
The relevance of roundness to the crushing strength of granular materials
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The prediction of the crushing strength of sands is still an unresolved problem in soil mechanics. For
natural sand grains with a regular geometry, Weibull theory has long been adopted to explain the decay
of a nominal crushing strength with increasing particle size. The Weibull parameters for a given soil
relate strength to size, and, although useful, this is an empirical framework that does not consider the
mechanics of crushing. This study aims to provide a more fundamental assessment of the relationship
between size, roundness, the stresses induced within the particles, and their crushing strength. A new
grain-scale failure criterion is proposed, based on physical experiments on artificial and natural
particles, Hertzian analysis and numerical simulations. It considers the physical properties of the
particles, including the shape of the grain, as described by the roundness, and both its elastic and plastic
features in terms of Young’s modulus, Poisson ratio and hardness. The new criterion is suitable for
implementation in particle-scale crushing simulations of granular masses, using, for example, the
discrete-element method, as well as in improved probabilistic frameworks.
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INTRODUCTION
The aim of this paper is to contribute to the understanding
of grain-scale inelasticity of sand and to concentrate on
the breakage process of individual natural irregular particles
when axially compressed. The work is based on laboratory
experiments on both artificial and natural particles, the
outcomes of which have been processed using classical
contact analysis. A numerical model has also been used to
justify and better understand the assumptions made in the
analysis presented.
Using a combination of physical experiments, as well as

analytical and numerical simulations, to determine the stress
state at a contact point, this contribution develops a new
breakage criterion for granular materials made of irregular
particles. Within the range of particle types considered,
which includes glass beads, fine gravel and coarse sand, this
criterion has been proved to be size independent, and enables
a practical deterministic approach, based on real grain-scale
properties, including Young’s modulus, hardness and
roundness.

BACKGROUND
Experimental research on particle damage can be con-

sidered at two scales, hereafter referred to as the macro and
particle scales. At the macro scale, changes in the character-
istics of the particles are usually related to breakage, which
can be defined and quantified according to established
experimental methods (e.g. Hardin, 1985). At the particle
scale the prediction of the resistance of individual particles to
the loads transmitted through their contacts is a fundamental
problem, but no failure criterion has been defined and widely
accepted so far.

Macro scale
At the macro scale both Marsal (1967) and Hardin (1985)

considered the evolution of the particle size distribution under
compression. Performing large-scale triaxial testing on rockfill
specimens for the construction of El Infernillo Dam, Marsal
(1967) showed that the peak shear strength of these coarse
materials in terms of ratio σ1/σ3 decreased as particle breakage
increased. This observation was not captured in subsequent
studies at lower stress levels. In fact they showed that for sand
the shear strength as represented byM= q/p′ is quite insensitive
to breakage caused either in shear to large strains (Coop et al.,
2004) or compression to high stresses (Coop & Lee, 1993).
Considering that the contribution of fines to breakage was
practically negligible, Hardin (1985) focused on soil particles
larger than 0·074 mm and proposed a relative breakage index,
Br, based upon the change in shape of the particle size
distribution curve. Working with rock fragments produced by
weathering, Turcotte (1986) found that the number of particles
(N) of a given size is related to the particle size by the
relationship N� d�D, where D is a fractal dimension.
In recent decades further studies have recognised that

sand cannot be treated as an assembly of rigid unbreakable
particles, and a number of works have considered sand
particle crushing from a geotechnical perspective (McDowell
et al., 1996; McDowell & Bolton, 1998; Nakata et al., 1999;
Robertson, 2000; McDowell, 2001). At the continuum level,
the relevance of crushing to granular plasticity has also been
investigated and assessed through experimental studies on
coarse sand. For isotropic compression and shearing to
critical states, Coop & Lee (1993) showed there is a rela-
tionship between Br and the mean effective stress p′. Muir
Wood (2006) proposed a grading state index, IG, which is
defined as the ratio between the area under the particle size
distribution curve for the current grading and the area under
the curve given by a limiting fractal grading.
These contributions have shown that particle breakage

is largely responsible for significant plastic bulk volume
changes under different loading conditions that may be
applied during element testing.

Particle scale
There is a lackof consensus as to what is meant by strength

at the particle scale. Some authors, following Fairhurst
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(1964), Kendall (1978) and Lange (1973) have given detailed
consideration to fracture mechanics as applied to particle
strength (Kim & Lade, 1984; Morel et al., 1992) and adopted
the Brazilian breakage formula as the main reference. In this
formula the tensile stress σt of a disc-sample having diameter
d and thickness t and failing under a diametrically applied
load Nf is given by

σt ¼ 2Nf

π d t
ð1Þ

It is well established (Fairhurst, 1964) that equation (1) is
adequate for predicting the crushing strength of spheres or
rods. However, in the general case, irregular geometries and
particular properties of the grain, such as hardness, bulk
elasticity and fracture energy, must play a role in the ability
of a particle to support a concentrated load for a given
distribution of contacts.

In geomechanics particle crushing studies, inspired by
equation (1), the simplified and practical criterion adopted
by Lee (1992) is still largely used. It relies on the following
definition of a nominal strength σf of a natural particle
having average size d̄

σf ¼ Nf

d
2 ð2Þ

When equation (2) is applied to a cylindrical rock specimen
of size d̄ ¼ d ¼ t it overestimates themaximum tensile stress by
about 60% (i.e. by a factor π/2) when compared to equation (1).
It is therefore more appropriate to consider σf in equation (2)
as a nominal strength, the value of which may differ sig-
nificantly from the maximum real tensile stress at failure.

Both Jaeger (1967) and Hiramatsu & Oka (1966) deter-
mined and proved by experiments an expression for the
maximum tensile stress σf within an irregular particle
compressed between two hard platens, and stated that

σf ¼ 0�225Nf=ðd2=4Þ ¼ 0�9Nf=d2 ð3Þ
where Nf is the load at failure and d is the distance between
the two points of contact between the particle and the platen,
which they suggested as being the smallest dimension of
the particle. This expression actually provides a value of
maximum tensile stress and therefore a nominal strength
which is intermediate between the Brazilian strength and
Lee’s expression.

Laboratory experiments have revealed that the nominal
strength is size dependent, decreasing with increasing size,
and this is explained hypothetically as being caused by the
increasing probability of larger flaws being present as the size
of the particle increases. Lee (1992) considered a number of
different sands and observed a linear relationship between
log (σf ) and logðd̄Þ, so that

log ðσf Þ ¼ aþ b logðd̄Þ ð4Þ
where a and b are the coefficients of the straight line in a
log–log space; a is the log10 of the strength of the particle
extrapolated for the unit value of d̄ and b is a coefficient ,1
quantifying the severity of the size effect on the strength. He
also showed that the smaller the mean size of the different
types of particles considered, the further the behaviour is
from that of the ideal fractal material. This confirmed the
existence of a comminution limit, which had been introduced
by Kendall (1969).

On the other hand, an upper limit was later defined by
Scavia (1996).Working with sandstone andmarble specimens,
he defined a fracture energy, γ, as the ratio between the work
to open a fracture and the area of the opened fracture.
He found that γ obeyed a fractal law revealing increasing

disorder within a critical size of the specimen. Beyond this size
the variation of γ with a further increase in size was not
significant.
McDowell & Bolton (1998) re-analysed Lee’s data, and

using the theory proposed by Weibull (1951) developed the
following expression for the survival probability Ps(V ) of a
given particle volume, V

PsðVÞ ¼ exp � V
V0

σ

σ0

� �m� �
ð5Þ

where V0 and σ0 are a reference volume and characteristic
stress, respectively, and the exponent m gives an indication of
the uniformity of the nominal strength within the population
of grains considered. Equations (4) and (5) are somewhat
linked as b=�m/3 (McDowell et al., 1996). McDowell &
Bolton (1998) proposed that σ0 is the yield stress in normal
compression. Nakata et al. (1999) also carried out a series
of particle compression tests; they used a nominal strength
as in equation (2) where d equals the initial distance between
the two platens of the crushing apparatus. However,
McDowell (2001) argued that application ofWeibull statistics
to Nakata’s data was not always appropriate, as it included
particles that failed not only in a bulk tensile failure (as
assumed in the Weibull formulation), but also due to asperity
breakage. Note that the Weibull parameters for a given
material are only applicable within the limits of the size range
of particles tested.
Using the discrete-element method (DEM), and bonding

spheres together to create agglomerates in a manner origi-
nally proposed by Robertson (2000), Cheng et al. (2003)
simulated particle compression tests and, using 20 such
simulations, a Weibull distribution of the nominal strength
was deduced with a value m= 3; that is, b=�1, the same
order of magnitude as the values found by Lee (1992) , who
had determined values of b within the range of (�0·42) to
(�0·34) after working with quartz and limestone particles.
In recent decades several researchers (e.g. Bazant & Le,

2013) have recognised that the Weibull statistical method is
not entirely adequate for predicting the development of
fractures within quasi-brittle materials under compression.
Sand and glass are typical quasi-brittle materials as they can
show limited post-yielding hardening under compression.
The limitations of the Weibull model have also been recog-
nised for tensile filament strength (Van der Zwaag, 1989).
Interestingly, using the failure criterion proposed by

Christensen (2000), Russell et al. (2009) demonstrated that
the crushing of brittle and faultless individual particles is
governed by a critical stress and is attained where the ratio of
shear to normal stress invariants �J2/J1 is a maximum, not
where the tensile stress is a maximum. Discussions on experi-
mental crushing and its implications on numerical simu-
lations are still ongoing, and recently Hanley et al. (2015)
showed that the real inhomogeneous stress distribution,
rather than the mean particle stress, must be used with this
failure criterion, while pointing out that this may have a
prohibitive computational cost.

PRE-FAILURE RESPONSE
AlthoughHertzian theory assumes a linear elastic material,

the mechanical response according to the same theory is
not linear due to the non-conformity of the two surfaces in
contact and the equation N= constant� δ3/2 applies; N is the
contact normal force and δ is the deformation. It is also well
established that if two elastic particles are compressed against
each other, their response is ‘Hertzian’ only within a certain
interval. Referring to Fig. 1, working with artificial grains
Antonyuk et al. (2005) presented four stages of inter-platen
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compression with an initial stage I affected by deformation
of micro-asperities. Cavarretta et al. (2010) also observed
an initial ductile response in this stage. Furthermore, the
Antonyuk et al. (2005) threshold force between stages II and
III (Fig. 1) is consistent with the work of Greenwood & Tripp
(1967). They in fact claimed that the load–deformation rela-
tionship at a contact follows Hertz theory only if N exceeds
NGT, where NGT is a threshold load, which depends on the
roughness of the surfaces, the curvatures of the surfaces at the
point of contact, and the Young’s modulus of the material.
Point F in Fig. 1 represents a yielding point as transition
between stage II and stage III, where the behaviour again
diverges from the Hertzian theory. Similar patterns have been
found by Cavarretta et al. (2012), who showed how the
Hertzian fit can be adopted for values of N within the range:
NGT,N, nNGT where n is an experimental factor that
quantifies the amplitude of the interval within which the
Hertzian response applies.
For N. nNGT the response diverges from the Hertzian

pattern and further permanent deformations occur as in
stage III in Fig. 1. This is generally a softening stage, in
which the load increases less than expected according to the
Hertzian theory and reaches a maximum value Nc when
abrupt fragmentation failures starts (point B in Fig. 1). There
is eventually a stage IV when fragmentation develops with
a non-monotonoic discontinuous function in the load–
deformation relationship. At this stage several peaks Nfi
can be reached, but, generally, hard materials such as quartz
or feldspar show Nfi,Nc, similarly to the pattern in Fig. 1.

FAILURE CRITERION
Seeking simplicity, a model is first considered here in

which the extent of stage III in Fig. 1 is minimal, this is the
case of fragile failure of hard natural particles, such as sand
and other natural aggregates. It can therefore be assumed
in the first place that points B and F in Fig. 1 tend to merge
into one point, which would represent the end of the
Hertzian compression. During Hertzian compression (stage
II in Fig. 1), the area of contact increases with the average
pressure pm at contact, which is a function of the normal
force N expressed by the equation

pm ¼ 2
3

6NE*2

π3R*2

 !1=3

¼ constant � N1=3 ð6Þ

where the constant is a dimensional factor accounting for
1/R* and E*. 1/R* is the relative curvature of the contact

(1/R*¼ 1/R1þ 1/R2) with R1 and R2 being the two averaged
radii of curvature of the surfaces of the particles at the
point of contact, and E* is the equivalent Young’s modulus
ð1=E* ¼ ð1� ν21Þ=E1 þ ð1� ν22Þ=E2Þ, where (ν1, ν2) and
(E1, E2), respectively, are the values of Poisson ratio and
Young’s modulus of the two particles.
The failure criterion proposed here simply assumes that,

for a given material, a unique value of the maximum mean
contact pressure exists

pm max ¼ H ð7Þ
whereH is the hardness of the bulk. The hardness parameter,
H, quantifies the resistance to deformation and can be
measured using an indentation test and expressed with the
general formula

H ¼ N
α0a2

ð8Þ

where N is the load, a is a characteristic dimension of the
impression made by the indenter, which is proportional to the
size of the area of contact, and α0 is an indentation constant.
In perfectly plastic materials H relates to the yield stress.
The advantage of this method (equations (6) and (7)) over
the traditional approach (equation (2)) is that it can be nu-
merically and experimentally validated and calibrated, and
eventually enables quantitative predictions of inter-granular
crushing force N as function of the properties of the particles
in contact; both geometrical properties (R1 and R2) and
mechanical properties (σmax, E1, E2, ν1 and ν2) are con-
sidered. This means, for example, that, unlike the Brazilian
approach, the criterion proposed here can explain why the
resistance of a cubical particle squeezed between two flat
platens is higher than that of a sphere of the same size made
of the same material.
As discussed above, the hypothesis of fragile fracture

implies points B and F in Fig. 1 tend to merge. It is, however,
convenient to express this hypothesis using the following
relationship

dp � dH ð9Þ
which assumes that the diameter dH of the Hertzian area of
contact at the end of the elastic stage (stage II, at point F)
roughly equals the size of the plastic contact dp at failure
(at point B). Substituting the expression for dp and dH into
equation (9), the following can be writtenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4N=πH
p

� 2 3NcR*=4E*ð Þ1=3 ð10Þ
In the more general case, when the failure is not purely
fragile, and a stage III exists, the following equation can be
written

dp ¼ pfdH ð11Þ
The coefficient of proportionality pf is defined as the plastic
ratio and is claimed here to be an intrinsic property of a
homogeneous set of particles. From equations (10) and (11) it
can be expressed as a function of the crushing load (Nc), the
hardness of the bulk (H ), the contact geometry (R*) and the
elastic stiffness (E*)

pf ¼ dp
dH

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Nc=πH

p
2 3NcR*=4E*ð Þ1=3

¼ N1=6
cffiffiffiffiffiffiffi
πH

p 4E*
3R*

� �1=3

ð12Þ

PHYSICAL EXPERIMENTS
Compression of both artificial and natural particles

allowed further understanding of inter-particle contacts
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Fig. 1. Stages of inter-platen compression of an artificial grain,
redrawn after Antonyuk et al. (2005)
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and validation of the hypotheses outlined above. The experi-
mental data considered include measurements documented
by Cavarretta (2009) and additional data specifically gener-
ated for the current study.

Artificial particles
Alkaline glass beads of 2·4–2·9 mm size were subjected

to single particle compression tests using the apparatus
illustrated in Fig. 2(a). For each bead four particle diameters
di (i=1–4) with di . di+1 (i=1–3) were measured at random
orientations using a digital vernier caliper, and this allowed
consistent shape evaluation of its ellipsoidal geometry. From
each set of the four readings, the most probable intermediate
diameter, either d2 or d3, was selected and this was done by
discarding, between d2 and d3, the value dj ( j=2–3) which
minimised the expression dj� (d1 + d4)/2. For example a set
of measurements of 1·6, 1·5, 1·2 and 0·8 (mm) gives the
values of the three principal diameters di (i=1–3) respectively
equal to 1·6, 1·2 and 0·8 (mm).

The three principal diameters values (d1, d2 and d3) of
each particle tested in the device informed the evaluation
of its shape descriptors, including the degree of sphericity,
aspect ratio and roundness, each of which exceeded 0·90, and
enabled the evaluation of the most appropriate diameter d to

use when estimating the nominal tensile strength σf, as given
by equation (3).
The roundness RKS is the average radius of curvature

of surface features relative to the radius of the maximum
sphere that can be inscribed in the particle. Sphericity SKS, is
quantified as the diameter of the largest inscribed sphere
relative to the diameter of the smallest circumscribed sphere
(Cho et al., 2006).
To evaluate d it was considered that crushing failure must

occur in the plane experiencing the maximum tensile stress,
which is expected to include both d2 and d3, this assumption
being justified by the following considerations.

(a) Once placed on the lower platen, the particle rests in
its position of largest stability and therefore the smallest
diameter (d3) is vertical and aligned with the
compressive force transmitted by the two platens of
the apparatus.

(b) The maximum tensile stress must act on the smallest
vertical cross-section of the particle, the horizontal
diameter of which is in fact d2.

The size used to quantify the tensile strength of the particle
was therefore

d ¼ ðd2d3Þ0�5 ð13Þ
A typical load–displacement curve from these experi-
ments is given here in Fig. 3; the failure was always brittle
with explosive failure of the bulk after monotonic loading.
Therefore stage IV was consistently missing in all these tests
on glass beads.
The black circles in Fig. 4 represent the values (d, σf) of six

monotonic compression tests on single alkaline glass beads
having size d within the range 2·4–2·9 mm. A typical decay
of strength with increasing size would seem to apply, despite
the artificial and homogeneous nature of the particles tested.
In order to check the validity of the criterion intro-

duced above (equation (12)), a complementary series of seven
particle–particle compression tests were undertaken. A con-
fining cell was custom-manufactured for this purpose. It
comprises a brass, hollow cylinder, shown in Fig. 2(b), which
is able to keep the particles aligned when they are clamped at
the tips of two cylindrical mounts; one of these could slide
effortlessly inside the confining cell (Fig. 2(b)). The vertical
cross-section of this set-up is presented in Fig. 2(c).

Steel platen

Steel platen

48
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m

0·90 mm
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30
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Fig. 2. (a) Crushing apparatus with three free armature linear
variable differential transducers (LVDTs) – set-up for single-particle
testing of a glass bead. (b) Set-up for inter-particle compression with
two large glass beads mounted on their holders ready to be tested after
adjusting the gap ‘g’ (image (a)) to a size larger than the confining cell
‘c’. (c) Vertical cross-section of the set-up using the confining cell ‘c’
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Fig. 3. Typical load–displacement curve for glass beads, d=2·5mm
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The data from this second series of inter-particle tests
are illustrated as open circles in Fig. 4. The value of d of
these points is given by the arithmetic average of the two d
values for the two beads tested. Despite the more favourable
boundary condition constituted by the supporting edge
of the hole, which tends to increase the compressive strength
because of the greater confinement (Jaeger, 1967), the inter-
particle tests gave lower σf values than the single-particle
tests. This suggested that the strength must depend upon
the relative curvature at the contact. The relative radius
R* at the contact of inter-particle tests is about 50% of
the corresponding value for the single-particle test, when the
spherical particle is in contact with a flat surface. For this
data set an apparent decay of strength with increasing size
was observed, but this decay can be clearly explained in terms
of curvature rather than size, as larger particles have larger
relative radii and the curvature at contact equals the inverse
of the radius at contact, which for spherical beads coincides
everywhere with the radius of the beads.
Equation (12) was applied to the outputs of the two series

of tests. The values of E* used to calculate pf were determined
by assuming the Young’s moduli of the steel platen and
the glass ballotini to be 200 GPa and 70 GPa, respectively,
and a hardness value of 1·5 GPa was assumed for the glass
(Kendall, 1969; Grabco et al., 2002). The values of pf are
presented in Fig. 4 in terms of black and empty triangles,
respectively, for single and inter-particle tests. A reasonably
constant value of pf was found against large variations of the
corresponding nominal strength.
The main conclusions from Fig. 4 are as follows.

(a) The nominal tensile stress at failure is sensitive to the
relative curvature of the contact.

(b) For a given geometric average diameter, each
inter-particle compression test showed a nominal
tensile stress lower than the nominal tensile stress
measured for the single particle having the same
nominal size.

(c) As the curvature at the points of contact increases,
and the contacts become less conforming, the
nominal tensile stress reduces.

(d ) The plastic flow ratio, pf, appears to be invariant with
particle diameter.

The observations above suggest that it would be appropriate
to adopt the plastic flow ratio as a failure criterion in particle-
based models that consider particle failure. Because of the

hypotheses on which this method relies it seemed, however,
relevant to find some experimental evidence of the influence
of the contact geometry on the failure process and prove that
it originates in the zone of contact, and not from the core of
the particles, as generally assumed in the Brazilian inspired
criteria of particle crushing.
A repeated loading test including five loading–unloading

stages of compression plus the final failure was carried out,
using a pair of beads having a size of 2·0 mm. The original
motivation for this cyclic test was to use an optical inter-
ferometer to assess whether the compressive load caused
any modification to the contact topology. Referring to the
results that are presented in Fig. 5, and in accordance with
Antonyuk et al. (2005), stage I occurred with a soft initial
displacement, which in this case was exaggerated by the com-
pliance of the glue used to attach the particles to the mount.
These outputs (Fig. 5(a)) showed, however, a plastic flow
gradually developing within the bulk near the contact of
the particle increasing the load, and the yielding between
stages II and III appeared evident (Fig. 5(a)). The plastic
flow was accompanied by a hardening process as the yielding
stress increased with the number of cycles. A fatigue effect
was also observed as the final brittle failure occurred under a
load which was less than that achieved in the penultimate
loading (Fig. 5(a)). Interferometer images (Figs 5(b)–5(f))
over a field of view of 100� 100 μm2, taken after managing
to centre the point of inter-particle contact with a confidence
of 5 μm, show the damage of the bulk started near the
contact under a load between 11 N and 122 N, with a first
crack which was quite visible at 122 N (Fig. 5(d)), well below
the largest load reached during the experiment and quite
close to the first observed yielding point, at about 140 N
(Fig. 5(a)). This suggested that crushing was the final stage of
a plastic process, with a first splitting or even shearing
discontinuity initiated very close to the point of inter-particle
contact (Figs 5(d)–5(f)).

Natural particles
The applicability of the failure criterion proposed above

has been checked after considering the results of a series
of crushing tests on 39 grains of quartz sand and listed in
Table 1. These tests involved five types of natural materials.
Four of them included Leighton Buzzard Sand (LBS),
respectively consisting of the commercial types delivered to
Surrey University by David Ball, UK (LBSA/DB) and 16/30,
which was available at the Imperial College Laboratory
(LBS16/30), plus fractions A and B, that were provided by
the University of Cambridge where they had been originally
characterised and tested by Lee (1992). The fifth type was
from a sample of fine Hime Gravel (HG) obtained at
Imperial College, and is a soil which has been well charac-
terised in the literature (Tatsuoka et al., 1997). The inclusion
of HG within the experimental programme extended the
exploration across a broader assortment of angularity, with
values of roundness ranging between 0·15 and 0·90 against
the respective interval for LBS, which did not exceed
0·16–0·74 (Table 1).
The three principal diameters and the nominal size d

of these grains were determined with the criterion mentioned
in the previous section entitled ‘Artificial particles’. The
values of d fall in the range between 0·73 mm and 2·29 mm
(Table 1(a)). An optical microscopy image of a grain of
LBSA is shown in Fig. 6.
In agreement with Cavarretta et al., 2010, the mean

radius R of the corner of the grain appeared the most
convenient approximate choice to define the relative radius
R* of the compressed contact for the tested particles
and therefore, from the definition of roundness RKS
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Fig. 5. Plastic bulk flow initiation near the contact in a repeated inter-particle compression test on large glass beads. (a) Load deformation
response for loading sequence considered. Contour plots of surface elevation values and cross-section profiles after application of the the following
loads: (b) before loading, (c) 11 N, (d) 122 N, (e) 241 N and (f) 481 N
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(Cho et al., 2006), is obtained

R ¼ R* ¼ RKSdmax=2 ð14Þ
where dmax, the diameter of the largest inscribed circle within
the particle outline, was simply equalled to d3.
In the present study the initial roundness RKS of the

crushed grains was measured following the method (known

as ‘IMR’) introduced by Cavarretta (2009), which is based
on two numerical correlations that were defined after an
extensive shape study, when the reference silhouettes in the
chart proposed by Krumbein and Sloss (1963) were accu-
rately measured and checked using both microscope image
analysis and a MatLab code (Cavarretta, 2009; Cavarretta
et al., 2010). The first correlation is

C ¼ 0�52ρþ 0�501 ð15Þ
where C=4π A/P2 is the circularity of a silhouette of surface
area A and perimeter P as determined by the QicPic, a laser
scanner shape analyser (Sympatec, 2008), and ρ the regu-
larity as defined by Cho et al. (2006)

ρ ¼ 0�5ðSKS þ RKSÞ ð16Þ
The second correlation is

SKS ¼ AR� 0�196ð Þ=0�709 ð17Þ
where the aspect ratio AR was determined as equal to the
ratio d3/d1.

Table 1. Size and roundness of the 36 natural particles considered in
the study (the three discarded tests out of the 39 acknowledged in
Table 2 have not been considered here)

Particles
type

Number
of tests

D: mm Roundness

Min. Max. Min. Max.

LBS16/30 4 0·73 1·03 0·40 0·62
LBSB 5 0·79 1·05 0·16 0·56
LBSA 11 1·23 2·16 0·23 0·74
LBSA/DB 8 1·43 2·03 0·27 0·72
HG 8 1·50 2·29 0·15 0·90

Table 2. Data for 39 crushing tests on single grains of Leighton Buzzard (LBS): (a) as presented in previous research (Cavarretta, 2009), and
(b) as extended and processed in the current study

(a) (b)

Test Type of
sand

d: mm Roundness,
RKS

Strength:
MPa

Max.
force,
Nc: N

Radius of
curvature,
R: mm

Mean pressure
of contact at
failure: MPa

Plastic
flow

ratio, pfNo. Name

1 29066S7 LBS16/30 0·73 0·53 45·65 27 0·17 5293 1·03
2 14056S5 LBSB 0·79 0·36 39·02 27 0·14 6294 1·12
3 61010S2 LBSB 0·81 (0·03) 43·92 32 0·01 33 373 (2·58)
4 29066S6 LBS16/30 0·83 0·50 47·10 36 0·20 5287 1·03
5 14056S9 LBSB 0·86 0·51 46·96 39 0·22 5196 1·02
6 29066S1 LBS16/30 0·92 0·62 25·47 24 0·24 4146 0·91
7 14056S8 LBSB 0·93 (0·03) 50·15 48 0·01 36 369 (2·70)
8 14056S6 LBSB 1·00 0·16 34·91 39 0·08 9974 1·41
9 61010S1 LBSB 1·01 0·56 20·20 23 0·26 3830 0·88
10 29066S5 LBS16/30 1·03 0·40 20·47 24 0·20 4623 0·96
11 14056S7 LBSB 1·05 0·35 25·85 31 0·17 5765 1·07
12 14056S4 LBSA 1·23 0·35 8·92 15 0·18 4283 0·93
13 13056S2 LBSA 1·31 0·74 47·91 92 0·45 4224 0·92
14 14076S4 LBSA 1·53 0·74 26·45 69 0·53 3429 0·83
15 14076S2 LBSA 1·58 0·47 44·80 124 0·37 5321 1·03
16 14076S9 LBSA 1·65 0·54 14·28 43 0·40 3584 0·85
17 14076S6 LBSA 1·67 0·73 16·99 53 0·48 3355 0·82
18 14076S5 LBSA 1·70 0·55 24·09 77 0·46 3931 0·89
19 14076S8 LBSA 1·92 (0·01) 18·97 78 0·01 53 599 (3·27)
20 14076S0 LBSA 1·97 0·39 30·29 131 0·35 5675 1·07
21 14076S7 LBSA 1·97 0·33 15·40 67 0·32 4742 0·97
22 14076S3 LBSA 2·14 0·35 23·84 121 0·36 5432 1·04
23 14076S1 LBSA 2·16 0·23 23·26 121 0·23 7175 1·20
24 1612251 LBSA/DB 1·86 0·55 23·84 74 0·42 4103 0·91
25 1612252 LBSA/DB 1·43 0·45 27·80 51 0·23 5419 1·04
26 1612253 LBSA/DB 2·00 0·72 34·84 126 0·63 3744 0·87
27 1612254 LBSA/DB 2·03 0·56 14·08 52 0·40 3795 0·87
28 1612255 LBSA/DB 1·52 0·70 38·28 80 0·45 4018 0·90
29 1612256 LBSA/DB 1·75 0·27 10·56 29 0·22 4634 0·96
30 1612257 LBSA/DB 1·73 0·67 44·44 120 0·50 4319 0·93
31 1612258 LBSA/DB 1·74 0·42 13·54 37 0·34 3744 0·87
32 1603011 HG 1·99 0·57 35·64 127 0·56 4057 0·90
33 1603012 HG 1·92 0·90 41·74 138 0·70 3628 0·85
34 1603013 HG 1·84 0·55 23·40 71 0·44 3952 0·89
35 1603014 HG 2·20 0·15 43·93 191 0·15 11 447 1·51
36 1603015 HG 2·28 0·38 49·40 232 0·43 5956 1·09
37 1603016 HG 2·29 0·36 14·21 67 0·40 4153 0·91
38 1603017 HG 1·50 0·49 40·75 83 0·34 4956 1·00
39 1603018 HG 1·91 0·63 40·06 132 0·55 4156 0·91

Values in brackets have been discarded.
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It is worth noting here that, because of its regular and
consistent shape with varying size, LBS has been widely
investigated in many experimental studies on sand crushing
conducted over the last decades. A geometrical self-similarity
in fact holds between all the five fractions of LBS (A to E)
generally used by researchers, the average sizes of the coarsest
(LBSA) and finest (LBSE) fractions being, respectively,
around 2·2 mm and 0·3 mm.

Figure 7 shows some results of a combined preliminary
shape analysis on batches from fractions LBSA and LBSE.
The open points in Figs 7(b) and 7(d) represent the average
values of SKS and RKS determined, while the standard devi-
ation of these descriptors corresponds to the distances
between the open point and the dashed lines. The similarity
of form between the particles of the two fractions is
reflected by the limited translation of the dashed quadr-
angle along a line of roughly equal sphericity in the reference
chart.

The HG particles are quite variable in colour and shape.
Mainly made of quartz, they have been used as an alternative
natural material to strengthen the conclusions of the
experimental study.

The roundness value RKS of the 39 tested particles were
determined by rearranging equation (16)

RKS ¼ 2ρ� SKS ð18Þ
To obtain an accurate evaluation of ρ, the initial values
ρvisual, visually estimated in accordance with the method
outlined in Cho et al. (2006), were corrected using equa-
tion (15), through calibration of Cvisual= 0·52ρvisual+ 0·501
against the range of values of C obtained by the QicPic,
which led to the relationships ρ=0·63ρvisual+ 0·15 for the
set LBSA–LBSB, ρ=0·50ρvisual+ 0·30 for the set LBS16/30,
ρ=0·70ρvisual+ 0·17 for the set LBS/DB and ρ=0·76ρvisual+
0·20 for the set HG.
The determined values of RKS are listed in Table 2 and

ranged between 0·15 and 0·90, with the exception of three
determinations out of 39, when the resulting values of RKS
were lower than 0·03. These three values (7·7% of the total
number of determinations) have to be discarded as arguably
affected by either errors or limitations of the IMR. The
values of R obtained by equation (18) (Table 1(b)) were
substituted into equation (12) where E=54 000 MPa and
H=5000 MPa have been, respectively, the values of the
Young's modulus and hardness consistently given to all the
sand grains tested. The resultant plastic flow ratio data are
given in Table 2 and plotted in Fig. 8, along with the nominal
strength values.
The main conclusions from Fig. 8 are as follows.

(a) In agreement with previous research mentioned above,
the nominal strength values of the particles tested
appear quite dispersed and a general Weibullian decay
of these values with increasing particle diameter is
evident.

(b) The plastic flow ratio, pf, is invariant with particle
diameter as the coefficient of variation (COV) of the
nominal strength was 0·415 against a corresponding
value of 0·15 for the pf of the unbiased class of 36 out
39 natural particles.
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Fig. 6. Light microscopy image of grain of LBSA

1 mm
0·1 0·3

0·3

0·5

0·7

0·9

0·5
Roundness

S
ph

er
ic

ity

(b)

0·7 0·9

LBSA

LBSE

150 µm
0·1 0·3

0·3

0·5

0·7

0·9

0·5
Roundness

S
ph

er
ic

ity

(d)

(a)

(c)

0·7 0·9

Fig. 7. Illustration of self-similarity between the coarsest (LBSA) and finest (LBSE) fractions of LBS, with representation of the respective
QicPic silhouettes (a) and (c), and visual estimation of the correspondent sphericity and roundness (b) and (d) using the reference chart from
Krumbein and Sloss (1963)
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To compare the effectiveness of the proposed failure criterion
against the Weibull approach, the nominal strength values
have also been plotted against the log10 values of size d as
in Fig. 9. The slope of the regression line of these values is
b=�0·398. The Weibull modulus obtained was therefore
m=�3/b=7·54, within the range 7·1–8·4 determined by
Lee (1992) working with limestone and quartz coarse sand
and fine gravel. The ratios between the nominal strength and
the best predictable strength for each size d, as determinable
from the regression line in Fig. 9, have been evaluated and the
correspondent COV equalled 0·409, which is only a small
improvement over the raw COV value 0·415 mentioned above
for the nominal strength for the class considered. This
exercise showed that the plastic flow ratio criterion gives an
almost three-fold (0·41/0·15 = 2·7) improvement in the level
of confidence in predicting the crushing strength of individ-
ual particles when compared to the traditional method based
on the Weibull approach. In addition it must be noticed that,

even if the three most dispersed values in the double log plot
in Fig. 9 were to be discarded, the ratio between the two
COVs would only decrease from 2·7 to 2·5.
The above observations suggest that the plastic flow ratio

criterion can be used to predict failure of natural grains and
confirm that the crushing strength of homogeneous particles
is roundness dependent rather than size dependent. The size
must be in fact an indirect effect, as contact between larger
particles of the same type implies larger conformity at the
point where the compressive force is applied.

ANALYTICAL AND NUMERICAL SIMULATIONS
A theoretical investigation has been carried out to check

whether classical failure criteria for continuummechanics are
compatible with the experimental evidence presented above.
The simple case of contact between a pair of equal spherical
particles withstanding a mutual compressive force F has been
considered.
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Figure 10 shows the normalised results of Matlab cal-
culations carried out on the basis of the equations presented
in Johnson (1985), as developed from Hertz’s theory con-
sidering contact between two equal spheres for Poisson ratio
values of 0·0 and 0·5. This figure shows that, irrespective of
the diameter, the variation of the principal stresses and the
associated value of the maximum shear stress along a straight
line connecting the centre of the particle and the centre of the
sphere to a depth equal to the radius of contact. This exercise
shows first that the principal stresses σ1= σz and σ2= σ3= σr
never exceed 1·5 pm, with pm being the average contact pres-
sure. Second, the maximum shear stress occurs just below the
point of contact at a normalised depth of z/a=0·4, whatever
the elastic property of the bulk, with a the radius of contact
and z the depth beneath the contact plane. The amount
of this maximum shear stress is, however, monotonically
Poisson ratio dependent, with the lowest value for those
materials that exhibit zero volumetric compressibility
(ν=0·5) and the highest value reached when the axial com-
pression does not produce any lateral expansion (ν=0·0). A
Tresca criterion therefore applies, as results of the test
shown in Fig. 5 confirm that a quasi-ductile failure initiates
near the point of contact where the shear stress is maximum.
This outcome agrees with previous findings by Russell et al.
(2009).

In Fig. 11 the outputs of a numerical simulation of the test
shown in Fig. 5 are presented. This analysis was carried
out implementing the finite-element method using Comsol
4·3b (Comsol, 2013) and assuming the particle bulk to be
homogeneous and linearly elastic. The properties of the par-
ticles have been assumed as follows: density, ρ=2200 kg/m3,
Young’s modulus, E=73 GPa, Poisson ratio, ν=0·17 (Horn
& Deere, 1962). The default augmented Lagrangian method
available in Comsol (2013) was used. It ensures no pen-
etration between the contacting bodies will occur. A contact
pair was created with both bodies in contact. Uniaxial
symmetry applies and no friction is mobilised as no shear
occurs at the point of symmetry. To enable convergence
and accuracy, the size of the mesh in the sphere near the
contact was less than half the size of the mesh used in the
plate near the contact. This optimal mesh was found through
sensitivity analysis, repeating the study multiple times while

increasing the mesh refinement level each time. The process
was completed and convergence was judged to occur when
results including maximum stress and strain did not vary
significantly with further refinement of the mesh. To limit
the computational cost and accounting for the axial sym-
metry of the system, only a π/4 sector of the model has been
considered (Fig. 11(a)) and the contact force applied was
therefore one-eighth of the compressive force acting on the
contact.
The main numerical results of the simulations are shown

in Fig. 11(a). Critical stresses occur along the axes of sym-
metry where the von Mises octahedral shear stress coincides
with the deviator stress σ1–σ3 and reaches the largest value,
σvm-max= 2695 MPa, and corresponds to a critical shear
stress, τ1= 1348 MPa. Figure 10(a) shows that the failure
conditions must first be reached near the point of contact
and there is no evidence of any critical tensile stress near
the core of the particles, where instead the deviator stress
drops dramatically. The outputs of the Hertzian analytical
validation of the finite-element model are summarised in
Fig. 11(b). The agreement between the two calculations is
strong, with a deviation of the largest deviator stress with 2%
only. Furthermore, the simulation matches closely the experi-
ment in Fig. 5 with a predicted yielding force of 120 N
against a corresponding measured force of 122 N and a
diametric approaching displacement of 21 μm, as expected
around half the measured inter-platen approaching displace-
ment, which was 0·5(150–100) = 25 μm.

CONCLUSIONS
As noted by earlier authors, the mechanics of particle

behaviour in seemingly simple particle compression tests is
relatively complex. Even if the materials are linearly elastic,
geometrical considerations mean that the load–deformation
response is non-linear, as recognised by Hertz. Earlier geo-
mechanics studies that have considered particle crushing
or breakage have noted a size-dependency in the response
(larger particles fail at a smaller stress level) and this has been
attributed to the higher probability of larger material flaws
existing within larger particles.
Here the relationship between particle size, roundness,

stress induced within the particles and crushing strength
has been discussed, using real experiments on artificial and
natural particles and Hertzian contact mechanics assisted by
numerical simulations. The main findings are listed below.

(a) Crushing failure is sensitive to the relative curvature
of the contacts and size dependency is not necessarily
due to the occurrence of material flaws, but holds
anyway because for particles with the same
Young’s modulus and hardness the crushing force is
proportional to the square of the relative radius
of contact R*. Although R* is not necessarily
proportional to the size, smaller particles will tend
to have lower R* values.

(b) For a given geometry of particle contacts, crushing
failure is governed by the maximum shear stress the
bulk can withstand and happens as a fracture process
that initiates near the point of contact where this critical
shear stress is first reached, while as expected the
Poisson ratio is not influential if the deformation under
load is unconfined.

(c) For a given set of particles, a plastic flow ratio pf can
be defined as a constant monomial quantity, which is
not size dependent but incorporates only the value of
the crushing force and the main mechanical and shape
properties of the contact.
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Fig. 11. Comparison between (a) numerical and (b) analytical
solution for the deviator stress occurring in two elastic spheres in
contact and compressed by a normal force F; d=2·60 mm, approach-
ing distance 0·021 mm, Young’s modulus E=73 GPa, Poisson ratio
ν=0·17, density ρ=2200 kg/m3. The deviation is 2%
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(d ) Roundness RKS is a key shape descriptor of the particle,
affecting the relative radius of curvature at contact R*
and consequently pf, in opposition with the minimum
principal diameter d3. It has been proved in fact that
equation (14) holds and includes RKS and d3 as two
inversely proportional quantities. In a population of
grains having the same diameter d3, more rounded
grains have larger R* and can withstand larger loads,
and in a population of grains having the same
roundness, larger grains can withstand larger load
as they have larger R*.

The new parameter pf could therefore be used as a failure
criterion in particle-based models of granular material
response, including the DEM. It could also be used in new
probabilistic frameworks based on shape, rather than size.
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NOTATION
A surface area
a characteristic dimension of indenter

a, b coefficients defined in equation (4)
Br breakage index
C circularity
D fractal dimension
d particle size
d̄ average particle size

dH diameter of contact at end of Hertzian regime
dp size of plastic contact at failure
E Young’s modulus

E* equivalent Young’s modulus
F normal force
H hardness
IG grading state index
M gradient of critical state line onto q–p′ plane
m parameter of Weibull distribution
N contact normal force
Nc crushing load
Nf load at failure for a generic particle
Nfi peaks values of N after initial fragmentation

NGT threshold load beyond which the Hertzian response applies
n ratio between largest load and νGT within the Hertzian

response
P perimeter

Ps(V ) probability function
p′ mean effective stress
pf dp/dH
pm average pressure at contact
q deviator stress
R radius of curvature at contact

R* relative radius of curvature at contact
RKS roundness
SKS sphericity

t thickness
V volume
α0 indentation constant
δ deformation
ν Poisson ratio
ρ regularity
σf nominal strength
σt tensile stress
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