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Abstract

Scaled acoustic laboratory experiments are used to develop a methodology for obtaining the

acoustic characteristics of different barrier top designs and for identifying geometries that

may have advantages over the traditional thin vertical screen. The idea is to use a short

impulsive spherical sound pulse possessing a broad frequency spectrum. If the duration

of the pulse is sufficiently short, the entire primary signal, which travels by the shortest

direct route diffracting at the top of the barrier, arrives at the receiver much earlier than

any secondary signals reflected from the surroundings. Secondary signals may therefore be

ignored and only the information from the primary signal can be analysed. When the typical

frequency band of the sound pulse is about an order of magnitude higher than typical traffic

noise spectra, then scaled acoustic modeling using the same scaling factor for lengths and

distances is possible. The results of such experiments are reported here for barriers with

six different geometries. Using spectral analysis, insertion losses as functions of frequency

were calculated for different source-receiver positions and barrier tops. The results were then

rescaled for full-size traffic barriers and, using a typical traffic noise spectrum, single number

ratings of barrier performance were obtained.

Keywords: scaled experiments; noise barrier design; impulsive sound source; diffraction.
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I. Introduction

Traffic noise barriers are widely used to reduce exposure to traffic noise in neighbouring

residential areas. In the presence of a barrier, the noise at a receiver location on the

opposite side of the barrier from a source is due to two sound pathways: the transmitted

pathway through the barrier and the diffracted waves emanating from the top of a barrier.

Barriers are usually built with solid materials that should effectively block direct sound

propagation. However, it is known that poorly fitted panels and other defects can lead to

sound leaks that significantly reduce barrier performance in the field1. Such

construction-related performance issues and the transmitted pathway are not considered in

this paper. A solid barrier’s performance is thus limited by the diffracted sound which is

highly dependent on (i) source frequency, (ii) relative source and receiver positions and (iii)

the barrier top geometry2.

The simplest way to improve barrier performance at a given receiver location is to

increase its height. However, aesthetic problems as well as cost and safety issues usually

prevent the transportation authorities from increasing the height of barriers above a

certain limit3. Since different barrier top geometries modify the diffracted waves, various

barrier shapes have been investigated in an attempt to achieve the same performance as a

higher vertical screen . By finding an improved barrier top design it may be possible to

keep the same barrier performance with a reduced barrier height.

In recent decades, numerous modifications to barrier design have been proposed to

improve barrier performance and there are now a number of different designs of barrier top

used in practice. For instance, in Japan alone there are approximately 20 types of devices

that modify the edge shape of the noise barrier and are distributed as commercial

products4,5. Shapes of different barrier tops have included T-shaped, L-shaped, Y-shaped,

as well as arrow, cylindrical, multiple and random edge configurations.
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Different methods are used to study top-modified barriers. They include field and

large scale measurements, theoretical/numerical simulations and scaled laboratory

experiments. Field measurements are complicated, expensive, have poorly controlled

background conditions and are usually difficult to repeat and interpret6,7, while large scale

experiments require huge anechoic laboratories which are expensive to build and run. The

main problem in three-dimensional simulations is the long calculation time, especially for

barriers with complicated tops and so, often, the calculations are carried out using a

two-dimensional model. Two-dimensional boundary element methods have been used to

estimate the insertion loss of noise barriers. Numerical models have been developed to

calculate barrier efficiency, to assess the acoustic performance of a range of barrier designs

and for optimization of the acoustic performance of barriers8–10. Finite-element methods

are also used to calculate the insertion loss of different noise barrier designs11. The

computational cost for these two-dimensional numerical simulations is not significant but

the cost increases significantly for fully three-dimensional calculations and for higher

frequencies. The calculation time depends also on some other parameters, e.g. the chosen

frequency range12,13.

While some of the difficulties in conducting field experiments have been addressed by

the new European procedure EN 1793-4:2015 (previously CEN/TS 1793-4)14, an

experimental method in which scaled experiments are used offers an attractive

alternative15,16. The main idea of this approach is based on the invariance of the sound

speed in air for similar field and laboratory conditions. This allows a scaled model of the

barrier to mimic the performance of a real traffic barrier, when the frequency band of the

laboratory sound source is increased by the same factor relative to typical frequency band

of traffic noise. The scaling is straightforward if any surfaces reacting with the measured

sound are rigid, otherwise the impedance of the surfaces must also be scaled. The scaled
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approach is readily adopted in the present communication as we focus purely on the

optimal diffractive properties of various barrier top geometries, which are assumed to be

rigid throughout.

The main purpose of this present work is to develop a universal methodology for

obtaining the diffractive characteristics of different top barrier designs and, by comparison,

identify geometries that may have performance advantages over traditional thin screen

barriers. Our approach is to use scaled laboratory experiments and an impulsive point

sound source. If the duration of the sound pulse is sufficiently short, the primary signal

that takes the shortest most direct route diffracts above barrier and arrives at the receiver

much earlier than any secondary signal that has been reflected or diffracted by the

surroundings. These latter signals are easily separated from the primary signal infomation

and only the information from the primary signal is analysed. Such an approach eliminates

the need to build an expensive acoustic anechoic chamber for experiments, thus paving a

new avenue for conducting acoustic experiments in the laboratory. The apparatus is placed

in the laboratory on a dense, thick wood table that serves as the ground plane. The typical

frequency range of the sound source (1–30 kHz) is 10 times the typical frequency range of

traffic noise (100–3000 Hz). Thus the experiments can be considered as 1:10 scaled

experiments of a real traffic noise barrier top.

The barriers top designs considered in this paper can be divided into two groups: (i)

barriers with homogeneous tops that maintain the same height and geometry along the

entire barrier length and (ii) barriers with heterogeneous tops that have variable height and

geometry along the barrier length. Typical examples of homogenous tops include a thin

vertical screen and T-shape tops. Typical examples of heterogeneous tops are the so-called

jagged tops which have a regular or random variation of height and geometry. Naturally,

the acoustic diffractive characteristics of the homogeneous barrier tops remain uniform
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along the barrier, while for heterogeneous barriers it changes along the barrier and this

complicates the measurements and interpretation (see below).

Figure 1: Experimental schematic and instruments.1 - large solid wood table, 2 - vertical

wooden barrier, 3 - removable aluminum top attached to the barrier, 4 - impulsive sound

source fixed to support 5, 6 - high voltage source for main electrodes, 7 - high voltage source

for trigger electrode, 8 - microphone with preamplifier fixed under grazing angle to support

9, 10 - microphone conditioning amplifier, 11 - 100 MHz digital storage oscilloscope, 12 -

computer with LabVIEW software.

II. Experimental set-up and method

A. Experimental schematic and instrumentation

Experiments were conducted in a laboratory in air at room temperature; see Fig. 1 for a

schematic. The experimental apparatus consists of: (1) a large solid wooden table, (2) a

vertical wooden barrier (2.5cm× 60cm× 120cm) with (3) removable aluminum plates
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(0.15cm× 15cm× 120cm) with different top geometries, (4) an impulsive sound source fixed

to a support (5), (6) a high voltage source for the main electrodes, (7) a high voltage source

for the trigger electrode, (8) a Brüel & Kjær (type 4939-A-011) 1/4” free-field microphone

with preamplifier 2670 and TEDS fixed below the grazing angle to support (9), (10) a

Brüel & Kjær (type 2690-A-0S1) microphone conditioning amplifier, (11) a Tektronix (type

2230) 100 MHz digital storage oscilloscope, (12) a computer with LabVIEW software to

analyze and store the measured signals. After each experiment the measured signals were

post processed using the custom built MATLAB software described in appendix A.

B. Laboratory sound source

In experiments related to scaled acoustic modeling, different methods are used to model an

impulsive point source with a short spherical acoustic wave of high intensity. Gun shots, the

discharge of shot-shell primers, ultrasonic air-jet whistles, very powerful impulse lasers and

spark dischargers have all been used to produce short N-shaped spherical sound waves17–21.

The most popular method to generate an N-shaped sound wave is to use a spark discharger

and there are a number of descriptions of different spark dischargers in the literature.

These descriptions, however, are only schematics that omit the important details required

to build such a device22,23. As a consequence, we designed and constructed our own device

ab initio, taking into account the following main requirements: relative simplicity, short

duration, small size, omnidirectionality and most importantly - high stability. To satisfy

these requirements and by taking into account that two-electrode devices are typically not

stable, a three-electrode triggered spark discharger was built, as shown in Fig 2.

The electrodes are made from tungsten rods with pointed ends. Two main electrodes

(diameter 0.3 cm) and a third triggering electrode (diameter 0.15 cm) are fixed to three

bronze holders (diameter 0.5 cm, length 15 cm) on a plastic support and attached to a

tripod. The gap between main electrodes (0.0-1.0 cm), as well as the position of trigger
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Figure 2: The sound source: (a) – three spark discharger electrodes on bronze supports are

shown, the central smaller trigger electrode is between two main electrodes; (b) – a small

trigger spark between trigger (central) and two main electrodes; (c) the main single spark

between two main electrodes; (d) – two and (e) – four sparks at one exposure. Good spark

repeatability is obvious. In this example the electrode gap is 0.3 cm and a high voltage 3

kV is used.
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electrode, can be adjusted.

The sparks were generated by first applying a high voltage (3-5 kV depending on the

gap) between the two main electrodes. This voltage was produced by a variable six stage

Cockcroft-Walton voltage multiplier circuit and was kept lower than the breakdown voltage

of the gap. After that, a short impulse of smaller voltage (1-2 kV depending on the trigger

electrode position) was applied to the third trigger electrode placed between two main

electrodes to provide an initial ionization of the air necessary to cause the spark breakdown

and subsequent discharge of the capacitors in the voltage multiplier. After the spark was

discharged, the capacitors were recharged and after a short time the next spark was able to

be generated. Voltage measurements were made with a high-voltage probe (1000:1) placed

on the high-voltage electrodes and showed high stability (±0.03% variability) with time

(see appendix B for further details).

The most important sound source characteristics are: (i) repeatability of sound wave

duration and intensity, and (ii) approximate omnidirectionality at the very least. These

properties were confirmed for our spark discharger by our measurements. Test

measurements were made for two microphone orientations - normal to the sound wave front

and at grazing angle. Comparison showed that although the microphone sensitivity is

higher in the normal position, its transitional characteristics and omnidirectionality are

improved when in the grazing position. This is in agreement with available data and is

related to the specific construction of condenser microphones. In addition, the microphone

safety grid generates a diffracted signal that contaminates the measured signal in the

normal microphone position. Taking this into account, the grazing position was chosen as

the primary microphone position in all measurements.

Typical traces of the recorded pressure P (t) (measured in Pascals) as a function of

time, t, for the grazing microphone position are given in Fig. 3(a). These data were
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obtained with an interval between traces of about 1 min in the absence of a barrier (the

free, F , signal) at a distance of 90 cm between the microphone and sound source. All seven

signals recorded practically collapse onto a single curve and thus very good short-time

stability and trigger synchronization are observed. The long-time stability was also

satisfactory. After hundreds of sparks the signals remain practically indistinguishable from

the data shown in Fig. 3 and no electrode cleaning was necessary.

The data for free signal shown in Fig. 3(a) gives an estimate of T = 60µs for the

typical signal duration and thus the dominant frequency is determined as

f0 = 1/T ≈ 17kHz. At normal atmospheric conditions this gives an estimate of L = 2cm

for the typical wave length, which may be used as a characteristic length scale,e.g., for the

lateral variations in the jagged barrier top profiles (see below). The distance between the

main electrodes (0.3 cm) is much less than L and so the sound source can be regarded as a

point source at the typical distances of about 60-90 cm which were used between the

microphone and sound source in our experiments. The azimuthal distribution of the sound

intensity for the grazing microphone position is shown in Fig. 3(b) and the distribution

appears to be approximately omnidirectional.
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Figure 3: (a) the sound pressure, P (t), in the absence of barrier (free, F, signal) as a function

of time, t, for grazing microphone position at a distance of 90 cm between the microphone

and sound source. Seven records are shown (see legend). In this example, the electrode gap is

0.3 cm and the high voltage is 3 kV. The typical signal duration is T = 60µs. (b) normalized

azimuthal distributions of the maximum positive (1) and negative (2) sound pressure for the

grazing microphone position. Direction θ = 0 is shown by the arrow, and main electrodes

are shown by two small circles near the arrow.
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Figure 4: (a) The barrier top geometries used in the experiments: thin vertical screen (S),

jagged regular (RG), jagged random (RN), T-shape (T), L-shape extending away from the

sound source (LD), L-shape extending towards sound source (LU). The source is located

to the right of the barrier and the microphone is to the left; (b) the jagged regular barrier

top lateral profile (RG); (c) the jagged random (RN) barrier top lateral profile. All other

geometries (S), (T), (LD) and (LU) simply coincide with the line z = 0.
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C. Measurements procedure

In experiments, the large solid wooden table (5cm× 150cm× 450cm) served as the ground.

A vertical barrier was fixed rigidly to the table and various removable aluminum tops, all

of which could be moved accurately along the barrier, were attached to the barrier. Six

different tops were used in this study as shown in Fig. 4: a thin vertical screen with a

straight top (S), jagged regular (RG), jagged random (RN), T-shape (T), L-shape down

(LD) extending away from the source, and L-shape up (LU) extending towards the source.

All tops were made from aluminum and were considered to be acoustically rigid and

non-absorbing.

For the jagged regular geometry (RG) a system of identical triangles with equal

horizontal, ∆x, and vertical, ∆z, spacing was used; the jagged random geometry (RN), on

the other hand, had a piecewise profile with fixed horizontal spacing, ∆x, but with a

randomly generated vertical spacing of mean value ∆z. These geometries are shown in Fig.

4(b) and 4(c) respectively. The choice of spacing, 2 cm, was dictated by the characteristic

wave length of the sound source. For L-shape and T-shape profiles, one or two aluminum

5× 5 cm L-shape corners were attached to the vertical aluminum plate. Hence, the T-shape

top had a 10 cm long horizontal section and each L-shape top had a 5cm long horizontal

section. The mean vertical top position (set at z = 0) was identical for all top profiles.

The microphone and sound source positions relative to the barrier are shown in Fig.

5. In experiments the distance R from the barrier top (30 or 45 cm) was fixed, but angles,

θS and θM , were varied. For the microphone four different angles were used, θM = 0◦, 15◦,

30◦, 45◦, and two different angles were used for the sound source, θS = 15◦, 30◦. Thus, for

each of the six top geometries (S, T, LU, LD, RG, RN) shown in Fig. 4 and for one set

with the free (F) signal (no barrier), eight sets of experiments with different θS and θM

values were conducted at two values of distance R; thus, in total, 7× 8× 2 = 112
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experiments were performed. All measurements were made with the vertical plane passing

through both the microphone and sound source lying normal to the barrier. For

convenience, the notation S−−M−−R−− is used below for the various source-microphone

positions. For example, S15M00R30, means that θS = 15◦, θM = 0◦ and R = 30cm.

In experiments where the top geometry did not vary along the barrier (homogeneous

tops), three measurements at each microphone-source position were made and averaged

data were used for processing. In experiments using RG and RN, where the top geometry

varied along the barrier, a set of measurements performed at different barrier locations was

conducted by sliding the aluminium top along the upper part of the wooden barrier

between recordings. A fine ruler permitted us to measure accurately the change in barrier

position x between recordings as shown in Fig. 4(b) and 4(c). Overall for RG and RN,

seventeen measurements were made at x = 0, ±0.5, ±1.0, . . . ±4.0 cm for each top.

The experiments were conducted as follows. The microphone and sound source were

fixed at a selected position as in Fig. 5. Firstly, the free (F) direct signal (with no barrier)

was measured three times to check repeatability. Thereafter, the barrier was installed with

the microphone and sound source remaining in the same positions, although the

microphone was slightly corrected to the new grazing angle relative to the barrier top.

Then, different removable aluminum tops were attached to the barrier: thin vertical screen

(S), T-shape (T), L-shape up (LU), L-shape down (LD), jagged regular (RG) and then

jagged random (RN) tops were used in succession and the data on the diffracted signals

were obtained.

As schematically shown in Fig. 1, the free signal or diffracted signal from the barrier

top arrives at the microphone with preamplifier and goes to the conditioning amplifier with

variable amplification and frequency window 0.1–105 Hz. The typical signal amplitude is of

the order of 3–6 V. This signal is displayed on the 100 MHz digital storage oscilloscope
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screen and digitized at a selected frequency. In all measurements this frequency was set to

fS = 2 MHz, which enabled 4000 data points to be stored with the time interval

∆t = 0.5µs. To omit the secondary diffracted/reflected signals that arrive at later times

(t > 1.5ms) reflected from the barrier sides, ground and room ceiling/walls, only the first

N0 = 3000 data points were used.

A series of sixteen experiments with different sound source-microphone positions (see

Fig. 5) were conducted. For each position the following set of 7 experiments was made: (i)

- free signal (F) was measured 3 times; (ii) - diffracted signal from homogeneous tops (S, T,

LU, LD) was measured 3 times, (iii) - diffracted signal from jagged tops (RG, RN) was

measured 17 times at different x-positions, as explained above. After visual analysis, the

digital data from the oscilloscope memory were transported to the computer with

LabVIEW software and stored in separate files.

Figure 5: Schematic showing microphone, M, sound source, S, and angles, θM and θS,

relative to the horizontal line passing through the origin, O, which coincides with the top of

the barrier. The microphone and the sound source are at the same distance, R = 30 or 45

cm, from the origin and the angles used are: θS = 15◦, 30◦, θM = 0◦, 15◦, 30◦, 45◦.
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D. Post-processing procedure

After each experiment, the measured sound pressure signals stored by the LabVIEW

software were post processed using custom-built MATLAB software (see Appendix A).

Methods of spectral analysis were used in the data processing. First, the pressure frequency

spectra were calculated from the initial sound pressure data. After that, additional

functions were used to calculate insertion losses for different tops as functions of the

frequency and of the source and microphone positions. Using the insertion loss functions,

the results were rescaled to spatial dimensions comparable to a full-size noise barrier and

frequencies were rescaled to values typical for traffic noise sources. Single number ratings of

the traffic barrier performance were then calculated and directivity diagrams obtained.

Two different methods were used to calculate the frequency spectra, namely, a

standard fast Fourier transform (FFT) and a 1/3rd octave filter. In the FFT method, to

improve the resolution, the spectral window width was reduced by using standard zero

padding and thus an additional 17000 points were added to the original N0 = 3000 data

points; thus, in total, NT = 20000 points were used in the FFT calculations. For the

spectral window width this yields the estimate ∆f = fS/NT = 100Hz, which remains

constant across the entire frequency band. Calculations were made only in the frequency

range 600–50000 Hz which are the scaled frequencies relevant for traffic noise. In the 1/3rd

octave filter method we used a spectral filter developed by Couvreur24, which was modified

to cover a higher frequency band (up to 80 kHz). Calculations of insertion losses were

made with standard central frequencies in the range 630–50000 Hz and the window width

increasing with frequency. Note that the calculation here is not the same as averaging the

FFT calculations over 1/3rd octave windows. Instead, a completely different direct filter

method was used and the results obtained by standard FFT with a constant window width

and the 1/3 Octave filter are compared below.
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In the FFT method, first, the complex frequency spectrum of the sound pressure is

calculated and the spectral density amplitude S(f) is then determined by the magnitude of

this frequency spectrum, where f = 600, 700, 800, . . . , 50000 Hz. In the 1/3rd octave filter

method the spectral density amplitude S(f) is calculated directly at the standard 1/3rd

octave central frequencies f = 630, 800, 1000, . . . , 50000 Hz.

Using the spectral density amplitudes, the values of the insertion loss functions may

be calculated as

IL(f) = 10 log10 |S0(f)/S(f)| , (1)

where S0 is the spectral density amplitude of the free (F) signal and S(f) is the spectral

density amplitude obtained when one of the barrier types is positioned between the source

and microphone. Note that the definition of insertion loss gives the relative sound

attenuations for different frequencies and these attenuations do not depend directly on the

characteristics of the sound source used in the experiment. This permits the use of short

sound pulses in testing barrier performance alone as mentioned in the introduction.

Because the sound pressure of the diffracted signal is a function of many parameters,

the spectral density amplitude and insertion loss are also functions of those parameters.

Thus,

IL = IL(f,R, θS, θM , A, x), (2)

where R, θS, θM describe the source and microphone positions, A is the barrier top type

(S,T,LD, LU, etc.) and x is the dependence on the lateral barrier position for the

non-homogeneous tops RG and RN. In this way, insertion losses for the different barrier

top geometries can be calculated and their performance compared.

Naturally, the main purpose of such scaled experiments is to measure the actual

insertion loss functions for full size noise barriers. If the typical sound source frequency in

the experiments is N times the frequency of the traffic noise (in our case N = 10, see
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below), the experiments can be considered as a 1 : N scaled experiments. The frequency of

the laboratory measured insertion loss function is simply rescaled from the laboratory

frequency f to the traffic noise frequency as F = f/N . Then, using the rescaled insertion

loss function and proper estimates for the free traffic noise spectrum, the characteristics of

the diffracted traffic noise behind a barrier with a rescaled length scale can be estimated.

In particular, a single number rating for the traffic barrier performance can be estimated

and the directivity diagrams obtained for different barrier tops.

III. Diffraction theory

The insertion loss function for the simplest case of the thin vertical screen straight top

barrier can be parameterized in terms of the Fresnel number, FN . This number is the most

important dimensionless parameter affecting the diffracted signal in the considered

geometry (Fig. 5) and can be defined for our case as

FN =
4Rf

C

(
1−

√
1 + cos(θM + θS)

2

)
cos

(
θM − θS

2

)
(3)

where C is the ambient speed of sound. Based on the experiments reported by Maekawa25,

the following empirical parameterization for the insertion loss (in dB) of vertical thin

screens is proposed26,27:

IL = a0 + 20 log10

√
2πFN

tanh
√

2πFN
, (4)

where a0 is an empirical constant. Maekawa’s estimate (4) for a thin vertical screen is

shown as a dotted line in some plots of insertion loss presented in Section V.

A more accurate validation of the experimental results obtained in the laboratory is to

compare the measured insertion losses obtained for each 1/3rd octave frequency band to

those obtained using the so-called geometrical theory of diffraction. The analytical solution

adopted for this purpose is that of wave diffraction by a wedge28,29. We adopt the input
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parameters as shown in Fig. 5. Unlike other insertion loss calculations for noise

barriers30,31, here we only take into consideration the primary signal from the shortest ray

of distance 2R. The contributions of all other possible rays that are reflected at least once

off the ground or off some other object are ignored. This assumption is valid given the

shortness of the incident pulse as discussed in the previous section. For a point source of

frequency f in a non- refracting atmosphere of constant sound speed C, the pressure field

measured at the microphone situated behind a thin vertical screen is

pmic =
e+iπ/4

√
2

[
AD

(√
2kR

π
cos

(
θS − θM

2

))
+ AD

(√
2kR

π
sin

(
θS + θM

2

))]
e+ik2R

2R
, (5)

where k = 2πf/C and the function AD(X) governing the diffraction behaviour28 can be

written as the integral

AD(X) =
1√
2π

∫ +∞

−∞

e−u
2

du[
X
√
π/2− e−iπ/4 u

] . (6)

For calculation purposes, it is more convenient to express AD(X) in terms of the auxiliary

Fresnel functions, f(X) and g(X) (Abramowitz and Stegun 1964, p300, eqns 7.3.5 and

7.3.6), as follows:

AD(X) = sgn(X) [f(|X|)− ig(|X|)] , (7)

Plots and asymptotes of the functions f(X) and g(X) can be found in Pierce28, which

demonstrate their most important properties that f(0) = g(0) = 1/2, f ′(X), g′(X) < 0 for

X > 0 and f(X) ∼ (πX)−1 and g(X) ∼ π−2X−3 for large X; practically, these asymptotes

are accurate so long as X is larger than 2. The theoretically obtained insertion loss for our

thin vertical screen straight top (S) can now be derived analytically as

ILth(θS, θM , f, R, C) =

−20 log10

∣∣∣∣∣
√

1+cos(θS+ θM)

2

[
AD

(√
4fR

C
cos

(
θS − θM

2

))
+AD

(√
4fR

C
sin

(
θS + θM

2

))]∣∣∣∣∣.(8)
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We note here that the important response of insertion loss to distance R, sound speed C

and frequency f only appears as the product fR/C, confirming the ability of our scaled lab

experiments to reproduce the effect of a full size non-absorbing barrier. The consequence

also highlights the fact that increasing the distance of the microphone and point source

from the top of the barrier by some factor achieves an equivalent increase in insertion loss

that would occur by increasing the frequency of the point source by the same factor.

The same analytical theory can also be applied to the other homogeneous tops (T, LD

and LU) by adopting the theory of double-edge diffraction over multiple wedges and, in

this paper, the theoretical insertion loss for the T-top is calculated using Eqs. (20) to (25)

of Pierce28 where βS and βL are set to 2π for the T-top. These theoretical insertion loss

functions are compared directly in Section V. to the results obtained from our laboratory

experiments.

IV. Results of selected experiments and general sound characteristics

In this section we consider some results from the laboratory measurements. Initially, we

present the results obtained in a set of experiments conducted with the geometry

S30M00R30 (see Fig. 5). Typical free and diffracted sound pressure signals as well as their

spectra and insertion loss functions are presented. We consider first experimental data for

the homogeneous barrier tops (S, T, UL, UD) and compare them to the case of the free

signal (F). After that similar data for the heterogeneous jagged tops (RG, RN) are

considered. In both cases the results obtained by using both Fourier analysis and a 1/3rd

octave filter are presented and compared.
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Figure 6: (a) A succession of three recordings of the sound pressure signal, P (t), as a function

of time, t, for three free (F) signals (see the legend) in the S30M00R30 configuration. All

three signals practically coincide, and resemble the so called N-wave with a weak tail. (b)

spectral density amplitude, S(f), as a function of frequency, f , for the three free (F) signals.

As can be seen, all three spectra also practically coincide. The arrow shows the dominant

frequency, which was estimated from the data to be f0 = 17kHz.
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A. Free signal (F)

Three recordings of pressure, P (t), measured at the microphone as a function of time, t, for

three free (F) signals are shown in Fig. 6(a). All three signals practically coincide, and

resemble the so-called N-wave with a weak tail; this is a profile that is typically used in

acoustics to model explosions. The main signal excursion is about 80 Pa and its duration is

about 60µs, suggesting an estimate of f0 = 17kHz for the characteristic frequency. Three

frequency spectra, calculated using a fast Fourier transform (FFT) on the three signals

shown in Fig. 6(a), are shown in Fig. 6(b). The estimated characteristic frequency is

shown here by the arrow and lies close to the frequency of the spectral maximum. The

dominant frequencies of the signal are an order of magnitude higher than the dominant

frequencies of typical traffic noise10,32. Thus, in our experiments the scaling factor16 of 1:10

seems appropriate. The spectrum obtained from an average of the pressure recordings

taken for the free (F) case is used below to calculate the barrier insertion losses as

functions of frequency.

B. Homogeneous tops (S, T, LU, LD)

The spectral density of the mean diffracted signal for the barriers with homogeneous tops

in the configuration S30M00R30 are shown in Fig. 7. For the thin vertical screen (S), the

max amplitude of the recorded diffracted signal is about 15 Pa, which is approximately six

times less than the free (F) signal measured with no barrier (Fig. 6). In addition, the

spectral maximum amplitude for diffracted signal for the thin vertical screen (S) top is 4

kHz lower compared to the recorded free (F) signal. The spectrum of the mean diffracted

signal for the T-shape (T) top is shown in Fig. 7(b). The signal is not only significantly

reduced in amplitude compare to the thin vertical screen, but a noticeable secondary

N-wave is present in the pressure recording. The secondary N-wave is shifted compare to

the main one by approximately 0.25ms, which results in the characteristic harmonics of the
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Figure 7: Spectrum density amplitudes for the mean diffracted pressure signal for the fol-

lowing homogeneous barrier tops: (a) thin vertical screen (S), (b) T-shaped top (T), (c)

L-shaped (LU) top and (d) L-shaped (LD) top. The solid arrow shows the estimated char-

acteristic frequency of the free signal and the dashed arrow shows the approximate position

of the spectral maximum.
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main frequency 1/(0.25 ms)=4 kHz that can be observed in the spectrum.

For further comparison, the spectra of the mean diffracted sound signals for the

L-shape tops extending towards the source (LU) and away from the source (LD) are shown

in Figs. 7(c) and (d) respectively. The spectrum for the LU top is qualitatively very similar

to the spectrum shown in Fig. 7(b) for the T top. More detailed analysis shows that the

LU top pressure data, for signal as well as for spectrum, are somewhat higher than similar

data for the T top. On the other hand, the spectrum for the LD top is qualitatively very

similar to that of the thin vertical screen (S) top in Fig. 7(a). These similarities are likely

to be caused by the fact that, in the case shown, the microphone is located at the same

height as the barrier top (θD = 0) and so the main diffractive effect arises from the shape of

the edge facing the source.

C. Heterogeneous tops (RG, RN)

In contrast to the diffracted signals from the homogeneous tops, the diffracted signals from

the heterogeneous (jagged) tops depend strongly on the along-barrier position. As

mentioned above, the diffracted signals from the heterogeneous tops, which include jagged

regular (RG) and jagged random (RN) top geometries, were measured at 17 different

lateral positions for each heterogeneous top. Strong amplitude and phase variability of

signals (as well as the resulting spectra) is apparent from the pressure recordings P (t) at

each lateral position (not shown). These signals not only have different amplitudes of the

leading N-waves, but positions of the following local extrema are also different. However,

taking into account that the typical length scale of the barrier top variation is relatively

small, in practice, compared to the distance from the barrier top to the source and

microphone, the exact sound characteristics at specific locations relative to the along-top

coordinate are not very important. Of more practical interest is the averaged, over this

relatively small length scale, sound characteristics. As the averaging of all recorded
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Figure 8: Spectrum density amplitudes for the mean diffracted pressure signal for (a) the

RG jagged regular barrier top and (b) the RN jagged random barrier top. The mean is based

on 17 measurements at different lateral positions as described in the text. The solid arrow

shows the estimated characteristic frequency of the free (F) signal and the dash arrow shows

the approximate position of the spectral maximum in each case.
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pressure signals masks the individual frequency content and spectrum, instead, for each

pressure signal the corresponding spectrum was calculated and an average of the 17 spectra

was calculated for RG and RN barrier tops. These average spectra are shown in Fig. 8. In

both cases, RG and RN, the approximate spectral maximum amplitude is approximately

12 kHz lower than the estimated characteristic frequency f0 of the free (F) signal. From

the preliminary analysis above, the following hierarchy of the increasing barrier top

efficiency may be expected: S, LD, LU, T for homogeneous tops and RG, RN for jagged

tops. More accurate estimates are given below.

V. Barrier efficiency

Figure 9: Symbols - Insertion losses calculated from 1/3rd-octave lab experimental data

for a thin vertical barrier with a straight top (S) for four cases with different microphone

positions. Red Lines - Insertion losses calculated from the analytical expression (8) using

geometrical theory of diffraction.
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A. Insertion loss functions for different tops

Using the spectral density amplitudes, obtained for the free and for the diffracted signals,

insertion losses were calculated using (1) and typical insertion losses as functions of

frequency for different top geometries are discussed briefly below. To validate our

laboratory results, a plot of the insertion losses calculated from laboratory measurements

for the S type barrier top lab versus the analytical expression given in (8) is shown in Fig.

9; the agreement is very good.

As a further example of the data obtained, insertion loss, IL, as a function of

laboratory frequency, f , for all the laterally homogeneous barriers (S,T,LU and LD)

relative to the free signal (F) for the configuration S30M00R30 is shown in Fig. 10. The

results obtained from FFT calculations are shown in the top graph whereas the results of

the 1/3rd octave filter calculations are shown on the bottom graph. Some variability in the

FFT data at high frequencies is related to the constant spectral window width, 100Hz,

which becomes small at high frequencies and the resulting ‘noise’ is noticeable. In the

1/3rd octave filter calculations the window width is proportional to the central filter

frequency and increases with the frequency and, thus, there is no such noise. Despite this,

both FFT and 1/3rd octave filter calculations remain satisfactorily in agreement with

important details including numerous local maximums and minimums lying within ±2 dB

at similar frequencies.

To compare with theory, the thick dotted line in Fig. 10 shows Maekawa’s estimate

(4) and the two thin solid lines in the same figure show the predictions from the

geometrical theory of diffraction for a thin vertical screen and a T-top shaped barrier. As

observed in Fig. 9, the agreement of both FFT and 1/3rd octave filter calculations for the

thin screen S-type barrier with the geometrical theory of diffraction prediction ILth given

by (8) is excellent, especially in the range f = 5–25 kHz that represents the most crucial
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Figure 10: Insertion loss, IL, as a function of laboratory frequency f for the laterally homo-

geneous barriers including a thin screen (S), a T-shaped top (T) and L-shaped tops (LU and

LD) relative to the free signal (F). Top - results from FFT computations. Bottom - 1/3rd

octave filter calculations. The predictions from Maekawa’s IL estimate for a thin screen and

geometrical theory of diffraction results for a thin screen and T-top are also shown.
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range of full size frequencies for traffic noise (500Hz to 2.5kHz). We note that Maekawa’s

estimate, while qualitatively similar, tends to underpredict the insertion losses measured in

the lab by 1-2dB. For the T-top barrier, the comparison between geometrical theory of

diffraction and experiments is reasonably good, but not as good as the agreement for the

thin vertical screen. Both the FFT and 1/3rd octave spectra for the T-top barrier appear

to undulate by roughly ±2dB above and below the theoretical line with the theoretical

model tending to overestimate the insertion loss at the higher end of the spectrum.

A visual comparison of the insertion loss spectra for different barrier types in Fig. 10

and across the other tested configurations clearly indicate the T-top providing the best

performance, closely followed by the LU-type barrier. The LD-type barrier performance

aligns more closely with that of the thin vertical screen (S). The relative efficiency of these

barrier types relative to a thin-screen S-type barrier in three different configurations is

shown in Fig. 11. In all three configurations, the T-top clear has the highest efficiency

followed by LU and then LD and S. Interestingly enough the LU only becomes comparable

in performance to the T-top in the M00 case, where the microphone is at the same height

as the barrier. The LU top’s efficiency is reduced considerably for the two other cases

where the microphone lies below the barrier top. For S30M00R30, geometrical theory of

diffraction predicts an increase in insertion loss of 4-5dB at all the frequencies for the T-top

relative to the thin screen (S) but the lab experiments suggest the performance

improvement varies between +2 and +5dB across the chosen frequency range.

Typical data for the insertion loss functions for heterogeneous (RG, RN) tops relative

to the thin vertical screen (S) for two particular source-microphone configurations are also

shown in Fig. 11. These configurations, along with the other configurations, appear to

show that the RG-top barrier does not appear to significantly improve barrier performance

compared to the thin vertical screen. Some slight improvements, mainly within +1 dB but
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Figure 11: Insertion loss, IL, as a function of laboratory frequency f for the T-shaped top

(T), the L-shaped tops (LU and LD) and the laterally heterogeneous tops (RG and RN)

relative to the thin screen barrier (S) for different configurations of source and microphone

positions. Faint lines show FFT results. Predictions from the geometrical theory of diffrac-

tion for the relative insertion loss of a T-top barrier relative to a thin screen are also shown.
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up to 2dB for some higher frequencies, are observed for the RN top but its performance

remains far below that achieved by the T-top barrier.

For all sixteen source and microphone configurations considered, similar results were

obtained (see Table 1 below). A qualitative analysis, similar to that used above, suggests

that the agreement between FFT and 1/3 Octave filter calculations remains satisfactory in

all configurations and that the most effective barrier type tested appears to be the

homogeneous T-top barrier. Furthermore, both laterally heterogeneous jagged barriers

appear less effective than the T-top, with the RN-top performing somewhat better than the

RG-top. To arrive at a more quantitatively definitative conclusion on barrier efficiency from

the insertion loss spectra alone, however, is problematic because, in general, the insertion

loss functions (2) depend on too many external parameters: in particular on the lateral

position x and the frequency f . There is already an averaging of the diffracted spectra over

the lateral x-axis for jagged tops, thus excluding x from the external parameters. However,

a further reduction of parameters is needed. The use of a form of weighted-frequency

averaging allows us to additionally exclude the frequency f from the external parameters

and characterize the barrier efficiency by a so-called single number insertion loss rating. A

derivation of this single number insertion loss rating is discussed below in the next section.

B. Single number insertion loss rating

The single number insertion loss N for a traffic barrier can be estimated as follows. The

insertion loss spectrum, IL(f), as measured in the scaled (1 : 10) laboratory experiments,

is rescaled from the laboratory frequencies, f , to the field frequencies, F = f/10, as

IL(F ) = IL(f/10). A suitable empirical or analytical profile for a typical A-weighted

traffic noise spectrum S(F ) is then adopted. In the estimates provided below we use the

internationally standardised traffic noise spectrum given by European standard EN

1793-332,33. A single number insertion loss rating, N , (or barrier efficiency) in decibels for
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each barrier type can be calculated as follows33:

N = 10 log10

∑m
i=n 10S(Fi)/10∑m

i=n 10S(Fi)/10−IL(Fi)/10
, (9)

where n and m are the lowest and higher indices taken for the 1/3rd octave band central

frequencies, Fi, that are of practical significance (for EN1793-3 the applied range is 100Hz

to 5kHz).

After employing this procedure, as well as the above-mentioned averaging over the

lateral x-axis, the number of parameters in (2) can be reduced from six to four

IL(F,R, θS, θM , A, x)→ N (R, θS, θM , A), and the data on N , obtained from the results of

all 112 experiments, are presented below. Recall that for field estimates, the lab frequencies

f must be divided by ten and any lengths, e.g. R, should be multiplied by ten. To further

confirm the robustness of the procedure, single-number insertion loss ratings were also

calculated using a second traffic-noise spectrum standard from the Acoustical Society of

Japan10 and broadly similar N values and trends were obtained in this case.

VI. Directivity diagrams for single number insertion loss ratings

The values obtained for N from our experiments are summarized in Tables I and II.

Table I shows the single number insertion loss ratings for all barrier types (S, T, LD, LU,

RG, RN) relative to the free (F) signal for all selected configurations of source and

microphone position. Table II then shows the single number insertion loss ratings for the

homogeneous barrier types T, LD and LU relative to both the free (F) signal and the thin

vertical screen (S). Recall, that the notation SθSMθM is used. Also, note that the relative

values for N , given in Table II, are not simply the differences of N values from Table I, but

the result of separate calculations using different relative insertion losses in (9). The results

are discussed below.
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Table I: Single number insertion loss ratings, N , relative to the free signal (F) as estimated

for various barrier top in different source-microphone positions.

Config F/S F/RG F/RN F/T F/LU F/LD

R=300cm

S15 M00 10.8 9.8 10.7 12.9 12.5 10.9

S15 M15 14.8 14.1 15.2 19.0 17.4 17.2

S15 M30 17.9 16.9 18.2 22.7 21.9 21.8

S15 M45 19.4 19.2 20.4 25.9 23.1 24.0

S30 M00 14.2 13.4 14.6 17.4 16.9 14.8

S30 M15 17.1 16.5 18.1 22.4 20.7 19.2

S30 M30 19.7 19.1 20.4 26.0 23.3 22.7

S30 M45 21.2 21.3 24.4 29.8 26.1 26.7

R=450cm

S15 M00 12.0 11.2 12.1 13.5 13.2 12.4

S15 M15 15.9 15.1 16.3 19.5 17.9 17.6

S15 M30 19.1 19.1 19.7 24.4 21.8 22.4

S15 M45 20.6 20.8 21.5 27.1 23.5 25.1

S30 M00 15.7 14.7 16.1 17.8 17.8 15.8

S30 M15 18.6 18.6 19.4 23.4 22.1 21.0

S30 M30 21.0 21.2 21.5 26.4 24.9 24.5

S30 M45 22.5 23.4 25.1 31.7 28.4 28.6
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Table II: Single number insertion loss ratings, N , relative to either the free signal (F) or

to the thin screen barrier (S) as estimated for homogeneous barrier tops T, LU and LD in

different source-microphone positions. Two values of N are given in each cell corresponding

to two different values of R: the first number is for R = 300cm, the second number is for

R = 450cm.

Config F/T F/LU F/LD S/T S/LU S/LD

S15 M00 12.9-13.5 12.5-13.2 10.9-12.4 2.1-1.5 1.8-1.2 0.1-0.2

S15 M15 19.0-19.5 17.4-17.9 17.2-17.6 4.6-3.9 2.8-2.2 2.6-1.9

S15 M30 22.7-24.4 21.9-21.8 21.8-22.4 5.3-6.1 3.9-3.0 4.1-3.8

S15 M45 25.9-27.1 23.1-23.5 24.0-25.1 6.6-6.5 4.2-3.1 4.6-4.7

S30 M00 17.4-17.8 16.9-17.8 14.8-15.8 2.8-1.7 2.4-1.9 0.3-0.0

S30 M15 22.4-23.4 20.7-22.1 19.2-21.0 5.7-5.3 3.9-3.8 2.4-2.9

S30 M30 26.0-26.4 23.3-24.9 22.7-24.5 7.1-5.7 3.6-4.3 3.1-4.1

S30 M45 29.8-31.7 26.1-28.4 26.7-28.6 9.6-9.0 5.6-5.8 5.9-6.0



Finding optimal geometries for noise barrier tops, JASA, p. 35

A. Jagged laterally heterogeneous tops - RG,RN

The data shown in Table I shows that the efficiency of RG and RN barrier types is not

significantly different from that of the thin screen S-type barrier. The N values for the RG

top, in average, are 0.5− 1.0 dB lower than the values for the S top (see the exact values of

N in Table I). On the other hand, N values for the RN top appear, on average, to be no

more than 1dB higher than the S top values. Thus, the use of RG and RN tops does not

appear to improve significantly barrier performance. Only in the laboratory experiments

with large angles, e.g. (θS, θM) = (30◦, 45◦), does the RN-top show a significant increase in

N , of the order 2− 2.5 dB, compared to the S-top.

This general conclusion does not agree well with the preliminary results reported by

Ho et al.34, that barriers with RN-tops are significantly more effective than the thin

vertical screen S-type barriers. These particular authors conducted a few laboratory

experiments on random-edge barriers and concluded that the more random the edges, the

more attenuation it brings. However, the authors did not say anything about the strong

sound pressure variability laterally along barrier direction (i.e. along the x-axis). This is

an important factor, but it remains unclear at what x-values the signal and the reported

insertion loss were measured in the their publication. In our approach, to smooth these

variations, the along barrier averaging for the insertion loss spectra was used. Note also,

that the results reported by Menounou and You12,15 for jagged tops show only the decrease

of the sound pressure peak amplitude level, compare to the S top, and its significant

variation in the along barrier direction, but no data is supplied on insertion losses. The

lack of sound level calculations in the above-mentioned studies has also been noted

previously by Pigasse and Kragh35.

Further analysis of the RG and RN data also shows that the single number insertion

loss rating N in all experiments increases noticeably with the increase of the source or
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microphone angles (about 2− 5 dB for each 15 degrees) and these effects are comparable in

the magnitude. A much smaller increase (1− 2 dB) is also observed with the increase of

the distance from the barrier top, R, from 3m to 4.5m. This behavior mimicks the

theoretical predictions of the insertion loss function for the S- top given by (4) and (8). For

instance, the Fresnel number, FN , is proportional to the distance R defined in (5). With

the increase of the source or microphone angle, as well as R, the value of FN in (4)

increases and this leads to the increase of the insertion loss function as well as the values of

the insertion loss rating, N .

B. Homogeneous tops - T, LU, LD

Figure 12: Directivity diagrams (relative to free F signal) for the single number insertion loss

rating N as functions of microphone angle, θM , for different source angles θS and distances

from barrier top R. Results for different barrier top geometries S, T, LU and LD are shown.

Directivity diagrams, relative to the free, F, signal, for the barrier top geometries S, T, LU
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and LD are shown in Fig. 12. The single number insertion loss rating N is given as a

function of the microphone angle, θM , for different source angles, θS, and two different

distances from the barrier top, R. As can be seen, in all experiments the efficiency of the T

top is significantly better than the other tops. For example, the N values for the T top

(triangles), at small microphone or source angles, in average, appear to be 2.0− 2.5 dB

higher than the values for the S top (circles - see also Table I). This difference increases

noticeably up to 7− 9 dB with the increase of the microphone or source angles and this is

broadly in line with predictions from the geometrical theory of diffraction. At smaller

angles, the LD top efficiency (squares) is similar to the S-top (circles), while the LU

efficiency (inverted triangles) is markedly better than the LD efficiency by about 2− 3 dB

making it comparable in performance to the T top (triangles) (see Fig. 12 and Table I). At

increasing angles, the LU top (inverted triangles) and LD top (squares) efficiencies become

more comparable to one another lying approximately 4− 5 dB above the S top insertion

loss values (circles). However, for these configuration the efficiency of LU and LD tops lie

roughly 3− 4 dB below the T-top insertion loss values (triangles).

Thus, in all experiments the T-top barrier shows better performance than the other

barrier types (see Table I). How much better depends on the barrier top type, angles of

measurements and, to a lesser degree, on the distance from the barrier top. As shown in

Fig 12, the single number insertion loss rating, N , relative to the free, F, signal, increases

monotonically and significantly with increasing θM and θS. To estimate the effect of the

increase in R, we show in Table II relative values, compared to the free F signal and to the

S-top, of the single number insertion loss rating, N . In each column two N values are

shown for two different distances, R. As can be seen, the effect of the distance change on

N is small (on average about 0.5-1.5 dB) and may be neglected compared to the effect of a

change in either θS or θM . This rather unexpected result is in line with the experiments of
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Okubo and Yamamoto5. Thus, to leading order, the effect of the distance change may be

neglected and the number of parameters in (2) can be reduced to only three, i.e

N (R, θS, θM , A)→ N (θS, θM , A), to determine a general barrier top efficiency measure, N .

VII. Conclusions

This research was motivated by the need to develop a methodology for parsimonious scaled

acoustic laboratory experiments where the acoustic characteristics of the traffic noise

diffracted above sound barriers with different tops may be estimated and compared. Short

impulsive spherical sound waves with a broad frequency spectrum were used in experiments

as a controlled sound source. A highly stable three-electrode spark discharger was designed

and constructed for this purpose. Because the duration of the sound pulse is sufficiently

short, the primary signal diffracts from the barrier top and arrives to the receiver earlier

than any secondary signals (e.g. any signals reflected from surroundings). The latter

signals are ignored and only the information from the primary signal is used. This

eliminates the need to use expensive acoustic anechoic chambers for experiments. The

typical frequency band of the sound source (1–30 kHz) is 10 times the frequency band of

typical traffic noise (100–3000 Hz), and the experiments can be considered as 1 : 10 scaled

experiments of real traffic sound barriers.

Numerous scaled experiments (112 in total) were conducted with different barrier tops

and source-receiver positions. Homogeneous barrier tops that possess no variation of

geometry laterally along the barrier, as well as heterogenous jagged tops that do were

considered. The results of measurements were processed by using the spectral analyses of

the free and diffracted signals. First, frequency spectra were calculated and then the

insertion loss spectral functions were estimated for different source-receiver positions and

barrier top geometries; these insertion loss functions were subsequently analyzed. Two

different methods were used to calculate frequency spectra, namely, Fourier transforms and
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a 1/3rd octave filter. Both methods demonstrate satisfactory agreement for all experiments

but with an advantage of the 1/3rd octave filter being that its spectrum is less noisy. The

experimental data was also validated against theory with very good agreement for a thin

vertical screen when compared to a prediction using the geometrical theory of diffraction.

However, when the same theoretical approach was applied to a T-top barrier the agreement

was not quite good with variations of 1− 2dB between theory and experiments along with

a distinct overprediction by the theory of the insertion loss at higher frequencies.

Taking into account the large number of the external parameters and to simplify the

analyses, spatial and spectral averaging were applied to the data and the number of

external parameters was reduced. The results obtained were rescaled to traffic barriers and,

for a typical A-weighted traffic noise spectrum, weighted mean values of the traffic barrier

efficiency (a single number rating) were estimated and compared. The main results of this

study may be briefly formulated as follows.

A methodology has been developed which enables one to conduct, in a relatively short

period of time, a large number of scaled experiments on sound diffraction from a traffic

barrier top of arbitrary geometry. Detailed and accurate sound characteristics, e.g. spectra,

insertion loss functions and single number insertion loss ratings, can be obtained easily.

The considered jagged regular (RG) and random (RN) tops, in general, do not appear to

improve significantly the barrier performance. Only in the experiments with large

microphone-source angles does the RN top show any modest increase in the single number

insertion loss rating N compare to a thin vertical screen. This result does not agree well

with previously reported results that such jagged tops are significantly more effective than

thin vertical screens12,15,34. These authors, however, did not consider the spectrum

variability laterally along the barrier. In our approach, this was taken into account and

lateral avaeraging of the insertion loss functions along the barrier was used resulting in
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relatively low differences in N values compared to a thin vertical screen. Some of the

considered homogeneous tops (T, LU, LD) showed in general significantly better efficiency

compare to the thin vertical screen. The best performing appears to be the T top, follow

by LU and LD tops. In all cases, the single number insertion loss ratings, N , increase

monotonically and significantly (up to 20 dB) with an increase in the angles of sound

source and microphone position. In comparison, the effect of the change in microphone and

source distance from the barrier top, R, on N is relatively small (on average about

0.5− 1.5 dB) and may therefore be neglected when compared to the effect from a change in

angle. This result is in line with previous experiments5.

Finally, note that parameterizations and/or improved theoretical considerations,

similar to (4) and (8) for the thin vertical screen, are obviously needed for other barrier

tops. However, this requires conducting a larger number of experiments with differing top

geometries. Using the methodology developed and presented here, we plan to work in this

direction in the future.
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Appendix A. MATLAB programs

The pressures signals obtained from the memory of the digital oscilloscope (see Fig.1) were

stored as “.lvm” files using LabVIEW software. To process these data, a custom-built

MATLAB software package was used. The program collects the sound pressure signals

directly from the “.lvm” files generated by LabVIEW and, to process the initial data, some

parameters from the user are required, e.g., oscilloscope sensitivity, time scale,

amplification of the preamplifier. The code is used to convert the initial data from these

files into a format acceptable to MATLAB. Then the initial pressure signals are graphed,

analyzed visually, to exclude obviously erroneous measurements, and processed to obtain

the desirable acoustic characteristics, including the frequency spectra, relative insertion loss

functions and single number insertion loss ratings. The code is divided into a main

program named the “control panel” and supporting programs which are used to calculate

the “processing functions” for different barrier top geometries and microphone-source

positions. The free signal (no barrier), as well as signals diffracted by different barrier tops,

are used in the calculations. The processing functions transform the initial oscilloscope

voltage values into the sound pressure and these are used to calculate the appropriate

spectra. The main control panel program then collects the relevant information from all

processing functions and inputs it into the corresponding spectra analyses. For comparison,

two different methods were used to calculate the frequency spectra from the initial data,

namely, a standard fast Fourier transform and a 1/3rd octave filter. Additional functions

are used to calculate relative insertion losses for each type of tops from the corresponding

power spectra and to graph the relevant information. The 1/3rd octave filter was originally

designed for MATLAB by Dr. Christophe Couvreur24 and this code was modified to cover

the higher frequency band (up to 80 kHz) required here by Dr. Tamas Zsedrovit. The

measured pressure wave signals were input directly into the filter. A “filter function” and
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its sub functions were then used to calculate pressure power spectra. An additional

function “IL” was used to calculate insertion loss spectra for each type of barrier top from

the corresponding power spectra and the relevant insertion loss function was plotted.

Appendix B. Spark Discharger

The spark gap trigger circuit was constructed using an automotive ignition coil as the high

voltage source. A variable transformer was employed in this circuit to adjust the trigger

voltage for repeatability and to eliminate false triggers. A 400 V TVS and a high voltage

capacitor was placed in parallel with the trigger switch contacts as a “snubber” to clamp

voltage spikes that could damage the switch contacts. When a pushbutton switch is closed,

the automotive ignition coil is energized. When the same pushbutton is then opened, the

sudden change of current flow in the primary side of the coil causes a high voltage in the

secondary coil following Faraday’s law of electromagnetic induction, and this is used to

trigger the main spark gap by a partial ionization and breakdown of the air in the gap.
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