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Abstract

Classical and contemporary research in neuroscience postulates that connectivity

is a fundamental component of human brain function. Recently, advances in com-

putational neuroimaging have enabled reconstruction of macroscopic human brain

structural connectivity in vivo using diffusion MRI. Studies show that the structural

network topology may discriminate between neurological phenotypes or relate to

individual brain function.

To investigate disease effectively, it is necessary to determine the network

methodological and biological variability. Reproducibility was calculated for two

state-of-the-art reconstruction pipelines in healthy subjects. High reproducibility

of connection weights was observed, which increased with connection strength. A

high agreement between pipelines was found across network density thresholds. In

addition, a robust core network was identified coinciding with a peak in similarity

across thresholds, and replicated with alternative atlases. This study demonstrates

the utility of applying multiple structural network pipelines to diffusion data in order

to identify the most important connections.

Focal epilepsy is characterised by seizures that can spread to contiguous and

non-contiguous sites. Diffusion MRI and cortico-cortical evoked potentials were

acquired in focal epilepsy patients to reconstruct and correlate their structural and

effective brain networks and examine connectivity of the ictal-onset zone and prop-

agative regions. Automated methods are described to reconstruct comparable large-

scale structural and effective networks. A high overlap and low correlation was ob-

served between network modalities. Low correlation may be due to imperfections

in methodology, such as difficulty tracing U-fibers using tractography. Effective
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6 Abstract

connectivity amplitude, baseline fluctuation, and outward connectivity tended to

be higher at ictal-onset regions, while higher structural connectivity between ictal-

onset regions was observed. Furthermore, a high prevalence of structural and effec-

tive connections to sites of non-contiguous seizure spread was found. These results

support the concept of highly excitable cortex underlying ictal-onset regions which

promotes non-contiguous seizure spread via high outward connectivity.
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Chapter 1

Introduction

Studying human brain anatomy has traditionally only been possible during brain

surgery or in individuals post-mortem- using gross dissection or by viewing slices

under a microscope. Observations on human brain anatomy were therefore limited

in number and could not be performed longitudinally. Neuroimaging methods, such

as Magnetic Resonance Imaging (MRI), allow non-invasive observation of human

brain anatomy in vivo, and have therefore permitted observations in living individ-

uals over time and in large numbers. Neuroimaging and associated computational

post-processing methods have become increasingly sophisticated since their intro-

duction and accordingly, there has been a rise in the popularity of neuroimaging

methods to study brain anatomy and function. In particular, advances in diffusion

MRI tractography, high resolution structural brain imaging, and whole-brain parcel-

lation algorithms have enabled the study of the entire complement of brain regions

and their inter-connections. This research field is known as connectomics. Omics

fields are concerned with the analysis of pools of quantitative biological informa-

tion relating to structural and functional organisation, the first example of which

was genomics.

The broad motivation of this thesis is to learn more about brain connectivity in

health and disease. Large-scale brain connectivity networks provide a rich source

of anatomical information which may used to understand healthy brain anatomy

and its normal deviation, and therefore determine alteration of brain connectivity

in disease states. Disruptions in brain connectivity have been previously implicated
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in a number of neurological disorders, such as epilepsy and Alzheimer’s disease,

and the so-called disconnection syndromes, such as conduction aphasia. Connec-

tomics information may uncover potential biomarkers which may be used to pre-

dict disease onset, diagnose disease, and monitor disease progression. On the other

hand, the compliment of brain connections may be unique to the individual and pro-

vide a connectivity fingerprint, which may correlate to aspects of human behaviour,

physiology and cognition. There is therefore a prospect of developing both per-

sonalised and population-based models of brain connectivity with benefits in the

medical arena and beyond.

The motivations behind this thesis naturally evolved over time. Upon starting

my PhD, connectomics was a new research field- there had only been a handful of

publications in the area in late 2012. Before partaking in any clinical study using

structural brain networks, it is important to assess reproducibility. It is essential to

know whether brain networks are consistent over repeated acquisitions, or whether

the variability due to acquisition and computer processing artefacts outweighs the

natural underlying variation in brain networks between individuals. Having demon-

strated reasonable reproducibility, the next consideration was whether the choice of

contemporary computational methods used to build networks from many competing

alternatives was influential, or whether they actually provide similar connectivity in-

formation. Having established that the reconstruction method is reproducible within

and between subjects and comparable across contemporary reconstruction methods,

the next challenge was to test the value of structural brain networks in a clinical con-

text. One appropriate clinical question was whether structural brain networks could

be combined with effective brain networks in order to improve localisation of the

ictal-onset zone in drug-resistant epilepsy patients undergoing pre-surgical evalua-

tion. This clinical application required development of computational pipelines to

reconstruct large-scale effective networks, which required overcoming a number of

caveats in the raw data.

The aims of this thesis were therefore to firstly assess the intra-subject and

inter-subject reproducibility of whole-brain structural connectivity networks de-
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rived from diffusion-weighted images. The second aim was to assess the similarity

in structural brain networks obtained from completely independent pipelines em-

ploying contemporary methods of equal capability. The third aim was to evaluate

and apply pipelines to reconstruct comparable effective and structural networks in

a cohort of drug-resistant focal epilepsy patients. The final aim was to correlate

and compare effective and structural networks, examine ictal-onset connectivity us-

ing each modality, and to investigate mechanisms of non-contiguous seizure spread

using structural and effective networks.

The thesis structure is as follows. This chapter describes the motivation, aims

and content overview of the thesis. Chapter 2 describes the imaging and electro-

physiological methods used as a basis for network reconstruction. Chapter 3 de-

scribes aspects of microscopic and macroscopic structural brain connectivity use-

ful for interpreting structural and effective brain networks. Chapter 4 investigates

the reproducibility of structural brain networks and the consensus between differ-

ent pipelines. Chapter 5 describes and quantitatively and qualitatively evaluates

the methods used to reconstruct structural and effective networks in frontal lobe

and parietal lobe epilepsy patients. Chapter 6 investigates the structural and effec-

tive network overlap and correlation, ictal-onset connectivity, and mechanisms of

non-contiguous seizure spread. The final chapter summarises the conclusions, their

implications and future prospects of research trends and studies arising from this

thesis.

This thesis finds high reproducibility of contemporary state-of-the-art struc-

tural network reconstruction pipelines and quantifies this reproducibility among

different cortical atlases and across network densities. Convergence between inde-

pendent reconstruction pipelines was found to be very high. Consensus networks,

corresponding to the strongest connections that have maximum overlap between

pipelines, are demonstrated and their reproducibility is quantified. Methods to gen-

erate comparable structural and effective networks in focal epilepsy patients are

described and evaluated in detail. Finally, correlation between structural and ef-

fective networks is quantified and the potential utility for identifying connectivity
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abnormalities of the ictal-onset zone is reported. Results show that while structural

networks are highly reproducible in cortical atlases at the macroscopic scale, ef-

fective connectivity markers may be particularly useful for identifying ictal-onset

zone, while both modalities provide evidence of connections supporting seizure

spread between distant areas.



Chapter 2

Introduction to Imaging and

Electrophysiology

This chapter introduces the principles behind the MRI, Computed Tomography

(CT) and Single Pulse Electrical Stimulation (SPES) modalities used to observe

brain anatomy and function of subject cohorts in this thesis. Firstly, the phe-

nomenon of Nuclear Magnetic Resonance (NMR), Free Induction Decay (FID) and

spin echoes and how these can be used to generate images is described. Secondly,

the process of Brownian motion and diffusion-weighted imaging and how this can

be used to examine brain connectivity is explained. Next, the physical basis of X-

rays and CT are briefly described. Finally, the biophysical principles underlying

SPES and local field potentials are explained.

2.1 Magnetic Resonance Imaging
MRI uses strong magnetic fields to polarise nuclei within a specimen and radiofre-

quency (RF) coils to excite the nuclei and record their relaxation properties [194].

The relaxation properties depend on the local molecular environment, enabling ex-

ploration of contrast between different tissues within the specimen.

2.1.1 Nuclear Magnetic Resonance

All elementary particles possess the quantum mechanical property known as spin.

Nuclei with a non-zero (integer or half integer) integral spin (those with an odd

number of protons, neutrons, or both), are candidates for NMR, as they possess a
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net magnetic moment and are therefore able to possess two stable energy states in

the presence of a static magnetic field. Hydrogen has a spin of 1/2 and has a high

signal in the MRI scanner due to its high abundance in living organisms- it is the

main component of water and tissue; and is the most commonly imaged nuclei in

MRI.

The rotating charge caused by spin means that nuclei act as dipoles or bar

magnets. In the absence of a magnetic field, all the nuclei spins point in random

directions, resulting in no net magnetisation.

When placed in a static magnetic field, the spin axis aligns to the magnetic

field, and the interaction of the magnetic field with the nuclei spin causes them

to experience a torque, which causes them to precess around their spin axis at a

fixed frequency ω , termed the Larmour frequency. The Larmour frequency ω =

γB0, where B0 is the strength of a static magnetic field (in Tesla, T) and γ is the

gyromagnetic ratio. The static magnetic field is part of the MRI scanner, while the

gyromagnetic ratio is a constant property of nuclei and quantifies the ratio of the

magnetic dipole moment to the angular momentum. Higher magnetic fields result

in a higher precessional frequency.

In a static magnetic field, nuclei may adopt one of two energy states- spin-

up or spin-down, becoming aligned either in a parallel (with the magnetic field) or

anti-parallel (against the magnetic field) orientation, respectively, in relation to the

direction of the magnetic field. It takes slightly less energy to align in a parallel

rather than anti-parallel orientation. The difference in energy between the spin-up

and spin-down states is ∆E = h̄γB0 = h̄ω , where h̄ is the reduced Planck’s constant.

The energy difference therefore depends on the strength of the magnetic field.

Due to this energy difference there are slightly more nuclei aligned in the lower

energy spin-up orientation. The relative proportion of spins that are in spin-up (N−)

compared to spin-down (N+) state is given by

N+

N−
= e−

∆E
kT

where k is the Boltzmann’s constant, T is temperature and ∆E is the difference in
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energy between the spin-up and spin-down states. This ratio of spin-up to spin-

down nuclei is directly proportional to the MRI signal. Since the energy difference

linearly depends on the magnetic field strength, stronger MRI magnets produce a

higher signal. Likewise, lower temperatures also result in a higher signal, although

it is not feasible to control the temperature of a living specimen. Hydrogen (1H) has

the highest gyromagnetic ratio of all nuclei and therefore gives the highest signal per

unit mass. It is also very highly abundant in the human body, particularly in water

and fat. For a magnetic field of 1.5 T at room temperature, the relative proportion

of spin-up compared to spin-down protons is approximately 1 in 100,000. Thus, the

NMR signal is based on a small proportion of nuclei.

2.1.2 Free Induction Decay

In the presence of a magnetic field, the small difference in the number of protons

in the spin-up compared to spin-down state results in a net magnetisation, which

has longitudinal and transverse components. The longitudinal component is the

net magnetisation in the direction of the main magnetic field of the scanner (z-

direction), while the transverse magnetisation is the magnetisation in the perpen-

dicular direction to the main magnetic field (xy-plane). A net longitudinal magneti-

sation is created, while the net transverse magnetisation is zero as the spins phases

are randomly distributed.

RF coils surrounding the MRI machine can impart energy to the precessing

nuclei by emitting radiowaves in a direction orthogonal to the applied magnetic

field. In order for energy to be transmitted, the radiowaves must be emitted at the

Larmour frequency- the resonant frequency of the nuclei of interest. Emission of

such radiowaves excites the spins and is referred to as an excitation pulse. Absorp-

tion of RF wave energy has two effects on the spins. The number of spin-down

nuclei increases since sufficient energy is imparted to some nuclei to switch them

from spin-up to spin-down state. Decreasing the number of spin-up protons de-

creases the net longitudinal magnetisation as there is now a smaller ratio of spin-up

compared to spin-down nuclei. Secondly, the phases of precessing nuclei become

synchronised. This phase coherence means the magnetic vectors of the spins are
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aligned, creating a net transverse magnetisation in the xy-plane that rotates at the

Larmour frequency.

After an RF excitation pulse, net longitudinal magnetisation has been reduced

and transverse magnetisation created. Following this, the spin states of the protons

are free to return to their equilibrium state in the presence of the static magnetic

field (Fig. 2.1). Therefore, the number of spin-down protons, as well the phase

coherence, slowly diminishes. This causes the net longitudinal magnetisation to

grow back towards its equilibrium value and the net transverse magnetisation to

decrease towards zero. This process of relaxation is termed FID and occurs due to

two processes: spin-lattice relaxation and spin-spin relaxation. These two processes

are explained below.

In a molecular lattice such as biological tissue, dipoles nearby to one another

continuously interact, resulting in exchange and loss of energy from the spins to the

lattice, hence the term spin-lattice relaxation. Dipoles that had gained energy and

flipped to a spin-down state may lose sufficient energy to return to spin-up orienta-

tion. Over time, the net longitudinal magnetisation recovers to its equilibrium value

due to energy being given up to the lattice. The longitudinal magnetisation recovers

exponentially with a time constant T1. T1 refers to the length of time for 63% (or

1− 1
e ) of the longitudinal magnetisation signal to recover. The time constant T1

depends on the local environment of the dipoles and is therefore tissue dependent.

The T1 of tissues varies in the range of hundreds of milliseconds to a few

seconds. Large, slow moving molecules in the lattice are most effective at remov-

ing energy from the spins. For this reason, fat has a relatively short T1. Small,

lightweight faster moving molecules are least effective at removing energy from the

spins and so regions with a greater proportion of free water, such as cerebrospinal

fluid (CSF), have a long T1. Atoms in rigid structures or macromolecules are least

effective at removing energy and therefore compact bone, teeth and metallic objects

have a very long T1.

The precession of spins is in phase following injection of an RF pulse. Fol-

lowing this, the precessions gradually dephase as some precess more slowly than
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others, and energy is imparted and exchanged, resulting in further desynchronisa-

tion. This occurs as neighbouring dipoles exert additional small magnetic fields

on one another, which alter each other’s spin, hence the term spin-spin relaxation.

There is also the effect of nearby magnetic molecules which add or subtract from

the primary magnetic field, causing local variation in the magnetic field and further

dephasing away from the Larmour frequency of the main magnetic field. The length

of time for the signal to decrease to 37% (or 1
e ) of its original value is termed T2,

and depends on the tissue composition.

The T2 relaxation time is shorter than T1 and is usually in the order of hundreds

of milliseconds. In liquids molecules are rapidly moving so that the magnetic field

experienced by individual spins is cancelled out on the time scale of the MRI scan,

leading to long T2 values for liquids. In solids, there is less movement of molecules

and therefore less averaging of magnetic fields experienced by individual spins (i.e.

a greater degree of magnetic field inhomogeneity), leading to shorter T2 values.

Water bound to macromolecules (e.g. proteins), which move slowly, has a shorter

T2 than free water. T2* recovery time refers to the recovery time observed in an

imperfect magnetic field which contains field inhomogeneities which artificially

shorten the true T2 of the tissue.

In 1946 Felix Bloch carried out a famous study on nuclear induction using a

continuous wave NMR experiment [29]. The experiment kept the RF field constant

while varying the magnetic field. The transient NMR signal observed was theorised

to represent the summation of magnetisation vectors in the sample, and the decay

caused by interactions between the individual spins. Bloch equations were subse-

quently formulated to describe the behaviour of macroscopic magnetisation. The

Bloch equations describe the growth of the longitudinal magnetisation and decay

of transverse magnetisation in relation to the T1 and T2 of the tissues, the strength

of the applied magnetic field and the Larmour frequency of the nuclei. Derivations

of the Bloch equations for a 90° RF pulse show that recovery of net longitudinal

magnetisation over time is given by Mz(t) = M(1− e−
t

T1 ), whereas the decay of

transverse magnetisation is given by Mxy(t) = Me−
t

T2 , where M is the magnetisa-
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tion immediately following the RF pulse.

Figure 2.1: FID of the net magnetisation vector following a 90° excitation pulse. The
net magnetisation vector rotates in the xy-plane at the Larmour frequency. The transverse
component (xy-plane) diminishes due to T2 relaxation whereas the longitudinal component
(z-axis) recovers due to T1 relaxation.

Following initial excitation, inhomogeneity in the main magnetic field, as well

as the presence of additional magnetic field gradients (for spatial encoding, for ex-

ample) causes differences in the frequency of individual nuclei precessions away

from the expected Larmour frequency of the main magnetic field, causing rapid

decay of the MRI signal. Therefore, instead of measuring the FID directly, a sig-

nal echo may be produced and measured using a gradient-echo or spin-echo pulse

sequence.

2.1.3 Signal Echoes

Two concurrent gradients of opposite polarity can be applied following the RF exci-

tation pulse in order to produce a signal echo, termed gradient echo. At the gradient

echo time (TE), the spins precessing at higher frequency during the application of

the first gradient will experience a lower frequency after application of the second

opposite polarity gradient (and vice versa) and therefore all spins will be perfectly

in phase at the end of the second gradient, creating a gradient echo. However, due

to magnet inhomogeneities the strength of the signal decayed by the T2* process.
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Another method to produce an echo is to apply a 180° RF pulse at some time

following the initial 90° pulse (Fig. 2.2). In a spin-echo sequence, a 180° RF pulse

is emitted at time TE/2, which causes all precessions to flip 180° in the zy-plane.

This flip adds a phase to each spin which reverses the order of the spin vectors such

that the higher frequency spins are now ‘catching up’ (i.e. rephasing) with the lower

frequency spins. Dephasing that occured due to magnetic field inhomogeneity up

until time TE/2 is exactly reversed at time TE since the rephasing has been applied

for the same period of time. At this timepoint, all precessions are in phase and

a signal echo is formed. In contrast to a gradient echo, the spin-echo cancels the

effects of T2* relaxation and produces a stronger signal. The amplitude of the echo

signal in a spin-echo sequence is determined by T2 relaxation.

2.1.4 Spatial Encoding

In addition to the main magnetic field of the MRI scanner bore, additional smaller

magnetic field gradients are added across the imaged specimen in order to encode

spatial location. The magnetic field gradient causes spins to rotate at different fre-

quencies depending on their spatial location along the magnetic gradient. Three

orthogonal gradient components are required for spatial encoding: slice selection,

frequency encoding and phase encoding. Slice selection gradients are applied dur-

ing an RF pulse, while frequency and phase encoding gradients are applied follow-

ing an RF pulse.

To select the imaging slice, a z-field gradient is applied in conjunction with the

RF pulse. Because the RF pulse has a limited range of frequency components, only

the nuclei that are resonating within the bandwidth of the RF pulse (those within a

certain range along z), corresponding to a slice in the z-direction, are excited. All

other spins remain aligned with B0. The RF pulse is modulated in amplitude as a

function of time to form a sinc shape in order to achieve the desired bandwidth. The

slice selection gradient requires a following refocussing gradient of equal negative

amplitude but half the duration. This offsets any phase differences to the Larmour

frequency acquired during the initial slice select gradient and ensures that all the

precession signals are in-phase across the selected slice.
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The signal echoes obtained by exciting the slice are encoded by frequency and

phase (described below) and sampled on a grid of locations in k-space. K-space is a

domain representing the signal acquired for different frequency and phase-encoding

acquisitions. Each phase encoding step corresponds to a different row (phase) of the

k-space matrix, while each column corresponds to frequency. Each point in k-space

consists of the MR signal from all points in the image slice under the corresponding

gradient fields. Therefore, each element of k-space encodes the properties (ampli-

tude, frequency, phase) of a sine wave function which acts across the entire image.

This is because the sampled echo represents the signal from the entire excited slice.

The image is reconstructed by taking the 2D Fourier transform of the k-space matrix

[39].

To encode spatial location within the slice, a preparatory frequency encoding

gradient is applied immediately following the initial RF excitation pulse but before

the signal echo is formed. The nuclei also experience a single phase encoding gra-

dient coincident with the preparatory frequency encoding gradient. When the signal

echo is sampled, a further frequency encoding gradient (also called a readout gra-

dient) of opposite polarity is applied. The integral of the gradient acquired by each

spin is therefore changing throughout the acquisition of the signal echo. The inte-

gral of the frequency encoding gradient experienced by the signal at a point in time

along the echo gives the point in k-space (x-axis for frequency encoding and y-axis

for phase encoding) that the signal refers to. Therefore, the time-sampled echo cor-

responds to a line in k-space, as the phase encoding gradient has remained constant

but the frequency encoding gradient is changing from negative, through zero (the

centre of k-space), to positive. This process can be repeated for each row of k-space

if the corresponding phase-encoding gradients are increased for each repetition.

Fig. 2.2 shows an example of one repetition of a standard spin-echo sequence

with spatial encoding gradients. Initially, a slice select gradient is applied along

the z-direction simultaneously with a 90° RF excitation pulse. The slice selection

gradient is immediately followed by a short refocussing gradient. Frequency and

phase encoding gradients are then applied in the x and y direction, respectively, to
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label the precessions with their spatial location. Next, a 180° RF pulse is applied

in conjunction with a slice select gradient in order to flip the excited precessions

(and hence reverse any dephasing effects caused by T2*). Note that the refocussing

pulse accompanying this second slice select gradient is the same polarity because

the directions of spin precessions has been reversed. At time TE, a readout gradient

(frequency encoding) is applied during sampling of the spin-echo. The readout gra-

dient applies an increasing positive gradient to the precessions, such that the integral

of the magnetic field experienced by the precessions increases from negative to pos-

itive by the end of the echo. The phase encoding gradient however has been applied

previously and the phase offset remains constant throughout the echo, meaning that

the echo signal corresponds to one phase (i.e. one row in k-space).

At each repetition of the sequence, the slice selection process and generation

of spin-echoes is repeated with different phase encoding gradients. When k-space

has been completely sampled, a 2D Fourier transform can be performed to map the

frequency domain signal acquired from the MRI scanner into the spatial domain of

the specimen for each slice. Slices are then stacked to produce a three-dimensional

volume.
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Figure 2.2: Spin-echo pulse sequence with slice selection and spatial encoding gradients.
Gx, Gy and Gz refer to gradients in the x, y and z direction, respectively. RF refers to the
radiofrequency pulse. Phase encoding gradients are incrementally decreased in each repe-
tition, as indicated by the horizontal lines, until the full range of phase-encoding gradients
have been applied.

2.2 Diffusion Magnetic Resonance Imaging
Diffusion MRI allows the in vivo, non-invasive mapping of the diffusion of water

molecules. The first diffusion map of the human brain was made in 1986 [196]. In

brief, magnetic field gradients are applied to label the spins of diffusing molecules

and a projection of their displacement is measured by the MRI scanner. The diffu-

sion along different displacement directions contains useful information about the

underlying cellular structure and geometry, which relates to tissue properties such

as osmotic homeostasis and nerve fiber orientations [195]. Such information can be

used to infer connectivity and microstructural properties of the brain which further

our understanding of brain anatomy and function.

2.2.1 Brownian Motion

Molecules in fluids undergo random thermal motion, also known as Brownian mo-

tion. The process is driven by thermal energy and at the macroscopic scale leads to

displacement of diffusing molecules, as characterised by the diffusion coefficient,

D. Diffusion can be described by the mean-squared distance travelled by molecules
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in a given time interval, as given by Einstein’s equation 〈X〉2 = 6Dt [110], where

〈X〉2 is the mean-squared diffusion distance in three dimensions, D is the diffusion

coefficient of the molecule and t is the diffusion time.

The diffusion coefficient can be measured directly by measuring the concen-

tration of diffusing molecules over time and applying Fick’s first Law [173]. Fick’s

first law states that the flux is proportional to the concentration gradient, where the

coefficient of proportionality is the diffusion coefficient. The diffusion distance of

free water (D = 2 x 10−3 mm2/s) over the course of a typical MRI experiment (t =

100 ms) is ∼35 µm, which is the same order of magnitude as the size of cellular

compartments (∼100 µm). Probing the diffusion of water in biological material us-

ing MRI therefore gives valuable insight into the cellular compartmental structure

at that location. Because the presence of cellular compartments causes the diffu-

sion to be reduced compared to free water, diffusion-weighted imaging measures

the Apparent diffusion coefficient (ADC) instead of the diffusion coefficient itself.

2.2.2 Diffusion-Weighted Images

In order to produce diffusion-weighted images, magnetic field gradient pulses can

be added to a spin-echo pulse sequence. Diffusion of magnetically labelled spins

in between applications of opposite polarity magnetic field gradients attenuates the

MRI signal in proportion to the exponent of the amount of diffusion occurring in

parallel to the gradient orientation.

This is because in the presence of diffusion-sensitising gradients, the angular

frequency of spins depends on their position along the direction of the applied gra-

dient. In a spin-echo sequence the diffusion-sensitising gradients are applied for

two equal periods of time either side of the 180° refocussing pulse. For a station-

ary spin, the phase acquired by the spins due to the diffusion-sensitising gradient

is equal and opposite on either side of the 180° refocussing pulse, resulting in a

spin-echo reflecting the T2 of the tissue. In the presence of diffusion in parallel

with the direction of the diffusion-sensitising gradients, the phase acquired during

the first period is not cancelled out by the second, and therefore the diffusing spins

have acquired a certain phase difference compared to stationary spins. This causes
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attenuation of the spin-echo signal. Greater diffusion causes more dephasing and

further attenuation of the signal.

The signal attenuation for diffusion-weighted imaging can be described by

S = S0e−bD, where S is the observed MRI signal in the presence of diffusion-

sensitising gradients, S0 is the signal obtained with no diffusion-weighting gradi-

ents, b is the b-factor and D is the diffusion coefficient. The b-factor is a summary

metric describing the total amount of diffusion weighting in a diffusion-sensitising

pulse sequence. The b-factor is calculated as:

b = γ
2Gdiffδ

2(∆− δ

3
)

where Gdiff is a vector representing the diffusion-weighting gradients orienta-

tion and magnitude, δ is the period of time each gradient polarity is applied for,

and ∆ is the time between leading edges of diffusion gradients of opposite polarity.

Increasing the b-factor (by increasing diffusion-sensitising gradient Gdi f f , δ , or ∆)

increases the amount of diffusion-weighting. The b-factor was initially developed

to overcome the difficulties in calculating the signal attenuation in the presence of

cross-terms between the imaging and diffusion gradient pulses.

The diffusion coefficient can be calculated given an observed MRI signal in

the presence and absence of diffusion-sensitising gradients. In a diffusion MRI

pulse sequence, one non-diffusion-weighted image is normally acquired and fur-

ther diffusion-weighted images are acquired with diffusion-sensitising gradients in

multiple three-dimensional orientations in order to determine the three-dimensional

diffusion characteristics of each voxel [79].

The majority of diffusion-sensitising pulse sequences are based on the work of

Stejskal and Tanner, who introduced the pulsed field gradient (PFG) method [292]

(Fig. 2.3).

Large gradients are needed to produce detectable diffusion-weighting in the

image and therefore gradients of a significant time duration compared to the rep-

etition time are used in the PFG sequence. The highest diffusion-sensitivity in a

pulsed field gradient echo is obtained by placing gradient pulses simultaneously on
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Figure 2.3: PFG spin-echo pulse sequence diagram. Diffusion-sensitising gradients are
applied either side of the 180° RF pulse. The length of time the gradient is applied in each
case is δ and the time between leading edges of the gradients is ∆. In the presence of
diffusion the spin-echo signal observed at time TE is attenuated.

the three axes (thus creating a three-dimensional diffusion-encoding gradient) and

giving as much time as possible to the diffusion-sensitising gradients within the spin

echo sequence [79].

Diffusion-weighted imaging is particularly susceptible to motion since diffu-

sion occurs on the scale of µm. Therefore, although diffusion-sensitising gradi-

ents can be added to a standard spin-echo echo-planar imaging (EPI) sequence

[217, 315], in practice, a single-shot spin-echo EPI is used to avoid motion arte-

facts while collecting a large number of images with different diffusion gradient

directions within an acceptable scan time (Fig. 2.4). Echo-planar imaging uses a

train of inverted frequency-encoding gradients and blipped phase-encoding gradi-

ents following the 180° pulse to acquire the image in a single shot. The use of

echo-planar imaging makes it feasible to use diffusion MRI in a clinical setting as

it is fast and less susceptible to motion artefacts than PFG spin-echo.

2.2.3 Diffusion in Biological Tissue

The diffusion coefficient is useful for describing diffusion in an isotropic medium,

where water is unrestricted and diffuses equally in all directions. In some materials,

such as muscle and brain white matter, diffusion occurs to a greater extent in one

orientation than others, which is termed diffusion anisotropy [76, 81, 70, 315]. In
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Figure 2.4: PFG spin-echo pulse sequence with EPI spatial encoding gradients. Diffusion-
sensitising gradients (yellow) are applied along a particular direction. Frequency encoding
gradients are applied in a train of alternate polarity gradients in order to fill k-space in a
single shot. A negative phase-encoding gradient is initially applied followed by positive
blips at each frequency encoding gradient polarity crossover. The process is repeated for
each slice and for each diffusion gradient direction.

a diffusion-weighted image diffusion anisotropy manifests with the observation of

greater diffusion in some gradient orientations than others. In this case, the diffusion

profile may be better characterised using a diffusion tensor [173, 197]. The diffusion

tensor describes the relative diffusion along the x, y and z axes of the tissue.

D =


DxxDxyDxz

DyxDyyDyz

DzxDzyDzz

 (2.1)

The diffusion tensor describes the covariance of the diffusion between the x,

y and z directions per unit time. The diagonal elements Dxx, Dyy and Dzz are the

variances along the x, y and z direction of the MRI co-ordinate axis while the off-

diagonal terms are the covariances of the diffusion along the axes.

The diffusion tensor may be used to obtain summary metrics about the amount

of diffusion and the degree of anisotropy (Fig. 2.5). The diffusion tensor may

be represented by its principal eigenvalues (λ1, λ2, λ3) and eigenvectors (ε1, ε2,

ε3), describing the magnitudes and directions of greatest diffusion, respectively.

The amount of diffusion (as an average along the three axes) is described by the
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mean diffusivity and is the mean of the eigenvalues of the diffusion tensor: MD =

(λ1+λ2+λ3)/3. The fractional anisotropy (FA) describes the degree of anisotropy

(the ratio of the magnitudes of the anisotropic and isotropic parts of the diffusion

tensor) of the diffusion and is calculated from the eigenvalues of the tensor:

FA =

√
3
2

∑i=1,2,3(λi− λ̄ )2

∑i=1,2,3 λ 2
i

where λ̄ is the mean eigenvalue.

The signal attenuation in the presence of anisotropic diffusion then becomes

S = S0e−bD, where b is the b-matrix and D is the diffusion tensor. The b-matrix

is the same size as the diffusion tensor and quantifies the amount of diffusion-

weighting while taking into account cross-terms created by interactions between

different gradient components [226]. To measure the full diffusion tensor a mini-

mum of six noncollinear diffusion encoding directions are required.

Figure 2.5: Diffusion tensor appearance in isotropic (left) and anisotropic (right) tissue. In
isotropic tissue diffusion is equal in all directions and the diffusion tensor appears perfectly
spherical, with each eigenvector having equal eigenvalues. In anisotropic tissue there is
greater diffusion in one or more directions, leading to a cylindrically shaped diffusion tensor
with eigenvectors having different eigenvalues. The eigenvector with the greatest eigenvalue
is the dominant diffusion direction and presumed fiber orientation in the case of simple fiber
geometry.
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2.2.4 Artefacts in Diffusion-Weighted Spin-Echo EPI

Although single-shot EPI is the most common acquisition method for DWI, there

are some artefacts induced as a result of the acquisition procedure, including eddy-

current distortions and susceptibility artefacts.

Diffusion-weighted images obtained using EPI are susceptible to eddy-current

distortions due to rapid gradient switching. Rapid switching induces currents in

the conductive components of the MRI machine, such as the cryostat and RF coils,

which leads to contribution of erroneous magnetic field gradients to the MRI sig-

nal. Eddy-current distortions lead to deformations in the diffusion-weighted im-

age, which impairs comparison between the diffusion-weighted image and another

undistorted image. Reducing the amount of diffusion weighting reduces the effect

of eddy-current distortions, but decreases the contrast of interest. One option is to

use smoother gradient changes (e.g. a sinusoidal gradient pulse). However, such

oscillating gradients result in poorer diffusion sensitivity. Another solution is to

use an actively shielded gradient coil, which has no fringe fields and so does not

generate eddy-currents.

Susceptibility artefacts occur in diffusion-weighted images due to local

changes in the magnetic field at tissue boundaries. This causes slight differences in

the resonant frequency of nuclei, which leads to spatial distortions as the positions

of the signal are mapped onto the image by frequency. These artefacts appear as

non-rigid spatial distortions, occurring primarily near tissue boundaries, such as

those near the brainstem and frontal lobes. The artefact particularly affects the air-

tissue interface around sinuses as the air has a very different magnetic susceptibility

to tissue. These artefacts are a particular problem for EPI acquisitions because of

the low band-width in the phase-encoding direction.

2.2.5 Tractography

In brain white matter, neurons are grouped into fiber bundles. In these fiber bundles

there is greater diffusion in parallel to the axonal orientations within the bundle and

restricted diffusion in the perpendicular direction, giving rise to anisotropic diffu-

sion. Anisotropy in diffusion tensors across the brain is commonly displayed as an
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FA map, which shows the greyscale FA value in each voxel of the brain, highlight-

ing the areas traversed by fiber paths (Fig. 2.6). Directional information may also

be viewed as a colour-coded FA map, where the colour denotes the predominant

orientation of diffusion in the x (red), y (green) and z (blue) directions. These RGB

maps allow visual identification and discrimination of major white matter tracts and

their connectivity (Fig. 2.6).

Figure 2.6: FA map (left) and colour-coded FA map (right). The FA map shows the de-
gree of anisotropy in the diffusion tensor, ranging from 0 to 1, as a greyscale image. The
colour-coded FA map shows the orientation of the dominant eigenvector of the diffusion
tensor as either red (left-right), green (anterior-posterior) and blue (superior-inferior) and
the brightness by the FA value.

White matter anisotropic diffusion may be exploited to reconstruct the spatial

trajectories of nerve fibers in the brain, a process termed diffusion tractography.

Many tractography algorithms exist which may use local or global information.

In local tractography, spatial trajectories (streamlines) are reconstructed by

choosing a seeding location, and iteratively propagating the streamline along the

fiber orientations. Streamlines continue to propagate until stopping criteria are

reached which infers there is no further connection. Stopping criteria may include

low FA (indicating absence of nerve fibers) or high curvature (indicating an unre-

alistic fiber path). A simple example of a local tractography algorithm applied to

fiber orientations is shown in Fig. 2.7. The streamline is seeded at the base of the

grid and follows the dominant fiber direction at each step. Local tractography al-

gorithms may propagate deterministically, where the peak of the fiber orientation is
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followed at each iteration [239], or probabilistically, where the direction followed is

sampled from a distribution of the fiber orientation [22]. Probabilistic tractography

algorithms generate many streamlines in order to obtain an estimate of connection

probability between brain areas [252].

Global tractography algorithms firstly estimate a measure of connectivity on a

fine scale (e.g. voxel to voxel) and then reconstructs the most plausible streamlines-

those that best explain the underlying diffusion data, while discarding streamlines

that are inconsistent with the data. This helps to overcome difficulties in local trac-

tography algorithms which can prematurely terminate streamlines that encounter

small amounts of noise along a true fiber path.

Figure 2.7: Streamline tractography. The dominant orientation in each voxel is given by
the orientation of the line segment. Connectivity between voxels may be inferred by seed-
ing a streamline and following the dominant fiber orientation in successive steps. In this
two-dimensional schematic representation, the blue line, representing the streamline, has
inferred a connection between the voxels it has traversed.

2.2.6 Advanced Diffusion-Weighted Imaging Acquisitions

Due to partial volume effects within a diffusion-weighed MRI voxel, the fiber struc-

ture may not always be adequately described by a simple diffusion tensor. Single

fibers may disperse and bend, while multiple fibers may converge, cross and kiss,

leading to diffusion profiles with multiple lobes, each having their own unique dis-
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persion and bending properties. The use of a diffusion tensor in such cases leads

to erroneous estimation of the fiber orientations and their anisotropy properties.

During tractography, such errors contribute to false positive and false negative con-

nections. For example, in a voxel containing crossing fibers, the diffusion tensor

appears isotropic in the crossing plane, leading to both low FA and higher uncer-

tainty in the maximum eigenvector, which may lead to premature termination or

erroneous propagation of the streamline.

To address errors caused by complex fiber configurations, significant research

effort has been made to improve the spatial and angular resolution of diffusion-

weighted images. Advanced acquisition techniques such as High Angular Reso-

lution Diffusion Imaging (HARDI), Diffusion Spectrum Imaging (DSI) and q-ball

imaging provide more direct ways of estimating the diffusion profile than standard

spin-echo EPI sequence.

The HARDI method is an umbrella term for acquiring diffusion-weighted im-

ages with a high number of diffusion gradient orientations, in recognition that com-

plex fiber arrangements may otherwise be under-represented. Increasing the number

of directions allows for better fitting of complex fiber models. HARDI is frequently

accompanied by higher b-values in order to achieve a greater diffusion weighting

concurrently with higher angular resolution [128].

Both DSI and q-ball imaging are HARDI techniques which are based on the

concept of q-space [14]. The q refers to the gradient wave vector (a vector in

three-dimensional space specified by the diffusion gradients) in the case where δ

is infinitely small. The q-space imaging sequence uses the basic Stejskal and Tan-

ner PFG spin-echo sequence with very short δ (narrow pulse approximation) and

δ << ∆. With the narrow gradient pulse, the dephasing becomes proportional to the

scalar product between the relative spin displacement and the gradient wave vector.

q-space is analogous to k-space and is a two-dimensional domain of frequency space

indexed by the applied diffusion gradients (as opposed to the frequency encoding

gradients in k-space).

DSI, also known as q-space imaging, acquires many samples of q-space in
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order to estimate the diffusion Probability Density Function (PDF) [337]. The PDF

represents the density of diffusion vectors along displacement vectors. A Cartesian

sampling of q-space may be transformed to the diffusion PDF by Fourier transform.

This is a direct estimate of the diffusion profile in comparison to standard diffusion-

weighted spin-echo EPI which models the diffusion process using a small number

of parameters. The Orientation Distribution Function (ODF) can be estimated by

projecting the PDF onto a spherical surface. Fiber orientations can then be inferred

by finding local peaks of the ODF. The DSI technique suffers from some practical

weaknesses. A high number of diffusion-weighted images are required in order

to produce a complete Cartesian sampling of q-space. The technique is therefore

time-intensive and not practical for clinical use. Further, DSI requires large PFG’s

to satisfy the Nyquist condition for diffusion in nerve tissue [313]. In addition, there

are difficulties in accurately estimating the ODF from a Cartesian sampling due to

non-uniform sampling of the spherical surface. Furthermore, Cartesian sampling

of q-space is not an efficient way to sample the ODF as some of the data may be

redundant.

To address the sampling burden of DSI, an alternative approach has been pro-

posed termed q-ball imaging, which is based on sampling a spherical shell (or com-

bination of shells) in diffusion wavevector space [313]. It is more efficient to mea-

sure the diffusion ODF by directly sampling the diffusion signal on a spherical shell

as it requires a lower number of samples. Reconstructing the ODF directly using

spherical sampling and reconstruction has a number of advantages. First, both the

sampling and the reconstruction are both performed on the sphere so the reconstruc-

tion is immune to Cartesian reconstruction bias. With a spherical sampling scheme,

there is also a natural framework for calculating the angular resolution, whereas it is

not clear how to define the angular resolution for a Cartesian scheme. Last, the ac-

quisition can be targeted to specific spatial frequency bands of interest by specifying

the radius of the sampling shell.
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2.2.7 Complex Fiber Models

Another way to account for complex fiber configurations is to apply a more robust

representation of the fiber orientations to standard diffusion-weighted acquisitions.

Multi-compartment fiber orientation models have been developed which can repre-

sent multiple fiber populations with different orientations, in addition to the extra-

cellular and intra-cellular spaces [250]. These models assume that the diffusion-

weighted signal is a sum of exponential functions arising from different compart-

ments within a voxel. For example, the ‘ball-and-sticks’ multi-compartment model

fits a ball (a sphere representing the extra-cellular isotropic diffusion) and variable

number of sticks (infinitely thin cylinders representing varying number of fiber

orientations) to the diffusion-weighted signal [22, 23]. Some multi-compartment

models have been developed which utilise additional information about the diffu-

sion profile obtained by acquiring diffusion images with different b-values, known

as multi-shell acquisitions. For example, the Neurite Orientation and Dispersion

Distribution Imaging (NODDI) technique acquires multiple shells in order fit an

estimate of the dispersion of fibers within a voxel [363]. Recently, a model-free

approach to estimating multiple fiber orientations has been developed termed Con-

strained Spherical Deconvolution (CSD) [310]. This method assumes that the ob-

served diffusion attenuations are a convolution of the fiber orientations and the sig-

nal response function (the signal response to fiber orientation). By assuming a cer-

tain signal response function the fiber orientations may be obtained by deconvolving

the observed diffusion signal with the signal response function. The technique per-

forms well in crossing fiber regions and can estimate up to eight orientations using

spin-echo diffusion-weighted images with sixty directions or more.
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2.3 Computed Tomography
Computed Tomography (CT) uses x-rays to reconstruct three-dimensional images

of a specimen. A series of transaxial slices are acquired by rotating the x-ray ma-

chine around the patient and applying complex reconstruction algorithms to recon-

struct the two-dimensional slices from one-dimensional projections [4]. CT images

display the linear attenuation coefficient of tissue and have good soft tissue con-

trast, being previously used for medical imaging diagnosis in a range of disorders

in the brain (e.g. stroke, haemorrhage, tumours) and body (e.g. emphysema, pul-

monary embolism). CT is also routinely used for locating intracranial electrodes in

drug-resistant epilepsy patients undergoing presurgical evaluation. The following

paragraphs will give a brief summary of how x-rays are produced, how they interact

with tissue, the components of the CT machine, image acquisition and reconstruc-

tion technique, and common artefacts. The source for this section is Allisy-Roberts

and Williams [4].

2.3.1 X-Ray Production

X-rays are produced inside an x-ray tube by stopping fast moving electrons on a

metal target. The x-ray tube is a vacuum containing a positively charged electrode

(anode), negatively charged electrode (cathode), filament, and target. To produce

fast moving electrons, the metal filament is heated to a very high temperature so that

electrons escape from its surface through thermionic emission. As they escape into

the vacuum the electrons are repelled from the cathode towards the anode. They

travel at very high speeds (∼half the speed of light) before crashing into a metal

target material of high atomic number, such as Tungsten, with an energy equal to

that of the voltage difference between the anode and cathode.

In the target material two types of interaction occur which give rise to char-

acteristic and continuous components of the x-ray energy spectrum. Bombarding

electrons may collide and displace an atomic electron in the K or L shell of an atom

in the target material. Following this collision, the displaced electron is replaced by

another atomic electron residing in a higher energy shell, resulting in emission of

an x-ray. The energy of the x-ray photon that is released following this interaction



2.3. Computed Tomography 47

is equal to the difference in electron binding energies of the shells. This interaction

contributes to the characteristic component of the x-ray spectrum, and is so named

as the energies of these x-rays are predictable, being dependent on the difference in

binding energies of the electron shells of the target material.

Bremsstrahlung effects also occur which contribute to the continuous portion

of the x-ray spectrum. This interaction occurs if a bombarding electron penetrates

the K-shell of an atom in the target material and is deflected. An x-ray is emitted

with an energy equal to the energy lost through deflection. The highest energy pho-

ton emitted by x-ray tubes occurs when a Bremsstrahlung interaction completely

stops an electron and an x-ray is produced with the energy of the bombarding elec-

tron.

X-ray tubes therefore produce a spectrum of photons with different energies.

The spectrum contains a smooth, continuous component, and a characteristic com-

ponent containing spikes of energy bands. X-rays leave the target material at right

angles to the incident electron beam and are subsequently filtered by the x-ray pro-

duction components and purpose built filters. This removes low energy photons

which would unnecessarily contribute to patient dose and not the image.

2.3.2 X-Ray Interactions

Photons with a spectrum of energies are emitted from the detector onto the imaged

specimen. As the x-ray beam passes through the patient it is either transmitted

or attenuated. Attenuated photons are either absorbed or scattered. Attenuation

occurs due to two types of interactions- Compton and photoelectric. The amount

of attenuation reflects the energy spectrum of the photon beam, the atomic number

Z of the tissue, and the density ρ of the tissue. CT attempts to recover the linear

attenuation coefficient µ of the tissues with respect to water. The linear attenuation

coefficient is the probability that a photon interacts (is attenuated) per unit length of

the path it travels.

In a Compton interaction, an x-ray photon bounces off a free (loosely bound)

atomic electron in the tissue. The X-ray is now scattered and has a lower energy.

The probability of the Compton interaction is proportional to the physical density of
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the material (it is actually proportional to the electron density, but this varies only

by 10% between elements of tissues). The interaction contributes the Compton

linear attenuation coefficient λ to the total linear attenuation coefficient µ . λ is

proportional to ρ

E (where ρ is the density of the tissue and E is the energy of the

photon) and is independent of Z. However, there is only a very small decrease in

Compton interactions over the energy range used in medical imaging.

In a photoelectric interaction, the photon interacts with a bound inner shell

electron in the K-shell or L-shell of the atom, on the condition that the energy of the

photon is above (but nearby) the binding energy of that electron. This displaces the

electron from the atom. Another electron drops into the position of the displaced

electron, emitting a characteristic x-ray of energy equal to the energy difference

between the two shells binding energy states (tissue will largely be transparent to

this characteristic x-ray radiation as it is normally lower than the binding energy of

the shells). The photon disappears since all photon energy is lost. This interaction

contributes the photoelectric attenuation coefficient τ , which is proportional to ρZ3

E3 .

Another less important interaction leading to attenuation of the x-ray beam is

elastic (Rayleigh) scatter, whereby the x-ray bounces off a bound electron. This

effect only occurs at low photon energies since the energy of the photon must be

less than the binding energy of the bound electron.

In biological tissues, which contain a mixture of elements, the occurrence of

Compton and photoelectric effects depend on the effective atomic number. Photo-

electric effects are dependent on Z3, while Compton interactions are independent

of Z. Photoelectric effects are proportional to 1
E3 while Compton effects have a

low dependence on E. Therefore, at low photon energies and high Z, photoelec-

tric interactions are the dominant effect. While at high photon energies and low

Z, Compton interactions are the predominant effect. In soft tissue, water and air

(low Z), the Compton effects predominates the attenuation of the x-ray beam, while

photoelectric absorption predominates for contrast media and bone (both high Z).
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2.3.3 CT Scanners

The CT machine consists of an x-ray tube, collimator and detector array mounted

on a rotating gantry. The rotating gantry is heavy (∼500 kg), but can rotate at∼two

revolutions per second or faster. The patient lies on a motorised table top that moves

along the axis of rotation of the gantry and images are acquired in transaxial slices.

Modern CT scanners have so-called third generation geometry and are multi-

slice scanners, capable of truly three-dimensional acquisition. Third generation

scanners are equipped with detectors that cover the full cross-section of the patient,

which allows collection of data through a 360° gantry rotation. Multi-slice refers

to multiple banks of detectors which are required to produce three-dimensional CT

images.

The fundamental unit of an x-ray image is a projection of the attenuation of

the x-ray beam. Approximately 1000 such projections are acquired in a single ro-

tation of the gantry. In order to construct two-dimensional slices, advanced image

reconstruction algorithms are used, the most common algorithm being filtered back

projection. The principle of back projection is to reconstruct a two-dimensional im-

age by adding together the attenuation projections at each rotation. To increase the

accuracy of this approach, filtered back-projection algorithms use additional data

from neighbouring attenuation projections which either add or subtract to the im-

age depending on the distance between the projections, with the closest projections

having the greatest effect. Different filtered back-projection algorithms are available

depending on the image task (e.g. for bone imaging or soft tissue contrast). The re-

constructed two-dimensional images are then stacked to form a three-dimensional

volume.

Modern CT images are of 512 x 512 resolution, although 256 x 256 or 1024

x 1024 imaging grids are also common. The slice thickness is determined by the

thickness of the detector. The number in each voxel is referred to as the CT number

(also known as Hounsfield number), and represents the average linear attenuation

coefficient of the tissue (µt) with respect to the linear attenuation coefficient of

water (µw) across the voxel. It is given by CT = 1000× µt−µw
µw

. The CT number is
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therefore calibrated to water, although the attenuation values of tissues and water

depend on the x-ray tube kV and filtration of the x-ray beam. CT numbers are

typically from -1024 to 3071.

2.3.4 CT Artefacts

CT images may contain artefacts which affect image quality. Beam hardening oc-

curs as the low energy photons of the x-ray beam are preferentially attenuated while

passing through the patient. These hardened beams are attenuated less by the tissue,

which results in structures towards the center of the patient having lower attenuation

coefficient. This can be corrected using a beam-hardening correction algorithm or a

bow tie filter which progressively filters the outer rays of the x-ray beam. Another

artefact to consider is streak artefacts caused by high attenuation objects such as

metal implants. Streak artefacts appear as dark and light lines emanating from the

high attenuation object. Most modern scanners have metal correction algorithms

which remove this artefact. Another artefact is partial volume effect. The CT num-

ber is an average across all tissues in the voxel, meaning objects that are small

compared to the voxel size, but with a large attenuation coefficient, may be seen.

Other artefacts which are sometimes present in CT images include motion artefacts,

photon starvation, ring artefacts and cone beam artefact.

Intracranial electrodes are made of platinum, which has a Z of 78, making it a

very highly attenuating material. The electrodes are more attenuating than bone, and

are therefore easily visible on a CT image. Streak artefacts are frequently visible

surrounding the electrodes, although these do not commonly present a problem for

localisation of electrodes.
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2.4 Intracranial EEG, SPES and CCEPs
This section describes the intracranial EEG measuring system and the biophysical

basis of SPES and local field potentials generated following SPES.

2.4.1 Intracranial EEG Measuring System

The following paragraphs will describe the materials, implantation, measurement

and artefacts in intracranial EEG.

The intracranial EEG measuring system includes a set of platinum electrodes

and their wires embedded in a flexible plastic sheath. Wires carry the signal to the

amplifier which measures and amplifies the voltage before sending it to the com-

puter recording system. Electrodes placed on the brain cortical surface are called

grid (or sub-dural) electrodes, while those in deeper brain structures are referred to

as depth electrodes. Grid electrodes consist of rectangular electrode arrays, where

each electrode is described by their diameter, depth, and spacing. Grid electrode

arrays normally contain six electrodes per row, and electrodes typically have a di-

ameter of 4 mm, exposed depth of 2.3 mm and spacing of 10 mm. Depth electrodes

consist of a set of cylindrical electrodes arranged adjacently along a flexible wire,

and are described by their diameter, length and spacing. There are normally six

electrodes per wire and these typically have a diameter of 1.12 mm, length of 2.41

mm and spacing of 10 mm.

The electrode implantation process consists of choosing a suitable implantation

location, implanting the electrodes, and closing the skull. The choice of implanta-

tion location is based on clinical grounds, where the aim is to identify the ictal-onset

zone (the cortical area generating seizures) and propagative regions, and any elo-

quent cortical areas. The ictal-onset zone and propagative regions are considered

for resection while eloquent areas are spared. The decision is based on previous

ictal and non-ictal scalp EEG monitoring, seizure semiology and the location of

potential pathologies such as cortical dysplasia or lesions.

The implantation method is performed under general anaesthesia. Structural

MRI is used to guide the location of the skull opening. If grid electrodes are used,

a craniotomy and durotomy is needed. Craniotomy and durotomy refer to incision
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and removal of part of the skull or dura mater, respectively. Grid electrodes are

placed on the surface of the cortex and held in place by adhesive paste. If only

depth electrodes or grid electrode strips (a single row of grid electrodes) are re-

quired, a burr hole, created by drilling or scraping a hole in the skull, may be used

to provide access to the brain. Grid electrode strips may then slide through the burr

hole whereas depth electrodes penetrate into the brain itself. In the case of depth

electrodes, a stereotaxic frame is used during surgery with reference to a stereotaxic

structural MRI in order to determine the correct implantation location. Following

implantation, the skull is surgically closed and bandaged and the electrodes remain

in place for around five days while the patient is monitored in a hospital room. Dur-

ing this time inter-ictal and ictal intracranial EEG recordings are made and high

frequency stimulation may be used for functional mapping of eloquent cortical ar-

eas. A cortico-cortical evoked potential (CCEP) study may also be performed.

Intracranial EEG measures differences in electrical potential, in the microvolt

range, of each implanted electrode with respect to some reference electrode. The

reference electrode is normally located in a relatively inactive part of the brain.

Electrodes discretely sample the continuous voltage field generated by sources of

electrical activity in the brain. Volume conduction effects occur which distort the

voltage field as the current passes through brain tissue, across the cortical-electrode

interface to the surface of the electrode. However, this effect is lower for intracranial

EEG than scalp EEG as the electrodes lie underneath the skull and scalp layers. The

spatial resolution of intracranial EEG is approximately 1 cm, meaning a source of

brain electrical activity may spread up to but not exceeding 1 cm distance [191].

A number of electrical and biophysical artefacts should be considered when in-

terpreting intracranial EEG. Power line noise may arise from the alternating current

of any electrical cables passing near to the conductive components of the measuring

system. This manifests as a fixed 50 Hz background noise in the EEG signal and is

avoided by performing measurements in an electrically shielded room. The signal is

contaminated by small amounts of intrinsic thermal noise due to the random thermal

motion of electrons in conducting materials. The electrode-electrolyte interface can



2.4. Intracranial EEG, SPES and CCEPs 53

also cause artefacts. Firstly, although the electrodes are initially fixed to the brain

tissue, they may move following surgery. This may result in an unknown quantity

of CSF at the electrode-electrolyte interface. This affects the volume conduction

of electrical activity to the electrode, as the low impedance of CSF contributes to

shunting of current, which may appear as rapid current spread through the CSF

from relatively distant sources. Electrodes may become dislodged, leading to a

triangular-shaped ‘pop’ artefact response to signals caused by very low impedance

at the electrode-electrolyte interface. Furthermore, the electrode-electrolyte inter-

face is an electrically complex system which has both impedance and capacitative

properties which may spread the signal in time [129].

2.4.2 Biophysical Basis of Single Pulse Electrical Stimulation

The aim of SPES is to activate local neuronal pathways in order to observe effec-

tive cortical connectivity while preventing tissue damage. To deliver the stimulus,

a constant-current pulse is applied between two implanted electrodes and the elec-

troencephalogram is recorded from all other electrodes. The effectiveness of SPES

depends on the amplitude, width, frequency, phase and polarity of the stimulation

pulse, as well as the underlying tissue morphology. The influence of these factors

upon neuronal activation is discussed below.

Effective electrical stimulation generates an action potential in a neuron, axon,

or dendrite. In order to generate an action potential, the neuronal membrane po-

tential (the voltage difference between intra- and extra-cellular compartments) must

pass beyond the depolarisation threshold (-55 mV for pyramidal cells). The ex-

citability of a neuronal structure is described by the rheobase- the minimum extra-

cellular current necessary to induce a response in a system; and the chronaxie- the

minimum pulse duration for inducing a certain response at a current strength of

twice the rheobase. Axons and axon initial segments have lower chronaxies than

cell bodies or dendrites, due to the higher density of sodium current channels in

axons and axons hillocks compared to cell bodies and dendrites, while the nodes of

Ranvier have the shortest chronaxie [247]. Larger diameter myelinated fibers will

therefore likely be the first activated elements following electrical stimulation. The
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rheobase of pyramidal cell axons is in the order of 1 µA, while the chronaxie is

approximately 200 µs. The current strength and pulse duration used in SPES often

exceeds threshold values of several neuronal elements and there is little selectivity

of stimulation.

Cortical stimulation generates extra-cellular current flow, as the current outside

the cell flows freely whilst it is more restricted when passing through the highly re-

sistive membranes of neuronal compartments. The current density, J, at a given

distance from a monopolar electrode in a homogeneous isotropic volume conductor

is given by J = I/4πr2, where I (unit, A) is the current intensity of the electrode

and r is the distance (unit, m) from the electrode [184, 53]. The current density

is therefore inversely proportional to the square of the distance from the source.

Multiple current sources combine linearly by the superposition principle of electric

fields. However, behaviour of electric fields in brain stimulation is complex due to

differing resistivity of tissues and the irregular geometry of the brain. Estimation of

current density in complex inhomogeneous mediums such as the brain is possible

under quasi-static conditions and requires application of the finite element model.

Nathan et al. [242] used finite element modelling to determine that the current den-

sity below a pair of stimulation electrodes is inversely proportional to the square of

the distance from the cortical surface [242]. With a stimulation current amplitude

of 4 mA, the current density directly beneath the electrodes is 0.02 A/cm2 whereas

it decays to 0.008 A/cm2 5 mm away.

Studies of cortical and corticospinal neurons in rodents, cats and primates

showed that the current needed to activate a neuron is proportional to the square

of the distance between the neuron and the electrode tip [247, 6, 294]. A review

by Ranck Jr [264], which calculated the current to maximal activation distance for

monopolar intracortical stimulation of pulse width 200 µm, found that the maximal

distance at which intracortical stimulation may be effective is proportional to the in-

verse square of the current- stimulation of amplitude 4 or 1 mA will activate neurons

at a maximal distance of 3 or 2 mm, respectively. Bipolar stimulation produces a

more focused electric field and it has been estimated a sphere of radius 2 mm around



2.4. Intracranial EEG, SPES and CCEPs 55

the electrodes are activated [277]. Since the electric field experienced along a nerve

fiber determines the effectiveness of the stimulation, it is also important to consider

the arrangement of the electrode with respect to the targeted neuronal elements.

Neuronal elements in parallel to the electric field (those orientated tangentially to

the cortical surface) are easier to excite than those perpendicular [264].

Regarding pulse width, some have observed that a lower stimulation current are

required for increasing pulse widths up to 500 µs [206], while others have suggested

a pulse width of 100 µs or less is suitable to minimise the applied charge [12].

Therefore, a pulse width between 100-500 µs may be considered optimal [234].

A monopolar or bipolar stimulation may be applied. A monopolar stimulation

refers to stimulating electrode pairs which are some distance apart (one with vari-

able position designed to produce the effect), whereas bipolar stimulation refers to

adjacent stimulating electrodes. Finite element modelling of the current density in

monopolar and bipolar stimulation showed that the current density decreases much

less rapidly with depth and stimulates a wider region in monopolar than bipolar

stimulation. Bipolar stimulation has therefore been used in CCEP studies as it re-

sults in a more focused electric field [242].

Monophasic or biphasic pulses may be used. In a monophasic pulse, the volt-

age difference between the stimulation electrodes is applied and removed, whereas

in a biphasic pulse, the anode and cathode electrodes are immediately swapped

around after one cycle. It is thought that a biphasic pulse produces a more bal-

anced electrical charge at the electrodes [208], since different mechanisms of charge

generation (which are not necessarily reversible) occur at the anode and cathode

[230]. This charge imbalance may also be mitigated by performing an alternating

monophasic stimulation, whereby the polarity of the electrodes is switched around

after each pulse.

It should be noted that neuron activation also depends on the electrode type,

with depth electrodes requiring a lower current to elicit neuronal activation than

surface electrodes [294]. The current threshold to elicit a neuronal response also

depends upon the physiological state of the system under investigation [94].
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2.4.3 Biophysical Basis of CCEP Waveforms

The following paragraphs describe the relation between neuron orientation and ob-

served voltage, and introduce the concepts of local field potentials and cortico-

cortical evoked potentials.

Post-synaptic terminals of activated neurons generate dipolar voltage fields

where the voltage decreases with the square of the distance from the source of the

electrical activity. The electrode voltage therefore depends on the location of the

electrode with respect to the active brain region and the orientation of the dipoles

in this active region- the voltage field of a dipole decreases with the square of the

distance and the voltage field is largest in the direction parallel to the orientation

of the dipolar field. Therefore, active brain regions that are nearby and composed

of parallel orientated dipoles will have the largest impact on the electrode voltage.

The cortex contains a large number of synapses which mostly connect to pyramidal

neurons orientated perpendicularly to the cortical surface. The major component

of the electrode signal is therefore from synapses in the cortex. Signals from sulci

are expected to be lower than gyri because the orientation of neurons is parallel

to the cortical surface and they are a further distance from the electrode. In addi-

tion, facing sulci contain oppositely orientated dipoles whose field may cancel if

simultaneously activate.

Local field potentials are recorded using intracranial electrodes and represent

the superposition of extra-cellular voltages arising from cellular processes within

the brain, with respect to some reference. The local field potential is therefore

a spatial average of multiple sources and scales with the inverse of the distance

between the source and the electrode. The shape of the local field potential depends

on the synchrony and orientation of current sources and represents primarily active

pyramidal neurons since these are aligned, have high synchrony and are the major

output targets of the cortex. Non-synaptic events such as calcium spikes, intrinsic

currents and resonances, spike afterhyperpolarisations and down states may also

contribute to the local field potential [53].

CCEPs are local field potentials elicited by SPES, and have been observed at
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local and distant recording sites. They consist of an early (∼0 - 100 ms) and late re-

sponse (∼100-500 ms) [344, 324, 221, 116, 178], most widely described by the N1

and N2 negative potentials [221, 223, 185, 188, 350]. A recent review on CCEPs

by Keller et al. [179] summarised evidence which suggests that the N1 represents

excitatory depolarisation of pyramidal cells in deep cortical layers [179]. Current

source density analysis of sensory stimulation showed that the earliest sensory re-

sponses are depolarisation of the middle cortical layers (III and IV), resulting in a

surface negative potential lasting 10-30 ms and of 10-40 Hz frequency [236, 281].

Another study found that the early N1 response of the CCEP is accompanied by a

burst of action potentials at the recording site [2]. This earlier response, thought to

represent the N1 potential, is followed by patterns of excitatory and inhibitory post-

synaptic potentials across all cortical layers of longer duration and lower frequency

(1-4 Hz), which is similar to the N2 potential. In support of this, early studies on the

effects of epicortical stimulation on the firing rate of single cells showed an early

excitatory response in the time frame of the N1, followed by a longer lasting, slower

inhibition that occurred in the N2 time frame [82].

Keller et al. [179] described three mechanisms of activation at the stimulation

site which lead to generation of N1 and N2 responses. Firstly, depolarisation of

the dendritic trees of pyramidal cells in cortical layers II, III, IV and VI may in-

crease the chance of an action potential. Secondly, current depolarising layer II

or III inhibitory interneurons synapsing to adjacent pyramidal cells [42] leads to

an indirect decrease in pyramidal cell firing. Lastly, depolarisation of long range

axons traversing the region of stimulation generates action potentials propagating

orthodromically (to local and distant pyramidal synapses) as well as antidromically

(propagating backwards to depolarise the pyramidal cell soma and dendrites). How-

ever, Matsumoto et al. [221] note that orthodromic discharges are more likely due

to the easier excitability of large axons and initial segments than smaller structures

such as presynaptic terminals [182].

Variability in the shape of evoked responses has been observed. In fact, even

the most widely used N1 and N2 peaks have not been observed in all subjects
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[324, 168] and do not necessarily co-occur [319]. This has lead to some CCEP

studies employing alternative connectivity measures, such as A1 and A2, which

measure the peak of the absolute magnitude of the response in the early and late

time periods [116, 178]. The rationale for using these measures is that variability

in polarity and latency has been observed- negative deflections are often followed

by positive deflections and vice versa. In support of the validity of alternative po-

larity measures, a previous study demonstrates a similar spatial correlation between

CCEP and resting fMRI when using the N1 or P1 response [177]. However, there

is little biological theory underpinning the use of other connectivity measures, and

in practice the evoked response may vary with subject, anatomical location, and

underlying connection.

2.5 Summary
In this chapter, the basic physical principles of NMR and MRI image formation

were described. The process of diffusion and how diffusion-weighted gradients can

be added to a spin-echo MRI EPI sequence to produce contrast related to white

matter fiber orientation was then explained. Use of diffusion MRI tractography

for tracing fiber connections, advanced diffusion-weighted acquisitions and post-

processing methods were discussed. Next, the principles of x-ray production and

interactions, and how these are used to create CT images were briefly explained.

Finally, the technical aspects of the intracranial EEG measuring system were intro-

duced, and the biophysical basis of SPES and evoked local field potentials (CCEPs)

were reviewed. Artefacts were also described for each modality.



Chapter 3

Micro- and Macro- scopic Structural

Brain Connectivity

Current understanding of brain structural connectivity at the microscopic and

macroscopic scales has evolved over many years of research and used many dif-

ferent observational techniques. Some important discoveries were made as long

ago as 400 BC, although most advances have been in the last few centuries. The

primary methods for observing structural connectivity have been blunt dissection,

microscopy, degeneration, tract tracing and recently diffusion MRI tractography.

This chapter will describe aspects of microscopic and macroscopic cortical

structural connectivity in the human brain important to the interpretation and un-

derstanding of the information derived from diffusion MRI tractography and CCEPs

presented in this thesis. Both diffusion MRI tractography and CCEPs estimate struc-

tural connectivity on the macroscopic scale- that is, between sites separated by dis-

tances of millimetres to centimetres. However, an understanding of the microscopic

connectivity is beneficial to interpretation of CCEPs as lateral cortical connections

are thought to contribute a major component to the evoked potential. Therefore,

this chapter will describe both microscopic and macroscopic cortical connectiv-

ity. Furthermore, network connectivity may be estimated by grouping ensembles of

macroscopic connections and this chapter will therefore conclude by describing the

macroscopic network aspects of cortical structural connectivity.
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3.1 Microscopic Brain Connectivity
The human brain is non-homogeneous mass of cells. There are approximately

8.6× 1010 neurons [7] in the average individual, with 1− 2× 1010 located in the

cerebral cortex [40], each of which has around 10,000 connections. There are four

main components of the brain: neocortical grey matter, white matter, sub-cortical

grey matter and CSF. The organisation and morphology of neurons varies through-

out the brain, being most heterogeneous in the neocortex. The notion that neurons

(see Fig. 3.1) form a contiguous network of physically separated cells [348] that

communicate via chemical synapses [150] and propagate messages via electrical

action potentials, are important concepts of brain function. Key principles of cor-

tical structure include the presence of cortical layers connected perpendicularly to

the cortical surface, lateral connections orientated tangentially to the surface, and

emergence of long range cortico-cortical connections traversing the white matter.

The following paragraphs will describe the vertical and lateral components of mi-

croscopic cortical connectivity.

3.1.1 Columnar Cortical Connectivity

Advances in tissue preparation, staining, microscopy, histology, degeneration and

tract tracing have all enabled better understanding of cortical organisation at the

cellular level. Degeneration and tract tracing studies are labelling techniques which

have provided most insight into the vertical connectional organisation, while mi-

croscopy has enabled characterisation of the distribution of cell bodies.

The human cortex is ∼2-4 mm thick. Six inter-connected cortical layers have

been described which run parallel to the cortical surface [100, 44] (Fig. 3.2). They

are labelled I to VI, with lower numbers being located nearer the cortical surface.

Layer I is referred to as the molecular layer and is sparsely populated, containing

some cell bodies and extensions of apical dendrites. Layer II, named the external

granular layer contains pyramidal neurons (neurons with a triangular-shaped soma

and large apical dendrite) and stellate neurons (neurons with a star-shape formed by

dendritic processes radiating from the cell body). Layer III, the external pyramidal

layer contains mainly small and medium-sized pyramidal neurons. Layer IV is re-
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Figure 3.1: Schematic diagram of a neuron. Dendrites are neuronal processes arising from
the cell body (soma), which receive synaptic inputs from other neuron axon terminals. Den-
drites typically form branches of dendritic arborisations. The axon hillock is a specialised
part of the cell soma that connects to the axon, whereas the axon initial segment is a highly
excitable and unmyelinated part of the axon which arises from the soma. Synaptic inputs
to dendrites, soma, axon hillocks and initial segments are summated and if the excitation
passes beyond a given threshold an action potential is generated. Action potentials propa-
gate along the axon of the neuron towards the axon terminal. The myelin sheeth, formed
by Schwann cells, and nodes of Ranvier, increase the speed and efficiency of the action
potential propagation. Axon terminals form synapses onto dendrites of other neurons and
permit the action potential signal to propagate between neurons.

ferred to as the internal granular layer and contains stellate and pyramidal neurons.

Layer V is the internal pyramidal layer and contains large pyramidal axons. Layer

VI is the polymorphic layer, containing a sparse population of large pyramidal neu-

rons and small spindle-like pyramidal neurons [43].

The presence of cortical layers composed of different cell types, density and

connection architecture, was demonstrated by Flechsig in the late 19th century

[126]. The exact composition and density of each layer, as well as the number

of layers (the cytoarchitectonic structure), varies across the cortex on the scale of

centimeters [44, 332]. Although the classification of the cortical zones varies de-

pending on the staining method, which is used to depict different aspects of cell

morphology (e.g. Nissl staining for neuron cell bodies and myelin staining for

neuron axons), comprehensive maps of the cortical zones, as determined by their

vertical composition and arrangement of neurons, have estimated that up to around

100 cytoarchitectonic areas exist in the human brain [57, 44, 92, 332, 298]. For ex-

ample, Economo and Koskinas defined 107 cortical areas using myeloarchitecture
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[332], whereas Campbell defined 17 areas based on cytoarchitecture and function

[57]. The most commonly used atlas of cortical zones is that of Brodmann’s, which

defines 52 areas based on cytoarchitecture and histology and was published in 1909

[43]. The definition of what comprises a cortical area, and how to define the bound-

aries between these areas remains incompletely defined due to inter-individual het-

erogeneity, inter-zone heterogeneity, variable distinctiveness in the borders between

prescribed zones and variable definition relating morphology to function.

Nevertheless, some basic structural and functional principles of the vertical

organisation of the cortex are broadly applicable. Vertical connections arise from

pyramidal axons and axon collateral terminal synapses, and are more numerous

than lateral connections [348, 214, 249]. Vertical connections link neurons within

a single cortical column [213, 124, 356], where cortical columns contain neurons

with similar functional properties [132]. A cortical column contains ∼100 neu-

rons, is ∼35-60 µm across [52], and is the smallest level of vertical organisation

in the cortex. Cortical columns (also known as minicolumns) are organised into

macrocolumns, which contain ∼50 minicolumns [119], linked by lateral cortical

connections.

A cortical column contains predominantly intrinsic vertical fiber connections,

of which four types of connection have been described [52]. Neuron collaterals-

dendrites, axons and axon collaterals form excitatory connections which traverse

the vertical space of the cortical column between layers I and VI. Double bouquet

cell axons form inhibitory connections from layer II to layer III [90]. Axons arising

from soma in layer VI are excitatory and tend to connect to layer IV [255]. Layer

IV stellate cell axons are also excitatory and connect to layer II. Layer V apical

dendrites receive connections from layer II. Areas in between predefined cytoarchi-

tectonic zones- the ‘peripheral neuropil space’, are characterised by a sparse popu-

lation of cell bodies, but are rich in unmyelinated axon fibers, dendritic aborizations

and synapses [170, 297].

Afferent cortical connections arise from the thalamus (a six-centimetre-long

bulb-shaped grey matter structure located near the centre of the brain), corpus cal-
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Figure 3.2: Vertical and lateral connections in the macaque primary visual cortex labelled
with tract tracer biocytin. The dark arrow indicates the injection site and light arrow indi-
cates path of lateral connections to a terminal projection cluster. Scale bar is 200 µm. Image
was taken from Schüz and Miller [282], originally published in Levitt et al. [200].

losum (a large horse-shoe shaped fiber system connecting the cortex of left and right

hemispheres) and ipsilateral cortico-cortical sources. Thalamic connections arrive

in layer IV (a small number of connections go to later IIIb and V). The callosal

input arrives in layer IV, IIIb, III and II [240, 157]. Cortico-cortical fibers also ar-

rive in layer IV, IIIb, III and II. Therefore, the thalamic input connects to deeper

layers than callosal and cortico-cortical connections. Efferent cortical connections

arise from pyramidal neurons located in multiple cortical layers. One study strat-

ified the output structures of connections from various cortical layers in monkey

cortex. Efferent connections from layer VI target the thalamic nuclei, claustrum

and other cortical regions [172]. Layer V has axons projecting to the spinal cord,

pons, medulla, tectum, thalamus, red nucleus and stiatum. Layer III neurons send

efferent signals to ipsilateral cortex and the corpus callosum and layer II are cortico-
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cortical only. Lateral connections between cortical columns arise mainly from layer

III [55, 349]. Cortico-cortical connections arise from myelinated axon efferents

originating from layer III and form bundles which traverse the white matter.

The majority of cortical neurons are excitatory pyramidal neurons and there-

fore the dominant functional network architecture is excitatory. However, a smaller

fraction of inhibitory connections play a role in regulating the network function, al-

though the mechanisms of how this is achieved are not well understood. Two types

of inhibitory action occur: perisomatic- where inhibitory synapses (from basket and

chandelier cells) are made onto cell soma, initial segments and axon hillocks, hav-

ing a large negative influence on the generation of an action potential [89, 90]; and

synaptic integration- where inhibitory connections (from double bouquet cells) are

made onto branches and distal segments of dendrites, having a weaker integrative

effect on the generation of action potentials on the target cell [52]. The mechanism

of balance of excitation and inhibitory circuits within a cortical column and how

this relates to overall brain function are not well understood.

3.1.2 Lateral Cortical Connectivity

It was suggested in Schüz and Miller [282] that lateral cortical connections are a

fundamental component of neocortical connections, as superficial pyramidal neuron

projections were found in the primary visual cortex of the marsupial quokka [316],

which diverged from humans 135 million years ago. Lateral cortical connections

were initially demonstrated using the Golgi staining method [227]. Degeneration

and tract tracing studies have since provided insight into their spatial extent, laminar

specificity, input and output, and function.

Lateral monosynaptic connections span several millimeters [274, 275, 137,

138], as demonstrated in cat, treeshrew and monkey, with the vast majority within a

couple of millimeters from a given locus (Fig. 3.3). Lateral connections primarily

connect cortical columns within a single cortical area, although can cross cortical

area borders. For example, a projection patch can cross borders between Brodmann

cortical areas 9 and 46, which are both dorsolateral prefrontal cortex [200, 260].

The spatial distribution of neurons connecting to or from a given locus was found to
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be anisotropic, and this was demonstrated using both optical imaging [3] and tract

tracing [220], with a greater length of connection most commonly in the anterior-

posterior direction. The width of the small and large axis of the anisotropic connec-

tion was estimated to be ∼1.5 mm and ∼3.5 mm, respectively, in cat cortex [220].

Furthermore, lateral connections arising from a cortical locus are mostly reciprocal

[123].

Figure 3.3: Tangential view of lateral cortical connections in macaque dorsolateral pre-
frontal cortex labelled with tract tracer biocytin. The arrow indicates the elongated patch of
terminal projections. Scale bar is 200 µm. Image was taken from Schüz and Miller [282],
originally published in Levitt et al. [200].

In addition to the anisotropic connection field, distant lateral connections

were commonly associated with multiple (typically four to eight) anisotropic sub-

millimetre patches, referred to as projections. These were found in the spatial dis-

tribution of cells providing input to a given cortical area as well as those receiving

output. Patches were approximately 200-300 µm diameter, spread 350-600 µm

apart, and exhibited similar anisotropic shapes to the primary connection locus.

This phenomenon has been observed in all cortical areas studied- for example in

V1 of cat [138], human [51], and rodent [50]; in somatosensory cortex of macaque

[171] and ferret [175]; and in motor cortex of macaque [171]. Size and spacing of

terminal patches differs between areas but seems to scale with the diameter of the
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basal dendritic field of pyramidal neurons in each area. The connections between a

cortical locus and its patch were also highly reciprocal.

In 1975 a detailed study on the striate cortex using degeneration techniques

showed that the majority of lateral connections were in layers II and III and only

sparsely found in layer IV. These findings have been reproduced in the primary

visual cortex of cat [137, 218, 134], macaque [28, 356] and human [51] using tract

tracing.

Degeneration studies have shown that the vast majority of cells providing lat-

eral input to a given cortical area are excitatory pyramidal neurons and their targets

are other pyramidal neurons [123, 273, 228, 229]. Inhibitory connections are more

rare but have been demonstrated [176, 187]. The type of cells receiving input from

a cortical location are essentially determined by the composition of cell types in the

projection patch and there is little selectivity of cell connection [228].

Excitatory post-synaptic potentials generated by lateral connections have been

demonstrated following electrical stimulation [158, 146]. However, their strength

depended on the stimulation parameters. One feature of lateral cortical connec-

tions is that they are weaker and more variable compared to larger thalamo-cortical

or cortico-cortical connections. However, it is estimated that they still provide a

significant proportion of excitation to cortical cells in vivo [305].

There is some consistency across studies which show that the conduction ve-

locity of signals through lateral connections is quite slow, being between 0.1-0.2

m/s. This has been demonstrated using a range of techniques in a range of species

[299, 3]. Conduction velocity of 0.1-0.2 m/s corresponds to taking 10-20 ms to

travel 2-3 mm laterally. However, it is unclear why propagation is this slow given

diameters of connecting neurons are thought to be in the order of 1-3 µm.

The anisotropy of lateral connections has been strongly linked with functional

maps in visual, auditory and somatosensory cortex, in that neurons with similar

sensory preferences tend to be laterally connected. In visual cortex, tract tracing

studies show that neurons with similar orientation preference (those neurons acti-

vated in response to visual stimuli at similar orientations in the field of view) tend
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to be connected [139]. This has also been demonstrated using optical imaging in

the primary visual cortex of cat [181, 180] and macaque [215]. Cross-correlations

between single cell activities within 4.2 mm of a cortical site showed that neurons

with similar orientation preferences had high correlation [312]. Similar functional

preference of lateral connections has been observed in the auditory cortex, where

cells with similar frequency preference in the tonotopic map are connected [266].

In the somatosensory cortex tracer injection studies by Juliano et al. [174] showed

that areas activated following a particular somatosensory stimulation corresponded

highly with the tracer that was injected into the suspected cortical area correspond-

ing to the somatosensory area targeted by the stimulation. Interestingly however,

anisotropy of lateral connections has been observed in the absence of a clearly de-

fined functional map [200]. For example, sensorimotor cortex corresponding to

forelimb digits and shoulder representations were found to be preferentially con-

nected [162]. In addition, some nearby connections are thought to bear little relation

to functional maps, as the functional connection preference is higher for longer dis-

tance connections [306, 37]. It is estimated that approximately one third of distant

lateral projections connect to neurons with similar orientation preferences [306, 37].

A further complication to consider is the definition of the functional preference of a

neuron given that neurons can have multiple functional preferences. For example,

visual stimulation orientation and ocular dominance both describe the function of a

neuron in the visual cortex.
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3.2 Macroscopic Brain Connectivity
Understanding of macroscopic brain connectivity was enabled through techniques

such as blunt dissection, myelin staining, and tract tracing. Diffusion MRI trac-

tography helped confirm and refine our understanding of brain macroscopic con-

nectivity, as well as adding new information that had been previously unobtainable.

The following paragraphs will provide an account of the macroscopic organisation

of cortical connectivity gained using classical techniques, before describing key

advances in understanding brain structure using diffusion MRI tractography. An

account of the relationship between macroscopic connectivity and brain function in

health and disease will be provided. Finally, the use of diffusion MRI tractography

in understanding macroscopic network organisation will be introduced.

3.2.1 Major White Matter Fiber Systems

Post-mortem dissection led to important discoveries such as the difference between

white and grey matter. Piccolomini distinguished between white and grey matter

in terms of colour, consistency and location. White matter was described as white

compared to the “ashen-color” of the grey matter. In consistency the white matter

was described as softer compared to the “harder and more compact” grey matter. In

location, the grey matter encapsulated the white matter which “commenced every-

where” within the convolutions of the grey matter [256].

Although the white matter appeared homogeneous to the naked eye, post-

mortem dissection led to recognition of white matter fibers and their trajectories

[293], where fibers following the same path stick together in sheets or fascicles

(Fig. 3.4). The cortical origin of white matter fibers [216], and the importance of

white matter fibers to motor and higher order cognition [343], was also recognised.

Willis used sections of brainstem to differentiate between ascending and descend-

ing fibers and to speculate on possible associated motor and sensory functions [248],

thus forming the first description of the major white matter fibers that would later

become classified as projection fibers.

Categorisation of the major fibers into projection, association, and commisural

tracts resulted from detailed post-mortem studies of white matter trajectories during
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the 19th century [49, 268, 269]. These studies showed that projection fibers con-

nected the motor and sensorimotor cortex to muscles and sensing organs of the body

via the spinal cord. Callosal fibers formed connections between the left and right

brain hemispheres [93]. Association tracts were found to connect cortical regions

within the same hemisphere. Association fibers were located deep in the white mat-

ter, whereas superficial fibers, referred to as the U-fiber system, were located nearer

the cortical surface and connected cortical regions in close proximity. Dissection

studies based on soaking the brain in alcohol, performed by Christian Reil, demon-

strated most of the major individual association tracts [267]. The latin terminology

adopted for most of the associative bundle names came from Karl Burdach in 1822

[49], who also confirmed Reil’s findings. Examples of major association tracts in-

clude the inferior longitudinal fasciculus, which connects the occipital and temporal

lobes; and the arcuate fasciculus, which connects inferior parietal to inferior frontal

lobe.

Figure 3.4: Overview of long range cortico-cortical association tracts delineated using dis-
section. 1. Superior occipital fasciculi, 2. Corona radiata, 3-5. Superior longitudinal fas-
ciculi, 6. Outline of the insula, 7. Inferior occipitofrontal fasciculi, 8. Inferior longitudinal
fasciculi, 9. Location of the anterior commisure, 10. Uncinate fascicle. Image was taken
from Schüz and Miller [282], originally published in Nieuwenhuys et al. [245].

In the 1960s tract tracing methods were developed which allowed a detailed

report of the organisation of cellular systems at the circuit level, refining models
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of local neuronal circuits to contain feedback and feedforward, hierarchical and

parallel organisation [120, 233]. This provided a good foundation for computational

approaches to studying brain connectivity.

3.2.2 Higher Order Brain Function and Disconnection Syn-

dromes

So-called associationist theories of brain structural organisation have dominated

modern understanding of higher order cognitive brain function, and this theory of

brain function led to the classification of a number of disconnection syndromes [66].

Wernicke’s associationist theory, based on post-mortem dissections of human

brains and their neuropathology, was introduced in 1874 and stated that higher brain

functions were the product of associative connections between cortical areas storing

motor and sensory images. Therefore, disorders of higher function resulted from a

disconnecting breakdown of associative connections through white matter lesions

[341]. This theory helped explain some classical disconnection syndromes, such as

conduction aphasia, agnosia, and the apraxias [66].

Not long afterwards, Dejerine [91] described pure alexia syndromes using case

reports and proposed a visual verbal center for storing visual images of words in left

angular gyrus. This proposal broke Wernicke’s associationist rule in that (i) higher

brain functions could be located in a particular cortical area, and that (ii) the vi-

sual verbal center was located outside visual cortex which was against Wernicke’s

model of alexia. For this reason, Wernicke wrote a critique of Dejerine’s view [45].

However, these views of cortical specialisation, that higher brain function arose

from specialised cortical areas, grew more popular and were further strengthened

by Campbell’s and Brodmann’s division of the cortex into discrete cytoarchitectonic

regions [57, 44]. In the 20th century, these locationalist and associationist views

were criticised and alternative models, described as holistic, anti-localisationist, or

anti-associationist [135], dominated until Gechwind’s time saw a revival of the as-

sociationist school of thought.

In the 1950s Myers and Sperry provided strong evidence for hemispheric lat-

eralisation of brain function by examining the effects of callosal sections in animals
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and then in patients with epilepsy. This motivated Geschwind to consider older

literature and re-examine his patients with higher brain dysfunctions [136]. His

publication became the manifesto of the neo-associationist school. His published

theory added two new components to the classical view: Flechsig’s rule, and a

phylogenic perspective to the development of associations. Flechsig’s rule found

that in humans no connections existed between early myelinated areas, the primary

sensory cortices. Instead they were indirectly connected via association fibers and

association cortices. The phylogeny of Flechsig’s rule suggests that in lower mam-

mals inter-sensory connections exist, but in more phylogenically advanced animals

connections are made with newly developed regions of association cortex which

become interspersed with older zones. The limbic system was a key component of

lower phylogenic animals, and evolution of association cortex in humans underly

evolution of higher brain function. Geschwind’s hypothesis was that the key de-

velopment in humans was a higher-order association area in the parietal lobe- the

inferior parietal lobule, which represented an association area of association areas,

acting to free humans from the dominant pattern of sensory-limbic associations and

permitting cross-modal associations involving non-limbic modalities [136].

This phylogenic perspective employs connectional models involving rabbit

(having inter-connected sensory cortices all connected to the limbic system), mon-

key (having inter-connected patches of sensory cortex and association cortex, all

connected to the limbic system via the association portion of each patch) and hu-

man (patches are now connected to a tertiary association cortex in the parietal lobe,

with no limbic connection). Gechwind proposed that the tertiary association area

found in humans allowed associations between two non-limbic stimuli, which was

essential for learning higher order cognitive functions such as language.

Wernicke school of disconnection was particularly about white matter lesions

to association tracts, whereas Gechwind’s model used phylogenic principles and

focused on lesions to association areas and the white matter pathways arising from

them. Gechwind re-evaluated disorders of higher functions and provided detailed

accounts of higher function disorders due to disconnection (sensory-limbic dis-
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connections, sensory-Wernicke disconnections, sensory-motor disconnections and

hemisphere disconnection).

Current understanding of higher brain function has been refined based on

new assessments of cortical function and cortico-cortical connectivity. Specific

functional roles for association cortex were found by Domasio and Mesulam in

both monkey and human brains [86, 232]. This was confirmed through functional

imaging [362]. The roles of association cortex are more complex than originally

thought in localisationist theories- with brain function being distributed over net-

works whose cortical elements have similar yet different roles depending on the

brain function. Gechwind assumed a feed-forward serial nature of information

transfer. Currently, we have more evidence for feed-backward and parallel path-

ways. The presence of parallel bidirectional distributed processing for higher func-

tions has recently been confirmed in humans [221, 27].

The contemporary framework of higher order brain function consists of a net-

work of multiple specialised cortical areas, grouped into territories, and connected

through parallel, bidirectional pathways. Higher function deficits can therefore arise

due to both loss of specialised cortical function and damage to connecting path-

ways, which may therefore include hyperconnecivity and hyperfunction. Clinico-

pathological correlations not meeting expectations due to lesion location may be

hypothetically explained in terms of altered connections. In view of the contribu-

tions of diffusion MRI tractography in understanding higher brain function, Catani

et al. [66] recently introduced a framework for explaining clinicopathological corre-

lations, which accounts for localised cortical damage, connection dysfunction (hy-

per and hypoconnectivity) and so-called hodotopic dysfunction (overall dysfunction

caused by both localised and connectional dysfunction) [66].

3.2.3 Contributions of Diffusion MRI Tractography

Diffusion MRI tractography is a non-invasive and much shorter procedure than tra-

ditional tract tracing techniques, and furthermore obtains in vivo estimates of struc-

tural connectivity (Fig. 3.5). This enables a high participation and throughput of

connectivity information for an entire brain at once, which in turn has had many
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benefits for studying structural connectivity. This section will describe the major

areas of contribution of diffusion MRI tractography to our understanding of macro-

scopic connectivity.

Diffusion MRI tractography studies have given insight into human macro-

scopic structural connectivity not possible using classical techniques, in some cases

identifying new tracts [64], modifying our understanding of existing pathways

[127, 354], and allowing large-scale connectivity analyses [259].

The arcuate fasciculus was classically understood as a single pathway. How-

ever, deterministic tractography performed in a diffusion dataset averaged across in-

dividuals demonstrated that there is also a previously undescribed indirect pathway.

This model of two parallel pathways helps explain the diverse clinical presentations

of conduction aphasia [64].

Tractography in a large cohort of healthy individuals has helped clarify the

number and location of fronto-occipital connections in humans. Whereas previ-

ous post-mortem dissections and other diffusion tractography studies suggested the

existence of a bilateral ventral pathway directly connecting frontal and occipital

lobes (the inferior fronto-occipital fasciculus), this study also demonstrates a dor-

sal pathway running through the outer corona radiata which does not correspond to

the superior longitudinal fasciculus and which has not been previously described in

animals. This may therefore represent a newly discovered tract unique to humans.

However, the authors comment that this finding awaits confirmation using tract trac-

ing and myelin staining, to validate whether it is a unique tract in humans or part of

the existing superior longitudinal fasciulus system [127].

The vertical occipital fasciculus connects the ventral and dorsal occipital, pari-

etal and temporal lobe although its existence was controversial since its discovery

by Wernicke in 1881 [340]. Diffusion MRI tractography studies in a large group of

individuals allowed confirmation of its existence and further characterised its path

in humans [354].

One benefit of high throughput diffusion MRI tractography is that it enables

the relatively rapid creation of average atlases of human macroscopic connectiv-
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ity. A tractography atlas of the human brain was recently published by Catani

and De Schotten [61] using diffusion tensor tractography and is a comprehensive

expansion of their previous atlas [63]. In this study, the diffusion-weighted im-

ages from twelve healthy male subjects were averaged to build a representative

diffusion-weighted dataset. Tractography was then performed from regions of in-

terest, defined from previously published post-mortem dissections, and mapped to

a common reference space for practical referral.

Figure 3.5: Long range cortico-cortical association tracts delineated using diffusion trac-
tography. Tractography was performed in the left hemisphere of a single individual. Tracts
are overlaid on saggital and parasaggital MRI slices through the opposite hemisphere to the
displayed tract. Image is taken from Catani et al. [65].

Scanning in large numbers not only allows characterisation of typical connec-

tion patterns, but also enables assessment of individual variability. Various studies

have characterised the intra- and inter-subject reproducibility of macroscopic struc-

tural brain connectivity [16, 71]. The Human Connectome Project is a $30 million

NIH-funded study which aims to acquire high resolution diffusion and functional

MRI datasets for 1200 individuals and apply state-of-the-art methodology to re-

construct maps of structural and functional connections in vivo and quantify the

variability within and across individuals [259].
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One clear benefit of obtaining structural information in vivo is the ability to

correlate macroscopic structural connectivity to clinical phenotype [66]. Since dif-

fusion MRI tractography was introduced, a large number of publications have re-

ported changes in connectivity in diseases such as Alzheimer’s disease, schizophre-

nia, Huntington’s disease, autism and dyslexia. This has been hailed as somewhat of

a revolution in the clinico-anatomical correlation method of studying brain diseases

[66].

3.2.4 Large-Scale Brain Networks and Graph Theory

Graph theory provides a mathematical framework for the study of interacting ele-

ments composing a system, and was first introduced by Leonhard Euler in 1736.

Euler conceived the Seven Bridges of Königsburg graph problem [26], which seeks

to find a mathematical proof of the sequence of bridges traversed in order to visit ev-

ery bridge once and only once in the town of Königsburg (now Kaliningrad), Russia

(Fig. 3.6). Euler formed an abstract representation of the problem as a graph, where

land masses were represented as nodes and bridges were represented as edges. Eu-

ler showed that such a path is possible if the graph is fully connected and there are

exactly zero or two nodes with an odd node degree, meaning that the Seven Bridges

of Königsburg graph problem has no solution. Thus, the concept of a graph was

formally introduced.

A graph is defined as a mathematical representation of pairwise interactions

between units. The fundamental units of a graph are the nodes (also known as

vertices) and edges (also known as links, or connections). Nodes are units of the

graph that receive and send information, whereas edges represent the information

that is transferred between nodes.

Many other real world systems can be represented by graphs. For example,

the transport system is a network of locations (nodes) joined by roads (edges). The

shortest route between two locations is equivalent to finding the shortest path in the

graph. Physiological metabolism can be represented as a graph where metabolic

processes link different molecules. Similarly, the internet is a system of computers

connected by cables. Humans are social beings and one of the largest application of
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Figure 3.6: Map of Königsberg taken from the time Leonard Euler’s Seven Bridges of
Königsberg problem was conceived, showing the four land masses and seven bridges
(green) between them. The problem was to devise a walk through the city which traverses
each bridge once and only once. Euler formulated the problem in abstract terms using
graphs and determined that there was no solution. This was the first formal representation
and analysis of graphs in a mathematical context. Image was taken from Wikipedia [283].

graph theory is in the study of social interactions.

Many fundamental graph theory metrics have been developed in the field of

social networks. Graph theory metrics quantify the topological organisation of a

network at the single node (local metrics) and network (global metrics) levels. Some

commonly used local and global graph theoretical metrics are described below.

The clustering coefficient of a node measures the extent to which the connec-

tions from a particular node are themselves inter-connected, i.e. clustered [335].

The local clustering coefficient is calculated as the number of connections existing

between the nearest neighbours of a node divided by the total number of possible

connections. This formulation is equivalent to the fraction of triangles around a

given node [279]. The global clustering coefficient is calculated as the mean clus-

tering coefficient over all nodes, which is equivalent to the ratio of the number of

connected triangles to possible triangles across the network.

The pathlength describes how close nodes are in terms of network topology

[335]. A path exists between two nodes that can be connected by some combi-

nation of edge traversal. The pathlength between two nodes is calculated as the
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minimum total number of edges traversed to travel through the network from one

node to another. The local pathlength of a node is the average of path lengths that

connect this node to all other nodes. The global pathlength is the mean of all local

pathlengths in a network. The global pathlength therefore gives a general indication

of the number of paths travelled to connect any two nodes in the network.

Betweenness centrality (referred to hereafter as centrality), is a measure of how

frequently a given node acts as an intermediate node when considering all minimum

paths between other nodes in the network [130]. It is the cumulative number of

shortest paths between all other nodes in the network that pass through the given

node, divided by the total number of connections in the network. Nodes with high

centrality, defined as those having centrality two standard deviations above the mean

across nodes, are considered as hubs, as they are particularly important in mediating

communication between other nodes.

The small world phenomenon is a commonly reported characteristic in com-

plex networks and signifies a network topology which is somewhere between a

random network and a regular lattice [161]. A random network will have a rela-

tively short global pathlength and low global clustering coefficient compared to a

regular lattice, which will exhibit higher mean path length and higher clustering.

A small-world network has either a shorter global pathlength than a random net-

work, higher global clustering, or both. The small-worldness of a network can be

calculated as the ratio of global clustering coefficient to global pathlength after both

measures have been normalised by their equivalent values found in randomly gen-

erated networks. To make this calculation, networks of the same number of nodes

and connection density, but a random combination of connections, are generated

and their global pathlength and global clustering coefficient calculated. A small-

worldness, or small-world index (SWI), greater than 1 indicates that the network

has small-world properties.

Brains are networks of neurons connected by synapses. Recently, there has

been huge rise in the popularity of connectomics approaches to studying brain con-

nectivity [48]. Conceptually, the connectome refers to the representation of the
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brains complete physiological wiring- including all neurons and connections. Ob-

serving and understanding this wiring is therefore the ultimate aim of connectomics.

Currently, obtaining wiring diagrams of brain networks at the single neuronal level

is possible only for a relatively small numbers of neurons, since individual neurons

are mapped using serial sections. For instance, the complete connectome of the ne-

matode worm Caenorhabditis elegans, which contains 302 neurons, was recently

mapped in its entirety using electron micrographs of serial sections [342]. The hu-

man brain contains approximately 8.6×1010 neurons [7] which makes reconstruc-

tion of the human brain connectome at the single neuronal level currently infeasi-

ble. However, recent advances in image acquisition and post-processing methods in

diffusion-weighted imaging have permitted the study of the complete ensemble of

macroscopic brain connections in vivo using diffusion MRI tractography.

At the macroscopic scale, the cerebral cortex may be thought of as a network

of hierarchically organised areas, that perform different sensory, cognitive or mo-

tor functions [120, 179]. In this context network nodes are grey matter regions

with distinct function, such as those defined in Brodmann’s or Campbell’s maps

[43, 57]. Edges of macroscopic brain networks are the long range association and

callosal tracts connecting grey matter regions through the white matter. However,

the definition of a functional unit of cortex is not established and differs depending

on the cytoarchitectonic, myeloarchitetonic, connectional or other functional crite-

ria used. In addition, since fiber bundles form physical connections that subserve

directed functional interaction, edges in brain networks can be categorised as either

structural, functional, or effective. Structural connectivity refers to representation of

direct axonal connections between neurons or cortical areas. Functional connectiv-

ity refers to the statistical dependence between the physiological dynamics of brain

regions, and effective connectivity refers to the directed influence that one region

has over another.

Structural brain networks reconstructed using diffusion MRI tractography have

been studied from both the methodological and applied perspective. Studies con-

cerning methodological influences on structural brain networks include the effect
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of acquisition and post-acquisition reconstruction methods on the intra- and inter-

subject reproducibility of edge weights and graph theory metrics [320, 16, 56, 71,

72, 25, 47, 108, 36, 367], the effect of reconstruction methods on anatomical ac-

curacy compared to tract tracing techniques [203, 17, 202, 329, 69], similarity be-

tween reconstruction methods [368, 251], the effect of node scale on graph theory

metrics [359], the relation between structural and functional networks [159], and

those concerning how to statistically analyse brain networks [357, 231, 288, 131,

330, 289, 361, 75]. Applied studies have characterised graph theory metrics in

healthy populations (Fig. 3.7) [151, 166, 291, 143, 272, 167] with respect to devel-

opment [155, 263, 353, 351, 317, 97, 265], ageing [144, 339, 121, 35, 254], gender

[144, 105, 352, 164] and intelligence [204, 121], and across a range of neurological

diseases such as Alzheimer’s disease [211, 338, 284, 258], stroke [83, 189, 46], mul-

tiple sclerosis [287], epilepsy [320, 366, 199], schizophrenia [334, 360, 285, 364],

autism spectrum disorder [201], early blindness [286] and many other diseases

[18, 10, 54].

Figure 3.7: Network representation of brain connectivity for a single subject shown in
lateral and dorsal views. Nodes (red) are cortical ROIs and edges (blue) are tracts connecting
cortical ROIs. Shown is the backbone network derived from minimal spanning tree of the
original network, which was constructed by performing tractography between the 998 ROIs.
Node radii are scaled by the connection strength and edge width is scaled by streamline
density. Image taken from Hagmann et al. [153].

Previous studies have shown that, like many other naturally occurring com-
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plex systems, such as the internet and transport network, the structural network

has a small-world topology [48, 335, 152]. Such networks are characterised by a

similar global pathlength and a higher global clustering coefficient than equivalent

measures found in randomly generated networks with the same node degree distri-

butions. This organisation enables efficient information transfer between any two

elements of the system and simultaneously a high degree of local communication

[335], supporting the concept of segregation (highly interconnected sub-groups of

brain regions, e.g. retinotopic maps) and integration (connections between sub-

groups e.g. language systems) of information transfer in the human brain. The

structural network contains hubs; regions that are highly connected or highly cen-

tral to network communication [143, 153, 286, 246]. Occipital and parietal cortical

regions are frequently highly connected and contain hub regions such as the left and

right precentral cortical gyri and precuneus. In addition, networks have been split

into communities of nodes, also known as modules, defined as sets of nodes which

have relatively higher connectivity within than between communities. Modules are

found hierarchically, with the left and right hemispheres forming the lowest level of

modularity, where modularity is defined as the degree to which the networks com-

ponents can be separated and recombined. Temporal, parietal, occipital and frontal

lobes form the next level in the hierarchy and these are further sub-divided into

smaller communities of highly connected nodes depending on the brain parcella-

tion scheme. A recently described phenomenon of structural brain networks is the

rich club node community. The rich club is a set of nodes that are both highly cen-

tral and highly inter-connected, therefore sharing aspects of hubness and modular

community. Regions such as the precuneus, superior parietal and superior frontal

regions were designated as rich-club nodes in the original study [327], with their

speculated function in improving integration of information transfer and providing

robustness to network damage.

Many studies have demonstrated altered brain network topology in disease

groups compared to controls at both the local and global level. For example, Xu

et al. [346] used diffusion tensor tractography to investigate the topological prop-
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erties of structural networks in a group of medial temporal lobe epilepsy patients

compared to controls [346]. They found that both groups had a balance between in-

tegration and segregation of network topology, as indicated by their small-worldness

properties. However, an increase in global pathlength of medial temporal lobe

epilepsy patients and a decrease in efficiency and nodal degree of some regions

(such as the left superior temporal gyrus, left hippocampus, the right occipital and

right temporal cortices) was observed. Liu et al. [210] examined the white matter

network in a cohort of patients with left temporal lobe epilepsy and mesial temporal

sclerosis compared to healthy controls [210]. By analysing deterministic tractogra-

phy networks using graph theory they found decreases of global and local efficien-

cies and widespread reduction of regional efficiency in ipsilateral temporal, bilateral

frontal, and bilateral parietal areas. This study supports of widespread structural net-

work alterations in medial temporal epilepsy with hippocampal sclerosis. Vaessen

et al. [323] examined large-scale structural and functional networks in childhood

frontal lobe epilepsy [323]. The broad scale of affected cognitive domains suggests

a widespread network pathology which may extend beyond the frontal lobe. They

also found increased clustering and pathlength in functional but not structural net-

works, suggesting that childhood frontal lobe epilepsy may involve a decoupling

between structural and functional networks.

A major challenge in applying network analysis in disease groups is the speci-

ficity of findings of altered connectivity. Many studies have demonstrated increased

global pathlength in disease groups, indicating loss of efficient network connec-

tivity. Another challenge concerns the reproducibility of findings across different

individuals, sites and methodological pipelines. A reproducible finding indicates

that the measure depicts real biological information, but high reproducibility is dif-

ficult to achieve due to imperfect reproducibility of the diffusion-weighted images

[320] and the unknown impact on reconstructed networks when applying a variety

of methodological tools that are combined [251, 368]. Other challenges include

determining the anatomical validity of reconstructed networks [203], the choice of

connection strength threshold [330, 104, 88], normalisation of network measures
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by their null network equivalents [289, 131] and how to seperate effects of different

network measures on one another [289].

3.3 Summary
In this chapter the micro- and macroscopic aspects of brain structural connectiv-

ity, as learnt through classical and contemporary fiber tracing techniques, were de-

scribed. Organisation of neurons into a cortical column, their lateral connections,

and how morphology and connectivity of the cortex define cortical function were

summarised. Next, discovery and characterisation of the major white matter fibers

and the current and contemporary theories about how these relate to brain function

in health and disease were outlined. Finally, the major contributions of diffusion

MRI tractography to contemporary knowledge on human brain connectivity and the

emergence and use of connectomics research was explained.



Chapter 4

Consensus and Reproducibility in

Structural Networks

Structural brain network reconstruction is complex and yields large amounts of

quantitative information relating to inter-region connectivity. Such information

may be used to discover new biomarkers for neurological disease and therefore

it is essential to determine the intra- and inter-subject reproducibility as well as

the agreement across different post-acquisition reconstruction pipelines. This chap-

ter describes the variation in methods used for reconstructing network nodes and

edges. Methods are described to quantify reproducibility and consensus in connec-

tion weights between independent yet contemporary state-of-the-art reconstruction

pipelines with a variety of different cortical atlases. It is shown that both repro-

ducibility and consensus are high across all atlases and density thresholds. The

significance of these findings are discussed with respect to the broader literature re-

lating to reproducibility, inter-pipeline agreement and atlas node scale. The parts of

this chapter concerning consensus between pipelines was recently published [251].

4.1 Introduction
Studying brain structural networks using diffusion MRI tractography has recently

become a popular research topic in neuroscience [48]. In this field the research aim

is to quantify connectivity between grey matter regions via white matter pathways in

vivo, on a global scale, in order to understand the topological organisation of brain
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structure and to relate this to aspects of neurological health and disease. The struc-

tural topology may be analysed by characterising the brain as a graph, whereby sets

of network nodes, representing grey matter regions, transfer information between

one another via network edges, representing connecting axonal pathways.

It has been suggested that the organisation of the structural network may reflect

neurological phenotype. For example, network metrics such as clustering coeffi-

cient and pathlength have been related to the effect of age [106], gender [144] and

IQ [204]. In addition, network alterations have been observed in neurological dis-

eases such as Alzheimer’s disease [211, 284], epilepsy [322, 365] and schizophrenia

[328, 360, 334], meaning such metrics may become useful as topological biomark-

ers of brain integrity or pathology. However, reconstructing brain network nodes

and edges is both a conceptual and practical challenge and there is little agreement

between studies of how exactly these should be defined.

Nodes of the brain network, which represent spatially distinct regions of grey

matter, may be defined using different parcellation schemes and scales. A com-

mon parcellation technique has been to warp the structural image to an anatomical

template, such as the AAL atlas [318], where the grey matter regions have been

manually labelled in a single representative subject [143, 204, 328, 334]. Alterna-

tive warping strategies have been applied; for example, those utilising cortical shape

and curvature information [339], or multiple template propagations [272]. In addi-

tion, different templates may be used to generate different parcellation schemes.

Most parcellations used in whole-brain structural network studies have been rel-

atively coarse, with around 100 brain regions. Because of the uncertainty con-

cerning where to place region boundaries, some studies have divided parcellated

regions into smaller pseudorandom patches [151, 317], or performed network anal-

ysis across a range of parcellation scales [153, 154, 109]. Regions defined in struc-

tural space must then be accurately warped to diffusion space in order to estimate

the inter-regional connectivity, and a number of registration schemes are available.

Edges of the structural brain network, which represent white matter tracts

between two grey matter regions, are frequently quantified based on the number
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of connecting fibers. As such, the issue of which fiber model, initialisation and

tracking technique to use arises. The diffusion tensor model [15], combined with

deterministic tracking, is a common technique for reconstructing network edges

[286, 339, 155, 9]. Multiple fibers may be represented using multiple diffusion ten-

sors, the orientation distribution function (ODF) [336], multi-compartment models

[22] and the fiber orientation distribution (FOD) [308]. The ball and sticks multi-

compartment model is one example of a popular fiber model employed to track

through multiple fiber populations in structural network studies [144, 105]. In con-

trast to multi-compartment models, the FOD representation assumes an identical

signal response for each fiber population and does not employ model fitting. Deter-

ministic tracking determines inter-regional connectivity by following the dominant

fiber orientation whereas probabilistic tracking samples directions from a distribu-

tion of orientations to produce a connectivity distribution.

In networks obtained using probabilistic tractography, a continuous measure

of connectivity is generated which reflects, to some degree, the probability of con-

nection between all pairs of brain regions. A probability threshold may then be

applied to produce a binary network, where connections are either absent or present

[320]. However, assigning importance to connections is a challenge and the choice

of threshold affects the occurrence of false positive and negative connections, result-

ing in a trade-off between sensitivity and specificity of the connections [88, 203].

Thresholding also has an intrinsic impact on the network topological measures

[330].

Given the complexity and number of steps involved in network reconstruc-

tion from the raw diffusion MRI images, it is important to provide an assessment

of consensus in networks obtained from alternative reconstruction pipelines which

vary not in just one or two components but in the entire reconstruction pipeline (i.e.

the parcellation, registration and fiber model). This would also enable some assess-

ment of the potential impact in swapping and substituting individual components of

the reconstruction.

Furthermore, pipelines may vary in reproducibility of structural network con-



86 Chapter 4. Consensus and Reproducibility in Structural Networks

nection weights or derived graph theoretical measures. A number of recent pub-

lications have assessed the impact of methodological choice on reproducibility of

structural brain networks [320, 16, 71, 56]. Reproducibility has been investigated,

using repeated diffusion-weighted scanning, with respect to both diffusion signal

acquisition scheme [320, 16], parcellation scheme and scale [16, 56] and connec-

tivity weighting scheme [71]. Vaessen et al. [320] reported high reproducibility for

some network metrics and found that the diffusion encoding scheme had little ef-

fect on their reproducibility [320]. Bassett et al. [16] averaged reproducibility over

different parcellation schemes and scales in diffusion tensor and diffusion spectrum

acquisitions [16]. They found that reproducibility was higher using diffusion tensor

acquisitions and that topological network properties, such as small-worldness and

modularity were preserved across different parcellation schemes and scales. Cam-

moun et al. [56] examined reproducibility across multiple node scales by manually

merging regions in a small group of subjects. They found that connection repro-

ducibility was dependent on node scale, as higher node scale networks had lower

reproducibility [56].

In this study, we assessed the consensus and reproducibility of structural con-

nectivity networks obtained from two alternative pipelines across a range of network

density thresholds, by merging alternative parcellations to a common and equivalent

node scale. This allowed us to investigate similarity between independent network

reconstructions on a connection-wise basis and to identify the underlying brain con-

nections occurring most robustly in both pipelines. Our results suggest it may be

useful to apply multiple pipelines to obtain structural brain networks from diffusion

data and to employ the comparison framework described here to identify the most

important connections.

4.2 Methods

A summary of the structural network reconstruction pipeline is shown in Fig. 4.1.
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Figure 4.1: Summary of network reconstruction stages applied to structural and diffusion
images for P1 and P2. The pipeline stages are shown on the left and the alternative im-
plementations of the methods are shown inside the boxes. Arrows indicate the passage
of merged (dark arrows) and native (light arrows) atlases through the pipeline stages (red
and blue refer to Hammers and Desikan-Killiany atlases, respectively). Nodes were de-
fined by registration of the cortical parcels to diffusion space. Edges were defined by per-
forming tractography from the parcel boundary through the fiber orientations. Note that
the whole-brain probabilistic tractography methods differed only in relation to the recom-
mended settings for the software used to track through the fiber orientations. The network
construction stage calculated the connecting fiber density between all cortical parcel pairs
across the entire cerebral cortex and was identical for both pipelines. Applying these stages
to the merged and native atlases resulted in comparisons between pipelines at three node
scales; the merged atlas scale (34 nodes, dark arrows), Hammers atlas scale (44 nodes, light
red arrows) and Desikan-Killiany scale (68 nodes, light blue arrows). We also applied the
registration and whole-brain tractography pipelines to the AAL atlas (not shown).
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4.2.1 Subjects and Images

Twenty-eight young healthy adult subjects (16 male, mean age ± SD 28.5 ± 3.9

years) participated in this study. Subjects had no brain abnormalities at the time

of scanning, as determined by examination of their structural scan by an expert

radiologist. Two T1-weighted images of 1× 1× 1 mm resolution were acquired

sequentially with a 3D Fast Low-Angle Shot (FLASH) sequence (176 contigu-

ous sagittal slices, 256 x 224 mm FOV, TR=11 ms, TE=4.94 ms and α=15◦) on

a 1.5 T Siemens Avanto MRI scanner at Great Ormond Street Hospital, London.

A diffusion-weighted echo planar sequence (TR = 7300 ms, TE = 81 ms) with 60

non-collinear diffusion directions (b = 1000s/mm2) was used to acquire diffusion-

weighted images of 2.5×2.5×2.5 mm and three un-weighted images (b=0 images).

The diffusion-weighted sequence was repeated three times for each subject in a sin-

gle scanning session.

4.2.2 Image Pre-processing

DICOM images were converted into NIfTI format using TractoR [74] and the brain

was extracted from all images using FSL’s brain extraction tool [290]. In order

to increase the signal to noise ratio of the structural image, the two acquired T1-

weighted images were registered and averaged in Freesurfer v5.1.0 [270]. The

diffusion-weighted volumes were corrected for eddy-current induced distortions by

affine registration to an unweighted reference image using the diffusion-specific

FSL FDT algorithm [169].

We chose to compare two alternative state-of-the-art reconstruction pipelines

(these two pipelines will hereafter be referred to as P1 and P2, Fig 1). Both re-

constructions had similar capabilities but varied with respect to the details of the

cortical parcellation, registration and probabilistic fiber model method.

4.2.3 Cortical Parcellation

To define network nodes, the cortical grey matter of the averaged T1-weighted im-

age was parcellated into regions using automated software. P1. NiftySeg was used

to parcellate the structural image into 44 cortical regions (22 per hemisphere), as
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defined by the Hammers Atlas [156]. The parcellation algorithm first labels brain

regions by propagating a set of manually labelled T1-weighted images to the struc-

tural image [59, 237]. The LoAd tissue segmentation algorithm was then applied

to the structural image to obtain the cortical grey matter of the parcellated regions

[60]. P2. Freesurfer was used to parcellate the structural image into 68 cortical

regions (34 per hemisphere), as defined by the Desikan-Killiany Atlas [99]. The

parcellation algorithm assigns a neuroanatomical label to each location on a corti-

cal surface model of the image, based on probabilistic information from a manually

labelled training set [122].

4.2.4 Native and Common Node Scale Parcellations

The pipelines employed atlases with a different number of brain regions, preventing

a direct connection-wise comparison between them. Therefore, parcels in the native

atlases were merged to a common node scale (Fig. 4.2). The number of merges was

the minimum required to give correspondence between the atlases and resulted in 34

brain regions (17 per hemisphere). Parcels in the Desikan-Killiany atlas (P2) were

merged across the entire cortex based on anatomical correspondence to their equiv-

alent Hammers atlas (P1) parcels. For example, the pars opercularis, pars orbitalis

and pars triangularis parcels in the native Desikan-Killiany atlas corresponded to

the inferior frontal gyrus parcel in the native Hammers atlas and therefore in both

of the merged atlases. The Desikan-Killiany and Hammers atlases differed funda-

mentally in temporal lobe regions, meaning an equivalent merging of parcels could

not be found. Therefore, the temporal lobe is itself considered as a single node in

both merged parcellations (Fig. 4.2 and 4.3). The merging process did not result

in identical parcellations. The remaining differences in common scale parcellations

were due to alternative border criteria as well as alternative parcellation algorithms.

Therefore, in addition to the native Desikan-Killiany and Hammers atlases, we also

obtained the two merged 34 node scale versions of each atlas for each subject (Fig.

4.3).

Each common scale parcellation was registered to diffusion space (as described

below) using the registration implementation for the corresponding pipeline (e.g.
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following the P1 registration-tractography for the merged P1 parcellation). We also

applied the paired registration-tractography implementation from each pipeline to

both of the native atlases. We further tested the robustness of our results by apply-

ing each registration-tractography implementation to the Automated Anatomical

Labelling (AAL) Atlas parcellation, which had 78 cortical regions [318].

Figure 4.2: Merging cortical parcels of P2 parcellations. The native scale P2 parcellation
(68 parcels) is shown on the left and the merged P2 parcellation (34 parcels) is shown on
the right. The merging pattern was identical for both hemispheres and therefore only the
left hemisphere is shown. The colour scheme of brain regions is as in Fig. 4.3. Lines repre-
sent merging of native scale parcels (left) to their equivalent common scale parcels (right).
Coloured vertical lines correspond to regions in the temporal (purple), frontal (green), pari-
etal (blue), occipital (red), insula (light-blue) or limbic (yellow) lobes. Native scale P1
parcellations (44 nodes) were merged to the common scale parcellation by merging all tem-
poral lobe parcels.

4.2.5 Registration of Cortical Parcels to Diffusion Space

The structural and diffusion-weighted images were co-registered in order to define

the cortical parcels of interest in diffusion space. The registration field was deter-

mined as follows. An affine registration was used to register the first b=0 image

to the averaged T1-weighted image. The T1-weighted image was then non-linearly

registered to the b=0 image using the inverse of the transformation acquired in the

previous stage as a starting transformation. The transformation field was retained

and applied to the cortical parcellation to transform parcels to diffusion space. The

categorical nature of the labels was preserved through a nearest neighbour resam-

pling scheme. P1. NiftyReg was used to perform the linear and non-linear reg-

istrations using the default settings [280, 237]. NiftyReg used normalised mutual
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Figure 4.3: Representative cortical parcellations of P1 and P2 at the native and common
node scale. Temporal lobe regions in P1 native scale parcellations (P1-44, far left) were
merged, resulting in a lower scale parcellation (P1-34, middle right). Selected regions across
the entire cerebral cortex in P2 native scale parcellations (P2-68, middle left) were merged
(P2-34, see Fig. 4.1). This resulted in a common and anatomically equivalent parcellation
scale of 34 nodes for both P1 and P2 networks.

information to calculate image similarity and a bending energy regularisation with

cubic B-spline parameterisation for the non-linear warping. P2. The linear and non-

linear registration was performed by FSL FLIRT and FNIRT, respectively [169].

Normalised cross correlation and sum-of-squared difference was used to calculate

image similarity for the linear and non-linear warping stages, respectively. The

membrane energy was used to regulate the non-linear warp field which was param-

eterised as a cubic B-spline scheme.

4.2.6 Fiber Orientations

The orientations of fiber bundles at each voxel were inferred using one of two meth-

ods. P1. CSD was applied to estimate the underlying FOD in each voxel, using

MRTrix [309]. CSD assumes that the observed diffusion signal is a convolution of

fiber orientations and a diffusion signal response function, meaning the fiber ori-

entations may be extracted by spherical deconvolution of the diffusion signal. The

maximum spherical harmonic order for the deconvolution was set to 8. P2. A ball

and two sticks multi-compartment fiber model was fitted to the diffusion data, using

the Bayesian Estimation of Diffusion Parameters Obtained using Sampling Tech-

niques (BEDPOSTX) algorithm in FSL. The BEDPOSTX algorithm uses Markov

chain Monte Carlo sampling to estimate the uncertainty in fiber orientations [23].
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4.2.7 Probabilistic Fiber Tractography

The paths of fiber trajectories in the brain were reconstructed by seeding 100 proba-

bilistic fibers from the interior boundary voxels of each cortical parcel. The interior

boundary voxels were the intersection of the dilated binary cortical parcellation with

the fiber propagation mask (defined for each pipeline below). P1. Fibers were prop-

agated using the default settings in MRTrix [307]. The sampling interval was 0.2

mm, maximum curvature threshold was 60◦ and minimum FOD amplitude thresh-

old for tracking through a voxel was 0.1. The propagation mask was defined as

the union of white matter, sub-cortical grey matter and ventricle regions from the

LoAd tissue segmentation provided by NiftySeg. P2. The default settings in FSL

ProbTrack algorithm were used to determine the fiber trajectories [22]. The sam-

pling interval was 0.5 mm and stopping criteria meant that fibers terminate if they

curve by more than 80◦. The propagation mask was defined as the white matter

segmentation provided as part of the Freesurfer output, and included white matter,

sub-cortical and ventricular regions.

Note that P1 initiates fibers by uniform sampling of boundary voxels with a

FOD amplitude greater or equal to 0.2, whereas P2 initiates fibers from the centre

of each boundary voxel. Also, P1 terminates fibers if the FOD amplitude is below

0.1. For both pipeline tracking schemes, fibers were terminated immediately af-

ter leaving the propagation mask so that their cortical parcel connections could be

recorded.

4.2.8 Network Construction

Network construction and analysis was performed using the R programming lan-

guage [301]. Cortical parcels were represented as network nodes and the fiber con-

nections between them as edges. Fibers connected node pairs if their end-point

coordinates terminated within two distinct cortical parcels. The connection weight

between two cortical nodes was defined as the density of connecting fibers (as in

[72]), calculated as the sum of connecting fibers divided by the mean volume of the

seed (boundary) voxels adjacent to the two parcels (boundary voxels were assigned

to the nearest parcel by Euclidean distance). Performing this calculation for all
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fibers produces an N-by-N undirected matrix of connection weights, where N is the

number of nodes in the parcellation (either 34, 44, 68 or 78). The weighted cortical

connection matrix was calculated for the repeat diffusion scans of all subjects. The

subject mean weighted connection matrices (across the three repeat diffusion scans)

were calculated for all subjects by averaging each weight across all scans.

4.2.9 Consensus between Reconstruction Pipelines

Convergence between alternative pipelines was investigated in binary networks

of equal density. Binary networks were generated by thresholding the subject

weighted networks and convergence was quantified for all possible densities in the

range [0,1], by selecting the x highest ranked connections in the weighted matrix,

for x = 1 : c, where c is the total number of possible connections (calculated as

(N2−N)/2). Connections of equal weight (predominantly weights of value 0), were

randomly assigned a rank, meaning connections were chosen randomly if the net-

work density threshold intersected connections of equal weight. Convergence was

quantified between the pair-wise subject binary networks using the Dice Similar-

ity Coefficient (DC). DC was defined as the proportion of intersecting connections

relative to the total number of connections at that density. This measure is identi-

cal to the percentage convergence measure of network similarity used in [145] for

networks of equal density.

Our investigation was interested in similarity between pipelines independent

of network density effects (denser networks have a higher DC by chance). There-

fore, at each network density, we computed a one sample t-statistic between the

observed DC across all subjects to the expected DC value, using a two-tailed t-

test. The expected DC value was equal to the network density, d, as the number of

connections expected to agree in two random binary networks (d.d.c) was divided

by the total number of connections (d.c). Our null hypothesis was that similar-

ity between pipelines was equal to that by chance, given the density. The p-value

computed from this t-statistic was our estimate of the significance of the similar-

ity. To estimate the dependency of the significance on our sample population, we

bootstrapped the subjects 1000 times at each network density. As lower p-values
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represented higher similarity, we inspected the negative logarithm of the p-value to

obtain a global maximum significance and corresponding network density where

the binary network similarity was most reliably different from random.

4.2.10 Network Properties of Consensus Networks

The binary networks corresponding to the peak convergence threshold will hereafter

be referred to as ‘consensus networks’ for convenience. The graph theoretical prop-

erties of the consensus networks were calculated for all subjects using the igraph

package [84] in the R programming language. The global properties of character-

istic pathlength [335] and global efficiency [193], and the local properties of local

efficiency [193], clustering coefficient [244] and assortativity [243], were calculated

as described in [279].

4.2.11 Reproducibility of Structural Networks

Variance of connection weights in each atlas and each pipeline were calculated us-

ing a random effects model [73]. This is a linear model which assumes that there

are two levels of variance (intra and inter-subject) that explain the observed data

with respect to an overall population mean. The connection weight for the jth scan

of the ith subject, ai j, can be described as ai j = µ + δi + εi j, where δ ∼ N(0,σ2
b )

and ε ∼ N(0,σ2
w).

The intra- and inter-subject variances (σ2
w and σ2

b , respectively) and overall

population mean (µ) were fitted using a restricted maximum likelihood estimation,

implemented using the ‘lmer’ function of the ‘lme4’ package in the R programming

language [19].

Reproducibility of entries in the cortical weighted matrix was quantified using

the intra-subject and inter-subject Coefficient of Variation (CV, σ2
w/µ and σ2

b/µ ,

respectively) and the Intra-class Correlation Coefficient (ICC, σ2
b/(σ

2
b +σ2

w)). The

CV measures the standard deviation as a fraction of the mean, while the ICC mea-

sures the ratio of between subject variance to total variance (defined as the intra-

subject plus inter-subject variance). An ICC above 0.5 indicates good intra-subject

reproducibility, as the inter-subject variance is greater than the intra-subject vari-
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ance. Reproducibility was assessed in the common scale pipelines and native

pipelines. Reproducibility was examined across density thresholds by selecting

those supra-threshold connections in the subject grand mean weighted matrix.

4.3 Results

4.3.1 Consensus Between Reconstruction Pipelines

The raw weights matrix represents the connecting fiber density between cortical

region pairs across the entire cerebral cortex. The connecting fiber density was

highly correlated between subject mean networks obtained from alternative recon-

structions in terms of both rank and weight (34 nodes: Spearman ρ = 0.675 ± 0.06,

Pearson r = 0.630 ± 0.061, 44 nodes: Spearman ρ = 0.677 ± 0.076, Pearson r

= 0.702 ± 0.085, 68 nodes: Spearman ρ = 0.586 ± 0.095, Pearson r = 0.632 ±

0.085), confirming that these pipelines had yielded similar networks.

A general trend of decreasing DC with decreasing network density was ob-

served. The grand mean DC across all subjects and densities was 0.741 ± 0.165,

0.759 ± 0.132 and 0.724 ± 0.135 for the 34, 44 and 68 atlas scales, respectively.

At a network density of 1 the DC was 1 as all connections existed in both pipelines.

Clearly, the DC should be interpreted in the context of the expected similarity of

random networks at the same density (Fig. 4.4).

The networks were significantly more similar between pipelines than by

chance across all density thresholds (Fig. 4.5). Similarity increased approximately

linearly with increasing threshold (corresponding to a decreasing network density),

until very high thresholds were reached, where a peak similarity was observed (at

network densities between 0.1 - 0.2, depending on the atlas), after which similarity

decreased sharply towards 0. The peak similarity threshold resulted in binary net-

works that were most highly similar between the pipelines whilst accounting for the

expected similarity at this density by chance. The most highly significant similarity

was found at densities of 0.196, 0.161 and 0.106 (110, 152 and 242 connections) for

node scales of 34, 44 and 68, respectively. The magnitude of the significance was

similar between atlases of different scales (− log p ∼= 75) at the peak similarity
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Figure 4.4: Normalised dice similarity coefficient between pipelines across density thresh-
olds for all subjects. The normalised similarity coefficient was calculated by subtracting
the expected from the observed dice coefficient at each density. Shown are the the sub-
ject normalised dice coefficients (left) and the mean normalised dice coefficient ± standard
deviation (right) for pipelines using the Common (top), Hammers (middle-top), Desikan-
Killiany (middle-lower) and AAL (lower) atlases. A peak normalised dice coefficient is
observed for densities in the region of 0.05-0.20 for all atlases.
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threshold.

Figure 4.5: Similarity between P1 and P2 networks across density thresholds using atlases
at three node scales. Significance of similarity was calculated by comparing the distribution
of within-subject DC to the expected DC by chance, given the density of the networks.
Shown is the mean negative log p-value of the DC between binary networks thresholded at
a given density. The within-subject DC’s were bootstrapped to obtain a standard error on
the mean (dashed lines). A global peak similarity was found at a density of 0.196, 0.161,
0.106 and 0.142 for the Common (34 nodes), Hammers (44 nodes), Desikan-Killiany (68
nodes) and AAL (78 nodes) atlases, respectively.

Similar results were obtained using the AAL atlas. The weighted networks

were highly correlated between pipelines in terms of rank and weight (Spearman ρ

= 0.703 ± 0.161, Pearson r = 0.692 ± 0.162) and the grand mean DC was 0.701

± 0.114 (Fig. 4.4). The peak similarity was observed at a density of 0.142 (427

connections), where − log p was 48.9 (Fig. 4.5).

The paths of fibers underlying peak convergent connections are shown in Fig.

4.6. Fibers representing the inter-lobe connections, intra-lobe connections and

inter-hemispheric connections are shown for a representative subject reconstructed

through the P1 pipeline. By visual inspection, it can be appreciated that the spatial
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distribution of fibers corresponds with known major anatomical tracts according to

previous literature [62]. Major white matter tracts, such as the inferior longitudinal

fasciculus, superior longitudinal fasciculus, cingulum and arcuate, were represented

by fibers underlying inter-lobe connections. On the other hand, fibers representing

intra-lobe connections appeared to be mostly cortical U-fibers.

Figure 4.6: P1 fibers underlying convergent connections in the left hemisphere of a rep-
resentative subject. Fibers are coloured by their network connection. (a) Inter-lobe fibers
viewed from the medial aspect. (b) Intra-lobe fibers viewed from the medial aspect. (c)
Inter-hemispheric fibers shown from the coronal aspect. The paths of fibers underlying con-
vergent inter-lobe connections agrees with that of major anatomical tracts, such as the ILF
(orange) and cingulum (green). Convergent intra-lobular connections were mostly repre-
sented by short-range cortical U-fibers. Convergent inter-hemispheric fibers travel via the
corpus callosum and connected homotopic cortical regions, such as the superior, middle and
inferior frontal gyri (green). For visual clarity, a maximum of 200, 50 and 100 fibers from
the subset of whole-brain tractography fibers are shown per connection for (a), (b) and (c),
respectively. Also, only fibers greater than 7 cm are shown for (a) and (b) and greater than
10 cm for (c).

4.3.2 Network Properties of Consensus Networks

The convergent connections of the consensus networks are summarised in Fig. 4.7.

The connections that agreed between pipelines tended to be similar across subjects.

The convergent connections, which had high hemispheric symmetry, were primarily

between ipsilateral intra-lobe regions and between bilateral homotopic regions. The

left and right insula gyri were the most highly connected nodes in the consensus

network.

The density of the consensus networks decreased when comparing lower to

higher node scales atlases, whereas the number of connections increased. The graph

theoretical metrics of global pathlength, clustering coefficient, global efficiency,

local efficiency and assortativity, which were calculated for all consensus networks,
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Figure 4.7: Prevalence of convergent connections across subjects at the peak convergence
density. The prevalence is shown for the common (left), Hammers (middle-left), Desikan-
Killiany (right-left) and AAL (right) atlases. Convergent connections were defined as the
intersection of subject networks thresholded at the peak convergence density obtained from
our bootstrap statistical analysis. The node lobe memberships are indicated by the adjacent
colour bars, as in Figure 2. Colours represent the temporal (purple), frontal (green), parietal
(blue), occipital (red), insula (turquoise) and cingulate (brown) lobes.

are shown in Table 4.1. Graph theoretical properties of the consensus networks were

similar between pipelines employing atlases at the same node scale, whereas some

differences were found in graph theoretical properties between atlases of different

node scales. The global pathlength and clustering were not significantly different

between pipelines at the same scale but tended to increase and decrease in higher

node scale atlases, whereas global efficiency tended to decrease. Assortativity was

less stable between pipelines and showed no clear trend with node scale. The AAL

atlas consensus networks had a relatively high density considering the number of

network nodes in the parcellation, compared to other atlases.
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4.3.3 Reproducibility of Structural Networks

The distribution of reproducibility metrics for all cortical associations was not sig-

nificantly different between common and native scale networks or between alterna-

tive reconstruction pipelines (Fig. 4.8, density = 1). However, there was a trend of

increasing reproducibility (higher ICC and lower intra- and inter-subject CV) when

the density of the network decreased (i.e. weaker associations were removed), with

lower vs. higher scale networks, and for P1 vs. P2 networks.

We examined reproducibility metrics across a range of density thresholds of

the group networks for both common and native node scales. For both P1 and P2

pipelines, reproducibility metrics improved approximately linearly with decreasing

density. A trend for higher reproducibility for P1 vs. P2 networks and common

scale vs. native scale connections was observed when comparing results across

equivalent densities.

At the common node scale, the median ICC increased from 0.74 to 0.91 for P1

connections and from 0.64 to 0.73 for P2 connections. Intra-subject CV decreased

from 0.56 to 0.07 for P1 networks and from 0.97 to 0.21 for P2 networks, while

inter-subject CV also decreased from 0.93 to 0.25 for P1 networks and from 1.26 to

0.28 for P2 networks as density decreased. Using the Hammers Atlas, the median

ICC increased from 0.72 to 0.89 for P1 connections and from 0.61 to 0.74 for P2

connections as density decreased. Intra-subject CV decreased from 0.66 to 0.12

for P1 networks and from 1.08 to 0.18 for P2 networks, while inter-subject CV

also decreased from 1.06 to 0.35 for P1 networks and from 1.28 to 0.35 for P2

networks as density decreased. With the Freesurfer Atlas, the median ICC increased

from 0.65 to 0.88 for P1 connections and from 0.55 to 0.77 for P2 connections as

density decreased. Intra-subject CV decreased from 0.93 to 0.16 for P1 networks

and from 1.43 to 0.27 for P2 networks, while inter-subject CV also decreased from

1.21 to 0.49 for P1 networks and from 1.45 to 0.48 for P2 networks as density

decreased. Using the AAL Atlas, the median ICC increased from 0.64 to 0.86

for P1 connections and from 0.51 to 0.77 for P2 connections as density decreased.

Intra-subject CV decreased from 0.95 to 0.18 for P1 networks and from 1.54 to
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Figure 4.8: Reproducibility metrics for P1 (blue) and P2 (red) connections over a range
of network densities of the group networks. (Left) ICC. (Middle) Intra-subject CV. (Right)
Inter- subject CV. Lines and shaded area show the median and interquartile range of the
metric for all supra-threshold associations for the Merged (top), Hammers (middle-top),
Desikan-Killiany (middle-lower) and AAL (lower) Atlases. Reproducibility increased with
decreasing density for both pipelines in all atlases. Reproducibility was high across the
range of densities for both pipelines and all atlases, as shown by ICCs generally above 0.6.
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Figure 4.9: Median reproducibility metrics for P1 and P2 connections for all atlases over
a range of network densities of the group networks. (Left) ICC. (Middle) Intra-subject CV.
(Right) Inter- subject CV.

0.24 for P2 networks, while inter-subject CV also decreased from 1.22 to 0.45 for

P1 networks and from 1.21 to 0.42 for P2 networks as density decreased.

Although the reproducibility metrics varied approximately linearly with chang-

ing density, some trend of instability in the median reproducibility value was ob-

served at very low densities. This effect was observed at densities of below approx-

imately 0.05 for the four atlases (Fig. 4.9).

It is interesting to compare the reproducibility of consensus network con-

nections in the four atlases, as these represent the set of most highly connected

and highly convergent network connections between the alternative reconstructions

(Fig. 4.10). In particular, the common node scale allowed us to directly compare

connections and their reproducibility across different pipelines whilst controlling

for the effect of node scale. At the local peak convergence density, reproducibility

of convergent connections was high for both P1 and P2 networks across all atlases.

With the merged atlas, the median ICC was 0.89 and 0.73 for P1 and P2 networks,

respectively. The median intra-subject CV was 0.17 and 0.34 for P1 and P2 net-

works, whereas the median inter-subject CV was 0.45 and 0.54 for P1 and P2 net-

works, respectively. In the Hammers atlas, the median ICC was 0.87 and 0.74 for

P1 and P2 networks, respectively. The median intra-subject CV was 0.18 and 0.32

for P1 and P2 networks, whereas the median inter-subject CV was 0.45 and 0.57 for
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P1 and P2 networks, respectively. Using the Freesurfer atlas, the median ICC was

0.85 and 0.75 for P1 and P2 networks, respectively. The median intra-subject CV

was 0.24 and 0.38 for P1 and P2 networks, whereas the median inter-subject CV

was 0.57 and 0.68 for P1 and P2 networks, respectively. With the AAL atlas, the

median ICC was 0.84 and 0.76 for P1 and P2 networks, respectively. The median

intra-subject CV was 0.31 and 0.39 for P1 and P2 networks, whereas the median

inter-subject CV was 0.73 and 0.7 for P1 and P2 networks, respectively.

Figure 4.10: Reproducibility metrics for peak convergence connections. The median and
interquartile range of ICC, intra-subject CV and inter-subject CV for all peak convergence
connections in P1 (red) and P2 (blue) networks are shown for the Merged, Hammers,
Freesurfer and AAL Atlases. There was a trend for increasing reproducibility (higher ICC,
lower intra- and inter-subject CV) for P1 networks. Whiskers extend to the most extreme
data point which is no more than 1.5 times the interquartile range from the box.

4.4 Discussion
In this study, we quantified the convergence between probabilistic structural net-

works obtained using two independent state-of-the-art reconstruction pipelines over

a range of network density thresholds, by merging alternative parcellation schemes

to an anatomically equivalent and common node scale. We also replicated our ex-

periment using both the native parcellations and an alternative (AAL) parcellation

scheme. In addition, the reproducibility of all pipelines was quantified. Our results

show there is high agreement between the two alternative reconstruction methods,

as demonstrated in the merged and native atlases. We observed a global peak con-
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vergence corresponding to the brain network that occurred most robustly between

the two methods. The graph theoretical properties of these ‘consensus networks’

were highly similar between pipelines employing the same atlas but showed some

variation across atlases at different node scales. Fibers representing these networks

recovered the majority of major white matter tracts in all atlases, giving us con-

fidence that the network has reasonably high anatomical validity. Reproducibility

increased with decreasing network density, and there was a trend for greater repro-

ducibility of P1 vs. P2 networks and when using atlases at lower node scales. The

consensus network connections were also highly reproducible.

4.4.1 Consensus Between Reconstruction Pipelines

Individual components of the structural network reconstruction pipeline can impact

on network anatomical accuracy or the network metrics, meaning the combinato-

rial choice of which complete reconstruction pipeline to employ is of great impor-

tance. Previous studies have found that graph theoretical properties of binary struc-

tural brain networks, such as hierarchical modularity and small-worldness, were

similar across alternative acquisition and parcellation methods (at the same node

scale) [16], as well as between alternative connection weighting schemes [203, 71].

However, the agreement between completely independent reconstruction methods

of similar capability has not been previously addressed. We found that the mean

DC across all subjects and densities was significantly higher than by chance for

all atlases, meaning that alternative reconstructions yielded connection weights that

were ranked similarly across the entire rank profile. We therefore observed a highly

significant agreement between structural networks obtained from two independent

state-of-the-art reconstruction pipelines for the first time. This is an important find-

ing since it demonstrates agreement between individual network connections as op-

posed to network topological measures, which may have resulted from a wider array

of connection configurations. Furthermore, we can have some confidence that the

networks are robust to swapping individual stages between the pipelines to some

degree.

A high similarity may be expected given the similar capabilities of the
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pipelines. High correlation in connection rank profiles is an intrinsic property of

probabilistic tractography studies, whereby probabilistic fibers tend to disperse from

the true anatomical tracts as they encounter complex fiber architectures or noise

in the diffusion data. This leads to densely populated network weights where the

connectivity profile of neighbouring nodes is highly correlated. This may be the

primary reason for such a high convergence across the entire density range, even

at very low density thresholds (Fig. 4.5). Although highly significant relative to

random networks, the similarity of AAL atlas pipelines was lower than the other

atlases. This was due to a number of subjects’ weighted networks having a rela-

tively high number of non-connected (and therefore randomly ranked) region pairs,

leading to a lower convergence across thresholds (Fig. 4.5).

A global maximum convergence across thresholds was identified and this cor-

responded to a sparse network with approximately 100-300 connections (network

densities of 0.1 -0.2), depending on the atlas. We propose that the connections in

the consensus network correspond highly with the underlying anatomical substrate

compared to other thresholds. Therefore, for studies employing similar network

reconstruction methods, we speculate that this is an appropriate threshold to ap-

ply to the weighted networks for balancing sensitivity and specificity to true brain

connections.

The convergence decreased sharply towards zero when the network density

was below the peak convergent density. This may be explained by factors such as

the relatively large impact of rank mismatches in connections between pipelines

(due to differences in their respective sensitivity) when the number of connections

is low, or a homogeneous weight distribution of the highest ranking connections

leading to effectively random ranking and lower convergence.

de Reus and van den Heuvel [88] recently assessed the impact of threshold on

the sensitivity and specificity of brain network connections [88]. Using the Desikan-

Killiany atlas with 68 nodes, they estimated the number of true positive connections

as 420.7 (corresponding to a network density of 18.5%), which is slightly higher

than our study. This difference could be explained by their use of a different ex-
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perimental design, whereby a model of the true positive distribution was fitted to

the prevalence distribution calculated across subject binary networks obtained from

deterministic tractography. It is interesting to note that while de Reus and van den

Heuvel [88] and our study used different pipelines and analysis methods, the esti-

mate of the number of brain connections is of a similar magnitude. The number

of connections in the consensus networks was 110, 152 and 242 (corresponding to

network densities of 0.196, 0.161 and 0.106) for atlas of node scale 34, 44 and 68,

respectively. This trend of an increasing number of connections occurring consis-

tently between pipelines at higher node scales may be expected given the increase

in possible region pairs. Similarly, de Reus and van den Heuvel [88] found that

the estimated number of true positive connections increased in the Harvard-Oxford

atlas, which has 96 nodes.

Other studies have investigated the effect of threshold on anatomical validity

of structural networks, by utilising a ground truth for particular sub-components of

the network. Li et al. [203] investigated the effect of threshold on the sensitivity

and specificity of structural network connections, using connectivity data derived

from post-mortem tract tracing techniques in the macaque brain as a ground truth.

The performance of several tractography strategies was assessed by analysing the

area under the receiver operating characteristic curve. However, their study was

limited to a subset of brain regions due to limited availability of tract tracing data in

macaque brain and an optimal threshold for performing network analysis was not

reported. Bastiani et al. [17] used a network ‘quality control’ technique to analyse

the sensitivity and specificity of brain network connections across thresholds for

deterministic tractography reconstruction techniques [17]. However, their sensitiv-

ity and specificity metrics measured connectivity between sets of regions known to

be connected according to a priori information and therefore may have had limited

applicability to other connections across the network. In contrast to these works,

our study utilised information across all brain region pairs and compared two in-

dependent pipelines as opposed to performing a more focussed study on individual

fiber tractography reconstruction stages.
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We found high similarity in graph theoretical properties of the consensus net-

works when comparing those derived from the same node scale atlas. This may

be expected, given the convergence of connections at the peak convergence density

was above 65%, and that the networks had the same connection density, which is

known to significantly impact upon the graph theoretical metrics [330]. Despite

high similarity across alternative pipelines at the same node scale, some graph the-

oretical properties were significantly different across node scales. Most notably,

the number of connections in the consensus network increased and density of the

network decreased in atlases at higher node scales. This could be due to division

of connections between multiple parcels at higher node scales due to an increase in

the number of possible regional pairs.

We found that the peak convergence density using the AAL atlas was similar

to that of the Desikan-Killiany atlas, despite the AAL atlas having a higher node

scale. This may be because the AAL atlas uses a fundamentally different type of

parcellation scheme and algorithm. While the Desikan-Killiany atlas contains only

the grey matter region of the cortex, the AAL atlas represents larger regions which

include both grey and white matter. This may have increased the number of robustly

occurring cortical connections, as some streamlines, which may otherwise have be-

come truncated before reaching the grey matter of the cortex (due to noise and tissue

partial volume effects), intersect these parcels. Furthermore, the AAL segmentation

algorithm uses an affine registration between the subject brain and a standard brain

from MNI space, meaning subject differences in brain morphology are not consid-

ered. Larger parcels and limited ability to account for individual brain variation

may have meant single connections became distributed across multiple parcels in

the network, leading to a high peak convergence network density compared to the

Hammers and Desikan-Killiany atlases (Fig. 4.5).

With the exception of the AAL atlas, the pathlength and global efficiency

tended to increase and decrease, respectively, in consensus networks with increas-

ing node scale atlases. This may due to the lower consensus network densities at

higher node scales, resulting in a decrease in the ratio of edges to nodes. Also,
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clustering coefficient and local efficiency decreased when comparing the consensus

networks obtained from the Hammers (44 nodes) to the Desikan-Killiany atlas (68

nodes). Zalesky et al. [358] examined the effect of node scale on the pathlength

and clustering coefficient of networks generated using deterministic tractography

and found that an increase and decrease in the pathlength and clustering coefficient

metrics, respectively [358]. Their study examined a wide range of node scales (from

82 to 4000 in steps of 500) whereas our study re-affirms these findings at finer node

scale increments. However, clustering and local efficiency showed no clear trend

with node scale when comparing the Common (34 nodes) and Hammers atlases (44

nodes).

It should be noted that although the observed correspondence of connection

fiber paths with known white matter tracts does suggest some degree of anatomical

truth to the underlying connections in the consensus networks (Fig. 4.6), spurious

network weights may be included in the consensus networks due to a common bias

in the tractography methods. Therefore, although the reconstructed tracts are sensi-

ble, they are unlikely to be exhaustive. For example, local tractography techniques

may produce shorter fibers than found in vivo, as fibers are deflected from the true

path due to noise and limited angular resolution. This may have meant connection

weights between distant regions were lower than expected. Some network recon-

struction methods have accounted for this by penalising the weighting of shorter

inter-regional distances [203]. In addition to the weighting scheme, many other al-

ternative pipelines are available which may result in different convergence results.

Therefore, it should be emphasised that we demonstrated agreement between two

pipelines out of a large number of possibilities and that our results may not apply to

pipelines which employ different parcellation, registration or tractography methods.

Finally, the peak convergent threshold described here was derived from a popula-

tion of healthy individuals and may not represent an appropriate threshold for other

clinical populations where connections may have become altered or absent.

Some relevant publications have recently been released concerning agreement

between different reconstruction methods [368], and thresholding structural brain
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networks in the presence of false positive connections[104].

Zhong et al. [368] investigated the convergence and divergence of different

construction methods in terms of their assessment of individual differences in struc-

tural brain networks. The study employed different network resolutions, and differ-

ent tractography and connection quantification techniques. Individual differences

were assessed in terms of edge weights, node efficiency, and global and local ef-

ficiency [368], in a group of 57 subjects and summarised as a subject-subject cor-

relation matrix per method. Their analysis of the convergence between patterns

of individual difference (subject-subject correlation matrix of network properties)

showed that subsets of construction methods show convergent patterns of individual

differences while others were divergent. Some network properties showed conver-

gent patterns of individual differences among specific sets of construction methods,

indicating that the method convergence depended on the network measures of inter-

est. This study gives insight into convergence and divergence between a subset of

methods for particular connectional aspects (edge weight, nodal efficiency, global

and local efficiency), which provides useful insights into potential discrepancies

found between studies employing different network construction methods.

Convergence and divergence among construction methods, as found in Zhong

et al. [368] may be expected in the presence of fundamental differences in the

pipeline methods (e.g. high resolution vs. low resolution, probabilistic vs. deter-

ministic tractography). This contrasts with our study which found a high similarity

between independent pipelines of equivalent capability.

Drakesmith et al. [104] recently examined the impact of false positives in the

value and bias in graph metrics across thresholds and in identifying group differ-

ences [104]. They generated a model network by manually pruning a tractography

dataset from a single individual and added the removed streamlines as false posi-

tives to structural networks from a group of 248 subjects. They then undertook a

range of experiments to determine the effect of false positives on graph theory met-

rics across thresholds, the effect of thresholding itself on graph theory metrics and

the stability of statistical inferences (with and without group differences). The study
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found that network metrics were highly susceptible to false positives- and although

thresholding reduces the effect of false positives, it also biases the graph metrics,

and creates instability in statistical inference in these metrics. In addition, the range

at which an effect is observed varies with the graph metric meaning a true effect

may only be observed in a limited range of thresholds. While we suggest that the

consensus networks correspond highly with the true positive network connections,

it should also be considered that the consensus networks described here would also

contain false positive connections if they appeared in both P1 and P2 pipelines.

Drakesmith’s work indicates that a small number of false positive connections can

have a significant impact on graph metrics and their statistical analysis and therefore

although the consensus network may have high anatomical accuracy it is likely still

not free from bias.

4.4.2 Reproducibility of Structural Networks

A particular advantage of our approach to comparing reproducibility across

pipelines is that the effect of node scale was removed by merging parcellations

to a common and equivalent node scale. The ICC was high for connection weights

in both pipelines, suggesting high reproducibility. However, this study found high

intra-subject and inter-subject CVs of unthresholded cortical associations for both

reconstructions. A previous study has also reported high CVs of raw cortical asso-

ciations up to 100% using probabilistic tractography [320]. Despite high variance

of unthresholded cortical associations, it was shown that the derived graph theoret-

ical properties of thresholded networks, such as node degree, clustering coefficient

and pathlength, have higher reproducibility [320, 16, 71]. The trend of increasing

reproducibility (higher ICC and lower CV) of supra-thresholded associations with

decreasing density found in this study (Fig. 4.8) may explain these findings. The

effect of increasing reproducibility for sparser networks (i.e. higher mean associ-

ations) may be explained by a pruning of weaker, noisier connections, which are

more likely to be false positive or true negative connections. This may act addi-

tively with the effect that whole-brain metrics are less affected by noise compared

to single connections which result from a smaller amount of the total network data.
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Since performing this reproducibility study, there have been a number of

publications concerning the effect of threshold on reproduciblity of structural

networks[108, 367, 36].

Duda et al. [108] recently found that the reproducibility (ICC) of graph metrics

derived from thresholded graphs was moderate (∼0.5) and in some cases decreased

with decreasing network density [108]. This was demonstrated using the Mindbog-

gle and AAL atlases (62 and 78 nodes, respectively). Large variability in the repro-

ducibility of graph metrics was found at densities below approximately 15%, which

is in agreement with our study which found greater variability in reproducibility of

edge weights below 10%. However, they did not report the reproducibility of raw

edge weights in relation to decreasing density, as reported here.

In agreement with our findings of higher reproducibility of edge weights with

lower density, Zhao et al. [367] found that hubs or rich club nodes had higher re-

producibility of node strength and edge weights than the non-hub or non-rich club

nodes. These findings agree with our results as hub and rich-club nodes are fre-

quently those with higher connection weights which would tend to have higher re-

producibility. Zhao et al. [367] also found that regions with higher strength also

tended to have higher ICCs, which is also in agreement with findings in this study.

Bonilha et al. [36] found high reproducibility of graph metrics derived from

thresholded weighted association matrices. When examining the relationship be-

tween edge weight and reproducibility, they found a higher edge weight was corre-

lated significantly to higher reproducibility in deterministic tractography datasets,

but not in probabilistic tractography datasets. Interestingly, for both probabilis-

tic and deterministic methods, the study found that links with higher inter-subject

variability in number of streamlines were associated with a lower ICC, leading the

authors to suggest that those connections more consistently tracked across subjects

are also more reproducible.

A trend observed in this study was that of higher reproducibility for lower node

scale networks for both alternative reconstructions (Fig. 4.9). This agrees with pre-

vious studies that have shown lower intra-subject correlation in associations with
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higher node scale [56]. This node scale effect may be explained by a decrease

in correspondence between parcel boundaries (across repeat scans) at higher node

scales due to registration error, meaning that the proportion of mismatch with rela-

tion to parcel size increases. In Cammoun et al. [56], reproducibility significantly

decreased with scales of 83, 150 and 258 nodes. Our study demonstrates a trend for

decreasing reproducibility at finer node scale increments, possibly at a scale differ-

ence as low as 10 nodes. Interestingly, the relationship of increasing reproducibility

with decreasing density was less stable at very high densities (Fig. 4.9).

A number of publications have been recently released concerning the effect of

node scale on reproducibility of structural networks [36, 367, 108, 25].

Bonilha et al. [36] found that edge weights connecting larger ROI within an at-

las had higher reproducibility. This agrees with our findings of higher reproducibil-

ity in lower node scale atlases as these will have larger ROIs. Their study also

found that edge weights connecting ROIs that were closer together tended to have

higher reproducibility, which is expected since the path traversed by connecting

streamlines is shorter meaning streamlines will encounter less noise in the diffusion

image.

Zhao et al. [367] investigated reproducibility of graph metrics derived from

surface and volume representations of the AAL atlas at low (80 nodes) and high

resolution (1024 nodes). Interestingly, they found that the global binary network

metrics had higher reproducibility in higher resolution than lower resolution atlases.

On the other hand, local metrics had higher reproducibility in lower resolution than

higher resolution atlases. This may be due to lower resolution atlases having larger

ROI sizes, leading to more stable local metrics, while higher resolution atlases have

smaller ROI sizes but a more homogeneous edge weight distribution.

Promisingly, a method to generate high resolution structural networks with

high reproducibility has been reported. Besson et al. [25] examined reproducibility

in the node strength of high-resolution connectomes (500,000 nodes intra-, 50,000

nodes inter-acquisition) in a single subject undergoing 10 repeat diffusion-weighted

and anatomical T1 acquisitions [25]. By defining network nodes as the vertices of
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cortical and sub-cortical surface mesh triangles, they found that by seeding a large

number of streamlines, good to excellent intra-acquisition reproducibility of node

strengths could be obtained. The intra-acquisition correlation in edge weights was

also reasonably high, as was the inter-acquisition correlation in both edge weights

and node strengths. Although their method relied on some processing steps such as

surface smoothing, common space registration and downsampling, the integrated

methodological framework for creating a high resolution connectome as originally

proposed by Glasser et al. [141] and now extended by Besson et al. [25] is a promis-

ing tool for creating high resolution networks that are highly reproducible.

Lastly, it could be argued that there was a trend for higher connection repro-

ducibility distributions in P1 than P2 networks when both node scale and density

were fixed. Although we have no prior reason to expect different reproducibility

between pipelines, it is possible that this trend may be explained by the relative

suitability of applying the reconstruction to this particular preprocessed data. We

could have performed a more extensive search of the parameter space for each of

our reconstruction stages in order to optimise the convergence or reproducibility ef-

fect. However, this was not the point of the study. We sought to answer whether the

choice of pipeline matters in a general sense. To answer this, we chose alternative

state-of-the-art methods which have similar capabilities but vary with respect to the

details of their implementations. Given the insignificant difference in ICC distri-

butions between pipelines, we suggest that reproducibility and pattern of anatomic

connection will be comparable between other studies that utilise reconstructions of

a similar capability and node scale.

Importantly, the local peak convergent connections had high reproducibility for

both reconstructions, with the lower quartile ICC above 0.80 and 0.65 for P1 and

P2 respectively (Fig. 4.10). This suggests that the core group network consensus

connections was highly reproducible in both reconstructions.

Methodological Considerations

Some methodological aspects should be considered when interpreting these results.

As previously mentioned, although the observed correspondence of convergent fiber
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paths with known white matter tracts does suggests some degree of anatomical truth

to the underlying connectivity measures, high convergence or reproducibility be-

tween pipelines cannot be interpreted as a guarantee for anatomical accuracy. In

fact, alternative reconstruction techniques are available which may result in differ-

ent reproducibility of convergence results.

An advantage of using an atlas-based parcellation is that parcel border criteria

has been well defined in the literature and has high inter-subject correspondence,

which may have resulted in higher reproducibility compared to other parcellation

strategies, such as those based on functional or structural criteria. However, the

use of anatomical criteria to define parcel borders means that parcels are imper-

fectly correlated with the true structural or functional connectivity patterns. Despite

having performed the initial structural parcellations on high signal to noise ratio

images, there remains some degree of error in the label assignments due to residual

noise and partial volume effects. In addition to this, the parcellation scale used may

not reflect the true macroscopic connection scale. These effects may have lead to

some degree of blurring of spatially separate structural connections between two

or more regions. In our data, the occipito-parietal tract (Fig. 4.6) is an example

of a single spatially distinct tract that connects three parcels. A connectivity-based

parcellation approach, such as hierarchical clustering, may be useful for refining

anatomical parcel borders to closer match the connectivity structure [77]. It should

also be noted that the merging process assigned the temporal lobe as single node in

both common scale parcellations, meaning the contribution of intra-temporal con-

nections to the convergence or reproducibility results were omitted. This may have

been avoided by splitting the temporal lobes parcels in an equivalent manner for

both reconstructions.

Due to magnetic susceptibility artefacts and phase inhomogeneity in diffusion

MRI data, the non-linear registration strategy used here may have provided a closer

alignment of the parcels with the true grey matter in diffusion space than a linear

registration. However, as with all studies of this type, imperfect registration between

structural and diffusion space and large voxel sizes lead to incorrect assignment of
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some grey matter parcel voxels in diffusion space. This mis-registration may lead

to under or over-estimation of the true connectivity. An example of this in our study

may be the over-estimation of insula connectivity, as some insula fibers appear to

represent the corona radiata (Fig. 4.6), suggesting a mis-registration of some insula

voxels into the internal capsule. The overlap between parcels and white matter may

be decreased by excluding white matter voxels with high FA from the parcellation or

by using FA to guide the registration. However, there is likely to be some residual

misalignment due to the lower resolution of diffusion images and partial volume

effects at the grey matter boundary.

Probabilistic tractography utilising multiple fiber directions accounts for the

complex nature of fiber configurations and produces a dispersion of fibers, to some

degree, reflecting connectivity throughout the entire brain. However, the voxel fiber

distributions reflect uncertainty due to noise and limited diffusion-encoding direc-

tions, leading to a tendency for shorter fibers than that found in the real brain as

fibers are deflected from the true tract path. This fiber length bias may have de-

creased the cortical association between distant regions. Some network reconstruc-

tion methods have accounted for this by penalizing the association value of shorter

fiber distances [203]. Furthermore, the influence of noise on the fiber propaga-

tion means that both network reconstruction methods contain some degree of false

positive and false negative association values, as fibers may connect parcels in the

absence of (or may not connect parcels in the presence of) a true anatomical connec-

tion. An example of a false positive connection are the inter-hemispheric cingulum

connections that do not travel via the corpus callosum. Other tractography algo-

rithms, such as global tractography, may be more resilient to noise and therefore

produce networks with a reduced number of false positive or false negative connec-

tions [202].

4.5 Summary

High convergence between two independent state-of-the-art structural network re-

construction pipelines was observed on a connection-wise basis for all density
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thresholds. Reproducibility of connections weights increased with decreasing den-

sity for all atlases and pipelines. A sparse ‘consensus network’, which occurred

most robustly between the pipelines, was identified in four atlases, and had a density

of between 10% and 20% (100-250 connections). We propose that these connec-

tions have high anatomical validity compared to other thresholds, which is useful

given the inherent difficulty in defining thresholds for brain network studies. The

pipeline had relatively little effect on the network properties of the consensus net-

works, although some relationship with atlas node scale was observed, in agreement

with previous studies. When performing structural network analysis, it may be use-

ful to apply multiple pipelines to diffusion-weighted data and to use the comparison

framework described here to identify the most important connections.



Chapter 5

Reconstructing Large-Scale

Structural and Effective Brain

Networks

Having demonstrated reasonable reproducibility and inter-pipeline agreement in

macroscopic structural networks in the previous chapter, we next sought to test

the potential clinical utility of the method, in combination with effective networks

reconstructed using CCEPs, in detecting pathological connectivity in a cohort of fo-

cal epilepsy patients. Reconstructing structural and effective connectivity networks

between implanted intracranial electrodes is challenging due to a number of factors

such as determining electrode positions in the presence of brain shift and handling

artefacts in the CCEPs. For combined analyses, equivalent networks should be con-

structed despite the differing nature of the raw data in diffusion-weighted imaging

and CCEPs. In this chapter, the basic process and challenges of reconstructing ef-

fective and structural networks are firstly described. The method for reconstructing

structural networks was adapted from cortical atlases, as described in the previous

chapter, to electrode locations. Effective networks were reconstructed while con-

sidering limitations in the raw CCEP data such as the absence of stimulation onset

tags, jitter in the stimulus delivery, and stimulation artefacts. Results show that the

reconstruction methods perform reasonably well and therefore permits inter-modal

comparisons and clinical analysis. Techniques used to reconstruct networks are
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discussed in relation to alternative methods previously reported in the literature.

5.1 Introduction

Pre-surgical evaluation of drug-resistant epilepsy patients requires acquisition and

interpretation of information across multiple modalities including scalp EEG, in-

tracranial EEG, structural MRI and other neuroimaging methods. CCEPs may be

acquired to test their potential clinical use in explaining seizure onset and seizure

spread and for the purpose of comparing and correlating connectivity information

to other modalities. Diffusion MRI images may also be acquired for the purpose

of identifying the trajectory of eloquent tracts which should not be resected, and to

provide connectivity information that may be corroborated with other modalities.

CCEPs indicate the presence of functioning tracts from the stimulation to recording

site, and therefore measures effective connectivity. Diffusion tractography enables

estimation of the structural axonal connectivity between brain regions. Both CCEPs

and diffusion images are increasingly acquired during pre-surgical evaluation as part

of standard care.

Combining connectivity information derived from CCEP with diffusion MRI

tractography may identify functional tracts, their directionality, speed of informa-

tion transfer, and connection strength, and therefore inform and refine models of

brain connectivity networks. This may enable a better understanding of the relation

between structural and effective brain connectivity, identify potential pathological

connectivity in epilepsy and aid identification of the ictal-onset zone and propaga-

tive regions with greater accuracy, ultimately leading to improved seizure freedom

following surgery. However, reconstructing CCEP and diffusion connectivity in-

volves many complex methodological stages.

Measuring effective connectivity using CCEPs includes averaging the en-

cephalogram on repeated stimulations, consideration of stimulation artefact, and es-

timating the significance of the evoked potential. Averaging the encephalogram on

repeated stimulation trials increases the signal to noise ratio of the evoked potential.

An accurate inter-stimulation alignment and estimation of stimulus delivery time
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is therefore needed to correctly estimate the amplitude and latency of the evoked

potential. Due to the capacitative properties of electrode-brain interface [129], the

electric field generated by the stimulation pulse is visible on the encephalogram,

despite the time duration of the stimulation pulse typically being shorter than the

sampling interval. This contaminates the encephalogram, particularly at early la-

tencies following stimulation as it adds to signals from local field potentials. The

true amplitude of the evoked potential peaks relates to the number and synchrony

of neurons activated at remote sites, due to their innervation by cortico-cortical

pathways, and may therefore be used to estimate the magnitude of an effective

connection between brain regions. Effective connectivity may be estimated on a

large-scale by stimulating many electrodes and recording their evoked potentials

[177, 87, 116, 178].

Estimating structural connectivity between brain regions underlying intracra-

nial electrodes involves a series of processing stages [251], and has not been fre-

quently reported among research studies [296, 78]. Defining electrode locations

in diffusion space requires co-registration between post-implantation (e.g. CT im-

age) and pre-implantation spaces (e.g. diffusion image) and this is difficult due to

the brain shift occurring following electrode implantation. Electrode ROIs should

be generated corresponding to the grey matter underneath the electrode receiving

cortico-cortical connections. The electrode locations and their ROIs must be de-

fined in diffusion space and tractography subsequently performed. Tractography

requires estimation of fiber orientations in diffusion images and application of one

of several tractography methods. The fiber orientations should depict the underly-

ing anatomy faithfully. Representation of multiple fibers and uncertainty in fiber

orientation is desirable, but this is challenging due to the limited number of dif-

fusion gradient directions acquired in clinical diffusion imaging. For quantitative

connection analysis, tractography can be used to generate an undirected measure of

connection strength between the electrode ROIs by propagating streamlines through

the white matter.

Two previous studies have combined CCEPs and diffusion tractography
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[296, 78]. Swann et al. [296] found a high concordance in connectivity between

pre-supplementary motor area (pre-SMA) and right inferior frontal gyrus (rIFG)

using CCEPs, diffusion tractography and task-based functional MRI. Short latency

CCEPs were elicited between the pre-SMR and rIFG sites which were also con-

nected by tractography fibers [296]. However, the overlap or correlation between

structural and effective networks was not quantified. Conner et al. [78] combined

CCEPs and diffusion tensor tractography in a group of epilepsy subjects. In this

study the amplitude of the N1 evoked potential was correlated to the number of

connecting fibers in connections arising from Brocas area [78]. This was enabled

by transforming electrode co-ordinates to standard MNI space and reporting the

pairwise connectivity for stimulation electrodes lying within Brocas region. The

study found a moderate but significant positive correlation between the modalities

(R2 = 0.41). There have been no studies examining the correlation between CCEPs

and diffusion tractography on a large-scale across the cortex by using all stimulated

electrodes.

In this chapter, we reconstructed large-scale structural and effective electrode-

electrode brain networks using reconstruction methods that address the method-

ological challenges mentioned above. Methods are described in detail and their

effectiveness quantitatively and qualitatively evaluated. In the discussion, the re-

construction method is evaluated and compared to those used in previous CCEP

and diffusion studies.

5.2 Methods

A summary of methods used to generate CCEP and diffusion tractography net-

works is shown in Fig. 5.1. Reconstruction of structural connectivity networks

required the pre-implantation diffusion and T1 images in conjunction with the post-

implantation T1 and CT images. Reconstruction of CCEP networks required only

the original CCEP data. Note that this study was a retrospective analysis of MRI

images and SPES stimulations acquired as part of standard clinical care.
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Figure 5.1: Overview of methods used to reconstruct diffusion tractography and CCEP
networks. Structural networks were reconstructed using probabilistic diffusion tractogra-
phy between electrodes mapped from the CT to diffusion image via the pre- and post-
implantation T1 images. Effective connectivity networks were reconstructed using peak
amplitudes of the CCEP.

5.2.1 Subjects and Electrode Implantation

Seven subjects (4 male, 3 female, mean age 34.6 years old, range 26-49 years old)

were retrospectively selected from a larger cohort of drug-resistant epilepsy pa-

tients that had undergone invasive intracranial monitoring at the National Hospital

for Neurology and Neurosurgery (NHNN), Queen’s Square, UCL. The criteria for

subject selection was the availability of pre-implantation T1-weighted MRI, pre-

implantation diffusion-weighted MRI, post-implantation CT, post-implantation T1-

weighted MRI, and SPES. Informed consent was obtained from the patients prior

to the cortical stimulation procedures. Most subjects were diagnosed with frontal

lobe epilepsy and had evidence of cortical dysplasia on their structural MRI (subject

details are shown are in Table 5.1). The decision to implant, the electrode targets,

and the duration of implantation was made entirely on clinical grounds, without ref-
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erence to this study. A total of 644 sub-dural electrodes (grids and strips) and 60

depth electrode contacts were implanted. Sub-dural electrodes had a diameter of 4

mm, exposed surface area of 2.3 mm and inter-electrode spacing of 10 mm. Some

subjects had high density sub-dural grids with 5 mm spacing. Depth electrodes

had a diameter of 1.12 mm and length 2.41 mm. Depth electrodes were spaced 10

mm apart, with a small number of depth electrodes spaced 5 mm apart. Subjects

were implanted for 5 - 9 days, so that sufficient monitoring occurred to identify the

seizure focus and functionally eloquent cortical areas.
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5.2.2 Reconstructing Effective Networks

5.2.2.1 Stimulation Parameters

SPES was performed in an electronically shielded room. The NicoletTM Cortical

Stimulator with C64-OR amplifiers and Nicolet Cortical Stimulator Control Unit

(ISO 13485, ISO 9001; Nicolet Biomedical, Madison, US) was used to deliver

a constant-current (AC), bipolar (i.e. between adjacent electrodes), biphasic (500

µs per phase) stimulation pulse of 4 mA intensity at ∼0.2 Hz using the Nicolet

LTM system. If clinical signs or aftercharges were observed, the intensity was

reduced to a minimum of 2 mA, in steps of 1 mA. Stimulations were performed

using the majority of row-wise adjacent electrode pairs (344 stimulation pairs across

all subjects). Each stimulation was repeated 10-40 times. Intracranial EEG was

recorded using a 128-channel EEG machine (Nicolet Biomedical, Madison, US)

with a sampling rate of 512 or 1024 Hz, depending on the number of electrode

EEGs acquired (Table 5.1). An average of two intracranial electrode EEGs with

minimal background activity were selected as the reference. These were usually

electrodes on sub-dural strips implanted on the inferior surface of the frontal lobe.

5.2.2.2 Epoching

Figure 5.2: Raw CCEP data for a single stimulation electrode pair. Red and black lines
indicate stimulation and recording channels, respectively. Stimulations were delivered ap-
proximately once every four seconds. Stimulation delivery times correspond approximately
to voltage saturations of the stimulation channels.
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Epochs were obtained on a stimulation-wise basis. Epoching involved three

stages: identifying approximate stimulus delivery time, aligning the stimulus deliv-

ery time across stimulation trials, and offsetting the stimulus delivery time of the

epoch to the origin.

CCEP data was firstly imported into MATLAB v2011b [219] using EEGLab

[95]. MATLAB was used to identify the approximate stimulation onset time (see

Identifying Stimulation Ramp-Up Time below). All subsequent CCEP analyses

were performed in R v3.2.1 [261].

Identifying Stimulation Ramp-Up Time The anode stimulation channel was

thresholded >5000 µV and the first timepoint of each connected component was

the initial approximation of the stimulus delivery time. These times correspond to

the start of the ramp-up time of the stimulation electrode.

Aligning Epochs Across Stimulations Jitter was observed in the delivery of the

stimulus across stimulation trials, with respect to the start of the ramp-up time of

the stimulation electrode. This can be seen as a misalignment of the stimulation

artefact between stimulation trials, as observed in the nearest recording electrode

to the anode. To correct for this, recordings were aligned across stimulations us-

ing lagged cross-correlation to the first stimulation in the stimulation train, using a

cross-correlation search window of -15:+12 ms. Each stimulation trial was adjusted

by the time lag giving the highest correlation to the first stimulation trial.

Global Offset of Stimulus Delivery The stimulus delivery did not immediately

follow the start of the voltage ramp-up of the stimulation channel (see Results, Fig.

5.4). Therefore, a global offset was applied to all recording channels for all stimula-

tions. The global offset was calculated as the time until maximum amplitude of the

mean signal following ramp-up start time within a window of -15:+12 ms follow-

ing ramp-up at the nearest recording electrode. An epoch was generated for each

stimulation and consisted of a three-dimensional array containing the amplitudes at

timepoint indices for each recording electrode.
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5.2.2.3 Artefact Correction

The signal amplitude in recording electrodes immediately following stimulation de-

pended on the charge polarity of the nearest stimulation electrode (Fig. 5.5). There-

fore, an ICA-based artefact reduction technique was implemented, whereby the data

was re-projected following removal of the independent components (IC) of the sig-

nal representing the stimulation artefact. This is similar to previous artefact reduc-

tion techniques applied to scalp EEG [96] and transcranial magnetic stimulation

(TMS).

ICA decomposes a set of observed signals into a selected number of source

signals (the ICs) by maximising the non-Guassianity of the joint distribution of the

observed signals. A weighting matrix specifies the weighting of each IC for each

of the original signals. The original signals may therefore be reconstructed using

any combination of the ICs by removing these from the source signal matrix and

reconstructing the original signals using the weighting matrix output by ICA.

ICA was performed for each stimulation trial separately using only the ampli-

tudes of the recording electrodes. The fast-ICA algorithm was used to decompose

the observed signals into five ICs within a time period of -40:+ 40 ms using the fas-

tICA function in R [163]. The artefactual ICs were selected automatically, as those

with absolute maximum above two standard deviations of the median of the abso-

lute maximums across all ICs. The ICs representing artefact were removed from

the source signal matrix and the signals were then reconstructed by projecting the

remaining ICs in the signal matrix using the ICA mixing matrix.

Two artefactual ICs were most commonly designated as artefact. Increasing or

decreasing the number of initial ICs had little effect on the number of ICs represent-

ing stimulation artefact.

5.2.2.4 Visually Excluding Other Artefacts

Following artefact correction, the mean signal of every recording electrode for every

stimulation was visually examined to identify further artefacts. Epochs containing

artefacts were excluded from all future analyses (Fig. 5.3). In total 673/30198

epochs were excluded due to artefacts. Artefacts were either (i) non-physiological
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ramp-shaped response following stimulation (ii) large voltage surges (iii) visible 50

Hz power line noise in the average response, due to a combination of both 50 Hz

power line noise contamination and a low number of stimulation trials (iv) slow

exponential return to baseline following stimulation, indicating bad contacts. Ex-

amples of artefacts excluded by visual inspection are shown in Fig. 5.3.

Figure 5.3: Examples of artefacts excluded by visual inspection. A: Non-physiological
ramp-shaped artefact found in all recording channels when stimulating between electrodes
GA09 and GA10 in subject 3. B: 50 Hz power line noise artefact visible in electrode GA24
following stimulation between electrodes GA19 and GA20 in subject 4. C: Slow voltage
amplitude return to baseline in electrode G115 following stimulation between electrodes
D101 and D102 in subject 7.

5.2.2.5 Evoked Potential Peaks

An in-house peak finding algorithm was implemented on the mean signal of each

recording electrode to identify amplitudes and latency of evoked potentials. Firstly,

amplitudes were low-pass filtered using a Butterworth filter with an order of 5 ms

and a frequency of 110 Hz. The frequency of the filter was set to allow fast evoked

potentials to pass whilst removing high frequency noise which may lead to false

positive peak detection. Secondly, candidate peaks were identified by selecting

those timepoints surrounded by positive and negative gradient. Next, candidate

peaks were grouped by the connected components of the signal with low gradient
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(mean gradient <2 uV/ms within a 5 ms neighbourhood). The candidate peaks with

maximum absolute amplitude in each connected component were selected. Finally,

those selected candidate peaks with amplitude below twice the baseline standard

deviation were excluded. In this calculation the standard deviation of the baseline

was calculated using all timepoints across all stimulation trials in the time period

of -500:-15 ms, whereas the amplitude searched for CCEPs was that of the mean

evoked potential peak. Positive amplitude peaks with a prior negative gradient and

negative amplitude peaks with a prior positive gradient were removed.

Subject Stim. Nodes Rec. Excluded Analysed

1 46 62 2760 0 2760
2 46 99 4462 0 4462
3 59 118 6844 232 6612
4 55 100 5390 263 5127
5 52 108 5512 0 5512
6 28 54 1456 0 1456
7 51 76 3774 178 3596

Table 5.2: Summary of CCEP stimulations and recordings. The total number of stim-
ulations performed, analysed electrodes, recorded responses, excluded responses (due to
visually identified artefacts) and analysed responses are shown.

5.2.2.6 Effective Networks

An evoked waveform represents a connection between the stimulation electrode(s)

and the recording electrode. The evoked potential may arise from a connection be-

tween the stimulation-electrode pair to the recording electrode, or from either stimu-

lation electrode to the recording electrode. In consideration of these different meth-

ods to interpret evoked waveforms, peak features of interest were represented in two

ways:- stimpair and network. The stimpair representation is the original format of

the CCEP data: each observed peak represents a single data point corresponding to

a connection between the stimulating electrode pair and the recording electrode. In

the network representation, we reconstructed the electrode-electrode connectivity

using the original (stimpair) CCEP data. In the network representation, each peak

represents two connections in the electrode-electrode network; one from each stim-

ulation electrode to the recording electrode. Note that in cases where responses had
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multiple peaks, only the first peak was used. Peak features of stimulation-recording

electrode pairs involved in multiple stimulations were averaged. The network rep-

resentation therefore involves duplication and averaging of peak amplitudes. The

network representation resulted in a directed electrode-electrode network of peak

amplitudes and permitted large-scale network analysis and direct connection-wise

comparison of connections between CCEP and diffusion networks in the native dif-

fusion network space.

5.2.3 Reconstructing Structural Networks

5.2.3.1 Image Acquisition

Pre-implantation T1 and diffusion weighted images and post-implantation T1 and

CT were acquired for routine clinical assessment. Pre-implantation diffusion

weighted sequences were acquired using a single-shot spin-echo planar imaging

sequence, cardiac gated with TE = 73 ms. Sets of 60 contiguous 2.4 mm thick axial

slices were obtained, covering the whole brain, with diffusion-sensitising gradients

applied in each of 52 non-collinear directions [maximum b-value of 1200 mm2 s-1

(δ = 21 ms, ∆ = 29 ms, using a gradient strength of 40 mT/m-1)] along with six

non-diffusion-weighted (b = 0) scans. The gradient directions were calculated and

ordered as described elsewhere [80]. The parallel imaging factor (SENSE) was 2.

The field of view was 24 cm, and the acquisition matrix size was 96 x 96, zero filled

to 128 x 128 during reconstruction so that the reconstructed voxel size was 1.875

x 1.875 x 2.4 mm. The DTI acquisition time was ∼25 min, depending on subject

heart rate.

One of two pre-implantation T1-weighted sequences (either ‘Queen Square’ or

‘Chalfont’,) were acquired for each subject, depending on the MRI centre attended

at the time of evaluation (see Table 5.1). 3/7 subjects (1,4 and 7) had Gradient Re-

called Inversion Recovery sequences at 1.5 T on a Siemens Avanto scanner at the

Neuroradiology Department, NHNN, Queen square. These images were 0.488 x

0.488 x 1.500 mm resolution, acquired with 144 axial orientated slices of 249.856

mm2 using an acquisition matrix of 512 by 512. The TR/ TE/ flip-angle was 2020

ms/1.71 ms/15◦. 4/7 subjects (2,3,5 and 6) had Gradient Recalled sequence at 3T on
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a GE Medical Systems scanner at the Chalfont MRI Unit, Epilepsy Society, Chal-

font St. Peter. These images were 0.938 x 0.938 x 1.100 mm resolution, acquired

with either (i) 170 coronal orientated slices (3/4 subjects) of 240 x 128 mm2 using

an acquisition matrix of 256 by 256, or (ii) 160 axial orientated slices (1/4 subects),

each of 240 x 128 x 242.004 mm, using an acquisition matrix of 256 by 258. The

TR/TE/flip-angle was 7.96 ms/3.008 ms/20◦.

Post-implantation T1-weighted images were acquired using a Gradient Re-

called Inversion Recovery images sequence at 1.5T on a Siemens Avanto scanner

at the Neuroradiology Department, NHNN. These images were of 1 x 1 x 1 mm

resolution, acquired with 176 coronal-orientated slices of 192 by 192 voxels. The

TR/TE/flip-angle was 1930 ms/ 3.37 ms/ 15◦.

Post-implantation volumetric brain CT images of 0.43 x 0.43 x 1 mm resolu-

tion were acquired in axial orientation.

5.2.3.2 Electrode Localisation in Diffusion Space

Electrode voxel co-ordinates were calculated from the CT by plotting and manually

labelling supra-threshold voxel clusters with reference to the patient implantation

notes. A threshold of 2500 Hounsefield Units was used to identify very highly

attenuating regions. Electrodes invisible on CT or absent intracranial recordings

were not analysed (87/704 implanted).

Estimating structural connectivity between electrodes requires transformation

of electrodes from CT to diffusion space and estimation of the underlying brain

region. To account for substantial brain shift following electrode implantation, non-

rigid co-registrations were applied between pre-implantation and post-implantation

spaces. Firstly, a rigid registration was optimised between the post-implantation

CT and post-implantation T1 image. A non-rigid registration was then opti-

mised between the post-implantation T1 and pre-implantation T1 to correct for

brain shift, and between pre-implantation T1 and diffusion (first b=0 image) im-

ages. The transformation field required to transform electrode co-ordinates from

CT to diffusion space was composed using the following transformation fields:

(i) post-implantation CT to post-implantation T1 (ii) post-implantation T1 to pre-
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implantation T1 and (iii) pre-implantation T1 to pre-implantation diffusion. All

registrations, compositions and transformations were implemented in NiftyReg

(v1.3.9) using the default settings [237]. NiftyReg uses normalised mutual infor-

mation to calculate image similarity and a bending energy regularisation with cubic

B-spline parameterisation for the non-linear warping.

5.2.3.3 Diffusion Tractography

Pre-implantation T1 images were parcellated into cortical and sub-cortical grey

matter, white matter and ventricles using the LoAd tissue segmentation algo-

rithm implemented in NiftySeg [60]. Parcellations were transformed to diffusion

space using the aforementioned non-rigid transformation obtained between the

pre-implantation T1 and diffusion image (see Electrode Localisation in Diffusion

Space). A nearest neighbour resampling scheme was used to preserve the categori-

cal nature of parcellation labels.

The tissue parcellation was used to define seed, propagation, and termination

masks for fiber tractography. These masks define the starting location, permitted

tractography region, and termination regions for local fiber tractography. Firstly,

cortical grey matter was assigned to the nearest electrode voxel within a maximum

of 10 mm and depth electrodes voxels were dilated by 5 mm to create the electrode

parcels. Any parcels that overlapped were assigned to the nearest electrode. The

binary version of these cortical parcels was the termination mask. The intersection

of the dilated termination mask and the white matter parcellation defined the seed

mask. The propagation mask was the union of white matter, sub-cortical grey matter

and ventricle regions from the parcellation. The termination mask was mutually

exclusive from both the propagation and seed masks.

Next, fiber paths in the brain were reconstructed by seeding 100 probabilistic

fibers from each seed voxel using MRTrix. Fibers were propagated using the default

settings in MRTrix [307]. The sampling interval was 0.2 mm, maximum curvature

threshold was 60◦ and minimum FOD amplitude threshold for tracking through a

voxel was 0.1. Fiber propagation was stopped when exiting the propagation mask

or entering the termination mask.
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5.2.3.4 Structural Networks

Inter-electrode structural networks were obtained by representing electrodes as net-

work nodes and the fiber connections between them as edges. Fibers connected

node pairs if their end-point coordinates terminated within two distinct electrode

cortical parcels. The connection weight between two cortical nodes was defined as

the density of connecting fibers (as in [72]), calculated as the sum of connecting

fibers divided by the mean volume of the seed (boundary) voxels adjacent to the

two parcels (boundary voxels were assigned to the nearest parcel by Euclidean dis-

tance). This resulted in a N-by-N connectivity matrix of fiber densities between all

N electrode parcels. We considered connections with streamline density above 0.1

in this report, for lack of a standardised thresholding method.

5.3 Results

5.3.1 CCEPs

5.3.1.1 Epochs

Identifying the start time of saturation of the anode recording channel was a sensi-

tive method for obtaining an initial estimate of the stimulus onset time (Fig. 5.4).

The saturation time corresponded to the start of the ramp-up time of the stimulator,

whereas the stimulus delivery time is associated with the appearance of the stimu-

lation artefact in the closest recording electrode to the anode.

Across stimulation trials, some variable amount of jitter was observed in the

timing of the delivery of the stimulus with respect to the start of the ramp-up time

of the stimulator (Fig. 5.4). This jitter typically appeared as either unimodal or bi-

modal distributions of the stimulation artefact waveform latency. This affected the

morphology of the mean waveform post-stimulus, leading to incorrect estimation of

both the artefact and the evoked potential waveforms. The auto-correlation method

of aligning waveforms post-stimulus resulted in strongly aligned data across stim-

ulations (Fig. 5.4) and resulted in an improvement in the estimation of the mean

post-stimulus response. The average inter-stimulation alignment was 3.5±0.8 ms.

Improvement in the estimate of the mean is demonstrated by an increase in the
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Figure 5.4: Summary of CCEP epoching. For each stimulation a current is generated
between the anode and cathode electrodes, with the anode and cathode becoming positively
and negatively charged, respectively (A,B). Saturation of the anode channel was used as an
initial estimate of the stimulus delivery time (timepoint 0). The artefact was prominent on
the nearby recording electrodes and was a better estimate of the stimulus delivery time. All
stimulations were aligned to the first stimulation (purple line, C) using cross-correlation of
the amplitude in the electrode nearest to the anode. The aligned data (C) was then offset to
timepoint 0 using the maximum amplitude of the mean (red lines) of the electrode nearest
the anode channel. This example stimulation is between two depth electrodes (DA01 and
DA02) in subject 1. The nearest recording electrode was DA03.
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maximum amplitude of the mean artefact when comparing data from the closest

recording channel to the anode before and after alignment. The maximum ampli-

tude in the anode-closest electrodes increased from 614.3 µV to 792.1 µV over

the time period of -40:+40 ms for subject 1, indicating a better alignment. The

maximum amplitude increased for all subjects apart from subject 3 which remained

unchanged.

All epoched and aligned data was then offset by a variable latency to the ac-

tual delivery time. This resulted in variable offsets across stimulation pairs as it

depended on the ramp-up time of the stimulator, which depends on the impedance

of the material between the anode and cathode electrodes. The mean and standard

deviation of offsets across all subjects was 5.4±0.5 ms.

5.3.1.2 Artefact Correction

Epoching allowed estimation of the artefactual waveform across all stimulations for

a given subject, which facilitated development of strategies to correct for artefactual

waveforms. The artefact was examined by averaging the mean signals for all anode-

closest and cathode-closest recording channels for a given subject. The anode-

closest and cathode-closest waveforms had distinctive yet polar opposite shapes

due to their location in the electric field (Fig. 5.5). In subject 1, the anode-closest

artefact contained four peaks at latencies of -0.97, 0, 3.91 and 10.74 ms, with am-

plitudes of 441.9, -901.9, 159.16 and -50.12 µV, respectively. The cathode-closest

artefact also consisted of four main peaks at latencies of -0.97, 0 and 3.91 and 10.74

ms with amplitudes of -433.1, 991.5 and -189.27 and 17.59 µV.

Artefactual waveforms affected time periods immediately following the stimu-

lation, which is particularly problematic for examining evoked potential thought to

reflect direct connections, as these occur at short latencies.

The automatic artefactual IC identification most commonly excluded two ICs

representing artefact. In some instances, a single artefactual component was re-

moved. Artefact correction resulted in a reduction in appearance of the artefact on

recording channels whilst preserving evoked potentials (Fig. 5.6, 5.7 and 5.8). The

overall effect of applying the artefact correction was a large attenuation of artefac-
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Figure 5.5: Left: Grand mean amplitudes across all stimulations in electrodes nearest the
anode (red) and cathode (blue) in subject 1. The polarity of the stimulation artefact de-
pended on the position of the recording electrode in the electric field and affected timepoints
shortly after stimulation delivery. Right: IC signals estimated from an ICA of all recordings
for a single stimulation. Artefactual ICs (green) were automatically identified and removed
from the ICA source signal matrix before projection and reconstruction of artefact-corrected
data. The stimulation was between two depth electrodes (DA05 and DA06) in subject 1.

tual peaks, shown by a decrease in the amplitudes of peaks in the average of mean

responses (Fig. 5.8). In subject 1 the peaks amplitudes decreased from 441.87,

-901.94, 159.16 and -50.12 µV in the recording channels nearest to the anode, to

144.05, -198.92, 138.21 and -9.45 µV in the artefact corrected data (at latencies of

-0.97, 0, 3.91 and 10.74 ms).
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Figure 5.6: Amplitudes of epoched data for all recording electrodes after stimulation be-
tween two depth electrodes (DA05 and DA06) in subject 1. The large amplitudes at time-
point 0 are artefacts while the slower waveforms found in some channels are evoked poten-
tials.
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Figure 5.7: Artefact-corrected data in all recording electrodes after stimulation between
two depth electrodes (DA05 and DA06) in subject 1. Amplitudes were corrected by per-
forming an independent analysis on the signals shown in Fig. 5.6. The removed IC signals
are shown in Fig. 5.5. The artefact features are greatly attenuated while evoked potentials
are unaffected. Time and amplitude scale is as in Fig. 5.6.

The ICA approach appeared to result in a reduction of artefactual peaks when

considering the appearance of the grand mean signal (Fig. 5.8). Other artefact cor-

rection approaches (such as template-weighted regression and weighted linear re-

gression) also resulted in a some attenuation of artefactual peaks, but had unwanted

effects (see Discussion).

5.3.1.3 Evoked Potential Peaks

The artefact correction did not perform perfectly for all stimulation pairs, as some

artefactual peaks remained. Therefore, to reduce the number of false positive peaks,

all peaks preceding 12 ms were excluded in the following analyses. This threshold

was chosen visually to allow detection of early peaks and reduce detection of false

positive artefactual peaks. Peaks occurring after 250 ms were excluded as evoked

potentials representing direct connections were of primary interest in this study (see

section 6.4 for a discussion of this choice of threshold).

The peak-finding algorithm detected evoked potential peaks whilst reducing
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Figure 5.8: Grand mean amplitudes in electrodes nearest the anode (left) and cathode
(right) in subject 1 before (grey line) and after artefact correction (blue line). Artefac-
tual features are distinguished by their dependence on the polarity of the nearest stimulation
electrode. The artefact correction resulted in attenuation of most artefact peaks.

the number of false positive peaks. False positive peaks were reduced by (i) ex-

cluding peaks prior to 12 ms (ii) low-pass filtering the data prior to peak-finding

(iii) clustering peaks occurring within the same neighbourhood of small gradient,

and (iv) excluding physiologically implausible peaks with high amplitude (those

above 700µV). Variation was observed in the amplitude, latency, and number of

peaks found. Table 5.3 shows the prevalence of recording channels with one, two

and three peaks across all stimulations. Evoked potentials most commonly had

one peak. An example of the distribution of peak amplitudes and latencies for first

peaks is shown in Fig. 5.11 for subject 1. The mean amplitude was 155.6 µV

and the mean latency was 75.6 ms. Only first peaks were used to construct CCEP

connectivity networks (Fig. 5.12).

The figures below show examples of applying the peak detection algorithm to

unfiltered and filtered responses (Fig. 5.9), and uncorrected and artefact-corrected

responses (Fig. 5.10). Below that are figures showing the distribution of amplitudes

and latencies of CCEP peaks used to reconstruct effective networks in subject 1

(Fig. 5.11). An example of a reconstructed effective network is shown in Fig. 5.12.
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Figure 5.9: Peak detection algorithm. Left: Raw amplitudes Right: Low-passed ampli-
tudes. Signals were low-passed filtered prior to peak detection to reduce the number of
candidate peaks. Candidate peaks were those points surrounded by gradients of opposite
polarity (red crosses). Evoked potentials were not removed by low-passing although the
number of candidate peaks (red crosses) was greatly reduced. Candidate peaks were clus-
tered by those residing in the same period of low gradient (purple points and line). Can-
didate peaks with the highest absolute amplitude (green circles) were then selected from
each cluster. Selected peaks with amplitudes greater than two standard deviations of the
baseline (dotted grey line) and which lie in the region of 12-250 ms were retained. All other
peaks were discarded. Shown is a depth electrode (DA04) recording following stimulation
between two depth electrodes (DA05 and DA06) in subject 1.

Figure 5.10: Peaks in uncorrected and artefact-corrected data. The artefact correction re-
duces the number of artefactual peaks whilst preserving evoked potential peaks. Shown
is a depth electrode (DA04) recording following stimulation between two depth electrodes
(DA05 and DA06) in subject 1.
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Figure 5.11: Histogram of all peak amplitudes and latencies of first peaks in subject 1. The
mean peak amplitude was 155.6 µV. Latencies were bi-modally distributed, with means of
the two distributions at approximately 40 ms and 140 ms. The mean latency was 75.6 ms.
These amplitudes were used to build large-scale electrode-electrode networks.

Figure 5.12: CCEP network for subject 1. Matrix entries show the peak amplitude be-
tween stimulation (row) and recording (column) electrodes. Observed peaks infer effective
connection from both stimulation electrodes to the recording electrode. The network is not
symmetrical indicating the directionality in the connection (towards the recording channel).
Many connections are found between nearby electrodes.
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Subject 0 peaks 1 peak 2 peaks 3 peaks >3 peaks

1 87.7 7.1 4.1 0.9 0.2
2 95.9 2.8 1.1 0.2 0
3 92.6 3.6 2.4 0.9 0.5
4 83.0 8.2 5.5 2.3 1.0
5 89.8 6.6 2.0 0.8 0.8
6 89.0 7.8 2.4 0.7 0.1
7 40.4 25.3 17.9 8.3 8.1

Table 5.3: Prevalence of evoked potentials by number of peaks. The majority of evoked
potentials had a single peak. Prevalence was calculated as a percentage given the total
number of recordings analysed, as described in Table 5.2.

5.3.2 Diffusion Tractography

5.3.2.1 Electrodes and Electrode ROIs

The thresholding approach resulted in a reasonable electrode identification rate.

Across all seven subjects, 11 implanted electrodes that had CCEPs recorded were

not identified on the CT as their intensity either did not contrast sufficiently with

neighbouring electrodes or the CT number was below the threshold. These elec-

trodes were therefore not included in either the structural or effective networks. An

example of identified electrodes for subject 1 is shown in Figures 5.13 and 5.14.

Figure 5.13: Raw CT image (left), Electrodes in CT images (middle) and electrode ROIs
in the diffusion image of subject 1 (right). Middle: Blue regions are supra-threshold voxels.
Coloured voxels are connected cluster centers representing the electrode locations. Right:
Coloured regions indicate the grey matter ROI assigned to each electrode in diffusion space.
Blue regions are the boundary voxels of the electrode ROIs. Yellow regions indicate the
white matter propagation mask where streamlines propagated.
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5.3.2.2 Diffusion Tractography

Electrodes were reasonably well localised to the cortical surface based on visual

inspection (Fig. 5.14). An example of electrodes in diffusion space is shown in Fig.

5.13. Table 5.4 shows the mean grey matter volume assigned to each electrode, the

number of seeded streamlines, and the number of streamlines intersecting electrode

ROIs.

Subject Mean ROI Volume (mm3) Seeds Streamlines

1 549 521,000 98,375
2 925 966,400 234,833
3 676 1,076,100 296,867
4 415 751,700 99,694
5 681 1,109,000 256,559
6 564 461,300 90,080
7 577 612,600 161,237

Table 5.4: Tractography summary. The average volume of grey matter assigned to electrode
ROIs was approximately 500 mm3, resulting in approximately half a million streamlines, of
which approximately one quarter connected electrode ROI pairs.

Figure 5.14: Electrodes in diffusion space in subject 1. Electrode voxels are shown as
spheres and the grey matter tissue is shown as a semi-transparent volume. Grid electrodes
(blue) are well localised to the cortical surface based on visual inspection. Depth electrodes
(red, yellow and green) are located deeper in the brain volume.

Across all subjects reconstructed streamlines represented a mixture of short

and longer range U-fibers, connecting nearby cortical regions within a lobe and

sub-sections of association tract connecting cortical regions of different lobes. An
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Figure 5.15: Streamlines connecting electrodes in diffusion space for subject 1. Grid elec-
trodes are blue and depth electrodes are red, yellow and green. Streamlines appear to rep-
resent primarily short-range U-fibers. Prominent U-fibers were found between frontal lobe
gyri.

example of streamlines is shown in Fig. 5.15. for subject 1. Dense superior-inferior

tracts connecting frontal lobe gyri are visible which may represent sub-sections

of the superior longitudinal fasciculus, while the majority of other streamlines ap-

peared to represent short-range U-fibers. A structural network reconstructed using

these streamlines is shown in Fig. 5.16.

Figure 5.16: Diffusion tractography network. Matrix entries represent the streamline den-
sity (the number of connecting streamlines divided by the average grey matter volume as-
signed to each electrode) between electrodes (row and columns). The matrix is symmetrical
as streamlines form undirected connections. Many connections are found between nearby
electrodes.
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5.4 Discussion

In this study, two pipelines were presented for reconstructing structural and effective

connectivity networks from diffusion MRI and CCEP data. The pipelines are inde-

pendent and designed to allow assessment of direct cortico-cortical connectivity and

inter-modal comparison. Their combined use in estimating brain connectivity may

aid identification of ictal onset areas and mechanisms of non-contiguous seizure

spread.

5.4.1 Epochs

CCEP data may be epoched on stimulus delivery in order estimate the mean wave-

form of evoked potentials across repeated stimulations. In this study, we de-

scribed an automated three-step epoching procedure which involved initial estima-

tion, alignment and offsetting the recordings to accurately estimate stimulus de-

livery time. In most previous CCEP studies the epoching process is not described

[344, 178, 277, 32]. In some studies data is described as epoched using an electronic

trigger which is time-locked to the stimulus delivery [221, 188, 223, 116]. Some

CCEP systems therefore record the stimulus delivery time electronically, making

the epoching process simple. However, as demonstrated in this study, care should

be taken that the electronic trigger corresponds to the stimulus delivery time as op-

posed to the start of the ramp-up time of stimulation electrodes - the two differ due

to the variable ramp-up time of the electrodes caused by different impedance prop-

erties of the tissue between different electrode stimulation pairs. In the absence of

electronic stimulus triggers, as is the case with the CCEP system used in this study,

an automated process such as that described may be used to epoch the data. This is

useful as it enables analysis of data acquired on CCEP devices that do not have elec-

tronic tags, which may affect older generation CCEP systems. One previous study

has used artefact template matching approach to estimate the stimulation delivery

time [87]. However, an artefact template is difficult to create without an initial es-

timate of the stimulation onset time and requires assumptions about the appearance

of the artefact.
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5.4.2 Stimulation Artefact

Stimulation artefact and evoked potential signals are added together in the intracra-

nial electroencephalogram, making delineation of early evoked potentials difficult.

This is particularly problematic as the primary interest is direct connections which

evoke short latency potentials. In this study we implemented an automated arte-

fact reduction technique using ICA. In most previous studies an artefact reduction

procedure has not been described. These studies have examined particular brain

sub-networks where visual interpretation was used to identify waveforms which are

clearly distinguishable from stimulation artefact [113, 304, 319, 67, 344]. Other

studies have employed an exclusion window following stimulation of between 10

and 20 ms [178, 116, 188, 87]. Acquiring CCEPs using an alternating monophasic

pulse is a common acquisition method which has the benefit of reducing the stim-

ulation artefact [221, 304, 115]. In an alternating monophasic pulse the polarity of

the artefact switches between positive and negative on each pulse, and the artefact

waveform may therefore be reduced by averaging on repeated stimulations. In cases

where the artefact persists, such as when using a biphasic [344, 222, 225, 178] or

non-alternating monophasic pulse [183, 324], a post-acquisition artefact reduction

method is desirable.

Artefact correction did not completely remove the artefact but allowed use of

a shorter exclusion window than may have been needed prior to artefact correction,

while reducing the effect of the artefact on non-excluded post-stimulus timepoints.

The ICA method is well suited for reducing signal artefacts and has been used pre-

viously in scalp EEG [96]. Other artefact reduction methods were tested, notably

including artefact template subtraction and weighted linear regression, but were

found to be less reliable than the ICA approach. The artefact template subtraction

method firstly created an artefact template for each stimulation by amplifying each

recording signal by the square of distance to the nearest stimulation electrode, and

adjusting the signal polarity based on the polarity of the nearest stimulation elec-

trode. The artefact template was then created by averaging these signals. For each

recording electrode the artefact template was transformed by the distance squared,
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corrected for the appropriate polarity and subtracted from the signal. There are two

main drawbacks to this artefact correction method. Firstly, it relies on assumptions

that the voltage field of two monopolar sources decays inversely to the distance

squared. This may not be true in inhomogeneous medium such as the brain, leading

to errors in the amplification magnitude and in the polarity adjustment of the sig-

nal. Furthermore, recording channels large distances from the stimulation electrode

will contribute little artefact signal to the template but large amounts of noise as the

signal is amplified. These two effects lead to error in the creation of the artefact

template and therefore errors in the artefact-corrected data. The weighted linear

regression firstly created an artefact template, as above, and subsequently regressed

the template from each recording signal using a weighted fitting. As this method

also uses the same artefact template creation method, it suffers drawbacks of er-

roneous template signal and noise amplification. In addition, it relies strongly on

the weighting function used in the regression, which may lead to very large or very

small residuals at timepoints where the weighting is high or low.

It is possible that improvements to the selection of the number of ICs and the

artefactual IC selection process may lead to a greater artefact reduction. Perform-

ing PCA prior to ICA was tested as a method to select the initial number of ICs.

However, the number of PC’s depends on an arbitrary variance threshold and the

relationship between PCA and ICA was not sufficiently clear to select a definitive

variance threshold for using PCA to select the number of ICs.

Recently, Trebaul et al. [311] reported a more sophisticated template-based

method for artefact correction. The method first matches the observed data to a

library of artefact signals produced using a simple biophysical model, covering a

range of possible stimulation parameters (monophasic and biphasic stimulation, and

stimulation pulse duration). The closest matching model artefact is then regressed

from the observed data. Results show that quantitative measures of artefact contam-

ination are reduced. This is a promising technique for reducing stimulation artefact

which permits robust analysis of earlier CCEPs. Their method is similar to the

template-based regression and subtraction method tested on our data and described
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above. Specifically, while our template creation method employed biophysical pa-

rameters of distance and polarity with respect to the stimulation electrode, Trebaul

et al. [311] used biophysical parameters relating to a resistance-capacitance circuit

model, and were further able to quantify artefact contamination by using simulated

ground truth data. It would be interesting in future to compare the artefact reduction

capabilities of ICA-based approach described here to the template-based technique

detailed by Trebaul et al. [311].

A final consideration for reducing stimulation artefact is to obtain a better un-

derstanding of the artefact waveform with respect to the orientation (distance and

electromagnetic field location) of the recording channel. This may enable genera-

tion of more accurate models of the stimulation artefact. We performed an in vitro

stimulation experiment to enable better artefact waveform characterisation. How-

ever, a number of other experimental artefacts prevented useful analysis of this data

(see Appendix).

5.4.3 CCEPs

In this study only evoked potentials prior to 250 ms were analysed, as short la-

tency responses are thought to more faithfully represent direct axonal connec-

tions. Previous studies have examined the N1 and N2 negative evoked potentials

[221, 350, 223, 185], occuring at approximately 100 and 150 ms, respectively. As

with this study, most other CCEP studies have not observed predominantly nega-

tive peaks and have therefore analysed either the A1 and A2 evoked potentials (the

absolute amplitude of the evoked potential), occuring at approximately the same

latencies [188, 116, 178], or divided peaks into early and late time periods, cor-

responding to peaks occuring up to latencies of 100 and between 100-1000 ms,

respectively [324, 326, 325, 125, 32]. There is no consensus in CCEP studies on

the interpretation of early (e.g. N1, A1) and late evoked potentials (e.g. N2, A2). In

a recently published CCEP review it has been suggested that both the N1 and N2 re-

flect direct connection although the N1 reflects early excitatory synaptic potentials

whereas the N2 reflects later inhibitory post-synaptic potentials [179]. A recent

large-scale study [116] examining A1 and A2 peaks commented that the N1 has
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been reported to reflect direct connection whereas the N2 reflects indirect (cortico-

cortico-cortical, cortico-subcortico-cortical etc.) connection [221]. However, as the

authors mention, this contradicts earlier reports in cat visual cortex that suggests

that afferent volleys can cause early and late responses within the time window of

the A1/N1 and A2/N2 potentials [212]. In view of this ambiguity, this study anal-

ysed the first peaks of evoked responses and used latencies up to 250 ms to include

all possible early evoked potentials.

5.4.4 Electrode-Electrode Networks

The CCEP evoked potential data consisted of a list of peaks and the corresponding

stimulation electrodes and recording electrodes. In order to achieve correspondence

between CCEP and diffusion networks, and therefore enable their comparison or

combined application, peak amplitudes were represented in a electrode-electrode

connection matrix. To do this, data was duplicated and sometimes averaged, and

assumptions were made that evoked potentials corresponded to connectivity be-

tween both stimulation electrodes and the recording electrode. Similar assumptions

have been made in previous large-scale CCEP studies. For example, Entz et al.

[116] assigned a Brodmann area to each stimulation and recording site, resulting in

one connection for each evoked potential, enabling study of large-scale connectiv-

ity between Brodmann areas. David et al. [87] only analysed stimulation electrodes

which resided in the same Brodmann areas in order to build a large-scale represen-

tations of functional tracts from each brain region. Other smaller scale studies have

analysed stimulation electrode pairs residing in the same cortical area in order to al-

low inferences to be made [223, 221, 67]. The previous study by Conner et al. [78]

which compared CCEP and diffusion connectivity only analysed CCEP and diffu-

sion connectivity arising from Broca’s area [78]. This discarded information from

all other stimulation pairs which did not have both stimulation electrodes located

in Broca’s area. Therefore, although the method of creating large-scale effective

networks involved assumptions as well as data duplication and averaging, this is a

similar concept to studying effective connectivity as in previous studies.
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5.4.5 Electrode Localisation

Electrode anatomical localisation was used to interpret CCEP findings with respect

to brain function. We used rigid and non-rigid registration to determine the loca-

tions of electrodes in structural T1 images, which provided an intermediate phase

for registering electrodes to diffusion images. Previous studies have implanted elec-

trodes using a stereotaxic frame, allowing extrapolation of coordinates to the Ta-

lairach [298] or MNI [118] anatomical reference spaces in order to identify brain

regions underlying electrodes [344, 67, 87]. An alternative method has been to

register the CT to a post-implantation T1 image where the anterior commissure

to posterior commisure line has been defined, which also allows transformation of

electrode coordinates to the Talairach reference space [277, 188]. Another method

has been to identify the locations of electrode directly on the post-implantation

structural T1 image using the signal void, and therefore determine the electrode

locations using gross anatomical knowledge of locations of major brain regions

[221, 223, 168, 224]. A further method has been to rigidly register the CT, post-

implantation T1 and pre-implantation T1 image [113, 32, 225], which may be fol-

lowed by projecting the electrodes towards the brain surface [178, 116, 185]. Fi-

nally, for visualisation purposes, some studies have represented electrode locations

on a schematic diagrams, allowing an approximation of their anatomical location

[222, 125, 304].

Registration of electrodes from CT space to post-implantation MRI space, fol-

lowed by non-rigid registration to pre-implantation MRI space is expected to be

a more accurate than surface projection following rigid registration of CT to pre-

implantation MRI. This is because it uses contrast derived from anatomical infor-

mation to directly drive the deformation, whereas in the case of projecting elec-

trodes to the cortical surface, a uniformly radial direction of brain shift can not be

assumed. Furthermore, use of stereotaxic co-ordinates or Talairach space makes

large assumptions that the patient brain anatomy is similar to that of the atlas space,

which may not be true due to individual variability in brain anatomy. A combi-

nation of rigid and non-rigid registration is expected to provide the most accurate
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localisation of electrodes in structural T1 images, although frequently these images

are not available and alternative methods such as those mentioned above can be

performed. In the future, neuroimaging is likely to become more popular in pre-

surgical evaluation and therefore post and pre-implantation T1 images will be more

commonly available. A further method to consider for electrode localisation is that

of using three dimensional modelling to represent the brain surface and electrode

coordinates from intra-operative photographs and registering this model to the cor-

tical surface of a pre-implantation structural T1 image.

5.4.6 Electrode ROIs

Defining electrode ROIs is needed to determine the connectivity of tractography

streamlines. In this study the grid electrode ROIs were constrained within grey

matter tissue defined in a tissue parcellation, whereas depth electrodes were simply

dilated by 5 mm. Previous diffusion tractography studies in epilepsy have manually

defined small ROIs propagated from MNI space in order to examine connectivity

within particular brain sub-networks of interest, such as those relating to language

function [209, 276, 111], or used ROIs in cortical atlases when performing large-

scale cortical connectivity studies [241, 300, 365, 210]. However, in CCEP studies

it is more difficult to define a brain ROI. It could correspond to the volume of acti-

vated neural tissue directly underneath the electrode following stimulation, or to the

volume of tissue underneath the electrode which contributes to local field potentials

observed at recording sites. The volume of activated neural tissue underneath each

electrode is expected to be around 3 mm3, whereas the resolution of intracranial

EEG measuring local field potentials is approximately 10 mm, meaning a source of

brain electrical activity may spread up to but not exceeding 10 mm distance [191].

In fact, the volume of activated neural tissue is not identical for each stimulation,

as the current density depends on the positions of the stimulated electrodes. This

means that each electrode stimulation will activate a unique volume of tissue. One

possible method to estimate the current density for each electrode stimulation pair

would be to use finite element modeling [242], for which the tissue classes could

be derived from a structural tissue parcellation. The current density may then be
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thresholded according to the stimulation activation thresholds of neurons detailed

in Ranck Jr [264]. It should however be noted that these thresholds refer to currents

generated using a monopolar stimulation, whereas bipolar stimulation has been used

in the majority of CCEP studies. In this study, electrode ROIs were expected to be

approximately the same size as those contributing to local field potentials but larger

than that expected to be activated during stimulation. Conner et al. [78] used vir-

tual cuboidal ROIs of 20 x 20 x 20 mm around each electrode, and Swann et al.

[296] used ROIs of 10 x 10 x 10 mm. This is expected to be a less specific method

of defining electrode ROIs as the ROIs are not constrained to lie within the grey

matter, and may therefore result in overestimation of their connectivity.

5.4.7 Tractography

The aim of diffusion tractography is to estimate the paths of axonal connections

in the white matter. In this study, diffusion tractography was performed from the

boundary voxels of electrode ROIs using probabilistic tractography. High repro-

ducibility of connection weights was found when using this tractography method as

part of a pipeline to construct whole-brain networks between ROIs in a cortical par-

cellation [251]. In addition, the tractography method was part of a pipeline which

had high agreement to another state-of-the-art pipeline with similar capabilities (see

section 4.3.1).

Diffusion tensor deterministic tractography is the most popular method for esti-

mating structural connectivity in epilepsy [205, 365, 300, 347]. The ball-and-sticks

multiple fiber population model coupled with probabilistic tractography has also

been widely used [133, 241, 271]. The advantages of probabilistic tractography

over deterministic tractography are the ability to estimate a continuous measure of

connectivity which measures the likelihood of other minor axonal paths in addition

to the single most likely path. In addition, the constrained spherical deconvolution

approach is model-free and does not rely on a priori assumptions about the number

of independent fiber populations in each voxel, whilst retaining wide flexibility in

the number of fiber orientations in can represent. A more detailed description of

diffusion tractography in structural networks is described in section 4.1. The trac-
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tography results in this report suggests that probabilistic tractography may be more

appropriate to reconstruct structural connectivity between intracranial electrodes as

it recovers short range U-fibers in addition to other major white matter pathways.

The intersections of streamlines on electrode ROIs was used to build a large-

scale inter-electrode structural connectivity networks, using a connection weighting

scheme considering the volume of node areas, as used commonly in previous large-

scale network studies using cortical atlases (see Chapter 3). This is the first such

study to report construction of large-scale inter-electrode structural networks for the

purpose of correlating structural and effective networks.

5.5 Summary
This is the first study to apply state-of-the-art reconstruction pipelines in both struc-

tural and effective connectivity networks for the purpose of inter-modal compari-

son and analysis of large-scale connectivity in epileptogenic networks. Contem-

porary state-of-the-art methods used for epoching, artefact reduction, peak-finding

and large-scale network reconstruction of effective networks from CCEP data were

described and compared with previous studies. Furthermore, structural networks

were reconstructed using state-of-the-art pipelines demonstrated to have high re-

producibility and agreement with other methods of equal capability in the previous

thesis chapter. This chapter provides a reference for Chapter 6, which will correlate

the structural and effective networks, examine potential connectivity abnormalities

of the ictal-onset zone, and mechanisms of non-contiguous seizure spread.



Chapter 6

Structural and Effective Networks:

Inter-Modal Comparison, Ictal-Onset

Connectivity and Seizure Spread

In patients with drug-resistant focal epilepsy, seizure freedom following resective

surgery relies on correct identification of cortical area generating seizures, known

as the ictal-onset zone [278]. This is often challenging using current techniques

which combine findings across multiple observational techniques such as intracra-

nial EEG, scalp EEG, structural MRI, seizure semiology and patient history. It is

possible that seizure freedom may be improved by using connectional information

from diffusion MRI tractography and CCEPs. In this chapter, the challenges in iden-

tifying the ictal-onset zone in drug-resistant frontal lobe epilepsy are introduced.

Connectional disturbances reported in epilepsy using diffusion MRI tractography

and CCEPs are then described. The correlation and overlap between structural and

effective networks is quantified, and the ability of the techniques to detect con-

nectional abnormalities of the prescribed ictal-onset zone is examined. Structural

and effective networks are then evaluated for evidence of macroscopic connections

supporting non-contiguous seizure spread. Finally, findings regarding inter-modal

agreement, seizure onset connectivity and non-contiguous seizure spread are dis-

cussed with respect to the wider literature.
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6.1 Introduction

Epilepsy is a group of neurological disorders affecting approximately 1% of people

and is characterised by recurring seizures associated with abnormal brain electri-

cal activity. Focal seizures consist of localised areas of abnormal neuro-electrical

activity which can subsequently spread to contiguous and non-contiguous brain ar-

eas. This is in contrast to generalised seizures which affect both hemispheres of

the brain at onset. Frontal lobe epilepsy (FLE) is the second most common form

of focal epilepsy, accounting for approximately 20-30% of all focal epilepsy cases

[253]. Approximately 30% of focal epilepsy patients are resistant to anti-epileptic

drugs and in these cases resective surgery is an option [148].

In drug-resistant epilepsy patients who undergo pre-surgical evaluation, local-

isation of the ictal-onset zone- the brain location where abnormal electrical activity

starts; propagative regions- brain locations that abnormal electrical activity propa-

gates to from the ictal-onset zone; and eloquent brain regions- brain regions required

for essential processing tasks, such as language; are of primary importance. Lo-

calising the ictal-onset zone involves consideration of neurological findings across

multiple modalities such as scalp EEG, intracranial EEG and neuroimaging such as

structural and functional MRI, which are considered in context with seizure semi-

ology (signs and symptoms of a seizure) and patient medical history.

It is difficult to localise the ictal-onset zone in FLE using seizure semiology due

to inter-individual variation in frontal lobe function and anatomy and the incomplete

understanding of how frontal lobe functional anatomy affects seizure semiology. Ic-

tal and inter-ictal EEG are frequently non-localising due the difficulty in attributing

sources to observed EEG abnormalities. It has been estimated that inter-ictal EEG

can only localise the ictal-onset zone in about one third of FLE patients with ictal

EEG changes [160]. Therefore, intracranial EEG is needed to define the extent of

the ictal-onset zone in the majority of patients with frontal lobe epilepsy [160].

Improvements in seizure freedom in FLE following resective surgery have

been partly attributed to advances in structural and functional neuroimaging [160].

This may be expected given that neuronal migration disorders such as cortical



6.1. Introduction 157

dysplasia have been increasingly recognised as important causes of frontal lobe

epilepsy- 50% of patients with frontal lobe epilepsy are MRI positive and there is a

high correlation between an MRI identified lesion and the location of the epilepto-

genic zone [160]. Despite technical advances particularly in neuroimaging, seizure

freedom rates are only 60-70% in temporal lobe epilepsies and 50% or less af-

ter extra-temporal resections [303], meaning accuracy in identifying the ictal-onset

zone during pre-surgical evaluation in FLE may be improved.

Diffusion-weighted images and CCEPs are increasingly acquired during pre-

surgical planning as part of standard care to provide complimentary information

regarding connectivity of the prescribed ictal-onset zone. Combining connectivity

information from diffusion imaging and CCEPs may allow a better estimation of

epileptogenic networks and lead to improved accuracy in identifying the ictal-onset

zone. The following paragraphs will summarise previous works demonstrating con-

nectional disturbances in epilepsy using diffusion imaging or CCEPs.

Diffusion tractography has been extensively used to study focal epilepsy out-

side of the frontal lobe. These studies have been undertaken with a variety of aims:

to examine structural connectivity of particular tracts or brain regions relating to

the epilepsy sub-type [238, 209, 276, 111, 296, 295, 11, 133, 190, 235, 271, 331],

to examine large-scale structural connectivity [205, 365, 34, 103, 24, 98, 199,

210, 346, 347, 241, 300], and to investigate structural reorganisation with re-

spect to epileptogenic [355, 345] or language networks [117] following surgery.

Other studies have aimed to predict post-surgical from pre-surgical structural con-

nectivity [241], to correlate tract measures to clinical outcome and EEG seizure

propagation [102, 101], or large-scale structural connectivity to cognitive per-

formance measures [321], and to better understand the relation between struc-

tural and functional connectivity in focal epilepsy outside of the frontal lobe

[276, 205, 78, 365, 103, 24, 133].

Those studies examining particular tracts of interest in focal epilepsy origi-

nating outside of the frontal lobe have in some cases confirmed the presence of

a structural link between regions of interest thought important in epilepsy pathol-
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ogy [296]. On the other hand, other studies have found both ipsilateral decreases

[11, 209] and contralateral increases [276] in microstructural indices (FA) in tracts

closely associated with particular epilepsy types. Connectional changes have been

correlated with cognitive function, as Diehl et al. [101] demonstrated correlation

between microstructural indices (FA and ADC) and memory scores in the unci-

nate fasciculus of left temporal-lobe epilepsy patients. Large-scale cortical connec-

tivity studies have demonstrated connectivity changes outside the ictal-onset lobe

[346, 210, 205, 98, 365], with some evidence (correlation) for accompanying struc-

tural and functional changes [205]. Loss of efficient network topological organisa-

tion has been observed both functionally and structurally at the global level [365],

and/or at the local level [365, 210, 346, 34]. Multiple reports have shown that

structure-function coupling tends to decrease with disease severity [365, 24]. In

addition, some global network metrics correlated closely with cognitive test scores

[321].

A small number of studies have examined structural connectivity in FLE using

diffusion tractography. These studies have investigated potential abnormal con-

nectivity in particular tracts of interest [149, 333, 58], or across large-scale net-

works [323], examined the relationship between structural and functional connec-

tivity [149, 186, 323], or assessed the ability of diffusion tractography to aid in

planning of resective surgery [262].

Studies on tracts of interest in FLE epilepsy sub-types have shown disturbances

[149, 58, 186] in structural connectivity of regions involved in epileptogenesis, al-

though no alterations in supplementary motor area connectivity in FLE were found

in one study [333]. Ipsilateral and contralateral changes in microstructural indices in

tracts closely related to suspected epilepsy pathology has been observed [149, 58].

Studies on large-scale networks have shown changes in functional but not structural

global topology in relation to childhood FLE [323]. Those studies examining the

relationship between diffusion tractography and functional measures have demon-

strated a decoupling between structure and function at a large-scale [323]. However,

agreement between alterations in fMRI and diffusion tractography has been demon-
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strated that helps explain seizure semiology and EEG recordings [186]. Finally,

diffusion tractography has been shown to aid in resection planning by identifying

eloquent tracts [262].

CCEPs have been previously used for mapping brain connections. Hy-

potheses regarding connectivity of particular brain networks such as the language

[221, 78, 350], limbic [344, 67, 68, 188], motor [223, 114] and sensorimotor

[114, 304] systems, or across broader brain networks such as the thalamus [277],

parietal [224], frontal [224, 192] and temporal [344, 192, 319, 185] lobes has been

investigated. For example, Matsumoto et al. [221] analysed the N1 and N2 compo-

nent of CCEPs and found a bidirectional pattern of effective connections between

a broader range of language areas than that suggested in the Wernicke-Gerschwind

model of language. Umeoka et al. [319] analysed positive and negative peaks of the

CCEP to demonstrate bilateral temporal connections thought responsible for seizure

spread from one temporal lobe to the other.

To estimate effective connectivity on a larger scale, some studies have stimu-

lated all possible electrode pairs and performed a group analysis by transforming

electrodes to a standard space [177, 87, 116, 178]. In order to demonstrate the po-

tential utility of this approach for mapping connectivity, David et al. [87] examined

early responses to generate a group report of functional tractography between re-

gions covered by electrodes. Their method allows summaries of the probability of

recording a significant CCEP response and the latencies of these responses for a

given brain region, and the concept is illustrated using CCEPs between the poste-

rior superior temporal gyrus and the inferior frontal gyrus. More recently, Entz et al.

[116] used a large-scale group approach to map the directionality of early and late

responses across all stimulation pairs and identified the most reliable connections.

Keller et al. [178] examined early and late responses across all stimulation pairs and

probed the directionality of connections in order to define major cortical projectors

and integrators of information.

A number of studies have examined effective connectivity of epileptogenic net-

works using responses to SPES [324, 326, 325, 125, 168, 183, 32]. Multiple studies
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have demonstrated abnormal prevalence of delayed responses (which are distin-

guished from CCEPs in these studies, as described in [38]) in seizure onset regions

[324, 326, 125]. It should be noted that studies demonstrating abnormal delayed

responses [324, 326, 125] did not average the evoked response on repeated stimula-

tions, as is common practice with CCEPs, but instead determined delayed responses

visually by their repeated occurrence on single stimulations. For example, Valentin

et al. [324] studied responses to single pulse electrical stimulation in a large group

of 45 temporal lobe epilepsy patients [324]. Early CCEPs (0-100 ms post-stimulus)

and late (100-1000ms post-stimulus) latency responses were observed during ac-

quisition. The authors found that late responses, although only found in half of

patients, were associated with regions where seizure onset occurred. This is in con-

trast to early response CCEPs, which were found in all patients and throughout the

brain. Note that delayed responses were defined as slow wave and sharp spikes

whereas early response CCEPs were defined as fast waves immediately following

the stimulation. Another study has demonstrated higher amplitudes of the N1 CCEP

component at ictal-onset electrodes compared to surrounding electrodes [168] and

this effect was more pronounced in electrodes showing the repetitive spiking com-

pared to paroxysmal fast patterns of seizure onset [112]. Some SPES studies have

also demonstrated favourable surgical outcome in patients who had brain regions

with abnormal responses to SPES resected [326, 125].

Despite significant advances in understanding connectivity of the ictal-onset

zone, little is known about mechanisms of seizure propagation. Contiguous seizure

spread, which is more commonly observed than non-contiguous seizure spread,

is known to occur through cortical layer V [302]. However, intracranial EEG

recordings also demonstrate spread of seizure activity between non-contiguous sites

[107, 314], which may involve areas ipsilateral or contralateral to the ictal-onset

zone [31, 21, 207]. For example, Baumgartner et al. [21] studied seizure propa-

gation pathways in five patients with supplementary motor cortex seizures. The

authors found epileptic discharges occurred synchronously in the supplementary

motor area and the primary motor cortex and that the actively involved electrodes
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were separated by silent electrodes, providing evidence for non-contiguous seizure

spread. Blume et al. [31] studied the seizure propagation properties (direction and

speed) of frontal lobe seizures using scalp and intracranial EEG. They found the

most common route of seizure spread was to contiguous frontal lobe cortex, al-

though intracranial EEG seizures also showed spread to opposite hemisphere cortex

in the majority of cases. It is unknown whether this non-contiguous seizure spread

may occur via direct cortico-cortical connection or indirectly via cortico-subcortico-

cortical or cortico-cortico-cortical connection.

Diffusion tractography gives information relating to direct macroscopic inter-

cortical connectivity, thus enabling the determination of the macroscopic white

matter tracts arising from intracranial electrodes. Intracranial EEG enables the

determination of the location of ictal-onset and non-contiguous seizure spread

routes. CCEPs denote presence of functional tracts between implanted electrodes.

Therefore, combining CCEPs, diffusion tractography and intracranial EEG seizure

recordings may help elucidate the mechanisms of non-contiguous seizure spread.

There are three primary aims to this study: (i) to assess the correlation be-

tween structural and effective networks at a large-scale across the cortex; (ii) to

assess the potential for diffusion tractography and CCEPs to identify structural and

effective connectivity markers of the prescribed ictal-onset zone and (iii) to exam-

ine the mechanisms of non-contiguous seizure spread using structural and effective

networks.

6.2 Methods

6.2.1 Structural and Effective Networks

Structural and effective networks were reconstructed for seven drug-resistant

epilepsy subjects with either frontal or parietal lobe epilepsy, using the pipelines

described in Chapter 5. Subject details can be found in Table 5.1, Chapter 5.

Inter-electrode effective connectivity was calculated as an average of the con-

nectivity values from each stimulating electrode to the recording electrode, as de-

scribed in the Chapter 5, Methods. This conversion of data representations from
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stimpair to network allowed a direct connection-wise analysis of data points be-

tween the native diffusion structural network space and CCEP space.

Networks were reconstructed for multiple connection features. Effective net-

works were reconstructed for peak amplitude, latency and baseline standard devi-

ation. Structural networks were reconstructed for streamline density and tract dis-

tance. Furthermore, the Euclidean distance network was also constructed using the

coordinates of electrodes in CT images. Henceforth, peak amplitude networks will

be referred to as effective networks and streamline density networks will be referred

to as structural networks.

6.2.2 Binary Network Analysis

Graph theoretical analysis was applied to binarised structural and effective net-

works, in order to compare the nodal connection topography between ictal and

non-ictal electrodes. Nodal graph theoretical measures calculated were indegree,

outdegree, normalised indegree, normalised outdegree, clustering coefficient [244],

centrality [41] and reciprocity. Indegree and outdegree refer to the number of out-

going and incoming connections of a node, respectively. Normalised indegree and

outdegree refer to the indegree and outdegree of each node normalised by the max-

imum given the number of nodes in the network. Reciprocity was calculated as the

number of bidirectional connections as a fraction of the outdegree. Indegree, outde-

gree, clustering coefficient and centrality were calculated using the igraph package

in R [84]. Reciprocity was calculated using custom built scripts in R [301].

6.2.3 Structural and Effective Network Comparison

Two inter-modal comparison metrics were calculated:- the Jaccard Index, which

measures the overlap in the binary structural and effective networks; and the Pear-

son correlation, which measures the correlation between structural and effective

network connection weights. The Jaccard Index was calculated on a subject-wise

basis as the size of the set of intersecting connections divided by the size of the set

of union connections.
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6.2.4 Ictal-Onset Connectivity

During pre-surgical evaluation, each subject underwent video telemetry (simultane-

ous video and EEG monitoring) to correlate EEG findings with seizure semiology.

All subjects had multiple seizures during video telemetry. Of these seizures, a set of

prototypical seizures was identified for each subject by an experienced neurophysi-

ologist (Dr. Beate Diehl, NHNN).

Electrodes were then classified as either ictal-onset or not ictal-onset by

analysing the first electrodes demonstrating seizure activity on the intracranial EEG

of each prototypical seizure. Observations of seizure activity were made by an ex-

perienced physiologist (Ms. Catherine Scott, MPhil., NHNN). Seizure activity was

defined as a clear ictal EEG pattern consisting of regular spikes, rhythmic sharp

waves, spike-and-slow wave complexes, sharp-and-slow-wave complexes, rhyth-

mic delta or theta activities, sharpened delta or theta activities, or low-amplitude

high- frequency activity in the beta range, as in [1].

Network connections were classified as in- those entering an ictal-onset elec-

trode; out- those leaving an ictal-onset electrode; within- those between ictal-onset

electrodes; and outside- those between non ictal-onset electrodes, as shown in Fig.

6.1. The features of interest (peak amplitude, latency, baseline standard deviation

and streamline density) were then examined across the four connection categories,

on a pooled subject level for all effective network connections. The nodal graph the-

oretical properties of ictal-onset and non ictal-onset electrodes were also compared

on a pooled subject level.

6.2.5 Non-Contiguous Seizure Spread

For each prototypical seizure, electrodes were classified by an experienced physiol-

ogist (Ms. Catherine Scott) as either ictal-onset- the electrode where seizure activity

starts; early propagative - electrodes showing seizure activity within one second of

seizure onset, and late propagative- electrodes showing seizure activity between one

and two seconds. Seizure activity was defined as described above.

Possible non-contiguous seizure spread connections were then identified as all

possible connections from onset to early propagative electrodes (O-E), onset to later
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propagative electrodes (O-L), and early to later propagative electrodes (E-L). Non-

contiguous connections were those between electrodes with distance greater than

11 mm, as determined using the electrode coordinates from the CT image. A dis-

tance of 11 mm was chosen as this includes the majority of row-wise adjacent grid

and depth electrodes whilst allowing some small displacement due to brain shift.

Three non-contiguous seizure spread connection categories were therefore defined

(Fig. 6.1). The prevalence of structural or effective network connections in each

of these three categories was then calculated using the binary networks. Preva-

lence was compared to the density of the original binary and non-contiguous binary

networks, as this represents the prevalence expected by chance. The distribution

of peak amplitudes and streamline density among non-contiguous seizure spread

connection categories was also calculated and compared to the distribution in the

original networks. Analyses were performed on a pooled subject level.

Figure 6.1: Illustrative examples of ictal-onset and seizure propagation connections used in
the ictal-onset and non-contiguous seizure spread analyses. Left: Ictal-onset connection cat-
egories. Ictal-onset electrodes are filled circles. Connection categories are labeled by colour.
Red, green, blue and purple colours correspond to connections in, out, within and outside
ictal-onset electrodes. Middle: A network containing contiguous and non-contiguous con-
nections (grey lines) between ictal-onset electrodes (filled circles), early propagative elec-
trodes (triple-lined circles) and late propagative electrodes (single-lined circles). Right:
Non-contiguous seizure spread connection categories. Contiguous connections were re-
moved. Green, blue and red lines correspond to non-contiguous connections from onset to
early, early to late, and onset to late electrodes, respectively.
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6.3 Results

6.3.1 Structural and Effective Networks

Global network properties of structural and effective networks are shown in Table

6.1 for all subjects. The grand mean peak amplitude of weighted effective networks

across all subjects was 163.8 ± 45.84 µV whereas the grand mean streamline den-

sity of weighted structural networks was 0.56 ± 0.064. The network density of

binary networks was 0.169 ± 0.178 for effective networks and 0.109 ± 0.041 for

structural networks. Global efficiency of effective networks (0.39± 0.18) was simi-

lar to structural networks (0.40± 0.08) for all subjects. Global clustering coefficient

was also similar between effective networks (0.45 ± 0.20) and structural networks

(0.47 ± 0.04). The mean global reciprocity of effective networks (0.34 ± 0.12)

was less than 1 since they are undirected networks. The mean global reciprocity of

structural networks was 1 since all connections are undirected.

6.3.2 Structural and Effective Network Comparison

The mean overlap between the binary structural and effective networks, as measured

by the Jaccard Index, was 0.176 ± 0.024. This was a higher overlap than expected

by chance given the density of the networks (Fig. 6.2 and 6.3). However, the

spearman correlation between the edge weights of CCEP and diffusion networks

was low at ρ=0.128 ± 0.066. (Table 6.1, Fig 2).

6.3.3 Ictal-Onset Connectivity

The number of ictal-onset electrodes for each subject is shown in Table 6.1. A total

of 16 electrodes were classified as ictal-onset (mean 2.7 ± 1.8 across subjects).

The subject with the lowest number of ictal-onset electrodes was subject 1 who

had 1 ictal-onset electrode, while subject 4 had the most with 6. Note that subject

2 had diffuse seizure onset patterns and was therefore not included in ictal-onset

connectivity analysis.

Ictal-onset connectivity category comparisons are presented for structural and

effective connection features constrained along effective connections. Across all

subjects, a trend for higher peak amplitude at ictal-onset electrodes was observed
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Figure 6.2: Effective and structural networks in all subjects. Left: Effective networks. Left-
Middle: Structural networks. Right-Middle: Union (green) and intersection (red) of struc-
tural and effective networks. Right: Plot of effective network amplitude (A) and structural
network streamline density (S). A high overlap but low correlation was observed between
structural and effective networks.
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Figure 6.3: Similarity between binary effective (CCEP) and structural (diffusion) networks.
The observed Jaccard index, measuring network similarity, was higher than expected given
the density of the binary networks.

(Fig. 6.4). This was seen as a higher median peak amplitude for in and within

ictal-onset connection categories, compared to CCEPs recorded for out and out-

side connection categories. Higher baseline standard deviation was observed at non

ictal-onset electrodes connecting towards ictal-onset electrodes, as shown by higher

baseline standard deviation for the in connection category. Across all subjects, a

trend of altered structural connectivity was found in the streamline density of ef-

fective connections between ictal-onset electrodes, as shown by a higher median

streamline density for the within connection category. No clear trends with latency

were observed.

The distribution of nodal graph theoretical properties showed little variability

between ictal-onset and non ictal-onset electrodes. However, outdegree and nor-

malised outdegree of ictal-onset electrodes was higher (Fig. 6.5).
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Figure 6.4: Ictal-onset effective and structural connectivity measures (CCEP network am-
plitude, latency and baseline standard deviation and diffusion network streamline density)
pooled across all subjects. Shown are the median and interquartile range for four con-
nection categories: in (connections towards ictal-onset electrodes), out (connections away
from ictal-onset electrodes), within (connections between ictal-onset electrodes) and outside
(connections not involving ictal-onset electrodes). Whiskers cover the range of data points
no more than 1.5 times the interquartile range. A trend for higher distribution of CCEP am-
plitude and baseline standard deviation was observed for in connection categories, whereas
a trend for higher distribution of CCEP amplitude and streamline density was found for
within connections.

6.3.4 Non-Contiguous Seizure Spread

The number of electrodes classified as early and late seizure spread sites varied

across subjects. The mean number of early seizure spread sites was 6.3 ± 2.9,

whereas the mean number of late seizure spread sites was 4.5 ± 4.1 (Table 6.1). As

previously mentioned, subject 2 had diffuse seizure onset patterns and was therefore

not included in the non-contiguous seizure spread analysis.

The prevalence of both structural and effective connections among all possi-

ble non-contiguous seizure spread connections was higher than expected by chance
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Figure 6.5: Nodal graph theoretical properties of indegree, normalised indegree, outde-
gree, normalised outdegree, clustering coefficient, centrality and reciprocity at ictal-onset
compared to non ictal-onset electrodes. Nodal graph theoretical properties are shown for
effective (upper) and structural (lower) networks across all subjects. Outdegree and nor-
malised outdegree was higher at ictal-onset electrodes in effective networks.

for the O-E and O-L connection categories, whereas the prevalence of structural

connections was also higher for the E-L category (Fig. 6.6). The chance prevalence

was considered as the density of connections among all the possible non-contiguous

connections, which was 0.176 ± 0.191 for effective networks and 0.076 ± 0.036 in

structural networks.

Some trends in the weighted properties of non-contiguous seizure spread con-

nections were observed in effective and structural networks. There was a trend for

higher peak amplitude of O-E and E-L seizure spread connections in effective net-

works. The latency of O-E non-contiguous seizure spread connections was lower

than the rest of the network and non-contiguous connections. Also, streamline den-

sity tended to be lower for O-L and E-L non-contiguous seizure spread connection

categories. Examples of non-contiguous seizure spread networks for subjects 3, 6

and 7 are shown in Fig 6.8.
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Figure 6.6: Prevalence (mean ± standard error across subjects) of effective (CCEP)
and structural (diffusion) network connections among all possible non-contiguous seizure
spread connections (O-E: onset to early; O-L: onset to late; E-L: early to late). All struc-
tural non-contiguous seizure spread connection categories had a higher prevalence than
expected compared to all network connections (All) and all non-contiguous connections
(Non-contig). Effective networks had a higher prevalence of O-E and O-L connections, but
not E-L connections.

Figure 6.7: Connectivity measures (CCEP network amplitude and latency, diffusion net-
work streamline density) of non-contiguous seizure spread connections across all subjects.
Seizure spread connections (O-E: green, O-L: red and E-L: brown) are compared to the
distribution of all connections (dark grey) and all non-contiguous connections (light grey).
O-E connections had a higher CCEP amplitude and shorter latency. E-L connections had a
higher CCEP amplitude.

Examples of non-contiguous seizure spread networks are shown in Fig 6.8.



172 Chapter 6. Inter-Modal Comparison and Connectivity in Epilepsy

Figure 6.8: Examples of non-contiguous seizure spread networks in subject 3 (left), 6
(middle) and 7 (right). Plausible routes of seizure spread through ictal-onset (green), early
propagative (orange) and late propagative (red) electrodes were observed when consider-
ing evidence of connectivity using either CCEPs (blue), diffusion tractography (red), or
both (purple). Subject 3 had no non-contiguous seizure spread connections containing both
effective and structural connection, although both modalities individually had connections
from both onset to early and early to late propagative electrodes, indicating a possible mech-
anism for non-contiguous seizure spread through intermediate early propagative locations.
Subject 6 had connections from onset to early and early to late electrodes when considering
either or both modalities. Subject 7 had many connections containing both an effective and
structural connection and many possible routes of seizure spread when considering either
or both modalities.

6.4 Discussion
This was the first study to reconstruct both structural and effective networks at a

large scale across the cortex. Combining these modalities enabled estimation of the

agreement between structural and effective networks, the structural and effective

connectivity of the ictal-onset zone and the connections underlying non-contiguous

seizure spread. We found a high overlap between structural and effective networks,

altered structural and effective connectivity of the ictal-onset zone, and evidence of

structural and effective connections underlying non-contiguous seizure spread.

6.4.1 Structural and Effective Network Comparison

A high degree of overlap is expected between structural and effective networks as

effective connections are constrained along structural connections- an axon is re-

quired to carry a neural signal between brain regions. Furthermore, some degree

of correlation may be expected between structural and effective networks as the

density of connecting fibers (the structural network connection weight) may cor-
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respond to the number and synchrony of neurons activated at the remote site (the

effective connection weight- peak amplitude is directly proportional to the number

and synchrony of activated neurons).

This study found that structural and effective networks had a high degree of

overlap in the binary connections, indicated by a high Jaccard Index. However,

the correlation in the connection weights was low. Two other studies have reported

agreement between CCEP and diffusion tractography connections [78, 296]. Swann

et al. [296] found a high concordance in connectivity between pre-SMA and rIFG

using CCEPs, diffusion tractography and task-based functional MRI. Short latency

CCEPs were elicited between the pre-SMA and rIFG sites which were also con-

nected by tractography fibers [296]. However, the overlap or correlation between

structural and effective networks was not quantified. Conner et al. [78] examined

the correlation between the number of streamlines and CCEP amplitude in connec-

tions arising from Broca’s area. They found a small but significant correlation R2

of 0.41. The higher correlation reported in Conner et al. [78] could be because the

connection weights of CCEPs and tracts arising from a single cortical area with

a well characterised connection were examined- Broca’s area is known to play a

key role in language processing with connections to Wernicke’s area via the arcuate

fasciculus. In contrast, this study examined the entire set of cortical connections

covered by the intracranial EEG, which included grid and depth electrodes. This set

of connections is likely to be more challenging to quantify through diffusion trac-

tography or CCEPs than a single connection traversing a major white matter tract,

and there may also be some false positive connections.

The low correlation between structural and effective networks found in this

study could also be due to accumulation of inaccuracies in the estimation of the

connection weights on a large scale across the cortex. Possible sources of error are

discussed in detail in the previous Chapter. It should be noted that other measures

of connection weight are available for both structural and effective networks which

may give higher correlation. For example, structural networks may be weighted by

tract volume [321], fractional anisotropy along the tract [209], or combinations of
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these measures which can also penalise shorter distance connections [203]. Effec-

tive networks may additionally be weighted by the negative amplitude of the evoked

potential [5] or the root-mean-squared ratio of the response to the baseline [198].

Loss of correlation between whole brain structural and functional networks

has been previously reported in epilepsy. Zhang et al. [365] found a decrease

in structure-function correlation with epilepsy duration in idiopathic generalised

epilepsy. Besseling et al. [24] found lower structure-function correlation in rolandic

epilepsy compared to controls, and Vaessen et al. [323] found an asbence of in-

crease in correlation between structural and functional networks with age in child-

hood frontal lobe epilepsy which was present in controls. These studies suggest

that although structure-function correlation is typically present in epilepsy subjects,

it is lower in some forms of epilepsy or with disease severity. The low correla-

tion between structural and effective networks observed in this study may be due

to a combined effect of disease-related loss of structure-function correlation, and

imperfections in reconstructing structural and effective networks.

6.4.2 Ictal-Onset Connectivity

Previous studies have observed alterations in structural and effective connectivity

of the ictal-onset zone [149, 58, 324, 326] in addition to regions outside of the

ictal-onset zone [209, 365, 346]. In this study, a higher amplitude of CCEPs was

found at the ictal-onset zone. Furthermore, a higher baseline standard deviation was

observed at the ictal-onset zone in the intracranial EEG of epochs containing signif-

icant CCEP peaks when stimulating outside of the ictal-onset zone. Previous CCEP

studies have demonstrated a higher prevalence of delayed responses [324, 326, 125]

in addition to a higher amplitude of CCEPs at ictal-onset zones [168, 112]. Together

these CCEP findings are consistent with an established theory in epilepsy pathology

that hyperexcitable cortex underlies the ictal-onset zone and this promotes epilep-

togenic neuronal activity. Cortical excitability refers to the readiness of a neuron

to generate an action potential when triggered by an excitatory post-synaptic po-

tential. Hyperexcitability refers to a lower threshold for neuron activation [20].

Hyperexcitability in epilepsy may be due to a number of factors such as the pres-
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ence of pathological tissue (e.g. lesions, cortical dysplasia) and down-regulation of

local inhibitory circuits or up-regulation of excitatory circuits [142]. Other possible

causes also include disruption of adenosine-mediated anti-convulsive mechanisms

[33] and the effect of immune mediators which modulate excitability [165].

Cortical dysplasia was highly prevalent in the study cohort. Cortical dysplasia

is a congenital abnormality affecting neuronal migration in utero, resulting in ab-

normal appearance of grey matter. Four of seven subjects (subject 1, 2, 4 and 6) had

type IIb focal cortical dysplasia [30]. In these subjects the cortical dysplastic tissue

was located in approximately the same brain region as the ictal-onset electrodes, al-

though exact anatomical localisation of cortical dysplastic tissue was not performed.

Focal type IIb cortical dysplasia is associated with cytomegalic dysmorphic neurons

and balloon cells, distortion of the laminar structure of the cortical grey matter, and

reduction in myelin of the underlying white matter [30]. Such pathology is known to

generate abnormal neural tissue that may be hyperexcitable [314]. One study found

more rapid propagation of seizure activity in paediatric epilepsy patients with dys-

plastic lesions than those with non-dysplastic lesions. In addition, the EEG onset

characteristics differed between dysplastic and non-dysplastic cortex: the majority

of patients with focal cortical dysplasia had fast frequencies at seizure onset com-

pared to patients who did not have cortical dysplasia. The latter had more repetitive

spiking at seizure onset [314]. There is a possibility that cortical dysplastic tissue

resulted in higher amplitude of CCEPs. Therefore, further work is needed to dif-

ferentiate between the contribution of the pathological finding of cortical dysplasia

and the hyperexcitability of the cortex per se.

6.4.3 Non-Contiguous Seizure Spread

Contiguous seizure spread is more commonly observed than non-contiguous seizure

spread and the mechanisms of contiguous spread are suspected to be through hori-

zontal cortical layer V [302]. However, the mechanisms of non-contiguous seizure

spread are unclear. This study found a higher prevalence of non-contiguous CCEP

connections from onset to early and onset to late seizure spread sites than that ex-

pected. In addition, structural connections from onset to early, onset to late, and
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early to later propagative sites were all more highly prevalent than expected. There-

fore, both effective and structural connections provide highly plausible routes for

non-contiguous seizure spread (Fig. 6.6 and 6.8). The high prevalence of both

structural and effective connections supports the idea that the seizure spread mech-

anism is likely via a direct functional cortico-cortical connection, as opposed to

indirect cortico-subcortico-cortical connection.

A trend for higher amplitude of CCEPs from onset to early and early to late

sites, but not onset to late seizure spread sites was observed. As higher amplitude

CCEP may reflect a stronger effective connection between those sites, this finding

suggests that seizure spread can occur via early propagative sites which act as inter-

mediates site for seizure propagation. However, the high prevalence of onset to late

CCEP connections suggests that the primary route for seizure spread to late sites is

directly from ictal-onset. Interestingly, despite high prevalence of all seizure spread

routes in the structural networks, there is a trend for lower streamline density for

onset to late and early to late connections.

This is the first study to examine mechanisms of non-contiguous seizure spread

using CCEPs. Recently, Lega et al. [198] acquired CCEPs in thirty-seven focal

epilepsy patients implanted with depth electrodes. The group studied the root-

mean-squared (RMS) and gamma band activity in the response period at early and

late seizure spread sites. They found an increase in both the RMS and low fre-

quency gamma band activity at early compared to late sites, which was also present

when matching the recordings by distance between early and late sites. The study

also found that the low frequency gamma activity at early seizure spread sites was

coherent with the ictal-onset zone, while lower frequency activity was not. They

hypothesise that low inhibitory input at the early seizure spread sites lead to higher

low frequency gamma band activity. These findings of high connectivity at early

seizure spread sites agrees with our findings of both higher structural and effective

connectivity between onset to early sites and provides further support for the notion

that this seizure spread is via direct effective connection from the ictal-onset zone.

A key difference between this study and Lega et al. [198] is that this study only
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examined plausible direct seizure spread routes (those from earlier to later propaga-

tive sites), whereas Lega et al. [198] examined all CCEPs connecting to early and

late sites regardless of their origin. This means that our findings are more specific

in relation to seizure spread whereas their findings are more useful for looking at

the connectional architecture of seizure spread sites in relation to the rest of the

electrode network. In addition, Lega et al. [198] studied epilepsy patients with only

depth electrodes implanted, whereas this study includes patients with both grid and

depth electrodes, which extends the finding of strongly connected seizure spread

sites to cortical as well as sub-cortical sites. A limitation of both of these studies

is that the criteria for early and late seizure spread sites is not clear- Lega et al.

[198] defined early sites as those with seizure activity up to three seconds following

seizure onset, and late sites as those with activity greater than three seconds. In our

study we used thresholds of less than one second and greater than one second for

early and late sites, respectively. Finally, as mentioned by Lega and colleagues, the

process of identifying seizure electrodes is qualitative, and quantitative measures,

such as the epileptogenicity index may be less biased and have lower intra-subject

variation, which may lead to more accurate assessments of seizure spread [13].

6.4.4 Methodological Considerations

In this study CCEPs with latency greater than 250 ms were removed. This threshold

was chosen in order to balance sensitivity to CCEPs relating to ictal-onset connec-

tivity and to direct connections of short latency. Some CCEP studies have differ-

entiated between early and late negative potentials with latencies of <100 ms and

>100 ms [87, 125]. However, many CCEP studies have found that evoked poten-

tials do not conform to this model of negative potentials, and that evoked potentials

may have either negative or positive polarity [178, 116, 32]. Furthermore, there is

some uncertainty about whether the early and late negative potentials reflect direct

and indirect connections, or that both reflect direct excitatory potentials followed

by inhibitory feedback circuits [116]. In addition, many studies examining connec-

tivity of the ictal-onset zone have demonstrated increased prevalence of responses

occurring from 100-1000 ms. We found that in the majority of subjects the distribu-
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tion of CCEP peaks was bimodal with a second peak of the distribution occurring

after 100ms, and that depth electrodes (possibly due to greater anatomical distance)

had some skewing of latencies towards those greater than 100 ms (Fig. 6.9). In

view of these discrepancies, we chose the threshold of 250 ms and examined only

the first peaks of evoked potentials in order to give maximum sensitivity to direct

connections which may reflect altered connectivity of ictal-onset zones. Despite

this, ictal-onset connectivity and non-contiguous seizure spread results were also

calculated using a 100 ms latency threshold and similar results were found (not

shown).

Figure 6.9: Marginal density histogram showing the amplitude and latency of peaks in the
effective network of subject 1. The majority of early latency peaks are between grid elec-
trodes (green line). At later latencies a higher proportion of peaks involve depth electrodes
(red, blue and purple lines).
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6.5 Summary
This was the first study to examine both structural and effective networks at a

large-scale across in the human cortex. A high overlap but low correlation was

found between structural and effective networks. This may have been be due to

the methodological limitations of both modalities and the large-scale nature of the

analysis. Altered baseline and effective connectivity was found at ictal-onset elec-

trodes, suggesting a hyperexcitable state of cortex at the epileptogenic focus. A high

number of outgoing effective connections was found at ictal-onset sites and a high

prevalence of structural and effective connections towards sites of non-contiguous

seizure spread was observed. Together, these results suggest that the ictal-onset

zone is highly excitable, highly outwardly connected, particularly with respect to

early and late seizure spread sites, while structural networks also show a high degree

of connections to seizure spread sites. CCEPs may be more useful for localising the

ictal-onset zone given more widespread disturbances in connection features than in

structural networks.





Chapter 7

Conclusions

Reconstructing and quantifying human brain connectivity using neuroimaging

methods holds great promise for understanding healthy brain function and its patho-

logical deviation. In this thesis, we assessed the reproducibility of structural net-

works and their consensus across pipelines, described methods to reconstruct large-

scale structural and effective networks between implanted intracranial electrodes,

quantified the correlation between structural and effective networks, and examined

structural and effective connectivity of the ictal-onset zone and non-contiguous

seizure spread in frontal and parietal lobe epilepsy patients. We showed that

structural network connections are highly reproducible and highly similar across

pipelines and that alterations in epileptogenic networks were observed in effective

and structural inter-electrode networks. The following paragraphs will summarise

the conclusions presented in chapter 4, 5 and 6 and discuss their implications in

view of the wider literature, suggest future research and possible research trends,

and acknowledge limitations of the analyses.

7.1 Reproducibility and Consensus in Structural

Brain Networks
Reproducibility of structural network connections was high and increased with

decreasing network density. This finding, together with other recently published

reproducibility studies [320, 16, 71, 56, 108, 367, 36], demonstrates that despite

some dependence of reproducibility on the reconstruction method, reproducibility
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of structural network weights is reasonable. Therefore, both topology and connec-

tion weights of structural networks are suitable candidates for biomarkers of neu-

rological diseases involving disconnection. Researchers applying network analysis

to disease cohorts should be aware of the trade off between decreased sensitivity

to suspected connectivity changes and increased reproducibility with decreasing

network density. In particular, neurological diseases involving compensative or re-

organisational changes in connectivity may be easier to detect than those involving

reductions in connection strength.

A high convergence between independent pipelines was observed across all

network densities. Although this does increase confidence in comparing studies

employing the same atlas but different contemporary methods of similar capabil-

ity, one should also consider that the network density also plays a dominant role in

determining network topology and studies employing networks of different density

should not be directly compared. As confirmed in Zhong et al. [368], networks re-

constructed using more fundamentally different techniques have lower agreement.

The trend for requiring data availability to accompany publications (as with the

PLOS ONE journal [257]) may facilitate cross-study comparisons of structural net-

works. Future studies can test cross-study similarity in networks employing the

same atlases but different pipelines as a possible pre-requisite for combining infor-

mation across studies.

Core connections occurring robustly across structural network reconstruction

pipelines were identified, termed ‘consensus networks’. These are the suspected

set of connections corresponding most highly to the true structural network. As

mentioned, it may be useful for future studies to apply multiple pipelines to their

diffusion-weighted data in order to identify these connections. With increasing

availability of software tools to combine neuroimaging post-processing methods,

such as Nipype [147] and PANDA [85], it may become more common to apply

multiple pipelines when reconstructing structural networks. As connections may

become missing in disease populations, an interesting question for future research

is how to extract and compare consensus networks between different subject popu-
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lations who may have a different compliment of cortical connections.

In the general field of structural brain networks, I suspect there will be a move

towards increasingly more accurate and detailed cortical parcellations. This will be

likely due to continuing improvements in anatomical and functional criteria defining

cortical areas, which may arise through improvements in image quality, parcellation

algorithms and cohort sizes, among other factors. Interestingly, Besson et al. [25]

demonstrated high reproducibility of high resolution structural networks (even with

500,000 nodes!), which provides some promise to counter the established reduc-

tion in reproducibility with increasing node scale [56] confirmed in this report. In

fact, Glasser et al. [140] recently introduced a semi-automated multi-modal par-

cellation of the cerebral cortex using functional, cytoarchitectural and connectivity

information derived from the Human Connectome Project. The atlas distinguishes

180 cortical regions per hemisphere, which is a relatively high estimate compared

to other cortical atlases.

7.2 Reconstructing Structural and Effective Net-

works
In Chapter 5 an automated epoching procedure was described which can epoch

CCEP data in the absence of time-locked stimulation or stimulation-tagged time-

points. Although this may be useful with older CCEP systems, it is suspected that

the majority of newly purchased CCEP equipment will have automatic ways of

determining stimulation onset. The automated ICA-based artefact reduction tech-

nique implemented in this thesis reduced but did not eliminate artefactual wave-

forms in the evoked response. Therefore, acquisition-based solutions, such as ac-

quiring CCEPs using an alternating monophasic pulse, should also be considered in

future CCEP studies. If automated artefact reduction is desired, the artefact reduc-

tion method described here may produce more effective attenuation if the method

for determining the number of ICs and IC selection technique can be improved. This

may be facilitated by a deeper understanding of the shape of evoked waveforms of

interest, over which there is still controversy.
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Nevertheless, in CCEP data that was not acquired using an alternating pulses

and that lacks automatic stimulation tags (as is the case in this study), the automated

pipeline described in this thesis may be useful in future clinical studies on CCEPs

in epilepsy clinics at the NHNN and beyond. With the increasing popularity of

connectomics-based research, large-scale effective network analysis may become

more common and therefore automated pipelines to extract effective networks from

the raw CCEP data will be valuable, as they can be applied to retrospective data. De-

velopment of a graphical user interface for the R scripts currently used for epoching,

artefact reduction, peak finding, and effective network reconstruction, would enable

more widespread use in epilepsy clinics.

The electrode localisation method for determining electrode positions in dif-

fusion space was reasonably accurate, and is theoretically more convincing than

techniques based on surface projection, Talairach coordinate extraction or other

methods, such as using the post-implantation MRI signal void. This is because

the co-registration technique does not use assumptions about patient neuroanatomy

and brain shift displacement. However, the co-registration method does depend

on the availability of the pre- and post-implantation anatomical images. Better

understanding and modelling of the effect of brain shift may enable adequate lo-

calisation of electrodes to pre-implantation images without the need for acquiring

pre- and post-implantation anatomical images. As neuroimaging is becoming in-

creasingly valuable in pre-surgical evaluation of epilepsy [160], the co-registration

method may become the standard and most principled way to localise electrodes

to pre-implantation spaces. Therefore, it may be beneficial to routinely acquire

these anatomical images in order to best interpret findings from other neuroimaging

modalities such as diffusion-weighted and functional images, with respect to the

intracranial EEG electrode positions.

In the field of effective networks and CCEPs, a better understanding of the

physiological basis of CCEPs is necessary. For example, there remains controversy

over whether the N1 and N2 represent excitatory or inhibitory volleys, direct or indi-

rect connections, or if other measures such as the A1 and A2 should be used instead,
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in addition to the variability in presentation of the evoked responses across brain

locations and subjects. Understanding how evoked potentials relate to the underly-

ing neurophysiology of connections is essential for interpretation and study design.

Resolving this may require further research to examine the shape of the evoked re-

sponse in electrophysiological recordings of excitatory and inhibitory networks in

vitro, or the use of more sophisticated computational models which examine the

effect of different populations of excitatory and inhibitory neurons, their orienta-

tions, and how voltage fields propagate through the brain, on the evoked response.

An interesting question is whether natural variations in cortical state (i.e. cortical

excitability) underlie the heterogeneity in evoked responses observed across brain

locations and subjects. This could be tested by correlating the evoked response

amplitude to the paired functional correlation between the resting-state brain activ-

ity of regions underlying implanted electrodes. Overall, a better understanding of

the evoked potential is essential and will lead to creation of a more accurate and

interpretable effective connectivity networks.

7.3 Inter-Modal Comparison and Connectivity in

Epilepsy
In contrary to theoretical expectations of agreement between structural and effective

networks, a high overlap but low correlation was observed when assessing agree-

ment in connectivity between all sites underlying implanted electrodes. This may be

due to inherent methodological limitations in applying contemporary state-of-the-

art structural network reconstruction pipelines to reconstruct connectivity between

smaller regions of interest with shorter distances, as compared to macroscopic brain

regions in cortical atlases. Therefore, while it cannot be excluded that there is

no true correlation between the modalities, it is unlikely that current reconstruc-

tion methods for effective and structural networks will yield correlated connection

weights suitable for combined analysis on a large scale. However, as demonstrated

in Conner et al. [78], a moderate correlation may be observed for stronger connec-

tions selected a priori. A future trend may be that higher resolution imaging and
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specialised tractography algorithms will enable accurate characterisation of short

inter-electrode fibers and lead to a better characterisation of the correlation between

structural and effective networks. Initially, it may be useful to assess the repro-

ducibility and/or anatomical accuracy of structural connections with respect to the

distance of connections. Subsequently, effort should be made to make custom algo-

rithms suitable for short-range structural connections.

Our findings extend the notion of previously reported altered effective con-

nectivity of the prescribed ictal-onset zone in delayed responses [324, 326, 125]

to early responses. Together, these findings of altered effective connectivity of the

ictal-onset zone are in agreement with existing models of epileptogenic networks

which suggest seizure activity is promoted by hyperexcitable cortex [8]. This study

suggests that seizures are likely to occur due to both spontaneous hyperexcitabil-

ity following normal brain function and high outward connectivity which prop-

agates seizure activity to other brain areas. Structural networks did not exhibit

widespread alterations in ictal-onset connectivity which suggests that future studies

should instead focus on effective connectivity when examining potential connec-

tional changes in epilepsy. Meanwhile, aforementioned assessment and improve-

ment of short distance tractography may lead to better characterisation of ictal-onset

zone structural connectivity.

Future research, potentially using the same data as in this study, could as-

sess the ability of effective connectivity amplitude and baseline standard deviation

to blindly discriminate ictal-onset zone from non ictal-onset zone. Subsequently,

correlations can be made with areas classified as ictal-onset by CCEPs and those

resected, to determine if higher outcome is observed when the CCEP-suggested

ictal-onset zone is removed, as compared those not suggested by CCEPs. This

would support previous studies suggesting favourable outcome in patients who had

brain regions with abnormal delayed responses removed [326, 125]. Finally, this

study demonstrates more explicitely than a previous study [198] that effective and

structural connections are likely to support mechanisms of non-contiguous seizure

spread. It is expected that, following further clarification of the intepretation of
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CCEP evoked responses, effective connectivity markers, as gained through CCEPs,

may aid identification of ictal-onset zone in future studies and lead to CCEPs play-

ing a more prominent role in ictal-onset zone identification clinically.

7.4 Summary of Conclusions

In this thesis, reproducibility and agreement in state-of-the-art structural network

reconstruction pipelines was quantified in healthy individuals. Findings reported

here provide further support for reasonable to high reproducibility of connections

and therefore advocate the use of network connection weights and derived topo-

logical measures as potential biomarkers for neurological disease, or in relating

individual network fingerprints to neurological phenotype. Findings of correlation

between connection strength and reproducibility indicate that neurological condi-

tions involving reorganisational changes as opposed to connection degradation are

well suited for network analysis, while pooling results across structural network

studies that employ similar capability pipelines is feasible and may improve power

in detection of suitable biomarkers.

An automated pipeline for reconstructing effective networks was evaluated and

evidence of alterations in effective connectivity of the prescribed ictal-onset zone

was found, in agreement with previous reports of alterations in delayed evoked re-

sponses. Low correlation between structural and effective connectivity may be due

to lack of plausible short-range fibers reconstructed between smaller and closer re-

gions underlying intracranial electrodes, compared to those demonstrated as highly

reproducible between regions in cortical atlases. Accuracy in reconstructing such

higher resolution structural networks is likely improve with continuing advances in

tractography algorithms, structural image resolution and understanding of cortical

areas.

On the other hand, the field of CCEP research would greatly benefit from a

deeper understanding of the mechanisms that shape the evoked response, which may

arise through further in vitro electrophysiology or computational modelling of neu-

ronal populations. Nevertheless, effective connectivity reconstructed using CCEPs
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suggest that the seizure onset zone is highly excitable and outwardly connected, par-

ticularly to sites of non-contiguous seizure spread. Future work should determine

whether these effective connectivity properties blindly identify ictal-onset zone, in

which case this may lead to improved seizure onset detection and seizure freedom

following resective surgery in epilepsy.
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Abbreviations

AAL Automated Anatomical Labelling

ADC Apparent diffusion coefficient

BEDPOST Bayesian Estimation of Diffusion Parameters Obtained using

Sampling Techniques

CCEP Cortico-cortical Evoked Potential

CSD Constrained Spherical Deconvolution

CSF Cerebrospinal Fluid

CT Computed Tomography

CV Coefficient of Variation

DC Dice Coefficient

DSI Diffusion Spectrum Imaging

DWI Diffusion-Weighted Imaging

EEG Electroencephalography

EPI Echo Planar Imaging

FA Fractional Anisotropy

FID Free Induction Decay

FLE Frontal Lobe Epilepsy

FOD Fiber Orientation Distribution

HARDI High Angular Resolution Diffusion Imaging
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IC Independent Component

ICC Intra-class Correlation Coefficient

MD Mean Diffusivity

MRI Magnetic Resonance Imaging

NHNN National Hospital for Neurology and Neurosurgery

NMR Nuclear Magnetic Resonance

NODDI Neurite Orientation Dispersion and Density Imaging

ODF Orientation Distribution Function

PDF Probability Density Function

PFG Pulsed-field Gradient

rIFG right Inferior Frontal Gyrus

RGB Reg Blue Green

RMS Root Mean Squared

RF Radiofrequency

SMA Supplementary Motor Area

SPES Singe Pulse Electrical Stimulation

SWI Small-World Index

TE Echo Time

TR Repetition Time



Appendix B

Electrolyte In Vitro Stimulation

Experiment

B.1 Introduction
In CCEP studies stimulation artefact may contaminate or obscure early responses to

cortical stimulation, particularly at sites near to the stimulation electrodes. There-

fore, we attempted to characterise the shape of the artefact waveform at various

distances from the stimulation electrodes using an in vitro stimulation experiment.

B.2 Methods
One 6 x 8 platinum electrode grid (7.5 mm spacing, 4 mm diameter, 2.3 mm exposed

surface area, Ad-tech), and one depth electrode (10 mm spacing, 1.12 mm diameter,

2.41 mm length) were placed firmly in EEG electrode gel (Elefix, Nihon Kohden,

Tokyo, Japan) that had been spread on to a 10 cm diameter petri dish (Fig. B.1)

on a work bench in an unshielded room at the NHNN and connected to the Nicolet

LTM system, as described previously. An additional 2 x 8 grid was also placed on

the gel but not analysed in this report. The Nicolet LTM system was configured to

deliver an identical stimulus to that delivered to the epilepsy subjects in this thesis.

All bipolar stimulations were performed at ∼0.2 Hz and repeated 20 times for each

electrode pair. Saline drops were applied to the top of the electrode grid every 10

minutes. The current applied varied between 1 - 4 mA. Firstly, 4 mA was used

to stimulate all possible adjacent electrodes in rows 1-4. Then, 3 mA was then
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applied to rows 1-2, and 2 mA to row 1. Only results from the 4 mA stimulation are

presented here.

Figure B.1: Photograph of in vitro stimulation experiment. Electrode grids and a depth
electrode were placed in EEG electrode gel and stimulations were performed as described
for the epilepsy subjects. The central electrode grid was used for analysis of stimulation
artefact waveform. The second and third depth electrode contacts (from left to right) were
used as an average reference and the fourth and fifth were used as ground. A second elec-
trode grid was placed on the left but was not used in this analysis.

The EEG data underwent exactly the same stimulation onset detection and

epoching process as described in section 5.2.2. Experiment data was analysed by

plotting the maximum absolute amplitude of mean early period waveforms (12-90

ms) with respect to distance from the stimulation site, and by visual inspection of

the mean response across all electrodes.
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B.3 Results

The experimental stimulation artefact had a duration between ∼100 - 300 ms and

contaminated the early waveform periods which may be used to search for CCEP

peaks in subject data (Fig. B.3). Unfortunately, a number of other experimental

artefacts prevented a robust analysis of the artefact waveform. All recordings were

contaminated with 50 Hz noise of approximately 500 µV amplitude, arising from

the AC power supply to nearby electronic equipment. Power line noise was reduced

by applying a notch filter (Butterworth, phase-shift free, 10 Hz bandwidth with 3

dB reduction [70%], edge rise 24 dB/octave). However, while this reduced the 50

Hz component of the signal, it also created unwanted ripples surrounding the stimu-

lation artefact (Fig. B.2). Other filters were tested (Fourier domain, Gaussian filter,

infinite impulse response notch filters, low-pass filter) without sufficient reduction

of 50 Hz noise and ripple. In addition, three channels exhibited a large and re-

producible voltage surge of ∼1000 uV following stimulation. When these highly

responsive electrodes were themselves stimulated, large voltage surges in all other

electrodes were recorded. The stimulation artefact waveform showed some depen-

dence on the electrode row-pair, with the three adjacent row pairs having different

amplitudes of response to the stimulation. As such, the CCEP amplitude did not

show any clear effect with distance that could used to normalise in vivo responses

(Fig. B.3). The artefacts found in our experimental data and the corrections required

to repeat the experiment effectively are shown in Figure B.5.

B.4 Discussion

Accurate estimation of the stimulus artefact and the relationship of the artefact

shape with respect to distance may allow more robust analysis of early evoked

responses. We attempted to characterise the stimulation artefact using an in vitro

experiment. Unfortunately, a number of other artefacts prevented useful explo-

ration of this data (see Fig. B.5). However, measures can be taken to obtain a

useful estimation of stimulation artefact and it’s relation with distance. Power line

interference can be reduced or eliminated by platting electrode wires to cancel lo-
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Figure B.2: in vitro experiment signal filtering. The raw response data (black) contains 50
Hz noise which was reduced using a notch filter (red).

cal electromagnetic fields and by shielding the experiment using a metallic mesh.

Differential row-pair responses and outlying response electrodes may indicate inho-

mogeneous electrode-interface impedances. This may be reduced by avoiding the

periodic application of saline drops and by ensuring homogeneous pressure across

all electrodes when fixing the grid to the EEG electrode gel. Furthermore, a higher

temporal resolution is desired to determine the artefact waveform and this can be

achieved using an oscilloscope. Finally, other referential montages may be pre-

ferred for studying distance-related effects- reference electrodes may be placed in

EEG electrode gel that is unconnected from the stimulation medium, preventing

interference of the artefact with the reference electrode.
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Figure B.3: in vitro experiment mean responses. Mean responses acquired following stim-
ulation of electrodes in the upper-left corner of the central grid are shown.
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Figure B.4: Relation between distance and early period maximum absolute amplitude from
the in vitro stimulation experiment. Maximum absolute value of the mean response is plot-
ted against distance from the stimulation pair. Red dots and blue lines denote the median
and inter-quartile range, respectively.
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Figure B.5: Summary of stimulation experiment artefacts and corrections required to re-
perform the experiment effectively.
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[53] G. Buzsáki, C. A. Anastassiou, and C. Koch. The origin of extracellular fields

and currentseeg, ecog, lfp and spikes. Nature Reviews Neuroscience, 13(6):

407–420, 2012.

[54] K. Caeyenberghs, A. Leemans, I. Leunissen, K. Michiels, and S. P. Swin-

nen. Topological correlations of structural and functional networks in pa-

tients with traumatic brain injury. Frontiers in human neuroscience, 7, 2013.

[55] W. Calvin. Competing for consciousness: how subconscious thoughts cook

on the back burner, 1998.

[56] L. Cammoun, X. Gigandet, D. Meskaldji, J. P. Thiran, O. Sporns, K. Q. Do,

P. Maeder, R. Meuli, and P. Hagmann. Mapping the human connectome at

multiple scales with diffusion spectrum MRI. J. Neurosci. Methods, 203(2):

386–397, 2012.

[57] A. W. Campbell. Histological studies on the localisation of cerebral function.

University Press, 1905.

[58] B. M. Campos, A. C. Coan, G. C. Beltramini, M. Liu, C. L. Yassuda, E. Ghi-

zoni, C. Beaulieu, D. W. Gross, and F. Cendes. White matter abnormalities

associate with type and localization of focal epileptogenic lesions. Epilepsia,

56(1):125–132, 2015.

[59] J. M. Cardoso, K. Leung, M. Modat, S. Keihaninejad, D. Cash, J. Barnes,

N. C. Fox, and S. Ourselin. STEPS: Similarity and Truth Estimation for

Propagated Segmentations and its application to hippocampal segmentation



208 BIBLIOGRAPHY

and brain parcelation. Med. Image Anal., 17(6):671–84, Mar. 2013. ISSN

1361-8423.

[60] M. J. Cardoso, M. J. Clarkson, G. R. Ridgway, M. Modat, N. C. Fox, and

S. Ourselin. Load: A locally adaptive cortical segmentation algorithm. Neu-

roImage, 56(3):1386–1397, 2011.

[61] M. Catani and M. T. De Schotten. A diffusion tensor imaging tractography

atlas for virtual in vivo dissections. Cortex, 44(8):1105–1132, 2008.

[62] M. Catani and M. Thiebaut de Schotten. A diffusion tensor imaging tractog-

raphy atlas for virtual in vivo dissections. Cortex, 44(8):1105–1132, 2008.

[63] M. Catani, R. J. Howard, S. Pajevic, and D. K. Jones. Virtual in vivo interac-

tive dissection of white matter fasciculi in the human brain. Neuroimage, 17

(1):77–94, 2002.

[64] M. Catani, D. K. Jones, et al. Perisylvian language networks of the human

brain. Annals of neurology, 57(1):8–16, 2005.

[65] M. Catani et al. Beyond localization: from hodology to function. Philosoph-

ical Transactions of the Royal Society of London B: Biological Sciences, 360

(1456):767–779, 2005.

[66] M. Catani et al. The rises and falls of disconnection syndromes. Brain, 128

(10):2224–2239, 2005.

[67] H. Catenoix, M. Magnin, M. Guenot, J. Isnard, F. Mauguiere, and P. Ryvlin.

Hippocampal-orbitofrontal connectivity in human: an electrical stimulation

study. Clinical neurophysiology, 116(8):1779–1784, 2005.

[68] H. Catenoix, M. Magnin, F. Mauguiere, and P. Ryvlin. Evoked potential

study of hippocampal efferent projections in the human brain. Clinical Neu-

rophysiology, 122(12):2488–2497, 2011.



BIBLIOGRAPHY 209

[69] H. Chen, T. Liu, Y. Zhao, T. Zhang, Y. Li, M. Li, H. Zhang, H. Kuang,

L. Guo, J. Z. Tsien, et al. Optimization of large-scale mouse brain connec-

tome via joint evaluation of dti and neuron tracing data. NeuroImage, 115:

202–213, 2015.

[70] T. Chenevert, J. Brunberg, and J. Pipe. Anisotropic diffusion within human

white matter. In Seventy sixth scientific assembly and annual meeting of the

Radiological Society of North America, 1990.

[71] H. Cheng, Y. Wang, J. Sheng, W. G. Kronenberger, V. P. Mathews, T. A.

Hummer, and A. J. Saykin. Characteristics and variability of structural net-

works derived from diffusion tensor imaging. NeuroImage, 61(4):1153–64,

July 2012. ISSN 1095-9572.

[72] H. Cheng, Y. Wang, J. Sheng, O. Sporns, W. G. Kronenberger, V. P. Math-

ews, T. A. Hummer, and A. J. Saykin. Optimization of seed density in DTI

tractography for structural networks. J. Neurosci. Methods, 203(1):264–272,

2012.

[73] J. D. Clayden, A. J. Storkey, S. M. Maniega, and M. E. Bastin. Reproducibil-

ity of tract segmentation between sessions using an unsupervised modelling-

based approach. NeuroImage, 45(2):377–385, 2009.

[74] J. D. Clayden, S. M. Maniega, A. J. Storkey, M. D. King, M. E. Bastin, and

C. A. Clark. Tractor: Magnetic resonance imaging and tractography with r.

J. Statistical Software, 44(8):1–18, 2011.

[75] J. D. Clayden, M. Dayan, and C. A. Clark. Principal networks. PloS one, 8

(4):e60997, 2013.

[76] G. Cleveland, D. Chang, C. Hazlewood, and H. Rorschach. Nuclear magnetic

resonance measurement of skeletal muscle: anisotrophy of the diffusion co-

efficient of the intracellular water. Biophysical journal, 16(9):1043, 1976.



210 BIBLIOGRAPHY

[77] L. L. Cloutman and M. A. Lambon Ralph. Connectivity-based structural

and functional parcellation of the human cortex using diffusion imaging and

tractography. Front. Neuroanat., 6:34, Jan. 2012. ISSN 1662-5129.

[78] C. R. Conner, T. M. Ellmore, M. A. DiSano, T. A. Pieters, A. W. Potter, and

N. Tandon. Anatomic and electro-physiologic connectivity of the language

system: a combined dti-ccep study. Computers in biology and medicine, 41

(12):1100–1109, 2011.

[79] T. E. Conturo, R. C. McKinstry, E. Akbudak, and B. H. Robinson. Encod-

ing of anisotropic diffusion with tetrahedral gradients: a general mathemat-

ical diffusion formalism and experimental results. Magnetic Resonance in

Medicine, 35(3):399–412, 1996.

[80] P. A. Cook, M. Symms, P. A. Boulby, and D. C. Alexander. Optimal acqui-

sition orders of diffusion-weighted mri measurements. Journal of magnetic

resonance imaging, 25(5):1051–1058, 2007.

[81] R. L. Cooper, D. B. Chang, A. C. Young, C. J. Martin, and B. Ancker-

Johnson. Restricted diffusion in biophysical systems: experiment. Biophysi-

cal journal, 14(3):161–177, 1974.

[82] O. D. Creutzfeldt, S. Watanabe, and H. D. Lux. Relations between eeg phe-

nomena and potentials of single cortical cells. i. evoked responses after tha-

lamic and epicortical stimulation. Electroencephalography and clinical neu-

rophysiology, 20(1):1–18, 1966.

[83] J. Crofts, D. Higham, R. Bosnell, S. Jbabdi, P. Matthews, T. Behrens, and

H. Johansen-Berg. Network analysis detects changes in the contralesional

hemisphere following stroke. Neuroimage, 54(1):161–169, 2011.

[84] G. Csardi and T. Nepusz. The igraph software package for complex net-

work research. InterJournal, Complex Systems:1695, 2006. URL http:

//igraph.org.

http://igraph.org
http://igraph.org


BIBLIOGRAPHY 211

[85] Z. Cui, S. Zhong, P. Xu, Y. He, and G. Gong. Panda: a pipeline toolbox for

analyzing brain diffusion images. 2013.

[86] H. Damasio, D. Tranel, T. Grabowski, R. Adolphs, and A. Damasio. Neural

systems behind word and concept retrieval. Cognition, 92(1):179–229, 2004.

[87] O. David, A.-S. Job, L. De Palma, D. Hoffmann, L. Minotti, and P. Kahane.

Probabilistic functional tractography of the human cortex. NeuroImage, 80:

307–317, 2013.

[88] M. A. de Reus and M. P. van den Heuvel. Estimating false positives and

negatives in brain networks. NeuroImage, 70:402–409, 2013.

[89] J. DeFelipe, S. Hendry, and E. Jones. A correlative electron microscopic

study of basket cells and large gabaergic neurons in the monkey sensory-

motor cortex. Neuroscience, 17(4):991–1009, 1986.

[90] J. DeFelipe, S. Hendry, T. Hashikawa, M. Molinari, and E. Jones. A mi-

crocolumnar structure of monkey cerebral cortex revealed by immunocyto-

chemical studies of double bouquet cell axons. Neuroscience, 37(3):655–

673, 1990.
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