
Does Renewable Energy Generation Decrease the Volatility of

Electricity Prices? An Analysis of Denmark and Germany

Tuomas Rintamäki
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Abstract

Although variable renewable energy (VRE) technologies with zero marginal costs decrease

electricity prices, the literature is inconclusive about how the resulting shift in the supply

curves impacts price volatility. Because the flexibility to respond to high peak and low off-

peak prices is crucial for demand-response applications and may compensate for the losses

of conventional generators caused by lower average prices, there is a need to understand how

the penetration of VRE affects volatility. In this paper, we build distributed lag models

with Danish and German data to estimate the impact of VRE generation on electricity price

volatility. We find that in Denmark wind power decreases the daily volatility of prices by

flattening the hourly price profile, but in Germany it increases the volatility because it has a

stronger impact on off-peak prices. Our analysis suggests that access to flexible generation

capacity and wind power generation patterns contribute to these differing impacts. Mean-

while, solar power decreases price volatility in Germany. By contrast, the weekly volatility

of prices increases in both areas due to the intermittency of VRE. Thus, policy measures for

facilitating the integration of VRE should be tailored to such region-specific patterns.
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1. Introduction

The adoption of variable renewable energy (VRE) technologies is having profound conse-

quences for the electric power industry. For example, buttressed by subsidies and priority grid

access, solar and wind power generation in Germany comprised 25% of national electricity

output in 2013 and facilitated a 30% reduction in CO2 emissions relative to 1990 levels (von

Hirschhausen, 2014). Likewise, neighbouring Denmark has adopted VRE-friendly policies

enabling it to meet nearly 40% of its electricity needs through wind (Energinet.dk, 2015).

However, similar shares of VRE generation in different electricity markets have resulted in

contrasting effects on daily price volatility, which will affect the profitability of conventional

power plants. Indeed, via a supply-function equilibrium model, Green and Vasilakos (2010)

demonstrate that the incorporation of intermittent renewable resources can increase price

volatility in the British electricity industry. Such a change in market dynamics will likely

lead to an optimal generation mix using more gas-fired plants in the long run (Green and

Vasilakos, 2011). Hence, understanding how VRE generation affects price volatility and un-

covering the drivers of these effects is important for both power companies and regulators

dealing with a transition to a more sustainable energy system.

While fundamental models are often used to examine policy implications, e.g., in terms

of transmission expansion to accommodate increased VRE capacity (Egerer et al., 2013),

such models need to be sufficiently detailed to capture the subtle changes that we seek to

detect here. In particular, building and calibrating large-scale fundamental models with

interconnected regions is often confounded by the complexities of deregulated electricity

industries and the associated data requirements at the plant level, for example. By contrast,

since the electricity industry is one of the few infrastructure industries with liquid markets

and publicly available data on prices as well as cross-border transmission flows, we exploit

this feature in taking an empirical approach to understand the effects of VRE generation on

price volatility in Danish and German electricity markets.

Our methodology is largely based on Mauritzen (2010) who represents the volatility of

prices via a seasonal autoregressive moving average (SARMA) model in which wind power

production is an exogenous variable. This methodology yields results that are straightforward

to interpret and makes it possible to develop forecasts for electricity price volatility based on

the data from previous days and information on regular consumption patterns. His conclusion

is that Danish wind power decreases the daily volatility of the area prices in Denmark. On

the contrary, Ketterer (2014) uses a generalised autoregressive conditional heteroscedasticity

(GARCH) model and finds that German wind power increases the daily volatility of German

electricity prices. Explaining these results using data from the two markets and distilling

their implications for electricity markets in general is the objective of this paper.
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We proceed by first confirming the differing impacts of wind power on price volatility in

these two markets and then explaining them by dividing the dataset into peak and off-peak

hours with separate regressions for each subset of hours. This allows us to analyse changes

in volatility by relating them to supply-curve elasticities and to the patterns of wind and

solar power production as well as cross-border exchanges. Partitioning the dataset reveals

that wind power output decreases daily price volatility in Denmark because wind speeds are

roughly evenly distributed throughout the day. Relative to its average electricity demand,

Denmark has high transmission capacity to the Nordic countries with large hydropower

reservoirs, which may also explain Denmark’s reduction in daily price volatility as both

peak and off-peak hour prices are estimated to decrease nearly equally due to wind power

generation. In Germany, however, there is an increase in price volatility because of greater

wind power output during off-peak hours. Moreover, Germany’s cross-border transmission

lines are smaller relative to its average electricity demand, and it has limited access to flexible

hydro generation. As a consequence, prices diverge as the price-decreasing impact of wind

power is amplified during off-peak hours. Over a weekly time horizon, the level and the

standard deviation of total VRE generation are found to increase the weekly volatility of

electricity prices in both countries.

For producers and consumers alike, our empirical analysis not only corroborates earlier

findings but also explains them by proposing plausible drivers. The implication of our results

is that the allocation of generation and demand is becoming more important as average

power prices decrease, but the achievable profit on different days varies significantly. To

prevent intermittent renewable generation from threatening the stability of the power system,

investments in flexible generation, extensions to the transmission network, integration of

adjacent markets, and demand response will be required in the future. Moreover, additional

trading opportunities by both producers and large consumers in intraday and balancing

markets may be desirable (Mauritzen, 2015).

This paper is organised as follows. In Section 2, we review the literature on the impacts

of VRE on Danish and German electricity markets, in particular. In Section 3, we present

our model and analyse the time-series data. Section 4 presents the results for the effects of

VRE generation on daily and weekly volatility. Finally, in Section 5, we provide conclusions

and discuss directions for future research. Details on model selection and robustness checks

are provided in the Appendix.

2. Literature Review

The adoption of wind and solar generation technologies worldwide has necessitated a need

to assess both the availability of resources (Yip et al., 2016) and their impact on electricity
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markets (González-Aparicio and Zucker, 2015). Many studies have investigated the effect of

wind power production on price levels and reached the common conclusion that wind power

decreases prices. For example, Jónsson et al. (2010) employ the same hourly Danish wind

power forecast data that are used by market players to place their bids. They build a non-

parametric regression model to study price levels as well as the distribution of the prices at

different wind power levels. Their conclusion is that higher wind power penetration in the

day-ahead market decreases Danish prices and volatility substantially.

In Germany, price volatility has been studied by incorporating various market-related

measures as exogenous variables (Kalantzis and Milonas, 2013 and Frömmel et al., 2014).

Only recently have there been studies on the direct effects of growing capacity of wind and

solar power on electricity prices. Ketterer (2014) finds that higher wind power production

leads to higher daily volatility. Moreover, she notes that regardless of the regulatory change in

2010, which forced the German transmission system operators to publish day-ahead forecasts

for VRE generation in their area, the volatility-increasing effect has prevailed. Because the

price-decreasing impact of solar power is stable during peak hours (Paraschiv et al., 2014),

it is likely that solar power decreases price volatility.

Besides patterns of solar and wind power production, transmission flows also affect the

volatility of electricity prices as suggested by the complementarity model by Morales et al.

(2011), who use wind power scenarios as inputs. By adopting the same time-series framework

as in Mauritzen (2010), Mauritzen (2013) investigates how wind power affects the cross-border

transmission of electricity between Denmark and Norway. His conclusion is that when more

(less) wind power is produced in Denmark, exports to (imports from) Norway are higher while

Norwegian hydropower plants produce less (more). Zugno et al. (2013) find a similar pattern

between Germany and hydro-dominant Austria and Switzerland, but these transmission lines

are closer to congestion. Moreover, the flow to the Nordic countries from Germany is low,

and the flow to its neighbouring countries with inflexible generation such as France does not

respond much to changes in wind power.

Building on assumptions about extended cross-border transmission and VRE capacity

in 2030, Jaehnert et al. (2013) find that price spikes and dips become more frequent in the

European power market. Due to the large price difference between the Nordic and German

markets, also additional investments in transmission capacity become optimal. In similar

scenarios, Farahmand et al. (2012) find that the integration of Nordic and German balancing

markets via simultaneous dispatching can reduce balancing costs considerably because VRE

generation forecast errors with opposite signs can be netted.

In addition to explaining the results of Ketterer (2014) and Mauritzen (2010), our ap-

proach of dividing the data into off-peak and peak hours contributes to the literature on
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estimating the impact of renewable generation on electricity price levels (see Würzburg et al.

(2013), Mulder and Scholtens (2013), Paraschiv et al. (2014), and Gelabert et al. (2011), for

example) by providing insights on how the price-decreasing impact is distributed during the

day. To this end, Barthelmie et al. (1996) and Holttinen (2005) suggest that Danish wind

power peaks in the afternoon and the effect is more pronounced in summers. On the other

hand, He et al. (2012) and Huber et al. (2014) show that German wind power tends to peak

at night and also in summer afternoons.

3. Methodology and Data

3.1. Model

To estimate the effect of exogenous variables such as wind and solar power on a depen-

dent variable of interest such as electricity price volatility, we use the seasonally adjusted

autoregressive moving average (SARMA(p,q)(P,Q)[s]) model (Shumway and Stoffer, 2011):

vt = α0 +

p∑
i=1

αivt−i +

q∑
i=1

βiεt−i +
P∑
i=1

αi·svt−i·s +

Q∑
i=1

βi·sεt−i·s + εt + γ>xt, (1)

where vt is the dependent variable during time period t and xt a vector of exogenous variables.

There are p autoregressive (AR) terms vt−i, q moving average (MA) terms εt−i, P seasonal

autoregressive (SAR) terms vt−i·s with periodicity of s, and Q seasonal moving average (SMA)

terms εt−i·s with periodicity of s with the coefficients αi, βi, αi·s, and βi·s, respectively. In

other words, the terms vt−i are lagged values of vt and εt−i Gaussian white noise error terms.

The impact of the exogenous variables on price volatility is estimated by the parameter vector

γ using R (R Core Team, 2015).

3.2. Summary Statistics

Our data for the two Danish areas (Western Denmark, DK1 and Eastern Denmark, DK2)

consist of hourly area prices (in e/MWh), forecasted hourly wind power production (in MW),

forecasted hourly demand (in MW), and hourly cross-border flows between zones DK1-NO2,

DK1-SE3, and DK2-SE4 (in MW) in the day-ahead spot market (data source Nord Pool

Spot, 2016). We ignore Danish solar power because of its negligible capacity (Energinet.dk,

2014). For Germany (DE), we use hourly German prices (in e/MWh, Epex Spot, 2016),

forecasted hourly wind and solar power production (in MW, EEX Transparency, 2016),

forecasted hourly demand (in MW, ENTSO-E, 2016), and hourly cross-border flows between

Germany and France (in MW, ENTSO-E, 2016). We account for fuel prices by including

the daily natural gas spot price (in e/MWh, at the NetConnect Germany hub, Bloomberg
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L.P., 2016). The dataset spans 1 January 2010 to 31 December 2014 and 1 January 2012

to 31 December 2014 for Denmark and Germany, respectively. The dataset for Germany is

restricted by public data on cross-border flows.

Because prices are calculated by the exchanges, there are no measurement uncertainties

or gaps. We employ VRE and demand forecasts for modelling instead of realised values

because only forecasts are available for market participants when determining their bids to

the day-ahead market. Thus, prices and volatility are affected by bidding decisions, which

might have been different under perfect knowledge of forecast errors. For Germany, there are

a few missing days in the ENTSO-E demand forecast time series; for these, we use realised

values. Following the convention of the exchanges, we also divide the dataset into three

blocks called off-peak 1 hours (from 12 AM to 9 AM), peak hours (9 AM to 9 PM), and

off-peak 2 hours (9 PM to 12 AM).

Our measure of price volatility for day d in Equation (1) is the logarithm of the standard

deviation calculated from hourly prices ph and the average daily price pd = 1
24

24∑
h=1

ph, i.e.,

vd = ln


√√√√ 1

24

24∑
h=1

(ph − pd)2

 . (2)

As an example of longer time windows, we consider weekly price volatility, which is computed

from daily average prices pd and weekly average prices pw = 1
7

7∑
d=1

pd.

vw = ln


√√√√1

7

7∑
d=1

(pd − pw)2

 (3)

We take the natural logarithm to make the time series stationary and to improve the model fit.

Also, all exogenous variables xt in Equation (1) except for cross-border flows are transformed

into natural logarithm form, and, thus, their coefficients γ can be interpreted as elasticities.

This assumption of constant elasticity between the exogenous variables and price volatility is

more reasonable than assuming that changes in demand, for example, lead to equal changes

in price volatility at different demand levels. Because cross-border flows take positive and

negative values depending on the direction of the flow, we scale the figures by 1000 MW to

obtain values close to those of the logarithmic variables.

Figures 1a, 1b, and 1c show the average hourly price profile for DK1, DK2, and DE,

respectively, resulting from demand patterns. During morning and evening high-load hours,

the price is usually driven by thermal plants with higher marginal costs of production. In
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low-load times, such as night time, prices are set by thermal plants lower in the merit order.

On the other hand, Figures 2a, 2b, and 2c show how the daily volatility of DK1, DK2,

and DE prices has developed from 2010 to 2014, respectively. There is no clear increasing

or decreasing trend in the price volatility of the areas, but the average volatility of Danish

prices is lower than that of Germany.

(a) DK1. (b) DK2. (c) DE.

Figure 1: Average hourly electricity prices for DK1, DK2, and DE from 2010 to 2014.

(a) DK1. (b) DK2. (c) DE.

Figure 2: The natural logarithm of daily price volatility of DK1, DK2, and DE prices from 2010 to 2014.

Figures 3a and 3b confirm that Danish wind power peaks in the afternoon. In turn,

Figure 3c shows that the production of German wind power is highest at night. The solar

power profile in Germany is similar in each month with production only from 6 AM to 8 PM

(Figure 4). We define the wind and solar power penetration during period t as the share of

average wind or solar power generation (windt, solart) of the average demand (loadt) during

that period t.

wind pent =
windt
loadt

and solar pent =
solart
loadt

(4)

3.3. Stability Checks

We confirm the stationarity of the time series by applying the augmented Dickey-Fuller

(ADF) test. Table 11 in the Appendix shows that all daily time series pass the test at the
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(a) DK1. (b) DK2. (c) DE.

Figure 3: Average hourly wind power in DK1, DK2, and DE in selected months in 2014.

Figure 4: Average hourly solar power in DE in selected months in 2014.

10% level until lag 15 except for German solar power, solar power penetration, and gas price,

which are differenced to make them stationary. For weekly data, since the gas price, Danish

exports, German wind and solar power, and their penetration fail the test already at low

lags, we difference these time series. Table 12 shows that all time series pass the test after

differencing except for weekly average solar power generation and penetration, which reduces

the robustness of the results on their impact. In the regressions, we will use the differenced

variables prefixed with ∆ whenever necessary. For the notation, please refer to Table 1.

Autocorrelation (ACF) and partial autocorrelation functions (PACF) of the dependent

variable in Equation (1) can be used to specify the order (p,q)(P,Q)[s] of the model. The

ACF and PACF of daily price volatility time series from DK1 and DK2 in Figures 5a, 5b,

5c, and 5d, respectively, and from DE in Figures 5e and 5f have high peaks at the first lag

and then near multiples of seven indicating a weekly pattern in price volatility (Shumway

and Stoffer, 2011). All autocorrelation functions have a downward trend as older data is less

relevant.

For both Denmark and Germany, we select the model (1) by stepwise addition of inde-

pendent variables starting from a SARMA(1,0)(1,0)[7] model, as indicated by the ACF and

PACF plots. In the selection process, we omit all exogenous variables xt and require all

coefficients α and β to be statistically significant at the 5% level. If a variable in a partic-

ular model (p,q)(P,Q) becomes statistically insignificant, then we do not add new variables

because they are likely to be insignificant, too. Also, if the addition of a new variable does
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(a) ACF of DK1 price volatil-
ity.

(b) PACF of DK1 price
volatility.

(c) ACF of DK2 price volatil-
ity.

(d) PACF of DK2 price
volatility. (e) ACF of DE price volatility.

(f) PACF of DE price volatil-
ity.

Figure 5: ACF and PACF plots of DK1, DK2, and DE daily price volatility.

not improve the Akaike Information Criterion (AIC) compared to the previous model, then

we stop. To compare the candidates obtained in this process, we assess the AIC score, per-

form the Ljung-Box (L-B) test for residual autocorrelation, and examine the Q-Q, ACF, and

PACF plots of the residuals of the models. Because of the large number of observations,

we can expect to obtain unbiased estimators and residuals with little serial correlation. The

model selection results are reported in Tables 13-15 of the Appendix, where we have omitted

models that fail improve the AIC score or have insignificant variables.

We note that the optimal fit would be obtained if model (1) were to be specified separately

for each subset of exogenous variables xt. However, very different specifications could make

it difficult to compare the effect of the exogenous variables. Therefore, we present results for

alternative model specifications in Tables 16-18 of the Appendix to see the sensitivity of the

results obtained using the above process.

4. Results

4.1. Daily Volatility

We run separate regressions for both Danish areas, DK1 and DK2, and Germany, DE,

to estimate the impact of different explanatory variables on the corresponding area price

volatility. For all areas, we obtain the following SARMA(2,1)(2,1)[7] model (see Table 13 for

model search iterations)

vd = α0 + α1vd−1 + α2vd−2 + α7vd−7 + α14vd−14 + εd + β1εd−1 + β7εd−7. (5)
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Variable Explanation
vd Standard deviation of hourly prices on day d (e/MWh)

pop1d Average off-peak 1 prices on day d (e/MWh)

pop2d Average off-peak 2 prices on day d (e/MWh)
ppd Average peak prices on day d (e/MWh)
windd Average wind power on day d (MW)

windop1d Average off-peak 1 wind power on day d (MW)

windop2d Average off-peak 2 wind power on day d (MW)
windpd Average peak wind power on day d (MW)
wind pend Average wind power penetration on day d

wind penop1d Average off-peak 1 wind power penetration on day d

wind penop2d Average off-peak 2 wind power penetration on day d
wind penpd Average peak wind power penetration on day d
solard Average solar power on day d (MW)
solarpd Average peak solar power on day d (MW)
solar pend Average solar power penetration on day d
solar penpd Average peak solar power penetration on day d
vred Average wind and solar power on day d (MW)
vrepd Average peak wind and solar power on day d (MW)
vre pend Average wind and solar power penetration on day d
vre penpd Average peak wind and solar power penetration on day d

eximop1
d Average off-peak 1 export/import on day d (GW)

eximop2
d Average off-peak 2 export/import on day d (GW)

eximp
d Average peak export/import on day d (GW)

gasd Average spot gas price on day d (e/MWh)
vw Standard deviation of daily average prices during week w (e/MWh)
windw Average wind power during week w (MW)
windstdw Standard deviation of average daily wind power outputs during week w (MW)
wind penw Average wind power penetration during week w
solarw Average solar power during week w (MW)
solar penw Average solar power penetration during week w
vrew Average wind and solar power during week w (MW)
vrestdw Standard deviation of average daily wind and solar power outputs during week w (MW)
vre penw Average wind and solar power penetration during week w
eximw Average export/import during week w (GW)
gasw Average gas price during week w (e/MWh)

Table 1: Exogenous variables in our models. We take the natural logarithm of all variables except eximop1
d ,

eximop2
d , eximp

d, and eximw.

10



The AR(1) and AR(2) terms account for short-term price volatility development, and the

SAR(1) and SAR(2) terms deal with the weekly seasonality in the data. Adding MA(1)

and SMA(1) terms provides stochastic parts to the development of the price volatility and

improves the fit of the model. Various exogenous variables with the associated parameters,

i.e., the term γ>xt in Equation (1), are added to the right-hand side of this model. For

example, model 1 for DK1 in Table 2 is

vd = α0 + α1vd−1 + α2vd−2 + α7vd−7 + α14vd−14 + εd + β1εd−1 + β7εd−7 + γ windd. (6)

In Tables 2 and 3, the main finding is that the coefficient for wind power, windd, in DK1

at −0.0892 and in DK2 at −0.0696 in model 1 is statistically significantly different from zero

at the 1% level according to a Z-test. For both areas, the interpretation is that increasing

the amount of daily wind power production by 1% decreases the daily volatility of prices

by 0.06 − 0.09%.1 The effect is slightly stronger in DK1 than DK2, most likely due to the

combination of higher wind power capacity and lower demand in DK1. Moreover, model 2

in Tables 2 and 3 indicates that the higher the wind power penetration, wind pend, is, the

lower the price volatility.

Mauritzen (2010) runs similar regressions with a SARMA(2,2)(1,2)[7] model. Our result

for DK1 is in line with Mauritzen, but his estimate for the coefficient for DK2 is not statisti-

cally significant. The most probable explanation for the difference is that his data span 2002

to 2007, whereas our more recent dataset includes higher wind power capacity in DK2, and,

thus, its market impact is likely to be stronger.

In models 3 and 4, we control for exports to and imports from hydro-dominant Sweden and

Norway in morning off-peak, peak, and evening off-peak hours (eximop1
d , eximp

d, and eximop2
d ,

respectively) and find nearly unchanged coefficients for wind power in both areas. The same

is true for wind power penetration in model 5. Because the spot market transmission flows are

likely to be endogenous with the price volatility, we cannot draw causal conclusions about

their impact (Mauritzen, 2013). However, model 4 for DK1 suggests that exports during

morning off-peak hours are positively correlated with daily price volatility, but, during peak

hours, the correlation is negative. This is explained by the fact that greater difference between

the peak and off-peak hours implies high exports (imports) in the off-peak (peak) hours. By

contrast, for DK2, the impact of cross-border exchange is inconclusive in model 4, which can

1Consider a model ln y = α + β>z + γ lnx. Fixing z, with two different values, x2 and x1, we have

ln y2 − ln y1 = γ (lnx2 − lnx1) ⇔ ln y2
y1

= γ ln x2

x1
⇔ y2−y1

y1
=
(
x2

x1

)γ
− 1. Numerically, the approximation

y2−y1
y1
≈ γ

(
x2−x1

x1

)
deviates from the true value of y2−y1

y1
by less than 0.004 percentage points when x2−x1

x1
=

0.01 and |γ| ≤ 0.5.
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be attributed to the fact that DK2 is connected only to the SE4 bidding area with practically

no hydro reservoirs, whereas DK1 is connected to large reservoirs in bidding areas NO2 and

SE3 (Nord Pool Spot, 2014). These results are in line with Green and Vasilakos (2012), who

find that Denmark exports excess wind power to Norway and Sweden in off-peak hours, in

particular, and that the volume of this exchange is higher for DK1 than DK2.

With model 6, we test for the impact of the first difference of natural gas prices, ∆gasd,

and find no statistically significant effect on DK1 and DK2 daily price volatility. We note that

the daily changes in natural gas spot prices are small, and, thus, they are unlikely to affect

short-term bidding behaviour significantly. Moreover, some producers may have longer-term

gas contracts instead of relying on spot gas.

Variable
Model

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

windd -0.0892 -0.0731 -0.0906 -0.0889
(0.0158) (0.0193) (0.0194) (0.0158)

wind pend -0.0867 -0.0879
(0.0160) (0.0198)

eximop1
d 0.0641b 0.1004 0.1017

(0.0328) (0.0331) (0.0334)
eximp

d 0.0783a -0.0806 -0.0850
(0.0374) (0.0308) (0.0307)

eximop2
d -0.2241

(0.0305)
∆gasd 0.3324c

(0.4080)
α0 2.3918 1.7080 2.2531 2.3566 1.6605 2.3649
α1 1.2236 1.2210 1.2546 1.2450 1.2437 1.2210
α2 -0.2526 -0.2504 -0.2787 -0.2728 -0.2718 -0.2510
α7 1.0711 1.0706 1.0811 1.0751 1.0747 1.0699
α14 -0.0726 -0.0721 -0.08232 -0.0769 -0.0766 -0.0731
β1 -0.8635 -0.8632 -0.8698 -0.8669 -0.8666 -0.8625
β7 -0.9804 -0.9804 -0.9825 -0.9792 -0.9791 -0.9803
AIC 2878.82 2881.50 2820.47 2871.62 2873.72 2879.57
L-B 30 30 28 30 30 30
a significant at 5% level
b significant at 10% level
c not significant

Table 2: The effect of different explanatory variables on DK1 daily price volatility. All coefficients are
statistically significant at the 1% level unless otherwise noted.

Increasing the daily German wind power, windd, by 1% increases the daily volatility of

German prices by 0.03% as indicated by model 1 in Table 4. The result is in line with

Ketterer (2014) whose estimate from a rolling regression ranges from 0% to approximately

0.05%. However, when the first difference in daily solar power production, ∆solard, increases

by 1%, the daily volatility of German prices decreases by 0.04% in model 2. This indicates

that also a higher absolute level of solar power leads to lower daily price volatility. Model
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Variable
Model

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

windd -0.0696 -0.0517 -0.0604 -0.0686
(0.0147) (0.0164) (0.0165) (0.0146)

wind pend -0.0654 -0.0544
(0.0149) (0.0167)

eximop1
d -0.0171a -0.0070a -0.0119a

(0.0418) (0.0430) (0.0433)
eximp

d 0.1462 -0.0474a -0.0516a

(0.0481) (0.0416) (0.0416)

eximop2
d -0.3060

(0.0395)
∆gasd -0.3214a

(0.4306)
α0 2.2065 1.7110 2.0966 2.1547 1.7289 2.2035
α1 1.2329 1.2302 1.2677 1.2313 1.2289 1.2305
α2 -0.2685 -0.2660 -0.2960 -0.2679 -0.2658 -0.2673
α7 1.1054 1.1066 1.1078 1.1045 1.1060 1.1046
α14 -0.1058 -0.1069 -0.1081 -0.1050 -0.1063 -0.1050
β1 -0.8378 -0.8371 -0.8504 -0.8332 -0.8329 -0.8368
β7 -0.9886 -0.9904 -0.9912 -0.9875 -0.9894 -0.9875
AIC 3159.90 3163.27 3106.16 3162.16 3164.78 3134.09
L-B 30 30 30 30 30 9
a not significant

Table 3: The effect of different explanatory variables on DK2 daily price volatility. All coefficients are
statistically significant at the 1% level unless otherwise noted.

3 confirms the signs of the coefficients in the presence of both wind and solar power. Yet,

when we combine wind and solar power in variable vred in model 4, the coefficient becomes

statistically insignificant, which is likely to be caused by the opposing effects of wind and

solar power. We arrive at the same conclusions by using the penetration of wind, solar,

or the combined generation, i.e., wind pend, solar pend, and vre pend, respectively, as an

exogenous variable in models 5-7.

Controlling for the cross-border flow between Germany and France in model 8 keeps

the coefficients for windd and ∆solard close to the earlier estimates. Positive and negative

coefficients for the morning off-peak and peak hour transmission flow (eximop1
d and eximp

d),

respectively, suggest higher price volatility when exports change to imports during the day.

Finally, model 9 shows, in agreement with the result for Denmark, that the first difference

of gas prices, ∆gasd, does not have an impact on the daily volatility of German prices.

For all areas, the AIC scores in Table 13 improve after adding the exogenous variables

to Equation (5). In Tables 2-4, we report the lag at which the Ljung-Box test fails at a 1%

significance level. The models for DK2 have some autocorrelation at lag 9, but the models

for DK1 and DE perform well with all lags. However, Figures 6a-6c show that the ACF

plot of the residuals of model 1 for DK1 and DK2 and model 4 for Germany stay within the
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95% confidence interval with very few exceptions. As a cross-check, we estimate alternative

models (see Table 16) and find that the estimated parameters for wind and solar power are

robust with respect to the specification.

Variable
Model

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

windd 0.0328a 0.0296a 0.0367a 0.0320a

(0.0146) (0.0147) (0.0147) (0.0148)
∆solard -0.0379a -0.0350b -0.0205c -0.0339b

(0.0191) (0.0191) (0.0191) (0.0191)
vred 0.0187c

(0.0227)
wind pend 0.0350a

(0.0147)
∆solar pend -0.0466a

(0.0187)
vre pend 0.0203c

(0.0220)

eximop1
d 0.0853

(0.0117)
eximp

d -0.0781
(0.0137)

eximop2
d 0.0211c

(0.0134)
∆gasd -0.3840c

(0.3308)
α0 1.9167 2.2698 2.0009 2.0691 2.3221 2.2432 2.2764 1.9351 1.9710
α1 1.1513 1.1657 1.1613 1.1459 1.1525 1.1675 1.1532 1.1508 1.1615
α2 -0.1622 -0.1752 -0.1711 -0.1576 -0.1633 -0.1773 -0.1637 -0.1623 -0.1716
α7 1.1764 1.1724 1.1749 1.1717 1.1770 1.1722 1.1737 1.1686 1.1788
α14 -0.1766 -0.1725 -0.1752 -0.1719 -0.1772 -0.1724 -0.1739 -0.1688 -0.1789
β1 -0.9165 -0.9168 -0.9190 -0.9108 -0.9167 -0.9163 -0.9140 -0.9276 -0.9189
β7 -0.9896c -0.9911 -0.9870 -0.9885 -0.9890 -0.9910 -0.9898 -0.9888 -0.9914
AIC 487.73 488.60 486.92 492.33 487.13 486.39 491.88 434.13 486.92
L-B 30 30 30 30 30 30 30 30 30
a significant at 5% level
b significant at 10% level
c not significant

Table 4: The effect of different explanatory variables on DE price volatility. All coefficients are statistically
significant at the 1% level unless otherwise noted.

4.2. Analysis of Intraday Effects

Next, we investigate further why wind power decreases the daily volatility in Denmark

but increases it in Germany. Given the hourly price profiles in Figures 1a, 1b, and 1c, the

volatility-increasing impact of wind power can be explained if prices in off-peak 1 and 2

decrease more than during peak hours, leading to divergent prices. On the other hand, the

volatility will decrease if peak prices decrease more than off-peak prices so that the hourly

price profile becomes flatter.

To test these possibilities, we perform similar regressions as in the previous section for each

block, except that the logarithm of the standard deviation of hourly prices, vd, is replaced

by the logarithm of the average price of each block (pop1d , ppd, and pop2d ). Model iteration
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(a) DK1. (b) DK2. (c) DE.

Figure 6: ACF plot of the residuals of the daily price volatility model 1 for DK1, DK2 and DE.

steps in Table 14 show that the best models for DK1, DK2 and DE are SARMA(2,1)(2,1)[7],

SARMA(1,2)(1,2)[7], and SARMA(1,1)(1,2)[7], respectively, using data for peak hours.

However, the addition of exogenous variables to these model causes many variables

become statistically insignificant (see Table 17). Therefore, we step down to a simpler

SARMA(2,1)(1,1)[7] model, which for DK1, DK2, and DE differs only by 2.13, 21.64, and

5.25 from the best models in terms of AIC score, respectively. Moreover, the results for

different areas can be more readily compared by using a common model. Nevertheless, we

consider the best area models in Table 17 of the Appendix. The final SARMA(2,1)(1,1)[7]

model is as follows

pbd = α0 + α1p
b
d−1 + α2p

b
d−2 + α7p

b
d−7 + εd + β1εd−1 + β7εd−7, (7)

where b is the block ∈ {op1, op2, p}. Similar to the model in Equation (6), the exogenous

variables are added to the right-hand side of Equation (7). We note that the instances with

a negative average price for a block are removed from our dataset. For DK1, DK2, and

DE, there are 13, 10, and 15 such off-peak blocks, respectively. Since the total number of

observations is 1813, 1816, and 1081, respectively, we expect that the impact of removing

these observations on the coefficients for off-peak blocks is slightly positive at most.

Tables 5 and 6 have the results of the regressions for DK1 and DK2, respectively. The

coefficient for average wind power during peak hours, windpd, for example, is at the intersection

of row windd and the column “Peak”. Thus, the coefficients for peak-hour wind power, windpd,

are −0.0726 and −0.0570, respectively, which differ by only 0.01− 0.04 units from those for

morning and evening off-peak hours, windop1d and windop2d , respectively. Hence, increasing

wind power in the peak hours, for example, by 1% causes a 0.07% and 0.06% decline in the

average peak price in DK1 and DK2, respectively. Our approximate estimate of the average
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price-decreasing impact of doubling wind power penetration, wind pend, at 6% is comparable

to Jónsson et al. (2010) who estimate that increasing wind power penetration from 20% up

to 40% decreases DK1 prices approximately 10%.2

Figure 3a shows that in Denmark there is a peak in wind output during peak hours, which

amplifies the total impact of wind power on peak hours relative to off-peak hours. Combined

with the small difference between peak and off-peak hour coefficients, this supports the

hypothesis that wind power contributes to the flattening of the intraday price profile by

decreasing peak prices more than off-peak prices in absolute terms.

Moreover, exchange with the hydro-dominant Nordic countries may contribute to similar

flattening of the intraday price curve as the coefficients for peak hour cross-border flows eximp
d

are negative at−0.10 and they differ only slightly from those for morning and evening off-peak

hours, eximop1
d and eximop2

d , respectively. As the capacities of the associated transmission

lines exceed the average DK1 and DK2 wind power forecast in our dataset substantially, the

impact of cross-border exchange on DK1 and DK2 electricity prices is significant.

Because the estimated coefficients for the impact of wind power and export in different

blocks have higher absolute values for DK1 than DK2, daily DK1 prices are more likely to

drop more than daily DK2 prices for a comparable increase in wind power or exports. In

agreement with the results in Section 4.1, daily DK1 price volatility is likely to drop more

than daily DK2 price volatility due to lower absolute level of prices.

Variable
Block

Off-peak 1 Off-peak 1 Peak Peak Off-peak 2 Off-peak 2

windd -0.1090 -0.0726 -0.0647
(0.0092) (0.0052) (0.0051)

wind pend -0.1153 -0.0791 -0.0667
(0.0092) (0.0052) (0.0051)

eximd -0.1454 -0.1373 -0.1073 -0.0996 -0.0865 -0.0854
(0.0183) (0.0182) (0.0091) (0.0091) (0.0088) (0.0087)

α0 4.1465 3.3179 4.1694 3.5878 4.0406 3.5412
α1 1.1511 1.1505 1.1730 1.1687 1.0622 1.0626
α2 -0.1922 -0.1904 -0.2240 -0.2195 -0.0933 -0.0922
α7 0.9475 0.9456 0.9535 0.9533 0.9704 0.9683
β1 -0.7910 -0.7951 -0.7615 -0.7632 -0.7222 -0.7254
β7 -0.8791 -0.8835 -0.7990 -0.8082 -0.9359 -0.9391
AIC 792.47 776.51 -1197.78 -1229.52 -1331.94 -1343.87
L-B 30 30 4 4 4 4

Table 5: The effect of different explanatory variables on DK1 price level in each block. All coefficients are
statistically significant at the 1% level.

2Although our estimate is computed using the exact formula y2−y1
y1

=
(
x2

x1

)γ
− 1, the estimate is approx-

imate as the true coefficient, γ, is likely to be different at different wind power penetration levels.
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Variable
Block

Off-peak 1 Off-peak 1 Peak Peak Off-peak 2 Off-peak 2

windd -0.0796 -0.0570 -0.0543
(0.0068) (0.0042) (0.0045)

wind pend -0.0813 -0.0596 -0.0557
(0.0068) (0.0042) (0.0045)

eximd -0.0910 -0.0890 -0.0658 -0.0615 -0.0471 -0.0451
(0.0205) (0.0205) (0.0122) (0.0122) (0.0122) (0.0122)

α0 3.8882 3.3140 4.0757 3.6436 3.9298 3.5348
α1 1.1808 1.1804 1.2429 1.2405 1.0707 1.0698
α2 -0.2303 -0.2301 -0.2909 -0.2889 -0.1073 -0.1070
α7 0.9019 0.8978 0.9608 0.9605 0.9627 0.9641
β1 -0.7384 -0.7401 -0.7500 -0.7506 -0.7208 -0.7217
β7 -0.7794 -0.7766 -0.7912 -0.7949 -0.9186 -0.9220
AIC 623.24 617.20 -1033.78 -1049.23 -842.63 -850.23
L-B 30 30 4 6 5 5

Table 6: The effect of different explanatory variables on DK2 price level in each block. All coefficients are
statistically significant at the 1% level.

For Germany, Table 7 shows that the coefficients for wind power are −0.1530, −0.3073,

and −0.1874 for peak (windpd), morning off-peak (windop1d ), and evening off-peak hours

(windop2d ), respectively. Similar coefficients are confirmed by wind power penetration, wind pend,

too. The fact that the coefficients for morning and evening off-peak hours in Germany are

more negative than the coefficient for peak hours indicates that the supply curves for off-

peak hours are more sensitive than the supply curves for peak hours. Indeed, Paraschiv et al.

(2014) find that the impact of wind power on German prices has been up to 3.5 times higher

in the morning off-peak than in the peak hours, but the difference has decreased over time.

Thus, if there is an increase in wind power production during off-peak hours, then prices

will fall more than in peak hours for a comparative increase in wind output. This is true

especially in morning off-peak hours where the impact is twofold.

In addition, the fact that German wind power peaks during off-peak hours (Figure 3c)

suggests that German off-peak prices can decrease more compared to peak prices in absolute

terms, thereby resulting in higher daily price volatility in keeping with the findings of Section

4.1. In practice, this means that morning off-peak prices, in particular, can crash due to the

combination of wind power production and low demand. By contrast, peak-hour prices with

high demand decrease only slightly.

Increasing the first difference of average German solar power production, ∆solard, by 1%

decreases peak prices by 0.05% as indicated by Table 7. Furthermore, when we add peak-hour

wind and solar power, the parameter estimates for the average combined generation, vred,

and its penetration, vre pend, are approximately twice as large as the coefficients for wind

power, which suggests an equal contribution from solar power. The inconclusive impact of
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combined VRE generation on German daily price volatility in Section 4.1 can be explained

by the fact that the coefficient for wind power in morning off-peak hours at −0.3073 and the

coefficient for combined generation in peak hours at −0.3602 are rather close to each other,

thereby indicating that these blocks decrease by nearly the same amount. However, because

the coefficient for wind power in the evening off-peak hours is less negative at −0.1874, the

overall impact of VRE generation on daily price volatility in Germany is likely to be slightly

positive on average because evening off-peak hours diverge, which is also supported by the

average hourly prices in Figure 1c.

All the coefficients for cross-border flows between Germany and France, eximd, are pos-

itive. Germany is a net exporter over these transmission lines meaning that the higher the

export from Germany to France, the higher the German prices. Similar to wind power,

the higher coefficients for off-peak hours, eximop1
d and eximop2

d , than for peak hours, eximp
d,

imply a higher price sensitivity during the off-peak hours. However, the magnitudes of the

coefficients for eximd are relatively small, which indicates that the cross-border exchange

with France has a limited correlation with the German price level. Indeed, the possibilities

to balance excess VRE generation are limited as the capacity of these transmission lines is

only 30% of average VRE forecast in our dataset and the flows to hydro-dominant Austria

and Switzerland approach congestion as the VRE penetration grows (Zugno et al., 2013).

The AIC scores of the models for Denmark and Germany improve significantly when

external variables are added to the model in Equation (7). Ljung-Box tests for some models

fail already at low lags, which indicate that there is some serial correlation in our models.

We estimated models with additional AR and MA terms, which pass the Ljung-Box test up

to lag 30, and find that the estimated parameters for DK1, DK2, and DE external variables

in Tables 5, 6, and 7 are robust. Also, Table 17 shows that the results hold with the best

area models, too, although they improve the AIC scores only for Germany.

4.3. Weekly Volatility

We now extend the analysis to a weekly horizon by specifying a model that includes the

weekly price volatility in Equation (3) and the weekly average wind, solar, and combined

production. The general model is

vw = α0 +

p∑
i=1

αivw−i +

q∑
i=1

βiεw−i +
P∑
i=1

αi·svw−i·s +

Q∑
i=1

βi·sεw−i·s + εw + γ>xw, (8)

Unlike the daily models, weekly volatility is affected by several factors such as power plant

and transmission line availability and changes in bidding behaviour, which may not have

any seasonality. Therefore, we start with the simplest models such as AR(1) and MA(1)
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Variable
Block

Off-peak 1 Off-peak 1 Peak Peak Peak Peak Peak Peak Off-peak 2 Off-peak 2

windd -0.3073 -0.1530 -0.1874
(0.0156) (0.0090) (0.0079)

wind pend -0.3243 -0.1667 -0.1915
(0.0151) (0.0087) (0.0078)

∆solard -0.0528
(0.0142)

∆solar pend -0.0807
(0.0138)

vred -0.3602
(0.0158)

vre pend -0.3984
(0.0145)

eximd 0.0436 0.0440 0.0187 0.0193 0.0096c 0.0107c 0.0284 0.0286 0.0444 0.0422
(0.0107) (0.0101) (0.0072) (0.0070) (0.0082) (0.0081) (0.0066) (0.0061) (0.0059) (0.0058)

α0 5.8789 2.5388 4.9809 3.2649 3.7043 3.7006 7.0370 3.0252 5.1723 3.1432
α1 -0.5556 -0.5669 0.9730 0.9757 0.9555 0.9735 0.8819 0.8652 0.5906 0.6052
α2 0.2948 0.2815 -0.1192a -0.1206a -0.1394b -0.1497a -0.0801c -0.0717c 0.0991c 0.0924c

α7 0.9167 0.9184 0.9338 0.9327 0.9280 0.9283 0.9322 0.9272 0.9614 0.9586
β1 0.9225 0.9229 -0.6736 -0.6763 -0.6016 -0.6135 -0.6452 -0.6335 -0.3428a -0.3561a

β7 -0.7339 -0.7575 -0.5912 -0.6016 -0.6093 -0.6152 -0.5658 -0.5863 -0.8166 -0.8258
AIC 601.62 550.09 -223.51 -282.05 -2.58 -22.43 -379.56 -534.03 -829.03 -856.04
L-B 4 4 30 30 30 30 14 14 30 30
a significant at 5% level
b significant at 10% level
c not significant

Table 7: The effect of different explanatory variables on DE price level in each block. All coefficients are
statistically significant at the 1% the level unless otherwise noted.

but try also a four-week, i.e., monthly, seasonality (Weron, 2014). Table 15 reports the

model iterations. For the Danish areas, models with the monthly seasonality show the best

performance, but they are found to be statistically insignificant for Germany. AR(1), which

is the best model for Germany, fails the Ljung-Box test with Danish data already at low lags.

Therefore, we run SARMA(1,0)(0,1)[4] for Danish and AR(1) for German data:

vw = α0 + α1vw−1 + β4εw−4 + εw (9)

vw = α0 + α1vw−1 + εw. (10)

In Equations (9) and (10), the AR(1) term approximates the current volatility with the

previous one. In addition, an SMA(1) term in the Danish model (9) deals with monthly

seasonality.

We find that increasing the weekly average wind power, windw, by 1% increases the

weekly volatility of DK1 prices by 0.18% as indicated by model 1 in Table 8. For DK2, the

effect is inconclusive in model 1 in Table 9, which may be attributed to lower wind power

capacity. These results apply for weekly wind power penetration, wind penw, in model 2.

Furthermore, controlling for the first difference of weekly average exports, ∆eximw, in models

3 and 4 does not change the conclusions for wind power and its penetration. However, the

standard deviation of daily average wind power outputs, i.e., the intermittency of daily wind
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power increases the weekly price volatility by 0.37% and 0.18% both in DK1 and DK2 in

model 5, respectively. Similar to the daily volatility results, model 6 shows that the change

in weekly average natural gas price, ∆gasw, does not have an impact on the weekly price

volatility. Table 18 confirms the conclusions using an alternative ARMA(1,1) model.

Variable
Model

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

windw 0.1820 0.1636a

(0.0711) (0.0790)
wind penw 0.2098 0.1969a

(0.0723) (0.0803)
∆eximw 0.0410b 0.0288b

(0.0761) (0.0759)
windstdw 0.3653

(0.0731)
∆gasw 0.4286b

(0.5424)
α0 0.4021b 1.8344 0.5223b 1.8186 -0.5931b 1.6036
α1 0.3073 0.3059 0.3043 0.3032 0.3030 0.3298
β4 0.1990 0.1989 0.2027 0.2018 0.1877 0.2100
AIC 427.39 425.81 428.26 426.55 409.97 434.39
L-B 30 30 30 30 30 30
a significant at 5% level
b not significant

Table 8: The effect of different explanatory variables on DK1 weekly price volatility. All coefficients are
statistically significant at the 1% level unless otherwise noted.

In Germany, increasing the first difference of weekly average wind power by 1% increases

weekly price volatility by 0.11% as suggested by the coefficient for ∆windw in Table 10. This

is supported by the comparative effect of the first difference of weekly average wind power

penetration, ∆wind penw, in model 2. The positive coefficients for the first differences indi-

cate that higher weekly average wind power is associated with higher weekly price volatility

in Germany. However, models 3 and 4 are inconclusive regarding the impact of the first

difference in weekly average solar power, ∆solarw, and its penetration, ∆solar penw, be-

cause the coefficients are statistically insignificant. As in the daily volatility model, the effect

is likely negative because the coefficient estimates are negative. Consequently, the impact

of weekly average VRE generation, vrew, and its penetration, vre penw, is inconclusive in

models 5 and 6, respectively. Nevertheless, increasing the change in the standard deviation

of VRE generation, ∆vrestdw , by 1% increases weekly price volatility by 0.11% in model 7. In

models 8 and 9, the inclusion of weekly average exports, eximw, does not change the earlier

conclusions on the impact of weekly wind and solar power. Counterintuitively, we find a

negative impact of the first difference of weekly average gas price, ∆gasw, on the weekly

volatility of prices, but the very high coefficient, −2.0427, makes the result unreliable.
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Variable
Model

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

windw 0.0621b 0.0045b

(0.0720) (0.0746)
wind penw 0.0465b -0.0100b

(0.0729) (0.0752)
∆eximw 0.2457a 0.2533a

(0.1125) (0.1122)
windstdw 0.1842a

(0.0749)
∆gasw 0.2222b

(0.6070)
α0 1.3173 1.7411 1.6084 1.6122 0.7595a 1.6318
α1 0.3445 0.3465 0.3246 0.3247 0.3459 0.3238
β4 0.1710a 0.1744a 0.1642a 0.1664a 0.1500a 0.1555a

AIC 498.58 498.92 479.82 479.81 493.48 485.21
L-B 30 30 30 30 30 30
a significant at 5% level
b not significant

Table 9: The effect of different explanatory variables on DK2 weekly price volatility. All coefficients are
statistically significant at the 1% level unless otherwise noted.

Variable
Model

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

∆windw 0.1051b 0.1095b

(0.0591) (0.0597)
∆wind penw 0.1407a

(0.0593)
∆solarw -0.1707c -0.1793c

(0.1130) (0.1137)
∆solar penw -0.1432c

(0.1122)
vrew 0.1322c

(0.1174)
vre penw 0.1513c

(0.1096)
∆vrestdw 0.1083a

(0.0551)
eximw 0.0282c 0.0289c

(0.0368) (0.0383)
∆gasw -2.0427a

(0.8334)
α0 1.9668 1.9669 1.9676 1.9676 0.7636c 2.2393 1.9663 1.9406 1.9408 1.9669
α1 0.1676a 0.1610b 0.2058 0.2070 0.1726a 0.1759a 0.1699a 0.1559b 0.1963a 0.2019a

AIC 170.97 168.44 171.96 172.6 173.68 173.05 170.28 172.39 173.39 168.32
L-B 30 30 30 30 30 30 30 30 30 30
a significant at 5% level
b significant at 10% level
c not significant

Table 10: The effect of different explanatory variables on German weekly price volatility. All coefficients are
statistically significant at the 1% level unless otherwise noted.
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The results for Danish and German VRE generation intermittency, windstdw and ∆vrestdw ,

respectively, can be explained by day-to-day horizontal parallel shifts of the supply curve.

When the installed VRE capacity increases, the available supply increases and the parallel

shifts are larger, which contributes to the growing weekly volatility. In both countries, the

impact can be amplified by highly clustered wind power farms (Elberg and Hagspiel, 2015).

However, the average weekly solar power is not found to contribute to the weekly price

volatility, which can be explained by the peak-price-decreasing impact of solar power in

Germany.

5. Conclusions

Our analyses suggest that wind and solar power production have statistically and eco-

nomically significant effects on day-ahead price volatility in Denmark and Germany. In the

short run, Danish daily price volatility is lower when there is more wind power production.

By contrast, wind power increases the daily price volatility in Germany. However, our results

are aligned with those of Jónsson et al. (2010), Mauritzen (2010), and Ketterer (2014). In

Denmark, the price-decreasing impact of wind power is distributed evenly during different

times of day, and there is a peak in average wind power production during peak hours. In

Germany, off-peak hours are most sensitive to downward pressure in prices, and wind power

is, on average, highest during these hours. Also, we find evidence that the contrasting impact

of wind power on price volatility is partly due to the fact that Denmark has access to large

hydropower reservoirs in the Nordic countries, whereas Germany’s cross-border transmission

lines are small relative to the size of its power system and it has limited access to flexible

generation capacity. On the other hand, solar power is produced only during peak hours,

which decreases daily volatility by decreasing high peak hour prices in Germany. Because

wind and solar power have opposite effects on daily price volatility, results on their combined

impact are inconclusive.

Our weekly results suggest that the standard deviation of daily average VRE generation

increases the weekly volatility of Danish and German prices. These impacts can be attributed

to the high day-to-day variability of wind and solar power production. Moreover, the higher

the average weekly wind power, the higher the weekly price volatility.

In periods with high price volatility, producers and consumers need to optimise their

generation and demand allocation to maximise their profits and to minimise their costs,

respectively. From the power system point of view, the adoption of more VRE requires

mechanisms to cope with intermittent supply and to decrease balancing costs (Kunz, 2013).

The results for Denmark suggest that access to flexible capacity via adequate transmission

capacity can reduce short-term volatility. In addition, measures such as i) capacity payments
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that incentivise flexible plants (Hach and Spinler, 2016), ii) dispersing wind and solar power

farms (Elberg and Hagspiel, 2015), and iii) integration of adjacent markets (Farahmand

et al., 2012) can be utilised. On the consumer side, enhanced understanding of the causes

of volatility can be used to design tariffs that incentivise demand response (Dupont et al.,

2014), which is likely to mitigate the costs of balancing caused by the intermittency of VRE.

The limitations of our distributed lag models need to be recognised. First, they estimate

a single coefficient to represent the impact of VRE generation on price volatility even if

the impact is more dynamic and dependent on the market situation. We have studied only

the whole dataset, while the impacts may change over time. Second, the high frequency

of trading in electricity markets means that time-series models may not capture processes

driving price formation very accurately, which causes errors in the estimated coefficients for

VRE. Nevertheless, our checks corroborate the robustness of our findings based on standard

time-series methods.

A subject for further research could be to use different modelling techniques. Similar to

Ketterer (2014), the impact of wind power on Danish price volatility could be established

using a GARCH model. On the other hand, German price volatility could be explored as a

function of time and VRE penetration using the non-parametric regression model of Jónsson

et al. (2010). Also, the link between VRE generation levels and supply curve elasticities

can be established more formally using real supply and demand curve data (see Dillig et al.,

2016) or agent-based or complementarity models. Another avenue for future research is to

estimate the impact of VRE generation on price volatility in other renewable-rich locations

such as Spain, Ireland, and California. Moreover, as the absolute value of the VRE forecast

errors is likely to increase when the VRE capacity increases, trading volumes and prices on

various intraday markets are subject to change.
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González-Aparicio, I. and Zucker, A. (2015). Impact of wind power uncertainty forecasting

on the market integration of wind energy in Spain. Applied Energy, 159:334–349.

Green, R. and Vasilakos, N. (2010). Market behaviour with large amounts of intermittent

generation. Energy Policy, 38(7):3211–3220.

Green, R. and Vasilakos, N. (2011). The long-term impact of wind power on electricity

prices and generating power. ESRC Centre for Competition Policy Working Paper Series.

Available at SSRN http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1851311.

Green, R. and Vasilakos, N. (2012). Storing wind for a rainy day: What kind of electricity

does Denmark export? The Energy Journal, 33(3):1–22.

Hach, D. and Spinler, S. (2016). Capacity payment impact on gas-fired generation investments

under rising renewable feed-in - A real options analysis. Energy Economics, 53:270–280.

He, Y., Hildmann, M., and Andersson, G. (2012). Modeling the wind power in-feed in

Germany by data decomposition and time series analysis. In Power and Energy Society

General Meeting, 2012 IEEE, pages 1–8.

Holttinen, H. (2005). Hourly wind power variations in the Nordic countries. Wind Energy,

8(2):173–195.

Huber, M., Dimkova, D., and Hamacher, T. (2014). Integration of wind and solar power in

Europe: Assessment of flexibility requirements. Energy, 69:236–246.

Jaehnert, S., Wolfgang, O., Farahmand, H., Vller, S., and Huertas-Hernando, D. (2013).

Transmission expansion planning in Northern Europe in 2030 - Methodology and analyses.

Energy Policy, pages 125–139.

Jónsson, T., Pinson, P., and Madsen, H. (2010). On the market impact of wind energy

forecasts. The Energy Journal, 32(2):313–320.

Kalantzis, F. G. and Milonas, N. T. (2013). Analyzing the impact of futures trading on spot

price volatility: Evidence from the spot electricity market in France and Germany. Energy

Economics, 36:454–463.

25

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1851311


Ketterer, J. C. (2014). The impact of wind power generation on the electricity price in

Germany. Energy Economics, 44:270–280.

Kunz, F. (2013). Improving congestion management: How to facilitate the integration of

renewable generation in Germany. The Energy Journal, 34(4):55–78.

Mauritzen, J. (2010). What happens when it’s windy in Denmark? An empirical analysis of

wind power on price volatility in the Nordic electricity market. Discussion Papers 2010/18,

Department of Business and Management Science, Norwegian School of Economics.

Mauritzen, J. (2013). Dead battery? Wind power, the spot market, and hydropower inter-

action in the Nordic electricity market. The Energy Journal, 34(1):103–123.

Mauritzen, J. (2015). Now or later? Trading wind power closer to real-time: How poorly

designed subsidies can lead to higher balancing costs. The Energy Journal, 36(4):1–16.

Morales, J., Conejo, A., and Perez-Ruiz, J. (2011). Simulating the impact of wind production

on locational marginal prices. IEEE Transactions on Power Systems, 26(2):820–828.

Mulder, M. and Scholtens, B. (2013). The impact of renewable energy on electricity prices

in the Netherlands. Renewable Energy, 57:94–100.

Nord Pool Spot (2016). Historical market data. http://nordpoolspot.com/

historical-market-data/.

Nord Pool Spot (2014). Hydro reservoir. http://nordpoolspot.com/Market-data1/

Power-system-data/hydro-reservoir1/ALL/Hourly/?view=table.

Paraschiv, F., Erni, D., and Pietsch, R. (2014). The impact of renewable energies on EEX

day-ahead electricity prices. Energy Policy, 73:196–210.

R Core Team (2015). R: A language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Shumway, R. H. and Stoffer, D. S. (2011). Time Series Analysis and Its Applications: With

R Examples. Springer-Verlag New York, 3rd edition.

von Hirschhausen, C. (2014). The German ’Energiewende’ - An introduction. Economics of

Energy & Environmental Policy, 3(2):1–12.

Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look

into the future. International Journal of Forecasting, 30(4):1030–1081.

26

http://nordpoolspot.com/historical-market-data/
http://nordpoolspot.com/historical-market-data/
http://nordpoolspot.com/Market-data1/Power-system-data/hydro-reservoir1/ALL/Hourly/?view=table
http://nordpoolspot.com/Market-data1/Power-system-data/hydro-reservoir1/ALL/Hourly/?view=table


Würzburg, K., Labandeira, X., and Linares, P. (2013). Renewable generation and electricity

prices: Taking stock and new evidence for Germany and Austria. Energy Economics, 40

S1:S159–S171.

Yip, C. M. A., Gunturu, U. B., and Stenchikov, G. L. (2016). Wind resource characterization

in the Arabian Peninsula. Applied Energy, 164:826–836.

Zugno, M., Pinson, P., and Madsen, H. (2013). Impact of wind power generation on European

cross-border power flows. IEEE Transactions on Power Systems, 28:3566–3575.

27



Appendix A ADF Tests

Lag 5 10 15

Variable
Area

DK1 DK2 DE DK1 DK2 DE DK1 DK2 DE

vd 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07

pop1d 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

pop2d 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ppd 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
windd 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

windop1d 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

windop2d 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
windpd 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
wind pend 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

wind penop1d 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

wind penop2d 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
wind penpd 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
solard 0.25 0.56 0.89
solarpd 0.18 0.66 0.92
solar pend 0.25 0.52 0.87
solar penpd 0.18 0.63 0.91
vred 0.01 0.01 0.01
vrepd 0.01 0.01 0.01
vre pend 0.01 0.01 0.01
vre penpd 0.01 0.01 0.01

eximop1
d 0.01 0.01 0.01 0.01 0.01 0.04 0.04 0.03 0.09

eximop2
d 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03

eximp
d 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

gasd 0.19 0.19 0.15 0.40 0.40 0.37 0.35 0.35 0.36
vw 0.01 0.01 0.01 0.04 0.01 0.32 0.03 0.03 0.44
windw 0.02 0.04 0.63 0.03 0.09 0.41 0.01 0.08 0.09
windstdw 0.01 0.01 0.01 0.03 0.03 0.18
wind penw 0.01 0.02 0.49 0.03 0.16 0.43 0.02 0.26 0.19
solarw 0.36 0.04 0.06
solar penw 0.33 0.02 0.04
vrew 0.03 0.42 0.22
vrestdw 0.17 0.58 0.11
vre penw 0.02 0.41 0.25
eximw 0.36 0.18 0.08 0.24 0.12 0.09 0.20 0.09 0.08
gasw 0.48 0.48 0.65 0.09 0.09 0.42 0.08 0.08 0.43

Table 11: Augmented Dickey-Fuller test p-values. All figures have been rounded to two decimal places.
Empty cells indicate that the variable is not used for all areas.
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Lag 5 10 15

Variable
Area

DK1 DK2 DE DK1 DK2 DE DK1 DK2 DE

∆solard 0.01 0.01 0.01
∆solarpd 0.01 0.01 0.01
∆solar pend 0.01 0.01 0.01
∆solar penpd 0.01 0.01 0.01
∆gasd 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
∆windw 0.01 0.04 0.67
∆wind penw 0.01 0.01 0.60
∆solarw 0.17 0.16 0.22
∆solar penw 0.13 0.23 0.19
∆vrestdw 0.01 0.01 0.42
∆eximw 0.01 0.01 0.01 0.01 0.05 0.01
∆gasw 0.01 0.01 0.01 0.01 0.01 0.11 0.01 0.01 0.20

Table 12: Augmented Dickey-Fuller test p-values for differenced time series. All figures have been rounded
to two decimal places. Empty cells indicate that the variable is not used for all areas.
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Appendix B Model Selection

DK1 DK2 DE

Model
Test

AIC L-B AIC L-B AIC L-B

SARMA(1,0)(1,0)[7] 3115.82 3 3403.95 3 684.30 3
SARMA(1,1)(1,0)[7] 3102.47 3 3388.85 3 676.24 6
SARMA(1,0)(1,1)[7] 3022.43 3 3293.06 3 549.72 3
SARMA(1,1)(1,1)[7] 2963.46 3 3245.79 3 513.45 3
SARMA(1,2)(1,1)[7] 2913.48 26 3196.09 7 503.46 30
SARMA(1,2)(2,1)[7] 3181.10 30 491.84 30
SARMA(1,2)(1,2)[7] 2908.93 30
SARMA(2,1)(2,1)[7] 2908.53 30 3180.41 30 490.67 30

Table 13: Statistically significant and AIC-improving iteration steps of the daily model for DK1, DK2, and
DE.

DK1 DK2 DE

Model
Test

AIC L-B AIC L-B AIC L-B

SARMA(1,0)(1,0)[7] -319.22 4 -467.38 3 142.30 7
SARMA(1,1)(1,0)[7] -332.18 3 -476.81 3 138.09 7
SARMA(1,0)(1,1)[7] -541.08 4 -660.86 3 37.90 2
SARMA(1,1)(1,1)[7] -556.92 3 -675.71 3 24.25 30
SARMA(1,2)(1,1)[7] -584.98 4 -738.37 6
SARMA(1,1)(2,1)[7] 20.65 30
SARMA(1,1)(1,2)[7] 19.30 30
SARMA(1,2)(2,1)[7] -586.73 4 -746.59 6
SARMA(2,1)(1,1)[7] -586.38 4
SARMA(1,2)(1,2)[7] -586.94 4 -747.18 6
SARMA(2,1)(2,1)[7] -588.51 4

Table 14: Statistically significant and AIC-improving iteration steps of the intraday model for DK1, DK2,
and DE. The reported figures are for peak hours.

30



DK1 DK2 DE

Model
Test

AIC L-B AIC L-B AIC L-B

AR(1) 441.11 4 502.10 6 172.94 30
MA(1) 447.06 2 504.61 4 173.91 30
SARMA(1,0)(1,0)[4] 432.23 30 498.08 30
SARMA(1,0)(0,1)[4] 431.86 30 497.32 30

Table 15: Statistically significant and AIC-improving iteration steps of the weekly model for DK1, DK2, and
DE.
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Appendix C Alternative Specifications

Variable
Area

DK1 DK2 DE DE

windd -0.0897a -0.0687 0.0329a

(0.0158) (0.0146) (0.0145)
∆solard -0.0360b

(0.0191)
α0 2.4019 2.2073 1.9365 2.2393
α1 0.9494 0.9301 0.9861 0.9864
α7 0.9982 0.9994 0.9996 0.9998
β1 -0.5889 -0.5371 -0.7538 -0.7409
β2 -0.1881 -0.1732 -0.1389 -0.1470
β7 -0.9180 -0.8885 -0.8233 -0.8306
β14 -0.0599a -0.0964 -0.1614 -0.1592
AIC 2879.03 3161.19 489.95 491.03
L-B 30 30 30 30
a significant at 5% level
b significant at 10% level

Table 16: An alternative specification for the daily volatility model. All coefficients are statistically significant
at the 1% level unless otherwise noted.

Area DK1 DK2 DE DK1 DK2 DE DE DE DK1 DK2 DE

Variable
Block

Off-peak 1 Off-peak 1 Off-peak 1 Peak Peak Peak Peak Peak Off-peak 2 Off-peak 2 Off-peak 2

windd -0.1524 -0.0937 -0.2854 -0.1065 -0.0659 -0.1488 -0.0943 -0.0623 -0.1888
(0.0076) (0.0060) (0.0153) (0.0045) (0.0038) (0.0089) (0.0043) (0.0040) (0.0080)

∆solard -0.0508
(0.0139)

vred -0.1710
(0.0132)

α0 4.3733 3.9516 5.7170 4.4112 4.1188 4.9638 3.7154 3.7189 4.2444 3.9636 5.2483
α1 1.1257 0.9235 0.6688 1.1390 0.9137 0.7256 0.6432 0.6139 1.0447 0.9543 0.7929
α2 -0.1862 -0.2116 -0.0882
α7 0.9870 0.9296 0.9272 0.9968 0.9687 0.9380 0.9376 0.9350 0.9260 0.9616 0.9491
α14 -0.0289a -0.0310a 0.0360a

β1 -0.7736 -0.4865 -0.3413 -0.7504 -0.4264 -0.4346 -0.2939 -0.2061 -0.7118 -0.6085 -0.4830
β2 -0.1627 -0.1943 -0.0806
β7 -0.8863 -0.7768 -0.6929 -0.8144 -0.7371 -0.5425 -0.5462 -0.5111 -0.9122 -0.9226 -0.8095
β14 -0.0450a -0.0459a -0.0744 -0.0464a -0.0892 -0.0967 0.0112a 0.0210a

AIC 854.01 635.59 605.94 -1065.55 -1021.47 -217.34 -8.81 -145.37 -1239.92 -828.71 -775.89
L-B 30 30 4 4 6 30 30 30 4 5 8
a not significant

Table 17: Alternative specifications for the intraday model. All coefficients are statistically significant at the
1% level unless otherwise noted.
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Variable
Area

DK1 DK2 DE DE DE

windw 0.2070 0.1010c

(0.0723) (0.0734)
∆windw 0.1370a

(0.0578)
∆solarw -0.1901c

(0.1163)
vrew 0.2013b

(0.1159)
α0 0.2357c 1.1097 1.9681 1.9698 0.1351c

α1 0.5996 0.6309 0.8790 0.8413 0.9035
β1 -0.3404c -0.3295c -0.7690 -0.7099a -0.8048
AIC 435.11 503.62 168.83 171.76 171.99
L-B 11 5 30 30 30
a significant at 5% level
b significant at 10% level
c not significant

Table 18: An alternative specification for the weekly volatility model. All coefficients are statistically signif-
icant at the 1% level unless otherwise noted.
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