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ABSTRACT
Aims: The four most promising semiautomated
techniques (5-SD, 6-SD, Otsu and the full width half
maximum (FWHM)) were compared in paired acute
and follow-up cardiovascular magnetic resonance
(CMR), taking into account the impact of
microvascular obstruction (MVO) and using
automated extracellular volume fraction (ECV) maps
for reference. Furthermore, their performances on
the acute scan were compared against manual
myocardial infarct (MI) size to predict adverse left
ventricular (LV) remodelling (≥20% increase in end-
diastolic volume).
Methods: 40 patients with reperfused ST segment
elevation myocardial infarction (STEMI) with a paired
acute (4±2 days) and follow-up CMR scan (5±2 months)
were recruited prospectively. All CMR analysis was
performed on CVI42.
Results: Using manual MI size as the reference
standard, 6-SD accurately quantified acute
(24.9±14.0%LV, p=0.81, no bias) and chronic MI size
(17.2±9.7%LV, p=0.88, no bias). The performance of
FWHM for acute MI size was affected by the acquisition
sequence used. Furthermore, FWHM underestimated
chronic MI size in those with previous MVO due to the
significantly higher ECV in the MI core on the follow-
up scans previously occupied by MVO (82 (75–88)%
vs 62 (51–68)%, p<0.001). 5-SD and Otsu were
precise but overestimated acute and chronic MI size.
All techniques were performed with high diagnostic
accuracy and equally well to predict adverse LV
remodelling.
Conclusions: 6-SD was the most accurate for
acute and chronic MI size and should be the
preferred semiautomatic technique in randomised
controlled trials. However, 5-SD, FWHM and Otsu
could also be used when precise MI size
quantification may be adequate (eg, observational
studies).

INTRODUCTION
In patients presenting with an acute ST
segment elevation myocardial infarction
(STEMI), acute and chronic myocardial
infarct (MI) sizes have been shown to be
strong predictors of adverse left ventricular
(LV) remodelling1 2 and mortality.3 4 The

KEY QUESTIONS

What is already known about this subject?
▸ Manual delineation of myocardial infarct (MI)

size is considered the gold standard. However,
this can be subjective and time-consuming. The
current recommendation for measuring MI size
by cardiovascular magnetic resonance is using
the 5-SD technique to improve reproducibility.

What does this study add?
▸ Six-SD is the optimal technique to quantify

acute and follow-up MI size and should be the
semiautomated technique of choice in situations
when accurate MI size quantification is required
(eg, randomised controlled trials).

▸ However, the other three promising techniques
(5-SD, Otsu, FWHM) are all equally precise and
performed equally well to predict adverse left
ventricular remodelling. Therefore, they can all
be used in the context of registries or observa-
tional studies for MI size quantification.

How might this impact on clinical practice?
▸ This study would contribute to changing the

current recommendations on MI size
quantification.

▸ Furthermore, this study would guide other
research groups to choose the optimal semiau-
tomated method for MI size, depending on the
research context.
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gold standard reference for assessing MI size is by late
gadolinium enhancement (LGE) cardiovascular mag-
netic resonance (CMR), and can be performed in the
first week following STEMI and repeated after several
months.5 6

However, there is currently no established gold stand-
ard technique for quantifying MI size using LGE CMR.
Several different techniques have been proposed for
quantifying MI size including manual contouring7 and
semiautomated thresholding techniques such as a signal
intensity threshold of 5-SD8 or 6-SD9 above the normal
remote myocardium, the Otsu technique,10 and the full
width half maximum (FWHM)11 12 technique. The con-
sensus document from the Society for Cardiovascular
Magnetic Resonance Board of Trustees Task Force on
Standardised Post Processing recommends the semiauto-
mated threshold technique of 5-SD for MI size quantifica-
tion as it may improve reproducibility. Manual contouring
is considered the gold standard7 13 but may be time-
consuming12 14 and subjective. FWHM has emerged as
the technique having the lowest variability11 12 but others
have shown FWHM to underestimate acute and chronic
MI size.10 15 Recently FWHM45% and 6-SD were found to
perform well in paired acute and follow-up scans at 3 T.15

By convention, the FWHM technique16 uses a thresh-
old of above 50% of the maximal signal intensity of the
reference region of interest (ROI) as the cut-off thresh-
old and we hypothesised that areas previously occupied
by microvascular obstruction (MVO) on the follow-up
CMR are likely to affect the highest signal intensity and
impact on MI size quantification, compared with those
without previous MVO. Therefore, the aim of our study
was first to assess the impact of MVO on the perform-
ance of four most promising semiautomated techniques
(5-SD, 6-SD, Otsu and FWHM) against manual contour-
ing (referred to as Manual contouring throughout the
article) as the reference standard7 13 in paired acute and
follow-up CMR scans at 1.5 T. Second, we aimed to
assess their performance on the acute scan to predict
the development of adverse LV remodelling (≥20%
increase in end-diastolic volume).17

METHODS
Study population
Patients included in this study have been included in two
recently published studies investigating the role of the
remote myocardium in patients developing adverse LV
remodelling18 and the role of intramyocardial haemor-
rhage and residual iron in the development of adverse
LV remodelling, respectively.19 In brief, the UK National
Research Ethics Service approved this study and 50
STEMI patients were prospectively recruited from August
2013 to July 2014 following informed consent. The study
complied with the Declaration of Helsinki. Forty-eight
patients completed the first CMR at 4±2 days post-
primary percutaneous coronary intervention (PPCI) and
40 patients had a follow-up scan at 5±2 months. The 40

patients with paired acute and follow-up scans were ana-
lysed for this study. The patient selection flow chart has
been published previously.18 Study exclusion criteria
were known previous MI and standard recognised con-
traindications to CMR (ferromagnetic implants such as
non-CMR-conditional pacemakers and implanted
cardioverter-defibrillators, ferromagnetic vascular and
endocranial clips, foreign metallic bodies to vital organs
such as the eye and brain, claustrophobia and estimated
glomerular filtration rate <30 mL/min).

Imaging acquisition
All CMR scans were performed on a 1.5 T scanner
(Magnetom Avanto, Siemens Medical Solutions) using a
32-channel phased-array cardiac coil. The imaging proto-
col included whole LV coverage for short-axis cines, LGE
and automated extracellular volume fraction (ECV)
maps were available (30 patients had whole LV coverage
and 10 patients had base, mid and apical short-axis ECV
maps) as described in our previous publication.18

Late gadolinium enhancement
LGE imaging was acquired using either a standard seg-
mented ‘fast low-angle shot’ (FLASH) two-dimensional
inversion-recovery gradient echo sequence (imaging
parameters were: bandwidth 140 Hz/pixel; echo time
=3.17 ms; repetition time =700–900 ms; flip angle =21°;
acquisition matrix =125×256; slice thickness =8 mm)
or a free-breathing, respiratory motion-corrected (FB
MOCO) single shot steady state free precession averaged
inversion recovery sequence20 (typical imaging para-
meters were: bandwidth 977 Hz/pixel; echo time
=1.48 ms; repetition time =700–900 ms; flip angle =50°;
acquisition matrix =144×256; slice thickness =8 mm)
between 10–15 min after 0.1 mmol/kg of gadoterate
meglumine (Gd-DOTA marketed as Dotarem, Guerbet
S.A., Paris, France). For both LGE sequences, the inver-
sion times were optimised to null the normal remote
myocardium (typical values 360–440 ms).
The acquisition protocols for the native and postcon-

trast MOLLI T1 maps and the method used to generate
the automated ECV maps have been described in detail
in our recent publication.18

Imaging analysis
All imaging analysis was performed using CVI42 software
(V.5.1.2 (303), Calgary, Canada).
Adverse LV remodelling was defined as a ≥20%

increase in end-diastolic volume at follow-up when com-
pared with the acute scan.17

MI quantification
The endocardial and epicardial borders were manually
drawn on all the LGE images. MI size was quantified
using Manual contouring by an experienced operator
(HB—2.5 years of experience in STEMI CMR scans ana-
lysis) and expressed as the percentage of the whole LV
(%LV). Areas of hypointense core of MVO (late MVO—
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defined as patients with a hypointense core in the areas
of the hyperenhancement on the LGE images per-
formed between 10 and 15 min) were included as part
of the MI zone. Minimal adjustments were also per-
formed if artefacts were present in the remote myocar-
dium and these artefacts were manually excluded.
Thresholds of 5-SD, 6-SD, Otsu and FWHM were

applied on these LGE images with predrawn endocar-
dial and epicardial borders to obtain corresponding MI
sizes and expressed as %LV.
For 5-SD and 6-SD (to identify signal intensities of

5-SD and 6-SD above the mean normal remote myocar-
dium, respectively), an ROI was identified in the normal
remote myocardium on every slice using the automatic
option from CVI42, with minimal manual adjustment
when required to minimise intraobserver variability.
Twenty scans (10 acute and 10 follow-up) were ran-

domly selected for interobserver and intraobserver vari-
ability for MI size quantification by Manual contouring.
Furthermore, the reproducibility of MI size by 5-SD and
6-SD when using manually drawn remote myocardial
ROI and automatic remote myocardial ROI detection
with minimal manual adjustment as illustrated in figure 1
were compared.

For the FWHM technique (to identify signal intensities
that are above 50% of maximal signal intensity of the
reference ROI),16 the automatic option was also used to
delineate an ROI in the area enhancement by LGE on
every slice.
The Otsu technique (to identify the intensity thresh-

old from the signal intensity histogram using the value
with minimal intraclass variance between low and high
intensities)21 did not require any additional ROIs as ref-
erence but did require user input to identify slices with
no LGE as normal.

Automated ECV maps
Manual ROI were drawn in the core of the MI zone
(corresponding to areas of MVO in some patients with a
hypointense core on the acute scan LGE) on the acute
and matching ROIs were copied to the follow-up maps
to obtain representative ECV values.

Statistical analysis
SPSS V.22 (IBM Corporation, Illinois, USA) was used for
the majority of the statistical analyses and MedCalc for
Windows V.15.6.1 (MedCalc Software, Ostend, Belgium)
was used for receiver operating characteristic (ROC)

Figure 1 Illustration of the steps used in the quantification of MI size. Endocardial and epicardial borders were first manually

drawn (A, B). (C) Illustrates the manual ROI delineation in the remote normal myocardium and Manual contouring of the MI (red

arrows). (D) Illustrates the automated ROI delineation. As shown by the red arrows in (D), in this case, the ROIs need minimal

manual adjustment (as shown in (E) by the red arrows) to make sure it was not in a segment containing LGE. Areas of MVO

appear as a hypointense areas (red arrow in (F)) and needed manual correction (red arrow in (G)) to include it as part of the MI.

LGE, late gadolinium enhancement; MI, myocardial infarct; MVO, microvascular obstruction; ROI, region of interest.

Bulluck H, Rosmini S, Abdel-Gadir A, et al. Open Heart 2016;3:e000535. doi:10.1136/openhrt-2016-000535 3

Coronary artery disease



comparison using the technique described by Delong
et al.22 Normality was assessed using Shapiro-Wilk
test. Continuous data were expressed as mean±SD or
median (IQR). Groups were compared using paired
Student’s t-test/Wilcoxon signed rank test or unpaired
Student’s t-test/Mann-Whitney U test where appropriate.
Categorical data were reported as frequencies and
percentages.
Coefficient of variability (CoV) was assessed by divid-

ing the SD of the differences between the two methods
by the mean.
Intraobserver and interobserver reproducibility for

Manual contouring was assessed in 20 scans using intra-
class correlation coefficient (ICC) with 95% CIs, CoV
and Bland-Altman analysis (expressed as bias ±2 SD for
limits of agreement). For 5-SD and 6-SD, intraobserver
reproducibility was performed for using manual remote
myocardial ROI delineation versus automatic remote
myocardial ROI detection in the same 20 scans.
Intermethod precision and accuracy for MI size quan-

tification was assessed as defined below:
Precision: A semiautomatic technique was considered
precise when the intermethod CoV was <10% and the
ICC was >0.900 (arbitrary cut-offs to denote good pre-
cision in the absence of a reference standard).

Accuracy: A semiautomatic technique was considered
accurate when compared with Manual contouring if
there was no statistically significant difference between
them on paired tests and no bias was present on
Bland-Altman analysis.
ROC analyses were performed to assess the diagnostic

performance for MI size by Manual contouring, 5-SD,
6-SD, Otsu and FWHM on the acute scan to predict
adverse LV remodelling.
All statistical tests were two-tailed, and p<0.05 was con-

sidered statistically significant.

RESULTS
The mean age of the patients with STEMI was 59
±13 years and 88% were men. Further details regarding
the patients’ clinical, angiographic and CMR character-
istics are listed in table 1. The mean acute MI size was
25.0±13.7%LV (Manual contouring). The mean left ven-
tricular ejection fraction (LVEF) on the acute scan was
49±8% and at follow-up was 53±10%. As expected, there
was a significant regression in MI size between the acute
scan and the follow-up scan (25.0±13.7%LV vs 17.3
±10.1%LV, p<0.001, percentage of MI regression: 32
±20%). Of the 40 patients, 26 (65%) had MVO on the
acute scan. Figure 2 illustrates an example of MI size
quantification by the five semiautomated techniques in a
paired acute and follow-up LGE short-axis slice.

Intraobserver and interobserver variability
There was excellent intraobserver (ICC of 0.996 (0.988
to 0.998; CoV: 4.3%; bias: 0.5±2.2%LV, p=0.07) and inter-
observer (ICC of 0.987 (0.968 to 0.995); CoV: 8.2%;

bias: 0.5±4.2%LV, p=0.35) reproducibility for Manual
contouring.
There was also better intraobserver reproducibility

for MI size quantification by the SD technique when
automatic remote myocardial ROI delineation was used
compared with manual drawing of remote myocardial
ROI with a narrower 95% CI for the ICC and narrower
limits of agreement on Bland-Altman analysis (manual
remote ROI: ICC of 0.990 (0.981 to 0.995): CoV: 7%;
bias: 0.1±3.9%LV, p=0.09; automatic remote ROI: ICC
of 0.999 (0.998 to 0.999); CoV: 2.3%; bias: 0.2±1.2%LV,
p=0.87).

Table 1 Clinical, angiographic and CMR characteristics

of the patients with STEMI

Details Number

Number of patients 40

Male (%) 35 (88%)

Age (year) 59±13

Diabetes mellitus 8 (20%)

Hypertension 14 (35%)

Smoking 12 (30%)

Dyslipidaemia 14 (35%)

Chest pain onset to PPCI time

(minutes)

267 (122–330)

Infarct artery (%)

LAD 24 (60%)

RCA 14 (35%)

Cx 2 (5%)

TIMI flow pre-PPCI/post-PPCI (%)

0 33 (83%)/1 (3%)

1 0 (0%)/0 (0%)

2 3 (8%)/8 (20%)

3 4 (10%)/31 (78%)

CMR findings

LV EDV (mL)

Acute 172±38

Follow-up 182±49*

LV ESV (mL)

Acute 90±30

Follow-up 88±38

LV EF (%)

Acute 49±8

Follow-up 53±10*

LV mass (g)

Acute 112±35

Follow-up 104±26

Reference MI size (%LV)

Acute 25.0±13.7

Follow-up 17.3±10.1*

MVO (%) 26 (65%)

*Denotes statistically significant difference between the acute and
follow-up values. Actual p values previously reported.18

CMR, cardiovascular magnetic resonance; Cx, circumflex artery;
EDV, end diastolic volume; EF, ejection fraction; ESV, end systolic
volume; LAD, left anterior descending artery; LV, left ventricular;
MI, myocardial infarct; MVO, microvascular obstruction; RCA, right
coronary artery; STEMI, ST segment elevation myocardial
infarction; TIMI, thrombolysis in myocardial infarction.
PPCI: primary percutaneous coronary intervention
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Acute MI size quantification
Six-SD (CoV: 5.1%; ICC: 0.982 (0.966 to 0.991); MI size:
24.9±14.0%LV, p=0.81; bias: 0.1±5.2%LV) and FWHM
(CoV: 6.4%; ICC: 0.970 (0.943 to 0.984); MI size: 24.1
±13.1%LV, p=0.066; bias: 1.0±6.2%LV) precisely and
accurately quantified acute MI size when compared with
Manual contouring (25.0±13.7%LV). In contrast, 5-SD
(CoV: 6.8%; ICC: 0.971 (0.811 to 0.990); MI size: 27.4
±14.6%LV, p<0.0001; bias: −2.4±5.0%LV) and Otsu
(CoV: 8.4%; ICC: 0.953 (0.441 to 0.987); MI size: 28.4
±13.9%LV, p<0.0001; bias: −3.4±5.2%LV) were precise
but not accurate as they both overestimated acute MI
size (figure 3).

Chronic MI size quantification
Only 6-SD (CoV: 6.0%; ICC: 0.952 (0.911 to 0.974); MI
size: 17.2±9.7%LV, p=0.88; bias: −0.1±6.2%LV) precisely
and accurately delineated chronic MI size when com-
pared with Manual (17.3±10.1%LV). As on the acute
scan, 5-SD (CoV: 6.5%; ICC: 0.949 (0.752 to 0.982); MI
size: 19.5±10.4%LV, p<0.0001; bias: −2.2±5.1%LV) and
Otsu (CoV: 7.4%; ICC: 0.934 (0.788 to 0.973); MI size:
19.5±10.4%LV, p<0.001; bias −2.1±6.2%LV) were precise
but not accurate as they overestimated chronic MI size.
On the other hand, FWHM (CoV: 8.1%; ICC: 0.910
(0.755 to 0.957); MI size: 15.1±8.7%LV, p<0.001; bias: 2.2
±7.1%LV) was precise but not accurate as it underesti-
mated chronic MI size (figure 3).

Figure 2 Acute and follow-up MI

size quantification by different

techniques. This is an example of

a paired acute (3 days) and

follow-up (6 months) short-axis

LGE of a patient with an anterior

STEMI reperfused by PPCI. This

example highlights the presence

of MVO on the acute scan

(orange highlighted areas) and

subsequent underestimation of MI

size by FWHM on the follow-up

scan. FWHM, full width half

maximum; LGE, late gadolinium

enhancement; MI, myocardial

infarct; MVO, microvascular

obstruction; STEMI, ST segment

elevation myocardial infarction;

PPCI, primary percutaneous

coronary intervention.

Figure 3 Comparison of acute and follow-up MI size quantification by different techniques. On the acute scan (red bars), MI

size by FWHM and 6-SD was similar to Manual whereas on the follow-up scan (blue bars), FWHM underestimated MI size and

6-SD remained similar to Manual. On the acute and follow-up scans, 5-SD and Otsu overestimated MI size. *Denotes statistically

significant difference. FWHM, full width half maximum; MI, myocardial infarct.
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Impact of MVO on MI size quantification
All patients with MVO (26/40) had complete resolution
of the dark core on the LGE images on the follow-up
scan. The percentage of MI size regression was signifi-
cantly greater for those without MVO (with MVO:
27±17%, without MVO: 42±22%, p=0.028). As was the
case for the whole cohort, there was no significant differ-
ence between FWHM, Manual contouring and 6-SD for
those with and without MVO, and 5-SD and Otsu overes-
timated acute MI size.
On the follow-up scan, FWHM remained similar to

Manual contouring for those without previous MVO but
underestimated chronic MI size only for those with pre-
vious MVO. The three other techniques maintained
their previous relationship for those with and without
previous MVO: 6-SD was similar to Manual contouring
but 5-SD and Otsu were significantly higher than
Manual contouring. Further details for the comparison
of MI size in those with and without MVO are available
in table 2 and the Bland-Altman plots in figure 4.
On the acute scan, the median ECV in the infarct

core was 59 (40–72)% in those without MVO and was
significantly higher than those with MVO (34 (28–40)%,
p=0.02). On the other hand, at follow-up, the median
ECV in those with MVO on the acute scan was signifi-
cantly higher than those without previous MVO.
Figure 5 shows an example of two patients with paired
acute and follow-up LGE and corresponding ECV map
(Patient A had no MVO on the acute scan and Patient B
had a large area of MVO. The corresponding area of
MVO on the follow-up scan had a very high ECV
of 85%).

Influence of LGE sequence choice on MI size
quantification
The quantification methods were also compared for
each subset of the LGE sequences (FLASH: n=24; FB
MOCO: n=16). As for the whole cohort, 5-SD and Otsu
were significantly higher than Manual and 6-SD were,
similar to Manual contouring for both LGE sequences
on the acute and follow-up scans. FWHM was signifi-
cantly lower than Manual contouring for both LGE
sequences on the follow-up scans. However, on the acute
scans, FWHM was similar to Manual for FLASH but sig-
nificantly lower for the FB MOCO sequence (FB
MOCO: Manual: 23.4±15.9%LV vs FWHM: 22.6±15.5%
LV, p=0.001). Further details are shown in table 3 and
the Bland-Altman plots in figure 6. Of note, the inci-
dence of MVO was similar in each group (FB MOCO
63%, FLASH 67%, p=0.52) and therefore this difference
in MI size for FB-MOCO seen was unlikely confounded
by MVO.

Acute MI size quantification and adverse LV remodelling
Of the 40 patients, 8 (20%) developed adverse LV
remodelling. The diagnostic performances of Manual
contouring, 5-SD, 6-SD, Otsu and FWHM were all very
high with all five areas under the curve of ≥0.90 as
shown in table 4 and figure 7. ROC curve comparisons
showed no significant differences between them
(Manual contouring vs: 5-SD, p=0.14; 6-SD, p=1.0; Otsu,
p=0.14; FWHM, p=0.56). The sensitivities and specifici-
ties and cut-off values for acute MI size to predict
adverse LV remodelling by the different techniques are
listed in table 4.

Table 2 MI size quantification in patients with and without MVO

Manual contouring Other techniques p Value Manual contouring Other techniques p Value

Without MVO (n=14)

Acute MI size (%LV) Chronic MI size (%LV)

12.6±8.9 5-SD

14.4±10.8

0.039* 7.7±5.9 5-SD

9.9±7.3

0.02*

6-SD

12.2±9.3

0.47 6-SD

8.6±6.8

0.10

Otsu

15.9±10.4

0.002* Otsu

9.5±6.6

0.03*

FWHM

12.0±8.4

0.49 FWHM

6.9±4.6

0.11

With MVO (n=26)

Acute MI size (%LV) Chronic MI size (%LV)

31.7±10.8 5-SD

34.4±11.3

<0.0001* 22.5±7.8 5-SD

24.7±8.1

<0.0001*

6-SD

31.7±11.0

0.95 6-SD

21.8±7.7

0.38

Otsu

35.1±10.5

<0.0001* Otsu

24.8±7.8

0.003*

FWHM

30.5±10.3

0.087 FWHM

19.6±6.9

0.002*

*denotes statistical significance.
FWHM, full width half maximum; LV, left ventricle; MI, myocardial infarct; MVO, microvascular obstruction.
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Acute MI size and LVEF
Acute MI size analysed by all four semiautomated techni-
ques correlated equally well with acute LVEF (Pearson’s
correlation coefficients of −0.58 for 5-SD, −0.57 for
6-SD, −0.61 for Otsu and −0.58 for FWHM) and LVEF at
5 months (with the same Pearson’s correlation coeffi-
cients of −0.67 for all four techniques).

DISCUSSION
The main findings from this study are as follows: (1) the
6-SD technique was as accurate as Manual for acute and
chronic MI size quantification; (2) FWHM performed as
well as Manual for acute MI size quantification by
FLASH LGE sequence and was significantly lower than
Manual by FB MOCO LGE sequence; (3) FWHM under-
estimated chronic MI size and this predominantly
occurred in patients with MVO on the acute scan; (4)
5-SD and Otsu consistently overestimated acute and
chronic MI size when compared with Manual contour-
ing; and (5) All four semiautomated techniques were
precise (all with acceptable CoV and excellent

intermethod agreement), and on the acute scan, they all
performed equally well to predict the development of
adverse LV remodelling and correlated equally well with
LVEF at follow-up.
Since the introduction of PPCI, mortality due to acute

STEMI has declined over the past 2 decades,23 and 1-year
mortality has reached a plateau at around 11%.24

However, despite a decline in mortality, morbidity post
MI remains significant.25–29 Morbidity and mortality post
STEMI is closely related to the final MI size. Recently, a
meta-analysis of 2632 patients showed that for every 5%
increase in MI size, there was a 20% increase in the rela-
tive hazard for all-cause death and heart failure hospital-
isation at 1 year.30 In a separate meta-analysis of 1025
patients, the presence of MVO was found to be an inde-
pendent predictor of major adverse cardiovascular events
but MI size together with MVO provided incremental
prognostic information and those with MI size ≥25% and
with MVO had worse outcomes.31 Therefore to further
improve outcomes in these patients, MI size by CMR is
increasingly being used as a robust surrogate marker in
studies assessing the effectiveness of cardioprotective

Figure 4 Bland-Altman plots of the acute MI size using the four semiautomated methods against Manual and differentiated by

the LGE sequence used. The blue dots represent patients with FLASH LGE sequence and the green dots represent patients with

FB MOCO LGE sequence. There was no bias between 6-SD and Manual and FWHM and Manual and all CoV were within

acceptable limits. However, compared with Manual, FWHM was dependent of the LGE sequence used. Five-SD and Otsu

overestimated acute MI size. CoV, coefficient of variability; FB MOCO LGE, free breathing and motion corrected late gadolinium

enhancement; FLASH LGE, fast low-angle shot late gadolinium enhancement; FWHM, full width half maximum; LGE, late

gadolinium enhancement; MI, myocardial infarct.

Bulluck H, Rosmini S, Abdel-Gadir A, et al. Open Heart 2016;3:e000535. doi:10.1136/openhrt-2016-000535 7

Coronary artery disease



Figure 5 Paired LGE and automated ECV maps of two patients with and without MVO. Both patients presented with an inferior

STEMI (red arrows). Patient A had no MVO on the acute scan and Patient B had a large area of MVO. The corresponding area

of MVO on the follow-up scan had a very high ECV of 85% for Patient A compared with an ECV of 52 for Patient B. ECV,

extracellular volume fraction; LGE, late gadolinium enhancement; MVO, microvascular obstruction; STEMI; ST segment elevation

myocardial infarction.

Table 3 MI size quantification using different LGE sequences

Manual Other thresholds p Value Manual Other thresholds p Value

FB MOCO LGE sequence (n=16)

Acute MI size (%LV) Chronic MI size (%LV)

23.4±15.9 5-SD

26.3±17.4

0.02* 17.1±12.3 5-SD

19.7±13.1

0.001*

6-SD

24.3±15.9

0.13 6-SD

18.0±12.2

0.21

Otsu

25.9±16.8

0.003* Otsu

18.1±11.7

0.03*

FWHM

22.6±15.5

0.001* FWHM

14.3±9.7

0.005*

FLASH LGE sequence (n=24)

Acute MI size (%LV) Chronic MI size (%LV)

26.0±12.2 5-SD

28.1±12.8

<0.0001* 17.5±8.5 5-SD

19.3±8.7

0.001*

6-SD

25.3±12.1

0.15 6-SD

16.7±7.8

0.25

Otsu

30.1±12.1

<0.0001* Otsu

20.3±9.7

0.001*

FWHM

25.0±11.5

0.24 FWHM

15.7±8.2

0.033*

*denotes statistical significance.
FB MOCO LGE, free breathing and motion corrected late gadolinium enhancement; FLASH LGE, fast low-angle shot late gadolinium
enhancement; FWHM, full width half maximum; LV, left ventricle; MI, myocardial infarct; MVO, microvascular obstruction.

8 Bulluck H, Rosmini S, Abdel-Gadir A, et al. Open Heart 2016;3:e000535. doi:10.1136/openhrt-2016-000535

Open Heart



therapies (such as remote ischaemic conditioning,32

metoprolol33 and exenatide34). Although LGE by CMR is
considered the gold standard for MI size quantifica-
tion,5 6 13 there is currently no established semiauto-
mated technique for its quantification and our study
provides several important insights on this topic. First,
6-SD is the most suitable semiautomated technique in
studies where accurate quantification of acute MI size is
important (eg, randomised controlled trials assessing the
effectiveness of cardioprotective therapies on reducing
acute and chronic MI size), as it performed as well as
Manual contouring. Second, the performance of FWHM
against Manual is influenced by the presence of MVO

and in studies requiring an accurate quantification of
chronic MI size as an end point (eg, randomised con-
trolled trials assessing cardioprotective therapies on redu-
cing MI size at 3–6 months), 6-SD would be preferred to
FWHM given that the latter appeared to underestimate
chronic MI size especially in patients who had MVO on
the acute scan. Third, for those clinical studies only
requiring precise (good agreement but with some
residual bias) MI size quantification, such as registries or
prospective observational studies, and for those aiming
to assess other surrogate markers such as LVEF or
adverse LV remodelling, any of these four semiautomatic
techniques may be acceptable for quantifying MI size.

Figure 6 Bland-Altman plots of the chronic MI size using the four semiautomated methods against Manual and differentiated by

the previous MVO or no MVO on the acute scan. The black dots represent patients with MVO on the acute scan and the red dots

represent patients with no MVO on the acute scan. There was no bias between 6-SD and Manual and all CoV were within

acceptable limits. FWHM underestimated chronic MI size, especially in those with previous MVO. 5-SD and Otsu overestimated

chronic MI size. CoV, coefficient of variability; FWHM, full width half maximum; MI, myocardial infarct; MVO, microvascular

obstruction.

Table 4 Performance of the five techniques for quantifying acute MI size on predicting adverse LV remodelling at follow-up

Acute MI quantification AUC (95% CI) Sensitivity (%) Specificity (%) Acute MI cut-off value (%LV)

Manual contouring 0.93 (0.82 to 1.00) 88 91 37

5-SD 0.91 (0.79 to 1.00) 88 87 38

6-SD 0.90 (0.83 to 1.00) 88 95 35

Otsu 0.90 (0.77 to 1.00) 88 91 41

FWHM 0.92 (0.80 to 1.00) 88 95 35

AUC, area under the curve; FWHM, full width half maximum; LV, left ventricle; MI, myocardial infarct.
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As part of a previous study looking at the role of the
remote myocardial ECV in patients developing adverse
LV remodelling,18 we noted that those with MVO on the
acute scan displayed an area of high ECV in the infarct
core at follow-up. We therefore hypothesised that areas
on the follow-up CMR previously occupied by MVO
would likely affect the highest signal intensity and
impact on MI size quantification, compared with those
without previous MVO when using the FWHM tech-
nique. This study confirmed that FWHM underestimated
chronic MI size and this was due to the very high signal
intensities on the follow-up LGE images in the location
previously occupied by MVO on the acute LGE images,
which after being resorbed, was left with a relatively
large interstitial space. These findings were confirmed
by the very high ECV of the MI core on the follow-up
scan in those with previous MVO. As the FWHM uses
the signal intensities that are above 50% of the maximal
signal intensity within the scar, some of the scar tissues
with ‘intermediate’ signal intensities were classified as
having signal intensities within ‘normal’ range in these
patients, resulting in an underestimation of chronic
MI size. The ‘ECV’ of the MVO on the acute scan was
low but this was a reflection of the inability of LGE to
penetrate areas of MVO and failure to achieve pseudo-
equilibrium rather than a true ECV value for MVO.
FB MOCO has previously been shown to generate

similar spatial resolution and contrast to noise ratio in
the chronic MI setting.35 Furthermore, a large study,
comparing scars from different aetiologies in 390
patients, showed that the LGE size was similar using

both LGE techniques, analysed by FWHM.36 However,
they did not specifically looked at the group with acute
MI. The reason for FWHM to generate a smaller acute
MI size than Manual contouring with FB MOCO in our
study is not clear but may be due to a difference in con-
trast to noise ratio between the acute infarct zone and
the peri-infarct zone in the acute setting. Unfortunately,
we did not acquire paired FB MOCO and FLASH LGE
on the same patients for comparison in the acute
setting and this warrants further investigation in larger
studies.
Several studies have investigated the optimal technique

for MI size quantification and these are summarised in
table 5. Manual contouring is considered the reference
standard7 13 because in experienced hands, it has been
shown to be more reproducible7 and does not require
an ROI in the remote myocardium (required for the SD
technique) or in the hyperenhanced area (required for
FWHM technique). Therefore, any artefacts in the
remote myocardium will not interfere with the Manual
contouring method and no additional adjustments are
required when MVO is present as this area would be
manually included as part of the MI size from the
outset. However, Manual contouring has been shown to
be time-consuming,12 14 and in inexperienced hands,
may be subjective, especially when areas of grey peri-
infarct zone are present.13 A semiautomated technique
is highly desirable as this would improve workflow con-
siderably and would be more objective. Although
FWHM has consistently been shown to be more repro-
ducible,7 10–12 other studies have shown FWHM to

Figure 7 ROC curves for acute

MI size by five techniques to

predict adverse LV remodelling.

This is the ROC curves

comparison to assess the

diagnostic performance of the five

quantification techniques to

predict an adverse LV

remodelling. LV, left ventricular;

MI, myocardial infarct; ROC,

receiver operating characteristic.

10 Bulluck H, Rosmini S, Abdel-Gadir A, et al. Open Heart 2016;3:e000535. doi:10.1136/openhrt-2016-000535

Open Heart



Table 5 Studies investigating MI size quantification techniques by CMR

Study No.

Techniques

compared Software Result

Zhang et al 201615 114 AMI patients with matching

follow-up scan at 6 months at 3 T

Manual, FWHM

(20–50%), 1–9-SDs

Mass FWHM 30% and 3-SD was closest to manual for total infarct

size and FWHM45% and 6-SD was closest to manual for

core infarct size

Dash et al 201537

(conference

abstract)

19 AMI porcine models FWHM

5-SD

6-SD

CVI42 6-SD was more accurate to quantify MI size. FWHM and

5-SD overestimated MI size when compared with histology

McAlindon et al

20157
40 AMI at 1.5 T Manual contouring

2,3,5-SDs

Otsu

FWHM

CVI42 Manual contouring and FWHM provided the lowest inter,

intraobserver and interscan variability for MI size

Khan et al 201512 10 AMI 1.5 T and 10AMI 3 T 5–8-SDs

FWHM

Otsu

CVI42 FWHM is accurate and reproducible

5-SD and Otsu overestimate MI size at 1.5 and 3 T. FWHM

correlated strongest with LV ejection fraction

Vermes et al 201310 28 AMI

30 myocarditis

Visual

2,3,5-SDs

Otsu

FWHM

CVI42 Otsu and 5-SD did not differ

FWHM underestimated AMI LGE by 15%

Otsu and FWHM showed best intraobserver and

interobserver reproducibility

Flett et al 201111 20 AMI

20 CMI

20 HCM

Manual contouring

2–6-SDs

FWHM

ImageJ (purpose-written

macro)

AMI: No difference between Manual contouring and 6-SD

CMI: No difference between Manual contouring, 6-SD and

5-SD

FWHM similar to Manual contouring and more reproducible

Beek et al 20099 38 CMI with hibernating

myocardium (CMR 1 month

before and 6 months after

revascularisation)

2–8-SDs

FWHM

Mass 6-SD showed the highest accuracy to predict segmental

functional recovery following revascularisation

Heiberg et al 200840 20 AMI

20 CMI

8 AMI porcine models

Weighted automated

method vs 2–8-SDs

Segment The weighted approach provides automatic quantification of

myocardial infarction with higher accuracy and lower

variability than a dichotomous algorithm

Hsu et al 200641/

Hsu et al 200642
11 AMI canine models

11 AMI and 9 CMI

Manual contouring

2-SD

FWHM

FACT

Interactive display

language/Microsoft visual

C++

The automated feature analysis and combined thresholding

(FACT) accurately measured MI size in vivo and ex-vivo—

more accurate than Manual contouring and SD

Manual contouring and SD overestimated infarct size

compared with FACT

Bondarenko et al

20058
15 CMI 2–6-SDs No difference between visual analysis and 5-SD

Amado et al 200416 13 AMI canine models Manual contouring

1–6-SDs

FWHM

Cine tool FWHM correlated best with postmortem data

AMI, acute myocardial infarction; CMI, chronic myocardial infarction; CMR, cardiovascular magnetic resonance; FWHM, full width half maximum; MI, myocardial infarct.
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underestimate acute and chronic MI size.10 15 Recently
FWHM45%15 instead was found to be similar to Manual
in chronic MI. However, not all specialist software for MI
size quantification allows the adjustment of the signal
intensity threshold for the FWHM technique.
Our study is the first to show that in patients with

MVO on the acute scan, FWHM underestimates chronic
MI size on the follow-up scan at 5 months and provided
some mechanistic insights using automated ECV maps.
Beek et al9 previously showed that 6-SD had the highest
accuracy to predict segment wall recovery in a cohort of
patients with chronic MI with hibernating myocardium.
Flett et al11 showed no difference between Manual con-
touring and 6-SD in their acute and chronic MI cohorts
and Dash et al37 in a conference abstract recently
showed that 6-SD was the most accurate to quantify MI
size in a porcine model when compared with histology.
Most recently, Zhang et al15 have also shown that 6-SD
was similar to Manual contouring for acute and
follow-up MI size at 3 T. However they did not compare
Otsu in their study and they did not investigate the
impact of MVO. Therefore, our study is the first to assess
the performance of the four most promising semiauto-
mated techniques against Manual in paired acute and
follow-up scans and our finding that the 6-SD technique
being the most robust is consistent with some of the pre-
vious studies.9 11 15 37 McAlindon et al7 recently showed
that Manual contouring provided the lowest interobser-
ver, intraobserver and interscan variability, but they did
not assess 6-SD in their study. However, Khan et al12

recently showed 6-SD to be higher than Manual contour-
ing in acute MI size quantification, but they only
included 10 patients and the remote myocardial ROI
was manually drawn. We used the automatic option for
ROI delineation with minimal user input when required
and we showed that the reproducibility of the n-SD tech-
nique is improved when using this approach.

Limitations
We only recruited a small number of patients over a
12 months period as our centre (the then Heart
Hospital, now merged with Barts Heart Centre) was a
low-volume centre for PPCI. However, consecutive
patients were screened and selection bias was unlikely.
Furthermore, the number of patients included in this
study is similar in size to most studies listed in table 5.
We only compared four semiautomated techniques
against Manual contouring but we specifically chose
those techniques with the most promising results so far
and that are widely available in most commercial soft-
ware for MI size quantification. The automated method
previously shown to be very promising and accounting
for partial volume effect by Heiberg et al38 is only avail-
able from one CMR analysis software and we were not
able to include it in this study using CVI42. Likewise,
45% FWHM used by Zhang et al15 was not available on
CVI42 and we were not able to assess its performance at
1.5 T in our cohort. We did not perform intraobserver

and interobserver variability for all techniques as this
has already consistently been performed in several previ-
ous studies7 10–12 15 and was not the main focus of our
study. We used Manual contouring as the reference
standard7 given that histological validation was not pos-
sible in this study and we showed excellent interobserver
and intraobserver variability. We did not analyse the
impact of early MVO on the quantification method but
the majority of our patients with early MVO also had
late MVO (26/31, 84%) and the results would very likely
be the similar. The number of patients with early MVO
only was small and we did not analyse this group separ-
ately. We only assessed the performance of acute MI size
on the development of adverse LV remodelling.
However, other CMR factors such as MVO31 and intra-
myocardial hemorrhage39 have also been linked to the
development of LV remodelling and these were not
assessed in this study. We only analysed CMR performed
at one magnetic field strength by one vendor and
further studies are needed to assess whether our find-
ings are applicable to other vendors and at 3 T. We did
not report on clinical outcomes due to our small sample
size. The performance of these different semiautomated
techniques on clinical outcomes warrants further evalu-
ation in larger studies.

CONCLUSIONS
Six-SD was the most accurate for acute and chronic MI
size and should be the preferred semiautomatic tech-
nique in randomised controlled trials. Five-SD, Otsu and
FWHM were equally precise but 5-SD and Otsu overesti-
mated acute and chronic MI size and FWHM underesti-
mated chronic MI size. However, all four semiautomated
techniques performed equally well to predict adverse LV
remodelling and correlated equally well with LVEF at
follow-up. Therefore, 5-SD, 6-SD, Otsu and FWHM may
all be used when precise MI size quantification may be
sufficient, for example, in observational studies.
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