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Abstract 

Introduction: Maintaining effective antiretroviral treatment for life is a major problem, in 

both resource-limited and resource-rich countries. Despite the progress observed in paediatric 

antiretroviral therapy, approximately 12% of children still experience treatment failure due to 

drug resistance, inadequate dosing and poor adherence. We explore the current status of 

antiretroviral therapy in children with focus on the interaction between disease, drug 

pharmacokinetics and patient behavior, all of which are strongly interconnected and 

determine treatment outcome.  

Areas covered: An overview is provided of the viral characteristics and available drug 

combinations aimed at the prevention of resistance. In this context, the role of patient 

adherence is scrutinized. A detailed assessment of factors affecting adherence is presented 

together with the main strategies to enhance treatment response in children.  

Expert Opinion: Using modeling and simulation, a framework for assessing the forgiveness 

of non-adherence for specific antiretroviral regimens in children is proposed in which 

information on pharmacokinetics, pharmacokinetic-pharmacodynamic relationships and viral 

dynamics are integrated. This approach represents an opportunity for the simplification of 

dosing regimens taking into account the interaction between these factors. Based on clinical 

trial simulations, we envisage the possibility of assessing the impact of variable adherence to 

antiretroviral drug combinations in HIV-infected children.  

 



Keywords: pediatric HIV, antiretroviral, viral dynamics, adherence, dose rationale, 

forgiveness, PKPD modeling, clinical trial simulations 

  



Article highlights box 

• Paediatric HIV infection remains a worldwide public health challenge as life-long 

treatment is required for these patients. 

• According to WHO/UNAIDS data, approximately 86% of new infections in children 

occur in sub-Saharan Africa, where access to therapy and treatment choice is still limited.   

• The relationship between adherence, exposure to antiretroviral drugs, and resistance is 

more complex than “non-adherence increases the risk of drug resistance”. Understanding 

of this relationship is a critical to reduce the risk of viral failure in highly active 

antiretroviral therapy (HAART).  

• Forgiveness of non-adherence, defined as the ability of a drug or regimen to achieve and 

maintain viral suppression even in case of poor adherence, is ignored as a therapeutic 

criterion despite its implications for long term outcome in paediatric HIV. 

• The development of a framework in which pharmacokinetic-pharmacodynamic modelling 

is integrated with viral dynamics may provide a powerful tool to predict the impact of 

variable patterns of adherence on treatment response. It also offers an opportunity to 

identify simplified dosing regimens for adults and children. 

 

  



1. Introduction 

Major advances occurred during the past 15 years in HIV therapy. Early antiretroviral 

treatment has dramatically modified the course of HIV infection in children, reducing 

mortality by fivefold or more and resulting in high survival rates into adulthood [1,2]. 

Through successful prevention of mother-to-child transmission programs, developed 

countries face few new cases of infant HIV-infection annually. Effective prophylaxis and 

treatment in HIV-infected women and administration of highly active antiretroviral therapy 

(HAART) to infected babies are just a few examples of the progresses that have been 

achieved in this area [3]. In fact, as a result of HAART use children who survive into 

adolescence are now struggling with various adherence challenges associated with long-term 

therapy [4]. Unfortunately, this situation is more complex in Sub-Saharan Africa, where 

according to WHO/UNAIDS data approximately 86% of new infections in children occur, 

but access to therapy and treatment choices are still limited [5].   

Paediatric HIV infection remains therefore a worldwide public health challenge. Maintaining 

effective antiretroviral treatment for life is one of the greatest challenges for children with 

HIV globally. Even though HIV-infected children living in limited-resource countries clearly 

face more challenges compared to paediatric patients in developed country, viral failure is an 

issue that concerns all HIV-infected children worldwide. A European study in which more 

than a thousand children on antiretroviral treatment were evaluated has found that 12 % of 

children experience treatment failure of three classes of drugs after 5 years, i.e. over two fold 

the rate observed in adults [6].  Some of the reasons that lead to earlier treatment failure in 

children include the lack of choice of antiretroviral drugs and difficulties with adherence and 

inadequate dosing. In addition, one needs to consider the need for psychosocial support - 

particularly during adolescence and the risk of running out of drug options sooner than adults 

in case of drug resistance. 



To better understand the problem a comprehensive overview is required of the factors which 

influence treatment outcome and thereby contribute to clinical failure. These factors can be 

clustered into three categories, namely, those involving the disease, the drug 

pharmacokinetics and the patient’s behaviour towards therapy. Based on this classification, 

specific goals and strategies are proposed in clinical practice, which may help overcoming the 

aforementioned issues and consequently reduce the number of HIV-infected children 

experiencing viral failure. 

 

2. The disease: why is combination therapy needed? 

At present, a combination of at least three antiretroviral drugs from at least two drug classes 

is recommended for initial therapy in adults and in children. The antiretroviral classes 

currently approved in children are NRTIs (nucleoside reverse transcriptase inhibitors), 

NNRTIs (non-nucleoside reverse transcriptase inhibitors) PIs (protease inhibitors) and 

integrase inhibitors . Different types of drugs are used, which act in different points of the 

viral replication cycle in order to sufficiently prevent viral replication [7]. The mechanism of 

action of NRTIs and NNRTIs is based on the inhibition of reverse transcriptase, a viral DNA 

polymerase enzyme that retroviruses need to reproduce, while PIs block the HIV protease, an 

enzyme used by the virus to cleave nascent proteins for the final assembly of new virions and 

integrase inhibitors block the integration of the viral genetic material into human 

chromosomes.  

There are various factors related to the mechanism of infection and replicative capacity of the 

virus which determine the need for drug combination in HIV treatment: (i) combination of 

anti-HIV drugs may overcome or delay the development of drug resistance [8,9]; (ii) given 

that viral replication depends on different enzymes which are the targets of  antiretroviral 

agents, the possibility to reach two targets at the same time increases the chances of stopping 



HIV and protecting new cells from infection; (iii) the virus can infect different types of cells 

in different parts of the body; each drug differs in how well the virus can be attacked in 

different tissues. As a matter of fact,  drug resistance can emerge because of the replication 

program of HIV, which is rapid and error prone (mutation rate ca. 3 × 10−5 

mutations/base/replication cycle), resulting in large and genetically diverse populations in 

vivo [10]. When HIV is allowed to replicate in the presence of antiretroviral drug 

concentrations, which are not sufficient to exert complete suppression, antiretroviral drug-

resistance mutations will almost invariably emerge [11,12].  

Depending on the site of viral mutations and their impact on viral fitness, different anti-HIV 

classes show higher or lower barriers to resistance. In the past years direct nucleic acid 

sequencing has become a common mechanism to obtain resistance information; commercial 

genotyping services are available; routine testing with independent panels of resistant viruses 

is useful to maintaining proficiency in detection of mutations [13,14]. Even though 

appropriate use of resistance testing may provide valuable information concerning drug 

options and regimens for treatment-experienced individuals with viremia during therapy, one 

needs to consider that this testing is not widely available in resource-limited settings where 

most patients live. Consequently, alternative approaches must be explored to prevent and 

manage resistance.  

To date, two therapeutic options are suggested as first-line choice in children by the WHO 

guidelines: NNRTI- and PI- based regimen [15]. In addition, the NIH guidelines also 

recommend the use of integrase strand transfer inhibitor (INSTI)-based regimen as initial 

treatment [16].   

Regarding NNRTI-based regimens, efavirenz (EFV) is the preferred choice in children older 

than 3 years because of its once daily administration, whereas nevirapine (NVP) is the 

preferred alternative. With respect to PI-based regimens, the WHO guidelines recommend 



lopinavir/ritonavir (LPV/r) as a first line therapy in infants and children younger than 3 years 

of age. This drug is available as liquid formulation and appears to be safe and effective in 

children in relation to virological suppression and the increase in CD4 count. According to 

PENTA guidelines, atazanavir/ritonavir (ATV/r) is preferred over LPV/r in children older 

than 6 years old and either ATV/r or daruanvir/r (DRV/r) are preferred to LPV/r in children 

older than 12 years of age [17].  

In spite of some debate about the optimal time to start HAART in children, WHO guidelines 

state that  HAART should be initiated in all children and adolescents living with HIV, 

regardless of clinical stage or at any CD4 cell count. Two drugs from the NRTI class form the 

backbone of HAART, with seven NRTIs (zidovudine, didanosine, lamivudine, stavudine, 

abacavir, tenofovir and emtricitabine) approved for HIV-infected children younger than 13 

years of age. As indicated by the WHO guidelines, combinations of lamivudine or 

emtricitabine plus abacavir or zidovudine are considered the preferred dual NRTIs backbone 

regimens for the initial therapy in children, with zidovudine or tenofovir as preferred 

alternatives for abacavir.  

Regarding (INSTI)-based regimens, NIH guidelines recommend raltegravir as the preferred 

INSTI in children aged ≥2 years through 12 years who are able to take either the chewable or 

film-coated tablets. 

 

Irrespective of the availability of guidelines regarding drug choices for treatment-naive 

patients, the selection of the initial regimen of antiretroviral drugs needs to take into account 

numerous other factors, such as age of the child, available formulations, comorbid conditions, 

potential drug interactions with other medications, results of genotypic drug resistance 

testing, convenience (e.g. pill burden, dosing frequency), and likely predicted adherence. 

Clearly, potential adverse events are also crucial in the selection of the initial antiretroviral 



regimen, as they are among the most common reasons cited for switching or discontinuing 

therapy and for medication non-adherence [17]. Acute life-threatening events (e.g., acute 

hypersensitivity reaction due to abacavir, lactic acidosis due to stavudine and didanosine, 

liver and/or severe cutaneous toxicities due to nevirapine) usually require the immediate 

discontinuation of all antiretroviral (ARV) drugs and re-initiation of an alternative regimen 

without overlapping toxicity.  

The aforementioned points to consider form the basis for the data summarised in table 1, 

where an overview is provided of the antiretroviral drugs currently approved in children 

along with their main characteristics. This overview is complemented by table 2, in which a 

list is given of the preferred antiretroviral combinations that should be considered as initial 

treatment of HIV-infected children.   

  

3. The drug: what is the right dose for HIV-infected children? 

Up to now, empirical scaling from adults to children continues to be the mainstream method 

for dose selection in paediatrics, with adjustment for body weight as the most common 

approach [43]. Although adjustment of drug pharmacokinetic parameters according to body 

weight or body surface area (BSA) can occasionally explain the observed differences in drug 

exposure between adult and paediatric patients, the direction and extent of these differences 

across age groups are, in general, not fully predictable. For example, some drugs are 

eliminated more rapidly or more slowly in younger paediatric patients, compared with adults 

or older paediatric patients [44]. Bioavailability may also differ between children and adults 

due to differences in transit time or gastrointestinal tract pH [45]. There are extensive 

physiological changes with pharmacological impact that occur as a child matures from 

infancy to adulthood, and this process does not occur with precisely predicted timing or 

magnitude on an individual scale [46,47]. Alternative approaches, such as the use of weight-



based methods for determining paediatric doses may not account accurately for all variables 

related to the different stages of maturation. Discrepancies in drug exposure may be observed 

in infants and toddlers, as compared to older paediatric patients.  All these aspects are in 

strong opposition to the concept of “one dose fits all” for children [48]  and to the belief of a 

linear relationship to scale or correct dose for the effect of body weight. From a therapeutic 

perspective, the rationale for dose selection involves the integration of multiple factors. 

Together with body weight, other confounders such as drug-drug interactions and 

demographic covariates, i.e. age, gender, body composition, functionality of liver and 

kidneys and maturation of enzymatic systems throughout the life span from neonates to 

adults [49]  may affect the pharmacokinetics of a drug and consequently its exposure. When 

selecting the paediatric dose, these potential confounders must be taken into account to avoid 

the risk of toxicity or poor efficacy. A dosing regimen with more than the necessary doses, 

besides causing toxicity, might also increase the possibility of poor adherence, which is 

seriously related with occurrence of resistance. Suboptimal concentrations of antiretroviral 

drugs might as well be very dangerous because they may exert viral selection pressure and 

thus promote development of drug resistance.  

In addition to the pharmacokinetic considerations, the dose rationale for children needs to 

take into account disease progression. Even though differences may exist in the underlying 

pathophysiology in adults and children (e.g. normal CD4 cell counts are much higher in 

young children than in adults and young children have immature immune systems compared 

to older children and adults), the pathophysiological processes subsequent to viral infection in 

adults do not appear to differ significantly from those observed in children. For this reason, 

the selection of paediatric dosing regimens based on efficacy data from adults is encouraged. 

Consequently, extrapolation of efficacy does impose the need for pharmacokinetic studies. 

Performing pharmacokinetic trials to assess optimal dosing in children is a critical step to 



avoid inadequate exposure. Careful evaluation of the optimal dosing in children of different 

ages is also necessary to avoid under exposure or toxicity in subgroups of the patient 

population. 

Despite the indisputable need to perform clinical trials in HIV–infected children, a major 

limitation of such studies must be highlighted. In patients affected by chronic diseases who 

are obliged to take their medication their whole life, adherence to therapy during the clinical 

trial may not be a realistic surrogate of patient adherence in real life, due to the limited 

duration of the study. Awareness is needed with regard to the implications that this may have 

on treatment outcome. Moreover participation to clinical trials may enhance adherence to 

treatment in chronic diseases [50], thus the pharmacokinetic profile of the drug might be 

altered in real life by different patterns of adherence. 

 

4. The patient: adherence to HIV antiretroviral therapy 

There are several reasons why antiretroviral treatment fails, of which poor adherence is a 

leading one [3,51-53]. It is important to emphasise that  the term ‘adherence’ implies more 

than the simple concept of a ‘patient’s tendency to follow medical advice’. Two substituent 

terms must be defined to have a comprehensive understanding of patient adherence: (i) 

adherence and (ii) persistence [54]. The former is defined as ‘the degree of correspondence 

between the patient’s actual dosing history and the prescribed dosing regimens’. The latter is 

defined as ‘the time elapsed between the first dose and the time of treatment discontinuation’. 

The term adherence includes also the degree of correspondence between the patient’s actual 

dosing time and the prescribed dosing time. We handle this component as “quality” of 

adherence. Variable adherence (the patient sporadically misses some doses or takes the drug 

at different times) and variable persistence (“drug holiday”) can have different implications 

on treatment outcome. It is important to mention that adherence is a critical issue in every 



chronic treatment, not only in HIV. Numerous studies have investigated the effect of poor 

adherence in many therapeutic areas such as, hypertension [55], glaucoma [56,57] and 

osteoporosis [58]. Furthermore, one needs to consider that other diseases may develop in 

combination with HIV. For instance, tuberculosis is well known to develop in people with 

HIV, especially in limited-resources countries. The development of tuberculosis in 

association with HIV presents several issues related to adherence to therapy: patients co-

infected will have more problems to adhere to treatment given the higher number of 

medications that they need to receive; in addition poor adherence to antiretroviral drugs may 

increase the probability to develop associated tuberculosis. Furthermore, the treatment of 

tuberculosis in association with certain antiretroviral drugs are known to result in drug-drug 

interactions and potentially in increased drug toxicity.   

Several factors pose specific challenges for treatment adherence in children as compared to 

adults [59].  A summary of the main factors leading to poor adherence to HAART in children 

is provided in figure 1.  

When considering adherence in children, it is particularly important to realise that HAART is 

a customised combination of different classes of drugs. Therefore, it can be very complicated 

for a child to comply with the prescription. Adherence in children will depend partly or 

entirely on a caregiver, who, especially in limited resources countries, may also be ill or may 

be at work when the drug has to be administered [60,61]. The identification of someone 

responsible for the child is difficult, especially when both parents died or are impaired. 

Another reason which may affect adherence in antiretroviral therapy is the heavy pill burden 

that sometimes needs to be administered to perinatally infected children in need of salvage 

therapy [62]. These complicated regimens pose greater issues in terms of adherence and 

therefore may lead to resistance which will create the need for even more complicated 

regimens.  



The age of the child is also a crucial element in the evaluation of non-adherence.  Usually 

family members have discrepant perceptions of a child’s level of responsibility for 

medication, especially in families with older children. Older children are often unrealistically 

expected to take the medication independently [63]. By contrast, younger children rely 

exclusively on the caregiver for drug administration and might face different issues such as 

swallowing problems. In addition, many of the current HIV medicines have an unpleasant 

taste, especially in syrups and powder form. This can make it difficult for children to take 

their ARVs daily [64]. Another factor that may impact adherence to chronic therapy is the 

child’s development. Children who have shown high adherence to HAART at younger ages 

frequently face problems during adolescence, a challenging time developmentally even 

without chronic illness [4]. To the list of factors highlighted so far, one needs to add safety 

issues, which are a known cause of non-adherence. Side effects are usually associated with 

irregular medication intake or discontinuation of treatment altogether [65].  

To tackle these issues, several strategies aimed at improving adherence in HIV-infected 

children have been adopted, which rely primarily on the education of the caregivers or on 

peer support, self-monitoring and telephone follow-up [66,67]. A brief period of 

hospitalization may help to demonstrate the role of non-adherence on antiretroviral therapy 

and help identifying possible solutions. Particularly in developed countries, material support 

such as pillboxes, drug identification charts, daily schedules, diaries and educational 

materials are provided to explain the schedules, risks and benefits of HAART [68]. Age-

specific developmental-level protocols and teaching materials (e.g., cartoons, stories and 

drawings) have been developed to educate children about their treatment, their HIV status, 

and the importance of adherence and medical follow-up, but these resources are not always 

widely available in resource-limited settings. 



The possibility to reduce the dosing frequency of antiretroviral drugs is another important 

strategy to enhance adherence to treatment. It has been demonstrated that decreasing the pill 

burden and dosing frequency is associated with increased adherence [69-71]. Several studies 

have already been performed to assess the feasibility of reduced dosing frequency of some 

antiretroviral drugs from three times a day to twice daily or from twice to once daily [72-74]. 

However, deep knowledge of the pharmacokinetic and pharmacodynamic properties of a drug 

is required to understand whether the dosing frequency can be reduced: it has been 

demonstrated that missing a dose when following once daily dosing regimens may be more 

dangerous than missing one dose on a twice daily regimen [75].  

 

4.1. Adherence-resistance relationship 

Irrespective of the age of the patient, failure to take the prescribed dose of antiretroviral drugs 

leads to ongoing viral replication in the presence of drug and the development of drug-

resistant HIV. However, one needs to acknowledge the fact the relationship between 

adherence and development of resistance is not that simple as it may seem and it differs for 

each class of antiretroviral drugs. Bangsberg et al. have used a cohesive model to summarise 

this complex relationship for each class of antiretroviral drugs currently used as first line 

therapy [76]. According to this model, low levels of adherence are more likely to promote 

development of resistance to NNRTIs due to their low genetic barriers to drug resistance. On 

the other hand, higher selection pressure is required for single PIs given the high genetic 

barriers of this class to resistance; therefore high levels of adherence are required to select for 

drug resistant-viruses [77]. Sporadic missed doses are unlikely to produce high risk 

combination of actively replicating virus and sub therapeutic levels in NNRTIs, due to their 

long half-lives. Conversely, sub-therapeutic levels may easily be reached after long periods of 

treatment interruption, increasing therefore the risk of resistance. On the other hand, boosted 



PIs, which have intermediate half-lives also show a high degree of antiviral efficacy due to 

their potency. High potencies restrain the development of resistance in case of missed doses, 

whereas their half-lives are impediments to the development of resistance mutations in 

patients who interrupt the treatment for long periods.  

In addition to the different resistance characteristics of PIs and NNRTIs, it is crucial to 

highlight that drugs with different half-lives used in combination therapy may lead to 

temporal monotherapy in case of incomplete adherence, which is particular dangerous for the 

development of drug resistance. A common example is the co-administration of an NNRTI 

with a long plasma half-life (e.g., efavirenz) with NRTIs, which generally have shorter half-

lives. By contrast, the PENPACT-1 study, which assessed the long-term effectiveness in 

children initiating 2NRTIs+PI vs 2NRTIs+NNRTI, and switching to second-line at viral load 

≥ 1000copies/ml or ≥30000c/ml,  showed that resistance in NRTIs may be largely prevented 

by the presence of boosted PIs [78]. In fact, these findings were attributed to 

lopinavir/ritonavir. When resistance was observed, it was mainly associated with lamivudine. 

In table 3, an outline is provided of the impact of different patterns of non-adherence on the 

risk of resistance for different classes of antiretroviral drugs. From this outline, it becomes 

evident that the relationship between adherence and resistance is more complex than “non-

adherence increases the risk of drug resistance”. Clinicians, health care professionals and 

drug developers need to realise that accurate understanding of this relationship is a critical 

step for the choice of treatment.  

 

5. Assessment of New Highly Active Antiretroviral Therapy 

Based on the aforementioned data and considerations, optimal dosing regimen and adherence 

to prescribed treatment appear to be one of the main challenges in paediatric antiretroviral 

therapy and thus constitute an important theme for future drug development. The possibility 



to develop novel drugs with different mechanisms of action, which may prevent the 

development of drug resistance and improve treatment outcome is an alternative solution 

which is beyond the scope of our investigation. Instead, we focus on practical aspects of a 

chronic intervention in children. Undoubtedly dosing frequency reduction may be very 

advantageous both for adult and paediatric patients; however the impact of poor adherence on 

optimised dosing regimens must be assessed along with the evaluation of efficacy and safety. 

In this context, the possibility to evaluate which pharmacokinetic and/or pharmacodynamic 

properties of an antiretroviral drug make it less susceptible to suboptimal adherence and 

predict treatment outcome represents an opportunity for dosing regimen optimisation.  

To this purpose, an important concept, known as forgiveness of non-adherence, needs to be 

considered. Forgiveness of non-adherence is the ability of a drug or regimen to achieve and 

maintain viral suppression even in case of poor adherence [79]. A variety of pharmacological, 

viral and host properties determine the level of forgiveness of any specific regimen. It is 

generally used as comparative descriptor of different classes of antiretroviral drugs, based 

upon the “anchor drug” of the regimen. In 2000 Paterson et al showed that extraordinarily 

high rates of adherence were necessary to achieve viral suppression in a group of HIV-

infected patients receiving unboosted indinavir-based regimen [52]. These findings lead to 

the “95% rule”, which means that patients must take at least 95% of the prescribed 

antiretroviral doses in order to control viral replication.   

More recent studies have demonstrated that more moderate levels of adherence are needed to 

achieve and maintain viral suppression in patients treated with NNRTIs and boosted PIs 

based regimens. These findings gave birth to the evidence that some antiretroviral classes are 

more forgiving than others. This would be the starting point for future studies and 

investigations which may provide further insight into clinical use of drug combinations.  

 



A shortcoming of the empirical evidence obtained so far is that it handles forgiveness in a 

qualitative manner, without any specific scales or thresholds which could be used to support 

therapeutic choices. A quantitative and systematic definition of forgiveness is required to 

allow the evaluation of new dosing regimens and explore their advantages for patients 

without risks of inadequate efficacy and consequently drug resistance. 

 

6. A model-based approach for the exploration of novel dosing regimens 

As indicated previously, accurate prediction of the implications of forgiveness of non-

adherence to treatment and evaluation of alternative dosing regimens require quantitative 

tools which allow for the integration of the effect of disease, drug characteristics and patient 

behaviour. 

 A model-based approach in which PKPD models for selected antiretroviral drugs are used in 

conjunction with a model for viral dynamics may provide a powerful tool to predict how 

forgiving antiretroviral drugs are and provide the scientific basis for alternative dosing 

regimens. In addition, the inclusion of a model for patient adherence offers the opportunity to 

characterise the relation between adherence, exposure and drug response as well as the 

impact of adherence on treatment outcome [80].  

It should be clear to readers that the evaluation of adherence may not be feasible in clinical 

practice due to ethical reasons and protocol design issues. Thus, an in silico approach is 

critical to assess how different patterns of adherence may affect treatment outcome. Similar 

methods have been previously applied in different therapeutic areas, such as statin or 

antihypertensive therapies [81-83]. In fact, the possibility to integrate disease mechanism, 

drug behaviour and patient adherence to treatment in clinical trial simulations may become 

crucial for the exploration of simplified dosing regimens of antiretroviral drugs. In addition to 

obtaining quantitative estimates of the impact of different regimens on response, the  use of 



virtual patients overcomes ethical barriers, allowing for the assessment of hypothetical and 

real-life scenarios [84]. 

 

6.1. Disease models for viral dynamics 

A statistical model that can accurately describe the disease in terms of viral replication and 

infection is the starting point to predict the response to combination antiretroviral therapy and 

to gain insight into possible mechanisms of treatment resistance [85] .  

HIV dynamics has been widely studied in the past twenty years and several models of 

different levels of complexity have been developed [10,86-88]. The main advantage of this 

approach is the possibility to understand, quantify and parameterise viral processes such as 

replication, infection and viral clearance (death) over time [89].  For example, modelling of 

viral dynamics has shown that HIV-1 is a rapidly replicating virus and one that could respond 

to therapy. Furthermore, quantitative estimates of viral parameters suggest that HIV-1 is 

cleared from chronically infected patients at a rapid rate, with a half-life estimated to 6 hours 

from serum/plasma, whereas different rates apply when the virus is cleared from other tissue 

compartments or viral sanctuaries. Finally, modelling has shown that the HIV virus can 

quickly become resistant to any single drug, particularly to those that require only one 

mutation to generate resistance. This phenomenon can be anticipated by the fact that every 

single possible mutation of the viral genome can be expected to occur hundreds or thousands 

times each day.   

An example of the basic model is commonly used for viral dynamics is depicted in figure 2. 

Similar models have been applied to study the dynamics of hepatitis C virus, hepatitis B virus 

and cytomegalovirus infections in vivo. The model considers a set of cells susceptible to 

infection, that is, target cells, T, with a birth rate of λ and a death rate of dT, which, through 

interactions with virus, V, become infected at an infection rate equal to k. Infected cells, I, are 



each assumed to produce new virus particles at a constant average rate p and to die at rate δ. 

The average lifespan of a productively infected cell is 1/ δ and so if an infected cell produces 

a total of N virions during its lifetime, the average rate of virus replication per cell, p = Nδ. 

Newly produced virus particles, V, can either infect new cells or be cleared from the body at 

rate c per virion.  This model is defined by a system of three differential equations (equation 

1- 3).  These equations are applied to obtain minimal estimates for the parameters c and δ. 

From these estimates it is possible to calculate upper bounds for the half-life of virions in 

plasma and the half-life of productively infected cells.  

 

dT/dt = λ – dTT – kVT          (1) 

dI/dt = kVT –δI                     (2) 

dV/dt = pI – cV                     (3) 

 

This model has been expanded to include more compartments representing latently infected 

cells and reservoirs [90-94]. A subsequent implementation of this model has also included the 

effect of the antiretroviral drugs on the processes of viral infection and replication, taking into 

account the different mechanisms of action [95]. Such models have been validated and are 

widely used to predict the time course of clinical endpoints and to design novel strategies in 

HIV treatment [96,97]. In addition, thanks to the way viral clearance is parameterised, it is 

possible to link drug efficacy to long-term changes in HIV-1 viral load [95,98,99]. 

 

6.2. PKPD modelling in children  

Characterisation of the pharmacokinetic-pharmacodynamic relationships is required to assess 

the correlation between plasma concentrations of antiretroviral drugs with changes in clinical 

response. In order to define such relationships detailed information on PK and potentially 



also on PD of antiretroviral drugs in children need to be collected. Given ethical and practical 

constraints limit the number of blood samples can be obtained in paediatric subjects, non-

linear mixed effect modelling parameters is the preferred approach to describe PK and PD 

properties [100]. The use of non-linear mixed effect modelling in paediatrics has been 

extensively evaluated by our group in a previous publication [101]. The term “mixed” in non-

linear mixed effects modelling represents a mixture of fixed and random effects. For the fixed 

effects, a structural model describing the PK or PD is chosen (e.g. a two-compartment model 

for PK or an Emax model for PD). The random effects quantify the variability that is not 

explained by the fixed effects and include inter-subject and intra-subject random variability 

[102]. It is often assumed that the variability between subjects follows a log-normal 

distribution with a mean of zero and variance ω2. Equation 4 is used to describe the 

relationship between individual and population parameter estimates: 

 

Θi= θ mean*eηi                          (4)        

 

where θi represents the parameter of the ith subject, θmean the population mean, and ηi the 

variability between subjects. The structural model uses fixed effects parameters such as 

clearance and volume of distribution for PK or Emax and EC50 for PD. 

 

The residual error is generally described using a proportional error (error is dependent on the 

concentration, which means a higher absolute error at higher concentrations (Eq.5)) or an 

additive error (constant for all observations (Eq. 6)) or a combination of both. This means for 

the jth observed concentration of the ith individual the relation (Yij): 

 

Yij=cpred,ij * (1+ εij)           (5) 



Yij=cpred,ij + εij                        (6) 

 

where cpred is predicted concentration and εij is a random variable with a mean of zero and a 

variance of σ2.   

 

Non-linear mixed effects modelling also allows the evaluation of the  relationships between 

covariates (demographic characteristics of the subject) and parameters of the structural model 

(e.g. influence of body weight on volume of distribution or clearance) (figure 3) [103]. Such 

relationships are particularly important in children, given that developmental changes (i.e. 

metabolising enzyme capacity, renal function, liver flow, body composition) can have 

profound effects on the pharmacokinetics and on the response to medications. Therefore, it is 

important that such changes are considered in the context of all other sources of intra- and 

inter-individual variability resulting from genetic, environmental and disease-related factors 

and drug interactions [104].  

Over the last few years, it has been recognised that PKPD modelling constitutes a powerful 

approach to characterise PKPD relationships. As such, it has been widely applied to 

antiretroviral therapy to relate plasma concentration to efficacy and to identify the optimal 

dose of antiretroviral drugs in children [105,106]. 

 

6.3. Modelling patient adherence 

In order to explore novel regimens of antiretroviral drugs or optimise existing ones, a third 

statistical element needs to be implemented, which describes the patients and their behaviour 

towards the treatment. As explained in the previous part of this review, dosing patterns may 

differ between patients in terms of the actual dose (adherence), the timing of doses (quality) 

and the duration of treatment (persistence) [107-109]. The consequences of variable 



adherence on treatment outcomes are determined by the magnitude of erratic dosing about the 

prescribed dosing times, the number and frequency of sequentially missed doses or ‘‘drug 

holidays’’ (when the patient stops taking the medication(s) for a period of time) and the 

pharmacological properties of the drug  [110]. Based on clinical data of adherence to 

treatment, it appears that inter-individual variability is very large for dosing times relative to 

the prescribed interdose interval, whereas indices of dose-taking adherence (the quantity of 

the drug taken per dose) are usually less variable [111]. 

Given the need to infer different adherence patterns when real data are not available to test 

their impact on treatment response, several simulation models for trial execution have been 

proposed in the past few years. The simplest one assumes that the prescribed number of pills 

is taken correctly, but at different times than the prescribed ones [112,113]. In those models, 

time intervals between two doses are drawn from normal distributions [114]. Other models 

propose to simulate the number of doses taken at each dosing time according to a 

multinomial distribution allowing for 0, 1, 2 or more doses taken at each dosing time [115]. 

Since this number may depend on the number of doses previously taken, an earlier attempt 

suggested the use of Markov models [116], which have great flexibility and allow the 

description of almost all different adherence profiles. The inclusion of covariate factors in 

this model also provides a mechanism to control, for example, the date at which the patient 

will have a “drug holiday”. 

In conjunction with variable adherence, patient drop-out constitutes another fundamental 

element in clinical trials. Two types of drop-out exist: non-informative and informative drop-

outs. Non-informative drop-outs simply mean that some patients may randomly stop to be 

reported in the trial, this independently from the treatment they received, and this 

independently of efficacy or toxic effects. On the contrary, disease progression can be 

correlated to the marker that is being followed. In this case, the drop-out is informative to the 



disease progress, and modelling the disease progression separately from the drop-out process 

may be inefficient and may produce biased estimates [117,118]. For example, in a trial of 

HIV treatment, disease progression may lead a patient to drop-out to seek other antiretroviral 

regimens.  

 

7. Clinical trial simulations 

Given the characteristics of the HIV-infected population, a model-based approach is a potent 

instrument for the evaluation of the behaviour of the patient towards the prescribed treatment, 

taking into account the processes underlying disease progression as well as the 

pharmacokinetic and pharmacodynamic properties of the drugs. Two elements need to be 

distinguished and defined when applying model-based approaches, namely modelling and 

simulation. The former enables translation of the relevant features of a system into 

mathematical language (i.e. model parameters), whilst the latter allows the assessment of a 

system’s performance under hypothetical and real-life scenarios (i.e. “what-if” scenarios), 

yielding information about the implication of different experimental designs and quantitative 

predictions about treatment outcome, dosing requirements and covariate effects [119,120]. In 

clinical trial simulations (CTS), multiple factors can be evaluated concurrently and relevant 

scenarios can be defined and investigated.  The great advantage of the use of CTS in 

paediatric drug development and clinical practice is the possibility of exploring relevant 

scenarios before enrolling children into a clinical protocol [121,122]. Simulations allow 

evaluation of a range of parameter values, including an assessment of critical scenarios, such 

as overdosing, that cannot be generated in real-life studies.  

CTS has been widely used in the past in paediatric drug development and clinical practice 

[123]. Läer et al. used CTS to develop an age-specific dosing regimen for sotalol in children 

[124], whereas CTS was used Yim et al. [125] to get US Food and Drug Administration 



approval for the dosing regimen of etanercept in juvenile rheumatoid arthritis. Another 

example of the use of CTS includes the selection of rufinamide doses associated with safety 

and efficacy in a large paediatric population [126]. In CTS three important components are 

characterised: a disease/placebo model, a drug model, and the implementation model (trial 

design and decision criteria) (figure 4). Together with a model (which describes the 

biological mechanisms underlying the disease [127]) and a drug-action model (which 

comprises pharmacokinetic and pharmacodynamic factors [128]), a trial model is required 

that accounts for other important aspects of the trial, such as dropout, adherence and protocol 

deviations [129]. Thus far, despite the widespread use of CTS in paediatrics, very few 

examples exist in which relevant design factors have been evaluated prospectively as part of 

the planning of a paediatric trial. In particular patient-related components, such as adherence 

and drop-out have not been encompassed in previous paediatric CTS.  

In the previous paragraphs, we have advocated the advantages of model-based approaches for 

the characterisation of pharmacokinetics and pharmacodynamics in children. However, a 

previous investigation has shown that limitations exist in such approaches when 

extrapolations are required from different paediatric populations [130]. The use of parametric 

approaches must consider uncertainty in model and parameter estimates, a feature that can 

lead to biased predictions and potentially wrong interpretation of the results. The evaluation 

of adaptive protocol designs may overcome some of these limitations and ensure accurate 

dosing recommendations for children [131].  

 

7.1. CTS for the assessment of forgiveness of non-adherence to antiretroviral 

therapy  

As highlighted previously, CTS can be used to evaluate the impact of variable patterns of 

adherence as well as to identify the contribution of other critical factors to treatment outcome, 



yielding quantitative and systematic estimates of forgiveness of non-adherence for each 

antiretroviral drug. Such data could be of indisputable value in the exploration of scenarios or 

conditions which have not been tested in reality, such as new doses, new dosing regimens or 

drug combinations. It is important to mention that the requirement to administer antiretroviral 

drugs as a combination regimen confers additional complexity to a general framework for 

CTS.  

In particular, few mechanistic models are available that enable the prediction of the efficacy 

of a combination of several drugs rather than the response to each drug separately, as 

assessed by the PKPD relationships of individual components. Generally, the inhibitory 

effect of a combination is expressed through an additive equation [98]. Even though in vitro 

studies may be used to describe the inhibitory effect of a single drug, assessment of the 

contribution of each drug to the total inhibitory effect of a combination are usually not 

performed. By contrast, the use of a model-based approach may enable the evaluation of the 

inhibitory effects in vivo of different drugs administered in combination despite the lack of 

such information.  

These models, however, were not developed with the intent of exploring the forgiveness of 

non-adherence to antiretroviral drugs or drug combinations. To this purpose, further 

integration is required in which PK, PKPD and viral dynamics models are combined. More 

specifically, the inhibitory effect of a drug or a combination of drugs can be predicted using 

available PKPD models. These data are subsequently used as input for the evaluation of viral 

dynamics model, allowing for the characterisation of the processes of viral infection and 

replication. This step yields time-varying viral load and CD4 count as output.  Simulation 

scenarios can be evaluated by assuming perfect adherence and subsequently by introducing 

different patterns of non-adherence (delays in drug intake, treatment interruptions or doses 

randomly missed throughout the treatment period). One of the main advantages of this 



approach is that specific scenarios of non-adherence can be simulated for different groups of 

patients. One can also evaluate the impact of different scenarios on the same group of 

patients. Based on simulations, differences in treatment outcome can be summarised for a 

range of clinically relevant scenarios of non-adherence and a threshold can be identified for 

forgiveness of non-adherence. Such a threshold represents the level of non-adherence allowed 

to the specific group of patients without compromising the outcome of the treatment. 

Thresholds may be similar or different for each drug or drug combination for a given 

population. Most importantly, such data provide important insight into the patterns of non-

adherence which should be avoided in real life.  

As mentioned in Section 4.1, for the accurate evaluation of forgiveness of non-adherence one 

also needs to consider development of resistance. An approach is to include resistance into 

the modelling framework by linking it to the plasma concentration levels of each specific 

drug.  For instance, a logistic regression can be used to describe the relationship between the 

number of days in which the drug exposure remains below the expected therapeutic levels 

and the probability to develop drug resistance, the estimates from this regression can be used 

subsequently link partial adherence and viral failure. Likewise, safety concerns need to be 

carefully assessed, as adverse events may have a direct effect the level of adherence. Also in 

this case, a logistic regression could be considered to establish the probability of drug-related 

adverse events and increasing drug levels in plasma or tissue.  

An application of this concept is currently under evaluation by our group [132]. We have 

explored the implication of variable patterns of adherence on so-called optimised 

antiretroviral regimens, e.g., reduction in dosing frequency from twice-daily to once daily 

dosing. One of the main concerns of less frequent dosing intervals is the need for evidence of 

robustness or forgiveness, which means that once daily regimen should not be less forgiving 

than to twice daily regimens. By applying the same set of simulations to the two regimens 



and including different levels of non-adherence, it is possible to compare the forgiveness of 

each regimen taking into account other relevant factors, such as age and body weight. 

Preliminary results were in agreement with clinical data, i.e., the commonly used NNRTI-

based combination regimen in children appears to be more forgiving to some patterns of non-

adherence (e.g. randomly missed doses) rather than to drug holidays. A similar approach can 

be considered for the evaluation of resistance and patient safety before enrolling the patients 

in the actual clinical trial. Moreover, the use of simulation scenarios also represents an 

opportunity for risk mitigation and risk management. Simulated data can be derived from 

conditions which cannot be controlled or achieved in real-life due to obvious ethical and 

practical reasons. 

 

8. Conclusions 

In the previous sections we have highlighted three important points of concern in 

antiretroviral paediatric therapy: i. the choice of the dose (dose rationale), ii. the requirements 

for optimisation of the dosing regimen (reduced risk of resistance to the combination) and iii. 

the impact of non-adherence to life-long treatment (forgiveness). The use of an approach in 

which PKPD relationships, viral dynamics, patient behaviour and trial execution factors are 

integrated provides the basis for addressing the concerns described above.  Based on 

comprehensive clinical trial simulation scenarios, it is possible to investigate the impact of 

different factors as well as identify optimal experimental conditions for the evaluation of 

efficacy of HAART in children. The approach also offers the opportunity to explore scenarios 

which may not be feasible or ethically acceptable in the paediatric population. The possibility 

to evaluate forgiveness of non-adherence of current or future treatments in virtual patients 

without exposing real ones to potentially ineffective experimental conditions will strongly 

simplify the identification of the best dose and dosing regimens for HIV-infected children. 



9. Expert Opinion 

The development of HAART has been one of the greatest achievements of medical research. 

In both rich and poor countries, HAART combinations with at least three drugs have resulted 

in substantial reductions in morbidity and mortality. HAART has been simplified to the point 

where treatment with a single, multidrug pill once a day is feasible with generally 

manageable adverse effects [133]. 

Despite these important improvements, a significantly high number of children fail to achieve 

viral suppression. Inadequate dosing and poor adherence, which in turns are responsible for 

the development of resistance, are the major causes of this problem. Although these issues 

have been extensively discussed in previous scientific publications, a quantitative approach is 

still lacking that allows systematic evaluation of the forgiveness of non-adherence of specific 

antiretroviral regimens and the feasibility of simplified dosing regimens. 

This review has identified three main factors which need to be considered in an integrated 

manner for the optimisation of antiretroviral combination treatments in children: the disease, 

the drug and the patient. The interaction between these factors can be characterised by a 

model-based approach which combines (i) pharmacokinetic-pharmacodynamic models for 

selected antiretroviral drugs (ii) a model for viral dynamics and (iii) a model for patient 

adherence. This approach provides the basis for quantifying the relation between adherence, 

exposure and drug response as well as the impact of adherence on treatment outcome. 

Moreover, it overcomes ethical and design issues involved in the evaluation of adherence in 

clinical practice. 

 

The novelty of the proposed methodology relies on the fact that the outcome of an 

antiretroviral combination treatment may be predicted for hypothetical scenarios of non-

adherence along with the thresholds of non-adherence to be avoided in clinical practice. In 



conjunction with clinical trial simulations, this type of information can be used as input for 

the evaluation of the feasibility of simplified dosing regimens in hypothetical scenarios 

without enrolling the children in actual clinical trials. The feasibility of less frequent dosing 

(i.e., longer dosing intervals), such as the change from twice daily to once daily doses 

represents a typical case where this methodology could be applied. Moreover, in the future 

we envisage that information on the forgiveness of non-adherence may become a standard 

component of the summary of product characteristics. This will ensure that appropriate 

information is provided to prescribers, patients and caregivers on how to minimise the 

consequences of missed doses or treatment interruptions. In addition, it can be anticipated 

that the use of clinical trial simulations will be used to assess the implication of not-in-trial 

settings or real life conditions, which in most of the cases differ significantly from the highly 

controlled environment of a clinical trial. 

 Whereas many of the mathematical and statistical concepts required for the implementation 

of the framework described here are often unfamiliar to physicians, clinical pharmacologists 

and drug developers in general, increased awareness is needed about the possibility that these 

tools represent to therapeutics. In addition to the application of the concepts in the so-called 

real-life clinical trials, the framework may also play an important role in the development of 

risk management plans through the quantitative evaluation of real-life scenarios, preventing 

the exposure of paediatric patients to unnecessary risks. 
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Figure 1 Main factors leading to poor adherence to antiretroviral therapy in children. 

 
Figure 2: Schematic representation of the model developed by Bangsberg to summarise the 
relationship between adherence and relationship for each class of antiretroviral drugs [75]. 
 

  



 

Figure 3.  Basic model of viral infection by Perelson. Reprinted by permission from 
Macmillan Publishers Ltd: Nature Reviews Immunology [89], copyright 2016. 
 
 

  



 

Figure 3. Schematic representation of the relationship between dose and concentration 

(pharmacokinetics, PK) and between concentration and a pharmacological (side) effect 

(pharmacodynamics, PD). Important covariates that may affect both the PK and/or PD are 

body weight, age, disease status (e.g. critically ill versus healthy children) and genetics. 

Reproduced with permission from [101]. 

 

 

 

 

  



Figure 4. The diagram depicts the major components of a clinical trial simulation (CTS). In 

model-based drug development, CTS can be used to characterise the interactions between 

drug and disease, enabling among other things the assessment of disease-modifying effects, 

dose selection and covariate effects (e.g. age, body weight). In conjunction with a trial model, 

CTS allows the evaluation of such interactions, taking into account uncertainty and trial 

design factors, including the implications of different statistical methods for the analysis of 

the data. Reproduced with permission from [84]. 
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Table 2 Antiretroviral regimens recommended for initial therapy for HIV infection in 

children.   

*The guidelines for adolescents and adults are applicable for adolescents aged ≥12 years and sexually mature. 

Preferred  Regimens 

Children >14 days and <2 years Two NRTIs plus lopinavir/ritonavir 

Children >2 years and <3 years Two NRTIs plus lopinavir/ritonavir 

Two NRTIs plus raltegravir 

Children  ≥3 years and <12 years Two NRTIs plus efavirenz 

Two NRTIs plus lopinavir/ritonavir 

Two NRTIs plus atazanavir/ritonavir 

Two NRTIs plus darunavir/ritonavir  

Two NRTIs plus raltegravir  

Adolescents aged >12 years and 

not sexually mature* 

Two NRTIs plus atazanavir/ritonavir  

Two NRTIs plus dolutegravir  

Two NRTIs plus darunavir/ritonavir  

Two NRTIs plus elvitegravir in fixed-dose combination 

containing elvitegravir/cobicistat/emtricitabine/ tenofovir 

alafenamide 

 

Preferred 2-NRTI Backbone Options for Use in Combination with Additional Drugs  

Children younger than 3 months zidovudine plus (lamivudine  or emtricitabine)  

 

Children > 3months and <12 

years 

abacavir plus (lamivudine  or emtricitabine) 

zidovudine plus (lamivudine  or emtricitabine) 

Adolescents aged ≥12 years and 

not sexually mature* 

abacavir plus (lamivudine  or emtricitabine) 

 



 

 

 

 

 

Table 3. Impact of different patterns of non-adherence on the risk of development of resistance for 

different classes of antiretroviral drugs. 

 

 

 

 NNRTIs PIs Boosted PIs

SPORADIC MISSED 

DOSES 

 low risk high risk low risk  

LONG PERIOD 

INTERRUPTONS 

high risk low risk low risk  

 

 




