whether it meets our requirements. There exists a large body of work on

decision making with argumentation [28, 29, 22, 24, 30, 31, 32, 33], and some of those

contributions are aimed explicitly at representing design debates. This covers the first

part of RQ1, but none of the existing approaches combine the idea of “possible worlds”

in which assumptions hold (cf. Section 1.2.3.1) with the weighing up of pros and

cons for each option (cf. Section 1.2.3.2). This is an area where argumentation-based

approaches to decision making can learn from decision theory.

A common characteristic of all argumentation-based approaches to decision mak-

ing is that they focus on individual decisions. As a result, none of them meet require-

ments RQ2 and RQ3, which have to be addressed on the level of decision processes.

The last requirement RQ4 is somewhat orthogonal to the previous three, because it

relates to the nature of arguments used in by model, rather than the model itself. There

are two distinct areas of previous work: meta-argumentation and argument schemes.

While argument schemes are more directly related to RQ4 (“integrating different kinds

of reasoning”), we claim that they are an example of meta-argumentation and thus

should be treated the same way as meta-arguments.

To summarise, prior art in argumentation covers parts of RQ1 and RQ4, and for

RQ2 and RQ3 no previous work exists. We intend to fill that gap with the work pre-

sented here.

1.3 Thesis Overview
The thesis contains the following chapters:

1. Introduction This chapter

2. Background A review of the foundations formal methods of argumentation as

far as they are required to read the thesis, as well as other definitions that are re-

quired. Each of the three following chapters has a separate review of the literature

relevant to it.

3. Decision making with argumentation An argument-based model for multi-criteria

decision making and decision making with uncertainty. The model is based on a

realistic use case developed with an industrial partner. It also includes a charac-

terisation of decision rules, and a method for adjusting the knowledge base after

1.4. Contributions 20

making a decision

4. An argumentation-based model of decision processes A model of decision se-

quences in which it is possible to assess the impact of choosing a specific option

on the justifications of other decisions in the sequence.

5. Argument schemes for decision making Non-deductive arguments (argument

schemes) cast as an instance of meta-argumentation. A special emphasis is on

using argumentation to interpret experimental data (by way of analogies), which

is illustrated by an extensive use case.

6. Conclusion & Discussion A summary and review of the results and some discus-

sion of future work

1.4 Contributions
The contributions of this thesis to the state of the art are

• A formal model of decision making using the ASPIC+ argumentation system.

Our model combines multi-criteria decision making with decision making under

uncertainty, by mapping possible worlds (caused by uncertainty in decision mak-

ing) to preferred extensions of argument graphs (a manifestation of conflicting

inferences).

• A method for comparing decision rules in argument-based decision making, e.g.

for their optimism or their decisiveness

• A method for adjusting a knowledge base to reflect the fact that a decision has

been made

• A method for describing and analysing sequences of argument-based decisions,

and measuring the impact that changing a previous decision has on the overall

consistency of the designs

• A framework in which non-deductive arguments, such as analogies and refer-

ences to authority, can be expressed side-by-side with deductive (logical) argu-

ments, as well as arguments not about the domain but about other arguments (i.e.

meta-argumentation)

1.5. Publications 21

1.5 Publications
Parts of this thesis have been published in peer-reviewed conference proceedings.

1.5.1 Main authorship

The following papers are directly based on this thesis:

1. Jann Müller and Anthony Hunter: An Argumentation-Based Approach for Deci-

sion Making. 2012 IEEE 24th International Conference on Tools with Artificial

Intelligence (ICTAI), ppage 564–571 [34]

This work is on a system for multi-criteria decision making using the ASPIC+

argumentation system [35]. The paper is the foundation of Chapter 3, Section 1.

2. Jann Müller and Anthony Hunter: Comparing Decision Rules in Argument-Based

Decision Making with Uncertainty. (preparing for re-submission after receiving

helpful feedback from reviewers)

Another paper on decision making with argumentation; the focus is on formal

criteria for the comparison of decision rules. This paper is the foundation of

Chapter 3 Section 2.

3. Jann Müller, Anthony Hunter, Philip S. Taylor: Meta-level Argumentation with

Argument Schemes. Scalable Uncertainty Management - 7th International Con-

ference (SUM) 2013, Proceedings: LNCS 8078, ppage 92–105 [36]

A publication on meta-argumentation with argument schemes. This paper is a

short version of Chapter 5.

4. Jann Müller and Anthony Hunter: Deepflow: Using argument schemes to query

relational databases. Computational Models of Argument - Proceedings of

COMMA 2014 in: Frontiers in Artificial Intelligence and Applications 266,

ppage 469-470 [37]

This demo paper describes the implementation of a system for using argument

schemes (Chapter 5) to generate queries of SQL databases.

A journal article based on Chapter 4 (theory of decision processes) is in preparation.

1.5. Publications 22

1.5.2 Co-authorship

This thesis constitutes a part of project DEEPFLOW, an R&D collaboration between

SAP AG (my employer during the project), the Queen’s University Belfast’s Mechan-

ical Engineering Department and the Computer Science department at the University

of Ulster. This collaboration provided me with a realistic understanding of the deci-

sion documentation problem in engineering design, and also gave me the opportunity

to contribute to other publications in related areas. The findings from this research in-

fluenced my understanding of argumentation within engineering design processes and,

by extension, this thesis.

1. Niall Rooney, Hui Wang, Fiona Browne, Fergal Monaghan, Jann Müller, Alan

Sergeant, Zhiwei Lin, Philip S. Taylor, Vladimir Dobrynin: An Exploration into

the Use of Contextual Document Clustering for Cluster Sentiment Analysis. Re-

cent Advances in Natural Language Processing (RANLP) 2011: 140-145 [38]

2. Fiona Browne, David A. Bell, Weiru Liu, Yan Jin, Colm Higgins, Niall Rooney,

Hui Wang, Jann Müller: Application of Evidence Theory and Discounting Tech-

niques to Aerospace Design. Advances in Computational Intelligence - 14th In-

ternational Conference on Information Processing and Management of Uncer-

tainty in Knowledge-Based Systems, IPMU 2012 Part III: 543-553 [39]

3. Jann Müller and Tobias Trapp: Using Argumentation to Develop a Set of Rules

for Claims Classification. 7th International KES Conference on Intelligent Deci-

sion Technologies (KES-IDT): 459-469 [40]

Chapter 2

Background

2.1 Introduction

In this chapter we will review the background in formal methods of argumentation

upon which the rest of the thesis is built. There are two main parts. We first introduce

abstract argument graphs (in Section 2.2) and then define the ASPIC+ argumentation

system [35, 41] which we will use for concrete instantiations of arguments (Section

2.3). We then present additional notation and definitions (Section 2.4) and conclude

the chapter with a brief discussion (Section 2.5).

Abstract argument graphs allow us to model the relationships between arguments.

Unlike dialectical trees (an alternative method for computing the acceptability of ar-

guments), graphs make it possible to evaluate all arguments in a debate at the same

time, instead of one argument at a time. However, abstract arguments do not contain

any information about the content of arguments. In order to be able to identify all re-

lationships between arguments – and not just those that are explicitly mentioned in a

design document and can thus be mapped directly to an attack in the argument graph

– we need a formal language to give structure to the arguments, or to instantiate them.

Several instantiations have been proposed in the literature, and we will discuss them in

Section 2.5. For this thesis we decided to use the ASPIC+ argumentation system. AS-

PIC+ is quite flexible, allowing us to leave the choice of underlying logical language to

the eventual application of our model.

2.2. Abstract Argumentation 24

2.2 Abstract Argumentation
Dung’s 1995 article [42] introduced argument graphs with arguments as nodes and

their “attacks” (a notion of conflict) as directed edges. Argument graphs are given an

interpretation using one of several extension semantics.

The internal structure of arguments is not specified, so they are only defined in

their relationships with other arguments. We will present the concept of argument

graphs in some detail here, because it is referenced in almost every single publication

discussed in this chapter.

Definition 1 (Argument Graph). An argument graph is tuple (A,Att) where A is a set

and Att ⊆ A×A.

In an argument graph G = (A,Att), elements of the set A are called arguments and

Att is the “attacks” relation. Given two arguments a,b ∈ A, a attacks b if (a,b) ∈ Att.

We will display argument graphs visually by drawing circles for arguments and arrows

for attacks, as shown in Figure 2.1.

Example 1. Imagine we are faced with the problem of designing a structure that has

two components which are joined using a bracket fixed by bolts. Our task is to decide

what type of bolts to use, whether or not to use a shim (a thin sheet of metal) between

the bracket and the components, and how many layers of varnish to apply. Some re-

quirements are to maintain the structural integrity of the component and to achieve a

high resistance to corrosion. The following arguments might be put forward:

a1 Not using a shim means that the structure remains balanced. Therefore, it will

not be damaged.

a2 Steel/titanium bolts cause microscopic fractures in the two parts, leading to dam-

age to the structure.

a1 a2

a3 a4

Figure 2.1: Graph for Example 1

2.2. Abstract Argumentation 25

a3 Steel/titanium bolts are too strong for the material that the structure is made of,

so there will be microscopic fractures.

a4 The structure is highly corrosion resistant, because two layers of varnish are

used.

The argument graph for this example is given by (A,Att) with A = {a1, . . . ,a4} and

Att = {(a1,a2),(a2,a1),(a3,a1)} and visualised in Figure 2.1.

There are several acceptability semantics, based on the idea that a set of arguments

is admissible if it defends itself against any attacks, and does not attack itself. An

acceptability semantics is a way of computing certain admissible sets of arguments,

called extensions, from an argument graph. The semantics differ in their degree of

credulity, that is, whether arguments can stand for themselves (and hence may defend

themselves against attackers) or not (and hence must be defended by other arguments).

Acceptability semantics select conflict-free sets of arguments. Sets of arguments

are conflict-free if there is no attack between any two of their arguments. A set defends

an argument a if it can attack any attacker of a.

Definition 2 (Conflict-free, defence). Let (A,Att) be an argument graph and let B⊆ A.

• B is conflict-free iff there exist no a, b in B such that a attacks b.

• B defends an argument a iff for each argument b ∈ A: If b attacks a, then there

exists an argument c in B such that c attacks b.

Note that if an argument has no attackers then it is defended by and acceptable to

any set of arguments.

admissible set

preferred

stable

complete

grounded

credulous sceptical

Figure 2.2: Extension semantics

2.2. Abstract Argumentation 26

Example 2. The graph in Figure 2.1 on page 24 has several conflict-free sets, for

example {a3,a2,a4} and {a4,a1}.

Semantics in abstract argumentation make use of the following notions of accept-

ability and admissibility.

Definition 3 (Acceptable, admissible). Let G = (A,Att) be an argument graph.

1. An argument a ∈ A is acceptable with respect to a set S ⊆ A of arguments if

and only if for each argument b ∈ A: If b attacks a then b is attacked by some

argument in S.

2. A conflict-free set of arguments S ⊆ A is admissible iff each argument in S is

acceptable with respect to S

The following result by Dung [42] makes a connection between acceptability and

admissibility.

Proposition 1 ([42]). Let S be an admissible set, and a and a′ be arguments that each

are acceptable with respect to S. Then

1. S′ = S∪{a} is admissible

2. a′ is acceptable with respect to S′.

Semantics in Dung’s framework are sceptical or credulous. Sceptical semantics

result in a single extension called the grounded extension, whereas credulous seman-

tics may result in more than one extension, called preferred extensions. We start with

the grounded extension, which requires us to introduce the characteristic function of

an argument graph. This function maps a set of arguments to the set of arguments

acceptable to it.

Definition 4 (Characteristic Function). The characteristic function of an ar-

gument graph G = (A,Att) is FG : 2A → 2A such that FG(B) = {a ∈ A |

a is acceptable with respect to B}.

2.2. Abstract Argumentation 27

Example 3. For the graph G = ({a1, . . . ,a4},{(a1,a2),(a2,a1),(a3,a1)}) from Figure

2.1, we can compute for example

FG(/0) = {a3,a4} FG({a1}) = {a3,a4}

FG({a3}) = {a2,a3,a4} FG({a2}) = {a2,a3,a4}

Definition 5 (Sceptical Acceptability). The grounded extension of an argument graph

G is the least fixed point of FG

Example 4. The characteristic function of the graph G = ({a1, . . . ,a4}, {(a1,a2),

(a2,a1), (a3,a1)}) from Figure 2.1 reaches a fixed point after one iteration:

FG(/0) = {a3,a4}

FG({a3,a4}) = {a2,a3,a4}

FG({a2,a3,a4}) = {a2,a3,a4}

Every argument graph has a single grounded extension. This is not the case for

preferred extensions, of which there can be more than one.

Definition 6 (Credulous Acceptability). A preferred extension of an argument graph G

is a maximal admissible set.

Besides grounded and preferred extensions, Dung introduced two additional ex-

tension semantics. A conflict-free set of arguments is a stable extension if it attacks

every argument that does not belong to it, and an admissible set of arguments S is a

complete extension iff each argument which is acceptable with respect to S belongs to

S. The relationships between the four semantics are shown in Figure 2.2 (arrows indi-

cate the “is-a” relationship). In this thesis however we will use grounded and preferred

semantics.

The function Σs(G) computes the set of s-extensions of an argument graph G, with

s ∈ {pr,gr} (preferred and grounded, respectively). Σpr may return an empty set and

Σgr returns a set with exactly one element (which in turn may be the empty set). Other

semantics besides preferred and grounded have been discussed in the literature, but in

this thesis we will only use the two.

2.3. Aspic+ 28

The following result by Dung will be useful in proofs about the acceptability of

arguments.

Proposition 2 (Dung 1995, [42]). Let G = (A,Att) be an argument graph. Then

1. The set of all admissible sets of G forms a complete partial order with respect to

set inclusion

2. For each admissible set S of G, there exists a preferred extension E ∈ Σpr(G) such

that S⊆ E

3. Every argumentation framework posseses at least one preferred extension

Argument graphs can tell us which sets of arguments are acceptable, but they do

not contain any information about the structure of arguments. This gap will be filled by

the ASPIC+ framework.

2.3 Aspic+
In this section we introduce the ASPIC+ argumentation system which will be used

throughout the thesis. ASPIC+ [35, 41] is a framework for structured argumentation

that combines strict and defeasible inference rules. Defeasible rules, unlike their strict

counterparts, can only be applied in contexts where they are not attacked by exceptions.

Exceptions are arguments whose conclusion is a contrary of the rule itself (as opposed

to a contrary of one of the rule’s premises). The applicability of defeasible rules in

ASPIC+ is therefore determined locally for each application.

2.3.1 Formal Definition of Aspic+

The ASPIC+ framework assumes an unspecified logical language L . Inference rules

can be strict or defeasible. If the conditions of a rule hold, then its conclusion must be

accepted unconditionally if it is a strict rule, but if it is a defeasible rule then there may

be exceptions that render the rule unapplicable.

Rules in ASPIC+ can be used to encode domain-specific knowledge or general pat-

terns of reasoning [41]. An example of a domain-specific rule is bird(X)⇒ fly(X),

and an example of a general pattern is (a → b),a ⇒ b. In this thesis we use AS-

PIC+ rules for domain-specific inferences, and rely on ASPIC+ arguments (Definition

2.3. Aspic+ 29

9 below) as the sole general reasoning pattern. It would also be possible to encode

domain-specific rules in the logical language L and add a general inference rule for

modus ponens to the ASPIC+ system [35].

In ASPIC+ the choice of underlying logic is left to the user. An argumentation sys-

tem therefore contains as parameters both the logical language used inside arguments

(L) and a means of determining the relationship between arguments (· and R).

Definition 7 (ASPIC+ argumentation system). An argumentation system is a four-tuple

AS = (L , ·,R,≤) where

• L is a logical language

• · is a contrariness function with · : L → 2L

• R =Rs∪Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the form

ϕ1, . . . ,ϕn→ ϕ and ϕ1, . . . ,ϕk⇒ ϕ respectively (where ϕi,ϕ are meta-variables

ranging over L and k,n≥ 0), and such that Rs∩Rd = /0

• ≤ is a partial order1 on Rd

We will give a comprehensive example on page 34, when all notation has been

introduced. The function name assigns a name to each defeasible rule, so its signature

is name : Rd →L . We will use an infix notation 〈r〉 to mean name(r). Note that 〈·〉

is a meta-level operator. A set S ⊆L is consistent iff @ψ,ϕ ∈ S such that ψ ∈ ϕ , or

inconsistent otherwise.

In ASPIC+, argumentation systems set out the general rules for arguments – what

constitutes an argument and what determines an attack. To actually use these rules, one

requires a knowledge base that contains knowledge about a particular problem.

Definition 8 (ASPIC+ knowledge base). A knowledge base in an argumentation system

(L , ·,R,≤) is a pair (K ,≤′) where

• K ⊆L and K = Kn∪Kp∪Ka such that the three constituent subsets of K

are disjoint

• ≤′ is a partial order on K \Kn

1A definition for partial order is given on page 36, along with definitions for other general concepts.

2.3. Aspic+ 30

In a knowledge base, the set Kn contains axioms, the set Kp contains premises

and the set Ka contains assumptions. The intuition behind this stratification of K is

that the three sets represent different kinds of certainty: Axioms are similar to strict

rules in that they always apply and cannot be attacked. Formulae in Kp and Ka can

be attacked. Attacks on premises in Kp are resolved using the preference relations

≤ and ≤′, whereas attacks on assumptions Ka always succeed. Arguments combine

knowledge from a knowledge base with rules from an argumentation system. They are

defined in Definition 9 below. Please note that each of the two conditions defines the

functions prem, conc, sub, rules and topRule which return the premises, conclusion,

sub-arguments, rules and top rule of an argument. Further, Definition 9 Cond. 2 covers

both strict rules (→) and defeasible rules (⇒), separated by the / symbol.

Definition 9 (ASPIC+ arguments). An argument “a” on the basis of a knowledge base

(K ,≤′) in an argumentation system (L , ·,R,≤) is:

1. ϕ if ϕ ∈ K with prem(a) = {ϕ}; conc(a) = ϕ; sub(a) = {a}; rules(a) = /0;

topRule(a) = undefined

2. a1, . . . ,an→ /⇒ψ if a1, . . . ,an are finite arguments such that there exists a stric-

t/defeasible rule conc(a1), . . . ,conc(an)→ /⇒ ψ in Rs/Rd

prem(a) = prem(a1)∪ . . .∪prem(an)

conc(a) = ψ

sub(a) = sub(a1)∪ . . .∪ sub(an)∪{a}

topRule(a) = a1, . . . ,an→ /⇒ ψ

We use the symbol A for the set of all arguments, and use capital letters A,B, . . .

to denote sets of arguments. The set of arguments for a given knowledge base KB is

denoted with args(KB).

Once a number of arguments have been established, their inconsistency can be

analysed in an argument graph, by determining attacks between arguments. In AS-

PIC+, three kinds of attack are possible: Rebuttal, undermining and undercut. A re-

buttal occurs if an argument is attacked on its conclusion. Undermining is an attack

on an argument’s premises and undercut is an attack on a defeasible inference step

(application of a defeasible rule).

2.3. Aspic+ 31

Definition 10 (ASPIC+ Attack). Let a,b be two arguments on the basis of a knowledge

base (K ,≤′) in an argumentation system (L , ·,R,≤). a attacks b if and only if

1. conc(a) ∈ conc(b) (rebuttal) or

2. conc(a) ∈ 〈topRule(b)〉 (undercut) or

3. ∃b′ ∈ sub(b) such that a attacks b′ (undermining on b′)

To determine which attacks result in defeats (i.e. are valid), we assume a partial

order� on the constructed arguments. In [35], a method is presented for deriving a def-

inition of � from ≤ and ≤′, the orderings of non-axiom premises and defeasible rules.

However, any partial order of arguments � is acceptable for the following definition:

Definition 11 (ASPIC+ defeat). Let a, b be two ASPIC+ arguments on the basis of a

knowledge base (K ,≤′) in an argumentation system (L , ·,R,≤). a defeats b iff

1. a undercuts b or

2. a rebuts/undermines b on b′, and either a contrary rebuts/undermines b or a⊀ b′.

The above definitions allow us to compute the argument graph of an ASPIC+ sys-

tem, by taking its set of arguments and their defeats (Definition 11):

Definition 12 (Argument graph of an ASPIC+ system). Given a knowledge base KB =

(K ,≤′) in an argumentation system AS = (L , ·,R,≤), the argument graph of KB and

AS is (A,Att) where

1. A = args(KB) and

2. Att = {(a,b) ∈ A | a defeats b} (Definition 11)

Definition 12 is the connection between ASPIC+, described here, and argument

graphs, described in Section 2.2. In this thesis, the function of the ASPIC+ framework

is to construct arguments, and the function of argument graphs is to select acceptable

subsets of arguments.

2.3. Aspic+ 32

2.3.2 ASPIC+ Conventions

As we mentioned before, we will adopt some conventions for ASPIC+ knowledge bases

in this thesis. The first set of conventions aims to streamline the presentation of our

ideas by simplifying definitions and proofs, and the second set of conventions enables

us to reason about arguments about rules, by restricting the arguments we can poten-

tially form.

At the same time, all knowledge bases considered in this thesis are valid ASPIC+

knowledge bases, so all related work on ASPIC+ applies to our system without adjust-

ments. However, not all of our results transfer to general ASPIC+ systems.

In the following paragraphs, remember that ASPIC+ systems are four-tuples

(L , ·,Rs∪Rd,≤) and ASPIC+ knowledge bases are pairs (K ,≤′) with R =Rd∪Rs,

≤ a partial order of Rd , K = Kn∪Kp∪Ka with ≤′ a partial order of K \Kn.

2.3.2.1 Simplifications

As this thesis is about modeling human argumentation, we regard all knowledge to

be defeasible and consequently all our ASPIC+ rules will be defeasible. Concretely,

we require that Rs = /0 (no strict rules). This means that R = Rd . We also make

no assumptions about the ordering of rules in R, so we define ≤ to contain only the

minimum information necessary to make it a partial order - that is,≤ only contains pairs

of rules (r,r) so that it satisfies the property of reflexivity: ≤= {(r,r′) ∈Rd×Rd | r =

r′}.

Regarding knowledge bases, we assume there are no ASPIC+-assumptions (in the

set Ka). Whenever the behaviour of assumptions (literals that can be disproved) is

required, we will use a defeasible rule with empty antecedent instead. For example,

we write⇒ bird(Tweety) to express the assumption that Tweety is a bird. This con-

vention allows us to introduce attacks on assumptions that always succeed, through a

literal ¬〈⇒ bird(Tweety)〉, which results in an asymmetric attack on the argument

[⇒ bird(Tweety)]. We also assume there are no ASPIC+-axioms. As a result, we

always set Kn = Ka = /0.

The definition of ≤′ follows the familiar pattern of containing only the minimum

of information required for it to be a partial order: ≤′= {(a,a′) ∈Kp×Kp | a = a′}.

The reason for this restriction is that non-minimal definitions of≤ and≤′ disable some

2.3. Aspic+ 33

attacks (so they do not become defeats and do not appear in the argument graph of

the ASPIC+ system). ≤ and ≤′ therefore solve the same problem as Dung’s extension

semantics – both decide which attacks hold and which attacks are to be rejected. By

restricting the two relations we ensure that all attacks are evaluated within the argument

graph that is generated from an ASPIC+ system, and not at the stage where attacks are

turned into defeats inside ASPIC+ (cf Definition 11).

Argument graphs in ASPIC+ arise from a combination of a general ASPIC+ system

(L , ·,Rs∪Rd,≤) with concrete knowledge bases (K ,≤′). Due to the the restrictions

we make, we can drop ≤ and ≤′ from these definitions because they are directly deter-

mined by K and Rs. In addition, we assume that � (the argument ordering required

to decide which attacks are defeats, Definition 11) is defined in the same, minimal way,

which allows us to elide it too (because in this setting, all ASPIC+-attacks are ASPIC+-

defeats). Further, we will assume the logical language L to consist only of atoms, so

all inferences will be made via rules in R. L is therefore just a set of symbols, and we

will not mention it explicitly in our definitions and examples. The same goes for the

naming function 〈·〉. As a result we can drastically simplify our presentation: Instead

of specifying a four-tuple and a pair, we only need to give a single component, R (de-

feasible rules) explicitly. We will therefore adopt the notation KB = R to specify both

the ASPIC+ system (L , ·,R,≤) and the knowledge base (K ,≤′) with K = /0, where

KB stands for “knowledge base”. Since KB is a set we can use ⊆ to determine whether

one knowledge base contains another one, and ∪ to describe the union of two knowl-

edge bases. We will use the function argGraph(KB) to refer to the argument graph of a

knowledge base KB.

2.3.2.2 Other Restrictions

In chapters 3 and 4 we will develop a model of decision making in which decisions

made at an earlier stage in the process can impact decisions made at a later stage.

Conversely, decisions at a later stage can override decisions made earlier. In order to

ensure that our definitions have the desired properties for overriding knowledge, we

will assume that all ASPIC+ knowledge bases meet the following two conditions:

Condition 1: No Unused Rules In a given knowledge base KB = R, for every rule

r ∈R, there exists at least one argument a ∈ args(KB) such that topRule(a) = r.

2.3. Aspic+ 34

Condition 2: Injective Rule Labels The function 〈·〉 is injective, so each rule is as-

signed a different name.

We are now going to define a number of common functions that operate on objects

in ASPIC+. These functions will make it easier to refer to specific parts of an argument

or a set of arguments. We start with the attackers function, which restricts a set of

arguments A to those that attack a given argument a.

Definition 13 (Attackers). For all ASPIC+ arguments a, and A⊆A : attackers(a,A) =

{b ∈ A | b attacks a}

We also use the function attacks(A) to return all pairs of arguments (a,b) ∈ A×A

such that a attacks b.

In the context of argumentation systems, specifically for ASPIC+, a knowledge

base KB infers a literal l, short KB ` l, if there exists an argument with conclusion

l that is acceptable under a given semantics, for example grounded or preferred. The

inference relation is therefore parameterised over the semantics, and we use an index pr

to indicate preferred semantics and gr for grounded semantics. The following definition

is based on Definition 14 in [41]:

Definition 14 (ASPIC+ Inference). Let KB be an ASPIC+ knowledge base and let l ∈

L . Let s ∈ {gr,pr}. KB s-infers l, short KB `s l, if and only if there exists an extension

E ∈ Σs(argGraph(KB)) such that a ∈ E.

In addition to the conventions on ASPIC+ systems and knowledge bases just dis-

cussed, we will also use the following syntax for arguments, which is easy to read and

conveys all the information contained in an argument.

To refer to arguments we use variables a,b, When talking about the structure

of an argument a we write a = [l] if a is a literal argument (Definition 9 case 1) and

we write a = [b1, . . . ,bn;r;c] if a is the application of a rule r with sub-arguments b1 to

bn and conclusion c. In both cases, the conclusion is immediately visible (either l or

c) and in the second case both sub-arguments and the rule are included. The following

example demonstrates our syntax conventions.

Example 5. Let KB = {r1,r2,⇒ a,⇒ b,⇒ c} be a knowledge base with r2 = d,b⇒

2.3. Aspic+ 35

¬c. KB gives rise to the following arguments. args(KB) = {a1, . . . ,a5} with

a1 = [⇒ a] a2 = [⇒ b]

a3 = [⇒ c] a4 = [a1;r1;d]

a5 = [a4,a2;r2;¬c]

We get attacks(args(KB)) = {(a5,a3),(a3,a5)}. In other words, a5 rebuts a3 and vice

versa.

2.3.3 Discussion

Engineering design processes are iterative, involving several refinements and adjust-

ments before settling on a final design [1]. The iterations serve not only to increase the

design’s specificity, but also to revisit and change earlier decisions, in order to adapt to

information (for example, when requirements have changed). It is important to keep a

record of those changes, including the reasoning behind them, and not just of the latest

state of the design, so that repeated mistakes can be avoided and knowledge can be

re-used. Since we use a logical language to model engineering design processes, the

logical language should support changes to earlier decisions (conclusions). This means

that we should be able to invalidate knowledge additively, by adding new rules to our

knowledge base, without deleting the invalidated formula.

This property will be a major concern in Chapter 3, and the restrictions we im-

posed on ASPIC+ systems in this chapter prepare the ground for our developments

there, because they ensure that our model of decision processes has the desired prop-

erty of being able to invalidate knowledge solely through the addition of new rules.

An immediate consequence of Condition 1 (no unused rules) on page 33 is the

following:

Proposition 3. If attackers(a,args(KB1)) = /0 and attackers(a,args(KB2)) = /0 then

attackers(a,args(KB1∪KB2)) = /0.

Proof. Proof by contradiction. Let KB1, KB2 be two ASPIC+ knowledge bases such

that attackers(a,args(KB1)) = /0 and attackers(a,args(KB2)) = /0. Assume there exists

an argument b ∈ attackers(a,args(KB1∪KB2)) with conc(b) = l. Then by Definition

9 and condition 1 on page 33, b is either an application of a rule with empty antecedent

2.4. Additional Definitions 36

argument (b = [⇒ l]) or arises from the application of a rule r witn non-empty an-

tecedent, b = [. . . ;r; l]. Assume b = [⇒ l]. Then⇒ l ∈ KB1∪KB2, so⇒ l ∈ KB1 or

l ∈KB2. In the first case, [⇒ l]∈ args(KB1), so [⇒ l]∈ attackers(a,args(KB1)), and in

the second case [⇒ l]∈ args(KB2), so [⇒ l]∈ attackers(a,args(KB2)). Both contradict

the assumption.

Now assume b = [. . . ;r; l]. In that case, r ∈ KB1 ∪KB2, so r ∈ KB1 or r ∈ KB2.

Assume without loss of generality r ∈ KB1. Then, by Cond. 1 on page 33, there exists

an argument b′ ∈ args(KB1) such that topRule(b′) = r. Therefore, conc(b) = conc(b′)

so b′ attacks a, and b′ ∈ attackers(a,args(KB1)), contradicting the assumption.

This result will play a role in Chapter 3, as will the rest of the restrictions. With

ASPIC+ we can define arguments and their attacks, and with argument graph semantics

we can select acceptable sets of arguments.

2.4 Additional Definitions
Before we conclude this chapter with a brief discussion of alternatives to ASPIC+, we

will define a number of mathematical concepts that are used throughout the thesis. The

definitions are not argumentation-specific and will be given without much comment.

For a list of all symbols and function names the reader may refer to Table A.1 on page

233.

Powerset

Definition 15. Let S be a set. The powerset of S, short P(S), is defined as

P(S) = {T | T ⊆ S}

Partial Order

Definition 16. A binary relation R ⊆ S×S over a set S is a partial order if and only if

it is

Reflexive For all s ∈ S : sRs

Antisymmetric For all s, t ∈ S: If sRt and tRs then s = t

Transitive For all s, t,u ∈ S: If sRt and tRu then sRu.

2.4. Additional Definitions 37

If there is a partial order R for a set S, then we may call S a partially ordered set,

or a poset.

Equivalence Relation

Definition 17. A binary relation R⊆ S×S over a set S is an equivalence relation if and

only if it is

Reflexive For all s ∈ S : sRs

Symmetric For all s, t ∈ S: If sRt then tRs

Transitive For all s, t,u ∈ S: If sRt and tRu then sRu.

If S is a set and ∼ is an equivalence relation over S then S/∼ is the set of equiva-

lence classes of S. Formally, S/∼ = {[a] | a ∈ S} where [a] = {b ∈ S | b∼ a}.

Lattice

Definition 18 (Lattice). A lattice is a partially ordered set L equipped with two binary

operations t,u : (L×L)→ L satisfying the following equations:

atb = bta, aub = bua (commutative)

at (bt c) = (atb)t c, au (bu c) = (aub)u c (associative)

at (aub) = a, au (atb) = a (absorption)

The powerset P(S) of a set S is a lattice with t = ∪ and u = ∩. We use the

symbol ⊔C to mean c1u c2u . . .u cn for a set C = {c1, . . . ,cn}.

A lattice is join irreducible (meet irreducible) if x= atb (x= aub) implies x= a

or x = b

Symmetric Difference

The symmetric difference between two sets A and B consists of exactly those elements

that are either in A or in B but not in both.

Definition 19 (Symmetric Difference). The symmetric difference of two sets A and B

is

A∆B = (A\B)∪ (B\A)

2.4. Additional Definitions 38

Kleene Closure

Definition 20 (Kleene Closure). The Kleene closure (or free monoid) of a set S, denoted

by S∗, is the set of all words w over S.

S∗ includes the empty word ε . If w and w′ ∈ C ∗ then w◦w′ ∈ C ∗ is their concate-

nation. The prefix relation of words is denoted by v. |w| stands for the length of word

w with |ε|= 0. To distinguish an element of the set c ∈ S from a word in S we write [c]

for the latter, where required.

Lexicographic Order

If we have a set S with a partial order ≤, then we can derive from ≤ a partial order on

the set S∗ as follows (again v denotes the prefix relation).

Definition 21 (Lexicographic Order). Let S be a set with a partial order ≤, and let

w,w′ ∈ S∗. w� w′ if and only if

1. wv w′ or

2. w = vau and w′ = vbu′ where v is the longest common prefix of w,w′, a ≤ b and

u,u′ ∈ S∗.

Linear Extension

In Chapter 4 we will compare different versions of a knowledge base over time, in

order to describe the evolution of acceptable sets of arguments over time. To this end

we introduce the concept of linear extensions, a relationship between sets of sets (in our

case, sets of sets of acceptable arguments). If the preferred extensions of an argument

graph G′ are a linear extension of the preferred extensions of an argument graph G, then

all arguments that were credulously acceptable in G are credulously acceptable in G′,

but there may be additional, credulously acceptable arguments in G′ that did not exist

in G. Further, every preferred extension in G is subsumed by a preferred extension in

G′, and every preferred extension in G′ subsumes a preferred extension in G.

Formally, a linear extension of a set of sets P is a set P′ in which each of the

original sets in P is a subset of one of the sets in P′, and every set in P′ is a superset of

a set in P.

2.4. Additional Definitions 39

Definition 22 (Linear Extension). Let P,P′ be two sets of sets. P′ is a linear extension

of P iff

1. For all p ∈ P, there is a p′ ∈ P′ such that p⊆ p′.

2. For all p′ ∈ P′, there is a p ∈ P such that p⊆ p′.

If the preferred extensions of G′ are a linear extension of G’s preferred extensions,

then (a) G v G′ (subgraph) and (b) G′ does not contain any sceptically acceptable

attackers for arguments that were credulously acceptable in G.

Example 6. Consider the set P = {p1, p2}. P has two elements, the sets p1 = {a,b}

and p2 = {d}. A linear extension P′ is given by P′ = {p1, p′2} with p′2 = {d,e}. While

Definition 22 itself works on any sets of sets, it makes most sense when P, P′ are sets of

arguments. If P is the set of preferred extensions of an argument graph G and P′ of a

graph G′, then the extensions in P are still acceptable in G′, but may contain additional

arguments (such as e in the example). Conversely, for each preferred extension E of G′

there exists a preferred extension E ′ of G such that E ′ ⊆ E.

For any set S, if P⊆P(S) then P′ = {
⋃

p∈P p} is a (trivial) linear extension of P.

Proposition 4. For any two argument graphs G,G′, if Σpr(G′) is a linear extension of

Σpr(G), then the grounded extension of G is a subset of the grounded extension of G′.

Proof. Let G,G′ be two argument graphs such that Σpr(G′) is a linear extension of

Σpr(G), and let E be the grounded extension of G. Let E ′ be the grounded extension of

G′, and let a ∈ E. We will show that a ∈ E ′.

Let F ′ ∈ Σpr(G′) a preferred extension of G′. By Definition 22 Cond. 2, there

exists a preferred extension F ∈ Σpr(G) such that F ⊆ F ′. Since a is in the grounded

extension of G, a is also in every preferred extension of G, and specifically a ∈ F so

a ∈ F ′. Since a is in all preferred extensions of G′, a is also in the grounded extension

of G′.

Although the definition of linear extensions (Definition 22) does not make any

reference to argument graphs, the concept is particularly useful in an argumentation

setting. It can be used to express that an argument graph G′ contains an argument

graph G, by stating that the preferred extensions of G′ are a linear extension of the

2.5. Discussion 40

preferred extensions of G. This ensures not only that all of G’s credulously acceptable

arguments are credulously acceptable in G′, but also that any credulously acceptable

set of arguments in G is still credulously acceptable as a set in G′. In particular, this

definition ensures that G′ does not introduce any attacks between arguments that are

credulously acceptable together, that is as part of the same extension, in G.

This is a much stronger statement than saying that an argument graph G is a sub-

graph of an argument graph G′. If we only knew that G is a subgraph of G′, then G′

could introduce arbitrary attacks between any two arguments that were conflict-free in

G. If the preferred extensions of G′ are a linear extension of the preferred extensions

of G, then all arguments that share a preferred extension in G also share a preferred

extension in G′ (and are therefore conflict-free in G′). Linear extensions of preferred

extensions thus preserve not only the acceptability status but also the context of argu-

ments.

2.5 Discussion
In this chapter we gave formal definitions of abstract argument graphs (Section 2.2) and

ASPIC+ (Section 2.3), the two systems we will use to construct and evaluate arguments.

Before we begin the development of our decision making framework in Chapter 3, we

will briefly discuss possible alternatives to the chosen systems.

2.5.1 Grounded and Preferred Semantics

One of the developments in the first part of this thesis is enforce, a function that elevates

the status of a set of arguments in an argument graph from credulously to sceptically

acceptable. enforce is an important building block for the model of decision processes

developed in Chapter 4. We choose preferred and grounded semantics as representa-

tives of credulous and sceptical acceptability, because they were defined in the original

article by Dung [42], and because their definitions are relatively convenient to work

with (maximum admissible sets and least fixed point of the characteristic function, re-

spectively).

An open question for future work is whether these two semantics are good models

of the semantics used in design debates, or whether other semantics such as robust

[43], naive [44] or ranking-based [45] would be more realistic, and how the choice of

2.5. Discussion 41

different semantics affects our results, particularly on enforcement (see Section 3.4.3

on page 94).

2.5.2 Alternatives to ASPIC+

ASPIC+ is a framework for structured argumentation. It provides definitions for creat-

ing and evaluating arguments based on a knowledge base, and a method for identifying

attacks between those arguments. A number of other approaches to structured argu-

mentation have been proposed (see e.g. [46] for an introduction), and we will briefly

review them here.

2.5.2.1 ABA

Assumption-based argumentation (ABA [47]), like ASPIC+, is a general framework

that instantiates abstract argument graphs. Every ABA-system has an underlying de-

ductive system, a subset of which is designated as assumptions, and a set of inference

rules. An ABA-argument is a set of assumptions from which a claim can be inferred

by applying the inference rules. Attacks are determined by a contrariness-relation. In

ABA, all inference rules are strict and defeasibility is expressed through assumptions.

2.5.2.2 DeLP

Defeasible Logic Programming (DeLP, [48]) is a logic-programming inspired system

for argumentation. In DeLP there are two kinds of negation, strong negation and default

negation. Unlike ABA and ASPIC+, DeLP uses dialectical tree semantics. A DeLP

system can respond to queries of the status of a claim with one of four answers: Yes (if

the claim is supported by an undefeated argument), no (if the complement of the claim

is supported), undecided (neither yes or no), and unknown (if the query is not known

to the program).

2.5.2.3 Deductive Argumentation

In deductive argumentation (e.g. [49, 50]) arguments are pairs of support and conclu-

sion such that the conclusion is entailed (inference in the chosen base logic) by the

claim. In deductive argumentation, the only inference rules are those of the base logic.

Deductive argumentation has a great degree of flexibility, for example in the choice of

base logic and how an argument graph is constructed from a knowledge base.

2.5. Discussion 42

2.5.2.4 Discussion

Our primary reason for choosing ASPIC+ is that its syntax is appropriate for our needs,

and – with the adjustments discussed on page 32 – its knowledge bases lead to a

straightforward interpretation as argument graphs.

However, the model we develop in this thesis does not inherently require AS-

PIC+, and we presume that it could be translated to the other approaches without much

difficulty. Such a translation of our model into other approaches to structured argumen-

tation would help to draw out the distinction between characteristics that are intrinsic

of decision processes, and those that are specific to the concrete expression of decision

processes in ASPIC+. We leave this study for future work.

Chapter 3

Argument-Based Decision Making

3.1 Introduction
Individual decisions are the smallest building block of decision processes, so they are

a good starting point for our model of decision processes. In decision analysis, the two

fields multi-criteria decision making (MCDM) and decision making with uncertainty

(DM) are different areas of research, each with their own methodologies, research ques-

tions, models, etc. One can say – with quite a bit of simplification – that MCDM is

DM minus uncertainty plus multiple conflicting utility functions, and likewise DM is

MCDM with uncertainty and with only a single criterion (i.e. utility).

In argumentation, Dung’s argument graphs represent uncertainty non-numerically,

namely as conflict between arguments. The same mechanism is used to represent mul-

tiple conflicting utilities (preferences) of decision outcomes. It should thus be possible

for an argumentation-based model of decision making to combine DM’s focus on un-

certainty with MCDM’s focus on multiple criteria. In this chapter we develop such a

moel.

In our approach, the pros and cons of different options in a decision form an ar-

gument graph. In this graph, multi-criteria decision problems are analysed using the

grounded extension of an argument graph, and decision problems with uncertainty are

analysed using preferred extensions. In this model, credulous acceptability is an ex-

pression of “what-if” hypothetical reasoning, while sceptical acceptability amounts to

evaluating one or more dialectical trees of arguments. Unlike in earlier proposals, de-

cisions in our framework are modeled as sets of literals, rather than as single literals.

This means that they can partially overlap, resulting in a more finely tuned set of deci-

3.1. Introduction 44

sions. The need for this kind of analysis was identified during our collaboration with

an aerospace manufacturer.

Our system also provides output that can be used to create decision documentation.

It uses formal logic to reason with arguments and counterarguments. Because these

arguments are generated from structured knowledge (in the form of rules), they can with

little additional effort be transformed into an ontology-based format. This is because

ontology standards are based upon a formal foundation of description logics [51].

We begin with a review and precise definition of problems in multi-criteria de-

cision making and decision making under uncertainty, in Section 3.2. This section

establishes our understanding of existing, non-argumentative methods that will act as

a guideline to frame the necessary (but not sufficient) features our system should have.

In the same section we look at additional requirements beyond the two approaches dis-

cussed. These requirements are direct consequences of the fact that the decisions we

are interested in are parts of a larger process, and any artifacts (in the form of formal

models) should be reusable.

In Section 3.3 we present our own argumentation-based decision model. After

some initial definitions and examples, we evaluate it from the perspective of MCDM,

DM, und the additional, reusability-related requirements established in the previous

section. We pay specific consideration to decision rules, functions that establish a

ranking of options in a decision. Decision rules serve two different purposes. First,

they describe how the best option can be identified automatically, which is how they

are used most commonly. Second, they can be used to characterise a decision after it

has been made (by checking which of a number of decision rules would have lead to

the outcome that was actually chosen). It is therefore important to develop a good un-

derstanding not just of a single decision rule, but of the differences between a number

of decision rules.

In the next Section, 3.4, we investigate what it means to accept a decision - this

is the process of adjusting one’s knowledge base after choosing an option, in order to

promote the arguments supporting this option from credulously to sceptically accept-

able. This step is not usually part of decision models, but it is crucial for the remaining

chapters of this thesis, in which we will look at sequences of decisions. Accepting a

decision has implications for subsequent decisions, and those implications should be

3.2. Two Models of Decision Making 45

reflected in the formal model.

We conclude the chapter with a review of previous work in the field of decision-

making in argumentation (Section 3.5) and a discussion of our results (Section 3.6).

3.2 Two Models of Decision Making
Engineering design processes, such as those practised in the aerospace industry, are of-

ten complex and long-running. They involve a multitude of decisions, many of which

affect subsequent steps in the process. Automated methods are commonly used to han-

dle the complexity and interrelatedness of the decisions. The formal foundation of

these methods has been studied widely in the literature (see [52] for a survey). How-

ever, while the quantitative analysis of decisions helps to manage the complexity of

individual decisions, it does not address requirements that result from the long duration

of the overall process. These requirements relate to decision documentation and include

justifiability of decisions and traceability of the impact decisions have on one another.

Information of this kind is usually recorded in a less rigorous manner, for example

as text documents. The two tasks of analysing and documenting decisions are solved

using two different methods. Therefore, a single human reasoning process (making a

particular design decision) results in the production not only of two different artifacts,

but of two entirely different models of that decision. We claim that an argumentation-

based model can be the common foundation for both analysis and documentation of

decisions.

3.2.1 Multi-Criteria Decision Making

A variety of formal definitions exists for multi criteria decision making. We will focus

our analysis on the class of problems characterised by the definition below. The criteria

Cr are represented by functions that map options onto numerical values, representing

the quality of an option w.r.t a criterion. The values for each criterion are then ag-

gregated to obtain an overall result (or a ranking) that determines the most favourable

option.

Definition 23 (Multi criteria decision problem). A multi criteria decision problem P =

(O,Cr,agg) consists of

1. A set of options O = {o1, . . . ,on} with n≥ 1

3.2. Two Models of Decision Making 46

2. A set of criteria Cr = {c1, . . . ,ck} with k ≥ 1 such that each ci ∈Cr is a function

ci : O→ R

3. An aggregation function agg : R|O|∗|Cr|→ R|O|

The set of all multi criteria decision problems is called MCD. We denote with VP the

two-dimensional vector of the criteria for each decision:

VP =

c1(o1) . . . ck(o1)

... . . .

c1(on) ck(on)

Definition 23 corresponds to the decision matrix, a popular decision method in

engineering [4]. The actual rating of an option for a particular criterion is assigned by

the decision maker who creates the table. In order to achieve consistency and account-

ability in the decision making process, additional documentation is required to justify

decisions for a later verification. The numerical model alone does not explain why the

criteria were assigned their values.

Example 7. Table 3.1 on page 47 illustrates the problem of choosing a material for a

wing component of an airplane. There are four possible options, aluminium, plastics,

steel, and composite materials. The two criteria are weight and cost. The example

demonstrates how the choice of the aggregation function agg influences the results:

If one considers the sum of the criteria, aluminium is the first choice, but if one is

instead interested in maximising the best criterion, then composites and steel are tied

for first place, and aluminium is last. Aluminium has better results for both criteria

than plastics, therefore plastics is dominated by aluminum.

A preferred option is a decision that is as good as or better than all other options.

Definition 24 (Preferred Option). Given a multi criteria decision problem P =

(O,Cr,agg), with O = {o1, . . . ,on} an option oi ∈ O is preferred iff for all o j ∈ O

agg(VP) j ≤ agg(VP)i

Example 8. In the example given in Table 3.1, aluminium is preferred if we choose Σ

as the aggregation. Otherwise, steel or composites would be preferred.

3.2. Two Models of Decision Making 47

Table 3.1: Multi Criteria Decision Making

Criteriaa Aggregations

Weight Cost Σb maxc

Aluminium 0.4 0.7 1.1 0

Plastics 0.3 0.6 0.9 0

Steel 0.2 0.8 1.0 1

Composites 0.7 0.2 0.9 1
a The higher the value, the better this criterion is

met, e.g. low weight will result in a high value for
weight.

b Σ is the sum of all criteria for one option.
c max(d) is the number of criteria in which d has the

highest value.

3.2.2 Decision Making under Uncertainty

We will now develop a formal definition of problems in decision making under un-

certainty, in the same way we did for multi-criteria decision making problems in the

previous section. It aims to capture the essence of the axiomatic approach by Savage

[10], although we do not repeat the axioms here and jump directly to the definition

commonly found in the literature [53].

Definition 25 (Decision Making Problem under Uncertainty). A decision making under

uncertainty problem is a three-tuple (S,X ,F) where S is a set of states of the world, X

is a set of consequences and F = { f1, . . . , fn} with n≥ 1 is the set of possible acts with

fi : S→ X. Further, there is a probability distribution p over S, and a utility measure

u : X → R.

Definition 25 makes some strong assumptions about what can be quantified: Both

the probabilities of states of the world S, and the utilities of consequences X . As with

MCDM, it is our aim to relax those assumptions by replacing them with weaker al-

gebraic structures. As we will see in Section 3.3.4, we make no assumptions about

the likelihood of possible worlds (and thus consider all possible worlds to be equally

likely), and only assume a partial order of S, equipped with a lattice.

Example 9. Table 3.2 shows the utilities for a decision similar to the one in Example

7, but with uncertainty about the future price developments of commodities. Aluminium

3.2. Two Models of Decision Making 48

Table 3.2: Decision Making Problem under Uncertainty (Example 9)

Option Stagnation Increase Decrease

Aluminium 3 1 4
Plastics 3 3 1
Steel 3 1 3
Composites 2 2 2

and steel are much more affected by price movements, so their utilities vary more in the

three scenarios. Composites are completely unaffected, and plastics are somewhere in

the middle.

This example is related to the previous example: Depending on market prices, the

criterion Cost may take different values for the same material. However, this relation-

ship does not appear in the formal definitions of multi-criteria decision making and

decision making under uncertainty problems. In our argumentation-based approach

we will be able to express relationships between criteria and uncertainty about the

state of the world.

Table 3.2 shows the decision making under uncertainty problem (S,X ,F) based

on the following values:

S = {Stagnation, Increase,Decrease}

X = {1,2,3,4}

F = { fal, fpl, fst , fco} with

fal = Stagnation 7→ 3, Increase 7→ 1,Decrease 7→ 4

fpl = Stagnation 7→ 3, Increase 7→ 3,Decrease 7→ 1

fst = Stagnation 7→ 3, Increase 7→ 1,Decrease 7→ 3

fco = Stagnation 7→ 2, Increase 7→ 2,Decrease 7→ 2

In this example, X ⊆R, so the utility measure u is simply the identity function u(x) = x.

Finally, assuming all three states in S are equally likely, the probability distribution p

is given by p(Stagnation) = p(Increase) = p(Decrease) = 1
3 .

In DMU, options are compared using decision rules. Decision rules rank options

by evaluating their consequences in different possible worlds. A common example is

3.2. Two Models of Decision Making 49

the maxmin decision rule, which maximises the outcome in the worst case. Decision

rules are functions d : F → B from the set of actions F to a set B with a total order

≤, so that the ordering of actions f ∈ F is determined by the ordering of their results

d(f) ∈ B. To illustrate the concept we now give a definition of maxmin, followed by an

example.

Definition 26 (Maxmin for DMU). Let P = (S,X ,F) be a decision making problem

with uncertainty. maxminP : F → R is defined as

maxmin(f) = min
s∈S

f (s)

Note that the “max” part of maxmin is determined by the ordering of R, so it is not

present in the definition of maxmin itself.

Example 10. For the decision making under uncertainty problem in Table 3.2, the

maxmin rule recommends composites, because with composites we are guaranteed a

utility of 2 in the worst case. For the other options, the worst case has a utility of 1.

The example also shows why maxmin is a rather pessimistic rule: By choosing

composites we forego the possibility of much higher utilities than 2. For example, we

could get a utility of 4 by choosing aluminium.

Another common decision rule in DMU is to compute the expected utility for

each option, by multiplying the probability of each possible world with its payoff. This

requires both probabilities and payoffs to be quantifiable. In this thesis we do not make

either of those assumptions, so we will not calculate expected utilities.

There is another use for decision rules, besides identifying the best option. They

can be used to characterise decisions after they have been made. For example, if we

have an optimistic decision rule and a pessimistic decision rule, we can see which of

the two would have selected the option that was actually chosen. This application of

decision rules benefits from having more rules, and it is a motivation for our analysis

of decision rules in Section 3.3.5 of this chapter.

3.2.3 Documentation of Decisions

As outlined above, the primary reasons for documenting design decisions are consis-

tency and accountability. The design decision process needs to be consistent throughout

3.2. Two Models of Decision Making 50

organisations and, with regards to regulations, the entire industry. Consistency means

that given a specific problem, any decision maker would ideally come to the same con-

clusion. Records need to be kept in order to verify that the decision making process is

consistent.

Design decisions in the aerospace industry are often complex. They are also part

of an iterative design process, which means that decisions may need to be revised to

account for previously unconsidered factors or for changed requirements.

In our collaboration with one major aerospace manufacturer, we found that discus-

sions about design questions were primarily carried out in emails and personal meet-

ings. Only when a decision was made, was it documented in a central repository used

to manage the design process. To create this documentation, some of the information

contained in the emails had to be duplicated, while the rest remained only on the email

server and was thus not readily available to a search of the structured repository. Hav-

ing to duplicate information carries the risk of introducing errors, sometimes simply by

using a slightly different wording.

This process also entails that alternative options which had been discussed would

only be documented informally. Later on in the process, a changing requirement might

lead to a re-evaluation of previously made decisions. In this case, the alternatives have

to be retrieved from the unstructured documentation. This is a labour intensive process.

It is also error prone, especially after several iterations of the design. The retrieval of

decision rationale could therefore benefit greatly from a formal, structured documenta-

tion.

Contract and claims management are another use case for decision documentation.

At the beginning of each phase in the project life cycle, it needs to be shown that all

of the requirements of the previous stage have been fulfilled. Design documentation

is used to show how each requirement is addressed. Here, the same issues that were

described in the previous paragraph arise.

3.2.4 Problems with Current Approach

The two problems described at the beginning of this chapter are the modeling and

the documentation of decisions. Having presented common solutions to each of those

problems, we are now going to highlight their shortcomings.

3.2. Two Models of Decision Making 51

1, Opaque resoning process For each of the potential decisions, a set of criteria has

to be evaluated. Assigning values to decisions accounts for a large part of the effort

involved in making decisions with an MCDM or DMU approach. It usually represents

the outcome of some reasoning process, which itself does not appear in the final model

and needs to be documented separately.

2, Local optimum An MCDM/DMU model can only identify the best of a predefined

set of options. It is possible that there exists a better decision that was not part of the

model. Therefore, MCDM models have the inherent risk of producing only a local

optimum.

3, Proprietary documentation formats There is no standard method of documenting

decisions. This prevents the development of standard tools to support decision docu-

mentation.

4, Manual analysis If decisions are documented informally, there is no underlying

model on which an automated analysis of decisions could be performed. With an au-

tomated approach, one could, for example, immediately spot conflicting assumptions

made by two different engineers, or characterise past decisions by matching them to

decision rules.

5, Costly retrieval of documentation Most of the documentation relating to the pro-

cess of decision making is documented in an unstructured way. The effort required to

find a particular piece of information in an unstructured repository is much higher than

that of finding it in a structured repository. If, at the end of a project, there are claims

that some requirements have not been met, the entire documentation related to that sub-

component has to be read by an engineer in order to verify that either the requirement

has actually been met or that the requirement was defined differently in the contract.

Both of the problems associated with the formal models of DMU and MCDM (1-

2) relate to the fact that creating the model is the actual challenge in those approaches.

Once a model has been created, the actual evaluation consists of mechanically applying

a set of predefined mathematical operations. The informal documentation of decisions,

on the other hand, is limited in terms of automated processing of information (3-5).

3.3. Argument-Based Decision Framework (ADF) 52

s1

s2

bb
shim

Figure 3.1: Joining Two Structures

3.3 Argument-Based Decision Framework (ADF)

3.3.1 Overview

We present a framework for decision making using argumentation. More precisely,

given a set of options and a set of goals, we are going to use argumentation to construct

arguments in favour of and against each option, with the aim of identifying the best

option. The best option is the one that satisfies the most goals. However, this should not

be the only criterion for selecting an option: Any formal method of decision making

depends on a model, a formalised representation of the problem. The quality of the

model affects the quality of the decision. There are two factors which determine the

quality of the model: The quality of the information that the model was built on, and

the quality (correctness) of the model itself. Because of these two inherent risk factors,

we argue that any formal method of decision making should not only identify the best

option, but it should also present a justification for the outcome, so that the influence

on the decision making process of potential flaws in the model can be traced.

Formal methods of argumentation are well suited for this purpose. They produce

not only a claim, but also a description of how the available information was used to

arrive at that claim, and how any counterarguments were addressed. Our decision mak-

ing framework uses argumentation to reason about the possible outcomes of decisions.

Example 11. Imagine we are faced with the problem of designing a structure (t) that

has two components, s1 and s2 as illustrated in Figure 3.1. s1 and s2 are joined with a

bracket fixed by bolts, bb. Our task is to decide which bolts to use, whether or not to use

a shim, a thin sheet of metal, between the bracket and the components, and how many

3.3. Argument-Based Decision Framework (ADF) 53

a1 a2a3 a4

Figure 3.2: Argument graph for Example 11.

layers of varnish to apply. Our requirements are to maintain the structural integrity

of t and to achieve a high resistance to corrosion. The first option we consider, O1, is

to use steel/titanium bolts, not to use a shim, and to apply two layers of varnish to the

product. The following arguments might be put forward:

a1 Not using a shim means that the structure remains balanced. Therefore, it will

not be damaged.

a2 Steel/titanium bolts cause microscopic fractures in s1 and s2, resulting in damage

to the structure.

a3 Steel/titanium bolts are too strong for the material that s1 is made of, so there

will be microscopic fractures.

a4 The structure has a high corrosion resistance, because two layers of varnish are

used.

A possible argument graph for this example is shown in Figure 3.2, with the grounded

extension {a2,a3,a4}. a3 is a sub-argument of a2 (giving the reason for microscopic

fractures), so a3 and a2 both attack a1, but a1 only attacks a2 because their conclusions

directly contradict. a4 is not in conflict with any arguments.

3.3.2 Decision Frames

A core concept of our argumentation-based decision system is the decision frame, de-

fined below. It captures the context of a decision, that is, the background knowledge,

requirements, and any other possible consequences. Background knowledge is simply

a set of ASPIC+ rules, and conseqences and requirements are represented as literals of

the language L . To show that a decision has good consequences, we will construct

arguments that have a goal as their claim. We then check which of those arguments are

part of a grounded extension.

3.3. Argument-Based Decision Framework (ADF) 54

Table 3.3: Rules for Example 12

Rule name Content

r1 mat(bb,st)⇒ fractured(s1)
r2 fractured(s1)⇒ damaged(t)
r3 ¬shim(t)⇒ balanced(t)
r4 ¬shim(t)⇒¬fractured(s1)
r5 ¬fractured(s1),balanced(t)⇒¬damaged(t)
r6 varnish(t,2)⇒ coRes(t,high)
r7 mat(al)⇒¬fractured(s1)
r8 mat(al),shim(t)⇒ balanced(t)

Example 12. The background knowledge from Example 11 can be formalised as shown

in Table 3.3. r1 shows that using steel/titanium bolts (mat(bb,st)) will cause micro-

scopic fractures in s1. r2 says that if s1 is fractured, then the whole structure t is

damaged. Not using a shim results in a good overall balance of t, as well as in the

absence of fractures (r3,r4). If the structure is balanced and free of fractures, then it

is not damaged (r5). Applying two layers of varnish results in high resistance to corro-

sion (r6). The final two rules, r7 and r8 state that using aluminium will not result in a

fractured component, and if the aluminium component is supported with a shim then it

will be balanced.

We model options as ASPIC+ knowledge bases and use the symbol O for the set

of all options. Each of the options O ∈ O , together with the knowledge base of the

decision frame, forms an argumentation system. This argumentation system is used to

derive arguments about the goals achieved by choosing this option.

Decision frames also include a set of consequences, C. It contains all conse-

quences that choosing an option could potentially have, both good and bad. We require

C to be a lattice1 over a partial order ≤C, in order to be able to compare decisions by

their possible consequences.

Definition 27 (Decision frame). A decision frame is a tuple (K,C,R) where

1. K is an ASPIC+ knowledge base,

2. C ⊆ L is a finite set of consequences equipped with a lattice (C,u,t) over a

partial order ≤C and
1See Definition 18 on page 37

3.3. Argument-Based Decision Framework (ADF) 55

3. R⊆C is a set of requirements.

The set of options itself is not part of a decision frame. This is because we view

decision frames as functions from the set of all possible options O to the powerset of

all arguments, P(A). By adopting this definition we address the problem of “local

optimum” (page 51), which is caused by the need to supply a predetermined set of

options in the traditional models of decision making.

The set of all decision frames is D . We will make use of two utility functions,

argsD and consequencesD defined as follows.

Definition 28 (Utility Functions). Let D = (K,C,R) be a decision frame. The functions

argsD : O →P(A) and consequencesD : P(A)→C are defined as follows:

argsD(O) = args(K∪O)

consequencesD(A) = {c ∈C | ∃a ∈ A.conclusion(a) = c}

In the remainder of this chapter we will use the term decision frame to refer specif-

ically to Definition 27, and the term argument-based decision framework, short ADF,

to refer to our approach in general.

Example 13. Continuing with Example 12 on page 53, we can define a decision frame

DM = (K,C,R), with the components defined below, as well as two options, O1,O2 ∈O ,

given by Table 3.4. The variable t stands for the structure (a t-connector) that is being

designed. For now we set C = R, so we do not pay any special attention to the set of

consequences beyond what is needed to capture the requirements. Consequences will

play a role in Section 3.3.4 on decision making with uncertainty.

For option O1, we get the argumentation system (A1,attacks(A1)) with A1 =

{a1, . . . ,a9}. The arguments look as follows:

a1 = [⇒¬shim(t)] a6 = [a5;r1;fractured(t)]

a2 = [a1;r3;balanced(t)] a7 = [a6;r2;damaged(t)]

a3 = [a1;r4;¬fractured(t)] a8 = [⇒ varnish(t,2)]

a4 = [a2,a2;r5;¬damaged(t)] a9 = [a8;r6;coRes(t,high)]

a5 = [⇒ mat(bb,st)]

3.3. Argument-Based Decision Framework (ADF) 56

Table 3.4: Decision Frame for Engineering Example

Name Definition

O1 {⇒ mat(bb,st),⇒¬shim(t),⇒ varnish(T,2)}
O2 {⇒ mat(bb,al),⇒ shim(t),⇒ varnish(T,2)}
K {r1, . . . ,r6}, as in Table 3.3
C {¬damaged(t),coRes(T,high)}
R =C

There are two pairs of mutually rebutting arguments: a3 and a6, and a4 and a7.

a3 is also an undercutter of a7, and a6 is an undercutter of a4. The grounded exten-

sion consists of {a1,a2,a8,a9} and the argumentation graph for option O1 is shown in

Figure 3.3 on page 57 (conflicting arguments only).

To see why the set of consequences C is required to be a lattice, consider the case

where we argue about the outcome of a decision on two distinct, qualitative scales - for

example, form and function. Each of these can be good, fair or bad. This results in

six values V = {good f orm, good f unction, f air f orm, f air f unction, bad f orm,

bad f unction} with a partial order ≤V . Each of the scales on its own is totally or-

dered, but ≤V does not relate elements from different scales. As a result, neither

(f air f unction,good f orm) ∈≤V nor (good f orm, f air f unction) ∈≤V .

The lattice structure comes into play when we summarise the set of arguments for

an option. For example, assume that an option gives rise to three sceptically accept-

able arguments a1,a2,a3 with conclusions good f orm, f air f orm and f air f unction

respectively. In order to apply the maxmin rule we need to identify the maximum (best)

among the conclusions of a1 to a3. Clearly, good f orm ≥ f air f orm, because both

are on the same scale, but the better one of f air f unction and good f orm can only be

chosen with additional information. This is a common problem in qualitative decision-

making (cf. Dubois [54]). The purpose of the lattice structure with its ⊔,⊔ operators

is to make any two elements of C comparable in some sense (by choosing an element

of C that is smaller than or greater than both), while still retaining the requirement for

≤ to be a partial order only, and not a full order.

A possible solution for our example is to extend the set V with a common scale,

say C = V ∪ {overall good, overall f air, overall bad}. We can then – within the

boundaries required for C to be a lattice – define u according to our preferences e.g. by

3.3. Argument-Based Decision Framework (ADF) 57

a3

a4a6

a7

Figure 3.3: Argument graph for Example 13.

stipulating f air f unctionugood f orm = overall f air.

In engineering design we frequently have to handle different ordinal scales when

discussing qualitative criteria such as fire safety ratings or usability.

Having established the general concept of ADF, we will evaluate our approach in

relation to MCDM and DMU in the following two sections.

3.3.3 Multi-Criteria Decision Making

We will now translate some concepts that are specific to multi-criteria decision making

(Section 3.2.1) to our model. A common notion in multi criteria decision making is

that of dominated options. Informally, an option O is dominated if there is another

option O′ that satisfies the same criteria at least as well as O. It is not reasonable to

choose a dominated option, because there is a better option that can be chosen without

any disadvantages. In order to identify the goals that an option satisfies, we define a

satisfaction function sat. It returns the goals that can be shown by arguments generated

with this option.

Definition 29 (Satisfaction Function). Let D = (K,C,R) be a decision frame. satD :

O → P(R) is defined as satD(O) = {r ∈ R | ∃a ∈ argsD(O) such that a is in the

grounded extension of the graph (argsD(O),attacks(argsD(O))) and conclusion(a) =

r}.

Example 14. The grounded extension for option O1 is {a1,a2,a8,a9}. Since only the

conclusion of a9 is a goal, we get satD(O1) = {coRes(t,high)}.

It is important to note that we restrict the satisfaction function to arguments in

the grounded extension. If, for example, admissible or stable semantics had been used

instead, we would face the problem of having to choose one out of a set of extensions.

Each of the extensions could contain arguments in favour of the option, but they cannot

3.3. Argument-Based Decision Framework (ADF) 58

all be accepted at the same time, and thus should not be returned by sat. Further

information would be required to resolve this conflict. In Section 3.3.4, we will use

preferred extensions to represent uncertainty about the consequences of an option.

Definition 30 (Dominated Option). Let D = (K,C,R) be a decision frame. An option

O ∈O is dominated by an option O′ ∈O with O 6= O′ such that satD(O)⊆ satD(O′). O

is strictly dominated if satD(O)⊂ satD(O′).

Example 15. In Example 13, O1 is strictly dominated by O2, because satDM(O2) =

{coRes(t,high),¬damaged(t)}, so satDM(O1)⊂ satDM(O2).

3.3.3.1 Comparison with Current Approach

To conclude the comparison with MCDM, we show how our system formally cor-

responds with the class of multi criteria decision making problems characterised by

Definition 23 on page 45. Our proof of the correspondence consists of two results:

That every decision frame can be expressed as an MCDM system (assuming a fixed set

of options), and conversely that every MCDM system can be expressed as a decision

frame. The first result can be found in Amgoud and Prade, 2008 [33] and we repeat

it here for completeness. In order to achieve the second result, we will construct a

function that maps multi criteria decision problems to decision frames. We are going to

model MCDM options as options in a decision frame, each containing a single element.

The values of the criteria functions are also going to be represented as literals. We then

express the results of the aggregation function agg as goals in the decision frame, and

finally we will create a rule for each decision that leads to the desired goals. We will

use the function 〈·〉 whenever a value (for example a number) is meant to be read as a

symbol in L , rather than as the value itself, in the same sense that 〈·〉 is used to refer

to the names of ASPIC+ rules in the object language.

Proposition 5 (Equivalent to property 7 in [28]). For every argumentation decision

problem D = (K,C,R) and set of options {O1, . . . ,On}⊆O , there exists a multi criteria

decision problem P′ = (O,Cr,agg) such that for all Oi,O j with i, j ≤ n:

satD(O j)⊆ satD(Oi)⇔ agg(VP′) j ≤ agg(VP′)i

3.3. Argument-Based Decision Framework (ADF) 59

This shows that we can construct a mapping from ADF to MCD which preserves

the preference relation over decisions. Next, we will show that a similar mapping can be

constructed in the other direction, from MCD to ADF, again preserving the preference

relation.

Definition 31 (Mapping from MCD to ADF). Let P = (O,Cr,agg) be a multicriteria

decision problem. We construct a decision frame P′ = (K,C,R) and a set of options

OP ⊆ O as follows:

1. OP = {{⇒ 〈di〉} | di ∈ O}

2. K = R1∪R2∪R3 and

(a) R1 = {〈di〉 ⇒ 〈c j(vi, j)〉 | vi, j ∈VP and c j ∈Cr}

(b) R2 = {〈vi,1〉, ...,〈vi,k−1〉,〈vi,k〉 ⇒ 〈agg(VP)i〉 | {〈di〉} ∈ OP and k = |Cr|}

(c) R3 = {〈agg(VP)i〉 ⇒ 〈agg(VP) j〉 | agg(VP)i ≥ agg(VP) j}

3. R = {〈agg(VP)i〉 | di ∈ O}

4. C = R

The mapping in Definition 31 has four components - a set of options, OP and three

constituent parts of the decision frame (K,C,R). OP contains a one-element knowledge

base {⇒ 〈di〉} for each original option in O. The literal 〈di〉 is to be read as “di is

selected”. K, the knowledge base of the decision frame, contains three types of rules,

R1, R2 and R3. Rules in R1 map decisions (di) to their score on each criterion in Cr.

R1 therefore contains |O| ∗ |Cr| rules. Rules in R2 connect the individual criteria of

options in OP to their aggregated score in the multi-criteria decision making problem

P. R2 contains |O| rules. The set R3 contains perhaps the most interesting rules. To

understand the construction, consider the definition of C first: C = R = {〈agg(VP)i〉 |

di ∈ D}, so there is one element in C for each possible aggregated score that an option

might have. To ensure that options which rank higher under agg also rank higher under

sat, we need to translate “high numerical scores” (agg) to “large sets of acceptable

arguments” (sat). This is the purpose of the rules in R3. The effect of the rules is

that every time we have an acceptable argument for a high aggregated score in P, we

3.3. Argument-Based Decision Framework (ADF) 60

also have arguments for all lower scores. As a result, the set of arguments for a high-

ranking option includes more arguments with conclusions in C, and hence the option

ranks higher under ⊆ and sat. The number of rules in R3 is equal to the number of

different aggregated scores (and so smaller than or equal to the number of options).

We will now give a lemma (Propage 6) before our main result, Theorem 1, in

which we show that every MCDM problem can be represented as a decision frame

with the same results, i.e. with the same ranking of decisions. This demonstrates that

ADF is at least as expressive as MCDM – and it adds benefits such as reusability, ac-

countability, inference of decisions and the ability to compare multiple possible worlds,

as will be explored below.

Proposition 6. Let P = (O,Cr,agg) be a multi criteria decision problem and

P′ = (K,C,R) and OP as constructed according to Definition 31. For every op-

tion O = {⇒ 〈di〉} ∈ OP and every criterion c ∈ Cr, there exists an argument

[[⇒ 〈di〉],〈di〉 ⇒ 〈c(di)〉;〈c(di)〉] in the grounded extension of the argument graph

(argsP(O),attacks(argsP(O))).

Proof. Let O = {⇒ 〈di〉} ∈OP for a di ∈O and let c j ∈Cr be a criterion. By Definition

31 Cond. 2a, there is a rule r = 〈di〉⇒ 〈c j(vi, j)〉 in K, so argsP′(O) contains an argument

a = [[⇒〈di〉],r,〈c j(vi, j)〉]. Since the rules in K do not have any conflicting conclusions,

and the literals in O are conflict-free too, the set of arguments argsP′(O) is conflict

free. Therefore the grounded extension of the argument graph of argsP′(O) contains all

arguments, including a.

If a decision frame is generated from a multi criteria decision making system,

then its knowledge base is very simplistic, because it does not contain any domain

knowledge. This results from the fact that the domain knowledge which was applied to

assign the criteria values for each decision is not represented in the model, and therefore

cannot be included in the decision frame.

Theorem 1. For every multi criteria decision problem P = (O,Cr,agg), there exists a

decision frame P′= (K,C,R) and a set of options OP⊆O such that for all Oi,O j ∈OP:

agg(VP) j ≤ agg(VP)i⇔ satP′(O j)⊆ satP′(Oi)

3.3. Argument-Based Decision Framework (ADF) 61

The proof relies on the fact that in the mapping constructed according to Definition

31, if an option {⇒ 〈dk〉} ∈OP subsumes all options {⇒ 〈di〉} ∈OP that are worse than

dk, that is if agg(VP)i ≤ agg(VP)k, then the corresponding option dk satisfies all goals

that are satisfied by dk.

Proof. Let P = (O,Cr,agg) be a multi criteria decision problem and let P′ = (K,C,R)

and OP the decision frame and set of options as constructed according to Definition 31.

(⇒) Let di,d j ∈ O such that agg(VP) j ≤ agg(VP)i. We are going to show that every

element v ∈ satP′(D j) is also in satP′(Di). Let v ∈ satP′(D j). Then 〈v〉 ∈ R. By Cond.

3 of Definition 31, v ∈ agg(VP), and v ≤ agg(VP) j (Cond. 2c of Definition 31). Let

v′ = agg(VP)i. By Cond. 3 of Definition 31, v′ ∈ G , and by Cond. 2a and 2b of

Definition 31 there is an argument [[⇒〈di〉],〈di〉⇒ 〈v′〉;〈v′〉] in the grounded extension

of (argsP′({⇒ 〈di〉}),attacks(argsP′({⇒ 〈di〉}))) By Cond. 2c of Definition 31, 〈v′〉⇒

〈v〉 ∈ K, so there is an argument [[⇒ 〈di〉];〈di〉 ⇒ 〈v〉;〈v〉] in the grounded extension of

(argsP′({⇒ 〈di〉}),attacks(argsP′({⇒ 〈di〉}))). Therefore, 〈v〉 ∈ satP′(Di).

(⇐) Let O j, Oi ∈ OP such that satP′(O j) ⊆ satP′(Oi). By Definition 29 Cond. 3, for

all requirements r ∈ R, r = 〈agg(VP)i〉 for some di ∈ D – that is, every r corresponds

to the aggregated score of some option di. Let r j = 〈agg(VP)k〉 be the highest-ranking

requirement in satP′(O j), and ri = 〈agg(VP)l〉 be the highest-ranking requirement in

satP′(Oi). By Definition 29 Cond. 2b and 2c, we know that in fact k = j and l = i,

because the highest ranking for which an argument exists in the argument graph for an

option {⇒ 〈dm〉} ∈ OP is exactly agg(VP)m. So r j = 〈agg(VP) j〉 and ri = 〈agg(VP)i〉

and it remains to show that agg(VP) j ≤ agg(VP)i. We do this by contradiction: Assume

agg(VP) j > agg(VP)i. Then, by Definition 29 Cond. 2c, there is no argument a ∈

argsP′(Oi) with conclusion(a) = 〈agg(VP) j〉, so by Definition 29 satP′(O j)* satP′(Oi).

This contradicts the assumption that satP′(O j)⊆ satP′(Oi).

In the definition of sat (Definition 29 on page 57) we limited ourselves to argu-

ments that are acceptable under grounded semantics. The reason for this restriction is

that we have reserved preferred semantics for decision making with uncertainty (as op-

posed to multi-criteria decision making). This allows us to treat both kinds of decision

making in the framework of arguments about the consequences of options.

3.3. Argument-Based Decision Framework (ADF) 62

3.3.4 Decision Making With Uncertainty

Decision making with uncertainty is characterised by having only uncertain knowledge

about the state of the world, and considering multiple possible worlds. Options can

have different outcomes and utilities depending on the possible world. Decision making

with uncertainty as a branch of decision theory has been pioneered by Savage [10], but

unlike multi-criteria decision making it has not been investigated widely in the context

of formal argumentation.

Decision Rules The term “decision rule” denotes the method used to derive a ranking

of options from a ranking of outcomes and the knowledge of how options relate to

outcomes.

For example, the literature on decision making with uncertainty in general (with

or without argumentation) distinguishes optimistic from pessimistic decision rules. An-

other characteristic of decision rules is their decisiveness, which has played a role in

analyses of the “drowning effect”, i.e. of some options being ranked the same even

though their different outcomes suggest that one should be preferred over the other.

Decision rules are important for evaluating formal decision models, because they

are the means by which decision models are interpreted. In our application domain

of engineering design, decision rules serve two purposes. First, they can be used to

recommend an option based on a set of arguments for and against each of a number of

options. In this regard they are similar to the notion of dominated options and the sat

function we introduced for multi-criteria decision making. Second, they can be used to

analyse decisions after the fact. When a decision has been made, we can characterise

that decision as optimistic, pessimistic, etc. by checking which of the decision rules

the chosen option corresponds to. The second use case is perhaps more relevant to our

application because – as set out in the introduction – our primary aim is to document

and analyse decision processes, rather than to automate the actual decision making.

In our approach, decision rules are maps from an option and a knowledge base

to a sequence (word in a formal language) of consequences, an ordered set of literals.

The exact meaning of words in this language is not specified and different rules have

different languages. We use the languages generated by decision rules as proxies to

compare the rules themselves. Apart from the general framework of decision rules

and their languages we introduce four concrete decision rules, maxmin, lexmaxmin,

3.3. Argument-Based Decision Framework (ADF) 63

smaxmin and maxmax to demonstrate the concepts.

Uncertainty The interpretation of attacks in our decision making framework is novel:

Symmetric attacks in an option’s set of arguments stand for multiple possible worlds,

because possible worlds are exactly the preferred extensions of an argument graph and

preferred extensions arise from symmetric attacks. This interpretation also gives an in-

tuitive explanation of argument graphs whose grounded and preferred extensions con-

incide: In this case, there is only one possible world and we obtain a model for decision

making without uncertainty.

Example 16. We will now extend the running example (started in Example 11 on page

52) with uncertainty about consequences. We still want to decide which bolts to use,

whether or not to use a shim, and how many layers of varnish to apply. The require-

ments remain the same (structural integrity and corrosion resistance), and so do the

options. Unlike before, we are not certain about the consequences of options and con-

sider some alternative outcomes. We will again describe the arguments for option O1

(use steel and titanium bolts, do not use a shim, and apply two layers of varnish).

a1 Not using a shim in an undamaged structure means that the structure remains

balanced.

a2 Steel/titanium bolts cause microscopic fractures in s1 and s2, resulting in damage

to the structure.

a3 Steel/titanium bolts do not cause microscopic fractures in s1 and s2, so the struc-

ture will not be damaged.

a4 Steel/titanium bolts are too strong for the material that s1 is made of, so there

will be microscopic fractures.

a5 Steel/titanium bolts are too strong for the material that s1 is made of, but there

will not be any microscopic fractures.

a6 The structure has a high corrosion resistance, because two layers of varnish are

used.

The core issue can be seen in arguments a4 and a5: Will there be microscopic fractures

as a result of using steel/titanium bolts? a4 and a5 agree that steel/titanium bolts are

3.3. Argument-Based Decision Framework (ADF) 64

a1a2

a3a4

a5

a6

Figure 3.4: Argument graph for Example 16.

stronger than necessary, but they disagree about the consequences: a4 argues that there

will be microscopic fractures, and a5 argues the opposite. Based on that, arguments

a2 and a3 are also conflicting, a2 being based on the assumption that there are some

fractures, and a3 on the assumption that there are none.

The abstract argument graph for this discussion is shown in Figure 3.4. Besides

the mutual attacks between a4 and a5, and a2 and a3 respectively, there are three asym-

metric attacks. a5 attack a2 because a2 is based on the assumption that there are

fractures whereas a5 argues that there are none. Similarly, a4 attacks a3 because the

latter assumes no fractures whereas the former argues for fractures. And finally, a2

attacks a1 because the latter assumes that the structure is not damaged.

There are two preferred extensions: {a5,a3,a1,a6} and {a4,a2,a6}. The first one

stands for the case that the bolts do not result in microscopic fractures, and the second

one stands for the opposite case. A possible solution to this dilemma would be ac-

quiring more information (for example through experiments – see Chapter 5, or using

probabilistic argumentation – see Section 3.5.2), but for now we have to assume that

both scenarios are possible.

Example 16 demonstrated how preferred extensions are related to possible worlds.

The following definition makes the idea precise:

Definition 32 (Possible World). Let D = (K,C,R) be a decision frame and let O ∈ O

be an option. Let G = (argsD(O),attacks(argsD(O))) be the argument graph for O.

The set of possible worlds of O in D is given by

possibleWorlds(D,O) = {E ∈ Σpr(G) | consequencesD(E) 6= /0}

Example 17. Rules for the arguments of Example 16 are shown in Table 3.5 (mat

stands for material). Together with O1 = {⇒ mat(bb,st),⇒¬shim(t),⇒ varnish(t,2)},

3.3. Argument-Based Decision Framework (ADF) 65

Table 3.5: Rules for Example 17

Name Rule

r1 ¬shim(t),¬damaged(t)⇒ balanced(t)
r2 microscopic fractures⇒ damaged(t)
r3 ¬microscopic fractures⇒¬damaged(t)
r4 bolts strong⇒ microscopic fractures

r5 bolts strong⇒¬microscopic fractures

r6 mat(bb,st)⇒ bolts strong

r7 varnish(t,2)⇒ coRes(t,high)

they result in the same argument graph as shown in Figure 3.4, with additional argu-

ments for the antecedent-free rules in O1:

a7 = [⇒ mat(bb,st)]

a8 = [⇒¬shim(t)]

a9 = [⇒ varnish(t,2)]

The graph for argsD(O1) has two preferred extensions, E1 and E2:

E1 = {a5,a3,a1,a6,a7,a8,a9}

E2 = {a4,a2,a6,a7,a8,a9}

So we get two possible worlds: possibleWorlds(D,O1) = {E1,E2}.

If we have the set of possible worlds for an option, we want to compare them to

see how good or bad the option looks in each of them. The comparison of possible

worlds should therefore involve the set of consequences C. This concept is similar to

the sat function in multi-criteria decision making, where we compared options by the

requirements they fulfil (Definition 29 on page 57). Possible worlds can be analysed

in several ways. For example, we could find the worst (least desirable) consequence in

each world. This gives us a set of worst-case scenarios, which is useful for a pessimistic

evaluation of the consequences of an option. On the other end of this spectrum, we

could compare possible worlds by taking only their best consequences. Either way,

by comparing possible worlds we distil the set of all arguments for an option down to

a set of consequences representing the different potential outcomes of this option. In

3.3. Argument-Based Decision Framework (ADF) 66

a second step (Section 3.3.5), we will use this representative set of consequences to

compare options themselves.

To start with, we compare (rather optimistically – see Section 3.3.5.2) the upper

bound of the consequences of possible worlds. The best consequence of a possible

world E is the upper bound (under t) of all possible consequences of that world.

Definition 33. Let E be a set of arguments.

bestConsequence(E) =
⊔

consequences(E)

Example 18. Before we can compute the best consequences for the previous example,

we need to establish an ordering of all consequences. As required by Definition 27, the

set of all consequences contains the requirements R= {¬damaged(t),coRes(t,high)}

as before. In this example we also consider other consequences that are not re-

quirements, including bad consequences that should be avoided: C′ = R ∪ T with

T = {balanced(t),damaged(t),weight(t,high)}. The set C′ is ordered as follows:

¬damaged(t) > coRes(t,high) > balanced(t) > weight(t,high) > damaged(t).

Since we have a total order of requirements we get u = min and t = max for the lat-

tice (C′,u,t). Now we can compute the best consequences for both possible worlds:

bestConsequence(E1) = max{balanced,¬damaged(t),coRes(t,high)}= ¬damaged(t)

bestConsequence(E2) = max{coRes(t,high),damaged(t)}= coRes(t,high)

The first possible world, E1 has a better best consequence, namely ¬damaged(t).

Every option has a set of possible worlds and one of those possible worlds is the

least desirable one, that is the worst of the possible worlds for this option. The following

definition of worstCase returns the best consequence that can be achieved should the

worst possible world come true. It can also be viewed as the minimum outcome of an

option.

Definition 34. Let E be a set of sets of arguments. The worst case outcome of E is

given by

worstCase(E) = ⊔{c ∈C | ∃E ∈ E such that c = bestConsequence(E)}

3.3. Argument-Based Decision Framework (ADF) 67

As pessimistic decision makers, we compare two options by comparing their out-

comes in the worst case, in order to maximise the minimum result of our decision. This

decision rule is known as maxmin.

Definition 35. Let D = (K,C,R) be a decision frame and let O be an option. The

minimum result of O in D, short maxmin(D,O) is given by

maxmin(D,O) = worstCase(possibleWorlds(D,O))

Example 19. For O1 in Example 18 we get maxmin(D,O1)=min{¬damaged(t),coRes(t,high)}=

coRes(t,high).

3.3.4.1 Comparison with Current Approach

Just as we compared ADF with the classical (decision theory) approach to MCDM, we

can compare it with DMU. We do this by giving another correspondence result: Given

a DMU problem with a set of options ordered by the maxmin rule (see Definition 26

on page 49), we can produce a decision frame in which the corresponding options have

the same ordering under the maxmin decision rule. The result is specific to the maxmin

rule because the underlying information about utilities and probabilities in the DMU

problem are lost when translating it to a decision frame – similar to Propage 1, which

is based on a mapping that incorporates the ordering of options under one specific

aggregation agg.

Proposition 7. Let P= (S,X ,F) be a decision making under uncertainty problem (Def-

inition 25) with F = { f1, . . . , fn}. There exists a decision frame D and a set of options

{O1, . . . ,On} such that for every fi, f j ∈ F:

fi ≤maxminP f j⇔ Oi ≤maxminD O j

For the proof we will use angled braces 〈·〉 to denote · as a symbol in the logical

language L – in the same way as in Section 3.3.3.1 when we compared ADF with

MCDM. For example, 〈1.3〉 maps the number 1.3 to the three-digit symbol 1.3. This

operator exists only to improve readability.

The proof itself is analogous to that of Theorem 1. For every action fi we construct

a single defeasible rule 〈 fi〉⇒ 〈maxminP(fi)〉. The set of consequences C is exactly the

3.3. Argument-Based Decision Framework (ADF) 68

set containing 〈maxminP(fi)〉 for every fi ∈ F . C is totally ordered (by ≤ on the range

of maxminP), and the lattice is given by u= min and t= max.

Proof. Let P = (S,X ,F) be as required. Let D = (K,C,R) be a decision frame with

1. K = {〈 fi〉 ⇒ 〈maxminP(fi)〉 | fi ∈ F}

2. C = {〈maxminP(fi)〉 | fi ∈ F}

3. R = /0

Further, let O = {{⇒ 〈 fi〉}, . . . ,{⇒ 〈 fn〉}} ⊆ O . We show that D meets the condition

of the proof for the set of options O.

(⇐) Let Oi,O j ∈O with Oi = {⇒ 〈 fi〉} and O j = {⇒ 〈 f j〉}, and with Oi ≤maxminD O j.

Now we need to show that fi ≤maxminP f j. By construction, argsD(Oi) and argsD(O j)

are conflict-free and contain exactly two arguments each, namely {[⇒ 〈 fi〉], [〈 fi〉 ⇒

〈maxminP(fi)〉]} = argsD(Oi) and {[⇒ 〈 f j〉], [〈 f j〉 ⇒ 〈maxminP(f j)〉]} = argsD(O j).

Since Oi ≤maxminD O j, fi ≤maxminP f j (by Definition of ≤C).

(⇒) Let fi, f j ∈ F with fi ≤maxminP f j. Then there exist {⇒ 〈 fi〉},{⇒ 〈 f j〉} ∈ O

and, by construction of K, argsD({⇒ 〈 fi〉}) = {[⇒ 〈 fi〉], [〈 fi〉 ⇒ 〈maxminP(fi)〉]}

and argsD({⇒ 〈 f j〉}) = {[⇒ 〈 f j〉], [〈 f j〉 ⇒ 〈maxminP(f j)〉]}. Both are conflict-

free, so we get maxmin({⇒ 〈 fi〉}) = {〈maxminP(fi)〉} and maxmin({⇒ 〈 f j〉}) =

{〈maxminP(f j)〉}, and by construction of C, maxmin({⇒ 〈 fi〉})≤maxmin({⇒ 〈 f j〉}).

Example 20. To demonstrate the encoding, consider the DMU problem P = (S,X ,F):

S = {Stagnation, Increase,Decrease}

X = {1,2,3,4}

F = { fal, fpl, fst , fco} with

fal = Stagnation 7→ 3, Increase 7→ 1,Decrease 7→ 4

fpl = Stagnation 7→ 3, Increase 7→ 3,Decrease 7→ 1

fst = Stagnation 7→ 3, Increase 7→ 1,Decrease 7→ 3

fco = Stagnation 7→ 2, Increase 7→ 2,Decrease 7→ 2

3.3. Argument-Based Decision Framework (ADF) 69

Since X ⊆ R, the utility measure u is simply the identity function u(x) = x.

To encode P in a decision frame D = (K,C,R) as in the proof of Propage 7, we

first need to compute the result of maxminP for each of the actions fal , fpl , fst and fco.

maxminP(fal) = 1 maxminP(fpl) = 1

maxminP(fst) = 1 maxminP(fco) = 2

Therefore, K contains the following rules: K = { 〈 fal〉⇒ 〈1〉, 〈 fpl〉⇒ 〈1〉, 〈 fst〉⇒ 〈1〉,

〈 fco〉 ⇒ 〈1〉 }. The set of criteria is C = {〈1〉, 〈2〉}.

O, the set of options, contains one entry for each action: O = {{⇒ 〈 fal〉}, . . .}.

For each option o ∈ O, the set of arguments argsD(o) contains two arguments, one for

the option itself and one with a rule application: argsD({⇒ 〈 fal〉}) = {[⇒ 〈 fal〉], [[⇒

〈 fal〉];〈 fal〉 ⇒ 〈1〉;〈1〉]}. The claim of the rule application is a consequence in C. The

ordering of C is determined by the ordering of the range of maxminP. We therefore get

{⇒ 〈 fal〉} ≤maxminD {⇒ 〈 fco〉}

and so forth.

Proposition 7 is the DMU equivalent of Propage 1 on page 60. This is important,

because the two results together show that our model of decision frames subsumes both

multi-criteria decision making and decision making with uncertainty.

3.3.5 Decision Rules

Decision rules are useful both for selecting options and for analysing decisions after

the fact. In our use case – documenting engineering decisions – decision making itself

is a human task, so the second use case is much more relevant: Given a set of decisions

that make up a design, we can use decision rules to check how many decisions were

made optimistically, pessimistically etc.

In Propage 7, we saw how the maxmin function can be used to establish a rank-

ing of options. This was the first formal example of a decision rule. In this section

we will give a precise definition of the term and discuss some additional rules includ-

ing maxmin.We show that maxmin suffers from the so-called “drowning effect”, which

means that it may fail to distinguish options even though their consequences are equal

3.3. Argument-Based Decision Framework (ADF) 70

only in some of the possible futures. We then define a second decision rule, lexmaxmin,

that solves this problem using a lexicographic criterion. We show that, while not suf-

fering from the drowning effect, lexmaxmin still fails to distinguish some options, and

propose a third rule that exploits some argumentation-specific properties to be even

more decisive.

Decision rules are mappings from decision frames and options to words over the

set of all consequences. We will denote the set of all consequences with C and its

partial order with ≤C . Consequently, the set of words over C will be called C ∗ (see

Definition 20 on page 38).

Definition 36. A decision rule ∆ is a function ∆ : D×O → C ∗

The function maxmin is already a decision rule, since it assigns a consequence

to each option (and thus produces words of length one). We write ∆maxmin to make

clear that we are talking about the decision rule: ∆maxmin(D,O) = [maxmin(D,O)]. If

maxmin(D,O) is undefined then ∆maxmin = ε .

Example 21. Recall the set of consequences C′ = { ¬damaged(t), coRes(t,high),

balanced(t), weight(t,high), damaged(t) } from Example 18 above. A decision

rule is any function that maps options to words over R. For example, it could re-

turn [coRes(t,high) balanced(t)] for an option where the most likely outcome is

coRes(t,high) and the second most-likely outcome is balanced(t).

To compare two options with a decision rule, one compares the words generated

for the two options using the lexicographic ordering of words over C with the underly-

ing partial order ≤C (see page 38).

Definition 37. Let ∆ be a decision rule. For every decision frame D, ∆ induces a partial

order of O on D as follows:

O≤D
∆ O′ if and only if ∆(D,O)� ∆(D,O′)

where � is the lexicographic ordering of words in C ∗. If O ≤D
∆

O′ and O′ ≤D
∆

O then

we write O =D
∆

O′.

3.3. Argument-Based Decision Framework (ADF) 71

Example 22. Before we can compare O1 and O2 in our running example (Example 17),

we need to add some rules about the consequences of O2. The rules are listed in Table

3.6. In summary, the rules say that aluminium increases the weight of the component,

and aluminium bolts will definitely not damage the structure.

For O2 = {⇒ mat(bb,al),⇒ shim(t),⇒ varnish(t,1)} we get the following

arguments: argsD(O2) = {a1, . . . ,a6} with

a1 = [⇒ mat(bb,al)] a2 = [⇒ shim(t)]

a3 = [⇒ varnish(t,1)] a4 = [a1;r8;weight(t,high)]

a5 = [a2;r9;¬balanced] a6 = [a1;r9;¬damaged(t)]

As a result, there is only a single preferred extension in argsD(O2), containing

all arguments a1 to a6. This means there is no uncertainty about the consequences of

choosing O2. We then get ∆D
maxmin(O2) = ¬damaged(t), because ¬damaged(t) is the

best outcome we can expect to achieve by choosing O2.

Using the ∆maxmin decision rule, O1 ≤D
∆maxmin

O2 and O2 �D
∆maxmin

O1, because the

best consequence we are certain to get with O2 is ¬damaged(t), which is better than

coRes(t,high).

In Definition 36 and 37, the two tasks of evaluating an individual option and com-

paring two options are separated, but in existing work on decision making with un-

certainty, both tasks are performed in a single stepage The name maxmin hints at the

two steps: First find the minimum expected result of an option and then maximise this

value across all options. In our approach, minimisation is performed by the decision

rule ∆maxmin and maximisation happens in the partial order established by Definition

37.

The codomain of every decision rule ∆ is a language called L(∆). The key idea

Table 3.6: Additional rules for Example 22

Name Rule

r8 mat(bb,al)⇒ weight(t,high)
r9 shim(t)⇒¬balanced
r10 mat(bb,al)⇒¬damaged(t)

3.3. Argument-Based Decision Framework (ADF) 72

in our approach is to compare decision rules by comparing their languages, in order to

abstract away from individual decision frames and options.

Definition 38 (Language of a decision rule). Let ∆ be a decision rule. The language

of ∆, L(∆) is the codomain of ∆:

L(∆) = {w ∈ C ∗ | ∃D ∈D .∃O ∈ O.w = ∆(D,O)}

The language of a decision rule ∆ therefore contains all words w over C for which

there is a decision frame D and an option O such that ∆ applied to D and O produces

the word w.

Proposition 8. For every w ∈ L(∆maxmin), |w| ≤ 1

Proof. Since maxmin (Definition 35) returns exactly one consequence, the words in

L(∆maxmin) are of length one, or 0 when maxmin is undefined.

We represent decision rules by their languages, the sets of words over consequencs

they can produce. In the next sections, we will look at two characteristics of decision

rules: Decisiveness and optimism. We give formal definitions of these concepts, eval-

uate ∆maxmin on them and propose improved rules that are more decisive and more

optimistic.

3.3.5.1 Decisiveness

Multiple options may be mapped to the same word and considered equal under

≤∆maxmin, even though their outcomes in possible worlds other than the worst one are

actually quite different. This phenomenon, known as the drowning effect, is a symp-

tom of a lack of decisiveness of decision rules. The drowning effect occurs when two

options are ranked equally even though they should not be, because they lead to dif-

ferent outcomes. Before we can define it formally, we need need to specify when two

options should be ranked equally. This is the case if they lead to the same possible

consequences, denoted by the equivalence relation ∼=D:

Definition 39. Let D = (K,C) be a decision frame and let O,O′ be two options with

3.3. Argument-Based Decision Framework (ADF) 73

E = possibleWorlds(D,O) and E ′ = possibleWorlds(D,O′)

O∼=D O′ iff
⋃

E∈E
bestConsequence(E) =

⋃
E ′∈E ′

bestConsequence(E ′)

If a decision rule ∆ has the drowning effect, then it will rank two options O,O′ as

equal (O≤D
∆

O′ and O′ ≤D
∆

O) even though they are not equal under ∼=D.

Definition 40. A decision rule ∆ has the drowning effect if and only if there exists a

decision frame D and two options O,O′ ∈O such that ∆(D,O)=∆(D,O′) and O�D O′.

Example 23. To demonstrate the drowning effect on maxmin, let us introduce a third

option O3 that will be ranked equal to O2, even though we can expect a slightly better

outcome from it. O3 = { ⇒ mat(bb,al), ⇒ shim(t), ⇒ varnish(t,2) }. The only

difference between O2 and O3 is that we apply two layers of varnish (varnish(t,2))

instead of one. This allows us to apply rule r7 = varnish(t,2)⇒ coRes(t,high) (see

Table 3.5 on page 65), resulting in the following arguments for O3. argsD(O3) =

a1 = [⇒ mat(bb,al)] a2 = [⇒ shim(t)]

a7 = [⇒ varnish(t,2)] a4 = [a1;r8;weight(t,high)]

a5 = [a2;r9;¬balanced] a6 = [a1;r9;¬damaged(t)]

a8 = [a3;r7;coRes(t,high)]

Let us now apply Definition 39 to see whether O2 ∼=D O3. Since both argsD(O2)

and argsD(O3) are conflict-free, E = possibleWorlds(D,O2) = {argsD(O2)} and E ′ =

possibleWorlds(D,O3) = {argsD(O3)}. Taking the best consequences of the possible

worlds of O2 and O3, we get

⋃
E∈E

bestConsequence(E) = {¬damaged,weight(t,high)}

⋃
E∈E ′

bestConsequence(E) = {¬damaged,weight(t,high),coRes(t,high)}

So because there is an argument for coRes(t,high) in at least one possible world of

O3, but not of O2, O2 is not D-equivalent to O3 (O2 �D O3).

Proposition 9. ∆maxmin has the drowning effect

3.3. Argument-Based Decision Framework (ADF) 74

Proof. In Example 23, O2�D O3, but maxmin(D,O2)= [¬damaged] =maxmin(D,O3),

so ∆maxmin has the drowning effect.

The decision rule maxmin can be repaired by considering not just the single best

minimum outcome, but also the second-best outcome, the third-best outcome and so

forth (see [53]). This is achieved through repeatedly evaluating the set of possible

worlds, removing the one with the “minimal outcome” each time. We are now going to

extend ∆maxmin, the argumentation-specific version of the rule, in similar fashion.

In order to be able to pick the possible world with the minimal outcome, we require

the lattice operation t on C to have the property atb ∈ {a,b} - in other words, is must

be join-irreducible (cf. page 37). Also please note that ◦ denotes concatenation of

words (as defined on page 38).

Definition 41. Let D be a decision frame and let O be an option. ∆lexmaxmin(D,O) =

lmaxmin(possibleWorlds(D,O)) where

lmaxmin(E) =

ε if E = /0

[c]◦ lmaxmin(E ′) otherwise, with

c = worstCase(E) and

E ′ = E \{E ∈ E | c =
⊔
(consequences(E))}

The behaviour of ∆lexmaxmin for option O1 in Example 24 is an example of the

property that each one of the different “best consequences” of an option O appears

exactly once in ∆lexmaxmin(D,O), for any decision frame D:

Proposition 10. For every decision frame D and every option O, if E = possibleWorlds(D,O)

then

∆lexmaxmin(D,O) is a permutation of
⋃

E∈E
bestConsequence(E)

Proof. (Sketch) Let D be a decision frame and let O be an option. Let E =

possibleWorlds(D,O) and let w = [c1 . . .cn] = ∆lexmaxmin(D,O). (⊆:) By Defini-

tion 41, w = lmaxmin(E). Let ci ∈ C with 1 ≤ i ≤ n. By Definition 41, there

exists a E ′ ⊆ E such that ci = worstCase(E ′), so by Definition 34, there exists an

E ∈ E ′ such that c= bestConsequence(E), so ci ∈
⋃

E∈E bestConsequence(E). (⊇:) Let

3.3. Argument-Based Decision Framework (ADF) 75

Example 24. For option O1 from Example 18, we get

∆lexmaxmin(D,O1) = lmaxmin(possibleWorlds(D,O1))

(see Example 17)
= lmaxmin({E1,E2})

(by Definition 41)
= [worstCase({E1,E2})]◦ lmaxmin(E ′)

(by Definition 34 and Example 18)
= [coRes(t,high)]◦ lmaxmin(E ′)

(by Definition 41)
= [coRes(t,high)]◦ lmaxmin({E1})

(by Definition 41)
= [coRes(t,high)]◦ [worstCase({E1})]◦ lmaxmin(E ′′)

(by Definition 34 and Example 18)
= [coRes(t,high)]◦ [¬damaged]◦ lmaxmin(E ′′)

(by Definition 41)
= [coRes(t,high)]◦ [¬damaged]◦ lmaxmin(/0)
= [coRes(t,high)]◦ [¬damaged]◦ ε

(Simplify)
= [coRes(t,high)¬damaged]

showing that the guaranteed minimal outcome we can achieve by choosing O1 is
coRes(t,high), and the “almost guaranteed” (in all but the worst possible worlds)
minimal outcome is ¬damaged.

c∈
⋃

E∈E bestConsequence(E). To show that there is an i≤ n such that c = ci, consider

that there exists an E ∈ E such that c = bestConsequence(E). Definition 41 ensures

that for every E ∈ E , bestConsequence(E) appears exactly once in ∆lexmaxmin(E), so

the ci exists and w is a permutation.

Lemma 1. ∆lexmaxmin(D,O) = ∆lexmaxmin(D,O′) if and only if O∼=D O′

Proof. ⇒: Let options O,O′ and a decision frame D s.t. ∆lexmaxmin(D,O) =

∆lexmaxmin(D,O′). Then by Propage 10 and Definition 39, O ∼=D O′. ⇐: Assume

options O,O′ and a decision frame D such that O ∼=D O′. Let w = ∆lexmaxmin(D,O)

and let w′ = ∆lexmaxmin(D,O′). Definition 41 Case 2 implies that the letters in any

word in L(∆lexmaxmin) are in strictly increasing order (over ≤C), and since w and w′

contain the same letters (Propage 10 and Definition 39) w = w′.

3.3. Argument-Based Decision Framework (ADF) 76

For the next result, recall that if S is a set and ∼ is an equivalence relation over S

then S/∼ is the set of equivalence classes of S (see page 37).

Theorem 2. For every decision frame D, ≤D
∆lexmaxmin is a total order of O/∼=D

Proof. (Sketch) ≤D
∆lexmaxmin is a total order if it is reflexive, antisymmetric, transi-

tive and defined on every pair O,O′ ∈ O . Reflexivity and antisymmetry follow from

Lemma 1. To show transitivity, let D be a decision frame and consider three op-

tions O1,O2 and O3 such that O1 ≤D
∆lexmaxmin O2 and O2 ≤D

∆lexmaxmin O3. Then, by

Definition 37, ∆lexmaxmin(D,O1) � ∆lexmaxmin(D,O2) and ∆lexmaxmin(D,O2) �

∆lexmaxmin(D,O3). By transitivity of �, ∆lexmaxmin(D,O1) � ∆lexmaxmin(D,O3)

and therefore O1 ≤D
∆lexmaxmin O3.

Corollary 1. ∆lexmaxmin does not have the drowning effect

Another way of comparing the decision functions ∆maxmin and ∆lexmaxmin is

by establishing a relationship between L(∆maxmin) and L(∆lexmaxmin), namely that

∆maxmin is a prefix of ∆lexmaxmin:

Proposition 11. For every decision frame D and every option O,

∆maxmin(D,O)v ∆lexmaxmin(D,O)

Proof. Let D be a decision frame, let O be an option and let w = [c1] ◦ w′ =

∆lexmaxmin(D,O). Then, by Definition 41, c1 = worstCase(possibleWorlds(D,O)).

Since worstCase(possibleWorlds(D,O)) =∆maxmin(D,O) (by Definition 35) the claim

holds.

The preceding discussion of the drowning effect in ∆maxmin leads to the general

question of how decisive a decision rule is. While we cannot assign a “degree of deci-

siveness”, we can say which of two decision rules is more decisive than the other one.

The more decisive a rule is, the fewer pairs of options are ranked equally by it.

Definition 42. Let ∆, ∆′ be two decision rules. ∆ is more decisive than ∆′ iff for every

decision frame D and for every pair of options O,O′: If O =D
∆

O′ then O =D
∆′ O′

If ∆ is more decisive than ∆′ and ∆′ is not more decisive than ∆, then we say ∆ is

strictly more decisive than ∆′.

3.3. Argument-Based Decision Framework (ADF) 77

Theorem 3. ∆lexmaxmin is strictly more decisive than ∆maxmin

Proof. We first show that ∆lexmaxmin is more decisive than ∆maxmin, and then that

∆maxmin is not more decisive than ∆lexmaxmin. (1) Let D be a decision frame

and let O,O′ be options such that O =D
∆lexmaxmin O′. Let w = ∆lexmaxmin(D,O) =

∆lexmaxmin(D,O′). If w = ε then ∆maxmin(D,O) = ∆maxmin(D,O′) = ε so

O =D
∆maxmin O′. If w 6= ε then w = [c] ◦w′ for a c ∈ C . Consider v = ∆maxmin(D,O)

and v′ = ∆maxmin(D,O′). By Propage 8, |v|= |v′|= 1 and since both v and v′ are pre-

fixes of w (by Propage 11), v = v′ = [c], so O =D
∆maxmin O′. (2) Refer to the examples

for a counterexample

The definitions and results presented so far clarified the meaning of decisiveness

of decision rules, but the actual rules discussed were not novel (except for their trans-

lation to our argumentation-based model of decision making with uncertainty). With

∆smaxmin we will now study a novel decision rule that considers information which is

not available in the non-argumentative appproach.

Argument strength is a notion that is, by definition, only available in settings where

there are arguments. Several measures of argument strength have been developed in the

literature, based for example on abstract argumentation [55] or on additional informa-

tion about arguments such as preferences [56, 57]. The idea of argument strength is to

measure the “convincingness” of an argument numerically. At this point we will not

review all measures of argument strength, nor pick a specific one. Instead we are going

to use the number of arguments in favour of a claim as a proxy for the claim’s strength.

Counting arguments is generally dubious - we only use it here to give an example of

an argumentation-specific decision rule, not as a representative example of argument

strength.

With this in mind we simply set “strength” to be equal to the number of accepted

arguments in favour of it: strength(c,E) = |{a ∈ E | claim(a) = c}|.

First note that in L(∆lexmaxmin) and in L(∆maxmin), every word contains a con-

sequence at most once, and the letters of each word are ordered by preference (≤C) in

descending order. The idea for expressing argument strength in decision functions is to

repeat claims backed by stronger arguments proportionately to their strength. Due to

the lexicographic ordering used in decision rules (Definition 37), words with repeated

3.3. Argument-Based Decision Framework (ADF) 78

letters will be preferred over their single-letter counterparts.

This idea is the basis of the final decision rule ∆smaxmin (s for strength).

Definition 43. Let D be a decision frame and let O be an option.

∆smaxmin(D,O) = smaxmin′(possibleWorlds(D,O)) where

smaxmin′(E) =

ε if E = /0

[c]n ◦ smaxmin′(E ′) otherwise, with

c = worstCase(E) and

E ′ = E \{E ∈ E | c = bestConsequence(E)}

n = ∑E∈E ′ strength(c,E)

Example 25. With option O1 = {⇒ mat(bb,st),⇒¬shim(t),⇒ varnish(t,2)} in

our running example, we get ∆smaxmin(D,O1)= [coRes(t,high)coRes(t,high)¬damaged],

because the argument for coRes(t,high) is part of both possible worlds, E1 and E2.

The argument for ¬damaged is only part of one possible world.

Note that our Definition 43 applies the measure of argument strength to each ex-

tension E ∈ E ′. With our definition of strength, this amounts to counting the number of

arguments for c across all extensions (so the same argument may be counted multiple

times if it is in more than one extension).

Proposition 12. ∆smaxmin does not have the drowning effect

Proof. (Sketch) Proof analogous to proof of Theorem 2 and Corollary 1.

Proposition 13. ∆smaxmin is more decisive than ∆lexmaxmin.

Proof. (Sketch) Every claim in
⋃

E∈possibleWorlds(D,O) bestConsequence(E) has a

strength of at least 1, so lexmaxmin can be viewed as a special case of maxmin where

the strength of each claim is exactly 1. So whenever two options result in equal words

with smaxmin, they also result in equal words in lexmaxmin.

We conclude this section with two general results on the connection between in-

jectivity of a decision rule ∆ and its decisiveness. By injectivity of a decision rule

we specifically mean its injectivity for the same decision frame: A decision rule ∆ is

3.3. Argument-Based Decision Framework (ADF) 79

option-injective if for every decision frame D, the function ∆D(x) =∆(D,x) is injective

(∆D is ∆ with the first argument fixed).

Proposition 14. If a decision rule ∆ is option-injective then it does not have the drown-

ing effect.

Proof. Assume a decision rule ∆ option-injective and assume ∆ has the drowning effect.

By option-injectivity of ∆, O∼=D O′ if and only if O = O′, so if O�D O′ for a decision

frame D then O 6= O′ so ∆(D,O) 6= ∆(D,O′). This contradicts the assumption that f

has the drowning effect (Definition 40).

As one might expect, option-injectivity of decision rules acts as an upper bound

on decisiveness:

Theorem 4. If two decision rules ∆, ∆′ are option-injective then both are equally deci-

sive.

Proof. Assume two decision rules ∆,∆′ option-injective such that ∆ is strictly more

decisive than ∆′. Then there exists a decision frame D and two options O,O′ such that

(1) O =D
∆′ O

′ and (2) O 6=D
∆

O′. By option-injectivity of ∆, O 6= O′, but then by injectivty

of ∆′, O 6=D
∆′ O′, which contradicts the assumption that ∆ is strictly more decisive than

∆′.

In this chapter we only used a simple measure of the strength of a claim – namely

the number of arguments in favour of it – in order to demonstrate how strength can

be reflected in the language of decision rules. However, any of the more sophisticated

measures proposed in the literature could be used in a similar way. Additionally, pro-

posals for probabilistic argumentation [58, 59, 60, 61, 62, 63] or argumentation with

belief values [64] can be harnessed to obtain quantitative decision making with uncer-

tainty in an argumentation-theoretic setting.

The ∆smaxmin rule (Definition 43) is also an example of how argumentation-

specific properties may be combined with existing decision rules for decision making

with uncertainty. This illustrates how decision rules such as ∆maxmin and ∆lexmaxmin,

which treat the argumentation system as a black box and only use its preferred exten-

sions, do not achieve the same decisiveness as, for example, ∆smaxmin. The language-

3.3. Argument-Based Decision Framework (ADF) 80

based approach we advocate in this thesis enables decision makers to compare both

kinds of rules systematically.

3.3.5.2 Optimism

The ∆maxmin decision rule and its descendants ∆lexmaxmin and ∆smaxmin are rather

pessimistic since they pick the consequences that will be achieved with certainty (in all

possible worlds) rather than those that may only be achieved in one or two cases. A

more optimistic decision maker would compare options by their best consequences in

any possible world. For decision rules this means a rule ∆ is more optimistic than a rule

∆′ if it selects better consequences for the same option. Formally:

Definition 44. Let ∆,∆′ be two decision rules. ∆ is more optimistic than ∆′ if for every

decision frame D and every option O: ∆′(D,O)� ∆(D,O)

The optimistic decision rule ∆maxmax can now be defined as

Definition 45. Let D be a decision frame and let O be an option.

∆maxmax(D,O) = t{c ∈ C | ∃E ∈ possibleWorlds(D,O)

such that c = bestConsequence(E)}

Proposition 15. ∆maxmax is more optimistic than ∆maxmin.

Proof. (Sketch) Assume that the proposition is false. Then there exist D,O such

that ∆maxmax(D,O) ≺ ∆maxmin(D,O). Let [c] = ∆maxmin(D,O) and let [c′] =

∆maxmax(D,O). Then, by Definition 35, w is the worst outcome of all possible worlds

and by Definition 45, c′ is the best outcome. Since the best outcome is always greater

than or equal to the worst outcome, [c]� [c′], so the assumption is false.

3.3.5.3 Summary

Let us briefly summarise our tour of decision making with uncertainty in ADF, and

specifically the topic of decision rules. Starting with the idea that uncertainty is man-

ifested in preferred extensions of an argument graph (Section 3.3.4 on page 63), we

translated the well-known maxmin decision rule into our ADF framework, demon-

strating that every decision-making with uncertainty problem formulated in the tradi-

3.4. Accepting a Decision 81

tional model can be expressed as an ADF in a way that maxmin gives the same results

(Propage 7).

Decision rules are important in the analysis of engineering design decisions be-

cause they allow us to classify past decisions by their optimism or other character-

istics. In support of this application we developed a theory of decision rules. Our

theory was built on a novel, language-based understanding of rules (see Definition 36

on page 70). We translated the two well-known rules maxmin and lexmaxmin into our

argumentation-theoretic setting, and proposed a new rule ∆smaxmin based on argument

strength. The decisiveness of decision rules is crucial for our use case, and we showed

that the three rules we studied have different degrees of decisiveness.

In the preceding paragraphs we developed a useful toolkit for analysing decisions.

This includes the identification of recommended options according to some formal

principles, and the classification of past decisions by the same principles. Using our

work, an engineering design manager will thus be able to say for example “two-thirds

of decisions in the last quarter were made rather optimistically” – a valuable piece of

information.

3.4 Accepting a Decision
The previous sections equipped us with the ability to weigh the different options of a

decision against each other in the presence of multiple decision criteria (Section 3.3.3)

and of multiple possible worlds (Section 3.3.4). We are now going to add the ability to

actually make a decision, which is also quite important. By making a decision we mean

adjusting the knowledge base to reflect the fact that an option was chosen. Afterwards,

the knowledge representing the chosen option should be part of the knowledge base, in

a way that all arguments pro the option are sceptically acceptable.

3.4.1 On the Deactivation of Rules in ASPIC+

Before we get to our actual goal (accepting a decision), we need to define a general

operation on ASPIC+ knowledge bases that will be required later: Enforcing a set of

arguments, which in turn relies on the operation of deactivating a defeasible rule r.

To enforce a set of arguments means to make it part of the grounded extension of an

argument graph, and to deactivate a rule means to make it unavailable for reasoning in

3.4. Accepting a Decision 82

accepted arguments (any arguments that use r defeated by an attacker whose conclusion

is ¬〈r〉). Both operations will be defined only in terms of additional rules that are

added to the knowledge base. They do not require the deletion of any knowledge.

Enforcement has been studied for abstract argument graphs [65, 66, 67, 68]. However,

no prior work exists on enforcement in the context of instantiated arguments, such as

with ASPIC+.

As an example, if a rule r1 expresses the assumption that all birds can fly (r1 =

bird(X)⇒ fly(X)) then r1 could be deactivated by adding the literal l = ¬〈r1〉 to

the knowledge base. The effect of l is that every argument which uses r1 is attacked

asymmetrically by the argument [¬〈r1〉]. Of course, r1 could also be attacked in a

specific context only: r2 = penguin(X)⇒ ¬〈r1〉.2 In this section we are interested

in a generic approach to deactivation, such as l. In contrast, rules such as r2 require

domain-specific knowledge and can therefore not be the result of a generic deactivation

that can be applied to any possible rule.

Deactivation of rules and enforcement of arguments are highly relevant for engi-

neering design. Since design processes are iterative, it is common to revisit previous

decisions when assumptions or external requirements have changed. In such cases it

is important to keep a record of the reasoning behind the original (changed) decision,

in order to prevent repeating the same mistakes, and for auditing purposes. Therefore,

the processes analysed in the next chapter have the property that while their underlying

knowledge bases grow monotonically, their sets of acceptable arguments do not. This

non-monotonicity requires us to override – that is, to make unavailable – rules without

actually removing them from the knowledge base.

Our proposal for deactivation and enforcement consists of two functions, which

we will define in this section: enforce and deactivate. enforce relies on the more fun-

damental operation, deactivate. If a rule r is deactivated then any argument that uses

it is attacked asymmetrically (by an argument with conclusion ¬〈r〉) and thus excluded

from any preferred extension.

In order to deactivate a rule r in ASPIC+, the deactivate operation defined below

(Definition 47) adds a rule r′ = ⇒¬〈r〉 with empty antecedent. Because r′ is itself a

2With either of l and r2, the argument using r1 is attacked by the grounded extension of the graph, so
¬fly(X) is sceptically acceptable. This is different from the classical penguin-fly example, where the
two conclusions fly(X) and ¬fly(X) each have a credulously acceptable argument.

3.4. Accepting a Decision 83

rule, it can be deactivated (and r re-activated) with another rule r′′= ⇒¬〈r′〉, resulting

in a chain of arguments in the corresponding argument graph. The chain acts as a record

of repeated de- and re-activations of r.

In other words, to enable a rule r, we need to “disable” all arguments whose con-

clusion is ¬〈r〉. By this definition, to activate a rule r is to un-deactivate its name 〈r〉.

Note that this does not guarantee the availability of r for arguments, it only means if an

argument uses r then it will not be defeated by default.

In this section we will find a correct definition of deactivate in several iterations,

by considering various candidates.

3.4.1.1 Naive Approach

The simplest definition of deactivate(r,KB) would be to add the literal ¬〈r〉 to the rules

in KB:

deactivate1(r,KB) = KB∪ ({¬〈r〉}, /0)

This will allow us to generate an argument for ¬〈r〉 which asymmetrically attacks any

argument that uses r, effectively deactivating r. However, there are two disadvantages

to this approach:

1. deactivate1 cannot be reversed easily (through adding more knowledge). We

could add another literal 〈r〉 to the knowledge base, but that would lead to a sym-

metric attack between it and the argument for ¬〈r〉 (assuming the contrariness

function behaves like classical negation), so any argument that uses r would be

acceptable in some preferred extensions and rejected in others, so its acceptabil-

ity would not be exactly the same as before applying deactivate.

2. deactivate1 implictly assumes that there are no arguments with conclusions 〈r〉 or

¬〈r〉 in KB (because if there were, either the new argument would be defeated, or

it would be engaged in a symmetric attack, so it would potentially be only cred-

ulously acceptable). Ideally the approach should work without any assumptions

about KB.

Example 26. To demonstrate why deactivate1 is not an adequate definition, consider

the ASPIC+ knowledge base KB1 = (R1,K1) with R1 = {r1}, r1 = a⇒ b and K1 =

{a,〈a⇒ b〉}. KB′1 = (R ′1,K
′

1) = deactivate1(KB1,r1) with K ′
1 = K1∪{¬〈r1〉} and

3.4. Accepting a Decision 84

a1 a2 a3 a4

Figure 3.5: Argument graph for Example 26

R ′1 = R1. The argument graph of KB′1 contains four arguments:

a1 = [a]

a2 = [a1;a⇒ b;b]

a3 = [¬〈r1〉]

a4 = [〈r1〉]

As shown in Figure 3.5, a3 attacks a2 and a4. a4 attacks a3. Therefore there are

two preferred extensions, {a1,a2,a4} and {a1,a3}. So the rule r1 is still used in a

credulously acceptable argument (a2) and deactivate1 did not work as intended.

3.4.1.2 Improvement

The first problem of deactivate1 is irreversibility. More precisely, the problem is that

the reversal of deactivate1 would produce a symmetric attack, since arguments can be

attacked asymmetrically only on their rules and the argument for ¬〈r〉 does not use any

rules, since ¬〈r〉 is a fact in KB′. This means that any definition of deactivate should

only add rules to the knowlege base, not facts. This is what deactivate2 does:

deactivate2(r,KB) = KB∪{⇒ ¬〈r〉}

In order to reverse the effect of deactivate2, we could add another rule ⇒ ¬〈⇒

¬〈r〉〉, which creates a defender of all arguments that use r. This solves the first issue,

but the second one still remains, in addition to a new problem:

1. deactivate2 can be reversed by adding a rule⇒¬〈⇒¬〈r〉〉 as described, but what

if r is to be de-activated again after that? Simply applying deactivate2 again is

not enough, since the rule it creates is already part of the knowledge base and it

therefore has no effect at all.

2. The second problem remains: deactivate2 implictly assumes that neither⇒¬〈r〉

nor⇒¬〈⇒ ¬〈r〉〉 can be derived from KB.

3.4. Accepting a Decision 85

We are getting closer to a solution, since problem 1 is now a special case of problem 2.

3.4.1.3 Final Definition

The discussion of deactivate2 indicated that the real definition of deactivate has to add

a new rule whose content depends on the argument graph of KB. This leads to the

following approach for deactivating a rule:

1. Let r′ = ⇒¬〈r〉3

2. Add r′ to the knowledge base

3. For each credulously acceptable attacker a ∈ A of the argument [;r′;¬〈r〉]:

(a) Deactivate topRule(a)

4. Repeat until no more rules are added.

Definition 47 is a straightforward translation of this recipe, except for step 4, which

is realised by recursion. deactivate delegates all work to deactivate′, which we will

define first:

Definition 46. Let r be a rule and let A be a set of ASPIC+-arguments.

deactivate′(r,A) = {r′}∪
⋃

a∈attackers(b,A)

deactivate′(topRule(a),A\{a})

with r′ =⇒¬〈r〉, and b = [;r′;¬〈r〉].

In Definition 46, the variables have the following intuitive meaning: r is the rule to

be deactivated by introducing a new argument b, A is the set of arguments with potential

attackers of b, r′ is the deactivating rule that enables b, and A′ contains all arguments

in A except the “offending” one, a (this guarantees termination as the recursive call is

made with a strictly smaller set than A). An example of deactivate′ can be found on

page 87 (Example 29).

You may have noticed that the function topRule, which we used in the definition of

deactivate′, is only defined for arguments that have a top rule, and undefined for literal

arguments such as [a] (cf. its definition on page 30). This is the reason why we only

3r and r′ stand for rules, not for rule names. If we want to refer to them in definitions we need to use
the naming function 〈·〉 which maps rules to elements of the language L .

3.4. Accepting a Decision 86

consider knowledge bases without literals in this thesis (see discussion on page 32).

All literals are represented by defeasible rules of the form⇒ a, and instead of atomic

arguments [a] we have arguments [⇒ a].

With the previous definitions in place, deactivate itself is relatively simple:

Definition 47 (Deactivate). Let r be a rule and let KB be an ASPIC+ knowledge base.

deactivate(r,KB) = KB∪deactivate′(r,arguments(KB))

By this definition of deactivate (Definition 47), all acceptable attackers of r are

themselves attacked (through deactivation of their top rule). The recursion ensures that

all leaves of the dialectical tree for each “user” of r are attacked.

Example 27. We begin with a simple example. Consider the argumentation system

KB1 = {r1,⇒ a,⇒ b,⇒ c} where there is only one rule with non-empty antecedent,

r1 = a⇒ d. Then KB2 = deactivate(r1,KB1) = KB1∪{r′} where r′ =⇒ ¬〈r1〉. The

argument graph of KB2 contains five arguments, a1 = [⇒ a], a2 = [⇒ b], a3 = [⇒ c],

a4 = [a1;r1⇒ d] and a5 = [;⇒¬〈r1〉;¬〈r1〉]. a5 attacks a4 asymmetrically so the only

preferred extension is {a1,a2,a3,a5} which coincides with the grounded extension.

Example 28. An example with multiple preferred extensions, KB2 = {r1,r2,r3,⇒ a}

with r1 = a⇒ b, r2 = a⇒¬b and r3 = b⇒ c.

The arguments for KB2 are

a = [⇒ a]

b = [a;a⇒ b;b]

c = [a;a⇒¬b;¬b]

d = [b;b⇒ d;b]

with attacks as in Figure 3.6 (left) on p 87. Dashed lines indicate sub-argument re-

lations (transitive sub-arguments may be inferred, for example a is a sub-argument

of d). The graph on the left is of KB2 and the graph on the right is of KB′2 =

deactivate(KB2,r2).

3.4. Accepting a Decision 87

a

b

c

d a

b

c

d

e

Figure 3.6: Argument graphs for Example 28.

a1a2a3 a4

Figure 3.7: Argument graph for Example 29.

There are two preferred extensions: E1 = {a,b,d} and E2 = {a,c}. In E2, rule r2

holds and in E1 it does not hold.

After deactivating rule r2 with KB′2 = deactivate(r2,KB2), we get the argument

graph shown in Figure 3.6 on the right. It contains all of KB2’s arguments plus a new

one, e with

e = [;⇒¬〈r2〉;¬〈r2〉]

Argument e attacks c and thus makes rule r2 unusable in any accepted arguments.

The preferred extension of KB′2’s argument graph now conincides with its grounded

extension and contains the arguments a,b,d and e.

Example 29. This example demonstrates how deactivate traverses all counter-

arguments, counter-counter arguments and so forth for each user of r1 (each argument

that uses r1). The original knowledge base (before applying deactivate) contained a

defeasible rule with empty antecedent,⇒ a, and two rules with non-empty antecedents:

r1 = a⇒ b

r2 =⇒¬〈⇒ ¬〈r1〉〉

If we compute deactivate(r1,KB), then a new rule r3 =⇒ ¬〈r1〉 will be added, dis-

abling r1. However, rule r2 (equal to ⇒ ¬〈r3〉) which is already in the knowledge

base now results in an argument that attacks all arguments which use r3. This is

3.4. Accepting a Decision 88

a1a2a3 a4a5

Figure 3.8: Argument graph for Example 29, part II.

why the definition of deactivate contains a recursive clause. Figure 3.7 shows the

resulting graph, after applying deactivate(r1,KB). The arguments are a1 = [⇒ a],

a2 = [a1;r1;b], a3 = [;r2;¬〈r3〉] and a4 = [;r3;¬〈r1〉]. Argument a4 was introduced by

the deactivate2 operation, but it is defeated by a3. This is the reason why deactivate

needs to examine the resulting argument graph again.

Therefore, deactivate(r1,KB) also contains the knowledge added by deactivate(r2,KB).

The final result of deactivate(r1,KB) is the following set of arguments:

a1 = [⇒ a]

a2 = [a1;r1;b]

a3 = [;⇒¬〈⇒ ¬〈r1〉〉;¬〈⇒ ¬〈r1〉〉] = [;r2;¬〈r3〉]

a4 = [;⇒¬〈r1〉;¬〈r1〉] = [;r3;¬〈r1〉]

a5 = [;⇒¬〈⇒ ¬〈⇒ ¬〈r1〉〉〉;¬〈⇒ ¬〈⇒ ¬〈r1〉〉〉]

And attacks a5→ a3→ a4→ a2. The grounded extension consists of a5,a4 and a1. The

graph is shown in Figure 3.8.

We conclude this example with a detailed description of how deactivate(r1,KB)

is computed. Let R′ = deactivate′(r1,arguments(KB)), so deactivate(r1,KB) = KB∪

KB′. Figure 3.9 on page 89 shows the computation of deactivate′ step by step.

3.4.2 Results on Deactivating Rules

3.4.2.1 deactivate Is Well-Defined

The first question we might like to answer about deactivate is whether it produces

finite output for finite input. Proposition 16 shows that the number of rules added to

the knowledge base by deactivate′ is indeed bounded, and that deactivate′ terminates

whenever it is applied to a finite set of arguments.

Proposition 16. For all sets of ASPIC+-arguments A and rules r, if A is finite, and

topRule(a) is defined for all a ∈ A, then deactivate′(r,A) is defined and finite.

3.4. Accepting a Decision 89

KB′ = deactivate′(r1,arguments(KB))
(Simplify)

= deactivate′(r1,{a1,a2,a3})
(Apply Definition 46; Let r3 =⇒¬〈r1〉)

= {r3}∪
⋃

a∈attackers([;r3;¬〈r1〉],{a1,a2,a3})
deactivate′(topRule(a),{a1,a2,a3}\{a})

(attackers([;r3;¬〈r1〉],{a1,a2,a3}) = {a3})
= {r3}∪

⋃
a∈{a3}

deactivate′(topRule(a),{a1,a2,a3}\{a})

(Simplify)
= {r3}∪deactivate′(topRule(a3),{a1,a2})

(Simplify)
= {r3}∪deactivate′(r2,{a1,a2})

(Apply Definition 46; Let r4 =⇒¬〈r2〉)
= {r3}∪{r4}∪

⋃
a∈attackers([;r4;¬〈r2〉],{a1,a2})

deactivate′(topRule(a),{a1,a2}\{a})

(attackers([;r4;¬〈r2〉],{a1,a2}) = /0)
= {r3}∪{r4}

Figure 3.9: Application of deactivate′ for Example 29

Proof. In Definition 46, the recursive call to deactivate′ is with a set strictly smaller

than the original set A (namely the set A \ {a}), so deactivate′ terminates. In each

recursive step, exactly one rule is added (r′).

3.4.2.2 The deactivate Operation Works as Intended

The key to the following results is that deactivated rules are attacked asymmetrically,

by an argument with a premise-less defeasible rule. We first show that deactivate be-

haves as expected, that is, after applying deactivate(r,KB), there are no (credulously

or sceptically) acceptable arguments a with r ∈ rules(a). For that we require a result

about deactivate′ (Definition 46):

Proposition 17. Let r be a rule and let A be a set of ASPIC+ arguments such

that topRule(a) is defined for all a ∈ A. Let KB = deactivate′(r,A) and let A′ =

arguments(KB). For every argument a ∈ A, if topRule(a) = r then there exists an

argument b ∈ A′ such that

3.4. Accepting a Decision 90

1. b attacks a and

2. b is sceptically acceptable in argGraph(A∪A′)

Proof. We prove the claim by induction over the number of elements in A, the set of

arguments. In case |A|= 0, A = /0 so there are no arguments a∈ A with topRule(A) = r.

The actual induction proof starts with |A| = 1. Formally: Let A be a set of arguments.

For every n≥ 1 and for every rule r: Let A′ = arguments(deactivate′(r,A)). If |A|= n

then for every argument a ∈ A, if topRule(a) = r, then there exists an argument b′ ∈ A′

such that b′ attacks a and b′ is sceptically acceptable in argGraph(A∪A′).

Base case (n = 1) If |A| = 1 then A has exactly one argument, A = {a}. Let s =

topRule(a). If s 6= r then the claim holds trivially. Let r′ =⇒¬〈r〉, let b = [;r′;¬〈r〉].

By Definition 46, b ∈ A′. If s = r then b attacks a, and a does not attack b, so the claim

holds.

Induction step (n = k+ 1) Let a ∈ A such that topRule(a) = r. Let r′ =⇒ ¬〈r〉,

let b = [;r′;¬〈r〉]. By Definition 46, b ∈ A′, and b attacks a. It remains to show

that b is sceptically acceptable in argGraph(A∪A′). Either there exists an argument

a′ ∈ A such that a′ attacks b or not. If no such a′ exists, then b is sceptically ac-

ceptable and the claim holds. So we assume there is an a′ ∈ A such that a′ attacks

b. Then a′ ∈ attackers(b,A), so by Definition 46, deactivate′(topRule(a′),A \{a′}) ⊆

deactivate′(r,A). Let A′′ = arguments(deactivate′(topRule(a′),A \ {a′})). By the in-

duction hypothesis we know that there exists an argument b′ ∈ A′′ such that b′ is

sceptically acceptable in argGraph(A∪A′′). b′ ∈ A′ by Definition 46. We now show

that b′ is sceptically acceptable in argGraph(A∪ A′), which in turn means that b is

sceptically acceptable in argGraph(A ∪ A′), since b′ attacks a′. By Definition 46,

A′ = A′′ ∪ {a′}, so A∪A′ = A∪A′′ ∪ {a′} – in other words, the only difference be-

tween argGraph(A∪A′) and argGraph(A∪A′′) is the single argument a′. By Definition

46, b′ = [;⇒¬〈topRule(a′)〉;¬〈topRule(a′)〉], and because 〈·〉 is injective (by Cond. 2

on page 33), a′ does not attack b′, so b′ is sceptically acceptable in argGraph(A∪A′),

so b is also sceptically acceptable in argGraph(A∪A′).

The correctness proof of deactivate now follows directly from the correctness of

deactivate′, established in Propage 17.

3.4. Accepting a Decision 91

Proposition 18. Let r be a rule and let KB be an ASPIC+ knowledge base . Let E ∈

E = Σpr(argGraph(deactivate(r,KB))). Then, for all arguments a ∈ E : 〈r〉 /∈ rules(a)

Proof. By Definition 47, deactivate(r,KB) = KB∪ deactivate′(r,arguments(KB)), so

the claim follows from Propage 17.

Deactivating a rule that is already deactivated has no effect (that is, deactivate is

idempotent).

Proposition 19. For all knowledge bases KB = (R,K) with K = /0 and for all rules

r, the following equation holds:

deactivate(r,KB) = deactivate(r,deactivate(r,KB))

The proof of Propage 19 can be found on the next page (page 92).

3.4.2.3 The deactivate Operation is Reversible

Further, every deactivation can be reversed. By reverse we mean that its effects can

be undone without deleting any knowledge – simply by adding knowledge, just like

the deactivate operation itself. Before we define reactivate in Section 3.4.3, we will

give one more result to show that an operation with the semantics of reactivate can be

defined.

Consider this situation: An initial knowledge base KB1 with a rule r, a second

knowledge base KB2 = deactivate(r,KB1) and a third knowledge base KB3 such that

KB3 contains KB2 and KB3 = reactivate(r,KB2) – that is, r is reactivated in KB3.

Any argument that used r in G1 = argGraph(KB1) should have the same status

(acceptability) in G3 = argGraph(KB3). However, G1 6= G3, because deactivating and

reactivating r left a trace in form of arguments and attacks. The preferred extensions

that existed in G1 will become subsets of preferred extensions in G3. Conversely, every

preferred extension in G3 subsumes a preferred extension from G1.

We call this relation of subsets a linear extension (see Definition 22 on page 39).

The following result shows that a linear extension of the preferred extensions of G1 can

always be obtained by adding knowledge to KB2. In other words, the status-changing

effect of deactivate, which resulted in KB2, can be reversed without losing the addi-

tional knowledge generated by deactivate in KB2.

3.4. Accepting a Decision 92

Proof. Let KB be a knowledge base and let r be a rule.

= deactivate(r,deactivate(r,KB))
(Definition 47, resolving the inner term deactivate(r,KB))

= deactivate(r,KB∪deactivate′(r,arguments(KB)))
(Definition 46; Let r′ =⇒¬〈r〉; Let b = [;r′;¬〈r〉]; Let A = arguments(KB))

= deactivate(r,KB∪{r′}∪
⋃

a∈attackers(b,A)

deactivate′(topRule(a),A\{a}))

(Let KB′ =
⋃

a∈attackers(b,A) deactivate′(topRule(a),A\{a}))

= deactivate(r,KB∪{r′}∪KB′)
(Definition 47)

= KB∪{r′}∪KB′∪deactivate′(r,arguments(KB∪{r′}∪KB′))
(Let A′ = arguments(KB∪{r′}∪KB′))

= KB∪{r′}∪KB′∪deactivate′(r,A′)
(Definition 46)

= KB∪{r′}∪KB′∪{r′}∪
⋃

a∈attackers(b,A′)

deactivate′(topRule(a),A′ \{a})

(Definition 46; attackers(b,A′) = attackers(b,A),
because attackers(b,arguments({r′}∪KB′)) = /0 and by Propage 3)

= KB∪{r′}∪KB′∪{r′}∪
⋃

a∈attackers(b,A)

deactivate′(topRule(a),A\{a})

(Definition of KB′)
= KB∪{r′}∪KB′∪{r′}∪KB′

(Simplification)
= KB∪{r′}∪KB′

(Definition of KB′)

= KB∪{r′}∪
⋃

a∈attackers(b,A)

deactivate′(topRule(a),A\{a})

(Definition 46)
= KB∪deactivate′(r,A)

(Definition 47)
= deactivate(r,KB)

Figure 3.10: Proof of Propage 19

3.4. Accepting a Decision 93

Proposition 20. Let r be a rule and let KB be an ASPIC+ knowledge base. Let KB′ =

deactivate(r,KB). Then there exists a knowledge base KB′′ such that KB′ ⊆ KB′′ and

Σpr(argGraph(KB′′)) is a linear extension of Σpr(argGraph(KB))

Proof. (Sketch) The reversal operation is similar to the original deactivate, except that

this time the rules r′ are the ones that are deactivated.

The definition of deactivate (Definition 47) has the advantage that it can easily be

reversed by adding even more formulae to the knowledge base. Instead of deactivating

the users and defenders of r, we simply have to deactivate the rule that deactivates r.

Definition 48. Let r be a rule and let KB be an ASPIC+ knowledge base.

reactivate(r,KB) = deactivate(⇒¬〈r〉,KB)

Example 30. Recall the knowledge base KB′ from Example 28 on page 86: KB′ =

({⇒ a,r1,r2,r3,r4}, /0) with

r1 = a⇒ b r2 = a⇒¬b

r3 = b⇒ c r4 =⇒¬〈r2〉

Rule r4 is the result of deactivating r2. We can reactivate r2 as follows:

KB′′ = reactivate(r2,KB′) = deactivate(⇒¬〈r2〉,KB′)

(⇒¬〈r2〉= r4)

= deactivate(r4,KB′)

(Apply Definition 47)

= KB′∪{⇒ ¬〈r4〉}

The resulting argument graph is shown in Figure 3.11. There are two preferred ex-

tensions, E1 = { f ,c,a} and E2 = { f ,b,d,a}. In the original graph based on KB,

before r2 was deactivated and reactivated, there were two preferred extensions: {a,c}

(subset of E1) and {a,b,d} (subset of E2). Since every preferred extension in the orig-

inal graph is subsumed by a preferred extension in KB′′, and likewise every preferred

3.4. Accepting a Decision 94

a

b

c

d

ef

Figure 3.11: Argument graph for reactivation, see Example 30

extension in KB′′ subsumes a preferred extension of the original graph, it holds that

Σpr(argGraph(KB′′)) is a linear extension of Σpr(argGraph(KB)), as per Propage 20.

The argument of deactivate in Definition 48 is exactly the rule that was added by

deactivate before. An application of reactivate(r,KB) will result in (at least) one new

rule

r′ = ⇒¬〈⇒ ¬〈r〉〉

The new rule r′ is interesting, because it looks like a double negation of (the applica-

bility of) r. Its meaning however is different from double negation in classical logic,

because from the inclusion of r′ in a knowledge base we cannot infer that r is available

(i.e. r ∈R).

3.4.3 Enforcing a Point of View

Before we end this section we will enhance the definition of reactivate (Definition 48)

to define an enforce operation - a function that takes a set of arguments A and disables

their attackers, so that A becomes a subset of the grounded extension (if there are no

attackers of A, it is already a subset of the grounded extension).

Definition 49 (Enforce). Let KB be an ASPIC+ knowledge base, let A = args(KB) and

let B⊆ A.

enforce(B,KB) = KB∪
⊔

a∈attackers(B,A)

deactivate(topRule(a),KB)

Proposition 21. For all ASPIC+ knowledge bases KB and for all A⊆ args(KB), KBv

enforce(A,KB)

Proof. (Sketch) deactivate (Definition 47) only uses the set union operation ∪ and

3.4. Accepting a Decision 95

enforce (Definition 49) is the union of a repeated application of deactivate, so the orig-

inal knowledge base KB is always part of the result enforce(A,KB).

Furthermore, if the set of arguments A is conflict-free, then A will be a subset of

the grounded extension after applying enforce(A,KB). This is the defining property of

enforce.

Proposition 22. For all ASPIC+ knowledge bases KB and for all B ⊆ args(KB), if

attacks(B) = /0 then B⊆ Σgr(argGraph(enforce(B,KB)))

Proof. Let KB be an ASPIC+ knowledge base, let (A,Att) = argGraph(KB) and let

B ⊆ arguments(KB) such that B is conflict free, that is B×B∩Att = /0. Let KB′ =

enforce(B,KB) and let (A′,Att ′) = argGraph(KB′). Let {E}= Σgr(A′,Att ′).

Proof by contradiction. Assume there is an argument a ∈ B such that a /∈ E. Then

there exists an argument b ∈ A′ such that (b,a) ∈R ′ such that there is no c ∈ E with

(c,b) ∈R ′ (i.e. b is not attacked by the grounded extension). Since b ∈ attackers(B)

and K = /0, we know b = [. . . ;r;c] for some rule r.

Then deactivate(topRule(b),KB)= deactivate(r,KB)⊆KB′. By Propage 17 there

is an argument c∈ arguments(KB′) such that c attacks b and c is sceptically acceptable.

This contradicts the assumption that b is not attacked by an argument in the grounded

extension, so the claim holds.

The function enforce(A,KB) is a convenient way of “promoting” a conflict-free

set of arguments to be sceptically acceptable by adding rules to an ASPIC+ knowledge

base.

3.4.4 Accepting a Decision

In this section we demonstrate how enforce can be used to “make a decision” – more

specifically, to update a knowledge base after a decision has been made by the design

team. This is achieved by making the selected option and its consequences part of the

grounded extension.

Accepting a decision involves two steps. First, after choosing an option O, we

need to determine which of the possible worlds in possibleWorlds(D,O) best models

the actual circumstances. This means we have to select a preferred extension E ∈

Σpr(argsD(O),attacks(argsD(O))). Then, we use the enforce operation (Definition 49)

3.4. Accepting a Decision 96

to extend D’s knowledge base so that it contains the knowledge to make all arguments

in E sceptically acceptable.

Definition 50 (Making a Decision). Let D = (K,C,R) be a decision frame, let O ∈ O

be an option, and let E ∈ Σpr(argsD(O),attacks(argsD(O))).

decideD(O,E) = enforce(E,K∪O)

Definition 50 produces a new knowledge base K′. Because of the way deactivate

is defined in Definition 47, K ⊆ K′, and because of Propage 22, the chosen set of

arguments E is part of the grounded extension of the result.

Proposition 23. Let D = (K,C,R) be a decision frame, let O ∈ O be an option, and

let E ∈ Σpr(argsD(O),attacks(argsD(O))). Let KB′ = enforce(E,K∪O) and let {E ′}=

Σgr(argGraph(KB′)). Then E ⊆ E ′.

Proof. Since E is a preferred extension, E is conflict-free, so by Propage 22, E is a

subset of the grounded extension of KB′, so the claim holds.

Example 31. Assume that we decide to go with option O1 from Example 17 - that is,

with O1 = {mat(bb,s−t),¬shim(t),varnish(t,2)}. We also learned that out of the

two possible worlds E1 and E2, the first one was correct - so the oversized bolts do not

damage the structure (through microscopic fractures). We want to adjust the knowledge

base C to reflect our decision, and the consequences it had. Recall that the arguments

are E1 = {a1,a3,a5,a6,a7,a8,a9} as shown in Table 3.7 below. We therefore compute

decideD(O1,E1) = enforce(E1,K∪O1)

= K∪{⇒ ¬〈r2〉,⇒¬〈r4〉}

The two added rules⇒¬〈r2〉 and⇒¬〈r4〉 effectively deactivate the second possible

world E2. We can now use this knowledge base in any subsequent decisions, allow-

ing us to re-use both the justifications for choosing O1 and the knowledge that of all

possible worlds it was E1 which was correct.

The example was based on the assumption that we learned which of the possible

worlds was the real one. This allowed us to choose one of the preferred extensions and

3.5. Related Work 97

enforce it, as in the definition of decide. However, even if we had had this information,

we could have used decide to enforce the arguments of the grounded extension to the

knowledge base.

3.5 Related Work
Decision making with argumentation has been the focus of much recent work (see

Carstens et al. [69] for a survey). The existing work on argument-based decision mak-

ing primarily covers multi-criteria decision analysis. The literature can be divided into

two parts: Some approaches [70, 23, 31] start with an existing (multi criteria) decision

making formalism and translate it into an argumentation system. The second category

is work that extends an argumentation system with notions of options and arguments

for and against those options (e.g. [33, 28, 29]), often involving a representation result

with existing decision making formalisms.

Our work falls into the second category. While we base our model on an analysis

of MCDM and DM, the data (input) of a concrete decision problem is not required to be

formulated as an MCDM or DM problem. We also have two representation results, one

for the DM case (Propage 7) and one for the MCDM case (Theorem 1), but in contrast

with the existing work it contains a novel decision rule based on argumentation-specific

properties (smaxmin), making it strictly more powerful than approaches that achieve

exactly the same results as the non-argumentative systems they are based on. In addi-

tion, we address additional requirements related to decision processes: Re-usability of

formal models, and the ability to automatically determine the consequences a decision

has on subsequent decisions. This is the content of the next chapter. In the following

we will review some existing work in detail.

Table 3.7: Arguments to be enforced in Example 31

Name Content

a1 [a8,a3;r1;balanced(t)]
a3 [a5;r3;¬damaged(t)]
a5 [;r5;¬microscopic fractures]
a6 [a7;r6;bolts strong]
a7 [mat(bb,s−t)]
a8 [¬shim(t)]
a9 [varnish(t,2)]

3.5. Related Work 98

3.5.1 Multi-Criteria Decision Making

3.5.1.1 Decision Making With ABA

The ABA argumentation system has been used as the foundation for argument-based

decision making in several papers by Matt et al. [31] as well as Fan, Toni et al. [24,

70, 30].

In [70], decisions are modeled using structured arguments in the ABA system [47].

Here the argumentation formalism is used only as an interpretation of the actual deci-

sion model, which consists of a set of decisions, a set of goals and two tables relating

decisions to goals. The proposal takes up ideas from earlier work on decision making

with ABA [31]. It is extended to cover preferences over sets of goals (as opposed to

just individual goals) and applied to an extensive case study from the medical domain

in [24]. In [30], a similar ABA-based decision framework is used for collaborative

decision making with two agents, each with a set of goals and decisions.

The paper [31] uses ABA for multi-criteria decision making. Three decision rules

are discussed: (Weak) dominance, degree of admissibility, and relative value of a de-

cision. Dominance is the usual weak dominance principle where option A dominates

option B if every one of the goals provided by B is also provided by A. A multi-criteria

decision making system is given and translated to ABA in a way that dominating deci-

sions result in admissible arguments.

Degree of admissibility takes into account how many of an argument’s incoming

attacks are symmetric. The ratio of symmetric attacks within all attacks is called degree

of admissibility. Since dominant decisions are admissible and admissible decisions

always have the highest degree of admissibilty (namely 1), this second decision rule

increases the decisiveness for non-dominant options.

The last decision rule, relative value, combines degrees of admissibility with nu-

merical weights of goals. Such weights can be used to distinguish goals and play a role

similar to the ranking of consequences ≤C in our framework.

The argumentation formalism of [31] is ABA and the decision problems it solves

are for MDCM only. These differences notwithstanding, the second decision rule it

introduces (degree of admissibility) seems to be promising for our approach too, as it

potentially allows for a greater decisiveness than the traditional dominance principle in

3.5. Related Work 99

multi-criteria decision making. The extension of our framework to handle multi-criteria

decision making alongside decision making with uncertainty is a subject of future work.

Comparing our system with the more recent work by Fan et al. [70], their decision

rules are defined on the table-based decision model only,4 which means that the expres-

siveness gained from using an argumentation formalism is not put to use in the decision

making. Therefore the value added by the argumentation system is that decisions are

explained by arguments. However, those arguments always have the same structure

because of the translation into ABA. The use of argumentation does not enable any

decision rules in addition to the ones defined on the tabular model.

3.5.1.2 Other Approaches

Dimopoulos [29] covers multi-criteria decision making with argumentation, introduc-

ing a new decision rule called regime. Under this rule, an option A1 is preferred over an

option A2 if the criteria in which A1 outranks A2 are more important than those in which

A2 outranks A1. The regime rule is applied to decision making with abstract arguments.

Applying the regime rule to our decision making framework is left for future work.

At first sight, the rule seems more interesting than, for example, strict and weak domi-

nation, because it allows to make more comparisons (i.e. it is more decisive).

An interesting approach to argumentation in decision making is presented by

Visser [23]. An existing formalism for qualitative multi-criteria decision making, QPS

(Qualitative Preference Systems) is translated to an argumentation language. The aim

of a QPS is to determine preferences between outcomes, using a combination of primi-

tive criteria and compound criteria. The latter are divided into cardinality criteria (pre-

ferring an outcome if it meets a larger number of criteria) and lexicographic criteria

(preferring an outcome if it meets a single more important criterion).

The argumentation language in which QPS are modeled has a fixed set of primi-

tives and inference rules. The primitives can be used to describe the QPS (for example,

to say that c is a cardinality criterion with subcriteria c1,c2). The inference rules cod-

ify how preferences are derived in QPS. Arguments about preferences are built from

an object language and inference rules and evaluated using dialectical trees. The cor-

respondence between preferences in QPS and preferences in the argumentation system

4In fact the translation of the table-based model into ABA depends on the choice of decision rule

3.5. Related Work 100

is proved.

The second part of the paper [23] concerns reasoning with background knowledge.

It adds domain-specific rules to the object language and a defeasible modus ponens

inference rule to the meta language.

To compare the work of [23] with our own work, we first discuss the differences in

the argumentation formalisms. Our proposal uses ASPIC+ whereas [23] uses a custom

language for expressing preferences. The two works also have different semantics as

we use Dung’s argument graphs whereas [23] uses dialectical trees.

Further differences between the two proposals can be found on a more conceptual

level. [23] is a multi-criteria approach whose input is a set of preferences over outcomes

and a hierarchy of criteria, from which a larger set of preferences over outcomes is

derived. We on the other hand propose a system for decision making with uncertainty

that takes as input an ordered set of consequences and some background knowledge

describing how those consequences may come about, and produces as output a ranking

of options. The focus of [23] is on how to produce the ordered set of consequences,

which we assume to exist already.

The approach by Baroni et al. [71, 72] is closely related to our proposal because

it covers the same domain, namely engineering debates. In [72] a new argumentation

system is developed which combines bipolar argumentation with the IBIS framework

for design documentation. Their method assigns a numeric score to each option by

using a scoring function, a concept similar to the aggregate function we saw in multi-

criteria decision making. The aggregate function proposed in [72] can potentially be

applied to our own work as well. Conversely, our approach extends to decision making

with uncertainty (about the state of the world), which is not covered by theirs.

Evripidou et al. [73] describe a system for collaborative decision support in de-

sign. The system combines argumentation theory with case based reasoning and ontol-

ogy techniques to provide a comprehensive platform for analysing debates of individual

issues and retrieving relevant information from past decisions.

3.5.2 Decision Making With Uncertainty

Decision making with uncertainty in the context of abstract argumentation has been

studied in several papers by Amgoud and Prade [33] and Amgoud et al. [28].

3.5. Related Work 101

Besides the fact that we require a logic-based argumentation framework – in order

to be able to make inferences (see page 42 in Chapter 2) – there are several differ-

ences in the interpretation of possible worlds and how they relate to the acceptability

of arguments, which we are going to explain in detail.

In [28], abstract argument graphs are used for a decision making system with

uncertainty. In their system, there are two distinct sets of arguments: practical argu-

ments and epistemic arguments. Epistemic arguments represent the possibly inconsis-

tent knowledge from which practical arguments for options are made upage All prac-

tical arguments are in a positive relation to options, that is, they are arguments pro

but never arguments con. Practical arguments cannot support more than one option,

which is reflected in the attacks relation between practical arguments: If two practical

arguments support two different options then they attack each other. This leads to an

argumentation system that (in its practical arguments) has symmetric attacks only.

Every option is assigned a status of sceptical, universal, argued, credulous, rejected

or non-supported. This status is determined by the status of practical arguments in

favour of that option. The status of practical arguments in turn is determined by the

number and kind of extensions an argument belongs to. For example, a sceptically

accepted argument belongs to every preferred extension. This implies that a system

with symmetric attacks only does not have any sceptically accepted arguments (unless

the attacks relation is empty).

Attacks are turned into defeats using a preference relation over arguments, which

results in the resolution of symmetric attacks unless the two arguments involved cannot

be compared. The preference relation has great impact on the extensions of the argu-

ment graph and thus on the ranking of options. In spite of its importance, the preference

relation is not formally specified. In the examples, preferences between arguments are

derived from (a) preferences of goals and (b) likelihood of states of the world, but this

is done ad hoc (as evidenced by the fact that neither states of the world nor goals play

a role in the formal definitions).

The approach [33] deals with uncertainty and preferred extensions. It does so by

using preferred semantics (unless stable extensions exist) and defines arguments to be

acceptable if they are in every extension. However, this is problematic if a mutual

attack cannot be resolved. Consider the classical “umbrella” example: It may rain or it

3.5. Related Work 102

may not rain with equal likelihood and we have to decide whether to take an umbrella.

Apart from the two goals “staying dry” and “not carrying extra weight” we want to

look respectable because we are going to a funeral. Unfortunately we only have a

colourful children’s umbrella. Now there are two arguments for leaving the umbrella

and only one for taking it, so intuitively we would decide against taking the umbrella.

If we modeled the decision using the system of [33], both options would have the

same number of arguments pro: zero. This is because neither argument pro is in every

preferred extension.

Of course one can usually determine whether it is more likely to rain or not, but

in complex decision problems the probabilities or even relative likelihoods are often

impossible to assign. In that case it is common to assume equal probabilities for all

outcomes, a principle known as “tallying” (which we applied in Section 3.3.5 on deci-

sion rules).

In order to represent multiple possible worlds in the system of [33], they would

have to be made part of the options. This has two disadvantages: There is a growth of

the number of options (e.g. two possible actions to choose from and two possible states

of the world result in four options) and, since arguments are for or against options, they

can now be for or against states of the world, conflating the original problem of decision

making with the tangential problem of determining the state of the world. In contrast,

our system uses preferred extensions to separate states of the world from options.

By delegating the definition of this preference relation, the system of [28] therefore

fails to answer the question of how goals, knowledge and possible worlds influence the

ranking of options.

In summary, the proposal [28] differs from our approach in the following ways.

(1) We instantiate arguments with knowledge whereas they use abstract arguments.

(2) We explicitly consider consequences (goals) and have a formal notion of states of

the world. (3) The ranking of options in our system is ultimately determined by the

knowledge available and by the ranking of consequences (goals), whereas in [28] it is

determined by a preference relation over arguments that has to be supplied as the input.

3.5. Related Work 103

3.5.3 Qualitative Decision Theory

Qualitative decision theory is not concerned with formal methods of argumentation,

but we review it here briefly because it highlights some of the limitiations of the non-

numeric approach to decision making under uncertainty. In particular we review the

work of Didier Dubois et al. on qualitative decision theory ([74, 54, 75]).

In Dubois et al. 2002 [54], a purely symbolic approach to decision making under

uncertainty is investigated. Symbolic in this context means that neither the probabilities

of possible worlds, nor the decision maker’s preferences are quantified (our approach

falls into the same category). The article compares the symbolic approach with the

probabilistic approach to decision making under uncertainty, and comes to the rather

negative conclusion that “purely symbolic approaches to both rational and practically

useful criteria for decision making under uncertainty have serious limitations in terms

of expressive power” [54, page 483], because the necessary rationality conditions im-

pose great limitations on the likelihood ordering of possible worlds.

In a subsequent journal article [75] Dubois et al. extend the qualitative decision

making framework introduced in [54] to a full-fledged axiomatic approach to qualita-

tive decision theory with preference relations and comparative uncertainty.

It is clear from [54, 75] that a purely symbolic “version” of Savage’s [10] decision

theory is either very limited in the models it admits, or produces undesirable output (i.e.

with an intransitive ordering of actions). The natural question to ask now is whether

our own decision making framework is open to similar criticism. We can answer it by

comparing our approach to qualitative decision theory in Dubois’ sense in more detail.

The decision framework in [54] tries to stay as close as possible to Savage’s original

definitions by replacing the requirement for quantified probabilities and preferences

with a (weaker) requirement for orderings on both dimensions. As a result, there is a

two-tiered model of probabilities, where possible worlds are sets of atomic events, and

it is the ordering of events that determines the ordering of possible worlds (possibly

resulting in cycles such as a > b > c > a). In our system we adopt a different notion

of possible world: It is the set of preferred extensions of an argument graph G (see

Definition 32). Possible worlds in our work are therefore an epistemic concept, based

purely on the acceptability of sets of arguments. Further, we do not assume an ordering

of possible worlds - the only place where we make assumptions about the elements of

3.5. Related Work 104

a possible world is in Section 3.3.5.1 where the number of possible worlds in which an

argument is acceptable is taken as a measure of the strength of that argument. By re-

moving the need to partially order events (as the constituent parts of possible worlds in

Dubois’ sense) we avoid the problem of circularities in the ordering of actions, because

we do not need to combine the two scales, events and preferences. In probabilistic

decision theory, this “combination” of the two scales is achieved through multiplica-

tion, resulting in expected utilities. In qualitative decision theory, the “combination” is

exactly what causes the inconsistencies mentioned above.

3.5.4 Enforcement

The issue of enforcement has been addressed both on the level of abstract argumenta-

tion (e.g. [65]) and in terms of concrete argumentation systems [76].

Čyras and Toni [76] address enforcement indirectly, as part of an investigation of

non-monotonic inference properties in ABA. They define two properties – cumulative

transitivity and cautious monotonicity – and study them under different semantics in

ABA. The paper then deals with confirmation of assumptions, which means deleting

an assumption ψ from the set of assumptions and adding a defeasible rule with conclu-

sion ψ instead. The difference to our work is that we are interested in purely additive

information changes, i.e. achieving status change without the deletion of arguments.

On the other hand, we only consider two semantics (grounded and preferred), and did

not study cumulative transitivity and cautious monotonicity in our setting.

3.5.4.1 Argumentation-Based Belief Revision

Enforcement is also related to belief revision. Within argumentation, belief revision has

been addressed for abstract argumentation [67, 77, 78], agent-based argumentation [79,

80], probabilistic argumentation with DeLP [81, 82] and possibilistic argumentation

with fuzzy labels [83].

Belief revision in abstract argumentation is achieved by modifying the set of ar-

guments or the set of attacks of an abstract argument graph. Since the arguments in

abstract graphs are devoid of content and their only interaction is captured in the at-

tacks relation, one can add arguments and attacks as required, and the challenge for

belief revision approaches is to find the best (usually minimal in some sense) of all

possible changes that achieve the desired goal.

3.6. Conclusion 105

In our approach, we work with structured arguments in the ASPIC+ framework.

The graph of arguments and attacks is a product of the knowledge base, and so any

changes to it have to be expressed as changes to the knowledge base. This is why we

imposed a number of constraints on the ASPIC+ systems used in this thesis (see Section

2.3.2 on page 32). Our contribution to the field is therefore to establish the parameters

that allow enforcement in ASPIC+.

3.5.4.2 Dynamics of Argumentation Systems

Our development of enforce and related operations was driven by the requirement to

change the status of a set of arguments from credulously accptable to sceptically ac-

ceptable. The change of status of an argument after updating an argumentation system

has been researched under the term argument dynamics [84], or dynamic argumenta-

tion frameworks [85]. Similar to the work on belief revision discussed above (a lot

of builds upon argument dynamics), these approaches focus abstract argumentation or

DeLP [86, 87]. While our work is aimed at (a subset of) the ASPIC+ system, it would

be interesting to compare it with prior work on DeLP and ultimately position it in the

framework of belief revision, similar to the approach taken in [81].

3.6 Conclusion
We will now discuss how ADF meets the five requirements that were set in section

3.2.4, and then review how the developments of this chapter prepare us to analyse

decision processes, sequences of decisions, in the next chapter.

3.6.1 Discussion

In Section 3.2.4 we laid out five shortcomings of the traditional, non-argumentation

based approach to decision making in light of knowledge reusability. Our decision

framework ADF addresses these five points:

1, Opaque resoning process Preferred decisions in ADF are backed by arguments.

Those arguments are part of grounded extensions of an argument graph generated from

a knowledge base and are therefore based on a formal model of the domain. This

model is part of the ADF, which means outside of that knowledge base, no additional

information is needed to reproduce the reasoning process.

3.6. Conclusion 106

2, Local optimum With the notion of recommended decisions in ADF, a decision

maker does not have to enumerate the possible decisions manually. Rather, they are

the decisions are defined by the knowledge base. The problem of identifying possible

decisions has thus been replaced by the problem of modeling the domain.

3, Proprietary documentation formats Since ADF relies on a formal language with

an inference mechanism, it may easily be transformed to any logic-based model of

knowledge, for example an ontology. Ontologies, which are based on description log-

ics, are a widely used method of recording domain knowledge. Conversely, domain

knowledge from an ontology can be transformed into ADF rules. Williams and Hunter

[25] describe how knowledge from an ontology can be used in the argumentation pro-

cess.

4, Manual analysis With the domain knowledge represented as rules used in argumen-

tation, automated decision analysis is possible as discussed in Sections 3.3.3 and 3.3.4.

5, Costly retrieval of documentation For ADF systems, the problem of re-evaluating

previous decisions depends mainly on the data structure chosen for the knowledge base,

because it is sufficient to retrieve the relevant rules and assumptions from previous

decisions. It is not necessary to perform the entire analysis again.

In Section 3.2.3, we presented decision reusability and claims management as

two use cases for documentation in the aerospace industry. Both require a formal,

structured documentation of decisions. If an argumentation based system is used for

decision making, then the documentation could be generated by the same system with

no additional cost, since the arguments used by the system to evaluate decisions are,

at the same time, formal justifications of decisions. Because they are structured (as

determined by the contents of the knowledge base), they can easily be converted into a

structured format for documentation, for example an ontology.

In this chapter we developed an argumentation-based model of decision making

that combines decision making with uncertainty with multi-criteria decision making.

We now have the building blocks needed to model sequences of decisions: We can

evaluate options according to how well they meet our criteria under scenarios, and we

can adjust our knowledge base after making a decision.

3.6. Conclusion 107

3.6.2 Future Work

The interplay between the logic based on which arguments are formed, and the ac-

ceptability of arguments – as determined by argument graph semantics – looks to be

a promising area for future work in argumentation in general [88], and this is also the

case for our application of the theory in the domain of decision making.

We see opportunities for future work mainly in the area of decision making with

uncertainty (Section 3.3.4). First, we want to extend our notion of possible worlds

(Definition 32) with a degree of probability - whether qualitative as in the work of

Dubois [75], or quantitative, using classical probability theory or one of the weaker

alternatives proposed in the AI literature. Since possible worlds in our understanding

are the same as preferred extensions and thus sets of arguments, assigning probabilities

to them may create an interesting dynamic with the underlying knowledge base. This

work can build on recent proposals for probabilistic argumentation (e.g. [60, 61]).

A second and related concern is the relationship between probabilities of possible

worlds, and the utilities of goals. In the purely symbolic setting of [54], this relationship

was the source of some problems related to the consistency of the system’s output. It

would be interesting to investigate if the fact that our decision problems are generated

from a knowledge base allows us to solve some of those problems, based on the fact

that arguments (and extensions) are internally consistent.

In the area of multi-criteria decision making (Section 3.3.3), we want to improve

the definition of satD (Definition 29), the function determining how many criteria are

met. In this thesis, sat simply returns a set of criteria that are achieved by a given

option, and does not distinguish the criteria any more. Therefore, the notion of domi-

nated options (Definition 30) can only be applied if an option O satisfies all of another

option O’s criteria, which seems to be relatively rare in practice. We want to consider

additional means of summarising the outcome of an option, similar to the way an ag-

gregation function agg can be defined in the traditional approach to MCDM (Definition

23).

In the area of enforcement and deactivation of rules, we are planning to compare

our proposal with the work on enforcement in abstract argumentation [65, 66, 67, 68],

and to position them within the wider field of belief revision.

Chapter 4

Argument-based Decision Process

4.1 Introduction
In Chapter 3 we developed an argumentation-based model for decision making, tak-

ing into account the need to balance several criteria as well as uncertainty about the

outcome of options. In our framework we also have the ability to adjust a knowledge

base once a decision has been made, so that knowledge which used to be only one of

several options becomes part of the “safe” core of the knowledge base (the grounded

extension).

Let us now take a step back and take another look at our goals set out in the intro-

duction. We want to describe not just individual design decisions, but entire processes

consisting of many decisions.

A lot of uncertainty exists in design processes [6], not only on the level of indi-

vidual decisions (which we considered in Chapter 3), but also on the process level –

for example, it is not clear what requirements will exist at the end of the process, be-

cause they change frequently. For example, the design of a new car should combine

new technological advancements (efficient engines, computer-assisted driving and so

on) with the aesthetic language that has already been established as part of the car’s

brand. It also has to meet a target price and profit margin. It is common for decisions

to be reconsidered at later stages, when more knowledge has become available. In the

car example, new knowledge could take the form of changed commodity prices or tax

breaks in some countries.

In this chapter we will extend our decision model by looking at decisions in con-

text, taking decision frames (see Chapter 3) as the building blocks of decision pro-

4.2. Use Case 109

cesses. We view decision processes as sequences of decisions that are related by a

common goal, or set of requirements, that they work towards fulfilling. When record-

ing the results of decisions (which options were chosen) we therefore record not only

the actual choices that were made, but also the justifications for making them, in the

form of arguments. In argumentation-theoretic terms, we record the preferred exten-

sion of a decision frame. As a consequence, every decision outcome on its own is

conflict-free. By combining the knowledge from two decision outcomes we may get

conflicts that tell us if the outcomes are incompatible.

The main contribution of this chapter is an argumentation-based model of decision

sequences based on a simple notion of decision outcome and designed to be compatible

with argument extraction techniques from natural language processing (see. Section

4.5.1 for details). The chapter is organised as follows. We begin by introducing a

use case that serves as a guide through the definitions and results. In Section 4.3, we

develop the model of decision processes and their properties. In Section 4.4 we analyse

the impact of changing a decision, by choosing a different option. Section 4.5 describes

a graph-based interpretation of decision sequences, which is useful for displaying them

graphically. We conclude with a short review of related work and a discussion (Section

4.6).

4.2 Use Case
In this section we describe the use case that motivated our work on decision processes,

expanding on the design problem introduced in Chapter 3, page 52. While the details

of the design problem are fictional, its general structure was developed as part of my

work on project DEEPFLOW. During this project, my colleagues at SAP and I created

the use case with the help of aerospace engineers at Bombardier Belfast and several

resources on engineering design [2, 5, 1]. As a consequence, the structures of this use

case and the issues it highlights are typical of large engineering projects, even though

its scope is small.

The task we are modeling is to design a component that is used in the wing of

an airplane. The design process consists of two stages, initial design and detailed de-

sign. The choices made in the initial design stage influence the options available in the

detailed design stage.

4.2. Use Case 110

In the examples, the detailed design stage will have constraints that are unsolvable,

so the preliminary design has to be changed. This illustrates how our model reflects the

non-linear nature of design processes.

4.2.1 Overview

Two metal components are to be joined by a connecting piece, forming a T-shape. The

connector itself is L-shaped and will be used on either side of the T (see Figure 3.1 on

page 52). It has two or more holes for attaching it to the two components with bolts

or screws. We have to choose a material for the connector and decide how to attach

it to the components (size and number of holes, screws or bolts, whether to insert a

protective layer between the connector and each component).

Our design has to meet some requirements. In order to function in adverse envi-

ronments, the connector’s mechanical properties (tensile strength etc.) should change

as little as possible even in low temperatures. It should withstand corrosion and strong

mechanical pressure exercised by either of the two components. In addition to these

external (imposed by the customer) requirements, there is an internal requirement that

the connector can be produced with the existing machinery in our factory. Finally there

are three dimensions in which the design should be optimised: Cost (low), production

time (short) and weight (low).

4.2.2 Stage 1: Preliminary Design

In the first stage, the material of the connecting piece has to be chosen. The dimen-

sions of the connector are determined by the two components it connects and cannot

be changed. Components like the one we are designing are usually made from a ma-

terial such as aluminium, aluminium-based alloys, or composites. Each material is

represented by a literal (al, alloys, composites).

The requirements are expressed as a set of literals, too. The component should be

strong and corrosion resistant.

We use defeasible rules to model our knowledge about the pros and cons of each

option. Aluminium is cheap and strong, but it results in a high weight. Alloys are not

as cheap as aluminium, but they have good corrosion resistance and alloy components

can be integrated easily. Finally, composites are expensive (because they are relatively

new), but their weight is low.

4.2. Use Case 111

Having weighed the options against each other we choose al as the material. In

this case study, however, our primary concern are not the individual decisions - the

framework for modeling them is the subject of the previous chapter (Chapter 3). The

aim in this chapter is to analyse the interplay of several decisions that were made in

sequence. For this reason, the knowledge base in stage 1 is relatively simple, and

detailed models will not even be given for subsequent stages. Instead, we only look at

the outcome of each stage, and the knowledge that was used to justify it.

Stage 1 is modeled in Example 32 on page 114 and its outcome in Example 33 on

page 117.

4.2.3 Stage 2: Detailed Design

In a real-world design environment, the stages of the design process would be carried

out by separate teams, each with its own area of expertise. For example, what has been

described as stage one in this case study would be the work of a structural engineering

team and stage two would be handled by specialists in electromagnetic behaviour of

the components. This enables companies to divide the work by domain rather than by

component, which would require every team to have expertise in all domains.

The second stage of the process continues with the design chosen in stage one and

implements it in greater detail. In this example, the outcome of the first stage was to

choose alloys as the material for the connector. The next problem is how to attach the

connector to the two components. There are two options, bolts or screws. If bolts are

used, then we also need to place a shim between the L-shape and one of the components

(as shown in Figure 3.1 on page 52), because there bolts alone would not be strong

enough. As a result, there are two options O2 = {O4,O5} with O4 = {bolts,shim}

and O5 = {screws,no shim}.

When connecting two components with different electromagnetic properties, there

is a risk of sparks (and therefore fire) in the event of a lightning strike, caused by

the transition of an electric charge from one component to another. We therefore try

to achieve good electromagnetic capabilities (EMC) in order to minimise the risk of

sparks: R2 = {good EMC}.

In this stage, we do not use the same knowledge base as in the previous stage,

since the work is carried out by a different group of engineers. We focus on the

4.2. Use Case 112

electromagnetic capabilities of different materials. K2 = {screws ⇒ two holes,

alloys⇒ one hole}. The use of bolts makes aluminium more susceptible to cor-

rosion:

bolts⇒¬〈al⇒ non corrosive〉 (4.1)

Additionally, we define different numbers of holes to be contradictory: one hole =

{two holes,three holes, . . .} and so forth.

When the outcome of this (the second) stage is combined with that of the first

stage, some of the earlier arguments are no longer acceptable because of the knowledge

that was added here. Example 34 on page 118 contains the outcome of this stage,

including the added knowledge.

4.2.4 Stage 3: Preliminary Design Revisited

The outcome of the previous decision stage was that some of the original arguments

in favour of choosing al are no longer acceptable, because they were attacked by ar-

guments from knowledge related to the choice of bolts for fastening the two compo-

nents. In Stage 3, we reject bolts because of those consequences, and choose screws

instead. With this choice there are no corrosion problems, and the arguments in favour

of screws are compatible with the earlier ones for choosing aluminium. The transi-

tion from stage one to three – hypothetically, assuming we skipped stage two – is an

example of a monotonic decision sequence, which means that the design has been fur-

ther specialised (by adding more formulae to the chosen option) and that there are no

conflicts in the arguments supporting it. Monotonic decision sequences are discussed

in Section 4.4.4.1.

4.2.5 Stage 4: Another Process Running in Parallel

While the materials and the mode of attachment are being finalised in stages 1 and 3,

a different engineer designs the shape and dimensions of the components. This task

could be an entire design process in itself, but for the purposes of this use case we only

consider the final outcome represented by a single formula: length(s2) = 25cm. The

length of s2 does not affect the previous decisions in any way. Example 34 on page 118

demonstrates how our system handles parallel sub-processes.

4.3. A Model of Decision Processes 113

4.2.6 Stage 5: Joining the Two Processes

At this stage the two parallel decision processes (structural design of the components

in stages 1 to 3 and their protective coating in stage 4) are combined into one final

design. It has now become apparent that screws, while still an acceptable option, do

not achieve the property of good EMC. Therefore, the outcome of joining the two deci-

sion sequences is {length(s2,25cm),al,no coating,screws}. This makes stage 5 a

monotonic continuation of stage 4 but a weakening of stage 3 (since good EMC is not

achieved anymore). See Section 4.4.4.2 for a formal definition and example.

4.2.7 Conclusions Drawn from Use Case

The use case highlights several characteristics of decisions in the engineering design

processes and their documentation. First, it is possible for decisions to be reversed if

they turn out to have undesirable consequences later on in the process. This was the

case for decision 2, which was reverted in decision 3. If a decision is reversed then

the old design documents still exist, but they are superseded by documents for the new

decision. A formal model of decision processes must be able to deal with the changing

status of decisions (and their supporting arguments) over time.

Secondly, by using design documentation to justify an option, we create an im-

plicit constraint on future decisions, namely that their justifications do not conflict with

the justifications of the current decisions. Decision 2 violated this constraint, because

rule 4.1 removed the support for an argument in favour of the outcome of decision one,

weakening the justification of decision 1.

Thirdly, decision processes are not always linear, but may comprise several sub-

processes which are executed in parallel (e.g. by different teams or contractors) and

eventually merged into the overall design. The merging of sub-processes was shown in

decision 5, which integrated decisions 4 and 3. This lead to a revision of decision 3,

where the argument for good EMC was no longer acceptable.

4.3 A Model of Decision Processes
In this section we consolidate the notion of decision outcomes (which are always

conflict-free) with our assumption that knowledge in decision processes grows mono-

tonically (including conflicts, which are resolved by rejecting some assumptions).

4.3. A Model of Decision Processes 114

An additional benefit of the technique developed here is that it produces diagrams

which can be seen as visualisations of decision processes.

When modeling decision processes we have to be careful not to conflate two dis-

tinct concepts: A specific “path” or sequence of decisions taken (a description of how

the design arrived at a certain point in the design space) and all possible paths or se-

quences of decisions, i.e. the entire design space. Since we want to analyse past de-

cisions, our model will focus on individual sequences of decisions. That way we do

not have to formalise the entire design space, but only a trace of the options that were

actually chosen and the reasoning behind decisions.

Decision sequences consist of stages. Each stage consists of a decision frame

(K,C,R) (as defined in Chapter 3, page 54) and the set of options available at that

stage. In the previous chapter, options in a decision frame were defined to be ASPIC+

knowledge bases.

Definition 51 (Decision Stage). A decision stage is a tuple S = (K,C,O,R) where

1. (K,C,R) is a decision frame (Definition 27, page 54)

2. O is a set of options

As the decision process unfolds, the wing component in our example and the

“product” in the general case are being specified in more and more detail. In our model,

the product at a specific stage is captured by the union of all options that have been

taken until that stage.

If the process is straightforward without any errors or backtracking then the knowl-

edge that makes up the product increases monotonically from start to finish. However,

the decision processes we are interested in are iterative and therefore may involve many

changes to the design, so the knowledge in their corresponding decision sequences does

not increase monotonically.

Example 32. The first decision stage (see Section 4.2.2) is defined as S1 =

(K1,C1,O1,R1) with the contents given below. The set of consequences C1 contains

values such as low weight. In S1, there is no inconsistency because none of the options

O1 to O3 contain knowledge that results in conflicting arguments. In the terminology

4.3. A Model of Decision Processes 115

established in Chapter 3, we have a multi-criteria decision problem but not a decision

problem with uncertainty.

K1 = {al⇒ high weight,

composites⇒ low weight,

al⇒ strong,

composites⇒ high cost,

composites⇒ corrosion resistant,

al⇒ non corrosive,

non corrosive⇒ corrosion resistant,

alloys⇒ medium cost,

alloys⇒ easy integration}

C1 = {low weight,high weight, . . .}

O1 = {O1,O2,O3}

O1 = {⇒ al}

O2 = {⇒ alloys}

O3 = {⇒ composites}

R1 = {strong,corrosion resistant}

Comparing the arguments for each option, we can see that O2 = {⇒ alloys} yields

the best results, because with it we can claim medium cost and easy integration.

4.3.1 Outcome of Decision Stage

The purpose of this section is to find a suitable representation of the outcome of a

decision stage. The representation should closely model the body of knowledge that

makes up the product – that is, it should contain the options that were chosen as well

as arguments for choosing them.

It should also comply with our observation that the design passes through several

intermediate stages, each with its own specialist knowledge. Only parts of that spe-

cialist knowledge are passed on to the next stage. Therefore, we cannot simply define

4.3. A Model of Decision Processes 116

decision outcomes to be the same as decision stages (that is, as Definition 51).

We will include only a subset of the knowledge of a decision stage in its decision

outcome. If an option O was chosen at a decision stage S then the outcome of S for O

includes O itself plus exactly the knowledge (set of defeasible rules) that is necessary

to create the arguments in the preferred extension that contains arguments in favour of

O. Formally:

Definition 52 (Outcome of a Decision Stage). Let S = (K,C,O,R) be a decision stage

and let O ∈ O . The outcome of S for O is an ASPIC+ knowledge base Res where

Res⊆ K∪O such that

1. There exists a preferred extension E ∈ Σpr(argGraph(K ∪O)) such that E =

args(Res) and

2. Res is the minimal knowledge base (with respect to ⊆) fulfilling Cond. 1

To distinguish decision outcomes from ASPIC+ knowledge bases in general, we

will refer to them using variations of the variable Res (instead of KB). The notation

(Res1, . . . ,Resn) will be used for sequences of decision outcomes, where each Resi is a

decision outcome. .

The outcome Res of a decision stage is non-empty if args(Res) 6= /0. Note that

every outcome of a decision stage is an ASPIC+ knowledge base, so the argument

graph argGraph(Res) can be computed. Its attacks relation will always be empty, as

shown next.

Proposition 24. If Res is the outcome of a decision stage and (A,Att) = argGraph(Res)

then Att = /0.

Proof. By contradiction. Assume that the attacks relation Att is not empty, so there

is an (a1,a2) ∈ Att. Then there are two arguments a1,a2 ∈ A such that a1 attacks a2,

so A attacks itself. This contradicts Definition 52 Cond. 1, by which A is a preferred

extension of some argument graph and therefore a conflict-free set.

According to Definition 52, every outcome Res of a decision stage (K,C,O,R)

subsumes one of the options O ∈ O , that is O ⊆ Res. We will use the function

option(Res) to refer to this option O specifically.

4.3. A Model of Decision Processes 117

Example 33. In decision stage S1 (Example 32), we get the following decision result

for O1 = {⇒ al}, aluminium:

Res1 = {⇒ al,r1,r2,r3} with

r1 = al⇒ strong

r2 = al⇒ non corrosive

r3 = al⇒ high weight

This corresponds to the outcome of stage 1 described in Section 4.2.2 on page 110.

An important property of two decision outcomes Res1,Res2 is that any inconsis-

tency (attack) in the argument graph of Res1∪Res2 originates from an argument in Res1

(respage Res2) and targets an argument in Res2 (respage Res1). In other words, taking

the union of two decision outcomes does not introduce “internal conflicts” in either of

them, and all conflicts involve one argument from each of Res1 and Res2.

Proposition 25. Let Res1,Res2 be two outcomes of decision stages and let (A,Att) =

argGraph(Res1 ∪Res2). For every (a,b) ∈ Att, a ∈ args(Res1) and b ∈ args(Res2) or

vice versa.

Proof. By contradiction. Let Res1, Res2 be two outcomes of decision stages and

let (A,Att) = argGraph(Res1 ∪Res2). Let (a,b) ∈ Att and assume a,b ∈ args(Res1)

(w.l.o.g.) This directly contradicts Propage 24.

Proposition 26. Let Res1, Res2 be two outcomes of decision stages and let G =

(A,Att) = argGraph(Res1∪Res2). Then,

args(Res1)∩args(Res2)⊆ Σgr(G)

Proof. Let Res1, Res2 and G be as required. Let A1 = args(Res1) and let A2 =

args(Res2). Let a ∈ A1 ∩A2. Either a has an attacking argument b with (b,a) ∈ Att

or not. Assume there is a b ∈ A such that (b,a) ∈ Att. Since a ∈ A1, b ∈ A2 (by Propage

25). But a ∈ A1∩A2, so a ∈ A2 and b ∈ A2, contradicting Definition 52 Cond. 1 which

implies that both A1 and A2 are conflict-free.

4.3. A Model of Decision Processes 118

Decision outcomes (Definition 52) contain exactly the knowledge that is required

to justify a decision, that is, to produce all the arguments in favour of the option that was

chosen. Decision outcomes on their own are conflict-free, but the union of two decision

outcomes may be inconsistent. In the remainder of this section we will study decision

outcomes as building blocks of decision sequences, that is, of the many decisions that

together form a design.

4.3.2 Embedding Decisions Results

Decision outcomes do not exist in a vacuum. They are part of a design process that is

ultimately driven by a goal, namely to meet a set of requirements within the constraints

of time and budget. As a result, the decisions made at each stage (and their supporting

arguments) have an effect on subsequent decisions.

Our definition of decision outcomes (Definition 52) can express such correlations

only in a limited way: Because each individual decision outcome is conflict-free, argu-

ments may be re-used in later stages, but only in the same polarity (that is, the system

cannot express the phenomenon that an argument in favour of one decision outcome

can also act as an argument against another decision outcome). Nonetheless, Defini-

tion 52 is a suitable representation of design documents, as seen in Section 4.5.1. The

decision processes introduced in this section should therefore seen as a second layer on

top of the individual decision stage. The purpose of this layer is to draw connections

between decisions, and the purpose of the lower (decision making) layer is to assess

individual decisions.

4.3.2.1 Embeddings by Example

Let us look at a bigger example to illustrate the points made above.

Example 34. The decision outcome Res2 documents a decision that was made after

Res1.

Res2 = {⇒ al,⇒ bolts,⇒ shim,r1,r4,r5}

r4 = bolts⇒¬〈al⇒ non corrosive〉

r5 = shim,bolts⇒ good EMC

We can see that ⇒ al ∈ Res2, so the decision for aluminium made earlier is still re-

4.3. A Model of Decision Processes 119

spected in the design, but rule r2 is missing from Res2. This indicates that, with the

additional knowledge available at stage 2, arguments based on r2 are defeated. The

new rule r4 in fact deactivates rule r2 so arguments that use it are not (sceptically or

credulously) acceptable.

Suppose the result Res1 from Example 33 is not followed by Res2, but by Res3

(below) instead, after the choice of adding bolts,shim was rejected because it resulted

in attacks on arguments based on rule r2. In Res3, we choose not to apply a coating

because aluminium is corrosion-resistant without coating. Also we use screws instead

of bolts for attaching the structure.

Res3 = {⇒ al,⇒ no coating,⇒ screws,r1,r2,r3,r6,r7} with

r6 = al,no coating⇒ corrosion resistant

r7 = al,screws⇒ good EMC

Independently of decisions one to three (with results Res1 to Res3), the length of the

component s2 (cf. Figure 3.1 on page 52) was decided:

Res4 = {⇒ length(s2,25cm),r8}

r8 = length(s2,25cm)⇒ weight(s2,450g)

And, lastly, the two separate decision sequences (Res1,Res2,Res3 and Res4) are

combined in the final decision Res5.

Res5 = {⇒ length(s2,25cm),⇒ al,⇒ no coating,⇒ screws,r1,r2,r3,r6,r9}

r9 = length(s2,≤ 30cm)⇒¬good EMC

Note that the conclusion of r9 is ¬good EMC, which directly contradicts the claim of

a12 (good EMC). Therefore a12 and a15 attack each other, so they cannot be in the same

conflict-free set, so at most one of the two arguments can be part of a decision outcome.

For the outcome Res5 in particular, a15 is included so a12 is excluded.

To summarise the decision process Res1 to Res5, Table 4.1 lists all arguments

4.3. A Model of Decision Processes 120

Table 4.1: Arguments in the example decision process. The column “Decision Results” gives
the decision results in which an argument is included.

Name Argument Decision Results

a1 [⇒ al;al] Res1,Res2,Res3,Res5
a2 [a1;al⇒ strong;strong] Res1,Res3,Res5
a3 [a1;al⇒ non corr.;non corr.] Res1,Res3,Res5
a4 [a1;al⇒ high weight;high weight] Res1,Res3,Res5
a5 [⇒ bolts;bolts] Res2
a6 [a5;bolts⇒¬〈r2〉;¬〈r2〉] Res2
a7 [⇒ shim;shim] Res2
a8 [a5,a7;shim,bolts⇒ good EMC;good EMC] Res2
a9 [⇒ no coating;no coating] Res3,Res5
a10 [a1,a9;r6;corrosion resistant] Res3,Res5
a11 [⇒ screws;screws] Res3,Res5
a12 [a1,a11;r7;good EMC] Res3
a13 [⇒ length(s2,25cm);length(s2,25cm)] Res4,Res5
a14 [a13;r8;weight(s2,450g)] Res4
a15 [a13;r9;¬good EMC] Res5

produced at any stage. The column “Decision Results” gives the decision results in

which an argument is included (that is, the decision results from which the argument

can be formed). Many arguments appear in more than one decision result.

The knowledge on which decisions are based often increases monotonically dur-

ing the design process. In Example 34, options and rules of Res1 are a subset of those

of Res3 and therefore args(Res1) ⊆ args(Res3). This is not the case for all decision

results as earlier arguments may disappear. For example a12 ∈ args(Res3), but a12 /∈

args(Res5), even though the knowledge base representing the actual design – as deter-

mined by the option function – increased monotonically, option(Res3)⊆ option(Res5).

How can the apparent disappearance of knowledge conform with our claim that

knowledge increases monotonically in decision processes? The answer to this question

lies in our definition of decision outcomes in Section 4.3.1. There, we defined decision

outcomes as the logical equivalent of design documents, which means that they only

contain enough knowledge to justify (make arguments for) the current decision, not

all previous decisions. However, even though some knowledge is not written down in

a design document, it is not lost to the designers. In our formal model we are free

to include additional knowledge. This inclusion of background knowledge is the idea

behind the definition of embeddings (Definition 54).

4.3. A Model of Decision Processes 121

4.3.2.2 Properties of Embeddings

In the rest of this section we will state the conditions we would like to hold for a

embeddings, and in the next section (Section 4.3.3) we will address the question of

how to construct an embedding for a given decision sequence.

We first need to define the concept of increasing knowledge formally. A sequence

of ASPIC+ knowledge bases is monotonically increasing if each element is a subset of

its successor.

Definition 53 (Monotonically Increasing). A sequence (k1, . . . ,kn) of ASPIC+ knowl-

edge bases is monotonically increasing if and only if for all 1≤ i < n, ki ⊆ ki+1.

Even if a sequence of knowledge bases is montonically increasing, the set of (scep-

tically or credulously) acceptable arguments at each stage may not be increasing, be-

cause new counter-arguments may be introduced.

A monotonically increasing sequence of ASPIC+ knowledge bases is an embed-

ding of a sequence of decision results (of the same length) if the arguments of the

i-th decision result are sceptically acceptable in the graph of the i-th knowledge base.

Since this requires both sequences (the monotonically increasing sequence of knowl-

edge bases, and the sequence of decision results) to have the same length, we represent

embeddings as functions from decision results to ASPIC+ knowledge bases with the

following properties:

Definition 54 (Embedding of Decision Results). Let S=(Res1, . . . ,Resn) be a sequence

of decision outcomes (Definition 52). An embedding E of S is a function from decision

outcomes to ASPIC+ knowledge bases such that

1. For all i≤ n, Resi ⊆ E(Resi),

2. For all i≤ n, args(Resi)⊆ Σgr(argGraph(E(Resi))) and

3. For all i < n, E(Resi)⊆ E(Resi+1)

Let us look at the conditions of Definition 54 in detail. The first one says

that every decision result Resi in S must be subsumed by its corresponding result

E(Resi). Condition 2 ensures that, at every stage i in the design process, the ar-

guments that are sceptically acceptable in Resi are sceptically acceptable in E(Resi)

4.3. A Model of Decision Processes 122

also. Since every decision outcome Resi is conflict-free, its argument graph contains

no attacks, so Σgr(Resi) = args(Resi), and the condition could alternatively be stated

as “For all i ≤ n, Σgr(Resi) ⊆ Σgr(argGraph(E(Resi))).” Finally, Cond. 3, states that

(E(Res1), . . . ,E(Resn)) is monotonically increasing, that is, no rules are lost when pro-

gressing from E(Resi) to E(Resi+1).

A consequence of conditions 2 and 3 for our example (Example 34) is that any

embedding E of (Res3,Res5) must contain attacks in argGraph(E(Res5)), even though

Res3 and Res5 on their own are conflict-free. This is because argument a15 from Res5

attacks argument a13 from Res3, and by Definition 54 Cond. 3, a13 is also an argu-

ment of E(Res5). More generally, we find that embeddings of decision outcomes may

introduce conflict even though each outcome on its own is conflict-free:

Proposition 27. Let S = (Res1, . . . ,Resi, . . . ,Resk, . . . ,Resn) be a decision sequence

with i < k ≤ n such that the argument graph G = (A,Att) = argGraph(Resi ∪ Resk)

has a non-empty set of attacks, Att 6= /0. Let E be an embedding of S. Then,

argGraph(E(Resk)) is not conflict-free.

Proof. Let a ∈ args(Resi), b ∈ args(Resk) such that (a,b) ∈ Att (the proof for (b,a) ∈

Att proceeds similarly). Let G′ = (A′,Att ′) = argGraph(E(Resk)). By Definition 54

Cond. 2, a ∈ args(E(Resk)), and by Definition 54 Cond. 1, b ∈ args(E(Resk)). Since b

attacks a, (b,a) ∈ Att ′ so Att 6= /0.

Embeddings are mappings of individual ASPIC+ knowledge bases (see Definition

2.3.2.1 on page 33), but every embedding E also defines a mapping of sequences of

knowledge bases, obtained by applying E to each element in the sequence. We will use

embeddings mostly in the latter (sequence) sense, but define them in the former (ele-

ment) sense, because it simplifies proofs and it enforces the property that embeddings

of sequences of decision outcomes are really embeddings of their constituent parts.

With embeddings we can describe the relationship between individual design doc-

uments that are conflict-free and the aggregated knowledge in a design process that

may have conflicts. The remainder of this chapter will be spent constructing embed-

dings and exploring them from different angles.

4.3. A Model of Decision Processes 123

4.3.3 Embed and Extract

First we will look at the problem of producing embeddings. It is not obvious that ev-

ery sequence of decision outcomes has an embedding, because of conditions 2 and 3

of Definition 54, which imply that asymmetric attacks must be introduced during the

course of the decision process, because the accumulated knowledge grows monotoni-

cally (Cond. 3) while the grounded extension has no such constraint (Cond. 2), so it can

shrink as well as grow. Asymmetric attacks are introduced by deactivate (Definition

47), which we can use to compute a canoncial embedding of any decision sequence S.

Definition 55 (Embed). For any sequence of decision outcomes S = (Res1, . . . ,Resn),

the canonical embedding of S is defined as

embS(Res1) = Res1

embS(Resi+1) = enforce(args(Resi+1),embS(Resi)∪Resi+1)

Example 35, below, demonstrates another intuitive explanation of embeddings:

They reify preferences of arguments, but this preference information is based on a

sequence of argument graphs and not an ordering of the arguments themselves (or the

knowledge they are based on).

Example 35. If we wanted to obtain the overall knowledge expressed in Res3 and Res5,

we could simply take their union Res3∪Res5. However, when comparing the arguments

in those two decision outcomes, we see that Res3 has an argument a12 with conclusion

good EMC and Res5 has an argument a15 with conclusion ¬good EMC. These two argu-

ments are mutually exclusive, leading to a symmetric attack in argGraph(Res3∪Res5).

As a result, neither a12 nor a15 are part of Σgr(argGraph(Res3 ∪Res5)), even though

it is clear from the context of our example that Res5 supersedes Res3. For this rea-

son, Res3 ∪Res5 cannot be an embedding of Res5, because a15’s exclusion from the

grounded extension would violate Definition 54 Cond. 3. We therefore need to encode

the “preference” that a15 has over a12.

An embedding embS of the sequence S = (Res3,Res5) recovers this missing

piece of information by creating a new rule ⇒ ¬〈r7〉. In detail, the embedding of

4.3. A Model of Decision Processes 124

S = (Res3,Res5) is given by

embS(Res3) = Res3

embS(Res5) = enforce(args(Res5),embS(Res3)∪Res5)

= enforce(args(Res5),Res3∪Res5)

= enforce({a1−4,a9−11,a13,a15},Res3∪Res5))

= deactivate(topRule(a12),Res3∪Res5)

= deactivate(r7,Res3∪Res5)

= Res3∪Res5∪{⇒ ¬〈r7〉}

The new rule⇒¬〈r7〉, added in the last line, creates an object-level representation of

the fact that r7 is not applicable anymore. This fact was only implicit in the simple union

Res3 ∪Res5, leading to the presence of two preferred extensions in argGraph(Res3 ∪

Res5).

The following result shows that we are justified in calling embS a canonical em-

bedding of S, since it works for all sequences of decision outcomes S.

Theorem 5. If S is a sequence of decision outcomes then embS is an embedding of S.

Proof. Let S = (Res1, . . . ,Resn) be a sequence of decision outcomes. We will prove

that the three conditions of Definition 54 hold.

Cond. 1 Let i ≤ n. If i = 1 then embS(Resi) = Res1, so by Definition 55, Resi ⊆

embS(Resi). If i > 1, then

embS(Resi) = enforce(Σgr(argGraph(Resi)),embS(Resi−1)∪Resi)

{by Propage 21, page 94}

⊇ Resi

Cond. 2 We can distinguish two cases, i = 1 and i > 1.

(i = 1) Let a∈ args(Res1). embS(Resi) = Res1 (by Definition 55), so args(Res1) =

args(embS(Res1)) and because Res1 is a decision outcome, argGraph(Res1) is conflict-

free by Propage 24. Therefore the grounded extension of argGraph(embS(Res1)) con-

tains extactly the arguments in args(embS(Res1)), so a ∈ Σgr(argGraph(embS(Res1))).

4.3. A Model of Decision Processes 125

(i> 1) If i> 1 then by Definition 55 case 2, embS(Resi)= enforce(args(Resi),embS(Resi−1)∪

Resi). args(Resi) is conflict-free by Definition 24, so we can apply Propage 22 and ob-

tain args(Resi)⊆ Σgr(argGraph(embS(Resi))).

Cond. 3 The final condition stipulates that (embS(Res1), . . . ,embS(Resn)) be

monotonically increasing, that is, for all k < n, embS(Resk)⊆ embS(Resk+1). Let k < n.

We distinguish two cases, k = 1 and k > 1.

Case 1. If k = 1 then

embS(Res2) = enforce(args(Res2),embS(Res1)∪Res2)

{ by Definition 55 Cond. 1}

= enforce(args(Res2),Res1∪Res2)

so by Propage 21, Res1 ⊆ embS(Res2) and therefore embS(Res1)⊆ embS(Res2).

Case 2 If k > 1 then

embS(Resk+1) = enforce(args(Resk+1),embS(Resk)∪Resk+1)

so by applying Propage 21, we directly obtain embS(Resk)⊆ embS(Resk+1).

We can also go the other way, from arbitrary sequences of ASPIC+ knowledge

bases to sequences of (conflict-free) decision outcomes, using the extract operation

defined below. It returns all the rules used by arguments in the grounded extension.

Definition 56 (Extract). For any ASPIC+ knowledge base KB, if Σgr(argGraph(KB)) =

{E} then

extract(KB) = {rules(a) | a ∈ E}

extract produces a conflict-free ASPIC+ knowledge base which contains exactly

the assumptions and rules necessary to construct all arguments in the grounded exten-

sion of argGraph(KB).

Example 36. Applying extract to the previous example (Example 35) yields the follow-

4.3. A Model of Decision Processes 126

ing:

extract(embS(Res5)) = extract(Res3∪Res5∪{⇒ ¬〈r7〉})

= {⇒ length(s2,25cm),⇒ al,⇒ no coating,

⇒ screws,r1,r2,r3,r6,r9,⇒¬〈r7〉}

extract(embS(Res5)) subsumes the original result Res5, adding the new rule⇒¬〈r7〉.

This added knowledge represents the tacit assumptions (knowledge that was implicitly

assumed) in Res5.

Example 36 demonstrated a property of extract. When we combine extract with

embS by calculating extract(embS(Resi)) for some decision sequence S and a result

Resi in S, the result contains all rules and assumptions in the original decision outcome

Resi.

Proposition 28. For every sequence of decision outcomes S = (Res1, . . . ,Resn) and

every Resi in S:

Resi ⊆ extract(embS(Resi))

Proof. Let S = (Res1, . . . ,Resn) be a sequence of decision outcomes and let

i ≤ n. Let Res′i = extract(embS(Resi)). Let r ∈ Resi. Since Resi is a deci-

sion outcome, it is minimal (Definition 52 Cond. 2), so there exists an argu-

ment a ∈ args(Resi) with r ∈ rules(a). As embS is an embedding of S (by The-

orem 5), a ∈ Σgr(argGraph(embS(Resi))) (Definition 54 Cond. 2). Then r ∈

rules(Σgr(argGraph(embS(Resi)))), so by Definition 56, r ∈ Res′i.

Embedding and extracting the first element of a sequence has no effect:

Proposition 29. For every decision sequence S = (Res1, . . . ,Resn),

extract(embS(Res1)) = Res1

4.4. Impact Analysis 127

Decision outcomes

Decision process

conflict-free, not monotonic

monotonic, may have conflicts

extractembed

Figure 4.1: Conceptual relationship of decision processes and outcomes

Proof. Let Res1 be a decision outcome and let G = (A,Att) = argGraph(Res1).

extract(embS(Res1))

{By Definition 55 case 1}

= extract(Res1)

{Apply Definition 56, let{E}= Σgr(G)}

=
⋃

a∈E

assumptions(a)∪
⋃

a∈E

rules(a)

{By Propage 24, Att = /0, so E = A}

=
⋃
a∈A

assumptions(a)∪
⋃
a∈A

rules(a)

{a = args(Res1)}

= Res1

embS is not the only embedding of a decision sequence S, but it is the minimal

one in a certain sense. The two operations emb and extract can be seen as the link

between (conflict-free) decision outcomes and (conflicting) decision processes, as the

diagram in Figure 4.1 on page 127 shows. The combination of embedding a decision

sequence and then extracting is as a way of making tacit assumptions visible, as shown

in Example 36.

4.4 Impact Analysis
Because most design processes are iterative, it is often necessary to adjust a decision

that was made in the past. Such adjustments may have external reasons (for example,

because requirements changed) or internal reasons (the design needed to be improved).

4.4. Impact Analysis 128

However, a past decision cannot be changed in isolation - subsequent decisions that

depend on it also need to be adjusted. As this section will show, our argumentation-

based model of decision sequences is well suited to analyse the impact of changed

decisions on the process.

In our terminology, if S = (Res1,Res2, . . . ,Resn) is a sequence of decision out-

comes and a change is made by replacing the second decision Res2 with Res′2, then any

embedding E of S has to be adjusted (in order to meet Cond. 1 of Definition 54). By

comparing the “new” embedding embS′ with the old embedding embS, we get an idea

of the impact the change has made.

The actual comparison of the two embeddings is done element-wise, by comparing

the argument graphs of embS(Resi) and emb′S(Res′i), where Resi and Res′i are the ith

decision outcomes of S and S′ respectively.

What is meant by comparing two decision outcomes? In Chapter 3, an argumenta-

tion-based technique for comparing options for a single decision was introduced, based

on the relative merits of each option (for example, how well it meets the requirements).

There, we evaluated each decision on its own, without considering the potential impact

on other, related decisions. In this chapter, we are interested in the impact that choosing

one decision outcome over the other has. That is, the comparison is based on the

difference between two decision outcomes Res and Res′, and not on the pros and cons

of each individual option (as in Chapter 3). This difference in turn is determined by

how many of the arguments that are accepted in subsequent decision stages would be

invalidated (and thus would have to be changed) if we changed our decision from Res

to Res′. The following example clarifies exactly what the difference between decision

outcomes is:

Example 37. Consider the decision outcome Res1 and Res2 with

Res1 = {⇒ a,⇒ b,⇒ c, Res2 = {⇒ b,⇒ c,⇒ d,⇒¬〈a∧b⇒ g〉

a⇒¬d,b∧c⇒ f,a∧b⇒ g} b∧c⇒ f,d⇒ e,}

Each of the outcomes Res1 and Res2 on its own results in a conflict-free argument

graph, as required in Definition 52. However, their union Res1∪Res2 yields an argu-

4.4. Impact Analysis 129

Table 4.2: Arguments in Example 37

Name Argument Name Argument

a1 [⇒ a;a] a6 [a2,a3;b∧c⇒ f;f]
a2 [⇒ b;b] a7 [a4;d⇒ e;e]
a3 [⇒ c;c] a8 [a1,a2;a∧b⇒ g;g]
a4 [⇒ d;d] a9 [¬〈a∧b⇒ g〉]
a5 [a1;a⇒¬d;¬d]

a1

a2

a3

a4

a5

a6

a7

a8

a9

Figure 4.2: Conflicts after a decision was changed (Example 37)

ment graph with two preferred extensions, as shown in Figure 4.2, with arguments in

Table 4.2.

The difference between Res1 and Res2 is manifested in six arguments: a1,a5 and

a8 are present in Res1 and absent from Res2, and a4,a7 and a9 are present in Res1 and

absent from Res2.

Example 37 indicates that there are two kinds of change that can be made to a

decision outcome. The first kind involves adding or removing arguments that justify a

decision, and it arises from a change in the decision maker’s knowledge. In Example

37, this kind of change is the reason why some of r1’s arguments are missing in r2 (e.g.

argument a4) and vice versa.

The acquisition of new knowledge is a necessary, but not a sufficient reason for

actually choosing a different option. It may be that the new knowledge simply rein-

forces the reasons for making the original decision. We therefore have to consider a

second kind of change, the act of “changing one’s mind” - accepting a position that is

inconsistent with the previously accepted position, thereby rejecting the old point of

view in favour of the new. Since each decision outcome is in itself consistent, this sec-

ond kind of change always implies the first kind (adding new arguments). This result

4.4. Impact Analysis 130

is formalised in Propage 34.

In the following two sections, 4.4.1 and 4.4.2 (page 137), we will analyse both

kinds of change in terms of our formal model of decision processes.

4.4.1 Impact Analysis Based on Argument Strength

In the argument graph in Figure 4.2, a8 is rejected (attacked by the grounded extension),

and a7 is only acceptable in one of the two preferred extensions, even though both

arguments were undisputed as part of their respective decision outcomes (Res2 and

Res1).

In other words, a8 and a7 are weaker in the graph of Res1∪Res2 than they were

before. The fact that the acceptability of some arguments has changed (a8 became

unacceptable and a7 became credulously acceptable) by itself does not tell us much

about the impact of choosing Res2 over Res1, because arguments from both the old,

rejected outcome (Res1) and the new outcome (Res2) are weakened by the change.

With our model of decision processes we can quantify this change, and tell whether the

overall strength of our arguments increased or decreased as a result of it.

4.4.1.1 Argument Strength

Argument strength can be interpreted in two ways (cf. Besnard and Hunter [18]). The

first interpretation, which is shared among others by the ASPIC+ system (see the dis-

cussion preceding Definition 11 on page 31), treats argument strength as an external

property, as meta-data that is supplied as a parameter to the argumentation system.

We call this the extensional interpretation of argument strength. The second approach

treats argument strength as a function of a set of arguments. That is, the strength of

an argument is defined entirely by its relationship with other arguments, and can thus

be computed without requiring any additional information. We call this the intensional

interpretation of argument strength.

Throughout the thesis we have tried to minimise the number of parameters to our

system. For example, in Chapter 3 we chose to represent different possible worlds as

the preferred extensions of an argument graph, rather than an explicit list of possible

worlds with a mapping to the formulae that hold in them. In the same spirit we choose

the intensional interpretation of argument strength. Specifically, we are going to use the

game-theoretic measure introduced by Matt and Toni [55]. In [55], the strength of an

4.4. Impact Analysis 131

argument is defined to be its expected pay-off in a game of argumentation strategy (in

the game-theoretic sense). Their approach suits our purposes for several reasons. First,

it is defined on abstract argument graphs, so we can adopt it without any additional

definitions (other than the measure itself). Second, the measure is fine-grained enough

to assign different strength to arguments with the same acceptability status (for exam-

ple, one credulously acceptable argument might have the strength 0.45 and another one

might have 0.33). This fits our requirement for the impact measure to provide more

data than just acceptability. Finally, because the measure considers no information be-

yond arguments and their attacks, it allows us to meet our requirement to quantify the

impact of changing a decision on the justifications of the design (as opposed to, say,

the quality of the design) as discussed in the first chapter of the thesis.

We will now introduce the measure by Matt and Toni in Section 4.4.1.2 below.

In the following section, we will use argument strength as a basis for measuring the

impact of choosing one option instead of another one.

4.4.1.2 A Game-Theoretic Measure

This section summarises the article by Matt and Toni [55]. Please refer to the original

article for a more detailed presentation. Our own contribution begins with Section

4.4.1.3 on page 133.

In the following we assume an argument graph G = (A,Att) as usual. The strength

of an argument a∈ A is the expected payoff of a game (G,a). The measure of argument

strength is centered around the notion of a set of strategies that can be adopted by the

opponent and proponent of a. A strategy is simply a set of arguments. The strategies

available to the proponent must include a, whereas the opponent is free to choose any

set of arguments.

Definition 57 (Pure Strategies [55]). The set of strategies for the proponent and oppo-

nent are {P | P⊆ A,a ∈ P} and {O | O⊆ A}, respectively.

The proponent is trying to defend a, so their strategies should be conflict-free. The

opponent’s strategies on the other hand should always attack a. It should also be in the

proponent’s interest to attack the opponent’s arguments and in turn avoid (counter) their

attacks.

4.4. Impact Analysis 132

We will now introduce some notation that allows us to take into account the num-

ber of attacks from one set of arguments X against another one, Y : Y←X
G = {(x,y) ∈

X×Y | (x,y)∈ Att}. The acceptability of a set of arguments X with respect to Y should

increase with the size of Y←X
G and decrease with the size of X←Y

G . This can be captured

by the following expression:

φ(P,O) =
1
2
(1+ f (|O←P

F |)− f (|P←O
F |))

for a monotonic increasing function f : N → [0,1[such that f (0) = 0 and

limn→∞ f (n) = 1. For this thesis we will stay with the definition for f proposed in

[55]:

f (n) = 1− 1
n+1

The rewards of the game (G,x) for an argument x are defined as follows.

Definition 58 (Rewards of the Game [55]). If P is not conflict-free then the opponent

should pay to the proponent the sum rG(P,O) = 0. If P is conflict-free and O does

not attack P, then the opponent should pay him the sum rG(P,O) = 1. Otherwise, the

opponent should pay the proponent a sum equal to rF(P,O) = φ(P,O).

With the strategies and rewards of the game (G,x) defined, we can now turn to its

expected payoff, which is a measure of the strength of the argument x. The expected

payoff is determined by the game’s outcome in the long run, over a large number of rep-

etitions. We assume that each time the game is played, proponent and opponent choose

their strategies according to some probability distributions X and Y . The probability

of the proponent choosing the i-th strategy (Oi) is equal to xi, and that of the opponent

choosing the jth strategy (Pj) is y j. The proponent’s expected payoff1 is therefore

E = XT RY =
n

∑
j=1

m

∑
i=1

ri, jxiy j

The proponent can therefore expect to get at least minY XT RY . The proponent can

choose X so he will select X so that this minimum is as large as possible. The propo-

1XT denotes the transpose of vector X and R denotes the matrix ((ri, j))m×n where ri, j = rF(Pi,O j)

4.4. Impact Analysis 133

nent’s mixed strategy is therefore

max
X

min
Y

XT RY

At the same time, the opponent chooses a strategy Y that minimises the proponent’s

expected payoff:

min
Y

max
X

XT RY

By the minmax theorem of Neumann [89], the two quantities have the same value v:

max
X

min
Y

XT RY = min
Y

max
X

XT RY = v

It is v, the value of the game, that is the strength of the argument x.

Definition 59 (Argument Strength [55]). The strength of an argument x in an argument

graph G is noted sG(x) and defined as the value of the (G,x) game of argumentation

strategy.

The strength of x as measured by sG(x) depends only on the argument graph G.

Moreover, it is determined entirely by the connected component (subgraph of G) that

contains x, which can make sG easier to compute in some situations. sG is bounded

between 0 and 1. sG(x) = 0 if and only if x attacks itself, and sG(x) = 1 if and only if x

is not attacked by any other argument.

4.4.1.3 Impact Measure

We can use the measure sG to assess the impact of changing a decision result Res1

to a different result Res2. Since the argument graph of Res1 is conflict-free, all of its

arguments have the same, maximum strength 1. The same is true for Res2 and its

arguments. Assuming args(Res1) 6= /0, the average strength of all arguments in Res1 is

thus always
∑a∈args(Res1) sargGraph(Res1)(a)

|args(Res1)|
=
|args(Res1)|
|args(Res1)|

= 1

However, the combination of Res1 and Res2 may result in attacks. For example, assume

that there are arguments a ∈ args(Res1) and b ∈ args(Res2) such that b attacks a in the

combined graph G = argGraph(Res1∪Res2), and there are no other attacks in G. Then,

sG(a) < 1, but for all other arguments a′ ∈ args(Res1 ∪Res2) \ {a}, sG(a′) = 1. The

4.4. Impact Analysis 134

average strength of arguments for Res1 in G is therefore smaller than one, and the

average strength of arguments for Res2 in G is still equal to one. We interpret this

situation as having improved the justification of our design by switching from Res1 to

Res2. If the situation was reversed and a attacked b, then we would have worsened the

justification of our design, because we chose to switch from Res1 to Res2 in spite of the

counterargument against Res2.

Definition 60 (Average Strength). Let G=(A,Att) be an argument graph and let A′⊆A

such that A′ 6= /0. The average strength of A′ in G is defined as

avgStrength(A′,G) =
∑a∈A′ sG(a)
|A′|

Example 38. For the decision outcomes Res1 and Res2 from Example 37 on page 128,

we get the following arguments.

args(Res1) = {a1,a2,a3,a5,a6,a8}

args(Res2) = {a4,a7,a9}

As shown in Figure 4.2 on page 129, a9 attacks a8, a5 and a4 attack each other and a5

also attacks a7. The argument graph of Res1∪Res2 is therefore G = argGraph(Res1∪

Res2) = ({a1, . . . ,a9},{(a9,a8),(a5,a4),(a4,a5),(a5,a7)}. The strength of the attacked

arguments (a8, a5, a4 and a7) according to Definition 59 is:

sG(a4) = 0.5 sG(a7) = 0.416

sG(a5) = 0.5 sG(a8) = 0.25

As a result, the average strength of arguments for Res1 is avgStrength(args(Res1),G)≈

0.79 and the average strength of arguments for Res2 is avgStrength(args(Res2),G) ≈

0.96. We conclude that in the debate over Res1 versus Res2, Res2 has the stronger

arguments.

We can now formalise our finding that all arguments within a single decision out-

come have the same, maximum strength.

4.4. Impact Analysis 135

Proposition 30. For every non-empty decision result Res,

avgStrength(args(Res),argGraph(Res)) = 1

Proof. Let G = (A,Att) = argGraph(Res). Since Att = /0, sG(a) = 1 for all a ∈ A, so

the average is also 1.

Another characteristic of avgStrength for decision outcomes is that is always pos-

itive:

Proposition 31. Let Res1,Res2 be two non-empty decision results. Let G =

argGraph(Res1∪Res2).

Then avgStrength(args(Res1),G)> 0 and avgStrength(args(Res2),G)> 0.

Proof. Let Res1,Res2 be two non-empty decision results, let G1 = argGraph(Res1),

G2 = argGraph(Res2) and G = argGraph(Res1∪Res2).

Assume avgStrength(args(Res1),G) = 0. Then for all a ∈ args(Res1), sG(a) = 0.

Since sG(x) is 0 if and only if x is self-attacking, all arguments in args(Res1) are self-

attacking. This contradicts Propage 24 which says that argGraph(Res1) is conflict-free.

The proof for Res2 proceeds analogously.

To determine whether choosing Res2 over Res1 resulted in an overall strengthening

of the decision’s justification we can take the difference between the average argument

strength of the two.

Definition 61 (Strength-Based Difference of Decision Outcomes). Let Res1, Res2

be two decision outcomes, let A1 = args(Res1), A2 = args(Res2) and let G =

argGraph(Res1∪Res2). The strength-based difference between Res1 and Res2 is

strengthDiff(Res1,Res2) = avgStrength(A2,G)−avgStrength(A1,G)

Example 39. Recall that the average strength of the two results Res1 and Res2 in Exam-

ple 38 was avgStrength(args(Res1),G)≈ 0.79 and Res2 is avgStrength(args(Res2),G)≈

0.96. Their difference is therefore

strengthDiff(Res1,Res2)≈ 0.96−0.79 = 0.17

4.4. Impact Analysis 136

Example 40. Let us look at the values for strengthDiff for the the three decision out-

comes Res1 to Res3. The results produce three sets of arguments, A1 to A3 (originally

defined in the running example introduced on page 118):

A1 = {a1, . . . ,a4}

A2 = {a1,a2,a5, . . . ,a8}

A3 = {a1, . . . ,a4,a9, . . . ,a12}

To compute strengthDiff(Res1,Res2) and strengthDiff(Res2,Res3), we need to look at

the argument graphs of Res1∪Res2 and Res2∪Res3, respectively.

For GI = argGraph(Res1 ∪Res2), we get GI = (AI,AttI) with AI = A1 ∪A2, and

AttI = {(a6,a3)}. For GII = argGraph(Res2∪Res3), we get GII = (AII,AttII) with AII =

A2∪A3 and AttII = {(a6,a3)}. The differences are therefore

strengthDiff(Res1,Res2) =
6
6
− 3.25

4
= 1−0.8125≈ 0.19

strengthDiff(Res2,Res3) =
7.25

8
− 5

5
= 0.90625−1≈−0.09

strengthDiff(Res1,Res3) =
8
8
− 5

5
= 1−1 = 0

The non-zero values of strengthDiff(Res1,Res2) and strengthDiff(Res2,Res3) are

caused by a6, which attacks a4 and thus reduces its strength to 0.25 in the graphs

of Res1∪Res2 and Res2∪Res3. When comparing Res1 with Res3, the average strength

of their arguments does not change. This indicates that Res3 is compatible with Res1 in

a way that will be discussed in Section 4.4.4 (page 149).

The value of strengthDiff is zero if there are no attacks in the combined knowledge

base.

Proposition 32. If attacks(Res1∪Res2) = /0 then strengthDiff(Res1,Res2) = 0.

Proof. If attacks(Res1 ∪ Res2) = /0 then for all arguments a ∈ args(Res1 ∪ Res2),

sG(a) = 1, so avgStrength(args(Res2),G)− avgStrength(args(Res1),G) = 1− 1 =

0.

To see that Propage 32 does not hold for the other direction, consider two deci-

sion outcomes Res1 and Res2 with arguments a ∈ args(Res1) and b ∈ args(Res2) such

4.4. Impact Analysis 137

that in argGraph(Res1,Res2), a attacks b and vice versa. Then the average strength of

args(Res1) and args(Res2) is less than one, but equal (and therefore their difference, as

expressed in strengthDiff(Res1,Res2) is still zero).

strengthDiff(Res1,Res2) ranges from negative one to positive one. A positive sign

indicates that Res2 has stronger support since its average strength is higher, and a nega-

tive sign indicates the opposite. When comparing decision outcomes with strengthDiff

we thus get an indication of the general tendency of support (whether it improved or

worsened) as well as a numeric measure of the size of the change.

4.4.2 Impact Analysis Based on Knowledge Added or Removed

If we have a decision outcome Res1 and add knowledge to it, the result will be a de-

cision outcome Res2 with args(Res1) ⊆ args(Res2). When using abstract argument

graphs (A,Att), the only statements we can make about added or removed knowledge

(as opposed to conflict) are about the “argument” component A. In Dung’s theory,

the arguments in A are atomic, so any distance measure based on A must be a general

distance measure for sets.

We could take into account that the argument graphs considered here are pro-

duced from decision outcomes, essentially ASPIC+ knowledge bases. However, this

would create an asymmetry in our distance measures, because strengthDiff (Definition

61) does not take the underlying ASPIC+ knowledge base into account, and relies only

on the resulting argument graph. For this reason, we will use a simple set-based dis-

tance measure. The distance measure argDiff(Res1,Res2) essentially counts how many

arguments are only found in one of Res1, Res2.

Definition 62 (Argument-Based Difference of Decision Outcomes). Let Res1,Res2 be

two decision outcomes. The argument-based distance of Res1,Res2 is defined as

argDiff(Res1,Res2) = |args(Res1)∆args(Res2)|

Example 41. For the decision outcomes Res1 and Res2 from Example 37, we get

argDiff(Res1,Res2) = |args(Res1)∆args(Res2)|

= |{a1,a4,a5,a7,a8,a9}|

= 6

4.4. Impact Analysis 138

The measure argDiff stays true to Dung’s formalism by not assuming any-

thing about the arguments other than the fact that they form a set. It is clear that

argDiff(Res1,Res2) cannot be zero if strengthDiff(Res1,Res2) is non-zero, because

each of Res1,Res2 is conflict-free.

Proposition 33. For any two decision outcomes Res1, Res2, if strengthDiff(Res1,Res2)>

0 then argDiff(Res1,Res2)> 0.

Proof. Let Res1, Res2 be two decision outcomes such that strengthDiff(Res1,Res2) >

0. Let G = (A,Att) = argGraph(Res1 ∪Res2) and let A1 = args(Res1) and let A2 =

args(Res2). Since strengthDiff(Res1,Res2)> 0, there must be at least one attack in Att,

so Att 6= /0. Let (a,b) ∈ Att and assume a ∈ A1 and b ∈ A2 (without loss of generality,

by Propage 25). The argument graph (A1,Att1) = argGraph(Res1) is conflict-free (by

Propage 24), so b /∈ A1. Therefore, b∈ A1∆A2, so A1∆A2 6= /0 and argDiff(Res1,Res2)>

0.

Example 42. In terms of the running example from Section 4.3, we get the following

argument differences for the decision outcomes defined in Example 34.

argDiff(Res1,Res2) = |{a2,a3,a4,a5,a6,a7,a8}|= 7

argDiff(Res2,Res3) = |{a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12}|= 11

argDiff(Res1,Res3) = |{a9,a10,a11,a12}|= 4

While the strengthDiff values for Res1, Res2 and Res3 are relatively small (see page

136, Example 40), the difference in arguments between the outcomes varies consider-

ably. The design and its justification have evolved, while conflicting justifications have

been kept to a minimum, which can be interpreted as sign of a healthy decision process.

In the following section we will take a closer look at the interplay of strengthDiff

and argDiff.

4.4.2.1 Relationship between argDiff and strengthDiff

The two measures of impact correspond to the conflict-based (strengthDiff, Definition

61) and knowledge-based (argDiff, Definition 62) distance measures. The possible

results of comparing decision outcomes Res and Res′ with strengthDiff and argDiff,

can be grouped into four categories, forming an imaginary square:

4.4. Impact Analysis 139

1. strengthDiff(Res,Res′) = 0 and argDiff(Res,Res′) = 0

2. strengthDiff(Res,Res′) 6= 0 and argDiff(Res,Res′) = 0

3. strengthDiff(Res,Res′) = 0 and argDiff(Res,Res′)> 0

4a. strengthDiff(Res,Res′)< 0 and argDiff(Res,Res′)> 0

4b. strengthDiff(Res,Res′)> 0 and argDiff(Res,Res′)> 0

The first case only occurs when Res = Res′. The second case is impossible to achieve

(see Propage 34 below). This leaves us with three interesting cases: Knowledge has

been changed, but there are no changes in argument strength (case 3), knowledge

changed, argument strength decreased (case 4a) and knowledge changed, argument

strength increased (case 4a).

Proposition 34. For any two decision outcomes Res,Res′, if argDiff(Res,Res′) = 0 then

strengthDiff(Res,Res′) = 0.

Proof. Let G = (A,Att) = argGraph(Res∪ Res′) and assume argDiff(Res,Res′) = 0.

Then args(Res) = args(Res′), so Res= Res′ (by the assumption that there are no unused

rules, see page 33). Since args(Res) is conflict-free, attacks(Res∪Res′) = /0, and we

can apply Propage 32 to get strengthDiff(Res,Res′) = 0.

We will now analyse each of the two remaining cases.

First, if strengthDiff(Res,Res′) = 0 and argDiff(Res,Res′)> 0 then either there are

no conflicts in argGraph(Res∪Res′), or the strength of Res’s arguments is exactly the

same as that of the arguments of Res′ (cf. the discussion of Propage 32 on page 136).

In either case, the added knowledge did not result in a strengthening of the decision’s

justification.

If however strengthDiff(Res,Res′) > 0, then the average strength of the ar-

guments of Res′ is higher (in Res ∪ Res′) than that of the arguments of Res. If

strengthDiff(Res,Res′) < 0, then the average strength of Res is higher, and switch-

ing from Res to Res′ resulted in a relative weakening of the reasons used to justify the

decision.

4.4. Impact Analysis 140

Example 43. For decision outcomes Res1 and Res3 from Example 4.3 we get

strengthDiff(Res1,Res3) = 0 and argDiff(Res1,Res3) = 4, implying that their justi-

fications overlap (albeit not completely) but are not inconsistent. In our running

example, Res1 is followed by Res3, but this result shows that we could replace Res1

with Res3 without having to take a different stance on previously accepted arguments.

On the other hand, if strengthDiff(r,r′)> 0, the two decision outcomes are incom-

patible, and replacing r with r′ requires us to reject some assumptions that were made

originally.

Example 44. The two outcomes in Example 37 are not compatible, because

strengthDiff(Res1,Res2) = 2. If we replaced Res1 with Res2, we would have to re-

ject arguments a1, a5 and a8. This has implications for subsequent decisions that

were based on Res1: Any arguments which have a1, a5 or a8 as sub-arguments will be

incompatible with Res1’s replacement (Res2) and therefore have to be adjusted.

With strengthDiff and argDiff, we can get an idea of how different the justifications

of two decisions are. They bring us closer – as alluded to in the previous two examples

– to achieving our larger goal: To assess the impact of adjusting past decisions on the

overall decision process, not just on the immediately affected decision outcome.

4.4.3 Impact Analysis for Decision Sequences

The two measures of impact (Definition 61 and 62) each target a pair of decision out-

comes. However, when making a change to an earlier decision one is usually interested

in the consequences on all subsequent decisions, not just the one immediately affected.

In this section we will look at how the two impact measures can be applied to decision

sequences.

Let us assume we have a decision sequence S1 = (Res1,Res2, . . . ,Resn) and want

to replace Res1 with a different decision Res′1. The result is a new decision se-

quence S2 = (Res′1,Res2, . . . ,Resn), differing from S1 only in its first element. We

can now use strengthDiff or argDiff to compare S1 and S2 element-wise, by computing

strengthDiff(Res1,Res′1), strengthDiff(Res2,Res2), and so on. This approach is obvi-

ously no better than simply comparing Res1 and Res′1 directly, because the remaining

elements Res2, . . . ,Resn are the same in both sequences. However, even though com-

paring Res2 with Res2 with Res2 does not yield any insights, changing decision Res1

4.4. Impact Analysis 141

to Res′1 potentially still affects Res2 and other subsequent decisions. For example, if

an argument a in Res2 depends on (that is, has as a sub-argument) an argument from

Res1 that is rejected in Res′1, then a suddenly becomes inconsistent with the previous

decision. The reason why this inconsistency is not flagged in our simple comparison

of S1 and S2 is that the impact of changing Res1 to Res′1 is not carried forward to the

remaining decision outcomes. In other words, subsequent outcomes such as Res2 may

depend on Res1 implicitly rather than explicitly.

In Section 4.3.2 we developed a toolkit for drawing out such implicit dependencies

in sequences of decision outcomes: The emb operation and its counterpart extract. By

applying emb and extract to the decision outcomes in S, we get a decision sequence S′

in which every element is different, not just the first one. So in order to assess the impact

of changing Res1 to Res′1, we still compare the two outcomes initially (for example by

computing strengthDiff(Res1,Res2), but subsequent comparisons are different. Instead

of strengthDiff(Res2,Res2) we compute strengthDiff(Res2,extract(Emb′S(Res2))) and

so on. By using the emb operation, we propagate the change through the entire se-

quence S.

In order for this approach to work for changes that do not involve the very first

decision outcome, we need to take the embedding of the original sequence. To get an

idea of the conflicts introduced by changing S to S′, with respect to the i-th outcome,

we compute the strengthDiff value of the embedding (in S) of Resi and the embedding

(in S′) of Res′i.

In the following definitions, we use the term impact measure to denote any func-

tion from pairs of decision outcomes to real numbers, such as strengthDiff and argDiff.

Definition 63 (Impact on Decision Outcome). Let S = (Res1, . . . ,Resn) and S′ =

(Res′1, . . . ,Res′n) be two sequences of decision outcomes and let µ be an impact mea-

sure. The impact of changing S to S′ on the i-th element is defined as

impactµ(S,S
′, i) = µ(extract(embS(Resi)),extract(embS′(Res′i)))

4.4.3.1 Example

We will dedicate the next few pages to a large example in which we illustrate the de-

velopments so far. Recall that we introduced several decision outcomes Res1 to Res5,

4.4. Impact Analysis 142

four of which are repeated here (you can find the original definition in Example 33 on

page 117).

Res1 = O1∪K1 with Res2 = O2∪K2 with

O1 = {⇒ al} O2 = {⇒ alu,⇒ bolts,⇒ shim}

K1 = {r1,r2,r3} K2 = {r1,r4,r5}

r1 = al⇒ strong r4 = bolts⇒¬〈r2〉

r2 = al⇒ non corrosive r5 = shim,bolts⇒ good EMC

r3 = al⇒ high weight

Res3 = O3∪K3 with

O3 = {⇒ al,⇒ no coating,⇒ screws}

K3 = {r1,r2,r3,r6,r7}

r6 = al,no coating⇒ corrosion resistant

r7 = al,screws⇒ good EMC

Res5 = O5∪K5 with

O5 = {⇒ length(s2,25cm),⇒ al,⇒ no coating,⇒ screws}

K5 = {r1,r2,r3,r6,r9}

r9 = length(s2,≤ 30cm)⇒¬good EMC

In this example we will focus on the process (Res1,Res3,Res5) and change it to

(Res2,Res3,Res5) – that is, the first element of the process will be changed from Res1

to Res2. The original process (Res1,Res3,Res5) is straightforward because it produces

a monotonically growing set of options – in other words, the design is more and more

specialised but never reverted. As explained in Example 33, Res1 is not followed by

Res2 because some of the assumptions in Res1 would be invalidated by Res2. Res4 is

produced in parallel to Res3 and merged into the main process in the next step, Res5.

We can use impactµ to analyse the impact of changing S = (Res1,Res3,Res5) to S′ =

4.4. Impact Analysis 143

(Res2,Res3,Res5).

The process involves quite a few arguments and complex calculations. In order to

make it easier for the reader to follow along, we have created a diagram of the entire

process in Figure 4.3 on page 145, and listed all arguments in Table 4.3 on the same

page.

How to read Figure 4.3 The diagram on page 145 shows two versions of the same

decision process, namely S = (Res1,Res3,Res5) and S′ = (Res2,Res3,Res5). Each col-

umn corresponds to a stage (for example, the leftmost column displays Res1 in S and

Res2 in S′). The three rows show arguments found only in S (top row), arguments found

in both processes (middle row) and arguments found in S′ only (bottom row). Arrows

between arguments indicate attacks, as usual.

It is important to note that the arguments shown are those of embS and embS′ ,

respectively - that is why we also see the three arguments aA, aB and aC, which were

not part of S or S′, but are a product of the enforcement operation: aA and aB attack

arguments a5 and a7, making explicit the fact that shim and bolts are incompatible

with our choice of screws in stage 2 and therefore have to be rejected. aC attacks

argument a12 (in order to enforce a15), because by choosing Res3 we accepted the

argument against good EMC and thus rejected our earlier argument a12 which stated the

contrary.

The diagram visualises a number of interesting properties of decision processes

and their embeddings. First, we can see that the arguments at each stage are consistent

- as evidenced by the fact that all “attacks” arrows are drawn across the boundaries of

a decision outcome.

Second, we made use of Definition 54 Cond. 1, which states that in an embedding

of a decision process, each stage must contain the knowledge of its predecessor. Be-

cause of this condition we only display arguments when they are first introduced, and

do not have to repeat them later on. To find out, for example, which arguments are part

of embS at stage three, we need to consider the first three columns in the top and middle

rows. To see which arguments are part of embS′ at stage two, we need to take the first

two columns of the middle and botton rows.

Third, the diagram illustrates how enforce works as part of the Embed operation.

This is indicated by aA to aC: If we take the argument graph for embS′ at stage two (con-

4.4. Impact Analysis 144

taining arguments a1, a2, a5 . . .a12, aA and aB), we can see that its grounded extension

consists of {a1,a2,a9 . . .a12,aA,aB}. Specifically, it contains all of Res2’s arguments.

Without aA and aB, argument a11 would not be sceptically acceptable. It is however

sceptically acceptable in this case because of the use of enforce in the definition of

Embed (page 123).

Finally, we can see from the diagram what the result of extract is for any of the

stages in S or S′. For example, to get extract(embS′(Res2)) we have to look at the

middle and bottom rows (because they contain arguments for S′), and take the argument

graph for the cells in the first two columns (because Res2 is the second result, and each

stage contains all rules introduced at previous stages). We then take the grounded

extension of this argument graph to get the result of extract. In our case, the grounded

extension to consider is {a1,a2,a9 . . .a12,aA,aB}, so we can simply take the union of

the knowledge of those arguments to get extract(embS′(Res2)).

4.4.
Im

pactA
nalysis

145

Stage 1 Stage 2 Stage 3

embSonly

both

embS′only

a1 a2

a3 a4

a5a6

a8a7

a9

a10

a11

a12 a13a15

aA
aB

aC

Figure 4.3: Impact of changing from S to S′ – page 143

Table 4.3: Arguments for Section 4.4.3.1

Name Argument Attacks

a1 [⇒ al;al] -
a2 [a1;al⇒ strong;strong] -
a3 [a1;al⇒ non corr.;non corr.] -
a4 [a1;al⇒ high weight;high weight] -
a5 [⇒ bolts;bolts] a11
a6 [a5;bolts⇒¬〈r2〉;¬〈r2〉] a3
a7 [⇒ shim;shim] a11
a8 [a5,a7;shim,bolts⇒ good EMC;good EMC] a15
a9 [⇒ no coating;no coating] -

Name Argument Attacks

a10 [a1,a9;r6;corrosion resistant] -
a11 [⇒ screws;screws] a5,a7
a12 [a1,a11;r7;good EMC] a15
a13 [⇒ length(s2,25cm);length(s2,25cm)] -
a15 [a13;r9;¬good EMC] a12,a8
aA [⇒¬〈⇒ bolts〉] a5,a6,a8
aB [⇒¬〈⇒ shim〉] a7
aC [⇒¬〈r7〉] a12

4.4. Impact Analysis 146

Impact Analysis To measure the impact of changing Res1 to Res2, we proceed step by

step through the decision sequence. First, we analyse the impact on the first element

using the strengthDiff(KB,KB′) measure. The diagram on page 145 is helpful here,

too: To see what KB and KB′ should be for this invocation of strengthDiff, we can

simply set KB (the “old” knowledge base) to contain the knowledge for all arguments

in the top left and middle left cells, and KB′ (the new knowledge base) to contain

all arguments in the middle left and bottom left cells. This results in the following

calculation:

impactstrengthDiff(S,S
′,1) = strengthDiff(extract(embS(Res1)),extract(embS′(Res2)))

(By Propage 29)

= strengthDiff(Res1,Res2)

(Cf. Example 40 on page 136)

≈ 0.19

Calculating the impact on the second element is a little more complex.

impactstrengthDiff(S,S
′,2) = strengthDiff(extract(embS(Res3)),extract(emb′S(Res3)))

(Definition 55 and Res1∪Res3 conflict-free)

= strengthDiff(Res1∪Res3,enforce(args(Res3),Res2∪Res3))

(Res1 ⊆ Res3)

= strengthDiff(Res3,enforce(args(Res3),Res2∪Res3))

(K23 := enforce(args(Res3),Res2∪Res3))

= strengthDiff(Res3,K23)

(G2 := argGraph(K3∪K23); see discussion below)

=
10.75

12
− 7.5

8

≈ 0.896−0.9375

≈−0.0415

4.4. Impact Analysis 147

Here, we examine strengthDiff for Res2 and K23, which together result in the graph

G2 = (A2,Att2) = argGraph(Res2 ∪K23). As we can see in Figure 4.3, this graph

contains arguments A2 = {a1, . . . ,a12,aA,aB} and has the following attacks: a6→ a3,

aA→ a6, a5↔ a11, a7↔ a11, aB→ a7, aA→ a5, aA→ a8 and a11→ a8.

The value of strengthDiff(Res3,K23) is negative, because the average strength in

enforce(args(Res3),Res2 ∪ Res3) is lower than the average strength of arguments in

Res3 alone.

We can now compute the impact of changing Res1 to Res2 on the last element in

the sequence, Res5. The method is the same as in the previous two examples so we will

elide some intermediate steps.

impactstrengthDiff(S,S
′,3) = strengthDiff(extract(embS(Res5)),extract(embS′(Res5)))

(. . . ,G3 := (A3,Att3))

=
13.25

15
− 8.25

11

= 0.883−0.75

≈ 0.13

In the last step, the strengthDiff measure increased slightly, because one of Res3’s ar-

guments is defeated - namely a12 the arguments for good EMC, which was deactivated

in order to accomodate a15. The values 0.19 and 0.13 (first and third calculation) indi-

cate a rather large increase in the average strength of arguments (considering that the

strength is between zero and one). The impact on the second step, measured as -0.0415,

is smaller. This shows that changing S to S′ overall had a positive effect on argument

strength. To complete this example, we give the values for impactargDiff(S,S′, i) without

much detail:

impactargDiff(S,S
′,1) = |{a3, . . . ,a8}| = 6

impactargDiff(S,S
′,2) = |{a3, . . . ,a8,aA,aB}| = 8

impactargDiff(S,S
′,3) = |{a3, . . . ,a8,aA,aB}| = 8

4.4. Impact Analysis 148

The knowledge-based impact (as measured with argDiff) of choosing Res2 over Res1 is

most strongly evident in the first two elements of the sequence, where it increases from

6 to 8. After that, the impact remains the same, because no additional arguments have

to be changed in Res5 to accomodate Res2.

4.4.3.2 Impact on Decision Sequences

In order to get an indication of the impact of change on an entire decision sequence, we

can simply take the sum of the impact on its elements.

Definition 64 (Impact on Decision Sequence). Let S = (Res1, . . . ,Resn) and S′ =

(Res′1, . . . ,Res′n) be two sequences of decision outcomes and let µ be an impact mea-

sure. The impact of changing S to S′ is defined as

impact∗µ(S,S
′) = ∑

1≤i<n
impactµ(S,S

′, i)

where S′ = (Res′1,Res2, . . . ,Resn) is the changed sequence.

Example 45. Given the results from Example 4.4.3.1, we can easily compute

impact∗strengthDiff(S,S
′) and impact∗argDiff(S,S

′):

impact∗strengthDiff(S,S
′)≈ 0.19−0.0415+0.13 = 0.2785

impact∗argDiff(S,S
′) = 6+8+8 = 22

Since these values on their own do not have a unit, they gain meaning only by compar-

ing the impact of several different changes. With argDiff, as with strengthDiff before,

the impact increases as we proceed in the decision sequence.

Before we conclude this section we will show that impactµ is well-behaved: If any

two decision sequences S,S′ have a prefix in common (that is, some initial decisions are

unchanged), then impactµ will only yield a non-zero value after the change was made.

Proposition 35. Let S,S′ be two decision sequences of the same length n, let T be a

decision sequence of length k with 1 < k < n such that T is a prefix of both S and S′. Let

µ be an impact measure with µ(KB,KB′) = 0 if KB = KB′. (identity property). Then

for all l ≤ k,

4.4. Impact Analysis 149

impactµ(S,S
′, l) = 0

Proof. Follows from Definition 63 and the fact that µ(Res1,Res2) = 0 if Res1 = Res2

(identity).

The impact measures developed in this section demonstrated the value of our two-

tiered model of decision sequences. Example 4.4.3.1 in particular shows how complex

argument graphs arise from relatively simple definitions such as decision outcomes,

embeddings and the two impact measures.

4.4.4 Progress in Decision Sequences

In the paragraphs above we developed two ways of measuring change in decision out-

comes, one based on knowledge that was added or removed, and one based on conflict

arising from a change of mind. We applied strengthDiff and argDiff to two outcomes

of the same decision, in order to gauge the difference in argument strength and number

between them.

Instead of analysing the difference between two outcomes of the same decision,

we are now going to look at the difference between two decision outcomes Res1 and

Res2 where Res1 was followed by Res2, instead of replaced by it, resulting in a char-

acterisation of the “progress” of a decision sequence. That is, we get an impression of

how the coherence (conflict-freeness) and justification of decisions evolves.

The difference between Res2 replacing Res1 and Res2 following Res1 is that in the

first case, the option represented by Res1 is not part of the eventual design anymore,

because Res1 was completely replaced by Res2. In the second case, both Res1 and

Res2 are part of the final design, and Res2 is not a revision of Res1 but a refinement

of it. When talking about decision outcomes in this section we will always use their

embeddings (see Section 4.3.2 on page 118) to ensure that all implicit assumptions are

included in the analysis.

Again, we characterise progress in terms of arguments, not for example in terms of

how many of requirements have been met and how many are still open. This approach

is a good demonstration of the unique contribution that an argumentation-based model

such as ours may bring to the management of engineering design processes.

In the following sections (4.4.4.1 to 4.4.4.3), we define three binary relations of

4.4. Impact Analysis 150

outcomes: monotonic, weakening and alteration. These relations can be applied to

decision sequences by applying them to successive pairs of outcomes. For example, in

a decision sequence (Res1,Res2,Res3,Res4) we may find that the transition from Res1

to Res2 was monotonic, and the transition from Res2 to Res3 was an alteration. We then

express each of the three relations in terms of argDiff and strengthDiff.

4.4.4.1 Monotonic

Ideally, decision processes advance linearly towards their target, without any change of

requirements, reversals of decisions or other detours. The justifications of individual

decisions (i.e. the design documents) can be collated to an overall design without any

inconsistencies. Therefore, this kind of progress does not introduce any attacks on

previously accepted arguments, and results in conflict-free embeddings.

In our formal model, a monotonic transition from Res1 to Res2 has the property

that all of Res1’s arguments are part of the grounded extension of emb(Res2), that is,

they are still acceptable in Res2.

Definition 65 (Monotonic). A sequence of decision outcomes S=(Res1,Res2) is mono-

tonic iff

args(Res1)⊆ Σgr(argGraph(embS(Res2)))

Example 46. (Res1,Res3) from Example 34 is monotonic.

An equivalent definition of monotonic is that the argument graph of embS(Res2)

has an empty attacks-relation, as the following result shows.

Proposition 36. A sequence of decision outcomes S = (Res1,Res2) is monotonic if and

and only if

attacks(argGraph(embS(Res2))) = /0

Proof. (⇐) Let S = (Res1,Res2) such that attacks(argGraph(embS(Res2))) = /0. Let

a ∈ args(Res1). By Definition 54 Cond. 1, Res1 ⊆ embS(Res1), and by Definition 54

Cond. 3, embS(Res1)⊆ embS(Res2), so a ∈ args(embS(Res2)).

Since attacks(argGraph(embS(Res2))) = /0, a ∈ Σgr(argGraph(embS(Res2))).

Therefore S is monotonic.

4.4. Impact Analysis 151

(⇒) Let S = (Res1,Res2) be a decision sequence such that S is montonic. Let G2 =

argGraph(embS(Res2)). Assume that attacks(G2) 6= /0 (Proof by contradiction). Then

there exist two arguments a1,a2 ∈ args(embS(Res2)) such that (a1,a2) ∈ attacks(G2).

Since both argGraph(Res1) and argGraph(Res2) are conflict-free, the attack (a1,a2)

must be such that

1. a1 ∈ args(Res1) and a2 ∈ args(Res2) or

2. a1 ∈ args(Res2) and a2 ∈ args(Res1) or

3. a1 or a2 were introduced by Definition 55 Cond. 2, reactivate.

In case (1), a1 ∈ args(G2) (by the assumption that S is monotonic, Definition 65). Then,

a2 is attacked by an argument in the grounded extension and therefore a2 /∈ Σgr(G2).

This violates condition 2 of Definition 54, so embS is not an embedding of S, which

contradicts Theorem 5.

In case (2), by Definition 54 Cond. 2, a1 ∈ Σgr(G2) and therefore a2 /∈ Σpgrr(G2).

This contradicts the assumption that S is monotonic (Definition 65).

In case of (3), there is an “underlying” attack (a2,a′2) by. Definition 48 which can

be reduced to case (1) or (2).

Proposition 37. If a decision sequence S = (Res1,Res2) is monotonic then

strengthDiff(Res1,EmbS(Res2)) = 0.

Proof. From Propage 36 we know that attacks(argGraph(embS(Res2))) = /0, and we

can apply Propage 32 to get strengthDiff(Res1,EmbS(Res2)) = 0.

The opposite direction of Propage 37 does not hold, because Propage 32 also only

holds for the “if-then” case (see the discussion on page 136 for a counterexample).

However, if Res1 and Res2 are embedded in some larger decision process

(. . . ,Res1,Res2, . . .) then their counterparts Res′1 and Res′2 are not necessarily conflict-

free anymore, because attacking arguments may have been introduced by earlier deci-

sions.

4.4.4.2 Weakening

The support for a decision Res1 is weakened in embS(Res2) if the option of Res2 sub-

sumes the option of Res1, but the arguments of Res2 defeat at least one argument of

4.4. Impact Analysis 152

Res1. In this case, the design that was agreed on in Res1 has not been altered (only

specialised) in Res2, but its support is weaker.

Definition 66 (Weakening). In a sequence of decision outcomes S = (Res1,Res2), Res1

is weakened by Res2 if

1. option(Res1)⊆ option(Res2) and

2. ∃a ∈ args(Res1) such that a /∈ Σgr(argGraph(embS(Res2)))

Example 47. In Example 34, the transition (Res1,Res2) is a weakening one, because

argument a3 = [a1;aluminium⇒ non corrosive;non corrosive] is not part of the

grounded extension of Res2’s embedding. It is attacked by argument a6.

In a practical application of the theory, occurrences of weakening should be

flagged to the user, because they imply that some of the arguments used to justify a

decision were attacked (invalidated) later on, even though the decision itself has not

been changed. Weakening may be an accidental side effect of decision making.

4.4.4.3 Alteration

As a generalisation of weakening (Definition 66), it is possible that an argument of Res1

is defeated in embS(Res2), without option(Res1)⊆ option(Res2).

Definition 67 (Alteration). A sequence of decision outcomes S = (Res1,Res2) is an

alteration iff

∃a ∈ args(Res1) such that a /∈ Σgr(argGraph(embS(Res2)))

Example 48. In Example 34, the transition Res2,Res3 is an alteration, because the

arguments a5 = [bolts] and a7 = [shim] are part of Res2 but not of Res3.

The following result shows that any change in the option of a decision outcome

results in either an alteration or a monotonic transition.

Proposition 38. Let Res1, Res2 be two decision outcomes with option(Res1) 6=

option(Res2). Then (Res1,Res2) is either monotonic or an alteration, but not both.

4.4. Impact Analysis 153

Proof. Let Res1 = (O1,K1) and Res2 = (O2,K2) be two decision outcomes with O1 6=

O2.

Monotonic or alteration... Either O1 ⊆ O2 or not. If O1 ⊆ O2, then either (a)

args(Res1)⊆Σpr(argGraph(embS(Res2))) or (b) args(Res1)*Σpr(argGraph(embS(Res2))).

In case (a), (Res1,Res2) is monotonic by Definition 65. In case (b), there exists an ar-

gument a ∈ args(Res1) such that a /∈ Σgr(argGraph(embS(Res2))). Then, (Res1,Res2)

is an alteration by Definition 67.

If O1 * O2 then there exists a literal l ∈ O1 such that l /∈ O2. Hence there is

an argument [l] ∈ args(Res1) with [l] /∈ args(Res2) and (Res1,Res2) is an alteration by

Definition 67.

... but not both Follows from the logical form of the two defitions.

In practical applications, alterations may be a sign of a healthy decision process,

because they occur if a previous error has been corrected (as shown in Example 48).

However, it is clear from the definition that every instance of weakening is also an

alteration, so any alterations should be analysed further.

4.4.5 Summary

In the beginning of this section we tried to evaluate the impact that changing one’s

mind has on past decisions. We studied the impact by comparing the decision process

before and after the change was made. We introduced two ways of measuring impact.

The first method is strength-based and it derives from the change in argument strength

(strengthDiff, Definition 61 on page 135). The second method is knowledge-based and

it counts the number of acceptable arguments added or removed through the change

(argDiff, Definition 62 on page 137). In Example 4.4.3.1 we demonstrated both meth-

ods in detail, using the case study introduced at the beginning of this chapter.

In the second part of this section, we looked at the difference not between deci-

sion sequences, but between their individual steps. We developed a set of properties

that characterise progress in decision sequences, namely monotonic, weakening and al-

teration. The distinction between monotonic and alteration is made purely on the status

of the arguments in the first outcome r1 - either all of them are still acceptable in r2

(monotonic) or they are not (alteration). Weakening as a subclass of alteration is per-

haps the most interesting kind of change from a practical perspective, because it may

4.5. Practical Implications 154

indicate that a decision has unintended consequences.

The three properties that characterise progress rely on the notion of decision se-

quences and embeddings, for making implicit conflicts and assumptions visible.

4.5 Practical Implications
In the last section of this chapter we explain how the theory may be put to use in a

practical application and show that our theoretical model implements part of the orig-

inal vision of project DEEPFLOW. This serves two closely related purposes: First, to

demonstrate a novel potentially very fruitful practical application of argumentation the-

ory, and second, to provide motivation for the research efforts still needed to remove

the obstacles that stand between the present theoretical model and its practical imple-

mentation.

4.5.1 Decision Outcomes Represent Design Documents

The outcome Res of a decision stage (Definition 52) forms a conflict-free argument

graph, as shown in Propage 24. This graph contains all arguments in favour of the

option. Res can be seen as the formal representation of a design document that describes

why a certain option was chosen. As we discuss in the introduction (Section 1.2.1 on

page 12), this is the typical structure of engineering design documents, which focus on

the reasons in favour of a particular option (arguments pro). Arguments against that

option are not given explicitly, only implicitly in form of counter-arguments supporting

the option. This is due to the rhetorical structure of design documents, which aims to

persuade the reader that the right option was chosen.

Our definition of the outcome of a decision stage (Definition 52) therefore has the

advantage that, in theory, tuples of option and relevant knowledge could be extracted

from design documents without having to include all available options and all the expert

knowledge that was utilised in the decision making. If we define decision processes as

sequences of decision outcomes Res then our definition matches the textual artifacts

produced by actual decision processes.

An important consequence of this finding concerns the use of Natural Language

Processing (NLP) techniques for extracting arguments from text: One should not look

for arguments, counterarguments, and counter-counterarguments within the same doc-

4.5. Practical Implications 155

ument, because most of the times the arguments in one document support the same

conclusion. Instead, one should focus on the “positive” relationship between arguments

in a single document (that is, the support or sub-argument relationship), and look for

inconsistencies in the combination of several documents, for example by embedding

them in a decision sequence (see Section 4.3.2).

4.5.2 Impact Analysis

It is common knowledge in engineering (and also in other industries such as program-

ming) that there is a positive correlation between the time it takes for mistakes to be

noticed and the cost of fixing them [90]. Using the methodology we developed in Sec-

tion 4.4, we can not only turn this truism into a formal proposition (see Propage 35)

but also, and more importantly, we can give an estimation of how many decisions are

affected by change, and even to what degree.

4.5.3 Visualising Decision Processes

Decision sequences (Definition 52) are one-dimensional since the position of each de-

cision outcome in the sequence is defined entirely by its predecessor and successor.

Decision outcomes embedded in a decision process may have relationships that are

more interesting, for example those examined in Section 4.4.4.

Figure 4.4: DEEPFLOW: Visualisation of a set of design documents.

The original plans for project DEEPFLOW included a visualisation of the set of de-

sign documents for an engineering project that would give an impression of the “health”

of the design – how many decisions have been reversed or are in conflict with other dec-

sions. A sketch of this visualisation is shown in Figure 4.4.

We see a set of design decisions, represented by circles in three different colours.

4.5. Practical Implications 156

In the DEEPFLOW specification, the meaning of the colours was given as follows.

• Green: “Good decision”, no conflicts with other decisions

• Yellow: “Decision Changed”, decision was changed by a later decision

• Red: “Conflict”, decision is incompatible with other decision

This classification of decisions maps directly to the three different kinds of progress

we identified in Section 4.4.4. Decisions followed by monotonic transitions can be

coloured green, those followed by alterations yellow and decisions that are weakened

by subsequent decisions can be coloured red. The arrows in the diagram indicate a

“follows’ relationship between options, so an arrow from A to B means that B follows

A – they are part of a sequence (. . . ,A,B, . . .).

The two dimensions of the graph in Figure 4.4 are time (x-axis) and organisational

responsibility (y-axis) - that is, which group (of engineers) was responsible for a deci-

sion. The very first decision, marked (1), was made by group D. It was subsequently

revised several times, most recently by group A, marked (2). The two red arrows are

an indication that groups A and B have based their recent decisions on conflicting as-

sumptions, and should get together and restore coherence. The graph also shows that

group C has made the most decisions, although three out of its four decisions have

been revised later on, as indicated by their yellow colour. If the obstacles described

in Section 4.5.1 can be overcome, then our theoretical model of decision processes is

able to produce such diagrams automatically from a set of design documents, giving a

high-level insight into the consistency of engineering design processes.

4.5.3.1 Characterising Decisions

The analysis so far has been based on sequences of decision outcomes, but not on the

different options that were considered for each decision. Due to the nature of design

documentation, having a record of those options that were discussed but ultimately

rejected is a much stronger assumption (see the discussion on page 154). In case we do

have access to this data we can enrich the visualisation with information about options

that were considered. For example, we can apply the decision rules from Section 3.3.4

(page 62) of the previous chapter to characterise the optimism of decision makers.

4.5. Practical Implications 157

4.5.3.2 Example

We will conclude this section with visualisation of the running example originally in-

troduced on page 118. The example concists of five decision results, Res1 to Res5. We

did not discuss the organisational structure in which the process took place, except that

decision Res4 was made in parallel to Res3, and both work streams were merged in

Res5. We will therefore assume two teams: Team A is responsible for decisions Res1,

Res2, Res3 and Res5, and team B is responsible for Res4 only.

The individual arguments of this process are shown on page 145. The diagram in

Figure 4.5 below shows what the process looks like in the DEEPFLOW visualisation.

Res1 and Res3 are yellow because they were altered by subsequent decisions (Res1 by

Res3 and Res3 by Res5). Res2 is red because it is a weakening of Res1.

Figure 4.5: Visualisation of example process.

4.5.3.3 Discussion

We started with a minimal representation of decision outcomes (in Definition 52, added

a notion of embedding them in the larger context of decision processes (Definition 54),

and then looked at the possible relationships of decision outcomes within embeddings

(Section 4.4.4). The three properties we identified – no changes, changed decisions,

unchanged decisions with weakened support – can be directly mapped to the three

categories that had been thought up for project DEEPFLOW, before any of the theory

was developed. We believe that this gives additional weight to the validity of our theory.

Of course, there are many problems to be solved before a collection of design

documents can be turned into the diagram in Figure 4.4, but our model of decision

4.6. Discussion 158

processes is a first step in that direction.

4.6 Discussion

4.6.1 Related Work

To the best of our knowledge, this is the first attempt at using formal methods of ar-

gumentation for a model of engineering design processes that takes the history and

evolution of decisions into account. We can find related work in two areas: Design

rationale and measures of argument strength.

4.6.1.1 Design Rationale

Design rationale (DR) is a diagrammatic method for capturing the reasons “why an

artifact, or some part of it, is designed the way it is.” [91, page 1] Originating in

engineering design [9] it has been applied to various other areas including software

design [92, 93], architecture [94] and ontology engineering [95].

Each of the cited proposals has its own reference implementation, providing a

working definition of DR for a particular context. As a result, there is no consensus on

a generally accepted, formal definition.

Notion of Argument in Design Rationale One of the most profound differences be-

tween design rationale approaches on the one hand and models based on formal ar-

gumentation (including the one in this thesis) on the other hand is in the concept of

arguments. A significant proportion2 of DR implementations are based on the Issue-

Based Information System (IBIS [96]) with a “semi-formal graphical format for laying

out the structure of arguments” [91, page 5]. In IBIS, decisions are formulated as issues

with one or more associated positions, which in turn are supported to or contradicted by

arguments. Each position is either accepted (resolved) or rejected from the issue. The

format is called semi-formal because there is no information beyond this hierarchical

structure of issues, positions and argumentes. For example, it is not possible to infer,

say, conflicts between issues based on their arguments. The same applies to other DR

implementations, not based on IBIS. This limitation has been recognised as a major

drawback of design rationale (see Hu et al. [91, page 10] and Lee [8, page 84]).

The INFORAT system [9] is a notable exception because it adds the ability to

2About a third of those surveyed by Hu et al. [91]

4.6. Discussion 159

make inference over a design’s rationale – for example, it can flag that two conflicting

positions are supported by the same arguments. INFORAT captures the history of a

decision and it uses a list of argument schemes (called “standard claim vocabulary”),

so it is relevant both for the developments in this chapter (decision processes) and the

next (argument schemes and meta-argumentation). However, its reasoning capabilities

fall short of those of our model in several ways. First, arguments based on a standard

claim vocabulary can only be compared syntactically, and not based on an underlying

theory (for example, it is not possible to infer that one argument undermines another

in INFORAT). This also means that too many arguments may be flagged as conflicting,

because it is very well possible that the same argument may be used as support for

two conflicting options. In our system, this phenomenon would result in a non-empty

intersection of the two sets of arguments (preferred extensions) in support of the op-

tions. Second, although the concept of revising decisions exists in INFORAT, decisions

are still studied in isolation. In contrast, our model reflects the dynamics of decision

processes comprising many individual decisions, enabling for example impact analysis

as described in Section 4.4.

Producing Design Rationale Lee [8] lists the methods by which design rationale is

produced: Reconstruction (documenting decisions after the fact), record-and-replay

(recording all information produced in the design process), methodological byproduct

(following a specific design methodology which produces design rationale as an arti-

fact), apprentice (getting the system to ask questions about the process) and automatic

generation. Of these, reconstruction produces the highest quality output, but also im-

poses the highest additional effort on the design process. This classification can clearly

be applied to our own approach, as any of these methods could in theory be used to

produce formal knowledge bases. The discussion in the previous paragraphs supports

our view that the justification for a design should be extracted automatically, if at all

possible.

4.6.1.2 Measures of Argument Strength

The impact measure defined in Section 4.4.1.3 uses the change in argument strength

(Definition 61 on page 135) as a measure of the weakening or strengthening of a de-

cision justification after choosing a different option. It relies on the game-theoretic

4.6. Discussion 160

measure of argument strength by Matt and Toni [55].

When we introduced the notion of argument strength on page 130, we distin-

guished two kinds of strength: Extensional (argument strength is provided as input

to the system) and intensional (argument strength is derived from data that is already

in the system). One of the goals of our model has been to require as little input as

possible beyond the actual arguments that make up decisions, which is why we chose

the intensional approach to argument strength, with the specific proposal by Matt and

Toni [55].

Let us note here that most approaches to argument strength fall into the “exten-

sional” category. For example, the CARNEADES argumentation system [97] describes

argument strength with a partial order of arguments, similar to the ASPIC+ system in

its original form (cf. page 31). In the decision-making framework by Amgoud and

Prade [33], the strength of arguments pro and con an option is also given as a partial

order. The framework for evaluative arguments by Carenini and Moore [98], argument

strength is a function of evidence strength which in turn is derived from the preferences

of the reader. In the proposal by Dunne et al. [99], it is attacks that are weighted, rather

than arguments. In preference-based argumentation frameworks by Modgil [100], ar-

gument strength is based on preferences of the audience and the values promoted by an

argument. Argument strength has been explored in a number of other settings within

argumentation, such as compensation-based semantics [101]

Another approach is to equate the strength of an argument with its certainty. The

paper by Hunter [102] explores probabilistic argument graphs, graphs equipped with

a probability function of their arguments. In structured argumentation, the proposal

by Hunter [61] uses a probability distribution on sentences of the logical language to

derive probabilities of extensions of arguments. Krause et al. [103] define arguments

as proofs in a logic of argumentation, and represent uncertainty as a lattice over those

proofs. This approach allows for a number of different models of uncertainty.

Inconsistency In our model we define the impact of changing a decision to be the

change in argument strength of the decision’s support. Alternatively, we can define the

impact to be the change in inconsistency of the overall design. There exist a number of

ways to quantify inconsistency.

Hunter [104] proposes a measure of conflict for propositional belief bases. Their

4.6. Discussion 161

measure takes into account both the number of variables involved (contributing to) the

inconsistency, and the distribution of the inconsistency over formulae in the knowledge

base. A later paper by Grant and Hunter [105] also considers propositional belief bases.

Here, the concept of dilation is the basis for several inconsistency measures. Dilating

a formula means to look at the nearest neighbours of its models (for example, the

formula a∧ b has a single model {11}, whose nearest neighbours – differing in no

more than one truth assignment – are {11,01,10}, which is the model of a∨ b). The

amount of dilation required to reach a consistent belief base then forms the basis of the

inconsistency measures.

Besides these argumentation-specific measures of inconsistency (and argument

strength) there is a large body of work on inconsistency measures in general, for ex-

ample with probabilistic logics [106], fuzzy logic [107], propositional logic [108, 109].

In [110] the relationship of consistency gain and information loss is discussed, again

based on propositional logic, and it is established that inconsistency resolution by delet-

ing or changing formulae always leads to information loss. Our approach is based on

inconsistency resolution by expanding the knowledge base, which does not lead to

information loss (although the truth of this claim depends on the exact definition of

“information loss”).

The advantage of measuring inconsistency rather than argument strength is that

inconsistency is by definition a function of the knowledge base, and does not need to

be supplied as additional input to the system. Inconsistency measures therefore suit our

requirement of needing as little input data as possible, in addition to the actual design

justification.

Discussion While it seems natural to incorporate a notion of argument strength into

argumentation frameworks, extensional definitions of strength are problematic for our

use case, because they require additional information that often cannot be obtained

straightforwardly. For example, to reason about preferences we must have a formali-

sation of the audience’s preferences or values. Design documents do not contain such

data, so it would have to be supplied by means of annotation or meta-data. The his-

tory of design rationale (see page 158) has shown that requiring the user of a system to

manually formalise design documentation greatly inhibits the adoption of the system.

For this reason we have focused on intensional definitions of argument strength.

4.6. Discussion 162

When extracting arguments from text using natural language processing it is usu-

ally possible to quantify the certainty or plausibility that the formalisation accurately

represents the text. This data could be used as the basis for a probabilistic or possi-

bilistic argumentation framework. However, the certainty in this case would reflect the

quality of the argument extraction process, not of the strength of the extracted argu-

ments. Therefore this data is not a suitable basis for measuring the impact of change

on a decision sequence.

4.6.1.3 Argumentation-Based Planning

Our model of design decisions made by different teams over long periods of time bears

some resemblance to argumentation-based planning ([111, 112, 113], see [114] for a

recent survey), a research area motivated by the question how multiple agents, each

with its own knowledge and assumptions, can make a decision to achieve a common

goal through the exchange of arguments following some protocol – distinct from other

fields in agent-based argumentation [115] such as persuasion [116, 117], inquiry [118]

and recommendation [119].

The differences between our work and argumentation-based planning are twofold.

First, the collaboration between “agents”, or teams of engineers, in our setting is not

governed by a formal protocol (a set of rules specifying which moves are allowed at

a specific point in the game), and our model only captures the outcome of this collab-

oration, in the form of design documents and justifications. Second, our main goal is

to analyse decision processes that have already happened, for example by computing

the quality of decision justifications, or the impact that changing a decision could have.

Because of this, decisions in a valid decision sequence are not required to be optimal,

and our model cannot be used to determine decide whether an optimal solution for the

entire process exists (this is only possible for individual decisions, as covered in Chap-

ter 3, page 43). Instead, we aim to be able to represent a large number of possible

decision sequences and analyse them after the fact. In models of agent-based planning,

the goal is to arrive at a good decision that realises the agents’ goals.

4.6.1.4 Future Work

There are two main areas for future work. First, the theoretical underpinning of our

method for impact analysis should be solidified further by studying additional measures

4.6. Discussion 163

of impact. In this thesis we considered a strength-based measure and a measure of the

information contained in a model of decision processes. It would be interesting to

incorporate, for example, a notion of preferences or certainty of arguments, and to

derive an impact measure from those values.

Both of the measures we studied are based on abstract argumentation. This makes

our framework more general (because it is possible to use argumentation systems other

than ASPIC+), but it also means that we do not consider any information outside of

Dung’s argument graphs, for example about sub-arguments and supporting arguments.

We plan to investigate the use of non-classical logics, for example probabilistic or fuzzy

logics, which would allow us to utilise different measures of inconsistency such as the

ones proposed by Thimm [106] or Picado-Muiño [107].

The second area of future work is to turn this proposal into a practical application,

as outlined in Section 4.5. This involves two separate tasks: First, the automated extrac-

tion of arguments from text. While some progress has been made in this area (e.g. Bex

and Bench-Capon 2014 [120], Goudas et al. [121], Walton [122]), it is not possible yet

to extract arguments with an accuracy sufficient to enable the kind of analysis proposed

in this thesis. Second, we see a lot of potential in the visualisation of argumentative in-

formation, as explained in Section 4.5.3. The ability to produce visualisations such as

Figure 4.4 on page 155 is a major advantage of modeling decision rationale in a formal

language, a feature that is genuinely new and not possible with the software currently

used in the industry. Research work in this area includes usability studies with focus

groups, and an investigation of different layout/diagramming techniques.

4.6.1.5 Conclusion

Our argumentation-based model of decision processes consists of the two components

decision outcomes and embeddings.

Decision outcomes (Definition 52) capture the minimal knowledge that is required

to justify a decision, that is, to state all arguments in favour of the decision. A deci-

sion process, for example a engineering design process, can be seen as a sequence of

decision outcomes. Each decision outcome on its own is conflict-free, but the union of

several decision outcomes may be inconsistent.

The purpose of embeddings (Definition 54) is to draw out these inconsistencies.

4.6. Discussion 164

An embedding is a mapping of decision outcomes, which are conflict-free, to the more

general concept of ASPIC+ knowledge bases, which may or may not be conflict-free.

Embeddings encode a preference for later decisions over earlier ones, ensuring that the

latest decision outcome is always sceptically acceptable while retaining all arguments

from earlier decisions. Therefore, they ensure that arguments which are not acceptable

anymore (for example, because their assumptions no longer hold) are attacked by new,

“deactivating” arguments. Embeddings only add knowledge but never delete it, thus

making explicit any incompatibilities in the justifications of decisions. The relationship

between sequences of decision outcomes and their embeddings is made clear by Figure

4.1 on page 127.

In Section 4.4 of this chapter, we explored the properties of decision sequences

in two ways. First we developed a method for analysing the impact of changing an

earlier decision by looking at the number of new arguments and conflicts introduced

by the changed. In a similar way, we characterised the progress that has been made by

transitioning from one decision to the next. Both methods are agnostic of the underlying

domain (e.g. of engineering design) and only consider the justifications of decisions on

the level of arguments and attacks. The methods thus illustrate the unique advantages

that can be gained from a formalisation of decision outcomes in our logical framework.

The practical implications of our work were examined in Section 4.5. The two-

tiered model of decision outcomes and decision sequences is consistent with our find-

ings about real-world design documents (see Section 4.5.1). Each of those documents

on its own consistently explains why a certain part of the design was chosen, but in-

consistency arises when those individual decisions are viewed as parts of the overall

design.

In the previous chapter we looked at argumentation-based models of design de-

cisions, and in this chapter we looked at decisions as part of a design, embedded in

decision sequences. The following chapter will be concerned with what actually makes

an argument, and investigate arguments about arguments (rather than arguments about,

say, the merits of aluminium over steel).

Chapter 5

Argument Schemes

5.1 Introduction
In the previous chapters we used the ASPIC+ argumentation system and a “logical

language” L . We did not specify an inference mechanism for L , using only defeasible

ASPIC+ rules for inference. We only specified the conflict function ·, as required in the

definition of ASPIC+ (see Section 2.3.2.2 on page 33). This resulted in a two-tiered

system with deductive inferences in L in one tier, and defeasible rules in ASPIC+

in the other tier. However, an important aspect of argumentation within engineering

design has been neglected so far: Decisions are made not only on the basis of logical

inferences from some knowledge base, but also on the basis of informal arguments

(including personal convictions, experience, and preferences) and experimental data.

Any formal model of design debates must therefore be able to handle non-deductive

arguments as well as deductive ones.

In this chapter we will study how non-deductive arguments are captured by our

framework. In Section 5.2 we start by describing some common patterns of non-

deductive reasoning in more detail, in order to get a clear understanding of the different

types of arguments and inferences that our model should be able to express.

We then define an argumentation system that is specifically designed to handle

non-deductive inferences in Section 5.3. In Section 5.3.2, we introduce the notion of

meta-argumentation and show that it has an intuitive interpretation in our system. We

conclude with a practical application of the theory, a case study about the interpretation

of experimental data within our framework (Section 5.4). The case study is about

comparing different drilling methods and involves a software prototype (Section 5.4.4)

5.2. Non-Deductive Arguments 166

as well as meta-argument schemes (Section 5.4.4.5). The chapter concludes with a

review of the relevant literature (Section 5.5) and a discussion (Section 5.6).

5.2 Non-Deductive Arguments
Many argumentation systems in the literature have a base logic [123] (the underlying

logic L in ASPIC+), for example propositional or first-order logic, from which argu-

ments are built. The advantage of using a formal logic for arguments is that it provides

the means for automatic determination of both the set of arguments (by using the in-

ference relation of L) and the set of attacks (by using L ’s notion of inconsistency).

When applying the theory of argumentation to practical arguments, for example in our

domain of engineering design, one is faced with a challenge: The large majority of

real-life arguments can only be formalised in a logical language if either a lot of im-

plicit background knowledge is taken into account, or the result is rather general and

the benefits of using a logical language are lost.

With the overall goal of our project in mind (to build an argumentative model on

top of what will ideally be automatically processed documents), we will take a differ-

ent avenue altogether: In this chapter we are completely going to drop the assumption

that arguments are built with a base logic. Instead, we will only assume a set of argu-

ments that have no inference relation between them. The formalities of this approach

will be discussed in Section 5.3, but first we need to answer the question “What is an

argument?”

If we do use a base logic, then the answer is easy: In this case, “an argument is a

pair 〈ϕ,α〉 where ϕ is a minimal subset of the knowledge base such that ϕ is consistent

and ϕ entails the claim α .” [123]. This definition of an argument relies on the base logic

for all three conditions (minimality, consistency and entailment). In order to verify the

three conditions and thus to confirm that a = 〈ϕ,α〉 is an argument, one only has to

know the definition of inference in the base logic. Crucially, whether a is an argument

does not depend on any other arguments (it is only the acceptability of a that can be

influenced by other arguments).

The case for inductive arguments (arguments without a base logic) is not as

straightforward. An important difference between deductive and inductive arguments

is that the latter can only be validated in a context – additional knowledge about the ar-

5.2. Non-Deductive Arguments 167

guments. To check that a deductive argument is valid, we only need a proof (in the base

logic) that the claim can be inferred from the premises. Such a proof only depends on

information contained within the argument itself. The validity of inductive arguments

depends on additional information external to the argument. For example, natural lan-

guage arguments often take the form of enthymemes. An enthymeme is an argument

that does not contain all of its premises – in other words, it is context-dependent (cf.

recent work on natural language arguments [124, 125]). To verify that an enthymeme

is an argument (even before one can determine the acceptability of that argument) one

has to take into account the context given by implicit assumptions.

Since inductive arguments are context-dependent, there is nothing that can be said

about an individual inductive argument on its own (for deductive arguments we can

at least decide whether the three conditions are met). We can only make meaningful

judgments about an inductive argument if we know its context, that is, if we know

its relationship with other inductive arguments. This idea is reminiscent of abstract

argumentation in the sense of Dung [42], and indeed we will see in Section 5.3.1 that

inductive arguments are built on top of an abstract argument graph. Inductive arguments

can be in two possible interactions with other arguments (conflict, and support).1

Let us further motivate our theory of inductive arguments by looking at two spe-

cific examples, argument schemes (Section 5.2.1) and the interpretation of experimental

data (Section 5.4.3).

5.2.1 Argument Schemes

Most arguments produced by humans are not deductive, but they are not completely

arbitrary, either. They follow well-known patterns, so-called argument schemes. Argu-

ment schemes have been studied extensively by Walton [126] and we will give a brief

review of some of the most common schemes listed in his survey.

According to [126], argument schemes are informal patterns of human reasoning.

One of the most common argument schemes is appeal to expert opinion, in which a

claim is supported by evidence of an expert (a person different from the proponent of

the argument).

The following list of argument schemes is not exhaustive for two reasons. Because

1The relationship of our framework to bipolar argumentation will be discussed in Section 5.5.2.

5.2. Non-Deductive Arguments 168

argument schemes are not formally specified, there is no consensus on how many dif-

ferent schemes there are, and it is impossible to prove that a list of argument schemes

is complete, so any attempt at compiling such a list would be vulnerable to claims of

its partiality. But our list below only includes a subset of the argument schemes in

Walton’s book [126]. It has been purposefully selected to draw out the possible im-

plications that argument schemes may have on arguments they are used in, in order

to provide a good motivation for the theoretical model developed in Section 5.3. In

addition, we placed special emphasis on argument schemes that are commonly used in

engineering debates.

Notation Throughout the examples in this chapter we will use free variables X ,Y,

These variables are only used as patterns that serve to build an intuition for argument

schemes. Whenever we talk about concrete argumentation systems, we assume that all

free variables have been eliminated by replacing them with appropriate values. This

practice is not only in line with ASPIC+ conventions but it also greatly simplifies the

formal notation.

Since a formal definition for meta-ASPIC will only be given in the following sec-

tion (page 178), we are going to assume the same syntax ASPIC+ for arguments as

in other places in this thesis. To see how argument schemes are represented in meta-

ASPIC, the reader is referred to Section 5.3.1.1 on page 182.

Appeal to Expert Opinion Recall the following argument from Chapter 4 (page 120).

It claims that a structure is non-corrosive because it is made of aluminium:

[[al];al⇒ non corrosive;non corrosive] (A1)

This argument does not provide any evidence in support of the claim, except the defea-

sible rule al⇒ non corrosive. But what is our justification for applying this rule?

We can imagine an expert E (who specialises in the science of corrosion) claiming that

components made from aluminium are not prone to corrosion. The expert E would

be able to produce an argument for this rule, that is, an argument whose claim is

5.2. Non-Deductive Arguments 169

al⇒ non corrosive:

[[al⇒ Al oxide coating];Al oxide coating⇒ non corrosive;

non corrosive]
(A2)

Argument A2 says that aluminium does not corrode because it is coated in a layer

of aluminium oxide (this layer is actually caused by corrosion of pure aluminium).

If prompted, E would be able to produce additional arguments in support of A2, for

example scientific studies or a more in-depth explanation of the phenomenon involving

the reaction of aluminium oxide with water at a molecular level.

But in order to make argument A1, it is enough to refer to E’s expert opinion - we

do not actually have to produce argument A2 as well. This particular argument scheme

is therefore a way of pruning the tree of supporting arguments which would otherwise

be very difficult to keep track of during a design debate. On the other hand, if we rely

on argument A1, then we open ourselves to attacks of the form “E is not an expert” and

so on – regardless of whether E’s statement is true or not.

The appeal to expert opinion in schematic terms is shown below, based on the

original definition in [127]. The variables X , D and C stand for expert, domain and

claim.

[Expert(X ,D),Domain(C,D),Claims(X ,C)⇒C] (Exp)

To apply the scheme Exp to argument A1, we can instantiate it as follows:

[Expert(E,metals),Domain(A1,metals),Claims(E,A1)⇒ A1] (Exp(A1))

Argument Exp(A1) shows that the claim we made in A1 is backed up by E, who is an

expert in “metals”.

Argument from Alternative The argument scheme “Argument from Alternative” con-

sists of stating that there are two options, a and b, which are mutually exclusive and

collectively exhaustive. One then has to show that a is not viable, which leaves only b

as a logical conclusion. For example:

[[¬composites];¬composites⇒ al;al] (A3)

5.2. Non-Deductive Arguments 170

Argument A3 says that composites are ruled out as a material, and therefore alu-

minium has to be chosen. However, the only reason why the defeasible rule

¬composites⇒ al holds is that composites and al are mutually exclusive, and one

of the has to be chosen. We can therefore give the following example in support of our

claim:

[alternative(composites,al);alternative(X ,Y)⇒ (¬X ⇒ Y);

¬composites⇒ al] (A4)

With argument A4, we can give a reason for inferring al from ¬composites in argu-

ment A3. However, we need to establish first that the two options are mutually exclusive

and collectively exhaustive (or at least be ready to defend our argument against attacks

on those premises). Again, this argument schemes saves us from having to elaborate

on the benefits of al, instead relying on it being the only viable option.

[¬alternative(composites,al)] (C1)

A simple counter-argument to A4 is given by C1. By denying the assumption

alternative(composites,alu), we can derive an attack on A4. This counter-

argument does not draw into question the scheme (argument from alternative), it only

attacks the application of the scheme to this particular instance.

Argument from Positive Consequences The next argument scheme, Argument from

Positive Consequences, is perhaps the most fundamental one as far as decision mak-

ing is concerned: We should choose an option a because a will bring about positive

consequences. For example:

[[result(al,low cost)];result(al,low cost)⇒ al;al] (A5)

5.2. Non-Deductive Arguments 171

In argument A5, we argue that aluminum is the right choice because it is a low-cost

material. We can support this argument by making the underlying scheme explicit:

[result(al,low cost),desirable(low cost);

result(X ,Y),desirable(Y)⇒ Y ;result(al,low cost)⇒ al] (A6)

When using the argument scheme from positive consequences, we have to establish

that the consequences are indeed good, and that choosing that particular option will

bring about the consequences.

Personal (ad hominem) Arguments Another common argument scheme is that the

appeal at the person (ad hominem). This scheme is an argument about the proponent

of another argument, not against that other argument. There are many types of the ad

hominem argument – for example, one can claim that the proponent of an argument is

not qualified to make the argument, or that they have been known to make false claims

in the past, etc.

[proponent(al,james);proponent(al,james)⇒¬al;¬al] (A7)

Argument A7 is a counter-argument against choosing aluminium, and it is supported by

the fact that the argument for aluminium has been produced by James. The inference

can be justified by providing the following argument:

[proponent(al,james),unqualified(james);proponent(X ,Y),

unqualified(Y)⇒ (proponent(X ,Y)⇒¬X);

proponent(al,james)⇒¬al] (A8)

Note that argument A8 only need one premise related to the claim X , namely that it was

put forward by Y – no additional information about X is needed to apply the scheme

to obtain ¬X . Ad hominem arguments can therefore be constructed with very little

evidence.

The ad hominem example differs from the other schemes in an important way:

It can be used to produce arguments against an option – in other words, we can use

5.2. Non-Deductive Arguments 172

it to produce counterarguments. The other argument schemes presented here all build

up support for an argument, but A7 introduces an attack. This is important because if

we had no attacks, then there would be no reason for using Dung’s framework. Ad

hominem is not the only scheme that can produce attacks. The scheme “Argument

from Negative Consequences” for example is very similar to “from Positive Conse-

quences” (5.2.1), except that it has a negative conclusion. A7 is different from the

previous counter-argument C1, because A7 is relevant in any scenario where an argu-

ment for al is made, whereas C1 does not argue for or against al per se, but rather

attacks any arguments such as A4 which rely on the assumption that aluminium and

composites are the only two options.

We can contest the use of ad hominem by producing an argument against the de-

feasible rule ad hom = unqualified(Y)⇒ (proponent(X ,Y)⇒¬X):

[¬personal attacks⇒¬〈ad hom〉] (C2)

C2 says that because personal attacks are disallowed (they are not valid arguments),

the rule ad hom should not be used. C2 attacks any argument that does ad hom, for

example A8.

Appeal to Authority The last scheme in our survey is the appeal to authority. This

scheme subsumes appeal to expert opinion (Section 5.2.1), since experts are figures of

authority, but it includes other types of authority. For example, groups often follow a

“seniority principle” in which the opinion of the senior and more experienced members

is afforded a higher weight. We can encode the seniority principle as follows:

[proponent(al,james),proponent(composites,jane);

proponent(al,james),proponent(composites,jane)⇒ composites;

composites] (A9)

Argument A9 says that we should choose composites over aluminium because the ar-

gument for composites was put forward by Jane, whereas the argument for aluminium

was produced by James. The reasons for this preference can, for example, be explained

5.2. Non-Deductive Arguments 173

by

[proponent(al,james),proponent(composites,jane),

senior(james,jane),senior(Y,X)⇒ (proponent(X ,X ′),

proponent(Y,Y ′)⇒ Y ′);proponent(al,james),

proponent(composites,jane)⇒ composites] (A10)

It is clear that the line between appeal to authority and ad hominem arguments is blurred

- the argument for aluminium is rejected because it was brought forward by James, and

not because of the claim al (aluminium) as such.

5.2.2 Interpreting Experimental Data

It is possible to treat the interpretation of experimental data as an instance of one of

Walton’s argument schemes, for example “Argument from Experience”. However, the

status of arguments from experimental data (and to some extent from other empiri-

cal data, e.g. from past obervations) is differrent from those based on other argument

schemes. First, such arguments are more difficult to defeat because empirical obser-

vations (“numbers”) are considered to be more reliable than, say, personal feelings or

intuitions. Second, when arguments from empirical data are disputed, they are rarely

attacked on the underlying data, and more commonly on the conclusions that can be

drawn from this data. In contrast, argument schemes as a whole are more commonly

attacked on their assumptions. For example, the scheme “Argument from Expert Opin-

ion” can be attacked by arguing that X is not an expert in domain Y , or that the problem

at hand is not part of Y . Experimental results can only be attacked if mistakes were

made when conducting the experiment. Otherwise they can almost be considered to

have the same status as axioms in logic, because of their reproducibility.

A typical argument from experimental data draws an analogy between the ex-

perimental setting and the actual problem at hand. For example, one could make the

following argument based on the case study about conventional versus orbital drilling

5.2. Non-Deductive Arguments 174

(see Section 5.4 for more details):

[goodResults(diameter 5/16,conventional),

hole diameter(5/16)⇒ use conventional] (A11)

saying that because the experiment using conventional drilling techniques with a 5/16

inch diameter gave good results, and our current design involves the same diameter, we

should use conventional drilling.

The pattern of drawing analogies between the experiment and the problem at hand

can be formulated as an argument scheme, too: If the experimental outcome for tech-

nique Y and setting X was good, and our decision involves a setting similar to X , then

we can expect a similarly good outcome from technique Y .

[goodResults(X ,Y),similar(X ,X ′)

currentProblem(X ′)⇒ choose(Y)] (A12)

Of course, the quality of the argument is determined by the meaning of “similar” in this

scheme. This is drawn out in the next two arguments.

[diameter(dec1,3/8),diameter(exp1,5/16)

⇒ similar(exp1,dec1)] (A′12)

A′12 argues that the difference between the whole diameter in the experiment and the

one in our current problem is rather small, so the two settings can be considered similar

enough for the results to be transferrable. In A′12, we set X = exp1 and X ′ = dec1 to

highlight that we are applying the scheme to a concrete setting (current problem dec1

and experiment exp1).

[environment(dec1,dry),environment(exp1,wet)

⇒¬similar(exp1,dec1)] (C3)

C3 rebuts A′12, and it undercuts any instantiation of A12 for the two choices of X and X ′.

The two arguments C3 and A′12 are an example of debates over the meaning of experi-

5.2. Non-Deductive Arguments 175

mental results. The core question in this case is which of the parameters (environment,

hole diameter) is more likely to have influenced the outcome of the experiment and thus

to have an impact on hole quality. C3 is an example of a critical question, an important

concept in argument schemes which we will discuss in the next section.

5.2.3 Critical Questions

In the previous two sections, 5.2.1 and 5.2.2, we discussed arguments and counter-

arguments (for example, C1, C2 and A7) together. Prior work on argument schemes

(primarily Walton [128, 126] but also formalisations in theory of argumentation such

as [127] (expert opinion), [129, 130, 131] (law) and [132] (trust)), makes a clear dis-

tinction between critical questions (C1, C2, C3) and regular counter-arguments (A7),

which we will draw out in this section.

In Walton’s theory, there exists a list of critical questions for every argument

scheme. Each critical question identifies possible attacks on arguments from the

scheme it is associated with, by pointing out either a condition that must hold for an

argument scheme to be applied, or an exception that renders an argument scheme in-

valid for a specific instance. The first kind of critical question is called condition, and

the second kind is called exception.

Some critical questions, such as the one expressed in C1, target the conditions of

an argument scheme. Another type of critical questions is aimed at exceptions to the

applicability of a scheme, for example C2. Both kinds have in common that they do not

attack the conclusion drawn from the argument scheme directly and do therefore not

act as counter-arguments against the original proposition. Instead, they only prevent

the application of a particular argument scheme, by claiming either that its conditions

are not met, or that it is not applicable at all, regardless of the specific premises.

A good starting point for a formal characterisation of critical questions is thus

to look at the attackers of an argument from argument schemes. If the conclusion of

an attacking argument a negates one of the attacked argument’s premises, then a is

an attack on a condition of the scheme. If it is the negation of a rule, then a is an

exception to the scheme. This definition also clearly distinguishes critical questions

from counter-arguments. The latter is always a rebuttal, the former can be an undercut

or an undermining atttack. We will make this definition more precise in Section 5.3.1.1

5.3. Meta-ASPIC 176

on page 182.

5.2.4 Summary

After a brief discourse on the nature of non-deductive arguments, we examined a num-

ber of argument schemes commonly used in engineering debates. We studied five

concrete argument schemes and proposed tentative translations into the ASPIC+ ter-

minology. We also discussed arguments from experimental data and their special status

among argument schemes in the engineering domain. What all argument schemes we

considered have in common is that they are context-dependent: Each of the five argu-

ments (A1, A3, A5, A7, A9) is accompanied by a supporting argument to establish that

the premises of the scheme are met, and to turn the scheme into an ASPIC+ rule.

The assumptions underlying argument schemes are arguments on their own, and

can therefore be supported, defeated etc. In the following we will formalise the idea of

representing argument schemes as defeasible rules produced by other arguments.

5.3 Meta-ASPIC

In this section we will define an argumentation system called “meta-ASPIC” that is

designed specifially to reason about argument schemes. Its syntax is similar to the

ASPIC+ syntax we have been using throughout this thesis, and its semantics (meaning)

are given by a translation to regular argument graphs.

The discussion in Section 5.2 made it clear that inferences are of great importance

in non-deductive arguments, because debates in engineering revolve around the ques-

tion whether a set of premises warrants a particular conclusion. The question whether

premises hold or not is of comparatively lesser importance. For our meta-ASPIC sys-

tem, we consequently take the set of facts F as given and instead focus on the formation

of arguments. First, we assume that any fact a ∈ F gives rise to an argument [a]. The

reason for this requirement is that it will lead to a simple syntax for arguments, because

it will allow us to treat all arguments (atomic and compound) uniformly, without hav-

ing to distinguish the case that an argument is “only” a fact. Second, we treat inference

rules and arguments as one and the same. As a result, there is no set of rules (unlike

in ASPIC+) from which arguments are constructed. Instead, it is possible and legal to

form an argument from any combination of other arguments as support and with any

5.3. Meta-ASPIC 177

other argument as conclusion. The only restriction we do place on arguments is that

they are non-cyclic, that is, an argument cannot be used as its own support. This reflects

our inuitive understanding that cyclic arguments are rarely used in real-life debates, and

leads to some interesting properties in relation to meta-argumentation, which we will

discuss in Section 5.3.2. We use the symbol to denote argument formation.

The second component of our system, besides arguments, is contradiction. In

meta-ASPIC, the set of facts F may be contradictory. This constraint, or rather lack of

constraint, allows us model situations where arguments are built from facts based on

faulty observations. Note that any set F endowed with a binary “conflict” relationship

is by definition an abstract argument graph. We will therefore speak of the underlying

argument graph of a meta-ASPIC system, as opposed to the underlying logic of an

ASPIC+ system.

The examples in Section 5.2.1 indicated how argument schemes can be repre-

sented in ASPIC+: As arguments whose conclusions are defeasible rules (the rules that

allow the argument scheme to be applied). However, in order to get the most general

definition of meta-arguments, we cannot assume anything about defeasible rules that is

not already part of the syntax. In particular, we cannot assume that a defeasible rule

is in any way schematic, that is, contains free variables that may be bound to different

values. The reason is that defeasible rules represent inductive arguments and as such do

not necessarily stand for an abstract inference rule that applies to anything but the spe-

cific case for which they are stated. As a result, the only constraint on what constitutes

a meta-argument is given in the syntax – it must have a set of supporting arguments and

a conclusion – and there is no requirement for the support to be in any kind of deductive

relationship with the conclusion.

This section is organised as follows. We start by defining the syntax (Definition

68 on page 178) and semantics (Definition 72 on page 182) of meta-ASPIC. We then

consider to separate issues in meta-ASPIC: The argument schemes that were introduced

in the previous section are translated to meta-ASPIC+ on page 182, and expressions of

the truth paradox in meta-ASPIC is discussed on page 187. In Section 5.3.2 (page 188)

we apply the concept of meta-argumentation to meta-ASPIC.

5.3. Meta-ASPIC 178

5.3.1 Definition of Meta-ASPIC

We will define meta-ASPIC as a formal foundation for meta-arguments in two steps. In

Definition 68 below we set up the syntax of a language for describing meta-arguments.

The subsequent definitions up to Definition 72 on page 182 will establish the meaning

of that language, by providing a translation from it to Dung’s argument graphs.

Definition 68 (Meta-Argument). Let G = (A,Att) be an argument graph. A meta-

argument over G is

1. If a ∈ A then [a] is a meta-argument

2. If ϕ1, . . . ,ϕn,ϕ are meta-arguments (with n≥ 0) then [ϕ1, . . . ,ϕn ϕ] is a meta-

argument

3. If ϕ1, . . . ,ϕn,ϕ and are meta-arguments (with n≥ 0) then [ϕ1, . . . ,ϕn ¬ϕ] is a

meta-argument

If a meta-argument has an empty set of supporting arguments then we do not write

the arrow symbol (for example, instead of [¬a] we write [¬a]). We use the notation

MA for a set of meta-arguments over an argument graph (A,Att) if there is no risk of

ambiguity.

Example 49. Let G = (A,Att) be an argument graph with A = {(a1,a2,a3,a4)} and

Att = {(a1,a3),(a2,a4),(a4,a2)}. We can define the set MA = {m1, . . . ,m6} of meta-

arguments over G with

m1, . . . ,m4 = [a1], . . . , [a4]

m5 = [m3 m2]

m6 = [m1 ¬m4]

The first four meta-arguments m1 to m4 are simply the meta-level equivalents of a1 to

a4 on the object level. m5 and m6 exist only on the meta-level and represent additional

information that is not present in G: First, m5 states that m3 supports m2. Second, m6

states that m1 is a reason against (counterargument to) m4. The attacks-relation Att of

the object-level graph is only relevant in the evaluation of sets of meta-arguments. It

does not affect which meta-arguments can be formed.

5.3. Meta-ASPIC 179

The function conc(a) : MA→MA returns the conclusion of a meta-argument a and

is defined as

conc(a) =

[a′] if a′ ∈ A and a = [a′]

[ϕ] if a = [ϕ1, . . . ,ϕn ϕ]

[¬ϕ] if a = [ϕ1, . . . ,ϕn ¬ϕ]

Likewise, sup(a) : MA→P(MA) returns the support of a meta-argument a and is de-

fined as

sup(a) =

{ϕ1, . . . ,ϕn} if a = [ϕ1, . . . ,ϕn ϕ]

/0 otherwise

The final function we need for talking about meta-arguments is obj. If a meta-

argument is of the form ϕ1, . . . ,ϕn ϕ , then intuitively it is an argument about the

arguments ϕ1 to ϕn and ϕ . The function obj captures the intuition that arguments

“about” other arguments or about domain-level facts. In the former case, obj(a) returns

the arguments that are referred to by an argument a, and in the latter case obj(a) returns

the empty set.

Definition 69 (Object Function). Let Ω = (G,MA) be a meta-ASPIC system with G =

(A,Att) The object function of Ω, obj : MA→ 2MA , is defined as

obj(a) =

{ϕ1, . . . ,ϕn,ϕ} if a = ϕ1, . . . ,ϕn ϕ

{ϕ1, . . . ,ϕn,¬ϕ} if a = ϕ1, . . . ,ϕn ¬ϕ

/0 if a = [a′] for a′ ∈ A

Example 50. For arguments m5 and m6 from Example 49, obj returns the following

values:

obj(m5) = {m3,m2} obj(m6) = {m1,¬m4}

and for all other arguments it returns the empty set.

We are now ready to give a definition of our meta-ASPIC argumentation system.

It is simply a set of meta-arguments over an argument graph G = (A,Att), with two

conditions. First, all arguments a ∈ A must have corresponding meta-arguments [a] ∈

5.3. Meta-ASPIC 180

MAtt , and second, MAtt must be closed under obj - that is, it must contain the supports

of all its arguments.

Definition 70. A meta-ASPIC system is a tuple (G,MA) where G = (A,Att) is an argu-

ment graph and MA is a set of meta-arguments over G such that

1. MA ⊇
⋃

a∈A[a]

2. For all a ∈MA, obj(a)⊆MA

Example 51. (G,MA) from the previous example (Example 49) is a meta-ASPIC sys-

tem, because every object-level argument (a1 to a4) is represented by a meta-level ar-

gument (m1 to m4), and the component arguments of m5 and m6 are also part of MA.

There are several important differences between standard ASPIC+ systems and

meta-ASPIC systems as defined in Definition 70.

First, the logical language L has been replaced by an argument graph G. This

may seem like a radical change, but in reality it is only syntactical. In the original

definition of ASPIC+, the logical language L is only characterised by the existence

of a “conflict” function ◦ : L → 2L . It is not required to have an inference relation

or any operators. An argument graph (A,Att) on the other hand consists of a set A

and an “attacks” relation Att ⊆ A×A. Given that every binary relation of two sets

Rel ⊆ A×B specifies a function fRel : A→ 2B, we could easily convert Att to a function

fAtt : A→ 2A, so G would meet the requirements for a logical language L . Conversely,

we can create an argument graph (L ,Rel◦) for any logical language with “conflict”

function. Our Definition 70 therefore does not augment or diminish the expressive

power of the underlying language L .

Finally, the negation symbol ¬ in Definition 68 does not have the same meaning

as it would for example in classical logic. The effect of writing ¬a in the conclusion

of a rule is to introduce an attack on the argument a, and not to conclude the opposite

of a’s conclusion. This means that ¬¬a is not the same as a. Double negation cannot

be expressed directly. Instead one can introduce a third argument which attacks ¬a. ¬

therefore modifies the relationship between arguments, not between their conclusions.

The advantage of our Definition 70 is that we do not have to translate between

“conflicts” in our arguments and “attacks” in the argument graph produced by the sys-

5.3. Meta-ASPIC 181

tem. Instead, we can simply use the attacks relation Att to determine whether two

arguments are incompatible.

What does meta-ASPIC give us that regular argument graphs do not? To answer

this question we need to look at the second component of argument graphs: Attacks.

There are two sources of attacks in meta-ASPIC – the attacks relation Att of the underly-

ing graph G, and the negation operator ¬ that may be used in conclusions of arguments

in MA.

Definition 71 (Attacks in meta-ASPIC). Let (G,MA) be a meta-ASPIC system with

G = (A,Att) and let a,b ∈MA. a m-attacks b if and only if

1. conc(a) = [a′],conc(b) = [b′] and (a′,b′) ∈ Att or

2. conc(a) = [¬b′],conc(b) = [b′] or

3. b = [ϕ1, . . . ,ϕk ψ] such that there is an i ∈ N with 1 ≤ i ≤ k such that a m-

attacks ϕi.

Example 52. The meta-ASPIC system given by the argument graph G = (A,Att) with

A = {(a1,a2,a3,a4)} and Att = {(a1,a3),(a2,a4),(a4,a2)} and meta-arguments MA =

{m1, . . . ,m6} with

m1, . . . ,m4 = [a1], . . . , [a4]

m5 = [m3 m2]

m6 = [m1 ¬m4]

from Example 51 has the following attacks: {(m1,m3),(m2,m4),(m4,m2),(m6,m4)},

as shown in Figure 5.1.

Arguments a and b in meta-ASPIC can attack one another in three ways, as defined

in Definition 71. Either there is already a conflict between a and b in the underlying

argument graph, or the conclusion of a is ¬b, or a meta-attacks a supporting argument

of b.

In a meta-ASPIC system (G,MA), no restrictions are placed on the argument graph

G. In particular, there is no requirement for the attacks relation Att to contain any

5.3. Meta-ASPIC 182

m1m2 m3m4 m6 m5

Figure 5.1: Reified graph of the meta-ASPIC system from Figure 5.2 on page 185

elements. If we start with an attacks-free argument graph G = (A, /0), we can can use

meta-arguments to introduce conflict in a set that is otherwise conflict-free.

With the previous two definitions in place it is now straightforward to define the

reified graph of (the abstract argument graph acting as the interpretation of) a meta-

ASPIC system.

Definition 72 (Reified graph of meta-ASPIC). Let Ω = (G,MA) be a meta-ASPIC sys-

tem. The function reify(M) returns the reified graph of M and is defined as

reify(Ω) = (MA,Att∗)

where Att∗ = {(a,b) ∈MA | a m-attacks b}.

Note that reify(Ω) returns a Dung-style argument graph, not a meta-ASPIC system.

Example 53. The reified graph of the system in Example 51 is given by (A,Att∗) with

Att∗ = {(m1,m3),(m2,m4),(m4,m2),(m6,m4)}. It is visualised in Figure 5.1.

To summarise, meta-arguments have the standard structure of supports and con-

clusions, but they differ from standard ASPIC+ arguments in the “type” of their conclu-

sion: In our system, the conclusion of an argument is also an argument, but in classic

ASPIC, the conclusion is a sentence of the underlying language L .

5.3.1.1 Argument Schemes

To illustrate how argument schemes are handled by meta-ASPIC we will now describe a

discussion between aerospace engineers in the framework, using some of the argument

schemes introduced in Section 5.2.1. The discussion is fictional, but it is based on a use

case from our industry partner.

Several engineers are designing a rib that is part of a wing. They are currently

trying to decide on a material to be used for the rib. While in reality there is a choice of

a large number of alloys and composites, we assume here that the principal decision is

only that of aluminium or composite materials. The choice will be represented by two

5.3. Meta-ASPIC 183

arguments Comp and Al. In this example we assume that the object-level graph consists

only of those two arguments and is conflict-free: G = ({Comp,Al}, /0). Throughout this

example we will represent object-level arguments by their conclusions (as we are not

interested in their internal structure, or how that conclusion was derived). We are going

describe a set of meta-arguments and give the final result in the form of a meta-ASPIC

system at the end of this example.

The two options are mutually exclusive, so the scheme “argument from alterna-

tive” (page 170) can be applied. Since aluminium and composites cannot both be cho-

sen at the same time, choosing one means excluding the other. The argument scheme is

represented by three meta-level arguments: One to establish that aluminium and com-

posites are mutually exclusive, and then one for each of the two attacks that result from

this argument scheme.

[Alternative(Comp,Al)] (M1)

[[Alternative(Comp,Al)] (Comp ¬Al)] (M2)

[[Alternative(Comp,Al)] (Al ¬Comp)] (M3)

The reader may have noticed that the first meta-argument M1 makes use of an

object-level argument Alternative(Comp,Al) which is not part of the graph G. As

we build up this discussion we will introduce several new object-level arguments,

which stand for additional domain-level knowledge necessary to support the argument

schemes we use. The resulting meta-ASPIC graph will therefore be based on an ex-

tended object-level graph G′, with G v G′. It is important to note that, while M2 and

M3 resemble the logical axiom tertium non datur, the assumption that a third option

does not exist can be attacked (and indeed there are more than two possible materials

for the component).

Having established the external constraints of the solution, we now turn to the

actual debate about the materials. Engineer E is recognised by her peers as an expert

5.3. Meta-ASPIC 184

on metallurgy (abbreviated Mly) and suggests to use aluminium.

[[Expert(E,Mly)], [Domain(Al,Mly)], [Claims(E,Al)] [Al]] (M4)

In reality, arguments from expert opinion usually do not just state a conclusion without

backing it up with further evidence. Instead, expert arguments summarise the expert’s

reasoning as well as the conclusion [133]. For example, E might recommend aluminium

based on her experience with similar designs. We omit the details in this example

because we want to demonstrate additional argument schemes.

The knowledge of E, the expert, may be outdated because E has not published any

work on metallurgy recently – NoPub(E,Mly). This opens the argument from expert

opinion to an attack on one of its supports:

[[NoPub(E,Mly)] ¬[Expert(E,Mly)]] (M5)

This attack is an example of a common pattern. Every argument scheme is associated

with a list of “Critical Questions”, questions which point to potential weaknesses of the

argument. Some critical questions, such as the one expressed in M5, target the condi-

tions of an argument scheme. Another type of critical questions is aimed at exceptions

to the applicability of a scheme.

Another common pattern of argumentation is to argue from (positive or negative)

consequences. In our example, heavy components increase the fuel consumption of

airplanes. Minimising weight is therefore very important in aerospace design. The

relatively high weight of aluminium is a reason to avoid it. This argument scheme is

known as argument from negative consequences (bringing about A will result in C, C

is negative, therefore A should not be brought about). Conversely, using composites

will have positive consequences, since it is lighter. The following two meta-arguments

illustrate reasoning about consequences.

[[BadCons(Al)] ¬Al] (M6)

[[GoodCons(Comp)] Comp] (M7)

M6 attacks the argument for aluminium Al. M7 does not attack any arguments in this

5.3. Meta-ASPIC 185

A1 A2

M′2 M′3

M2 M3M1

M4A3

A4
A5

M5 A6

M6A7 M7 A8

Figure 5.2: Meta-ASPIC graph with argument schemes from Section 5.3.1.1. Its reified graph
is shown in Figure 5.3. Dashed arrows represent the obj function for illustrative
purposes. Argument definitions are given in Table 5.1 on page 186. All arguments
shown here are meta-arguments.

setting, but it would any argument against Comp if such an argument existed. In a real-

life debate there would be additional arguments about how bad the consequences of

choosing aluminium are, and if the benefits outweigh the costs. These kinds of argu-

ments for decision making have been extensively studied in Chapter 3 of this thesis. At

this point we can evaluate the meta-ASPIC system to obtain an argument graph, which

can then be used to determine the acceptability of A1 (the meta-argument for Al) and A2

(the meta-argument for Comp). The graph is shown in Figure 5.2 on page 185. As men-

tioned earlier, we introduced several new object-level arguments, which are accounted

for in the object-level graph G′ with G′= ({Al,Comp,Alternative(Comp,Al), . . .}, /0).

In Figure 5.2, those object-level arguments are omitted. We only show their corre-

sponding meta-arguments (for example, we show A2 = [Comp] but not Comp).

The reified graph of the system shown in Figure 5.2 is a standard Dung-style

argument graph, visualised in Figure 5.3. As shown by the mutual attack between

M′2 and M′3, attacks on the meta-level may be circular, even though meta-arguments

themselves are strictly non-circular (Definition 68).

One effect of the argument from alternative, represented by M1 to M3, is that the

two options Comp and Al are mutually exclusive - their meta-arguments A1 and A2

cannot be part of the same extension.

5.3. Meta-ASPIC 186

A1 A2

M′2 M′3

M2 M3M1

M4A3

A4
A5

M5 A6

M6A7 M7 A8

Figure 5.3: Reified graph of meta-ASPIC system from Figure 5.2.

Arg. Content Arg. Content

A1 [Al] M1 [Alternative(Comp,Al)]
A2 [Comp] M2 [M1 M′2]
A3 [Expert(E,Mly)] M′2 [A2 ¬A1]
A4 [Domain(Mat,Mly)] M3 [M1 M′3]
A5 [Asserts(E,Al)] M′3 [A1 ¬A2]
A6 [NoPub(E,Mly)] M4 [A3,A4,A5 A1]
A7 [BadCons(Al)] M5 [A6 ¬A3]
A8 [GoodCons(Mat)] M6 [A7 ¬A1]

M7 [A8 A2]

Table 5.1: List of arguments in Figure 5.2

Critical Questions In Section 5.2.3 on page 175, critical questions were introduced as

pointers to potential attacks on argument schemes. Based on that discussion, we can

adopt the following definition of critical questions:

Definition 73 (Critical Question). Let (G,MA) be a meta-ASPIC system and let a,b ∈

MA be meta-arguments. a is a critical question for b if

1. conc(a) = ¬b (exception) or

2. conc(a) = ¬ϕ for a ϕ ∈ sup(b) (condition)

Example 54. The following argument is a critical question because it attacks the con-

dition of the scheme argument from alternative (cf. C1 on page 170):

[¬alternative(composites,al)]

5.3. Meta-ASPIC 187

It represents (the negative answer to) the critical question “Are there really only two

options?”. An example of an exception (cf. C2 on page 172) is given by

¬personal attacks ¬[unqualified(james) (proponent(al,james) ¬al)]

It represents the objection “ad hominem arguments are invalid”.

In the above sections we showed how some common argument schemes can be

represented in meta-ASPIC, and we gave a definition of critical questions based on

the discussion in Section 5.2.3 at the beginning of this chapter. This concludes our

evaluation of argument schemes in meta-ASPIC.

5.3.1.2 The Truth Paradox in Meta-ASPIC

As we have effectively defined a new argumentation system, a natural question to ask

is whether the results it produces are sound. Our system can be used to determine

the acceptability of arguments, and one basic attribute of “soundness” should be that

it does give two different answers to an argument’s acceptability at the same time.

This problem is closely related to the truth paradox in logic: Is the sentence s:“this

sentence is false” true or false? We can attempt to translate this sentence into meta-

ASPIC with the following argument q: q = [[a] ¬[a]] (for an argument a of the

underlying argument graph). q intuitively says “if a is an argument then a is not an

argument”. However, the crucial difference between argument q and statement s is that

q does not refer to itself. It is indeed not possible to construct an argument that refers

to itself in meta-ASPIC (see Definition 68). This is why the acceptability of q can be

decided unambiguosly in the same way as that of any other meta-argument: By reifying

the meta-ASPIC system containing it (using reify, Definition 72) and then determining

the acceptability of a in the resulting abstract argument graph. For our example, we

know that if q cannot be part of an extension under any semantics because it attacks

itself (by Definition 71 Cond. 2 and 3). Any set of arguments with a self-attacking

argument is not conflict-free and can therefore not be a subset of an extension.

When considering the truth paradox in this context it is important to remember

that an argument’s acceptability is different from its truth status. Acceptability is a

weaker notion than truth, and it is subjective (as for example in argument graphs with

two mutually exclusive preferred extensions).

5.3. Meta-ASPIC 188

Our system gives rise to an intuitive and direct notion of meta-arguments, which

we will explore in the next section.

5.3.2 Object- and Meta-Level Arguments

Let us consider two of the arguments from Section 5.2.1 again. They were originally

introduced on page 171 as arguments A7 and C2, but we repeat them here in meta-ASPIC

notation:

[[proponent(al,james)] ¬[al]] (A′7)

[[¬personal attacks] ¬A′7] (C′2)

The conclusion of C′2 is ¬ A′7 – an attack on another argument. We can see that A′7 is not

about the merits of aluminium over composites, but about another argument. We can

therefore call C′2 a meta-argument. Meta-arguments are quite common in engineering

debates. They arise, for example, whenever a critical question in form of an exception

is raised (cf. Definition 73, condition 1). In general, we can view argument schemes as

arguments on the meta level, and their instantiations as arguments on the object level.

There are several reasons why meta- and object-level should be distinguished.

First, this distinction is necessary if we want to classify debates by their topic.

The topic of a debate is exactly what arguments are “about”, and meta-arguments are

more relevant to the topic of arguments (where questions such as “what is a legitimate

argument?” are answered) than the topic of, say, materials engineering. Second, by

distinguishing the levels in which a debate takes place, we can make our analysis of

each level more fine-grained: on the meta-level of argument schemes, we can refer e.g.

to Walton’s work, and on the level of engineering we can refer to a different source of

knowledge.

In this section we will define a method to stratify (clearly separate) the arguments

in a meta-ASPIC system by their meta-level, that is, how far they are removed from

the object level of domain-specific arguments. We start by considering obj, the object

function from page 179 (Definition 69). It returns the arguments one meta-level below

the given argument. The principle behind obj can be turned around: The characteristic

5.3. Meta-ASPIC 189

object function obj∗ (below) maps a set of arguments A to all arguments that are about

an argument in A (all direct meta-arguments for a). It is the meta-ASPIC equivalent of

an argument graph’s characteristic function F .

Definition 74 (Characteristic Object Function). Let Ω = (G,MA) be a meta-ASPIC

system with G = (A,Att) and let G′ = (MA,Att ′) = reify(Ω). The characteristic object

function of (G,MA), obj∗ : 2MA → 2MA , is defined as

obj∗(B) = {a ∈MA | obj(a)⊆ B}

Example 55. Continuing with Example 51, we get obj∗(/0) = {a1,a2,a3,a4}, and

obj∗(obj∗(/0)) = MA.

Given a meta-ASPIC system Ω = (G,K), can we define a sequence ObΩ =

(Ob1,Ob2, . . .) with Ob1 = obj∗(/0) and Obn+1 = obj∗(Obn). obj∗ resembles the char-

acteristic function F that is of argument graphs. F is used to define the grounded

extension of an argument graph, by computing the fixed point of F (F (. . .F (/0))).

This fixed point exists for obj∗ too, but it is not very interesting because it always con-

tains the entire set of arguments A.

The abstraction index of an argument a is the index of the first meta-level that

includes a.

Definition 75 (Abstraction Index). Let Ω = (G,MA) be a meta-ASPIC system with

ObΩ = (Ob1,Ob2 . . .). Let a ∈ MA. The abstraction index of a, abbreviated IΩ(a),

is the lowest i such that a ∈ Obi.

The abstraction index is defined for every argument in a meta-ASPIC system. It

can be calculated directly from the argument a, without needing to know the entire

meta-ASPIC system.

Definition 76 (Abstraction Index Function). Let (G,MA) be a meta-ASPIC system and

let a ∈MA. The function abstract(a) is defined as

abstract(a) =

1 if a = [a′] for an a′ ∈ A

i+1 otherwise, where i = max{abstract(b) | b ∈ obj(a)}

5.3. Meta-ASPIC 190

Proposition 39. Let Ω = (G,MA) be a meta-ASPIC system with G = (A,Att) and let

ObΩ = (Ob1,Ob2, . . .). Let a ∈MA. Then

IΩ(a) = abstract(a)

Proof. First assume that a = [a′] for an a′ ∈ A. Then, obj(a) = /0 and obj(a) ⊆ /0, so

a ∈ obj∗(/0). Therefore, IΩ(a) = 1 = abstract(a).

We prove the second case (obj(a) = {a1, . . . ,an}) via induction. Specifically we

prove the following statement: ∀n ∈ N≥ 1 : If max{abstract(b) | b ∈ obj(a)}= n then

IΩ(a) = n+1 = abstract(a).

Base case, n = 1 If max{abstract(b)|b ∈ obj(a)} = 1, then by Definition 76, for all

b ∈ obj(a), b = b′ for a b′ ∈ A, so obj(a)⊆ Ob1 and IΩ(a) = 2 = abstract(a).

Induction case Let n = k+1 with k≥ 1, and suppose max{abstract(b) | b ∈ obj(a)}=

n. Then for all b ∈ obj(a), abstract(b) ≤ n, and there exists a c ∈ obj(a) such that

abstract(c) = n. Now we show that for all b ∈ obj(a), IΩ(b)≤ n. Let b ∈ obj(a). Either

abstract(b)< n, so abstract(b)≤ k, so we can apply the hypothesis and get obj∗Ω(b)≤

n. If abstract(b) = n, then by Definition 76, for all b′ ∈ obj(b), abstract(b′)≤ k and we

can apply the induction hypothesis to get obj(b) ⊆ Ok, so b ∈ obj∗(Ok) = Ok+1 = On

so IΩ(b)≤ n. Since there exists an argument c such that abstract(c) = n, we can apply

the same reasoning to obtain IΩ(c) = n. Then obj(a)⊆On, so a ∈ obj∗(On) and we get

IΩ(a) = n+1 = max{abstract(b) | b ∈ obj(a)}+1 = abstract(a).

Example 56. For m4 and m5 from Example 51, we get abstract(m5) = abstract(m4) =

2. All other arguments in that example have an abstraction index of 1.

Since all arguments eventually appear in ObΩ, the abstraction index exists for

every argument a. We can use IΩ to compare the “level of abstraction” of arguments.

An argument a is said to be an object-level argument if IΩ(a) = 1.

With the obj function (Definition 69) we can inspect arguments to see which other

arguments they talk about. The characteristic object function obj∗ of a meta-ASPIC

system inverts this perspective as it maps a set of arguments S to the set of arguments

whose domain is S. Both obj and obj∗ have counterparts in Dung’s original argumen-

tation system, namely in the attacks-relation Att and in the characteristic function F .

There are two principal differences between the two functions.

5.3. Meta-ASPIC 191

First, the polarity of obj is always positive. The “is-about” relation is intuitively

transitive – if argument a is about b and b is about c then a is also about c, or at least

the relationship of a and c is similar to the one of a and b. With attacks on the other

hand, the polarity is inverted. If a attacks b and b attacks c then a defends c, so a

is in a positive relationship with c and in a negative one with b. For this reason, the

characteristic function F is defined in terms of the “defends” relationship, covering

two attacks in each successive application. The characteristic object function obj∗ only

covers one level of the “talking-about” relation given by obj.

The second difference only comes to light when Dung’s argument frameworks are

instantiated. In instantiations of argument graphs, attacks are the result of an incon-

sistency between the conclusion of one argument (the attacker a) and the assumptions

or the conclusion of another argument (the attackee b). However, if either a or b was

removed from the argument graph, by deleting the knowledge it is based on, then the

attack would disappear, but the remaining argument would still be part of the argument

graph – assuming a and b do not overlapage The attack by a on b only exists because

both a and b are present in the graph, and not because a explicitly refers to b or vice

versa. Attacks in instantiations of Dung’s argument graphs are incidental. Support in

meta-ASPIC systems (as evidenced by the obj function) on the other hand is an essen-

tial part of meta-arguments, because they are about other arguments. If a ∈ obj(b) then

it is impossible to remove a from the system without changing b.

5.3.2.1 A Hierarchy of Meta-Argumentats

The characteristic object function obj∗ (Definition 74) makes it possible to stratify the

arguments in an argument graph G according to their first appearance in the sequence

ObΩ = (Ob1, . . . ,Obn). The first set of arguments, Ob1, can be called the object level

because it contains only arguments that are truly atomic in Dung’s sense and thus are

making claims about the domain (for example about engineering decisions) rather than

about other arguments. The second level, Ob2, adds arguments that are based on argu-

ments from the first level, and so on.

In this hierarchy we can define some concepts that are commonly part of higher-

order argumentation, such as attacks on attacks, and attacks on supports.

Definition 77 (Hierarchy of Argument Graphs). Let Ω be a meta-ASPIC system and

5.3. Meta-ASPIC 192

let ObΩ = (Ob1,Ob2, . . .) and let (G,Att∗) = refiy(Ω) be its reified argument graph.

The hierarchy of argument graphs of Ω is defined as GΩ = (G1,G2, . . .) where each

Gi = reify(Ωi) for the meta-ASPIC system Ωi = (G′i,MA∩Obi) with G′i = (Obi,Att∗∩

(Obi×Obi)).

In a hierarchy of argument graphs (G1, . . . ,), the first graph G1 is the object-level

graph containing all atomic arguments of the underlying meta-ASPIC system.

Proposition 40. Let Ω = (G,MA) be a meta-ASPIC system with G = (A,Att) and let

GΩ = (G1, . . .). Then G1 = (A′,Att ′) where

A′ = {[a] | a ∈ A}

Att ′ = {([a], [b]) | (a,b) ∈ Att}

Proof. To prove the claim it suffices to show that Ob1 = A′, because then the “attacks”

part of G1 is uniquely determined by Att (since Att1 = Att∗uOb1).

Ob1 = obj∗(/0)

= {a ∈MA | obj(a)⊆ /0} (By Definition 74)

= {a ∈MA | obj(a) = /0}

= {a ∈MA | a = [b] for a b ∈ A} (By Definition 69)

= A′

Example 57. Example 51 gives rise to a hierarchy of argument graphs with depth 2.

The graphs G1 = (Ob1,Att1) and G2 = (Ob2,Att2) are defined as

Ob1 = {m1,m2,m3,m4}= {[a] | a ∈ A}

Att1 = {(m1,m3),(m2,m4),(m4,m2)}= {([a], [b]) | (a,b) ∈ Att}

Ob2 = Ob1∪{m5,m6}

Att2 = Att1∪{(m6,m4)}

The graphs are shown in Figure 5.4.

5.3. Meta-ASPIC 193

m1 m2

m3 m4

m1 m2

m3 m4

m5

m6

Figure 5.4: Argument graphs for Example 57. G1 is shown on the left, G2 (a supergraph of G1)
on the right.

The hierarchy of meta-arguments is monotonic, in the sense that lower-level argu-

ment graphs are contained in higher-level ones.

Proposition 41. Let Ω be a meta-ASPIC system and let GΩ = (G1,G2, . . .). For every

i≥ 1, Gi v Gi+1.

Proof. Let Ω,GΩ as required and let i ≥ 1. Let Gi = (Ai,Att i) and Gi+1 =

(Ai+1,Att i+1). To show that Gi v Gi+1, we need to show that Ai ⊆ Ai+1 and

Att i ⊆ Att i+1.

1. Ai ⊆ Ai+1: Let a ∈ Ai, so by Definition 77 a ∈ Obi, so obj(a) ⊆ Obi. By Definition

74, a ∈ obj∗(Obi) = Obi+1 = Ai+1.

2. Att i⊆ Att i+1 Let (a,b)∈ Att i. By Propage 41 part 1, a and b∈ Ai+1, so by Definition

77, (a,b) ∈ Att i+1.

5.3.2.2 Attacks on Attacks

Meta-arguments with conclusions of the form ¬ϕ result in object-level attacks. As a

result, we can argue about those attacks just as we can about other arguments.

Definition 78 (Meta-Attack). Let Ω = (G,MA) be meta-ASPIC system and let a ∈MA

and let b ∈MA with b = [ϕ ′1, . . . ,ϕ
′
k ¬a]. Then b is a meta-attack on a.

A meta-attack can itself be attacked like any other meta-argument, resulting in

attacks on attacks.

Example 58. Consider argument m6 = [m1 ¬m4] from Example 51. A meta-attack

on m6 is given by m7 with [m5 ¬m6]. In the resulting argument graph, m7 attacks

m6. The resulting graph is shown in Figure 5.5.

5.3. Meta-ASPIC 194

m1 m2

m3 m4

m5

m6 m7

Figure 5.5: Argument graph for Example 58, showing a meta-argument m7 attacking the meta-
attack m6.

Example 59. A realistic example of attacks on attacks can be seen in Figure 5.2 on

page 185. It involves arguments M1 to M3 and A1, A2 which are repeated below:

A1 = [Al] M1 = [Alternative(Comp,Al)]

A2 = [Comp] M2 = [M1 M′2]

M′2 = [A2 ¬A1]

M3 = [M1 M′3]

M′3 = [A1 ¬A2]

Here, arguments M1 to M3 represent an application of the scheme “argument from

alternative”, to conclude that A1 and A2 are mutually exclusive. Since M2 and M3

mutually attack each other and are meta-attacks by Definition 78, both are examples

of attacks on attacks. Please refer to Section 5.3.1.1 for a discussion of the underlying

argument scheme.

Since meta-attacks are themselves arguments, we can compute their abstraction

index IΩ. Every meta-attack on an argument a has a higher abstraction index than a:

Proposition 42. Let b be a meta-attack on an argument a. Then IΩ(b)> IΩ(a).

Proof. Follows from Definition 78 and the proof of Propage 39

5.3.2.3 Acceptability of Arguments in Meta-ASPIC

In this section we discuss the relationship between the output of a meta-ASPIC sys-

tem and its underlying argument graph. Our goal is to show that the two functions

meta (taking an argument graph to a meta-ASPIC system) and reify (interpreting a

meta-ASPIC system as a regular abstract argument graph) are well-behaved. We show

5.3. Meta-ASPIC 195

this by proving two properties: (a) for every object-level graph G there exists a meta-

ASPIC system meta(G) = (G,MA) whose extensions2 exactly match the extensions of

G, and (b) for any meta-level graph M = (G,MA) of an object-level graph G, if we

first “materialise” all its attacks by computing reify(M), and then take the minimal

graph meta(reify(M)), we get a meta-ASPIC system whose extensions match those of

reify(M).

Notation Before we look at the two statements in more detail, we would like to clarify

the notation used in the following paragraphs. We are going to use the symbol ' to

mean the “is isomorphic to” relationship between two graphs, specifically between two

abstract argument graphs. We will then introduce a similar notion for meta-ASPIC

systems (consisting of a graph and a set of rules), which will be denoted by ∼=. So

' relates two graphs and ∼= relates two meta-ASPIC systems (not to be confused with

∼=D, the equivalence relation on options for a decision frame, introduced in Chapter 3

on page 72).

The first statement (a) trivially holds: We simply choose the “minimal” meta-level

system for G, whose only meta-arguments are of the form [a] for the underlying object-

level arguments.

Proposition 43. Let G be an argument graph and let meta(G) = (G,MA) with MA =

{[a] | a ∈ A}. Then,

reify(meta(G))' G

Proof. We prove the claim by showing that the output of meta(G) is a graph G′ =

(A′,Att ′) with A′= {[a] | a∈A}=MA and Att ′= {([a], [b]) | (a,b)∈Att}. By Definition

71 Cond. 1, all attacks (a,b) ∈ Att result in attacks ([a], [b]) ∈ Att ′. By construction of

MA, none of the other conditions of Definition 71 is met, so Att ′ = {([a], [b]) | (a,b) ∈

Att}, and A′ = MA by construction, so the claim holds.

Proposition 43 shows how every argument graph can be lifted into meta-ASPIC,

resulting in the minimal meta-level system M. Since reify(M) is isomorphic to G, its

extensions are exactly the same.

The second statement (b) is formalised similarly, but we first need to define the

meaning of “match” - that is, we need the meta-ASPIC counterpart of the equivalence
2In this section, when we say “the extensions of the meta-ASPIC system Ω” we mean the extensions

of its reified graph reify(Ω).

5.3. Meta-ASPIC 196

relation' in the world of argument graphs. The following definition generalises equiv-

alence to meta-ASPIC systems:

Definition 79 (Isomorphic meta-ASPIC system). Two meta-ASPIC systems M =

(G,MA),L = (G′,LA ′) with G = (A,Att) and G′ = (A′,Att ′) are isomorphic, abbre-

viated M ∼= L, if

1. G' G′, witnessed by a bijection f : A→ A′, and

2. LA ′ = {map f (r) | r ∈MA} with

map f (r) =

map f (ϕ1), . . . ,map f (ϕn) map f (ϕ) if r = ϕ1, . . . ,ϕn ϕ

map f (ϕ1), . . . ,map f (ϕn) ¬map f (ϕ) if r = ϕ1, . . . ,ϕn ¬ϕ

[f (a)] if r = [a] for a ∈ A

In Propage 43, we looked at the result of combining the reify function with the

meta function, in effect a round-trip from (Dung’s) argument graphs to meta-ASPIC

systems to argument graphs. Statement (b) is similar, but it works in the other direction:

We start with a meta-ASPIC system, take its output, and then apply the meta function

to it, resulting in another meta-ASPIC system. Instead of using graph isomorphism as

a notion of equality, we will use isomorphism of meta-ASPIC systems. However, if

we simply stated that meta(reify(M)) ∼= M for some meta-ASPIC M, then our formal-

ism would not be any more expressive than Dung’s argument graphs (and indeed this

proposition does not hold, because the reify function “reifies” meta-attacks which then

become part of the graph that is the argument to meta – see Example 60 below). There-

fore, we have to adopt a looser notion of equality: When combining meta with reify,

we may not immediately get the same result again, but we are guaranteed to get the

same result after at most one iteration. In other words, the operation meta(reify(M)) is

idempotent.

Proposition 44. Let M = (G,MA) be a meta-ASPIC system. Then

meta(reify(meta(reify(M))))∼= meta(reify(M))

5.3. Meta-ASPIC 197

Proof. Let M = (G,MA) be a meta-ASPIC system with an argument graph

G = (A,Att). Let M1 = (G1,M1A) = meta(reify(M)) and let M2 = (G2,M2A) =

meta(reify(meta(reify(M)))) be the two meta-ASPIC systems resulting from apply-

ing reify and meta to M. To show that M1 ∼= M2 (by Definition 79), we first need to

show G1 ' G2, and then M2A = f ∗(M1A) for a bijection f between G1 and G2.

1. G1 ' G2 Let G′ = (A′,Att ′) = reify(M1). Then meta(G′) = M2 = (G2,M2A) and

G2 = G′. By the definition of meta (in Propage 43), all arguments in M1A are of the

form [a], so by Definition 71, for all attacks in (a,b) ∈ Att ′, a = [a′] and b = [b′] for

some arguments [a] and [b] ∈ M1A (specifically, a and b are not meta-arguments). So

all attacks in Att ′ have a corresponding attack in Att1, and hence there exists a bijection

between attacks and arguments in G′ and attacks and arguments in G1, and so G1 'G′.

Since G′ = G2 (by Definition of meta), G1' G2.

2. M2A = f ∗(M1A) Let G′ = (A′,Att ′) = reify(M1). Then meta(G′) = M2 = (G2,M2A)

and G2 = G′, as above. As already established, there exists a bijection f between G1

and G2, and by the same reasoning as above, all arguments b ∈ M2A are of the form

b = [b′] for a b′ ∈ A′ - so for every b′ ∈ A′, there exists a b ∈M2A such that b = [f (b′)]

and the claim holds.

Example 60. To see why it is not the case that meta(reify(M)) ∼= M in Propage 44,

consider this counter-example. Let G = ({a1,a2}, /0) be an argument graph with two

arguments and no attacks. Let M = (G,{[a1], [a2], [[a1] ¬[a2]]}) be a meta-ASPIC

system based on G. Note that the only additional information in M, besides what is

required by Definition 70 on page 180, is an attack by [a1] on [a2]. Using the symbols

5.4. Case Study: Choosing a Drilling Technique 198

m1 = [a1], m2 = [a2], m3 = [[a1] ¬[a2]], we get

meta(reify(M))

(Definition 72)

= meta(({m1,m2,m3},{(m3,m2)}))

(Let G′ = reify(M) = ({m1,m2,m3},{(m3,m2)}))

= meta(G′)

(Definition of meta in Propage 43)

= (G′,{[m1], [m2], [m3]})

We can see that G is not isomorphic to G′ (and thus M is not isomorphic to meta(G)),

because G has two arguments and no attacks, whereas G′ has three arguments and one

attack. On the other hand, M contains two object-level arguments [a1] and [a2] and

one meta-attack, but meta(G′) contains only the object-level arguments [m1], [m2] and

[m3]. The meta-attack m3 in M has been reified as an object-level attack in G′.

The results 43 and 44 together show that meta and reify are “almost” inverses - they

always converge after a single round trip (modulo graph isomorphism). This shows us

that meta-ASPIC is really a language on top of Dung’s argumentation system3 , and

that our framework is well-behaved and has a standard interpretation in the underlying

theory of abstract argumentation.

5.4 Case Study: Choosing a Drilling Technique

As part of project DEEPFLOW, the model developed in Section 5.3 was applied to the

problem of choosing a drilling technique for the production of a wing component. The

decision between conventional and orbitall drilling involves many parameters and has

to be made for each case individually, because there is no clear favourite between the

two. In Section 5.4.1 we give a brief overview of the subject

3In the language of abstract algebra, espage Lawvere [134], we have shown that meta is left adjoint
to reify.

5.4. Case Study: Choosing a Drilling Technique 199

5.4.1 Conventional or Orbital Drilling?

An important part of any engineering project is manufacturing design, that is, to decide

how the new product will be manufactured. Manufacturing design covers many areas

such as shopfloor layout, machining parameters and assembly tasks. A typical choice

that has to be made as part of preparing the machinery is whether to use conventional

or orbital drilling. In orbital drilling, the cutting tool (drill) is rotates around two axes

– its own axis, as in conventional drilling, and an eccentrical axis. As a result, the hole

diameter is greater than the drill diameter. Advantages of orbital over conventional

drilling are reduced thrust force and a smaller broken-off pieces (chips). The smaller

drill also makes it possible to extract the chips with a vacuum during the drilling. As a

result, less heat develops and the chippings are prevented from damaging the structure.

There are also several reasons against using orbital drilling: It requires specialised

machinery and drills and is not suitable for all metals.

While the arguments above play a role in the choice of drilling method, much

greater weight is afforded to the concrete parameters of the tasks, for example hole

diameter and depth and material. It is common to undertake experiments to determine

how the material will react to different drilling methods. The experimental data then

forms the basis of arguments used in the decision making process. The same data can

be interpreted several ways, leading to different conclusions.

In a case study with Queen’s University Belfast4 we compared the two drilling

methods for a variety of different materials, hole dimenions and temperatures.

5.4.2 Experiment Results

For the experiments, conventional and orbital drilling methods were tried compared

with varying parameters, resulting in sixty-four different configurations. For each con-

figuration, between one and four holes were drilled and the outcome was assessed in

three categories: Tool wear, hole quality and surface finish.

The complete list of parameters is

1. Environment: Dry, coolant, wet, MQL

2. Drill bit: Carbide, PCD, HSS, HSS-Co

4To be published; all experimental data courtesy of David Payne, d.payne@qub.ac.uk

5.4. Case Study: Choosing a Drilling Technique 200

3. Drill bit coating: Yes/No

Several other parameters remained fixed due to time constraints. These include

material (one layer of CFRP composites and one layer of titanium), hole diameter (5
16

inch), drill speed and drill bit condition. After each experiment, the results were ranked

on a scale of one to five. The results can be found on page 201. Table 5.2 shows a selec-

tion of the experimental results. The first two rows show, for example, that switching

from a dry environment to one that is cooled with a coolant liquid results in slightly

better hole and surface quality, while the tool wear stays the same. However, both val-

ues (1 and 2) are relatively weak on a scale of 1 to 5. The next row (experiment 5)

shows that orbital drilling performs even worse in the same context. On the other hand,

orbital drilling yields adequate results when used with MQL cooling and a carbide drill

without coating (experiment 16).

In order to use the results for decision making, one has to choose which configu-

ration is the closest to the actual setting, and interpolate when data is missing – in other

words, one has to draw an analogy. This analogy is where arguments and counter-

arguments are produced.

Example 61. Assume that we are working with an aluminium piece and a 3
4 inch hole

diameter. We can make the following assumptions: The changed diameter probably

has the same effect on both types of drilling, and (for the purpose of this particular

drilling step) aluminium is more similar to titanium than to composites. Based on

those assumptions and the results in Table 5.2, we argue that conventional drilling is

better suited because it results in a higher quality and lower tool wear.

5.4.3 Interpreting Experimental Data Using Meta-ASPIC

We treat the experimental data from Table 5.2 as a set D= {r1, . . . ,r64}whose elements

are the rows of the table. There is a set of functions number, type, material for the

attributes of the table, mapping rows to field values: type(r5) = Orbital and so forth.

Arguments are formed using both the field name functions and any number of user-

defined terms such as cost or experience With.

5.4. Case Study: Choosing a Drilling Technique 201

E
xp

ag
e

N
o.

a
Ty

pe
D

ia
.b

M
at

er
ia

l
E

nv
ir

on
m

en
t

D
ri

ll
bi

t
C

oa
tin

g
To

ol
W

ea
r

H
ol

e
Q

ua
lit

y
Su

rf
ac

e

1
C

on
ve

nt
io

na
l

5 16
C

FR
P,

Ti
ta

ni
um

D
ry

C
ar

bi
de

Y
es

2
1

1
2

C
on

ve
nt

io
na

l
5 16

C
FR

P,
Ti

ta
ni

um
C

oo
la

nt
C

ar
bi

de
Y

es
2

2
2

5
O

rb
ita

l
3 16

C
FR

P,
Ti

ta
ni

um
D

ry
C

ar
bi

de
Y

es
1

1
1

15
O

rb
ita

l
3 16

C
FR

P,
Ti

ta
ni

um
W

et
C

ar
bi

de
N

o
2

2
2

16
O

rb
ita

l
3 16

C
FR

P,
Ti

ta
ni

um
M

Q
L

C
ar

bi
de

N
o

3
3

3
20

C
on

ve
nt

io
na

l
5 16

C
FR

P,
Ti

ta
ni

um
M

Q
L

PC
D

Y
es

3
4

4
30

O
rb

ita
l

3 16
C

FR
P,

Ti
ta

ni
um

C
oo

la
nt

PC
D

N
o

1
3

2
33

C
on

ve
nt

io
na

l
5 16

C
FR

P,
Ti

ta
ni

um
D

ry
H

SS
Y

es
1

1
1

36
C

on
ve

nt
io

na
l

5 16
C

FR
P,

Ti
ta

ni
um

M
Q

L
H

SS
Y

es
3

2
2

40
O

rb
ita

l
3 16

C
FR

P,
Ti

ta
ni

um
M

Q
L

H
SS

Y
es

2
2

2
43

C
on

ve
nt

io
na

l
5 16

C
FR

P,
Ti

ta
ni

um
W

et
H

SS
N

o
1

1
1

46
O

rb
ita

l
3 16

C
FR

P,
Ti

ta
ni

um
C

oo
la

nt
H

SS
N

o
1

1
1

49
C

on
ve

nt
io

na
l

5 16
C

FR
P,

Ti
ta

ni
um

D
ry

H
SS

-C
o

Y
es

1
1

1
52

C
on

ve
nt

io
na

l
5 16

C
FR

P,
Ti

ta
ni

um
M

Q
L

H
SS

-C
o

Y
es

3
2

2
56

O
rb

ita
l

3 16
C

FR
P,

Ti
ta

ni
um

M
Q

L
H

SS
-C

o
Y

es
2

2
2

64
O

rb
ita

l
3 16

C
FR

P,
Ti

ta
ni

um
M

Q
L

H
SS

-C
o

N
o

2
1

1

Ta
bl

e
5.

2:
E

xp
er

im
en

ta
lr

es
ul

ts
fo

r
co

nv
en

tio
na

la
nd

or
bi

ta
ld

ri
lli

ng
,a

s
di

sc
us

se
d

in
Se

ct
io

n
5.

4.
2

(p
ag

e
19

9)
.

T
he

nu
m

be
rs

in
“T

oo
lW

ea
r”

,“
H

ol
e

Q
ua

lit
y”

an
d

“S
ur

fa
ce

”
co

lu
m

ns
ar

e
qu

al
ita

tiv
e

as
se

ss
m

en
ts

by
an

en
gi

ne
er

.

a Se
le

ct
ed

re
su

lts
on

ly
.F

ul
lr

es
ul

ts
av

ai
la

bl
e

up
on

re
qu

es
t.

A
ll

ex
pe

ri
m

en
ta

ld
at

a
co

ur
te

sy
of

D
av

id
Pa

yn
e

(Q
U

B
)

b D
ri

ll
D

ia
m

et
er

5.4. Case Study: Choosing a Drilling Technique 202

5.4.3.1 Gathering Support for Orbital or Conventional Drilling

For example, to say that our machining process does not support application of coolant

for orbital drilling, and as a result we cannot use evidence from experiments in which

coolant was used, we can write

experiment(X), type(X ,Orbital),environment(X ,Coolant)

 ¬supportingEvidence(X ,Orbital)

where experiment(X) will be grounded for each row r1 to r64, type, environment

are binary predicates that can be used to check for specific field values, and

supportingEvidence is a user-defined term that indicates whether a result X can be

used as supporting evidence for its method, that is for type(X). This schematic rule is

instantiated for example with X = r46, resulting in the following argument:

A1 = [experiment(r46), type(r46,Orbital),environment(r46,Coolant)

 ¬supportingEvidence(r46,Orbital)]

The last remaining step is to use arguments with conclusion supportingEvidence(,X)

as support for the claim choose(X):

supportingEvidence(,X) choose(X)

The underscore signifies a free variable that is not referenced in the rule head.

When evaluating arguments, the system only deals with completely grounded argu-

ments such as A1 above, so the standard definition of the reified graph of a meta-ASPIC

system (Definition 72) can be used to determine acceptable arguments.

With the rules described above, we will end up with some arguments with conclu-

sion choose(Orbital) and some arguments with conclusion choose(Conventional). As-

suming an appropriate encoding of the mutual exclusivity of Orbital and Conventional,

the resulting graph will have two preferred extensions, one with arguments in support

of conventional drilling and one with arguments in support of orbital drilling. The exact

number of arguments depends on the user-defined rules.

5.4. Case Study: Choosing a Drilling Technique 203

However, a decision still has to be made, even if there is no clear favourite emerg-

ing from the argument graph. We can resolve such disputes by adding additional infor-

mation (in form of arguments), as the next section shows.

5.4.3.2 Combining Empirical Evidence With Other Argument Schemes

In addition to arguments that are directly supported by experimental results, we can

create arguments from argument schemes that take into account the circumstances of

our particular problem.

One example is the resolution of conflicts in group decision making. When the

options have been evaluated, for example using the methods described in Chapter 3,

but there is no clear winner, one way do resolve the tie is by letting the most senior

team member decide, using an “argument from seniority”. Because the argument from

seniority overrides a junior’s argument by virtue it being made by a junior person, rather

than the quality of their argument, it is counted as an ad hominem argument. While ad

hominem arguments are often disallowed in professional debates (cf. [126]), arguments

from seniority are more readily accepted, especially when a senior decision is the only

way to resolve a tie.

The example can be modelled using a standard logic-programming approach, as

discussed in [127]:

seniorTo(alice,bob).

proponent(alice,Orbital).

proponent(bob,Conventional)

proponent(X ,Y),proponent(R,S),seniorTo(X ,R),neq(Y,S) ¬choose(S)

As usual, the last rule will be grounded for each valid assignment of the variables

(neq is a built-in predicate that holds whenever its two arguments are not equal). As a

result, we get an argument

5.4. Case Study: Choosing a Drilling Technique 204

A2 = [proponent(alice,Orbital),proponent(bob,Conventional),

seniorTo(alice,bob),neq(Orbital,Conventional)

 ¬choose(Conventional)]

A2 now attacks any argument with claim choose(Conventional) asymmetrically.

When looking at the grounded extension of the resulting graph we will find the claim

choose only for one drilling method, orbital.

5.4.4 Software Prototype

In this section we describe a prototypical implementation of the case study on orbital

and conventional drilling (Section 5.4.3), giving evidence of the practical usefulness of

our argumentation system.

5.4.4.1 Overview

The program is an editor and interpreter for argument schemes. Argument schemes are

entered using a PROLOG-like syntax with rules, variables and a “negation” operator ¬.

There are two interpreters: The first produces a graph-based interpretation for visialis-

ing arguments and their extensions. The scond produces an SQL query that instantiates

schemes with acceptable subsets of the argument graphs.

The program consist of three layers: The user interface, a REST5 application

server and an SQL server. The only purpose of the REST server (middle layer) is

to forward SQL queries to the database server, which cannot be accessed directly by

the UI because it is behind a corporate firewall. The comptuations are done on the

client and by the SQL server.

The programming language Haskell [136] was chosen for implementing the soft-

ware, because there already exists an open-source implementation of Dung’s argument

graphs [137, 138], and because its type system, terse syntax and lazy evaluation seman-

tics make it well-suited for implementing domain-specific languages and interpreters.

Another reason is that Haskell programs can be compiled to JavaScript, so they can

5Representational State Transfer, a standard architecture for communication between servers in the
world wide web [135]

5.4. Case Study: Choosing a Drilling Technique 205

data Rule = Rule {
body : : [R u l e P a r t] ,
headName : : Pred ica teName ,
headVar : : UnaryVar
}

data R u l e P a r t =
P r e d i c a t e { pr : : P r e d i c a t e D e f i n i t i o n }
| Aggr{

o p e r a t o r : : AggOperator ,
p r : : P r e d i c a t e D e f i n i t i o n ,
comp : : CompOperator ,
compWith : : S t r i n g

}

Figure 5.6: Rule parts and rule types in Haskell

run in ordinary web browsers without having to install them. This was an external

requirement from SAP under whose supervision the software was developed.

5.4.4.2 Implementation Details

We will now discuss some aspects of the implementation in more detail. We start with

the internal representation of arguments.

An argument in our system is a tree. The nodes of the tree are rules

p1(X1), . . . , pn(Xn) p(X) (where the pi are predicates) and the children of a node are

those rules whose conclusion is used in the rule body (a supports relationship).

Typed Predicates A special feature of our definition is that the predicates pi are

typed in the same way as tables in a relational database. For example, the type of

engineer(X) is (Int,Text,Text), so each row of the table describes an engineer with

ID number, first name and last name. The system has a number of built-in predicates

that are based on the tables of the underlying database. Every tables is assigned a

“primary” predicate, such as engineer. If a table has foreign keys, then each of the

foreign-key relations is assigned an additional, binary predicate – for example, if there

was a table of “conclusions” and each conclusion was supported by an engineer, a

supports(X ,Y) predicate would be generated.

Implementation of Rules The listing in Figure 5.6 shows the definition of a rule in

Haskell. A rule consists of a list of rule parts (the rule body), and a unary predicate

(the rule head). A rule part is either a predicate, or an aggregation. Aggregations are

5.4. Case Study: Choosing a Drilling Technique 206

a special feature of our implementation that allows end users to count the acceptable

arguments for a given conclusion.

For example, the scheme argument from expert opinion can be attacked by show-

ing that the person making a claim is not actually in expert in a domain. In our software

prototype, we can establish “experthood” as follows:

person(X),COUNT(publication(X ,Y)≤ 3) ¬expert(X ,Y)

The rule above expresses that X is not an expert in domain Y if they do not have at

least four publications in Y . The set of available aggregation functions includes MIN,

MAX, AVG, and any other aggregations that are supported by the underlying SQL

server implementation.

Argument Creation Users can generate new predicates by writing rules of the form

p1(X1), . . . , pn(Xn) p(X), with i≥ 1. This ensures that all user-defined predicates are

ultimately derived from system-defined ones, and thus can be turned into SQL queries

(see below).

Another important difference to a traditional logic-programming approach to argu-

mentation is that arguments are created from rules without unifying free variables with

atoms. There is, though, unification with relational types: The predicate engineer(X)

introduced earlier binds the variable X to the record type (Int,Text,Text). When at-

tempting to unify another free variable with X , the unification engine checks that the

types are compatible.

5.4.4.3 Argument Evaluation

When arguments have been formed as described in the preceding section they are rep-

resented internally as abstract syntax trees (ASTs). The program has two evaluators for

ASTs: As SQL queries and as argument graphs.

Argument Graph Evaluation The argument graph evaluation is straightforward: The

set of arguments is completely determined by user input, and an argument a attacks

another argument b if the conclusion of a is the negation (¬) of b’s conclusion. Please

refer to Definition 81 on page 210 for a formalisation of this evaluation.

5.4. Case Study: Choosing a Drilling Technique 207

SELECT * FROM (SELECT * FROM p u b l i c a t i o n AS Y)
JOIN (SELECT * FROM p e r s o n AS X)
ON X. p e r s o n I d = Y. a u t h o r I d

Figure 5.7: Generated SQL query for publication(X ,Y)

SELECT (X. * , Y . *) FROM (SELECT * FROM p u b l i c a t i o n AS Y)
JOIN (SELECT * FROM p e r s o n AS X)
ON X. p e r s o n I d = Y. a u t h o r I d
GROUP BY X. p e r s o n I d
HAVING COUNT(X. p e r s o n I d) <= 3

Figure 5.8: Generated SQL query for COUNT(publication(X ,Y)≤ 3)

SQL Query Evaluation In order to instantiate an argument scheme such as (Exp)

above, we first translate the preconditions of the rule into SQL. The predicate

person(X) translates into

SELECT * FROM p e r s o n

When translating the predicates into queries, we proceed from left to right, using

the free variables directly as identifiers in SQL. To evaluate COUNT(publication(X ,Y)≤

3), we have to perform two steps. First, we translate the predicate publication(X ,Y)

to the SQL query shown in Figure 5.7. The translation described in Figure 5.7 is pre-

defined and can be generated automatically from the database schema, by exploiting

the fact that the publication table has a foreign key authorId, which is linked to the

primary ID column of the author table. The JOIN statement in l. 2 directly uses the

previous query for person(X).

The second step in the translation of COUNT(publication(X ,Y)≤ 3) adds a filter

condition to the inner query from Figure 5.7. The result is shown in Figure 5.8.

From Arguments to Graphs The examples demonstrate the principle of translating

arguments step-by-step to SQL. To extend the approach from individual arguments to

argument graphs, two additional steps are necessary: First, there may be several ar-

guments with the same conclusion (for example, representing different reasons why

someone might be an expert). All arguments with the same conclusion are joined using

the UNION operator in SQL. Second, attacks on arguments should result in the exclu-

sion of records from the query. Attacks stem from negated conclusions (¬expert(X))

5.4. Case Study: Choosing a Drilling Technique 208

and are implemented using the EXCEPT keyword, which is the SQL equivalent of set

difference. To build the query for expert(X) arguments, the interpreter first creates

a UNION query of all arguments whose conclusion is expert(X). It then takes all

arguments with conclusion ¬expert(X) and excludes them from the first query. This

is done recursively, from the bottom up.

5.4.4.4 Optimising the System

As stated above, we do not generate all possible arguments in order to evaluate the

argument graph: Instead of instantiating each rule with all possible database results,

we only check whether the set of possible results is empty or not. If it is, then we

delete the rule, if it is not (i.e. if the result set is populated) then we take the rule as a

proxy for all arguments it generates. This simple optimisation means that most of the

computational work is offloaded to the SQL server and does not have to be performed

on the client. In this section, we will show that this optimisation is correct in the sense

that it does not affect the acceptable sets of arguments.

First, let us make precise the meaning of some of the terms we have been using.

We will start by defining database arguments, which are arguments that consist of

predicates on some universe (of rows) U . Technically, U consists of several sets

(one for each table), but we will ignore the fact that rows have a type for now. In the

following we also assume a set N of names, or labels.

Definition 80 (Database Argument). Let P= {P1, . . . ,Pn} be a set of predicates on U ,

with Pi : 2U → 2U .

1. If P ∈ P and n ∈ N, then P n is a database argument

2. If A1, . . . ,Ak are database arguments and n∈N then A1, . . . ,Ak n is a database

argument

3. If A1, . . . ,Ak are database arguments and n ∈ N then A1, . . . ,Ak ¬n is a

database argument

The function lbl(A) returns the label (in N) of a database argument.

Database arguments are essentially trees whose leaves are predicates in P and

whose nodes are labelled with elements of N.

5.4. Case Study: Choosing a Drilling Technique 209

Example 62. Assume that U contains all rows in Table 5.2 on page 201. Then we can

define the following predicates:

conventional(X)⇔ type(X) = “Conventional′′

orbital(X)⇔ type(X) = “Orbital′′

dry(X)⇔ environment(X) = “Dry′′

coolant(X)⇔ environment(X) = “Coolant ′′

good(X)⇔ holeQuality(X)> 3

bad(X)⇔ holeQuality(X) = 1

with P = {conventional,orbital,dry,coolant,bad}. N contains claims we want

to make based on the data, for example N = {chooseOrbital,chooseConventional, . . .}.

Remember that in the actual application, N is defined by the user (implicitly, through

the rules that are entered into the system), and P is given by the underlying database.

Some database arguments are:

A1 = [conventional(X),good(X) chooseConventional(X)]

A2 = [orbital(X),good(X) chooseOrbital(X)]

A3 = [coolant(X),conventional(X) ¬chooseConventional(X)]

A4 = [coolant(X),orbital(X) ¬chooseOrbital(X)]

The rationale behind arguments A3 and A4 is that we want to discount results which

are based on an environment where coolant was used, because the machines in our

workshop are not able to drill in such an environment.

Database arguments act as queries over the database U . To interpret them in the

meta-ASPIC framework, we define a translation process consisting of three steps. First,

we give a straightforward translation of a set of database arguments A to an argument

graph (A,Att) by defining the attacks-relation Att. This graph (A,Att) will serve as the

underlying argument graph for the eventual meta-ASPIC system (G,K).

The purpose of the second and third steps is to filter out vacuous arguments, that

is, arguments which are not backed by any data in the database. To achieve this we

5.4. Case Study: Choosing a Drilling Technique 210

map each database argument to a set of rows in U . We then add an attacker for each

vacuous argument, thereby making it unacceptable in (G,K) under any semantics.

The first step in the translation, Definition 81, produces an argument graph

(A′,Att) from a set of database arguments A by defining the attacks relation Att.

Definition 81 (Argument Graph from Database Arguments). The argument graph for

database arguments A over a set of symbols N is a graph (A,AttN) where

AttN = {(a,b) ∈ A×A | lbl(a) = ¬lbl(b) or lbl(b) = ¬lbl(a)}

Example 63. Applying Definition 81 to the example 62 we get the following graph:

A1 A2A3 A4

It seems that the grounded extension contains A3 and A4 (the “negative” argu-

ments), but we will see in Example 65 that some of the arguments are invalid, because

they are not backed by any actual experimental data.

For the second step we map each database argument to a set of rows in the

database. This step is what enables the performance gains described above: Because

we only need to know whether the set of rows for a database argument is empty or

not, we do not need to add every possible instantiation of that argument to our graph -

instead, we only check if the query has any results or not. That way, most of the work

of evaluating arguments is performed by the SQL server.

Queries are generated for each argument with a positive (non-negated) conclusion,

by first taking the intersection of the subsets of U defined by the predicates in the

argument’s body, and then subtracting all arguments whose conclusion is a negation of

one of the argument’s supporting predicates:

Definition 82 (Argument Query). Let (A,AttN) database argument graph over a set

of symbols N and a set of predicates P. The function ins : A→P(U) instantiates

arguments and is defined as

ins(a)=

P(U)\ ins−(a) if a = [P n] for a P ∈ P

(ins(A1)\ ins−(A1))∩ . . .∩ (ins(An)\ ins−(An)) if a = [A1, . . . ,Ak n]

5.4. Case Study: Choosing a Drilling Technique 211

where ins− is a helper function that instantiates the attacking arguments, defined

as ins−(a) = {ins(b) | b ∈ A and (b,a) ∈ AttN}.

The recursive definition of ins ensures that arguments are instantiated only by

those rows for which either no counter-arguments exists (so ins− is empty), or for

which all counter-arguments are in turn countered. Because the only operations used

are ∪ and ∩, the instantiation of an argument can be performed entirely by the database

server. To this extent we translate ∪ to the UNION statement and ∩ to the EXCEPT

statement in SQL.

Example 64. Let us begin with argument

A1 = [conventional(X),good(X) chooseConventional(X)]

from Example 62. Using the definitions from Example 62, we get the following instan-

tiation (with rows from Table 5.2): ins(A1) = {r20}\ ins−(A1). Row 20 is the only one

that fulfils the criteria conventional and good. In order to fully evaluate the argument

graph we also need to compute ins−(A1), by evaluating ins(A3). This may result in

a successful attack on a, if {r20} \ ins(A3) = /0. However, as there are no rows for

A3 (ins(A3) = /0), we get ins(A1) = {r20} \ /0 = {r20}. A3 is an example of a vacuous

argument (see below).

Definition 84 distinguishes two cases. For database arguments that correspond

directly to a predicate in P, we simply apply the predicate on U . If it is a defeasible

rule, we instantiate its body by recursively calculating ins for each supporting argument.

However, we also subtract all rows that act as parts of counter-arguments. This means

ins(a) effectively performs an evaluation of a.

It is possible to describe database arguments that do not map to any rows in the

database, that is, arguments a with ins(a) = /0. We call such arguments vacuous be-

cause they are not backed by any data. Vacuous arguments should not be allowed to

attack other arguments. We exclude them from our graph, resulting in a sub-graph

(A+,Att+N)v (A,AttN) of valid arguments:

Definition 83 (Valid Database Argument Graph). For any argument graph from

database arguments G = (A,AttN), the valid sub-graph of G is defined as (A+,Att+N)

5.4. Case Study: Choosing a Drilling Technique 212

with

1. A+ = {a ∈ A | ins(a) 6= /0}

2. Att+N = {(a,b) ∈RN | a,b ∈ A+}.

Example 65. Argument A2 from Example 62 is defined as

[orbital(X),good(X) chooseOrbital(X)]

It is not valid (in the sense of Definition 83) because there are no rows in the database

that satisfy both predicates, orbital and good. For the same reason, A3 is not valid. We

thus get the subgraph (A+,Att+N) of valid arguments, with A+ = {A1,A4} and Att+N = /0.

With Definition 81 we get an argument graph and with Definition 84 we can map

each argument to a set of rows in U . To instantiate database arguments, we simply

apply ins to each database argument, and extend the attacks relation Att accordingly.

Definition 84 (Instantiation of Database Argument Graph). Let A be a set of database

arguments and let (A,AttN) be its argument graph. The instantiated graph of A is an

argument graph (Ã, ˜AttN) with

1. Ã =
⋃

a∈A ins(a)

2. ˜AttN =
⋃
(a,b)∈AttN

{(a′,b′) ∈ Ã× Ã | a′ ∈ ins(a) and b′ ∈ ins(b)}

Example 66. The argument graph from Example 63 is instantiated in (Ã, ˜AttN), where

Ã contains the following rows:

ins(A1) = {r20} ins(A2) = /0

ins(A3) = {r2} ins(A4) = {r30,r46}

We finish this section by showing that our optimisation (computing ins(a) for all

arguments on the server, instead of computing the preferred extensions of the graph

on the client) is valid: A database argument a ∈ A is credulously acceptable in (G,K)

if and only if all of its instantiations ins(a) are acceptable in (G′,K′) (see Theorem 6

below). Before we can prove the claim, we need a handful of additional definitions.

5.4. Case Study: Choosing a Drilling Technique 213

First, we say that two arguments a and b in a graph G are extension equivalent if

and only if every (preferred or grounded) extension of G either contains both a and b,

or neither a nor b.

Definition 85 (Extension Equivalence). Let G = (A,Att) be an argument graph and let

a,b ∈ A. a is extension equivalent to b (short a ≡E b) if and only if for all s ∈ {gr,pr}

and for all E ∈ Σs(G), a ∈ E ⇔ b ∈ E .

The notion of extension equivalence is an equivalence relation:

Proposition 45. ≡E is an equivalence relation

Proof. Follows from the fact that⇔ is an equivalence relation on truth values

In order to show that our optimisation is correct we need to show that the

query function ins(a) returns an equivalence class of the instantiated argument graph

(Ã, ˜AttN), and it is therefore enough to check the acceptability of a single member of

ins(a) to determine the acceptability of all instantiated arguments in ins(a).

Theorem 6. Let (A+,Att+) be a valid database argument graph and let (Ã+, ˜Att+) be

its instantiation. For all a ∈ A+ and all a′,b′ ∈ ins(a), a′ ≡E b′.

Proof. G = (A+,Att+) be a valid database argument graph and let G′ = (Ã+, ˜Att+) be

its instantiation. Let a ∈ A+ and let a′,b′ ∈ ins(a).

Proof by contradition. Assume that there is an s∈ {pr,gr} such that there exists an

E ∈ Σs(G′) such that a′ ∈ E and b′ /∈ E . Then there exists a c′ ∈ Ã+ such that (c′,b′) ∈
˜Att+ and (c′,a′) /∈ ˜Att+. By Definition 84 there exists a c ∈ A such that (c,a) ∈ AttN .

However, by the same definition, (c′,a′) ∈ ˜Att+, so the assumption is false and the

claim holds.

In this result we made a number of simplifications compared to the software im-

plementation. For example, our rules do not support aggregates, and record types have

been omitted as mentioned above. However, the general principle behind Theorem 6

still applies.

To summarise: Our software can be used to define database argument graphs (Def-

inition 81), which are argument schemes that can be instantiated by data in an SQL

5.4. Case Study: Choosing a Drilling Technique 214

database. The acceptability of database arguments is therefore determined by the ac-

ceptability of the concrete database rows they map to (Definition 83). However, it is

not necessary to load all rows that instantiate database arguments into memory. As

Theorem 6 shows, it is enough to check whether each database argument is populated,

and then to evaluate the graph of valid database arguments (Definition 83). The size

of the argument graph is therefore not bounded by the number of rows in the database,

only by the number of database arguments.

5.4.4.5 Meta-Arguments to Counter Vacuous Arguments

An important step in proving Theorem 6 was to discount argument schemes that are not

instantiated by any data as “vacuous” (see page 211). Saying that an argument should

not count because it is not backed by any data is a meta-argument, and as such we can

express it in meta-ASPIC. In this section we describe how such a meta-argument can be

transplanted from Definition 83 to a meta-ASPIC argument graph. By formulating this

constraint as a meta-argument we open up the possibility of adding counter-arguments

or additional meta-arguments within the framework itself.

Definition 86 (Counter-Argument). Let G = (A,AttN) be an argument graph from

database arguments. The graph G′ = (A′,AttN) is G extended with counter-arguments

and is defined as

1. A′ = A∪AC∪AD

2. AC = {[vacuous(a)] | a ∈ A s.t. ins(a) = /0}

3. AD = {[vacuous(a) ¬a] | [vacuous(a)] ∈ AC}

Example 67. Consider the argument graph in our running example (Example 63).

As we saw above, ins(A2) = /0, so AC for the example contains the single argument

[vacuous(A2)]. For AD we get one attack: AD = {[[vacuous(A2)] ¬A2]}.

Instead of restricting the original set of arguments A (as was done in Definition

83 for valid database argument graphs), Definition 86 adds two new sets to the graph:

AC, with arguments [vacuous(a)] stating that a is not backed up by any data, and AD –

the actual argument scheme against vacuous arguments – introducing an attack on all

arguments that had been singled out as vacuous in AC.

5.4. Case Study: Choosing a Drilling Technique 215

Both approaches, restricting and adding counter-arguments, result in the same ac-

ceptability of database arguments. This result is formalised in the next proposition.

However, the acceptable sets of arguments are not identical for G′ and G+, because

of the counter-arguments that G′ contains. We can therefore only show that the ac-

ceptability of arguments in the two graphs is identical up to linear extension, a notion

introduced in the previous chapter (page 39).

Theorem 7. Let G = (A,Att) be an argument graph from database arguments, let

G′ = (A′,AttN) be G extended with counter-arguments, and let G+ = (A+,Att+) be the

valid graph database argument graph of G (Definition 83). Then, for all s ∈ {pr,gr},

Σs(G′) is a linear extension of Σs(G+)

Proof. First note that G+ v G′, so all arguments in G+ are also in G′. To show that

Σs(G′) is a linear extension of Σs(G+), we need to prove that

1. For all E ∈ Σs(G+), there is an E ′ ∈ Σs(G′) such that E ⊆ E ′ and

2. For all E ′ ∈ Σs(G′), there is an E ∈ Σs(G+) such that E ⊆ E ′

(1) Let E ∈ Σs(G+). We distinguish two cases, one for s = pr, and one for s = gr.

First assume s = pr so E is a preferred extension of G+. To prove that there is an

E ′ ∈ Σpr(G′) with E ⊆ E ′, it suffices to show that E is an admissible set in G′, because

then it is the subset of a preferred extension (by Dung’s fundamental lemma). E is

an admissible set if it is conflict-free and defends itself against all attacks. Since E

is a preferred extension in G+ it is conflict-free (in G+). It is also conflict-free in G′,

because additional attacks in G′ are introduced only through the set AD and AD∩E = /0.

Now we prove that E is admissible in G′ by contradiction. Assume that there exists an

argument a ∈ E and b ∈ A′ such that (b,a) ∈ Att ′ and there is no c ∈ E ′ such that

(c,b) ∈ Att ′. b ∈ A′, so (by Definition 86) b ∈ A∪AC∪AD. If b ∈ A, then either b ∈ A+

or b /∈ A+. If b ∈ A \A+, then ins(b) = /0 (by Definition 83) so there exists a c ∈ AD

such that (c,b) ∈ Att+ (by Definition 86). c itself is not attacked in G′ so c ∈ E ′. If

on the other hand b ∈ A+ then there exists a c ∈ E such that (c,e) ∈ Att+ (because

E is admissible) and so (c,e) ∈ Att ′. Therefore b /∈ A, so b ∈ AC or b ∈ AD. As the

arguments in AC do not produce any attacks, b ∈ AD. So b ∈ AC with b = [vacuous(a)]

5.4. Case Study: Choosing a Drilling Technique 216

(by Definition 86). However, since a ∈ E, ins(a) 6= /0 so there is no argument b′ ∈ AC

with b′ = [vacuous(a)]. This contradicts the assumption that an argument b attacking a

exists in G′.

Now assume that s = gr, so E is the grounded extension of G+. Let E be the

grounded extension of G′. We show that E is a subset of E ′ by structural induction over

the characteristic function FG+ . Specifically, we show that for all D⊆ E, if FG+(D)⊆

E ′ then FG+(FG+(D)) ⊆ E ′ (induction step), and we show that FG+(/0) ⊆ E ′ (base

case). Since FG+ is monotonically increasing, and the grounded extension is the least

fixed point of FG+ , this suffices to show that E ⊆ E ′ (because for every a ∈ E there

is a D0 with a ∈FG+(D0)). Base case: Let a ∈FG+(/0). To see that a is unattacked

in G′, assume that there is an argument b such that (b,a) ∈ Att ′. Since a ∈FG+(/0),

b /∈ Att+. So either b ∈ A \A+, or b ∈ AD. In the first case, there exists a c ∈ A′ such

that (c,b) ∈ Att ′, and c is unattacked in G′ so c ∈ Σgr(G′) \ {a} so a ∈ Σgr(G′). Since

a ∈ A+, ins(a) 6= /0, so b /∈ AD. This contradicts the assumption that b ∈ A∪AC ∪AD.

Therefore a is not attacked in G′, so a ∈ E ′. Induction step: Let D ⊆ E such that

FG+(D)⊆ E ′. To show that FG+(FG+(D))⊆ E ′, let D′ = FG+(FG+(D))\D′. So D′

contains the arguments that were added by the latest application of FG+ . Let a ∈ D′.

Assume that there is an argument b ∈ A′ such that (b,a) ∈ Att ′. If b ∈ A+, then b is

attacked by FG+(D), and thus (by induction hypothesis) b is attacked by E ′ \ {a}, so

a is admissible with respect to E ′ \{a}, and thus a is in E ′ (the grounded extension of

G′). If on the other hand b ∈ A′ \A+, then we can derive a contradiction similarly to the

other cases of this proof above.

(2) Let E ′ ∈ Σs(G′). Again we distinguish s = pr and s = gr. If s = gr then E ′ is the

grounded extension of G′. In this case, E is the grounded extension of G+, and E ⊆ E ′

can be shown analogously to part (1) of this proof for the case that s = gr.

If s = pr, then E ′ is a preferred extension of G′ and we will show that there exists

a preferred extension E in G+ such that E ⊆ E ′. Let E = E ′ ∩A′. To prove that E is

admissible, we need to show that E is conflict-free and that E defends itself against all

attacks. E is conflict-free because E ⊆ E ′ and E ′ is conflict-free (since it is a preferred

extension of G′). Now assume that there is an argument a ∈ E and an argument b ∈ A+

such that (b,a) ∈ Att+. Either b ∈ A′, or b /∈ A′. If b ∈ A′ then there exists a c ∈ E ′

such that (c,b) ∈ Att ′ (since E ∈ Σpr(G′)). By Definition 86, c ∈ A∪AC ∪AD. If c ∈ A

5.4. Case Study: Choosing a Drilling Technique 217

D+ D D′

Definition 83

v

Definition 86

v

Theorem 7

Figure 5.9: Relationship of D+,D and D′ in Theorem 7

then c ∈ A+, so c ∈ E ′. If c ∈ AD, then ins(b) = /0, so b /∈ A+ (which contradicts the

assumption that b ∈ A+). Therefore E is an admissible set in G+. To finish the proof

we need to show that E is a preferred extension – a maximal admissible set. Assume

that there is an argument a ∈ A+ such that a is admissible with respect to E and a /∈ E.

Since A+ ⊆ A′, a ∈ A′. a ∈ A+ so by Definition 83, ins(a) 6= /0. Therefore, a is not

attacked by any arguments in AD, so a is admissible with respect to E ′ too. Since E ′ is

a preferred extension it is a maximal admissible set so a ∈ E ′. But then a ∈ E ′∩A′, so

a ∈ E and we have shown that E is a preferred extension in G+.

This completes our theoretical evaluation of the case study, closing the circle with

the original discussion of meta arguments in Section 5.2. Theorem 7 demonstrates how

meta-arguments can be taken from the meta-language of mathematics and informal de-

scriptions (as in Definition 83) and incorporated into meta-arguments in a meta-ASPIC

system (as in Definition 86). The relationship between the graphs D+, D and D′ is

shown in Figure 5.9. D represents the original graph of database arguments, includ-

ing those that are potentially invalid (vacuous). D+ on the left contains only valid

arguments and is therefore a subgraph of D. D′ on the right contains additional meta-

arguments to attack (and make unacceptable) any invalid arguments in D. D′ is there-

fore a supergraph of D. The dashed arrows in the lower half of the diagram show how

the two graphs D′ and D+ can be generated from D.

We conclude with a discussion of our approach and a review of the relevant liter-

ature.

5.4.5 Summary

We implemented a software prototype based on the meta-ASPIC system introduced in

Section 5.3. The prototype has been used to model arguments about drilling meth-

ods, combining empirical evidence with arguments from argument schemes. An early

5.5. Related Work 218

version of the software has been presented at COMMA 2014.

The prototype as described here used arguments to describe database queries. SQL

databases do not have a notion of conflict between data rows. Therefore, when viewed

as a meta-ASPIC system, the underlying argument graph was a conflict-free graph, and

attacks were only introduced on the meta-level. This approach can easily be extended to

other data sources. The resulting meta-argumentation system can be used to summarise

debates across a variety of media, including text, verbal discussions, experimental data,

and requirements specifications.

5.5 Related Work
The work in this chapter brings together two areas of research in formal methods of

argumentation: Argument schemes, and meta-argumentation. We have argued that the

two are closely related, and that argument schemes are a form of meta-argumentation.

However, they have traditionally been treated as separate entities. We will therefore

review the state of the art in each area individually.

We can also view meta-ASPIC as “yet another argumentation system”, regardless

of our motivation to use it for studying meta-arguments. From this perspective it makes

sense to compare meta-ASPIC with similar argumentation systems.

5.5.1 Argument Schemes

Previous research has been concerned with the representation of argument schemes

in a formal setting [139, 21, 140, 127, 141, 132, 142], in particular for the legal do-

main [143, 144, 26, 145, 131] (see [27] for a review). Arguments schemes are seen as

“generators” of arguments [146], a view that we also take (especially in our case study

(Section 5.4) where argument schemes literally generate arguments in the form of SQL

queries). However, there is a significant conceptual difference between our work and

the literature in that we studied formal representations of argument schemes on the

basis of non-deductive arguments (Section 5.2). As a consequence, our system can rep-

resent argument schemes (as arguments about arguments), but it cannot infer arguments

from a set of argument schemes and some formalised knowledge, which has been the

primary use case for formalising argument schemes. Instead, the purpose of our system

is to extend classical notions of acceptability to the meta-argumentation, and the fact

5.5. Related Work 219

that meta-ASPIC can represent argument schemes at all is only a consequence of our

view that argument schemes are examples of meta-argumentation.

Our work takes quite a unique position within the literature on formalising argu-

ment schemes. Our primary intention has been to develop a framework in which meta-

arguments can be evaluated using traditional argument graph semantics, and argument

schemes are only one example of meta-argumentation.

5.5.2 Meta-Argumentation

Meta-level argumentation is the study of arguments about arguments [147, 148, 149],

describing the properties of arguments and attacks in the same language as arguments

themselves.

Research by Modgil et al. [147] has shown how several extensions to abstract

argumentation can be modeled using meta-level constructs in a standard (that is, with-

out any special arguments) abstract argumentation system as defined by Dung [42].

This is achieved by translating each of these additions, such as attacks on attacks, or

preferences, into a constellation of several arguments that are only connected by the

“attacks” relation. The extensions of the extended abstract argumentation systems are

shown to conincide with those of the resulting argument graph. However, this ap-

proach to meta-level argumentation does not provide a systematic way of instantiating

abstract arguments. The examples in [147] suggest that there is a need for a systematic

approach which uses structured arguments to unify the various proposals for abstract

argumentation.

In an earlier paper by Modgil [150], a method is introduced for organising several

abstract argument graph into a hierarchy. The proposal distinguishes defeats from at-

tacks, both of which are binary relations between arguments. Defeats are a subset of

attacks. Whether an attack is also a defeat depends on information in the next-higher

level in the hierarchy of argument graphs. Defeats give rise to the notion of resolutions,

which are sub-graphs of an argument graph in which all mutual attacks are resolved (so

only one of the two edges exists in the subgraph). The main difference between our

approach and the work by Modgil is that in [150], attacks are presumed to be caused by

contradictions in a formulae of a logical language, and thus symmetric in most cases.

The reason for organising argument graphs in a hierarchy is that it allows one to resolve

5.5. Related Work 220

symmetric attacks by establishing preferences.

As we have mentioned above, one of the distinguishing features of meta-ASPIC is

that it allows arguments to appear as premises and conclusions of other arguments, in

order to better represent natural language arguments. A recent proposal by Amgoud et

al. [125] has a similar feature and we will therefore discuss it here as a system for meta-

argumentation. We explained in Section 5.2 that the validation of natural language

arguments requires context (unlike that of deductive arguments), and that this context

is provided by meta-arguments. Amgoud et al. introduce a formalism (as a set of

inference rules) for reasoning about meta-arguments. Their aim is to answer questions

such as “is a a reason for concluding b?”, where a and b can be arguments themselves.

Their approach is promising, but as the authors say, the question of soundness and

completeness of their logic is still open. In our approach we do not have to worry

about this problem because we project meta-arguments into the well-known domain of

abstract argumentation [42].

The idea that there is a hierarchy of meta-arguments, instead of only one meta-

level and one object-level, is not new and has been explored for example by Wooldridge

[149]. The link between meta-argumentation and argument schemes has been drawn in

[127].

Abstract argumentation [42] provides a graph-based interpretation of argument

graphs. Bipolar argumentation [151, 152, 153] is an extension of Dung’s abstract ar-

gumentation framework, adding a “supports”-relation as a second relation over argu-

ments. Dung’s original framework considered this relationship only implicitly, using

the concept of defence for the defeaters of an argument’s defeaters. Supporting ar-

guments allow additional extension semantics. For example, sets of arguments are

considered safe if none of their members depend on (are supported by) an argument

outside the extension, which results in a stronger notion of internal coherence than just

being conflict-free. Whilst bipolar argumentation is appealing as it offers a range of

possibilities for defining the “supports”-relation, there is no formalisation of meta-level

arguments, and supports for attacks (i.e. each attack by an argument A on argument B

is justified by an argument C) cannot be defined.

5.5. Related Work 221

5.5.3 Bipolar Argumentation

The central idea in bipolar argumentation [154, 153, 155, 151] is that, besides attacking

or conflicting (as in abstract argument graphs), there is a second “supports” relationship

that abstract arguments may be in.

It is important to distinguish the later work on bipolarity in argumentation (e.g.

[154, 153]) from the earlier work on bipolar argumentation frameworks, short BAFs

(e.g. [153, 155, 151]). The latter establishes BAFs as the formal foundations for the

former. Bipolarity in argumentation characterises different kinds of support, such as

deductive support, necessary support and evidential support, in terms of a BAF.

In BAFs, there is no notion of meta-argumentation, because all arguments are on

the same level and the “supports” relationship between arguments is not restricted. For

example, it is possible to have cyclic supports (although in an earlier version of BAF

[151], only acyclic graphs were considered). In BAF it is thus not possible to separate

the different domains in which arguments can exist, for example engineering (the ob-

ject domain) and argument schemes (the meta-domain). This however is an important

requirement for our model engineering debates, as discussed in Section 5.2.1. On the

other hand, in meta-ASPIC one cannot model self-supporting arguments without resort-

ing to a second argument on a higher level (ie. one has to write [[a] [a]]). The reason

for these differences is that BAF utilises a binary relation to express support, whereas

in meta-ASPIC we chose an algebraic approach (compare our Definition 68 on page

178 with the BAF definition as (G,Attatt ,Attsup) where Attsup is the supports-relation).

Our approach prevents, for example, self-attacking arguments (so in this sense it is less

expressive than BAF), but on the other hand it enables interesting constructions in the

realm of meta-argumentation such as the hierarchy of argument graphs in Definition 77

on page 191, and the characteristic object function O on page 189.

As far as the comparison between bipolarity in argumentation and meta-ASPIC

is concerned, of the three notions of support discussed in [154], meta-ASPIC is most

closely related to evidential support. This term stems from evidence-based argumenta-

tion, which we will discuss in detail in the following section.

5.5. Related Work 222

5.5.4 Evidence-Based Argumentation

Evidence-based argumentation frameworks (EAFs, [156, 157, 158]) extend Dung’s ar-

gument graphs in two ways. First, they complement the existing “attacks” relation

Atta with an “evidential supports” relation Atte. Second, Atta and Atte are not binary

relations over the set of arguments A, but rather they are subsets of P(A)×A - thus

allowing supports and attacks by sets of arguments. It is easy to see the analogy with

meta-ASPIC, where we allow several arguments in the premises of a meta-argument.

In this section we first give an interpretation of meta-ASPIC in terms of EAF, and then

discuss the relative advantages of each approach.

5.5.4.1 Translation

Let us begin with the formal definition of EAF.

Definition 87 (Evidential Argumentation System [156]). An evidential argumentation

system is a tuple (A,Atta,Atte) where A is a set of arguments, Atta is a relation of the

form (P(A) \ /0)×A, and Atte is a relation of type P(A)×A, such that within the

argumentation system, @x ∈P(A),y ∈ A such that xyAttay and xAttey. We assume the

existence of a “special” argument η /∈ A.

The Atte and Atta relations encode evidential support and attacks between argu-

ments. The special argument η represents the environment, and is used as a support for

“self-evident” arguments, which are not supported by any other arguments. η can be

seen as an interface to the world outside the particular EAF under consideration. EAFs

give rise to the notion of evidential support:

Definition 88 (Evidential Support [156]). An argument a is e-supported by a set S iff

1. SAttea where S = η , or

2. ∃T ⊂ S such that T Attea and ∀x ∈ T , x is e-supported by S\{x}.

S is a minimum support for a if there is no T ⊂ S such that a is e-supported by T .

By Definition 88, for every supported argument there exists a chain of evidence

starting with the special argument η . We can then define evidence-supported attacks as

follows:

5.5. Related Work 223

Definition 89 (Evidence-Supported Attack [156]). A set S carries out an evidence-

supported attack on an argument a if

1. XAttaa where X ⊆ S, and

2. All elements x ∈ X are e-supported by S.

An evidence-supported attack by a set S is minimal iff there is no T ⊂ S such that T

carries out an evidence-supported attack on a.

And finally, the traditional notion of acceptability extends to EAFs also:

Definition 90 (E-Acceptability [156]). An argument a is e-acceptable with respect to

a set S iff

1. S e-supports a and

2. Given a minimal evidence-supported attack X ⊆ A against a, ∃T ⊆ S such that

T Attax, where x ∈ X such that X \{x} is no longer a supported attack on a.

The second condition of Definition 90 ensures that any argument which is involved

in an attack on S it itself attacked by S. A set of arguments S is conflict-free iff ∀y ∈ S,

@X ⊆ S such that XAttay (i.e. if it does not attack itself). The final definition we need

is that of e-admissibility:

Definition 91 (e-Admissible Set of Arguments [156]). A set of arguments S is said to

be admissible iff

1. All elements of S are e-acceptable with respect to S

2. S is conflict-free

We will now define a mapping T from meta-ASPIC systems to EAFs. It has the

property that it preserves admissibility of sets of arguments, in the sense that if a set

of meta-ASPIC arguments S ⊆ MA for some meta-ASPIC system M is admissible in

reify(M), then the closure of M under sup (cf. page 179) is e-admissible in T (M).

Further, T is non-trivial, because it does not simply define Atte to ({η},a) for every

argument a - instead it uses the sup function to define evidential support.

5.5. Related Work 224

Definition 92 (meta-ASPIC to EAF). Let M = (G,MA) be a meta-ASPIC system. The

corresponding EAF is a tuple T (M) = (A′,Atta,Atte) with

1. A′ = MA

2. Atta = {({a},b) | a,b ∈MA such that a m-attacks b}

3. Atte = {(sa,a) | a ∈MA and sa = sup(a) iff sup(a) 6= /0, and sa = η otherwise}

Proposition 46. Let M = (G,MA) be a meta-ASPIC system. Let S ⊆MA such that for

all a ∈ S, sup(a)⊆ S. Let G′ = (MA,Att) = reify(M) and let S⊆MA. S is admissible in

G′ if and only if S is e-admissible in T (M).

Proof. Let S, T (M) = (A′,Atta,Atte) and G′ = (MA,Att) = reify(M) as defined in the

claim.

(⇒) Assume S is admissible in G′. We need to show that S is e-admissible in T (M).

By Definition 91, this involves two conditions. (1) All elements of S are e-acceptable

with respect to S. Let a ∈ S such that a is not e-acceptable with respect to S. Then

by Definition 90, either (1.i) S does not e-support a, or (1.ii) there exists a minimal

evidence-supported attack X ⊆MA such that there is no T ⊆ S such that T Attax for an

x ∈ X such that X \{x} is no longer an e-supported attack on a. Assume that (1.i) is the

case. Considering Definition 88 Conditions 1 and 2, and Definition 92 Cond. 3, this

means that S is not closed under sup - a contradiction with the assumptions on S laid

out above. For (1.ii), let X ⊆MA be a minmal evidence-supported attack such that there

is no T ⊆ S such that T Attax for an x ∈ X such that X \{x} is no longer an e-supported

attack on a. By Definition 92 Cond. 2, X = {b} for some b ∈MA, and b is not attacked

by any argument in S. This contradicts the assumption that S is an admissible set in G′.

(2) S is e-conflict-free. Suppose that S is not e-conflict-free, that is, there exists a

y ∈ S such that there is a X ⊆ S such that XAttay. By Definition 92 Cond. 2, Y = {a}

for some a ∈ S, and a m-attacks y. However, if a m-attacks y then by Definition 72, a

attacks y in G′, so S is not conflict-free in G′, which contradicts the assumption that S

is admissible.

(⇐) Assume S e-admissible in T (M). We need to show that S is admissible in G′.

Assume S not admissible in G′. Then either (1) there exist x,y∈ S such that (x,y)∈ Att,

or (2) there is an a ∈ S such that a is not acceptable with respect to S. (1) If S is not

5.5. Related Work 225

conflict-free in G′ then there exist x,y ∈ S such that (x,y) ∈ Att, so by Definition 92

Cond. 2, ({x},y) ∈ Atta, so S is not e-conflict-free and thus not e-admissible in T (M),

contradicting the assumption. (2) If there exists an a ∈ S such that a is not acceptable

with respect to S, then there is a b ∈MA such that (b,a) ∈ Att but S does not attack b.

In this case, by Definition 92 Cond. 2., {b} constitutes a minimal evidence-supported

attack on a, and there is no T ⊆ S such that T Attaa, so by Definition 90 Cond. 2, a is not

e-acceptable with respect to S, contradicting the assumption that S is e-admissible.

5.5.4.2 Comparison with meta-ASPIC

If every meta-ASPIC system can be translated to a non-trivial EAF, then one may legiti-

mately question the reasons for choosing meta-ASPIC over EAF. There are two reasons

for favouring meta-ASPIC in the scenario we have defined it for – to describe engineer-

ing debates.

First (and this point applies to bipolar argumentation too), in our approach we did

not re-define the established acceptability semantics for meta-ASPIC, in contrast with

EAF, where for example the notion of admissibility is redefined in Definition 91. In-

stead, the meaning (acceptability of arguments) of a meta-ASPIC system is determined

by its translation to a regular abstract argument graph, as evidenced in the function

reify. This means we can immediately apply all prior work on abstract argumentation

to meta-ASPIC, without having to translate concepts such as different acceptability se-

mantics into our framework first. A very practical consequence of this decision is that

we can re-use existing implementations of Dung’s argument graphs, for example the

one by van Gijzel and Nilsson [137], in implementations of meta-ASPIC.

Second, the primary motivation for meta-ASPIC was the ability to represent meta-

argumentation and specifically argument schemes. As a result, we can for example

stratify a meta-ASPIC system into different levels of abstraction (see Definition 76 on

page 189), and separate argument schemes from domain-specific arguments. This dis-

tinction does not exist in EAF, and all arguments reside on the same (object) level.

In [142], EAFs were used to reason about argument schemes for normative practical

reasoning, however without considering meta-argumentation.

We advocate the position that the choice of argumentation system should be gov-

erned by its application, and there are also reasons for choosing EAF over meta-ASPIC.

5.6. Discussion 226

To give an example, for EAF there exists a further, semantics-preserving translation to

AIF, the argument interchange format [157], which does not exist for meta-ASPIC.

5.6 Discussion
In this chapter we presented meta-ASPIC, a modified version of the ASPIC+ argumen-

tation framework with express consideration of meta-arguments. The main semantic

difference to the original framework is in the structure of arguments: Arguments in

ASPIC+ have sentences of the underlying logic L as their conclusions, whereas in our

system the conclusions of arguments are other arguments. This distinction is essen-

tial, because it makes it possible to create arguments about arguments (as opposed to

arguments about sentences of L).

As stated in Section 5.2, the purpose of meta-arguments is to justify (or deny) that

something is an argument. In our view, meta-argumentation is most interesting in the

case of non-deductive arguments, because deductive arguments (of the form a ` b) are

supported on the meta-level by their proofs, which – once they have been formalised –

are not subject to debate. This prompted us to replace to replace the “underlying logic”

L in ASPIC with an argument graph in meta-ASPIC, which is the second difference

between our system and the original.

In the beginning of this chapter we characterised the difference between deduc-

tive and non-deductive arguments as context-dependence: Deductive arguments can

be validated without external context as they contain all the information necessary

to obtain the conclusion from the premises. Non-deductive arguments (including en-

thymemes) can only be validated with additional context – for example, we can only

say that “Al oxide non corrosive” is an argument because we know that it was

put forward by an expert in metal oxidation. In meta-ASPIC, this context is provided

by meta-arguments. We gave two concrete examples of meta-argumentation. First, we

listed a number of common argument schemes in Section 5.2.1. Argument schemes

are common patterns of human reasoning often used in spoken dialogue or written text.

From a survey of common argument schemes we concluded that argument schemes

are examples of meta-argumentation, because they are reasons that a statement is ar-

gument. In addition, some argument schemes talk about other arguments (as opposed

to domain-level statements), which is also a form of meta-argumentation. The second

5.6. Discussion 227

example of meta-argumentation is the interpretation of experimental data. Arguments

are formed from this data by relating it to the context of the decision that the experi-

ment was intended to support. As with argument schemes, this context is provided by

argument schemes.

The second part of this chapter was dedicated to a case study on interpreting ex-

perimental data. We described a software prototype that allows domain experts to use

the results of drilling experiments in arguments. In other words, users provided the

context necessary to draw conclusions from raw data. The prototype was implemented

as a browser application with a SQL server backend and it was backed by data pro-

vided by David Payne (of Queen’s University Belfast). An interesting aspect of the

implementation was covered in Section 5.4.4.4: By transforming arguments into SQL

queries we moved a large part of the computational effort required to evaluate argument

schemes from the client to the SQL server. This way, argument graphs can be evaluated

asynchronously and with full support of the SQL server’s query engine.

The case study showed the potential of meta-ASPIC for creating and evaluating

arguments across a range of data sources that do not necessarily have an underpinning

in formal logic. We believe that argumentation systems such as meta-ASPIC will be

crucial for analysing human-generated arguments. In the broader context of this the-

sis, meta-ASPIC serves as the fundamental representation of arguments on which the

developments of the previous chapters can be based. Due to its ability to represent nat-

ural language arguments, meta-ASPIC is well suited as a target language for arguments

mined from large corpora of engineering documents, thus bringing us one step closer

to the original aim of project DEEPFLOW.

The initial application of our framework in the engineering domain was evalu-

ated positively by our colleagues at Queen’s University. The main advantages of our

approach were perceived to be (a) the ability to quickly summarise experimental data

using database arguments and (b) the visualisation of arguments. Future versions of the

system should provide a facility for annotating experimental results with user-defined

argument data that can then be queried in the same way as the experimental data itself.

Chapter 6

Discussion

6.1 Future Work
Throughout the thesis we tried to show a path towards practical applications of our

theory, most extensively in Chapter four where we illustrated how our decision model

gives rise to a novel visualisation of decision documentation in a design process (page

154). A number of obstacles remain before our model can be used in a fully automated

way, as envisioned in the introduction.

The biggest piece of work is argument extraction. Our model of decision outcomes

already reflects the structure of design documents, but the step from textual design doc-

umentation to an ASPIC+ knowledge base is still missing. Most of this work is a natural

language processing problem: Sentences have to be analysed and their argument struc-

ture extracted. Then the conflict between arguments needs to be established. Much

decision documentation in engineering design takes the form of semi-structured (as op-

posed to unstructured) documents. Semi-structured data includes, for example, tables

where each column determines the type of data in its cells, and requirements specifica-

tions, where sentences follow a pattern such as “The product shall have 〈 property 〉”.

We assume that exploiting this structure will ease the task of extracting arguments.

For the argumentation model itself we see the following possible improvements.

First, we would like to investigate whether additional data about arguments – such as

strength, plausibility, etc – yields benefits that are large enough to justify the additional

work required to formalise this data. Throughout the thesis it has been our goal to

minimise the information required by our system (in addition to the actual arguments).

However, for future work we would like to relax this requirement a little, especially if it

6.2. Discussion 229

can be combined with the information from semi-structured data as mentioned above.

Second, as we mentioned earlier we see decision outcomes as representations of

design documents. It would be interesting to consider if a set of design documents can

be extracted from a formalised decision process, representing the most up-to-date ver-

sion of the documentation. For this task one could also consider the audience (project

managers, engineers, customers, etc.), building on existing work by Dunne et al. [159].

For the meta-ASPIC system for meta-argumentation and argument schemes from

Chapter 5 we gave a formal comparison with evidence-based argumentation frame-

works. This line of work should be continued, by comparing meta-ASPIC with other

existing approaches to argumentation. It should, for example, be possible to encode

meta-ASPIC graphs in propositional logic directly, similar to the proposal by Besnard

et al. for abstract argument graphs [160], without first computing the reified graph and

then applying their encoding.

The source code of the implementation of the case study described in Section 5.4.3

(page 200) cannot be made available to the public because it is owned by SAP, but it

would benefit the practical adoption of our system if it was released under an open-

source license. We would therefore like to write a new implementation of the code in

Haskell and release it.

6.2 Discussion
At the beginning of this thesis (page 14) we listed a number of requirements for an

argument-based model of engineering design processes. These requirements were

RQ1 Represent design decisions with the pros and cons for each of their options, in-

cluding the reasoning that was applied to arrive at the pros and cons and possible

worlds in which the underlying assumptions hold.

RQ2 Reason about decisions so represented, specifically by characterising the decision

rules used to arrive at the decision, and determining the effect that “choosing an

option” has on the knowledge base.

RQ3 Formulate sequences of decision problems in which decisions made at one stage

influence the range of options and constraints for decisions made later in the

process, and assess the impact of changing a previous decision.

6.2. Discussion 230

RQ4 Combine various forms of reasoning such as deductive arguments, empirical ev-

idence, intuition and heuristics.

How does our system meet those requirements? To address RQ1 we developed

the Argumentation Decision Framework (ADF) in Chapter 3. The pros and cons of

each option are expressed as arguments, and the reasoning behind the pros and cons

is represented in the structure of those arguments. ADF combines both multi-criteria

decision making (MCDM) and decision making under uncertainty (DMU). For MCDM

a list of requirements can be specified, and the requirements met by each option are

represented by acceptable arguments for that option. The possible worlds of DMU

correspond to preferred extensions in an option’s argument graph, and the utility of

each option is again a set of acceptable arguments. We gave correspondence results for

traditional models of DMU and MCDM.

Moving beyond mere representations of DMU and MCDM, we addressed RQ2

with an exploration of decision rules and a formal definition of “accepting a decision”

in our model. We translated several DMU decision rules into ADF, and classified them

according to their decisiveness (i.e. their ability to assign different rankings to differ-

ent options). We identified a degree of decisiveness unattainable by traditional means

and proposed an argumentation-specific decision rule that meets this highest degree

of decisiveness. We further compared decision rules by their optimism (i.e. by their

propensity to assume more positive outcomes). Such classifications are useful for char-

acterising decisions after they have been made. By using decision rules to compare a

number of past decisions made by different engineers, one can spot patterns which may

lead to improvements in the decision making process.

We then investigated the effect of accepting a decision on the knowledge base.

We defined an “enforce” operation that promotes a conflict-free set of arguments from

credulous to sceptical acceptability. In terms of ADF, we can apply “enforce” to the set

of arguments pro the chosen decision, to reflect the fact that they are now more firmly

believed than before the decision was made (when they were only one of a number

of credulously acceptable sets of arguments). We also showed that enforcement in

ASPIC+ relies on the ability to deactivate defeasible rules.

Chapter four was dedicated to the third requirement, RQ3. We started with a defi-

nition of the outcome of a decision (its set of arguments pro) and looked at the possible

6.2. Discussion 231

effects of chaining several outcomes in a sequence. We obseved that, given a sequence

S = (Res1,Res2) of decision outcomes, the union Res1tRes2 may contain conflicting

arguments even if Res1 and Res2 on their own are conflict-free. At the same time, Res2

may contain more, less or different knowledge than Res1 - there is no relationship be-

tween the knowledge bases of two separate decision outcomes. This prompted us to

look at a second kind of sequence which we called “decision process”. The decision

process of a sequence S (obtained through EmbS) is a sequence of knowledge bases

which are not necessarily conflict-free, but monotonically increasing. Each stage con-

tains the knowledge of all previous stages. By transforming S into a decision process

we can draw out some of the implicit assumptions in S and make them explicit. This is

one example of earlier decisions affecting later one. In a second step we measured the

impact of changing a past decision, by choosing a different option for it.

The final requirement, RQ4, has been addressed in Chapter five. Based on a

study of argument schemes commonly used in engineering design we proposed meta-

ASPIC, an argumentation system loosely based on ASPIC+ that aims to capture meta-

argumentation. Arguments in meta-ASPIC can exist on different levels on a hierarchy

of abstraction. For example, arguments about a specific engineering problem are on

the lowest level, and arguments about those arguments (such as ad hominem arguments

against their proponents) are located on the level above. We discussed a case study

in which drilling techniques are compared based on a number of experiments, and de-

scribed an implementation of this case study.

From the above discussion it should be clear that our framework addresses the

requirements adequately. Some of the techniques we developed are independent from

the others. For example you can apply ADF to a single decision without worrying about

decision sequences, or meta-argumentation. We believe that modularity is a key factor

in the adoption of a framework like ours, because it means that applications do not have

to implement the entire system to make use of one of its features.

Appendix A

Functions & Symbols

Table A.1 on page 233 contains a list of important functions and symbols used in this

thesis.

233
N

am
e

or
Sy

m
bo

l
D

es
cr

ip
tio

n
D

efi
ne

d
w

he
re

·
C

on
tr

ar
in

es
s

fu
nc

tio
n

D
efi

ni
tio

n
7

on
pa

ge
29

〈·〉
R

ul
e

na
m

e
fu

nc
tio

n
P.

29
A

∆
B

Sy
m

m
et

ri
c

di
ff

er
en

ce
be

tw
ee

n
tw

o
se

ts
A

an
d

B
D

efi
ni

tio
n

19
on

pa
ge

37
Σ

e(
G
)

E
xt

en
si

on
s

E
of

an
ar

gu
m

en
tg

ra
ph

G
un

de
rs

em
an

tic
s

e
∈
{p

r,
gr
}

P.
27

ar
gs

D
(O

)
A

rg
um

en
ts

of
a

de
ci

si
on

fr
am

e
D

fo
ra

n
op

tio
n

O
∈

O
P.

55
ar

gs
(K

B
)

A
rg

um
en

ts
fo

ra
kn

ow
le

dg
e

ba
se

K
B

P.
30

ar
gG

ra
ph

(K
B
)

A
rg

um
en

tg
ra

ph
fo

ra
kn

ow
le

dg
e

ba
se

K
B

P.
33

at
ta

ck
s(

A
)

A
tta

ck
s

of
a

se
to

fa
rg

um
en

ts
P.

34
at

ta
ck

er
s(

a,
A
)

A
tta

ck
er

s
of

an
ar

gu
m

en
ta

in
a

se
to

fa
rg

um
en

ts
A

D
efi

ni
tio

n
13

on
pa

ge
34

av
g

st
re

ng
th
(A
,G

)
A

ve
ra

ge
st

re
ng

th
of

a
se

to
fa

rg
um

en
ts

A
in

a
gr

ap
h

G
D

efi
ni

tio
n

60
on

pa
ge

13
4

co
nc
(a
)

C
on

cl
us

io
n

of
an

ar
gu

m
en

ta
D

efi
ni

tio
n

9
on

pa
ge

30
D
=
(K

,C
,R
)

D
ec

is
io

n
fr

am
e

w
ith

kn
ow

le
dg

e
ba

se
K

,c
on

se
qu

en
ce

sC
an

d
re

qu
ir

em
en

ts
R

P.
54

de
ac

ti
va

te
(r
,K

B
)

D
ea

ct
iv

at
e

a
de

fe
as

ib
le

ru
le

r
in

a
kn

ow
le

dg
e

ba
se

K
B

D
efi

ni
tio

n
47

on
pa

ge
86

em
b S

E
m

be
dd

in
g

of
a

de
ci

si
on

se
qu

en
ce

S
D

efi
ni

tio
n

55
on

pa
ge

12
3

en
fo

rc
e(

B
,K

B
)

E
nf

or
ce

a
se

to
fa

rg
um

en
ts

B
⊆

ar
gs
(K

B
)

D
efi

ni
tio

n
49

on
pa

ge
94

ex
tr

ac
t(

K
B
)

E
xt

ra
ct

as
su

m
pt

io
ns

an
d

ru
le

s
us

ed
to

fo
rm

th
e

gr
ou

nd
ed

ex
te

ns
io

n
of

a
kn

ow
le

dg
e

ba
se

K
B

D
efi

ni
tio

n
56

on
pa

ge
12

5
G
=
(A
,A

tt
)

A
rg

um
en

tg
ra

ph
G

w
ith

ar
gu

m
en

ts
A

an
d

at
ta

ck
s

At
t⊆

A
×

A
P.

24
K

B
K

no
w

le
dg

e
ba

se
co

nt
ai

ni
ng

de
fa

si
bl

e
ru

le
s

P.
33

L(
∆
)

L
an

gu
ag

e
of

a
de

ci
si

on
ru

le
∆

D
efi

ni
tio

n
38

on
pa

ge
72

m
et

a(
G
)

m
et

a-
A

S
P

IC
sy

st
em

fo
ra

n
ar

gu
m

en
tg

ra
ph

G
P.

19
5

na
m

e(
r)

N
am

e
of

de
fe

as
ib

le
ru

le
r

(u
su

al
ly

w
ri

tte
n

as
〈r
〉)

P.
29

O
Se

to
fa

ll
op

tio
ns

P.
54

P
(A
)

Po
w

er
se

to
fa

se
tA

D
efi

ni
tio

n
15

on
P.

36
p

os
si

bl
eW

or
ld

s(
D
,O

)
Po

ss
ib

le
w

or
ld

s
fo

ra
n

op
tio

n
O

in
a

de
ci

si
on

fr
am

e
D

D
efi

ni
tio

n
32

on
pa

ge
64

pr
em

(a
)

Pr
em

is
es

of
an

ar
gu

m
en

ta
D

efi
ni

tio
n

9
on

pa
ge

30
re

if
y(

Ω
)

R
ei

fie
d

gr
ap

h
of

a
m

et
a-

A
S

P
IC

sy
st

em
Ω

D
efi

ni
tio

n
72

on
pa

ge
18

2
s G
(x
)

St
re

ng
th

of
an

ar
gu

m
en

tx
in

a
gr

ap
h

G
D

efi
ni

tio
n

59
on

pa
ge

13
3

ru
le

s(
a)

R
ul

es
of

an
ar

gu
m

en
ta

D
efi

ni
tio

n
9

on
pa

ge
30

S
=
(R

es
1,
..
.,

R
es

n)
Se

qu
en

ce
of

de
ci

si
on

ou
tc

om
es

R
es

i
P.

11
6

sa
t D
(O

)
Sa

tis
fa

ct
io

n
fu

nc
tio

n
of

a
de

ci
si

on
fr

am
e

D
D

efi
ni

tio
n

29
su

b(
a)

Su
b-

ar
gu

m
en

ts
of

an
ar

gu
m

en
ta

D
efi

ni
tio

n
9

on
pa

ge
30

to
pR

ul
e(

a)
To

p
ru

le
of

an
ar

gu
m

en
ta

D
efi

ni
tio

n
9

on
pa

ge
30

Ta
bl

e
A

.1
:S

ym
bo

ls
an

d
Fu

nc
tio

ns

Bibliography

[1] Gerhard Pahl and Wolfgang Beitz. Engineering Design A Systematic Approach.

Springer, second edition edition, 1996.

[2] Richard Birmingham, Graham Cleland, Robert Driver, and David Maffin. Un-

derstanding Engineering Design: Context, Theory, and Practice. Prentice Hall,

1997.

[3] Jeremy S. Busby. Effective practices in design transfer. Research in Engineering

Design, 10:178–188, 1998.

[4] Stuart Pugh. Total Design. Integrated Methods for Successful Product Engineer-

ing. Addison-Wesley, 1993.

[5] Atila Ertas and Jesse C. Jones. The Engineering Design Process. John Wiley

and Sons, Inc., 2nd edition, 1996.

[6] Reza Beheshti. Design decisions and uncertainty. Design Studies, 14:85–95,

1993.

[7] Frank-Lothar Krause, Kai Mertins, Andreas Edler, Peter Heisig, Ingo Hoffmann,

and Markus Helmke. Computer Integrated Technologies and Knowledge Man-

agement, volume Handbook of Industrial Engineering: Technology and Opera-

tions Management, chapter 6, pages 177–226. Wiley-Interscience, New York,

3rd edition, 2001.

[8] Jintae Lee. Design rationale systems: Understanding the issues. IEEE Expert,

12(3):78–85, 1997.

Bibliography 235

[9] Janet Burge and David C. Brown. Reasoning with design rationale. In J. Gero,

editor, Artificial Intelligence in Design, pages 611–629, Netherlands, 2000.

Kluwer Academic Publications.

[10] Leonard J. Savage. The Foundations of Statistics. Wiley, 1954.

[11] Simon French. Decision Theory: An introduction to the matehmatics of ratio-

nality. 1987.

[12] Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuristics

and biases. Science, 185:1124–1131, 1974.

[13] Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision

under risk. Econometrica, 47(2):263–291, 1979.

[14] Neil Stewart, Nick Chater, and Gordon D.A. Brown. Decision by sampling.

Cognitive Psychology, 53(1):1–26, 2006.

[15] Gerd Gigerenzer. Why heuristics work. Perspectives on Psychological Science,

3(1):20–29, 2008.

[16] Sven Ove Hansson. Risk. In Edward N. Zalta, editor, The Stanford Encyclopedia

of Philosophy. Spring 2014 edition, 2014.

[17] Trevor Bench-Capon and Paul Dunne. Argumentation in artificial intelligence.

Artificial Intelligence, 171:701–729, 2007.

[18] Philippe Besnard and Anthony Hunter. Elements of Argumentation. The MIT

Press, Cambridge, Massachusetts, 2008.

[19] Kenichi Okuno and Kazuko Takahashi. Argumentation system with changes

of an agent’s knowledge base. In International Joint Conference on Artificial

Intelligence, pages 226–232, 2009.

[20] Leila Amgoud and Mathieu Serrurier. Agents that argue and explain classifica-

tions. Autonomous Agents and Multi-Agent Systems, 16(2):187–209, 2008.

Bibliography 236

[21] Katie Atkinson, Trevor Bench-Capon, and Peter McBurney. A dialogue game

protocol for multi-agent argument over proposals for action. Autonomous Agents

and Multi-Agent Systems, 11(2):153–171, 2005.

[22] Yannis Dimopoulos, Pavlos Moraitis, and Alexis Tsoukiàs. Argumentation

based modeling of decision aiding for autonomous agents. In IAT, pages 99–

105. IEEE Computer Society, 2004.

[23] Wietske Visser, Koen V. Hindriks, and Catholijn M. Jonker. An argumentation

framework for qualitative multi-criteria preferences. In TAFA 2011, volume 7132

of LNAI, pages 85–98, 2012.

[24] Xiuyi Fan, Robert Craven, Ramsay Singer, Francesca Toni, and Matthew

Williams. Assumption-based argumentation for decision-making with prefer-

ences: A medical case study. In Leite et al. [161], pages 374–390.

[25] Matthew Williams and Anthony Hunter. Harnessing ontologies for argument-

based decision-making in breast cancer. In Tools with Artificial Intelligence,

2007. ICTAI 2007. 19th IEEE International Conference on, volume 2, pages

254–261, oct. 2007.

[26] Adam Wyner, Trevor Bench-Capon, and Katie Atkinson. Towards formalising

argumentation about legal cases. In Proceedings of the 13th International Con-

ference on Artificial Intelligence and Law, pages 1–10. ACM, 2011.

[27] Henry Prakken and Giovanni Sartor. Law and logic: A review from an argumen-

tation perspective. Artificial Intelligence, 227:214 – 245, 2015.

[28] Leila Amgoud, Yannis Dimopoulos, and Pavlos Moraitis. Making decisions

through preference-based argumentation. In Brewka and Lang [162], pages 113–

123.

[29] Yannis Dimopoulos, Pavlos Moraitis, and Leila Amgoud. Extending argumen-

tation to make good decisions. In Francesca Rossi and Alexis Tsoukiàs, edi-

tors, ADT, volume 5783 of Lecture Notes in Computer Science, pages 225–236.

Springer, 2009.

Bibliography 237

[30] Xiuyi Fan, Francesca Toni, Andrei Mocanu, and Matthew Williams. Dialogical

two-agent decision making with assumption-based argumentation. In Ana L. C.

Bazzan, Michael N. Huhns, Alessio Lomuscio, and Paul Scerri, editors, Interna-

tional conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’14,

Paris, France, May 5-9, 2014, pages 533–540. IFAAMAS/ACM, 2014.

[31] Paul-Amaury Matt, Francesca Toni, and Juan R. Vaccari. Dominant decisions

by argumentation agents. In Peter McBurney, Iyad Rahwan, Simon Parsons, and

Nicolas Maudet, editors, ArgMAS, volume 6057 of Lecture Notes in Computer

Science, pages 42–59. Springer, 2009.

[32] Simon Parsons and Shaw Green. Argumentation and qualitative decision mak-

ing. In Anthony Hunter and Simon Parsons, editors, ESCQARU, volume 1638

of Lecture Notes in Computer Science, pages 328–340. Springer, 1999.

[33] Leila Amgoud and Henri Prade. Using arguments for making and explaining

decisions. Artificial Intelligence, 173:413–436, 2009.

[34] Jann Müller and Anthony Hunter. An argumentation-based approach for deci-

sion making. In ICTAI, pages 564–571. IEEE, 2012.

[35] Henry Prakken. An abstract framework for argumentation with structured argu-

ments. Argument & Computation, 1(2):93–124, 2010.

[36] Jann Müller, Anthony Hunter, and Philip S. Taylor. Meta-level argumentation

with argument schemes. In Liu et al. [163], pages 92–105.

[37] Jann Müller and Anthony Hunter. Deepflow: Using argument schemes to query

relational databases. In Parsons et al. [164], pages 469–470.

[38] Niall Rooney, Hui Wang, Fiona Browne, Fergal Monaghan, Jann Müller, Alan

Sergeant, Zhiwei Lin, Philip S. Taylor, and Vladimir Dobrynin. An exploration

into the use of contextual document clustering for cluster sentiment analysis. In

Galia Angelova, Kalina Bontcheva, Ruslan Mitkov, and Nicolas Nicolov, ed-

itors, Recent Advances in Natural Language Processing, RANLP 2011, 12-14

September, 2011, Hissar, Bulgaria, pages 140–145. RANLP 2011 Organising

Committee, 2011.

Bibliography 238

[39] Fiona Browne, David A. Bell, Weiru Liu, Yan Jin, Colm Higgins, Niall Rooney,

Hui Wang, and Jann Müller. Application of evidence theory and discounting

techniques to aerospace design. In Greco et al. [165], pages 543–553.

[40] Jann Müller and Tobias Trapp. Using argumentation to develop a set of rules

for claims classification. In Proceedings of the 7th KES International Confer-

ence on Intelligent Decision Technologies (KES-IDT 2015), Intelligent Decision

Technologies, pages 459–469. Springer, 2015.

[41] Sanjay Modgil and Henry Prakken. A general account of argumentation with

preferences. Artif. Intell., 195:361–397, 2013.

[42] Phan Minh Dung. On the acceptability of arguments and its fundamental role in

nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,

77(2):321–358, 1995.

[43] Hadassa Jakobovits and Dirk Vermeir. Robust Semantics for Argumentation

Frameworks. Journal of Logic and Computation, 9(2):215–261, 1999.

[44] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract,

argumentation-theoretic approach to default reasoning. Artificial Intelligence,

93:63–101, 1997.

[45] Leila Amgoud and Jonathan Ben-Naim. Ranking-based semantics for argumen-

tation frameworks. In Liu et al. [163], pages 134–147.

[46] Philippe Besnard, Alejandro Javier Garcı́a, Anthony Hunter, Sanjay Modgil,

Henry Prakken, Guillermo Ricardo Simari, and Francesca Toni. Introduction

to structured argumentation. Argument & Computation, 5(1):1–4, 2014.

[47] Phan Minh Dung, Robert Kowalski, and Francesca Toni. Argumentation in AI,

chapter Assumption-based argumentation, pages 25–44. Springer, 2009.

[48] Alejandro J Garcia and Guillermo R Simari. Defeasible logic programming an

argumentative approach. Theory and Practice of Logic Programming, 4(1):95–

138, 2004.

Bibliography 239

[49] Philipe Besnard and Anthony Hunter. A logic-based theory of deductive argu-

ments. Artificial Intelligence, 128(1-2):203–235, 2001.

[50] Philippe Besnard and Anthony Hunter. Constructing argument graphs with de-

ductive arguments: a tutorial. Argument & Computation, 5(1):5–30, 2014.

[51] S. Staab and R. Studer, editors. Handbook on Ontologies. International Hand-

books on Information Systems. Springer, 1 edition, 2004.

[52] Gang Kou, Kaisa Miettinen, and Yong Shi. Multiple criteria decision mak-

ing: Challenges and advancements. Journal of Multi-Criteria Decision Analysis,

18:1–4, 2011.

[53] Hélène Fargier and Régis Sabbadin. Qualitative decision under uncertainty: back

to expected utility. Artif. Intell., 164(1-2):245–280, 2005.

[54] Didier Dubois, Hélène Fargier, Henri Prade, and Patrice Perny. Qualitative

decision theory: from savage’s axioms to nonmonotonic reasoning. J. ACM,

49(4):455–495, 2002.

[55] Paul-Amaury Matt and Francesca Toni. A game-theoretic measure of argument

strength for abstract argumentation. In Steffen Hölldobler, Carsten Lutz, and

Heinrich Wansing, editors, JELIA, volume 5293 of Lecture Notes in Computer

Science, pages 285–297. Springer, 2008.

[56] Paul E. Dunne, Anthony Hunter, Peter McBurney, Simon Parsons, and Michael

Wooldridge. Weighted argument systems: Basic definitions, algorithms, and

complexity results. Artificial Intelligence, (2):457–486, 2011.

[57] Kristijonas Cyras and Francesca Toni. ABA+: assumption-based argumentation

with preferences. In Baral et al. [166], pages 553–556.

[58] Rolf Haenni. Probabilistic argumentation. J. Applied Logic, 7(2):155–176, 2009.

[59] Jürg Kohlas. Probabilistic argumentation systems: A new way to combine logic

with probability. J. Applied Logic, 1(3-4):225–253, 2003.

Bibliography 240

[60] Hengfei Li, Nir Oren, and Timothy J. Norman. Probabilistic argumentation

frameworks. In Sanjay Modgil, Nir Oren, and Francesca Toni, editors, Theo-

rie and Applications of Formal Argumentation - First International Workshop,

TAFA 2011. Barcelona, Spain, July 16-17, 2011, Revised Selected Papers, vol-

ume 7132 of Lecture Notes in Computer Science, pages 1–16. Springer, 2011.

[61] Anthony Hunter. A probabilistic approach to modelling uncertain logical argu-

ments. Int. J. Approx. Reasoning, 54(1):47–81, 2013.

[62] Anthony Hunter. Probabilistic qualification of attack in abstract argumentation.

Int. J. Approx. Reasoning, 55(2):607–638, 2014.

[63] Pedro Cabalar and Tran Cao Son, editors. Logic Programming and Nonmono-

tonic Reasoning, 12th International Conference, LPNMR 2013, Corunna, Spain,

September 15-19, 2013. Proceedings, volume 8148 of Lecture Notes in Com-

puter Science. Springer, 2013.

[64] Yuqing Tang, Chung-Wei Hang, Simon Parsons, and Munindar P. Singh. To-

wards argumentation with symbolic dempster-shafer evidence. In Verheij et al.

[167], pages 462–469.

[65] Ringo Baumann and Gerhard Brewka. Expanding argumentation frameworks:

Enforcing and monotonicity results. In Baroni et al. [168], pages 75–86.

[66] Ringo Baumann. What does it take to enforce an argument? minimal change

in abstract argumentation. In Luc De Raedt, Christian Bessière, Didier Dubois,

Patrick Doherty, Paolo Frasconi, Fredrik Heintz, and Peter J. F. Lucas, editors,

ECAI 2012 - 20th European Conference on Artificial Intelligence. Including

Prestigious Applications of Artificial Intelligence (PAIS-2012) System Demon-

strations Track, Montpellier, France, August 27-31 , 2012, volume 242 of Fron-

tiers in Artificial Intelligence and Applications, pages 127–132. IOS Press, 2012.

[67] Ringo Baumann and Gerhard Brewka. AGM meets abstract argumentation: Ex-

pansion and revision for dung frameworks. In Yang and Wooldridge [169], pages

2734–2740.

Bibliography 241

[68] Ringo Baumann and Gerhard Brewka. Spectra in abstract argumentation: An

analysis of minimal change. In Cabalar and Son [63], pages 174–186.

[69] Lucas Carstens, Xiuyi Fan, Yang Gao, and Francesca Toni. An overview of

argumentation frameworks for decision support. In Madalina Croitoru, Pierre

Marquis, Sebastian Rudolph, and Gem Stapleton, editors, Graph Structures for

Knowledge Representation and Reasoning - 4th International Workshop, GKR

2015, Buenos Aires, Argentina, July 25, 2015, Revised Selected Papers, volume

9501 of Lecture Notes in Computer Science, pages 32–49. Springer, 2015.

[70] Xiuyi Fan and Francesca Toni. Decision making with assumption-based argu-

mentation. In E. Black, S. Modgil, and N. Oren, editors, TAFA 2013, volume

8306 of LNAI, pages 127–142, 2014.

[71] Pietro Baroni, Marco Romano, Francesca Toni, Marco Aurisicchio, and Giorgio

Bertanza. An argumentation-based approach for automatic evaluation of design

debates. In Leite et al. [161], pages 340–356.

[72] Pietro Baroni, Marco Romano, Francesca Toni, Marco Aurisicchio, and Giorgio

Bertanza. Automatic evaluation of design alternatives with quantitative argu-

mentation. Argument & Computation, 6(1):24–49, 2015.

[73] Valentinos Evripidou, Lucas Carstens, Francesca Toni, and David Cabanillas.

Argumentation-based collaborative decisions for design. In 26th IEEE Interna-

tional Conference on Tools with Artificial Intelligence, ICTAI 2014, Limassol,

Cyprus, November 10-12, 2014, pages 805–809. IEEE Computer Society, 2014.

[74] Didier Dubois, Lluis Godo, Ramon López de Mántaras, and Henri Prade. Qual-

itative reasoning with imprecise probabilities. J. Intell. Inf. Syst., 2(4):319–363,

1993.

[75] Didier Dubois, Hélène Fargier, and Patrice Perny. Qualitative decision theory

with preference relations and comparative uncertainty: An axiomatic approach.

Artif. Intell., 148(1-2):219–260, 2003.

[76] Kristijonas Cyras and Francesca Toni. Non-monotonic inference properties for

assumption-based argumentation. In Elizabeth Black, Sanjay Modgil, and Nir

Bibliography 242

Oren, editors, Theory and Applications of Formal Argumentation - Third In-

ternational Workshop, TAFA 2015, Buenos Aires, Argentina, July 25-26, 2015,

Revised Selected Papers, volume 9524 of Lecture Notes in Computer Science,

pages 92–111. Springer, 2015.

[77] Martin Diller, Adrian Haret, Thomas Linsbichler, Stefan Rümmele, and Stefan

Woltran. An extension-based approach to belief revision in abstract argumenta-

tion. In Yang and Wooldridge [169], pages 2926–2932.

[78] Toby Walsh, editor. IJCAI 2011, Proceedings of the 22nd International Joint

Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22,

2011. IJCAI/AAAI, 2011.

[79] Pablo Pilotti, Ana Casali, and Carlos Iván Chesñevar. A belief revision ap-

proach for argumentation-based negotiation agents. Applied Mathematics and

Computer Science, 25(3):455–470, 2015.

[80] Guido Boella, Leendert W. N. van der Torre, and Serena Villata. Changing in-

stitutional goals and beliefs of autonomous agents. In The Duy Bui, Tuong Vinh

Ho, and Quang-Thuy Ha, editors, Intelligent Agents and Multi-Agent Sys-

tems, 11th Pacific Rim International Conference on Multi-Agents, PRIMA 2008,

Hanoi, Vietnam, December 15-16, 2008. Proceedings, volume 5357 of Lecture

Notes in Computer Science, pages 78–85. Springer, 2008.

[81] Gerardo I. Simari, Paulo Shakarian, and Marcelo A. Falappa. A quantitative

approach to belief revision in structured probabilistic argumentation. Ann. Math.

Artif. Intell., 76(3-4):375–408, 2016.

[82] Paulo Shakarian, Gerardo I. Simari, and Marcelo A. Falappa. Belief revision in

structured probabilistic argumentation. In Christoph Beierle and Carlo Meghini,

editors, Foundations of Information and Knowledge Systems - 8th International

Symposium, FoIKS 2014, Bordeaux, France, March 3-7, 2014. Proceedings,

volume 8367 of Lecture Notes in Computer Science, pages 324–343. Springer,

2014.

Bibliography 243

[83] Célia da Costa Pereira, Andrea Tettamanzi, and Serena Villata. Changing one’s

mind: Erase or rewind? In Walsh [78], pages 164–171.

[84] Bei Shui Liao, Li Jin, and Robert C. Koons. Dynamics of argumentation sys-

tems: A division-based method. Artif. Intell., 175(11):1790–1814, 2011.

[85] Jean-Guy Mailly. Dynamic of argumentation frameworks. In Francesca Rossi,

editor, IJCAI 2013, Proceedings of the 23rd International Joint Conference on

Artificial Intelligence, Beijing, China, August 3-9, 2013, pages 3233–3234. IJ-

CAI/AAAI, 2013.

[86] Marcela Capobianco, Carlos Iván Chesñevar, and Guillermo Ricardo Simari.

Argumentation and the dynamics of warranted beliefs in changing environments.

Autonomous Agents and Multi-Agent Systems, 11(2):127–151, 2005.

[87] Marcelo A. Falappa, Alejandro Javier Garcı́a, and Guillermo Ricardo Simari.

Belief dynamics and defeasible argumentation in rational agents. In James P.

Delgrande and Torsten Schaub, editors, 10th International Workshop on Non-

Monotonic Reasoning (NMR 2004), Whistler, Canada, June 6-8, 2004, Proceed-

ings, pages 164–170, 2004.

[88] Leila Amgoud and Philippe Besnard. Bridging the gap between abstract argu-

mentation systems and logic. Scalable Uncertainty Management, pages 12–27,

2009.

[89] John Von Neumann. Zur theorie der gesellschaftsspiele. Annalen der Mathe-

matik, 100:295–320, 1928.

[90] Joe Barkai. Design for excellence. OEM OffHighway Magazine, 2014.

[91] Xiaochun Hu, Jun Pang, Yang Pang, Michael Atwood, Wei Sun, and William C.

Regli. A survey on design rationale: Representation, capture and retrieval. In

Proceedings of DETC’000 (2000 ASME Design Engineering Technical Confer-

ence), 2000.

Bibliography 244

[92] Alex P. J. Jarczyk, Peter Löffler, and Frank M. Shipman III. Design rationale for

software engineering: A survey. In Proceedings of the 25th Hawaii International

Conference on System Sciences, pages 577–586. Springer, 1992.

[93] Muhammad Ali Babar, Antony Tang, Ian Gorton, and Jun Han. Industrial per-

spective on the usefulness of design rationale for software maintenance: A sur-

vey. In Proceedings of the Sixth International Conference on Quality Software

(QSIC’06). IEEE Computer Society, 2006.

[94] Antony Tang, Muhammad Ali Babar, Ian Gorton, and Jun Han. A survey of

architecture design rationale. Technical report, Swinburne University of Tech-

nology and NICTA), 2005.

[95] Klaas Dellschaft, Hendrik Engelbrecht, José Barreto, Sascha Rutenbeck, and

Steffen Staab. Cicero: Tracking design rationale in collaborative ontology engi-

neering. The Semantic Web: Research and Applications, pages 782–786, 2008.

[96] Werner Kunz, Horst W. J. Rittel, We Messrs, H. Dehlinger, T. Mann, and J. J.

Protzen. Issues as elements of information systems. Technical report, 1970.

[97] Thomas Gordon, Henry Prakken, and Douglas Walton. The carneades model of

argument and burden of proof. Artificial Intelligence, 171:875–896, 2007.

[98] Giuseppe Carenini and Johanna D. Moore. Generating and evaluating evaluative

arguments. Artif. Intell., 170(11):925–952, 2006.

[99] Paul E. Dunne, Anthony Hunter, Peter McBurney, Simon Parsons, and Michael

Wooldridge. Weighted argument systems: Basic definitions, algorithms, and

complexity results. Artif. Intell., 175(2):457–486, 2011.

[100] Sanjay Modgil. Reasoning about preferences in argumentation frameworks. Ar-

tificial Intelligence, 173:901–934, 2009.

[101] Leila Amgoud, Jonathan Ben-Naim, Dragan Doder, and Srdjan Vesic. Ranking

arguments with compensation-based semantics. In Baral et al. [166], pages 12–

21.

Bibliography 245

[102] Anthony Hunter. Some foundations for probabilistic abstract argumentation. In

Verheij et al. [167], pages 117–128.

[103] Paul Krause, Simon Ambler, Morten Elvang-Gøransson, and John Fox. A logic

of argumentation for reasoning under uncertainty. Computational Intelligence,

11:113–131, 1995.

[104] Anthony Hunter and Sébastien Konieczny. On the measure of conflicts: Shap-

ley inconsistency values. Artificial Intelligence, 174(14):1007–1026, September

2010.

[105] John Grant and Anthony Hunter. Distance-based measures of inconsistency. In

Linda C. van der Gaag, editor, ECSQARU, volume 7958 of Lecture Notes in

Computer Science, pages 230–241. Springer, 2013.

[106] Matthias Thimm. Inconsistency measures for probabilistic logics. Artif. Intell.,

197:1–24, 2013.

[107] David Picado-Muiño. Measuring and repairing inconsistency in knowledge

bases with graded truth. Fuzzy Sets and Systems, 197:108–122, 2012.

[108] Anthony Hunter and Sébastien Konieczny. Measuring inconsistency through

minimal inconsistent sets. In Brewka and Lang [162], pages 358–366.

[109] Kedian Mu, Weiru Liu, and Zhi Jin. A general framework for measuring in-

consistency through minimal inconsistent sets. Knowl. Inf. Syst., 27(1):85–114,

2011.

[110] John Grant and Anthony Hunter. Measuring consistency gain and informa-

tion loss in stepwise inconsistency resolution. In Symbolic and Quantitative

Approaches to Reasoning with Uncertainty - 11th European Conference, EC-

SQARU 2011, Belfast, UK, June 29-July 1, 2011. Proceedings, pages 362–373,

2011.

[111] Pere Pardo, Sergio Pajares Ferrando, Eva Onaindia, Lluis Godo, and Pilar Del-

lunde. Cooperative dialogues for defeasible argumentation-based planning. In

Peter McBurney, Simon Parsons, and Iyad Rahwan, editors, Argumentation in

Bibliography 246

Multi-Agent Systems - 8th International Workshop, ArgMAS 2011, Taipei, Tai-

wan, May 3, 2011, Revised Selected Papers, volume 7543 of Lecture Notes in

Computer Science, pages 174–193. Springer, 2011.

[112] Pere Pardo, Sergio Pajares, Eva Onaindia, Lluis Godo, and Pilar Dellunde. Mul-

tiagent argumentation for cooperative planning in delp-pop. In Liz Sonenberg,

Peter Stone, Kagan Tumer, and Pinar Yolum, editors, 10th International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei,

Taiwan, May 2-6, 2011, Volume 1-3, pages 971–978. IFAAMAS, 2011.

[113] Sergio Pajares Ferrando and Eva Onaindia. Defeasible argumentation for multi-

agent planning in ambient intelligence applications. In International Conference

on Autonomous Agents and Multiagent Systems, AAMAS 2012, Valencia, Spain,

June 4-8, 2012 (3 Volumes), pages 509–516, 2012.

[114] Angel Rolando Medellin Gasque. Argumentation-based dialogues over cooper-

ative plans. PhD thesis, University of Liverpool, UK, 2013.

[115] Peter McBurney and Simon Parsons. Dialogue games for agent argumentation.

In Guillermo Ricardo Simari and Iyad Rahwan, editors, Argumentation in Arti-

ficial Intelligence, pages 261–280. Springer, 2009.

[116] Anthony Hunter. Modelling the persuadee in asymmetric argumentation dia-

logues for persuasion. In Yang and Wooldridge [169], pages 3055–3061.

[117] Anthony Hunter. Persuasion dialogues via restricted interfaces using probabilis-

tic argumentation. In Steven Schockaert and Pierre Senellart, editors, Scalable

Uncertainty Management - 10th International Conference, SUM 2016, Nice,

France, September 21-23, 2016, Proceedings, volume 9858 of Lecture Notes

in Computer Science, pages 184–198. Springer, 2016.

[118] Elizabeth Black and Anthony Hunter. An inquiry dialogue system. Autonomous

Agents and Multi-Agent Systems, 19(2):173–209, 2009.

[119] Christophe Labreuche, Nicolas Maudet, Wassila Ouerdane, and Simon Parsons.

A dialogue game for recommendation with adaptive preference models. In Ger-

Bibliography 247

hard Weiss, Pinar Yolum, Rafael H. Bordini, and Edith Elkind, editors, Proceed-

ings of the 2015 International Conference on Autonomous Agents and Multia-

gent Systems, AAMAS 2015, Istanbul, Turkey, May 4-8, 2015, pages 959–967.

ACM, 2015.

[120] Floris Bex and Trevor J. M. Bench-Capon. Extracting and understanding argu-

ments about motives from stories. In Elena Cabrio, Serena Villata, and Adam

Wyner, editors, Proceedings of the Workshop on Frontiers and Connections be-

tween Argumentation Theory and Natural Language Processing, Forlı̀-Cesena,

Italy, July 21-25, 2014., volume 1341 of CEUR Workshop Proceedings. CEUR-

WS.org, 2014.

[121] Theodosios Goudas, Christos Louizos, Georgios Petasis, and Vangelis Karkalet-

sis. Argument extraction from news, blogs, and the social web. International

Journal on Artificial Intelligence Tools, 24(5), 2015.

[122] Douglas Walton. Using argumentation schemes for argument extraction: A

bottom-up method. IJCINI, 6(3):33–61, 2012.

[123] Anthony Hunter. Base logics in argumentation. In Computational Models of

Argument (COMMA’10), pages 275–278. IOS Press, 2010.

[124] Leila Amgoud, Philippe Besnard, and Anthony Hunter. Logical representation

and analysis for rc-arguments. In ICTAI’2015, 2015.

[125] Leila Amgoud, Philippe Besnard, and Anthony Hunter. Representing and rea-

soning about arguments mined from texts and dialogues. In Sébastien Dester-

cke and Thierry Denoeux, editors, Symbolic and Quantitative Approaches to

Reasoning with Uncertainty - 13th European Conference, ECSQARU 2015,

Compiègne, France, July 15-17, 2015. Proceedings, volume 9161 of Lecture

Notes in Computer Science, pages 60–71. Springer, 2015.

[126] Douglas Walton, Chris Reed, and Fabrizio Macagno. Argumentation Schemes.

Cambridge University Press, 2008.

[127] Anthony Hunter. Reasoning about the appropriateness of proponents for argu-

ments. In AAAI 2008, pages 89–94, 2008.

Bibliography 248

[128] Douglas Walton. Fundamentals of Critical Argumentation. Cambridge Univer-

sity Press, 2006.

[129] Henry Prakken. AI & law, logic and argument schemes. Argumentation, 19:303–

320, 2005.

[130] Adam Wyner and Trevor Bench-Capon. Argument schemes for legal case-based

reasoning. In International Conference on Legal Knowledge and Information

Systems, pages 139–149, 2007.

[131] Trevor J. M. Bench-Capon, Henry Prakken, Adam Wyner, and Katie Atkinson.

Argument schemes for reasoning with legal cases using values. In International

Conference on Artificial Intelligence and Law, ICAIL ’13, Rome, Italy, June 10-

14, 2013, pages 13–22, 2013.

[132] Simon Parsons, Katie Atkinson, Zimi Li, Peter McBurney, Elizabeth Sklar,

Munindar P. Singh, Karen Zita Haigh, Karl N. Levitt, and Jeff Rowe. Argument

schemes for reasoning about trust. Argument & Computation, 5(2-3):160–190,

2014.

[133] Douglas Walton. Appeal to Expert Opinion. Pennsylvania State University Press,

University Park, Pennsylvania, 1997.

[134] F. William Lawvere. Functorial semantics of algebraic theories. In Proceedings

of the National Academy of Sciences, pages 869–72. Springer, 1963.

[135] Roy Thomas Fielding. Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis, University of California, Irvine.

[136] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn,

Joseph Fasel, Marı́a Guzmán, Kevin Hammond, John Hughes, Thomas Johns-

son, Richard Kieburtz, Rishiyur Nikhil, Will Partain, and John Peterson. Report

on the programming language haskell, A non-strict, purely functional language.

SIGPLAN Notices, 27(5):1, 1992.

[137] Bas van Gijzel and Henrik Nilsson. A principled approach to the implementation

of argumentation models. In Parsons et al. [164], pages 293–300.

Bibliography 249

[138] Bas van Gijzel. Tools for the implementation of argumentation models. In An-

drew V. Jones and Nicholas Ng, editors, 2013 Imperial College Computing Stu-

dent Workshop, ICCSW 2013, September 26/27, 2013, London, United Kingdom,

volume 35 of OASICS, pages 43–48. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, Germany, 2013.

[139] Katie Atkinson, Trevor Bench-Capon, and Sanjay Modgil. Argumentation for

decision support. In S. Bressan, J. Kng, and R. Wagner, editors, Proceedings

of the Seventeenth International Conference on Database and Expert Systems

Applications (DEXA 2006), number 4080 in Lecture Notes in Computer Science

(LNCS), pages 822–831, Berlin, Germany, 2006. Springer.

[140] Floris Bex, Henry Prakken, Chris Reed, and Douglas Walton. Towards a formal

account of reasoning about evidence: Argumentation schemes and generalisa-

tions. Artificial Intelligence and Law, 11:125–165, 2003.

[141] Elizabeth Sklar, Simon Parsons, and Munindar P. Singh. Towards an

argumentation-based model of social interaction. In Proceedings of the Tenth

International Workshop on Argumentation in Multi-Agent Systems (ArgMAS

2013), 2013.

[142] Nir Oren. Argument schemes for normative practical reasoning. In Elizabeth

Black, Sanjay Modgil, and Nir Oren, editors, Theory and Applications of Formal

Argumentation - Second International Workshop, TAFA 2013, Beijing, China,

August 3-5, 2013, Revised Selected papers, volume 8306 of Lecture Notes in

Computer Science, pages 63–78. Springer, 2013.

[143] Henry Prakken, Adam Wyner, Trevor Bench-Capon, and Katie Atkinson. A for-

malisation of argumentation schemes for legal case-based reasoning in aspic+.

Journal of Logic and Computation, in press, 2013.

[144] Thomas Gordon and Douglas Walton. Legal reasoning with argumentation

schemes. In Proceedings of the 12th International Conference on Artificial In-

telligence and Law, pages 137–146, 2009.

Bibliography 250

[145] Henry Prakken, Adam Wyner, Trevor Bench-Capon, and Katie Atkinson. A for-

malization of argumentation schemes for legal case-based reasoning in ASPIC+.

J. Log. Comput., 25(5):1141–1166, 2015.

[146] Katie Atkinson, Trevor Bench-Capon, and Peter McBurney. Computational rep-

resentation of practical argument. Synthese, 152(2):157–206, 2006.

[147] Sanjay Modgil and Trevor Bench-Capon. Metalevel argumentation. J. Log.

Comput., 21(6):959–1003, 2011.

[148] Guido Boella, Leendert van der Torre, and Serena Villata. On the acceptabil-

ity of meta-arguments. In Web Intelligence and Intelligent Agent Technolo-

gies, 2009. WI-IAT ’09. IEEE/WIC/ACM International Joint Conferences on,

volume 2, pages 259 –262, sept. 2009.

[149] Michael Wooldridge, Peter McBurney, and Simon Parsons. On the meta-logic

of arguments. In Simon Parsons, Nicolas Maudet, Pavlos Moraitis, and Iyad

Rahwan, editors, Argumentation in Multi-Agent Systems, Second International

Workshop, ArgMAS 2005, Utrecht, The Netherlands, July 26, 2005, Revised Se-

lected and Invited Papers, volume 4049 of Lecture Notes in Computer Science,

pages 42–56. Springer, 2005.

[150] Sanjay Modgil. Hierarchical argumentation. In Fisher et al. [170], pages 319–

332.

[151] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the acceptability of

arguments in bipolar argumentation frameworks. In Symbolic and Quantitative

Approaches to Reasoning and Uncertainty, pages 378–389. Springer, 2005.

[152] Farid Nouioua and Vincent Risch. Bipolar argumentation frameworks with spe-

cialized supports. In Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE

International Conference on, volume 1, pages 215–218, 2010.

[153] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolarity in argumen-

tation graphs: Towards a better understanding. In Scalable Uncertainty Manage-

ment, volume 6929 of Lecture Notes in Computer Science, pages 137–148, 2011.

Bibliography 251

[154] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolarity in argu-

mentation graphs: Towards a better understanding. Int. J. Approx. Reasoning,

54(7):876–899, 2013.

[155] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Argumentation in Arti-

ficial Intelligence, chapter Bipolar abstract argumentation systems, pages 65–84.

Springer, 2009.

[156] Nir Oren and Timothy J. Norman. Semantics for evidence-based argumenta-

tion. In Computational Models of Argument: Proceedings of COMMA 2008,

Toulouse, France, May 28-30, 2008., pages 276–284, 2008.

[157] Nir Oren, Chris Reed, and Michael Luck. Moving between argumentation

frameworks. In Baroni et al. [168], pages 379–390.

[158] Sylwia Polberg and Nir Oren. Revisiting support in abstract argumentation sys-

tems. In Parsons et al. [164], pages 369–376.

[159] Paul E. Dunne and Yann Chevaleyre. The complexity of deciding reachabil-

ity properties of distributed negotiation schemes. Theor. Comput. Sci., 396(1-

3):113–144, 2008.

[160] Philippe Besnard, Sylvie Doutre, and Andreas Herzig. Encoding argument

graphs in logic. In Anne Laurent, Olivier Strauss, Bernadette Bouchon-Meunier,

and Ronald R. Yager, editors, Information Processing and Management of Un-

certainty in Knowledge-Based Systems - 15th International Conference, IPMU

2014, Montpellier, France, July 15-19, 2014, Proceedings, Part II, volume

443 of Communications in Computer and Information Science, pages 345–354.

Springer, 2014.

[161] João Leite, Tran Cao Son, Paolo Torroni, Leon van der Torre, and Stefan

Woltran, editors. Computational Logic in Multi-Agent Systems - 14th Interna-

tional Workshop, CLIMA XIV, Corunna, Spain, September 16-18, 2013. Pro-

ceedings, volume 8143 of Lecture Notes in Computer Science. Springer, 2013.

Bibliography 252

[162] Gerhard Brewka and Jérôme Lang, editors. Principles of Knowledge Represen-

tation and Reasoning: Proceedings of the Eleventh International Conference,

KR 2008, Sydney, Australia, September 16-19, 2008. AAAI Press, 2008.

[163] Weiru Liu, V. S. Subrahmanian, and Jef Wijsen, editors. Scalable Uncertainty

Management - 7th International Conference, SUM 2013, Washington, DC, USA,

September 16-18, 2013. Proceedings, volume 8078 of Lecture Notes in Com-

puter Science. Springer, 2013.

[164] Simon Parsons, Nir Oren, Chris Reed, and Federico Cerutti, editors. Computa-

tional Models of Argument - Proceedings of COMMA 2014, Atholl Palace Hotel,

Scottish Highlands, UK, September 9-12, 2014, volume 266 of Frontiers in Ar-

tificial Intelligence and Applications. IOS Press, 2014.

[165] Salvatore Greco, Bernadette Bouchon-Meunier, Giulianella Coletti, Mario

Fedrizzi, Benedetto Matarazzo, and Ronald R. Yager, editors. Advances in Com-

putational Intelligence - 14th International Conference on Information Process-

ing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2012,

Catania, Italy, July 9-13, 2012, Proceedings, Part III, volume 299 of Communi-

cations in Computer and Information Science. Springer, 2012.

[166] Chitta Baral, James P. Delgrande, and Frank Wolter, editors. Principles of

Knowledge Representation and Reasoning: Proceedings of the Fifteenth Inter-

national Conference, KR 2016, Cape Town, South Africa, April 25-29, 2016.

AAAI Press, 2016.

[167] Bart Verheij, Stefan Szeider, and Stefan Woltran, editors. Computational Models

of Argument - Proceedings of COMMA 2012, Vienna, Austria, September 10-12,

2012, volume 245 of Frontiers in Artificial Intelligence and Applications. IOS

Press, 2012.

[168] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Guillermo Ricardo

Simari, editors. Computational Models of Argument: Proceedings of COMMA

2010, Desenzano del Garda, Italy, September 8-10, 2010, volume 216 of Fron-

tiers in Artificial Intelligence and Applications. IOS Press, 2010.

Bibliography 253

[169] Qiang Yang and Michael Wooldridge, editors. Proceedings of the Twenty-Fourth

International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos

Aires, Argentina, July 25-31, 2015. AAAI Press, 2015.

[170] Michael Fisher, Wiebe van der Hoek, Boris Konev, and Alexei Lisitsa, editors.

Logics in Artificial Intelligence, 10th European Conference, JELIA 2006, Liver-

pool, UK, September 13-15, 2006, Proceedings, volume 4160 of Lecture Notes

in Computer Science. Springer, 2006.

	Introduction
	Overview
	Decision Processes
	Decisions in Context: Motivating Examples
	Requirements for a Formal Model of Decision Processes
	Decision Models
	Formal Methods of Argumentation

	Thesis Overview
	Contributions
	Publications
	Main authorship
	Co-authorship

	Background
	Introduction
	Abstract Argumentation
	Aspic+
	Formal Definition of Aspic+
	Aspic+ Conventions
	Discussion

	Additional Definitions
	Discussion
	Grounded and Preferred Semantics
	Alternatives to Aspic+

	Argument-Based Decision Making
	Introduction
	Two Models of Decision Making
	Multi-Criteria Decision Making
	Decision Making under Uncertainty
	Documentation of Decisions
	Problems with Current Approach

	Argument-Based Decision Framework (ADF)
	Overview
	Decision Frames
	Multi-Criteria Decision Making
	Decision Making With Uncertainty
	Decision Rules

	Accepting a Decision
	On the Deactivation of Rules in Aspic+
	Results on Deactivating Rules
	Enforcing a Point of View
	Accepting a Decision

	Related Work
	Multi-Criteria Decision Making
	Decision Making With Uncertainty
	Qualitative Decision Theory
	Enforcement

	Conclusion
	Discussion
	Future Work

	Argument-based Decision Process
	Introduction
	Use Case
	Overview
	Stage 1: Preliminary Design
	Stage 2: Detailed Design
	Stage 3: Preliminary Design Revisited
	Stage 4: Another Process Running in Parallel
	Stage 5: Joining the Two Processes
	Conclusions Drawn from Use Case

	A Model of Decision Processes
	Outcome of Decision Stage
	Embedding Decisions Results
	Embed and Extract

	Impact Analysis
	Impact Analysis Based on Argument Strength
	Impact Analysis Based on Knowledge Added or Removed
	Impact Analysis for Decision Sequences
	Progress in Decision Sequences
	Summary

	Practical Implications
	Decision Outcomes Represent Design Documents
	Impact Analysis
	Visualising Decision Processes

	Discussion
	Related Work

	Argument Schemes
	Introduction
	Non-Deductive Arguments
	Argument Schemes
	Interpreting Experimental Data
	Critical Questions
	Summary

	Meta-Aspic
	Definition of Meta-Aspic
	Object- and Meta-Level Arguments

	Case Study: Choosing a Drilling Technique
	Conventional or Orbital Drilling?
	Experiment Results
	Interpreting Experimental Data Using Meta-ASPIC
	Software Prototype
	Summary

	Related Work
	Argument Schemes
	Meta-Argumentation
	Bipolar Argumentation
	Evidence-Based Argumentation

	Discussion

	Discussion
	Future Work
	Discussion

	Appendices
	Functions & Symbols
	Bibliography

