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Numerical Simulations of Vortex-Induced Vibrations on Vertical 

Cylindrical Structure with Different Aspect Ratio 

This paper presents a Computational Fluid Dynamics (CFD) study of Vortex-

Induced Vibration for different aspect ratio (L/D) cylinder. The simulations 

herein were complement to the experiments previously presented by Rahman et 

al. (2013) on the aspect ratio effects. Of particular interest was to measure 

hydrodynamic forces and numerically investigate the wake behaviour of VIV 

while varying the aspect ratio. The simulation models represented the actual 

experimental conditions with idealized free surface boundary condition to capture 

the responses from fluid-structure interaction phenomenon. The simulations were 

performed in the subcritical flow region (7.4 × 10
3
 < Re < 2 × 10

5
), 

corresponding to a range of reduced velocity (Ur) from 2 to 14. The results of the 

cases studied were discussed and compared with the experimental data to verify 

the accuracy and validity of the present simulation. The comparisons have shown 

similar curved shape of the drag coefficients plot, however underestimated the 

value of the drag coefficients over the reduced velocity. Additionally, the 

simulations seemed to capture a higher lift force response compared to the 

experimental data for a low aspect ratio. The correlation length was observed to 

be higher for higher aspect ratio and proportionally decrease as the aspect ratio 

decreases. 

Keywords: Vortex-Induced Vibrations; numerical simulation; aspect ratio effects; 

cylindrical offshore structure 

1. Introduction 

VIV is a fluid-structure interaction phenomenon which occurs when a vibration of the 

structure is induced by forces from the vortices shed off the structure. It can occur in 

many practical situations, including fixed offshore structures, risers, mooring lines, 

floating structures, stacks, aircrafts, bridges, pipelines, engines, and tall structures. VIV 

is a multidisciplinary area encompassing continuum mechanics of fluids, structural 

mechanics, hydrodynamics, wavelet, and computational fluid mechanics; making it a 
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complicated yet interesting area to investigate (Sarpkaya 2004). The interaction of 

fluids and structure can produce a potentially destructive force on the structure itself. 

 The flow of a uniform current around a circular cylinder has been extensively 

reviewed by Bearman (1984), Pantazopolous (1994), Sarpkaya (2004), Williamson and 

Govardhan (2008) and also in published books by Chen (1987), Blevins (1990) and 

Sumer and Fredsoe (1997). The behaviour of VIV phenomenon is normally governed 

by dimensional and non-dimensional parameters that control the oscillations of the 

cylinder. Among the parameters are the Reynolds number (Re), density of fluid (ρ), 

added mass (ma), fluid dynamic viscosity (μ), cylinder’s diameter (D), ambient velocity 

(U), spring constant (k) and structural damping ratio (ζs) of the system. 

 Contributions towards understanding VIV are not only restricted to physical 

experiments, but also include Computational Fluid Dynamics (CFD) simulations to 

study VIV problems. Wilden et al. (2001), Thiagarajan et al. (2005), Kamarudin and 

Thiagarajan (2010), and Rosetti et al. (2013) are among the latest contributors, to name 

a few. With the availability of the various platforms of CFD software, simulation of 

flow past a cylinder has been extended to a 3D model. The capability of the CFD model 

to capture VIV behaviour enables the designer or researcher to predict the forces on the 

risers or any other offshore structures. For example, Blackburn and Karniadakis (1993) 

modelled a circular cylinder to investigate the interaction between the cylinder and the 

wake in free and forced vibration VIV. The authors have shown that simulations for 

both free and forced vibration have been able to produce most of the phenomena 

observed during a VIV experiment. In addition, Computational Fluid Dynamics (CFD) 

has become one of the important tools to study VIV at higher Reynolds numbers. 

Oakley et al. (2005), Halkyard et al. (2006), and Holmes (2008) are among the 

contributors to the numerical modelling for risers and spars experiencing VIV at higher 
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Reynolds number. The Reynolds number in the CFD models scale was in the range of 8 

× 10
4 

< Re < 2.5 × 10
5
. However, the investigation of the correlation between the model 

scale and full scale of the Reynolds number is still questionable and requires further 

studies. 

 Most experiments and CFD simulations reported have focused on VIV experienced 

by an infinite length riser. For example, a 3D simulation of a riser was performed by 

Holmes et al. (2006) for a riser with L/D = 1400, using the finite element methods. To 

the author’s knowledge, there are still fewer study focussed on the low aspect ratio 

offshore structure in water. The influence of the aspect ratio on VIV response around a 

circular cylinder has been experimentally investigated and reported by Rahman et al. 

(2013), which is our interest in this paper. For some latest work along this line, see 

Goncalves et al. (2010, 2014) and Rosetti et al. (2013). The experiments have been 

conducted in a water channel for low cylinder aspect ratio without using endplates to 

vary the aspect ratios of 13 to 0.5 (Figure 1, see Rahman et al. 2013 for details 

experimental approach). The study was designed based on low aspect ratio structure 

such as circular FPSO, Spars, and many other circular floating structures. Of particular 

interest were to measured VIV amplitude responses, hydrodynamic forces, frequency 

response, and Strouhal number. Some of the results from the experiments were included 

and briefly explained here. The results shows that VIV was freely developed on the high 

aspect ratio structure and completely disturbed and eliminated for aspect ratio of 0.5 

(Figure 2). Numerical simulation of these cases would provide an additional explanation 

in the context of pressure and vortex formation for the reduction of the responses as the 

aspect ratio reduced. The Strouhal number have been plotted with results from Gouda 

(1975) in Figure 3 and shows continuation of lower values of Strouhal number as the 

aspect ratio reduced down to 0.5. The reduction was due to three dimensional wake 
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which triggered turbulent region and resulting in reduction of vibration amplitude, 

hence reduced the frequency of vortex shedding. 

 In this paper, continuous effort has been undertaken to study the fluid-structure 

interaction of low aspect ratio offshore structure (i.e., circular FPSO and spars) using 

numerical simulation in order to complement previously published paper by Rahman et 

al. (2013). The significance of this study is to strengthen and compare the numerical 

results with the experimental investigation of a range of low aspect ratio in water 

without the use of end plates. It should be noted that there were some limitations in the 

experiments conducted by Rahman et al. (2013). For example, there are some 

limitations on the flow visualization to capture the effect of the aspect ratio on the 

occurrence of VIV. Additionally, the measurement of the parameters during 

experiments solely depended on the measurement devices. Hence, the wake pattern, 

pressure distribution, forces distribution and correlation length of the VIV cannot be 

fully visualized and captured. Clarifications on these important characteristics were 

needed in order to support the result collected from the experiments. Three-dimensional 

effects are also expected to show an important role in varying the Strouhal frequency. 

Three experimental cases were selected for the numerical simulation which are L/D = 

13, 5, and 1. 
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2. Model description 

2.1 Governing equations 

The simulations considered an unsteady, incompressible fluid flow past a cylinder in a 

fluid channel. The CFD models were developed as an approximation method in order to 

compare with the experimental data. Fluid motion is governed by continuity and 

Navier-Stokes equations, given by 

Continuity                   (1) 

 

Momentum            (
  

  
     )             (2) 

where ρ is the fluid density, u is the flow velocity vector, p is the pressure and f 

represents the force acting on the fluid.  

2.2 Turbulence model 

The approach used in this study was a Reynolds Average Navier Stokes (RANS). By 

using RANS, the velocity is decomposed and the Navier-Stokes terms. Equations (1) 

and (2) are rewritten into a time averaged form.  
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(4) 

where U is the velocity averaged over time t, ρ is the fluid density, P is the pressure, ν is 

the kinematic viscosity, νt is the eddy viscosity and g is the gravity acceleration. 

Turbulence model of k-ω was used for the simulation after some validation processes. 

The k-ω turbulence model was selected based on the types of flow and accuracy level 

on the boundary velocity profile and wake. 
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2.3 Boundary Conditions 

The boundary conditions defined on the CFD model domain were: 

(1) A uniform mean velocity at the inlet plane, U = Um, where Um is the mean 

velocity of the uniform flow. 

(2) A prescribed mesh displacement in y-axis,             specified on the 

cylinder boundary wall. (refer section 2.3.1) 

(3) Slip wall assigned to the wall boundaries to simulate the towing conditions from 

the experiments, where no shear forces occurred between the fluid and the walls 

(U = Um). 

The outlet plane for the geometry was set as pressure outlet boundary, where no viscous 

stress was considered (Po = 0). Figure 4 shows the CFD model domain and boundary 

conditions used in present simulations. The width of the domain was defined as 1.25m 

and the height was 1.1m. The actual length of the towing tank used in our experiment 

was 50m. However, in order to simplify the model geometry and optimize the number 

of elements, the channel length was limited to 2.5m. The length of the domain, which 

was around 30D in the wake region (behind the cylinder), proved to be sufficient in 

capturing the vortex-shedding phenomena after a series of simulations. The cylinder 

was centred at 0.5m from the inlet and 0.625m from the side walls in order to ensure the 

fluid flow uniformly past the cylinder with no nonphysical solution acquired.  

 During the simulation, the cylinder aspect ratio was varied according to each 

selected case. The submerged length was defined as L, where the distance was measured 

from the water surface to the end of the cylinder. No free surface effects were included 

in the CFD simulation. The boundary of the free surface was defined as a slip wall (U = 

Um). This is due to the complexity of the free surface behaviour such as wave run-up 

and wake disturbance that might require a high computational cost and as an alternate 
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modelling approaches. However, the simulations were focussed more on the 

hydrodynamic responses, correlation length of the shedding and end conditions' effects. 

The effects of these assumptions will be further discussed in this paper. 

 The aspect ratios used in the simulation were L/D = 13, L/D = 5, and L/D = 1 

based on the experiments by Rahman et al. (2013) on the aspect ratio effects, varying 

L/D = 0.5 to 13. The selection of the corresponded cases was based on the variation of 

high to low aspect ratio. Table 1 shows the cylinder size and the natural frequency in the 

still water for the case studied. 

2.3.1 Oscillating cylinder boundary conditions 

A forced oscillation simulation has been developed for this CFD model. The cylinder is 

assumed to exhibit sinusoidal oscillations with constant amplitude and frequency. Mesh 

displacement has been prescribed on the cylinder boundaries as a sinusoidal oscillation 

to imitate the vibration behaviour observed in the experiments. The displacement was 

expressed as, 

            (5) 

where y is the displacement of the cylinder, A is the amplitude of vibration and fv is the 

vibration frequency. The amplitude and frequency of the vibration were taken from the 

experimental measurements for a range of reduced velocities. The drag and lift 

coefficients were calculated from the forces acting on the cylinder boundaries. The 

cylinder was forced to vibrate at specific amplitude and frequency in a specific flow 

velocity in order to calculate the hydrodynamic forces as illustrated in Figure 4. A 

moving mesh boundary was used to vibrate the cylinder in the transverse direction of 

the flow. In doing so, it became evident that some of the mesh elements might become 

inverted and truncated due large deformation. The accuracy of the solution depreciates 

and may lead to divergence of the solver. Winslow smoothing was used to encounter the 
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deformed mesh instability. This smoothing method was selected due to its stability 

compared to other smoothing method. However, the downside was that the smoothing 

slowed down the computations and was memory consuming. The smoothing was done 

by solving equations for the mesh displacements 

   

   
 
   

   
        

   

   
 
   

   
   

(6) 

where x and y are the spatial coordinates of the spatial frame, and X and Y are the 

reference coordinates of the material frame (Pryor 2010). 

2.4 Computational meshing 

In the present simulations, a structured grid mesh consisting of hexahedral and mapped 

mesh has been used (Figure 5). The area around the cylinder and the wake region was 

refined using a quadrilateral mesh to capture the reaction forces around the cylinder. It 

is known that the separation of the vortices initiates on the wall of the cylinder, hence 

refinements may be needed in the area to capture the vortex-shedding phenomenon 

during lock-in. The complete meshes for the geometry consisted of 856,000 mesh 

elements. The final mesh quality was based on a series of convergence test to determine 

optimum mesh elements. For a given cell count, a hexahedral mesh will give accurate 

solutions, especially when the grid lines are aligned with the flow. In all CFD 

simulations, the mesh density should be high enough to capture all relevant flow 

features. Poor mesh quality may also affect the computational time and the convergence 

of the simulation. Skewness, smoothness in the changing of the cell size, and the cell 

aspect ratio are the important criteria to ensure the model has a high quality mesh. In the 

present model, the cell aspect ratio (width to length ratio) was kept close to one (b/l ≈ 1) 

as illustrated in Figure 5(b). The symmetrical shape of grid elements was found to 

improve the convergence rate during the simulation.  
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 Mesh transition between domains also needs to be considered. Smooth cell size 

transitions created a smooth transition of the flow during the simulation. The number of 

elements in the model was controlled using the present meshing method. The region 

near the cylinder walls was refined to capture the flow physics effectively. Note that the 

boundaries near the body were dense compared to other domain regions. Additionally, 

the higher density throughout the cylinder depth (z-axis) was expected to produce high-

quality results. 

3. Model validation 

The validation process was undertaken in order to ensure the validity and reliability of 

the present CFD model. The model was validated against published literature of Schafer 

and Turek (1996) on 2-Dimensional (2D) and 3-Dimensional (3D) flow past a cylinder. 

Dimensions and the definition of boundary conditions for the present 2D and 3D models 

are shown in Figure 6. The flow velocity in the domain channel was uniform, and 

incorporated with the mean velocity, Um. The simulations were conducted for a 7-

second period with a time step of 0.001. Table 2 shows the results for the different cases 

simulated for the validation purposes. Based on the results acquired, there was a good 

agreement on the drag and lift coefficient values between our models and the published 

values from literature and were in the proposed range. In the present model, a fully 

coupled and direct solver was used. The simulation was converged around 200 

iterations or 150 time-step. Figure 7 shows the drag and lift coefficient time-history 

plots for 2D-1 and 2D-2 model respectively, plotted with the values from literature. The 

pressure difference between two points on the cylinder was also computed from the 

simulation. The two points were defined as the stagnation point, point 1 (0.15, 0.2), and 

the end point of the cylinder, point 2 (0.25, 0.2). Figure 8 shows the pressure difference 
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in case 2D-1 and 2D-2 was in excellent agreement with the solution by Schafer and 

Turek (1996). 

4. Results & discussions 

4.1 Stationary cylinder simulation 

The simulations were conducted using a stationary cylinder before proceeding to the 

forced vibration cylinder. The results of the 3D fixed cylinder case are presented in 

Figure 9 and compared with the experimental data of Wieselbeger (1921) and Schewe 

(1983). The simulation for the stationary cylinder was conducted using similar domain, 

mesh density and non-dimensional time step used for forced vibration simulations. The 

Reynolds number was in the subcritical flow region (1.1 × 10
4 

< Re < 2.3 × 10
5
). The 

drag values for L/D = 13 showed a good agreement with the literature, which varied 

from 1.18 to 1.27. It can be seen that the mean drag coefficients for the L/D = 5 model 

obtained from the simulations showed lower values compared to L/D = 13 and the 

literature. The mean drag varied from 0.9 to 1.046 for L/D = 5 model and 0.89 to 0.95 

for L/D = 1 model. The decrease of the mean drag values was expected due to the 

decrease of the aspect ratio as discussed in Rahman et al. (2013) in the context of the 

experimental results. 

4.2 Forced Oscillating Cylinder Simulations 

3D CFD models were created for three different aspect ratios proposed before, namely 

L/D = 13, 5, and 1, matching the experimental conditions of Rahman et al. (2013). Ten 

velocity increments were selected from the experimental data used in each simulation. 

Table 3 shows the experimental data for velocity, amplitude and vibration frequency. 

These parameters were used to fit in the equation (5) for the forced vibration simulation. 
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4.2.1 Amplitude time history 

The simulations were configured using the parameters in Table 3. The cylinder was 

forced to vibrate at a certain amplitude and frequency while under different flow 

velocities. Examples of the amplitude time history of the CFD simulations during the 

lock-in for all aspect ratios investigated are plotted in Figure 10 at reduced velocities of 

5.45, 8.2, and 6.6 respectively. The time series were compared to the time series from 

the experiments. It can be seen that the plots were in a good agreement with each other. 

However, due to the beating motion in the time series obtained in the experiments, it is 

expected to see slightly lower values of amplitude over the time in the plot. It should be 

noted that the frequency of the vibration from the experiment 1 and 4 almost matched 

up with the CFD plot while a slightly delayed motion was observed in experiment 7 

(L/D = 1). 

4.2.2 Drag coefficients 

The time histories of the drag coefficients for the CFD model are compared with the 

experimental time histories in Figure 11. As seen from the plot, there is an unsteady 

oscillation captured by the strain gages from the experiment. It was probably due to 

restrained movement of the cylinder in inline direction. The experimental setup was 

designed mainly to capture transverse movement and the data from the strain gages in 

the inline direction were possibly disturbed by the vibration in the transverse direction 

due to VIV. Figure 12 presents the plots for the mean drag coefficients from forced 

oscillation simulations compared with experiments. In experiment 1 (L/D =13), it can be 

seen that the CFD simulation showed a similar pattern with the experimental data. The 

peak value from the CFD model almost matched up with the experimental value which 

occurring at 1.95 and 1.99 respectively, but showed a slight discrepancy at higher 

reduced velocity Ur. Higher drag values were captured from the CFD at 0.8 compared to 
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the measurement from the experiments 0.501 at the earlier Ur. A slightly lower value of 

CDmean = 0.85 from the CFD captured during the lock-out compared to CDmean = 1.25 

from the experiment. However, there were similarities in the curved shape and pattern 

compared with the experiment. The differences were expected due to a different 

oscillation captured as mentioned earlier. 

 In experiment 4 (L/D =5), the results of the simulation showed a lower value of 

drag at 0.757 compared to experimental value, 0.9153 except at Ur = 6.92 where the 

CDmean was observed at 1.55, slightly higher than the experimental value of 1.4617. The 

CFD simulation captured the curved shape of the CDmean plot, however underestimated 

the value of the drag coefficients over the reduced velocity. The mean drag plot from 

the experiment peaked at 1.68 compared to 1.6 measured in the CFD model. A poor 

agreement can be seen from the plot for experiment 7 (L/D = 1) where CDmean from the 

CFD model was significantly higher compared to the experimental data. The peak of the 

mean drag coefficient was measured at 0.95 for the simulation compared to 0.42 from 

the experiment. This is probably due to three-dimensional effects captured at the lower 

end of the cylinder during the simulations. Additionally, the free surface effects were 

not captured due to limitations on the boundary conditions mentioned earlier, which 

could contribute to the differences. 

4.2.3 Lift coefficients 

Examples of the root mean square lift coefficients time history are plotted in Figure 13 

and compared with the time history from experiments. The CFD model captured a 

slightly higher value of lift coefficients during the simulations compared with the 

experiments time history. This higher value was expected due to the higher amplitude 

captured, as explained previously. The CLrms was measured from the CFD model by 

integrating the boundaries of the cylinder. The CLrms plot is illustrated in Figure 14. In 
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experiment 1 (L/D =13), the CFD value from the simulation peaked at 3.01 compared to 

the experimental value at 2.704. The simulation data followed the curve of the CLrms 

with slightly higher values over the reduced velocities. A good agreement was observed 

for L/D = 13 and 5. However, the influence of the 3D effects from free surface and end 

condition was observed for the low aspect ratio of L/D = 1 where the plot shows a 

slightly lower value compared to the experiment. 

 The results of the CFD simulation and the experiment 4 (L/D =5) are plotted 

together in the Figure 14. A higher response was captured in the CFD model compared 

to the responses measured in the experiment. The CLrms was steadily high at lower 

velocity and slightly reduced after reaching the maximum value of 1.87. The values at 

the higher reduced velocities were still quite high compared to the experimental data. 

As for the lowest aspect ratio in the simulation (L/D = 1), the CFD simulations seemed 

to capture a higher lift force response compared to the experimental data. However, the 

simulation data followed the shape of the curve plotted from experiment 7. The 

frequency spectra for the simulations were illustrated in Figure 15 with the vibration 

frequency of 0.98 Hz, 0.98 Hz and 0.51 Hz respectively.  

4.2.4 Flow behaviour 

An example of velocity magnitude and pressure contour are plotted in Figure 16. A 

different velocity region during the VIV phenomenon was observed during the 

simulations. The velocity was reduced in the wake region behind the cylinder compared 

to a higher velocity around the cylinder as expected. The velocity magnitude in the 

wake region shows a decrease in velocity as the vortex shedding moved downstream. 

The energy from the vortex shedding diminished over the simulation time as the 

vortices shed away from the cylinder.  
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 The 3D effects were observed during the simulations. Cylinders of varying 

submerged depth allow different wake disturbance in the fluid structure interactions. 

Simulation of L/D =1 shows a smaller interaction area which simulates the experimental 

condition. End conditions were dominant for lower aspect ratio cylinder due the 

distance between the bottom-end of the cylinder with the free surface. Fairly good 

agreements were captured previously for higher aspect ratios on the hydrodynamics 

forces.   

 Meanwhile, for a lower aspect ratio, a poor agreement was observed. This was due 

to the 3D effects of the VIV at the bottom end of the cylinder. Formation of the vortex 

shedding disturbed by the cylinder end which lead to the reduction of the structure 

vibration. 

 It can be seen from the experiment 7 (L/D =1) simulation, the cylinder length is 

relatively small compared to the height of the domain. The flow outside the wake region 

and below the cylinder remained uniform throughout the simulation. However, the 

vortex-shedding was still noticeable for this aspect ratio, with lower magnitude of 

vibration observed. The pressure gradient influenced the formation of the vortex 

shedding. A uniform vortex shedding could be formed along the cylinder length, where 

the low pressure of the wake region generated, as the flow past the cylinder. However, a 

low aspect ratio cylinder (L/D = 1) shows a relatively small low-pressure area at the 

downstream of the cylinder which supported by the discrepancy in the data compared to 

the experiment. It can be seen that the intensity of the vortices diminished with 

decreasing aspect ratio. The formation of the vortex shedding depends on the correlation 

length of the cylinder. For a high aspect ratio cylinder, vortex shedding generated 

uniformly along the cylinder with minimal disturbance at the lower end of the cylinder. 

Meanwhile, for low aspect ratio cylinder, a significant disturbance from the cylinder 
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bottom end were observed both in experiment and simulation. The end effects affected 

the intensity of the vortices. Note that from the plots, the vortices shed from the edge of 

the cylinder and diminished as they travel downstream. The vortices during the VIV for 

lower aspect ratio cylinder did not sustain long after shedding from the cylinder. This 

was also probably because of the lower energy to contain the vortices before being 

washed out. 

 Normally, the vortex cells separation were uniformly generated along the span 

during the VIV for an infinite long structure (Constantinides and Oakley 2006). 

However, one can observe the reduction of the vortex cells’ length as the vortices 

separated away from the low aspect ratio cylinder. The isosurfaces of velocity were 

plotted for various aspect ratios in Figure 17. The vortex cells’ length reduced 

significantly to almost half of the cylinder length over time. It can be concluded from 

this simulation that the correlation length of the vortex cell was disturbed by the end 

condition of the cylinder. If the cylinder was positioned close to the bottom of the 

channel, a minimal or no disturbance would be observed. The bottom of the channel 

will act as a big end plate to the cylinder. However, the cylinder was positioned far from 

the bottom of the channel to minimize blockage ratio and to capture the end effects on 

the VIV.  

 As mentioned before, the boundary condition for the free surface was defined as the 

slip wall (U = Um) or a ‘clean’ free surface (Morse 2005). The effects of the free surface 

on the VIV were assumed negligible due to the limitation of computational costs. The 

surface defined as a uniform flow boundary with no disturbance allowed. However, the 

free surface was observed in the experiments significantly affect the formation of the 

vortex cells along the cylinder. This will affect the force acting on the cylinder, hence 

reduced the total force. Disturbance of the vortex shedding formation was significant if 
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the cylinder close to the free surface. Hence, for a low aspect ratio cylinder, most of the 

length of the cylinder was close to the surface which lead to a high disturbance along 

the cylinder compared to a high aspect ratio cylinder (Rahman et al. 2010). A 

combination of end effect and free surface effects were significant to a low aspect ratio. 

This supported previous data on drag and lift forces where a significantly higher value 

captured from CFD compared to the experiments. The inclusion of the free surface 

effects will be considered in the future in order to comprehensively validate the 

experiments for low aspect ratio cylinder. 

 Earlier results on the effects of the aspect ratio from the experiments found a 

reduction of the amplitude of vibration as the aspect ratio reduced (Rahman et al. 2013). 

This is at least partially due to the end condition effects observed in this simulation. 

This result could possibly make a strong relationship with the reduction of the vibration 

amplitude in the experiment discussed earlier. The flow around the end of the cylinder 

was in high velocity compared to the wake region. The difference in the velocity profile 

was observed where a moderate velocity flow layer was developed between the vortex 

cell and the flow from the cylinder end. The layer was observed to create a disturbance 

on the vortex cell development over the duration of the VIV phenomenon. A similar 

phenomenon was observed in L/D = 5 cylinder simulation where the development of the 

vortex cell was disturbed by the end of the cylinder. The vortex cell narrowed in the 

downstream direction. The energy from the vortex shedding was also weakened due to 

the flow disturbance from the end condition. The reduced correlation length is also one 

of the main reasons of the lower energy produced from the vortex shedding. The length 

of the cylinder is small; hence, a small vibration was generated. The end conditions tend 

to dominate for this low aspect ratio, with major disturbance in the wake development 

as shown in Figure 17. 

(c) 
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 Based on our assumptions earlier, one should expect a significant reduction in the 

vibration amplitude if the free surface effect was considered. Disturbance at the free 

surface in the wake region, pressure variation at the front and aft of the cylinder and the 

occurrence of water run-up are several factors that influenced the formation of the 

vortex cells. It can be seen from the simulation results that the vortex cells were 

significantly reduced after the vortices shed from the cylinder. The vortex cells were 

disturbed by the 3D flow and hence reduced in size as the vortex cell moved 

downstream. The velocity magnitude represented in the plot as a comparison of the 

vortex formation along the cylinder length. It can be seen from Figure 18, the 

magnitude of vortices reduces as the aspect ratio reduces. End conditions affected the 

vortex formation where the correlation length reduced as the vortex shedding move 

downstream. The conclusion can be made that the aspect ratio, the free surface and the 

end conditions of the cylinder are the important factors of the variation in the vibration 

amplitude based on the observations made in the CFD simulations. 

 The effect of aspect ratio on the VIV phenomenon is apparent in visualizations of 

pressure distributions, correlation length, wake formation and vortex shedding pattern 

captured from the forced vibration CFD simulations. The correlation length was 

observed to be higher for higher aspect ratio (L/D = 13) and proportionally decreased as 

the aspect ratio decreased. The presence of the turbulence in the flow reduces the 

correlation length as investigated by Novak and Tanaka (1977). Turbulence in the flow 

is known to be one of the significant factors in the event of VIV. The correlation length 

also changes with Reynolds number for a smooth cylinder (Sumer and Fredsoe 2010). 

The vortex cells draw energy from the vortices, producing higher forces to vibrate the 

structure. 3D effects at the end of the cylinder influenced the development of the vortex 

cells as the L/D reduced. It is known that the free surface is important when designing 
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any floating structure near the still water level (SWL). In real sea conditions, the wave-

free surface of the structure continually changes the submerged part of the structure 

about the SWL (Chakrabarti 2005). However, in the present work, the wave and free 

surface effects have been captured in the experiments but not truly captured in the 

simulations. This arrangement will definitely affect the combination of the forces on the 

structure in comparison with the experiments and phenomenological model. 

5. Conclusion 

The combined observations of the experiments and CFD simulations has proven the 

importance of studying the effect of the aspect ratio for the floating structure. High 

aspect ratio (L/D = 13 to 5) can represent offshore spars platform and the lower aspect 

ratio (L/D = 3 to 0.5) represent any short structure such as circular FPSO. The effects of 

end condition, the free surface, and the flow profile was clearly observed when 

comparing the results from the experiments and the CFD simulations. The results of the 

experiments and the simulations have shown that the structure with higher aspect ratio 

encounter higher vibration amplitude compared to lower one. The behaviour of the 

vortex shedding depends on the aspect ratio examined. This is supported by the 

experimental data published by Rahman et al. (2013). The VIV response proportionally 

reduces as the aspect ratio reduces. It can be concluded from the simulations that the 

intensity of the vortices for L/D =13 was higher compared to L/D = 5 and 1. The vortex 

intensity represents the VIV response on the particular cylinder when subjected to the 

flow. L/D = 1 shows a significant lower vortex intensity, and the vortices did not 

manage to establish a uniform periodic pattern. The vortices shed from the edge of the 

cylinder and diminished instantaneously. In terms of practical application, the circular 

FPSO is more stable and known to be exhibited higher stability compared to any 

conventional FPSO (Major and Eggan 2009). However, many other factors need to be 
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considered to conduct a thorough analysis on the structure such as the size, shapes, 

wave and current profile, buoyancy, mooring types, and also VIV mitigations.  

 Further study involves on numerical simulations of free vibration cylinder with 

inclusion of free surface, end condition, and aspect ratio effects on VIV. Predictions of 

the free vibration CFD simulation will be discussed and compared with the 

experimental data in order to establish a relationship describing VIV as a factor of 

aspect ratios. 
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Table 1 CFD model test cases. (Adapted from Rahman et al. 2013) 

Aspect ratio, L/D Length, L (m) Diameter, D (m) Natural frequency, fn (Hz) 

    
13 0.78 0.06 0.99 

5 0.4 0.08 1.035 

1 0.16 0.16 0.543 

Table 1



Table 2 Results of validation simulations. 

 Schafer & Turek (1996) Present model 

   

Case 

No. 

U (m/s) 

(Re) 

 CD CL ΔP CD CL ΔP 

         
2D-1 0.3 Max 5.59 0.0110 0.1172 5.582 0.01093 0.11756 

 (20) Min 5.57 0.0104 0.1176    

2D-2 1.5 Max 3.24 1.01 2.46 3.2266 0.9953 2.42 

 (100) Min 3.22 0.99 2.50    

3D-1Z 0.45 Max 6.25 0.01 0.175 6.195 0.01 0.172 

 (20) Min 6.05 0.008 0.165    

3D-2Z 2.25 Max 3.792 0.008 - 3.32 -0.0086 - 

 (100) Min 3.225 0.01 -    

 

 

Table 2



Table 3 Experimental values for CFD L/D simulations. (Extracted from Rahman et al. 2013) 

 Exp. 1 (L/D = 13) Exp. 4 (L/D = 5) Exp. 7 (L/D = 1) 

No. U(m/s) A (m) fv (Hz) U(m/s) A(m) fv (Hz) U(m/s) A(m) fv (Hz) 

          
1 0.1215 0.0025 0.6823 0.1770 0.0008 0.8238 0.1791 0.0164 0.2058 

2 0.1791 0.0053 0.5859 0.2649 0.0012 0.7656 0.2398 0.0205 0.1916 

3 0.2398 0.0107 0.6333 0.3613 0.0015 0.6718 0.2974 0.0142 0.2553 

4 0.2974 0.0253 0.8395 0.4639 0.0452 0.7817 0.3613 0.0116 0.3443 

5 0.3236 0.0597 0.9766 0.5728 0.0698 0.9481 0.4199 0.0155 0.4568 

6 0.3613 0.0685 1.0729 0.6796 0.0757 0.9862 0.4650 0.0149 0.4773 

7 0.4639 0.0416 1.2156 0.7791 0.0538 1.1063 0.4985 0.0455 0.4915 

8 0.5383 0.0325 1.3113 0.8786 0.0274 1.2253 0.5728 0.0769 0.5133 

9 0.6189 0.0177 1.4424 1.0367 0.0147 1.1602 0.6451 0.0152 0.5599 

10 0.6796 0.0093 1.5726 1.1257 0.0102 1.0181 0.6796 0.0177 0.6006 

 

 

Table 3



  

1 

 

List of Figures 

Figure 1 Experimental setup for the investigation of VIV on different aspect ratio 

(Rahman et al. 2013). 

Figure 2 Normalized amplitude of different cylinder aspect ratio (Rahman et al 2013). 

Figure 3 Strouhal Number against cylinder aspect ratio (Rahman et al 2013). 

Figure 4 CFD model boundary conditions. The cylinder was forced to vibrate in 

transverse direction (to follow the Equation 5). 

Figure 5 L/D = 13 geometry model with controlled hexahedral meshes (a) Plan view, 

(b) 3D view. 

Figure 6 (Top) 2D and (Bottom) 3D domain with boundary conditions (Adapted from 

Shafer & Turek 1996). 

Figure 7 Hydrodynamic coefficients time history for 2D cases. Right: 2D-1 (Re = 20) 

and Left: 2D-2 (Re = 100). 

Figure 8 Pressures at point 1 and 2 of the cylinder for 2D cases. Comparison of the 

pressure difference with the literature. Right: 2D-1 (Re = 20) and Left: 2D-2 (Re = 100). 

Figure 9 Mean drag coefficients for the stationary cylinder case. Comparison with the 

published results of Wieselberger (1921) and Schewe (1983). 

Figure 10 Amplitude time series. Comparison between CFD simulations and 

experiments by Rahman et al. (2013). (a) Experiment 1 (L/D = 13) at U = 0.3236 m/s 

(Ur = 5. 45). (b) Experiment 4 (L/D = 5) at U = 0.6796 m/s (Ur = 8.2). (c) Experiment 7 

(L/D = 1) at U = 0.5728 m/s (Ur = 6.6).  Beating phenomenon observed in the 

experimental data, captured in the forced vibration simulations. 

Figure 11 Mean drag coefficients time series. Comparison between CFD simulations 

and experiments by Rahman et al. (2013). (a) Experiment 1 at U = 0.3236 m/s (Ur 

List of Figures



  

2 

 

=5.45). (b) Experiment 4 at U = 0.6796 m/s (Ur = 8.2). (c) Experiment 7 at U = 0.5728 

m/s (Ur = 6.6). 

Figure 12 Mean drag coefficients. Comparison between the aspect ratios results from 

CFD simulation and experiments by Rahman et al. (2013). 

Figure 13 RMS lift coefficients time series. Comparison between CFD simulations and 

experiments by Rahman et al. (2013). (a) Experiment 1 at U = 0.3236 m/s (Ur = 5.45). 

(b) Experiment 4 at U = 0.6796 m/s (Ur = 8.2). (c) Experiment 7 at U = 0.5728 m/s (Ur 

= 6.6). 

Figure 14 RMS lift coefficients. Comparison between the aspect ratios results from 

CFD simulations and experiments by Rahman et al. (2013). 

Figure 15 Frequency spectra from CFD simulations (a) Experiment 1 at U = 0.3236 m/s 

(Ur = 5.45). (b) Experiment 4 at U = 0.6796 m/s (Ur = 8.2). (c) Experiment 7 at U = 

0.5728 m/s (Ur = 6.6). 

Figure 16 Velocity magnitude at x-z-plane with the pressure contour distribution. (a) 

Experiment 1 (L/D = 13) at Ur = 5.45, (b) Experiment 4 (L/D = 5) at Ur = 8.2, (c) 

Experiment 7 (L/D =1) at Ur = 6.6. 

Figure 17 Isosurface of vorticity plot. (a) Experiment 1 (L/D = 13) at Ur = 5.45, (b) 

Experiment 4 (L/D = 5) at Ur = 8.2, (c) Experiment 7 (L/D =1) at Ur = 6.6. (Isosurface 

level. Above: Level 5. Bottom: Level 20. 

Figure 18 Vortex shedding formation and wake formation of three different aspect 

ratios. (a) L/D = 13, (b) L/D = 5, (c) L/D = 1. 

 

 



Figure 1
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20401&guid=3eb4ea87-ace9-47b3-a12b-67615511ff61&scheme=1


Figure 2
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20402&guid=eeacdcec-93cc-465f-a395-95f631eee667&scheme=1


Figure 3
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20403&guid=89ae91e8-9118-4b45-891d-fd14bff4bb04&scheme=1


Figure 4
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20404&guid=0d7c9a05-7681-4763-bee7-cb52017ee500&scheme=1


Figure 5
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20405&guid=df526eeb-80a9-461e-a258-003639d3d5a7&scheme=1


Figure 6
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20406&guid=79e91841-c5dd-4400-8364-8df7e6dcbe29&scheme=1


Figure 7
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20407&guid=3d617be1-0992-4c0b-98e0-4a2f144986d6&scheme=1


Figure 8
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20408&guid=77fba729-d422-4388-96db-42c9532de3ea&scheme=1


Figure 9
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20409&guid=f14b0caa-111a-4453-bb2b-ba3b9e5814e3&scheme=1


Figure 10
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20410&guid=c815e6ca-7d04-4629-8c8b-af0535b4b2dc&scheme=1


Figure 11
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20411&guid=14719a44-921b-4138-bba6-390ef234d491&scheme=1


Figure 12
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20412&guid=a3abaaea-7779-4cee-8286-321b55eb2a4e&scheme=1


Figure 13
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20413&guid=99b8c6ec-2a5b-47a4-b191-42d6417816e1&scheme=1


Figure 14
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20414&guid=eedf134d-a302-42b2-beec-72aea7bfd5f9&scheme=1


Figure 15
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20415&guid=68ad4aee-6f93-4fb9-9fc3-e93e8c612d52&scheme=1


Figure 16
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20416&guid=81cb57fc-710c-4eba-a511-f5b67e8b9c4d&scheme=1


Figure 17
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20417&guid=babac945-1db2-43c0-96e2-9acb3ae7cbb9&scheme=1


Figure 18
Click here to download high resolution image

http://www.editorialmanager.com/saos/download.aspx?id=20418&guid=917011b4-ecec-4eaf-b7cc-87fb41e9292b&scheme=1

