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This article is motivated by a formulation of biotic self-organization in Friston (2013),
where the emergence of “life” in coupled material entities (e.g., macromolecules) was
predicated on bounded subsets that maintain a degree of statistical independence
from the rest of the network. Boundary elements in such systems constitute a Markov
blanket; separating the internal states of a system from its surrounding states. In
this article, we ask whether Markov blankets operate in the nervous system and
underlie the development of intelligence, enabling a progression from the ability to
sense the environment to the ability to understand it. Markov blankets have been
previously hypothesized to form in neuronal networks as a result of phase transitions
that cause network subsets to fold into bounded assemblies, or packets (Yufik and
Sheridan, 1997; Yufik, 1998a). The ensuing neuronal packets hypothesis builds on
the notion of neuronal assemblies (Hebb, 1949, 1980), treating such assemblies as
flexible but stable biophysical structures capable of withstanding entropic erosion.
In other words, structures that maintain their integrity under changing conditions. In
this treatment, neuronal packets give rise to perception of “objects”; i.e., quasi-stable
(stimulus bound) feature groupings that are conserved over multiple presentations
(e.g., the experience of perceiving “apple” can be interrupted and resumed many
times). Monitoring the variations in such groups enables the apprehension of behavior;
i.e., attributing to objects the ability to undergo changes without loss of self-identity.
Ultimately, “understanding” involves self-directed composition and manipulation
of the ensuing “mental models” that are constituted by neuronal packets, whose
dynamics capture relationships among objects: that is, dependencies in the behavior
of objects under varying conditions. For example, movement is known to involve
rotation of population vectors in the motor cortex (Georgopoulos et al., 1988, 1993).
The neuronal packet hypothesis associates “understanding” with the ability to detect
and generate coordinated rotation of population vectors—in neuronal packets—in
associative cortex and other regions in the brain. The ability to coordinate vector
representations in this way is assumed to have developed in conjunction with the ability
to postpone overt motor expression of implicit movement, thus creating a mechanism
for prediction and behavioral optimization via mental modeling that is unique to
higher species. This article advances the notion that Markov blankets—necessary for
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the emergence of life—have been subsequently exploited by evolution and thus ground
the ways that living organisms adapt to their environment, culminating in their ability to
understand it.

Keywords: understanding, consciousness, neuronal packets, variational free energy, thermodynamic free energy

INTRODUCTION

This article offers a synthesis of recent developments in
theoretical neurobiology and systems neuroscience that may
frame a theory of understanding. We suggest that cognitive
capacities, in particular understanding, are an emergent property
of neuronal systems that possess conditional independencies.
In this view, cognition is predicated on associative neuronal
groups—or assemblies—that form bounded structures (neuronal
packets) whose Markov blankets maintain a degree of statistical
independence from each other. Such quasi-stable, quasi-
independent structures capture regularities in the sensorium,
giving rise to the perception of ‘‘objects’’; namely, the external
causes of sensations. These neuronal packets are context-
sensitive but maintain their structural integrity. They are
composed to form mental (generative) models that reflect the
coordinated dynamics of ‘‘objects’’ in the world that cause
sensory inputs.

Our basic thesis is that conditional independencies in the
causal structure of the world necessarily induce neuronal
packets with a similar statistical structure. In effect, the brain
‘‘carves nature at its joints’’ using statistics—to capture the
interaction among the factors or causes of sensory data. The
implicit factorization of probabilistic representations provides
an incredibly efficient process to infer states of the world
(and respond adaptively). In physics, this carving into marginal
probability distributions (i.e., factors) is known as a mean
field assumption. Here, we suggest that many aspects of
the brain can be understood in terms of a mean field
assumption; from the principle of functional segregation,
through to the dynamic and context-sensitive maintenance of
neuronal packets, groups or cell assemblies. The ensuing theory
casts the interaction between the brain and the environment
as an allocation of (representational) resources; serving to
minimize free energy and thereby maintain homoeostasis (and
allostasis).

Variational free energy will figure recurrently in our
arguments. Variational free energy is a statistical construct that
provides a mathematical bound on surprise or self information
(i.e., the improbability of some sensory data, under a generative
model of those data). Crucially, free energy is a functional
of a (posterior) probability distribution or ‘‘belief’’ about the
causes of sensory data—as opposed to a (surprise) function of
sensory data per se. This means that when a system minimizes
its free energy, it is implicitly optimizing its ‘‘belief’’ about the
objects that are causing sensory input—based upon an internal
or generative model of how that input was caused. Free energy
is the difference between accuracy and complexity. This means
that minimizing free energy provides an accurate explanation
for input that is as simple as possible (where complexity can

be construed as a cost function). This complexity reducing
aspect of free energy minimization will be important in what
follows.

From the point of view of a phenotype, success rests on
a deep ‘‘understanding’’ or modeling of the environment. In
other words, phenotypes that anticipate and avoid surprising
(high free energy) exchanges with their environment possess
a generalized form of homoeostasis and implicitly minimize
surprise and uncertainty. ‘‘Understanding’’ can therefore be
construed as a resolution of surprise and uncertainty about
causal structure and relationships in the environment—and
in particular the relationship of self to the environment
(and others). Differences in adaptive efficiency—between
humans and other species—may be determined by formal
differences in the generative models used to predict and
understand environmental changes over different temporal
scales: for example, deep models with hierarchically organized
representations vs. shallow models that preclude context-
sensitive repertoires of behavior.

This article starts with an overview, followed by four sections:
section I reviews theories of understanding in the literature,
section II outlines our theoretical proposal, section III presents
some empirical findings and examines the correspondence,
or absence of such, between our theory and other proposals,
section IV re-visits our main suggestions, placing them at
the intersection of thermodynamics, information and control
theories in systems neuroscience. Our focus in this section is
on reconciling the variational (free energy) principles (based
upon statistical formulations) with the thermodynamic and
homoeostatic imperatives of living organisms—and how these
imperatives may furnish a theory of understanding.

Overview
We pose the following questions:

1. What is ‘‘understanding’’?
2. What does ‘‘understanding’’ contribute to the overall

function performed by the nervous system?
3. What are the underlying mechanisms?
4. How do mechanisms—that can be described in terms of

physical processes or information processes (abstracted from
physics)—reconcile in a theory of understanding?

5. How does the theory reconcile current views concerning the
anatomy and functional architecture of the nervous system?

6. How can one express the theory in a tractable formalism?
7. What is the difference between learning (without

understanding) and (learning with) understanding?
8. If the formalism is tractable, what would it entail?
9. What is the key proposal that follows from these

considerations?
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The article claims no complete answers but suggests where
useful answers could be sought. Our framework is system-
theoretic, focusing on the general principles of operation in the
nervous system. We call on eleven notions: Markov blankets,
neuronal packets, self-adaptive optimization, folding, enfolding,
unfolding, virtual associative networks, mental modeling,
negentropy generation, surface tension and cognitive effort.
These and other notions have been elaborated previously (Yufik,
1998a, 2002, 2013; Friston, 2013). For convenience, they are
rehearsed briefly in a glossary (please see ‘‘Glossary of Terms’’
below) and will be unpacked as necessary throughout the article.

Glossary of Terms
A Markov blanket is a set of nodes in a network forming an
interface between the nodes that are external and internal to
the blanket. The conditional dependencies among the nodes
endow internal and external nodes a degree of statistical
independence within the network: i.e., they are conditionally
independent given the states of the nodes in the Markov
blanket.

Neuronal packets are bounded assemblies (subnetworks)
forming spontaneously in associative networks and possessing
boundary energy barriers that separate them from their
surrounds. Neuronal packets are physical instantiations of
Hebbian assemblies, as opposed to information processing
abstractions, leading to the conclusion that free energy
barriers must exist at the assembly boundary (Yufik,
1998a). This notion predates recent formulations of memory
systems as physical devices, as opposed to circuit theory
abstractions, and suggests that free energy barriers must
exist to ‘‘protect’’ memory states from dissipation (dubbed
‘‘stochastic catastrophe’’; Di Ventra and Pershin, 2013). Hebbian
assemblies devoid of protective energy barriers are subject to
‘‘stochastic catastrophe’’ and dissipate quickly: hence, neuronal
packets.

Self-adaptive resource optimization is taken to be a principle of
operation in the nervous system: the neuronal packet hypothesis
views cognitive processes and cognitive development as an
optimization of neuronal resources, and considers spontaneous
aggregation of neurons into packets as the key mechanism.
Thermodynamic energy efficiency is the optimization criteria:
the system seeks to maximize extraction of free energy from the
environment while minimizing internal energy costs incurred
in mobilizing and firing neurons (Yufik, 2002). Resource
optimization implies adaptation to changes in the environment
as well as to those occurring inside the system (hence, the
self-adaptation). The notion that spontaneous aggregations
(assemblies) of neurons constitute functional units in the
nervous system was originated by Hebb, and continues to
play a prominent role in theories of neuronal dynamics that
focus on the mechanisms of coordination, segregation and
integration (e.g., Bressler and Kelso, 2001; Razi and Friston,
2016).

Folding denotes the spontaneous formation of regions in
networks of interacting units acquiring a degree of statistical
independence from their surrounds (i.e., formation of Markov

blankets at the boundary). We assume that life emerges in
networks that are amenable to folding; thereby regulating
material and energy flows across the boundary. This article offers
a unifying theoretical framework and explanatory principle for
life (and intelligence) that rests on the formation of Markov
blankets. The synthesis may reconcile thermodynamic and
information-theoretic accounts of intelligence.

Enfolding and unfolding denote cognitive (deliberate, self-
directed) operations on packets: unfolding operates on the
internal states of a packet while enfolding treats packets as
functional units. Mathematically, enfolding involves computing
packet response vectors (the sum of neuronal response vectors),
while unfolding reverts to the constituent response vectors.
Cognitive processes alternate between enfolding and unfolding;
namely, alternating between integrative and focused processing
modes. For example, alternations between groups of units
(‘‘situations’’ comprising interacting ‘‘objects’’) and a focus
on particular features of such units (‘‘objects’’) and their
changes as the situation unfolds. Computationally, the process
alternates between matching packet response vector to the
input and matching neuronal response vectors. Perceptually,
the process manifests, e.g., in grouping visual targets into
units, or ‘‘virtual objects’’ and tracking the units, alternating
with focusing on and tracking individual targets (Yantis,
1992).

Virtual associative networks denote associative networks
undergoing self-partitioning (folding) into packets.
Mathematically, packets are obtained as minimum-weight
cutsets (Luccio-Sami, or LS-cutsets) in networks where nodes
are neurons and link weights are determined by the relative
frequency of their co-firing (Hebb’s co-firing rule). LS-cutsets
‘‘carve out’’ subsets (packets), such that internal nodes are
connected more strongly to each other than to external nodes.
In this way, self-partitioning into packets produces a coarse
representation of statistical regularities in the environment.
Statistically, the nodes of a packet—from which the LS links
emanate—constitute its Markov blanket. In other words,
they form a boundary, engendering a degree of statistical
independence between the packet and its surrounds. Physically,
the independence is maintained by energy barriers. The
process is similar to structure acquisition in unsupervised
learning, except that the quality of learning is adjudicated by
thermodynamic constraints. Figuratively, neuronal packets
can be viewed as Hebbian assemblies ‘‘wrapped’’ in Markov
blankets.

Mental modeling denotes self-directed (deliberative,
attentive) composition of packets into groups (mental
models) such that mutual constraints in the packets’ responses
can be explored in search of a best fit between implicit
models of stimuli. Attaining a good enough fit underlies
the experience of reaching, grasp, or understanding. The
process improves on and fine-tunes the results of spontaneous
packet formation. Mental modeling allows anticipation and
simulation of future conditions, and initiating preparations
before their onset (anticipatory mobilization of neuronal
resources), thus providing a mechanism of neuronal resource
optimization.
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Understanding is a form (component) of intelligence.
Intelligence denotes the ability of a living organism to vary
its responses to external conditions (stimuli) in a manner that
underwrites its survival; e.g., a sunflower following the sun is a
manifestation of ‘‘plant intelligence’’ (Trevawas, 2002). Learning
is a form of intelligence involving memory and subsequent
reproduction of condition-response associations. On the present
theory, understanding denotes the ability to compose and
manipulate mental models representing persistent stimuli
groupings, or ‘‘objects’’, their behavior under varying conditions,
and different forms of behavior coordination (i.e., relations
between objects). Understanding overcomes the inertia of prior
learning and enables construction of adequate responses under
novel and unfamiliar circumstances.

Negentropy generation denotes production of information and
increases in the order of a system as a result of internal processes.
The distribution of weights in associative networks is the
result of information intake from the environment (negentropy
extraction). Self-directed composition of packets into models
increases internal order, without further information intake and
without impacting the weights; hence, negentropy generation.
Mental modeling amounts to endogenous production of
information requiring energy expenditure, the payoff is an
increase in adaptive efficiency; i.e., the ability to extract energy
from the environment under an expanding range of itinerant
conditions. This mechanism enables productive thinking that
is sustained by information inflows but is not limited by
them.

Surface tension is a general thermodynamic parameter
defining the thermodynamically favored direction of
self-organization in a system. Surface tension corresponds
to the amount of free energy in the surface. The neuronal packet
hypothesis attributes formation of packets in virtual associative
networks to phase transitions (Haken, 1983, 1993; Fuchs et al.,
1992; Freeman and Holmes, 2005; Kozma et al., 2005) and
accumulation of thermodynamic free energy across boundaries.
Boundary free energy barriers are responsible for a packet’s
resilience; i.e., the ability to persist as cohesive units—resisting
dissipation under fluctuating conditions and entropic erosion.

Cognitive efficiency denotes the ratio of free energy extraction
(from the environment) and internal energy costs incurred in
sustaining energy inflows. The higher the ratio, the higher the
efficiency. Mental modeling involves expending free energy to
increase internal order (generate negentropy), which entails a
more efficient (robust under a wide range of circumstances)
energy extraction.

Cognitive effort denotes expenditure of thermodynamic
free energy incurred in mental modeling. Our theory of
understanding associates consciousness with the process—and
subjective experience—of exerting cognitive effort. Exerting
effort alternates with (relatively) effortless release of genetically
supplied and/or experientially acquired (learned) automatisms.
Consciousness accompanies the work of suppressing the
inertia of prior learning, adjusting learned responses to
the current conditions, and composing new responses to
anticipate environmental fluctuations. In short, the experience
of consciousness is rooted in a high-level mechanism of

self-organization and self-adaptive resource optimization in
the nervous system. This article focuses on the mechanisms
of understanding, postponing a detailed discussion of
consciousness for the future.
With these notions in place, the answers to the questions above
can be framed as follows:

1. Understanding rests on mental (generative) models
representing objects, their behavior and behavioral
coordination (i.e., mutual constraints on the behavior of
objects).

2. Generative models serve to optimize an organism’s control of
its own behavior in a changing environment in the interests
of survival (i.e., enduring preservation of structural integrity).
The advent of the capacity to understand offered a quantum
leap in control efficiency.

3. Control optimization in a changing environment
requires anticipatory mobilization of neuronal resources;
i.e., progressively improving the ability to select and arrange
neuronal representations before the onset of stimuli.
Conditioning is the most basic anticipatory mechanism
that is shared by all species. The evolution of conditioning
to understanding may have proceeded in three stages,
predicated on the packet mechanism: Packets capture
recurring stimuli groupings. As a result, control efficiency
(as compared to conditioning) improved in two ways—by
increasing the probability of successful representation and
by reducing the cost (i.e., complexity) of internal processing.
The formation of packets underlies the perception of objects;
i.e., bounded stimulus-bound groupings distinct from the
sensory background. In the next evolutionary step, the ability
to optimize packet allocations (selectively inhibit/amplify
neuronal activity within packets) emerged. This ability
underlies the apprehension of behavior; i.e., changes that
objects can sustain without losing their self-identity. Finally,
the ability to orchestrate the allocation of packets emerges,
giving rise to the apprehension of relations; i.e., different
forms of behavioral coordination among groups of objects.
Apprehending relations requires abstraction from the sensory
contents (enfolding): e.g., the relationship of the type ‘‘A rests
on B’’ defines how the behavior of A coordinates with the
behavior of B and vice versa, regardless of how A and B look,
smell, sound, etc. Inducing coordinated variations in packet
arrangements constitutes mental modeling. This capacity
supports anticipation into the indefinite future, accounting
for large (perhaps, indefinitely large) sets of environmental
contingencies.

4. Neuronal firing expends energy. Survival (free energy
minimization) is predicated onminimizing the computational
cost or complexity of adaptive processing that enables
accurate matching of neuronal representations to objects
in the environment. In other words, thermodynamic
and informational imperatives cannot rely on transitory
fluctuations in the system. Instead, a mechanism is needed
which produces neuronal structures that withstand entropic
erosion and are implicitly available for reuse. It has been
suggested previously that neuronal packets are produced
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by phase transitions in associative networks—and are
maintained by ‘‘tension’’ in the surface separating the phases.
From an information-theoretic standpoint, mobilizing a
packet corresponds to inducing a neuronal hypothesis that a
particular neuronal packet will provide the best explanation
for upcoming sensory input. Accordingly, thermodynamic
and information-theoretic approaches converge: the principle
of thermodynamic free energy minimization on the packet
surface corresponds to the principle of variational free energy
minimization in probabilistic inference (Friston et al., 2006;
Friston, 2010), both principles referring to the same neuronal
mechanism that transcends thermodynamic and variational
principles.

5. In what follows, packet variations (selective
inhibition/amplification) will be represented as rotation
of (population) vectors computed over the internal neuronal
states of a packet. On that notion, mental modeling
involves the coordinated rotation of packet vectors. For
example, motor control is known to entail coordinated
rotation of population vectors in the motor cortex. It is not
unreasonable to assume that rapid evolution of intelligence
in humans expanded the elaborate apparatus of sensorimotor
coordination in hominids—to allow packet coordination in
the associative cortex and other regions in the brain.

6. The formalism of packet vector coordination for control
optimization (self-adaptive allocation of neuronal resources)
appears to be tractable.

7. Learning without understanding confines performance
to situational envelopes narrowly constrained by past
exposures. Understanding expands the envelope indefinitely,
enabling counterfactual (‘‘what if’’) modeling, simulation
of the future—and an implicit ability to ‘‘anticipate’’ the
consequences of action.

8. Developing the formalism may help design artifacts to
progressively improve their ability to carry out complex tasks,
under unfamiliar conditions and unforeseen circumstances.

9. A formal theory appears to be within reach, centered on
the notion of Markov blankets, offering a parsimonious
account of intelligence that encompasses the transition from
inanimate matter to organismal self organization—and from
simply sensing the environment to understanding it.

In summarizing, an example may help bring together
the perspective on offer: one learns to play chess by first
learning to recognize pieces. Learning proceeds by associating
different behavioral rules with chess pieces and culminates
in the ability to apprehend behavioral constraints (e.g.,
this black pawn blocks diagonal movement of that white
Bishop). Understanding chess involves the ability to apprehend
constraints across a composition of pieces—and to determine
the possibilities for coordinated maneuvers the composition
affords (e.g., ‘‘attack on the left flank’’). Apprehending
behavior coordination requires abstraction (e.g., pin is a
form of coordination where the pinned piece shields a more
valuable piece behind it). The variety of positions affording
this type of coordination is practically infinite. ‘‘Chess
intuition’’ collapses its combinatorial space into ‘‘lines of

play’’ (Beim, 2012), thus enabling analysis (e.g., 15 moves
look-ahead analysis by chess masters (Kasparov, 2007) can be
compared to tracing a hair-thin line in combinatorial Pacific
Ocean).

THEORIES OF UNDERSTANDING

Aristotle’s Metaphysics (350 BC) opens with a statement
traditionally translated as ‘‘All men by nature desire to
know.’’ Contrary to traditional interpretations, recent analysis
(Lear, 1988) suggests that the statement permits a dual
interpretation—‘‘to know’’ and ‘‘to understand’’; with the
latter interpretation being closer to the original intention.
Cognition grows out of the capacity to experience puzzlement,
accompanied by the feeling of discontentment and desire to
resolve it. This capacity to resolve uncertainty is shared by
many animals. But only in humans is the desire to resolve
uncertainty not fully discharged until a complete understanding
is attained (Lear, 1988). Aristotle observed that ‘‘animals other
than man live by appearances and memories but little of
connected experience. . .’’ and attributed to men the ability to
form connections, i.e., organize disparate data into connected
structures. ‘‘Wisdom’’ is attained when such structures reveal
causes:

‘‘. . .men of experience know that the thing is so but do not know
the why, while the others know the ‘‘why’’ and the cause’’

—(Metaphysics, book 1).

What progress has been made since Aristotle in uncovering the
inner workings of understanding? The problem remained largely
unaddressed for over two millennia but became prominent in
philosophical discourse in the XVIII—XIX centuries (Hume,
Spinoza, Berkeley, Kant, Descartes, et al). However, it was not
until the middle of the last century that the scope of discourse
was radically expanded; largely in response to challenges
faced in scientific enquiry, where rapidly accumulating data
resisted traditional modes of understanding and explanation
(e.g., Bunge, 1979; Cushing, 1994; Sloman, 2005). Philosophy
was joined by psychology and cognitive science and, more
recently, by what could be defined as physics of the mind—an
emergent discipline combining statistical physics, information
theory and neuroscience to elucidate neuronal underpinnings
of cognition (Penrose, 1989, 1994, 1997; Friston et al., 2006;
Friston, 2010, 2013). The physics of mind framework is
consistent with the ‘‘enactive’’ view, deriving cognition from
an interplay between external conditions and self-organization
in the nervous system. In other words, (non-radical) forms
of enactivism enable prediction to guide action on the
environment that ensures survival (e.g., Thompson and Varela,
2001). Self-organization places the nervous system in the
domain of dissipative systems that are thermodynamically
open to the environment. Our proposal for a theory of
understanding is thus formulated within the physics of the mind
framework.
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Research areas relevant for understanding include the study
of language, consciousness, intentionality, explanation, causality
and prediction, logic and reasoning, inference, attention, etc.
A detailed review of the relevant research is impossible
and is not intended here. What follows is a summary of
findings that address some key aspects of the function of
‘‘understanding’’.

Webster’s Ninth New Collegiate Dictionary defines
understanding as comprehension or ‘‘mental grasp, the
capacity to apprehend general relations of particulars’’.
This suggests that ‘‘understanding’’ requires a (generative)
model that embodies general relationships of particulars;
i.e., model that can generate particular consequences from
general causes (Craik, 1943; Gentner and Stevens, 1983;
Johnson-Laird, 1983, 1989, 2003; Sanford, 1987). Theories
of understanding can be roughly organized in five groups,
focusing on the different roles of generative models in
understanding: (a) volitional (self-directed, deliberate) activity;
(b) simulation; (c) need satisfaction and optimization; (d)
unification, explanation and prediction; and (e) problem
solving. We will reference exemplar theories in each of these
groups,—and attempt to relate them to the physics in the mind
approach.

Understanding Results from Volitional
Operations Targeting Inputs from the
Outside and Representations on the Inside
The ‘‘foundational theory of understanding’’ (Newton, 1996)
asserts that understanding results from volitional (deliberate,
self-guided) actions that involve directing one’s attention to
sensory inflows and reconciling current sensations with memory
structures in a manner consistent with the current intentions,
or goals.

The volitional aspect of cognition is emphasized in the
theory of mind-body relationships in Humphrey (2000, 2006).
This theory traces volitional activities to their evolutionary
origins, as follows. A primitive organism senses physical
conditions, or stimuli occurring at its boundary surface and
generates commands targeting locations on the surface where the
conditionswere sensed. Commands are said to generate ‘‘wiggles’’
on the surface, the substrates of sensing are not the conditions but
the type of ‘‘wiggles’’ produced by the organism adapting to those
conditions (e.g., sensing ‘‘red’’ is produced by ‘‘wiggling redly, ’’
sensing ‘‘salt’’ is produced by ‘‘wriggling saltily’’; i.e., selecting
and emitting a response appropriate for the occasion of salt
arriving at the surface. Gradually, evolution shifted ‘‘response
targeting’’ from surface sites to the efferent, or ‘‘sensory nerves’’
emanating from sites along the surface. Shifting response targets
further upstream culminated in the emergence of mechanisms
confining responses to internal loops—comprised of efferent
and afferent links. In such loops, afferent signals become
‘‘as-if commands’’ (i.e., models): they would have produced
appropriate behavior had they been carried all the way to the
sensorimotor periphery (Humphrey, 2000, p. 17).

Central to this formulation is the notion of ‘‘targeting’’;
i.e., self-directed mobilization (or recruitment, Shastri, 2001) and

focused allocation of neuronal resources. On that notion, an
organism is not just registering the flow of sensory impressions
but engages in targeted probing and composition of responses
fine-tuned to the data returned by sensory samples (consistent
with Noe, 2004; Friston et al., 2014). The notion resonates
with the sensorimotor contingency, or ‘‘action-in-perception’’
theory (Noe, 2004) and other theories centered on the idea of
the ‘‘volitional brain’’ (Libet et al., 2000; Nunez and Freeman,
2014).

Notice the two key themes of this formulation are an
emphasis on active inference or volitional sampling of the
world—of the sort that characterizes enactivist or situated
approaches to cognition. Second, the progressive elaboration
of internalized (‘‘as if’’) stimulus-response links induces
conditional dependencies between the sensory input and
internal models of how those predictions were caused—through
active sampling.

Understanding Involves Simulation which
is Effortful (Work-Consuming)
Two key characteristics are generally attributed to generative
models: models are ‘‘structural analogs of the world’’ (Johnson-
Laird, 1983), and models allow simulation of processes and
events in the world (Chart, 2000). These characteristics are
mutually supportive: if two systems (the world and the model)
are formally homologous, one can manipulate and observe
the behavior of one system (an internal model) in order to
predict and postdict the behavior of the other (an external
world). In Chart (2000), simulation is taken to be the essence
of understanding, enabling one to both anticipate events and
to cope with the unanticipated outcomes. Simulation engages
‘‘mutors’’ i.e., physical mechanisms effecting transformations in
the models. The simulation system is hierarchical, including
‘‘effectors’’ responsible for combining ‘‘mutors’’ into groups and
attributing meaning and values to the groups, and ‘‘simulors’’
responsible for grouping ‘‘effectors.’’ Crucially, all stages of
grouping involve work. An important insight here is that
understanding requires the investment of work performed on or
by internal representations.

The notion of understanding via simulation can be traced
to Craik (1943), who hypothesized the existence of physical
mechanisms in the brain functioning as (generative) models
of the environment. The theory of understanding in Chart
(2000) substantiates this early hypothesis, bringing to the fore
a crucial aspect of mental modeling—the necessity to invest
work. This was investigated in detail in Kauffman (2000), who
postulated that the ability to perform work is the determining
factor in perpetuating life and developing capacities that enable
an organism to sustain life in a changing environment, while
maintaining relative autonomy from it (the emphasis on
performing work in the course of mental operations resonates
with Freeman et al. (2012) using generalized Carnot cycle to
describe process in the cortex). As formulated in Kauffman
(2000).

‘‘. . .an autonomous agent is a self-reproducing system able to
perform at least one thermodynamic work cycle. . .work itself is
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often used to construct constraints on the release of energy that
then constitutes further work. Work constructs constraints, yet
constraints on the release of energy are required for work to be
done’’

—(Kauffman, 2000, p. 4.).

We see here a close connection between (variational) free energy
formulations of the imperatives for life that we will return to
in the next section. In brief, having a formal physics of mind
provides a clear link between understanding (minimization of
surprise or variational free energy), a concomitant minimization
of thermodynamic free energy and the implicit exchange of work
and entropy of a system’s internal representations (by physical
states) and the external world to which it is thermodynamically
open.

Understanding Entails Optimization
Generative models improve one’s ability to satisfy homoeostatic
needs, when navigating an inconstant and capricious
environment—and facing predictable changes as well as
the unpredicted (Chart, 2000). Adaptive exchange with the
environment is thought of as a measure of need satisfaction
(Margenau, 1959; Werbos, 1994, 1998; MacLennan, 1998;
Pribram, 1998). Under all circumstances, the activity an agent is
engaged in is the best attempt at the time to satisfy the current
need (hence, the optimization; Glasser, 1984; Werbos, 1998).

The key insight afforded by this perspective is that one
can cast all adaptive or intelligent behavior as a process of
optimizing some value or need function. In physics, this function
is variously known as the Lyapunov function or Lagrangian.
The existence of this function means that intelligent behavior
or understanding can be reduced to ‘‘approximate constrained
optimization’’ (Werbos, 1994, p. 40). Again, we see a convergence
on optimization orminimization imperatives offered by a physics
of mind. In the present context, the objective function is
(variational) free energy, where biological imperatives or needs
are encoded in prior beliefs about the states a particular agent
should occupy. These prior beliefs constrain active sampling of
the environment to minimize surprise—and thereby search out
preferred states.

Interestingly, the minimization of variational free energy
in machine learning is also known as approximate Bayesian
inference. In other words, the form of internal modeling that we
engage in is quintessentially approximate by virtue of minimizing
free energy, as opposed to surprise per se. This approximate
aspect will become particularly important when we appeal to
another ubiquitous device in statistical physics; namely the
mean field approximation that provides a clear example of
partitioning and functional specialization that may be a crucial
aspect of generative models in the brain. We will later suggest
that the mental modeling—with mean field approximations in
humans—obtains a degree of optimization unavailable to other
species.

Understanding Entails Explanation
According to the Deductive–Nomological (DN) theory of
understanding, phenomenon B is understood if particular

conditions A are identified along with some appropriate laws
such that, given A, the occurrence of phenomenon B is to be
expected (Hempel, 1962, 1965). The DN theory was subsequently
augmented to account for unification (rendering phenomenon
B dependent on phenomenon A must take place in a broader
framework, where the number of independent phenomena
is reduced), simplification (Kitcher, 1981) or compression
(comprehension is compression) and representation of causality
(explanation, von Wright, 1971). Establishing causality involves
partitioning of A and re-formulating the question ‘‘why B?’’, as
follows:

‘‘Why does this x which is a member of A have the property B?’’ The
answer to such a question consists of a partition of the reference
class A into a number of subclasses, all of which are homogeneous
with respect to B, along with the probabilities of B within each of
these subclasses. In addition, we must say which of the members of
the partition contains our particular x’’

—(Salmon, 1970, p. 76).

This account of explanation entails an explicit Bayesian
formalism (subclasses are hypotheses, encountering B provides
evidence) but adds a crucial insight: Explanation is predicated
on partitioning heterogeneous A into homogeneous groups,
or subclasses. That is, A is a mixed bag, before using the
contents for explaining B (and submitting them to Bayesian
procedure), they must be sorted into groups that are different
(have some features by which they can be told apart) and,
at the same time, homogeneous with respect to B. Crucially,
partitioning heterogeneous A into homogeneous subclasses is
accompanied by production of information and thus requires
work. In general, A can admit multiple partitions. Following
Carnap (1962), Salmon (1970, 1984, 1989) suggests that
the quality of a partition is determined by some utility
maximization function imposed at the outset and motivating
the investment of work. In this way, Salmon (1970) reveals
intimate connections between inference, causality and goal
satisfaction.

Establishing causality involves deep inference, or reduction
to deeper representation levels (as in seeking the neuronal
underpinnings of psychological conditions) as well as
determination of intra-level relations (e.g., relating psychological
conditions to psychologically traumatic events). Descent to
deeper levels in constructing a model (theory) serves to expand
the range of surface-level phenomena explained by the model
(Dieks and de Regt, 1998). The interplay of the reduction,
compression and expansion criteria in constructing models was
succinctly defined by Einstein:

‘‘conceptual systems. . .are bound by the aim to permit the most
nearly possible certain (intuitive) and complete co-ordination with
the totality of sense-experiences; secondly they aim at greatest
possible sparsity of their logically independent elements. . .’’

—(Einstein, 1949, p. 13).

From the perspective of minimizing variational free energy,
the implicit many to one mapping between consequences and
causes is captured in the notion of minimizing complexity
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(simplification). Complexity corresponds to the degrees of
freedom used to explain data accurately (technically, it is
the Kullback-Leibler divergence between a posterior and prior
belief). This means that an explanation (to the best inference) is
one that maximizes model evidence and minimizes complexity
by accounting for a diversity of outcomes (consequences) with
the smallest number of plausible explanations (partition of
causes).

Understanding Enables Problem Solving
Arguably, the most extensive and influential body of
psychological research on the role of understanding in
problem solving was accumulated by Piaget and his school
(Piaget, 1950, 1954, 1976, 1977, 1978, Piaget and Inhelder,
1969). Experiments were conducted with young children,
which rendered their findings particularly revealing: the
problems studied were elementary and their solutions were
uncontaminated by prior experience and associations. The
main conclusions boil down to the following: problem
solving requires establishing relations between ‘‘all the
multifarious data and successive data’’ bringing the relations
into ‘‘co-instantaneous mental co-ordination’’ within a
simultaneous whole (i.e., generative model; Piaget, 1978,
p. 219).

The notion that problem solving involves ‘‘co-instantaneous
co-ordination’’ in generative models, thereby imposing simple
explanations for ‘‘all the multifarious data and successive data’’
extends from elementary problems solved by children to the
highest reaches of theoretical abstraction:

‘‘The general theory of relativity proceeds from the following
principle: Natural laws are to be expressed by equations which
are co-variant under the group of continuous co-ordinate
transformations. . . .The eminent heuristic significance of the
general principles of relativity lies in the fact that it leads to us to
the search for those systems of equations which are in their general
covariant formulation the simplest ones possible. . .’’

—(Einstein, 1949, p. 69).

Mathematical equations are expressions of relations between
variables; similarly, systems of equations express co-ordination
between groups of such relations (Sierpinska, 1994). Accordingly,
understanding mathematical formalisms boils down to grasping
the relations they entail:

‘‘. . .if we have a way of knowing what should happen in given
circumstances without actually solving the equations, then we
‘‘understand’’ the equation’’

—(Feynman et al., 1964, cited in Dieks and de Regt, 1998,
p. 52).

Visualization plays a role in problem solving and scientific
understanding (van Fraasen, 1980) albeit a limited one.
According to self-reports by a number of prominent scientists,
the role of verbalization is even less significant (Einstein,
1949; Poincare, 1952; Hadamard, 1954; Penrose, 1989). For
example, in his often quoted letter from to Hadamard, Einstein
asserts that words hardly participate in his thinking, which

consists of ‘‘combinatorial play with entities of visual and
muscular type. . .words have to be sought for laboriously
only in the secondary stage’’ (Hadamard, 1954, p. 148).
Such self-reports are consistent with experimental findings
indicating that verbalization does not facilitate problem solving
and can, in fact, interfere with the process (Schooler et al.,
1993). They also accord with the analysis of causality placing
strong emphasis on the notion that mind establishes causal
relations based on mental events, as opposed to verbal
accounts that are subsequently formulated (Davidson, 1970,
1993).

Summary
If not through words and images, then what is the medium
of understanding? The perspectives reviewed in this section
implicate complexity reduction through factorization and
partitioning to explain heterogeneous data. Accordingly, the
cardinal aspects of understanding can be formally summarized
in terms of minimizing surprise (or free energy) that necessarily
entails a generative model of coordination and relations—a
model that provides an accurate (unsurprising) and minimally
complex explanation for past sensory inputs and predicts
forthcoming experiences, including the likely consequences of
one’s own actions. We now turn to the mechanisms responsible
for such modeling.

TOWARDS A THEORY OF
UNDERSTANDING

Following Johnson-Laird (1983), one can distinguish three
cognitive mechanisms—symbol processing, image processing
and mental modeling: with the latter denoting connected
representations and operations on these representations. Our
theory is confined to internal modeling, and refers to the process
and outcome of such modeling as situational understanding
(or situated cognition). Cognitive operations underlying the
development and exercise of understanding are different
from—and do not reduce to—those involved in learning via
pattern recognition. The following examples help to appreciate
the distinctions.

Fishes can be trained to recognize geometric shapes; e.g.,
circles (Siebeck et al., 2009). Humans can recognize shapes,
name them and, ultimately, define them (e.g., circle is a set of
all points in a plane equidistant from the center), which does
not yet amount to understanding. A true generative model of a
circle comprises representations and operations that enable one
to create or manipulate a circle—in practice or ‘‘in mind’’ and at
will. For example, the model should account for experiences like
handling a circular object, following a circular path, performing
circular movements, etc. Having examined a circular object with
the eyes closed (e.g., passing a hoop between the palms), one
can conjure up an image of a circle; situational understanding
manifests, for example, in expecting (not being surprised by)
the sensation of a circular edge on palpitating a coin, visually
or haptically. These abilities require a generative model; they
are distinct from simply recognizing objects or associating
symbol strings (names, formulae, descriptions, definitions, etc.)
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with such objects. In short, understanding is quintessentially
enactive and ‘‘embodied’’ (Lakoff, 2003), requiring one to actively
engage with the causes of sensations. In the setting of enactive
cognition, this means that understanding requires generative
models that define affordances for action offered by sensory
cues.

Generative models produce meaning; the meaning of ‘‘circle’’
rests on a model that enables one to do ‘‘circling’’ in the
mind (stated differently, the meaning resides in the ability
to ‘‘wiggle roundly’’ as the meaning of ‘‘red’’ resides in the
ability to ‘‘wiggle redly’’ (Humphrey, 2000)). When fishes are
trained to recognize shapes, these shapes acquire significance
(predict feeding) but not meaning, fishes form connections but
make no sense of them. To appreciate the distinction, note
that the definition of ‘‘circle’’ resists visualization (the set of
all points in a plane equidistant from one point), while the
image in your mind is by no means suggestive of the definition.
What is then the connection between the definition and the
image, what is holding them together? Consider the problem in
Figure 1.

Group A1 is not a ‘‘circle-like’’ pattern that can be
‘‘recognized’’ in A, nor group A2 can be ‘‘recognized’’ as a
‘‘point-like’’ pattern in A, and neither group would be likely
to emerge in A had the task been different. Grouping is
imputed to A, as opposed to being recognized in—or somehow
extracted from—it. The emergence of groups is concomitant
with their ‘‘co-instantaneous co-variation.’’ Groups A1 and A2
are homogeneous with respect to the ‘‘go round’’ variation;
the activities of grouping and co-variation in the context of
the task yield understanding and determine visualization and
verbalization of the solution they produce. To summarize,
understanding is yielded by generative models representing
objects, behaviors and behavioral constraints. How do such
models form and operate in the nervous system?

Representing Objects
Within the theory of neuronal packets, distinct and bounded
entities or objects are recovered from sensory streams as a
result of folding in associative networks producing bounded
subnetworks (neuronal packets). Associative links form
between co-firing neurons, where firing is orchestrated by
optimization (free energy minimizing) processes allocating

FIGURE 1 | The arrangement of coins A needs to be inverted in a
minimal number of moves. The solution is obtained by partitioning
arrangement A into groups A1 and A2 allowing their co-instantaneous
co-variation: A1 “goes round” A2. The mental act of “going round” is the
medium and the gist of the concept “circle.”

neuronal activity to the stream of stimuli. In this view,
free energy is the underlying universal currency in the
organism-environment exchange: neuronal firing expends
and dissipates energy, while successful neuronal activity
extracts energy from the environment. The expending-
extracting cycle in the formation of links is illustrated in
Figure 2.

Note the dual nature of the process in Figure 2: on the
one hand, the process is a thermodynamic cycle, where energy
is received and expended in performing work. On the other
hand, mobilizing xj amounts to forming a hypothesis—entailed
by xi—about the identity of the stimulus, with subsequent
validation. The two thermodynamic and information-theoretic
perspectives are united by the fact that validation comes in
the form of a thermodynamic reward and invalidation entails
unrecoverable energy consumption. Associative links decay
but are reinforced with every subsequent co-firing of linked
neurons. Due to response field overlap, across the neuronal
system, a connected associative network gradually forms with
the distribution of link weights reflecting statistical regularities
in the sensory stream (i.e., repetitive co-occurrence of the
stimuli). It has been hypothesized (drawing on the principles
of Synergetics (Haken, 1983, 1993)) that the development of
the network is punctuated by phase transitions, occurring in
tightly coupled subnetworks and causing their folding into
bounded aggregations (neuronal packets; Yufik, 1998a,b) Packets
are internally cohesive and weakly coupled to (have a degree
of statistical independence from) the rest of the network. That
is, folding induces Markov blankets in the neuronal pool, as
illustrated in Figure 3.

Again, firing of any neuron within a packet mobilizes
the entire packet, amounting to the neuronal hypothesis that
subsequent stimuli are likely to come in a cluster represented
by the neuronal group within the packet. Packet boundaries

FIGURE 2 | Development of associative links. µikdenotes probability that
neuron xi fires in the presence of condition zk . (A) Firing of neuron xi initiates
mobilization of neuron xj having response field overlapping with that of xi (both
neurons respond to condition zk). (B) Mobilization involves adjustments in
xj—the overlap component (xjk) is amplified and the non-overlap one (xjn)
inhibited. The adjustment amounts to rotating a neuron’s response vector rj
(changing from r1

j to r2
j ). (C) Firing of xj (sending a “zk wiggle”) triggers release

of energy ∆ Ejk invested, in part, in producing synaptic modifications
establishing an associative link yij of strength wij. Mobilization and firing of xj

consume energy δ Ejk (other energy expenditures are not represented).
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FIGURE 3 | Induction of Markov blankets and formation of neuronal
packets. (A) Packets are internally cohesive and weakly externally coupled
neuronal groups forming in associative networks as a result of a phase
transition. Surface tension in the phase-separating surface causes groups to
fold into bounded cohesive units capable of withstanding entropic erosion
(Yufik, 1998a, 2013). Folding induces Markov blankets at the packet
boundaries, that is, makes packets statistically independent (to a degree) from
their surrounds. (B) The mechanism recovers persistent stimuli groupings A,
B,...interspersed within the stream; thus giving rise to perception of bounded
entities, or objects persisting though (re-emerging in) multiple episodes.

circumscribe a reference set for the hypothesis, i.e., confine
validation probes to the packet internals. Boundary energy
barriers discourage but do not prohibit switching reference sets,
because unsuccessful probing causes the process to transit to
another packet. The packet mechanism is thermodynamically-
motivated: energy intakes over time are increased while
losses are reduced. If the environment changes, causing
diminishing intakes and mounting losses, packets dissolve and
are re-constituted.

Representing Behavior
In this formulation, cohesive and bounded neuronal packets act
as functional units in the inference process. Stated formally,
packet vectors (population vectors) are established on the
collectives comprising response vectors of the constituent
neurons PA = (rk, rh,. . ., rg), here PA is population vector
established on packet A. Allocating packets entails their adaptive
adjustments, via selective inhibition and amplification of the
constituent responses. The persistence of packets establishes
an invariant (slowly varying) core in the setting of a variable
periphery, which amounts to formation of a hyperplane in the
packet’s response space; thereby confining rotation of the packet
vector. Figure 4 illustrates representation of behavior via packet
vector rotation (ripening apple changes from green and sour to
red and sweet).

The rotation of a packet vector does not violate the object’s
self-identity established by the packet or the ability to induce
rotation at will, including reversal (e.g., the green and sour object
I experienced earlier and the red and sweet object I experience
now are one and the same object, which is established, in part,
by my ability to revert to the earlier experience and follow its

FIGURE 4 | Packet representation of a round, smooth, hard and cold
object changing from green and sour in the time period t1 to sweet
and green in the period t2 (persisting no longer because the object
was eaten). The subset of neurons in the fringe admits different transition
trajectories between the initial and final condition obtained by selective
inhibition-amplification of the constituent neurons. The {green, sour} → {red,
sweet} transition (behavior) amounts to rotation of packet vector PA in the
hyper plane determined by the fringe subset. Behavior of the object over time
is represented by the P1

A to P2
A rotation.

transformation into the present). Reversibility is a determining
characteristic of cognitive mechanisms that enables reasoning
(no reasoning is possible if, having initiated a thought, one can’t
return to the starting point) and apprehending causality (Piaget,
1978).

Representing Coordination
In the present setting, the term ‘‘relationship’’ is taken to denote a
form of coordination in the behavior of related objects. Imputing
a particular form of coordination to changing (behaving) objects
affords a model of the causal dependencies generating sensory
data. Establishing coordination in the behavior of objects
A and B involves the creation of a bi-directional mapping
between the varying subsets (fringe subsets) in the corresponding
packets—entailing a coordination of the rotation of packet
vectors. Figure 5 illustrates this notion using a task employed
in Piaget, to examine development of understanding in young
children: discovering how to use a toy catapult (a plank balancing
on support) to hit target objects with a plastic ball. Performing
the task requires one to understand that pushing down one
side causes the other side to go up. That is, ‘‘co-instantaneous
coordination’’ needs to be established (Piaget, 1978).

Three important observations are in order here. First,
coordinating objects essentially constrains their behavior;
i.e., reduces their degrees of freedom or complexity. Establishing
coordination between objects in the course of some inference
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FIGURE 5 | The behavior of objects A and B (e.g., toy balance) is
observed to be coordinated (moving A down is accompanied by B
going up, etc.) Different movements correspond to (are represented by)
different successions of firing in the fringes of packets A and B (e.g., neurons
x1

A and x2
A represent different positions of A respective the vertical axis,

successions x1
A → x2

A and x1
A → x2

A represent downward and upward
movement, respectively). Bi-directional mapping between the fringe subsets in
two packets establishes “co-instantaneous coordination” in the movement of
packet vectors, PA PB (symbol denotes “co-instantaneous coordination”
in the movement of packet vectors).

requires representations of the objects and their behavior
(situated cognition) but does not reduce to simple recognition.
That is, unlike objects and behaviors, coordination cannot be
observed but has to be imputed, resulting in a compositional
representation (iterative model), such that operations on one
part of the composition produce particular changes in the
other. For example, when thinking of pushing down one side
of a catapult, one cannot help thinking that the other side
will go up. The underlying mechanism is neither an image

(although some visual predictions might be generated by the
model) nor a linguistic expression, such as a rule (although some
linguistic predictions might come to mind) but a forceful (energy
consuming) mental activity directed at performing a particular
work on a representation (vector rotation). Figure 6 illustrates
this notion.

In the absence of coordination, packets A and B are
experienced as unrelated objects displaying mutually
independent behavior patterns. Establishing coordination
in the movement of packet vectors produces a generative
model; that is, a coherent representative structure (model) and
constrained operations on that structure (mental modeling),
giving rise to the experience of a unified construct that combines
objects in a meaningful relationship.

Figuratively, population vectors can be taken to represent
the ‘‘consensus view’’ of the population, while vector rotation
expresses changes in neuronal responses in the course of
‘‘settling on’’ a ‘‘consensus’’. According to the current proposal,
understanding involves coordinated neuronal activities (Bressler
and Kelso, 2001, 2016), in particular, coordinated rotation
of population vectors comprising in a mental model, with
the form of such coordination reflecting the form of mutual
constraints (dependencies, relations) in the behavior of the
entities represented by the populations. Consistent with that
proposal, the experience of ‘‘grasp’’ accompanies the concluding
stage in the modeling process that ‘‘settles’’ onto a consensus
regarding relations among the participating entities. In short,
settling onto the ‘‘consensus view’’ in a model corresponds
to obtaining mutually coordinated vector rotations across the
model representing a coherent account of the situation as it
unfolds.

Second, exerting cognitive effort is hypothesized to be
a correlate of consciousness (Yufik, 2013). Associative links
and their spontaneous groupings (packets) are the product of
learning; i.e., they condition the organism to emit recurring
responses under recurring circumstances. Effortful composition
of packets into mental models and model manipulations (e.g.,
coordinated rotation of packet vectors) serve to overcome
the inertia of prior learning, when encountering and/or

FIGURE 6 | Establishing behavioral coordination. (A) Rotation of packet vectors (selective inhibition-amplification of neuronal responses in the fringe subset) is
analogous to rotating a shaft in a mechanism, e.g., a dc motor: it requires effort to produce movement (effort δf per unit angular displacement). (B) Establishing
behavioral coordination creates a unified compositional structure such that vector rotations in one part of the composition produce (enforce) rotations in the other
parts (e.g., visualizing one side of a catapult going down brings about, irresistibly, the image of the other side going up, or thinking of holding an object in the hand
and releasing the hold brings about the image of a falling object, etc.).
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anticipating unfamiliar conditions. Learning capabilities are
common, to a varying degree, to all animal species, a superior
adaptive efficiency in humans may be due to mechanisms
allowing effortful suppression of the automatisms acquired in
learning and/or adjusting their execution—depending on the
circumstances at hand.

Third, coherent neuronal structures are thermodynamically
beneficial; i.e., resisting decomposition and/or reorganization.
For example, young children fail to understand that, when the
target is moved away from the catapult, the ball’s position
on the plank needs to be shifted in the opposite direction.
Failure is caused by the previously established basic coordination
(reaching an object requires movement towards it, not away
from it) precluding the requisite adjustments (children are
incapable of a focused cognitive effort demanded by the
adjustment).

Formally, coordination of packets defines an objective
function over a vector space. In the nervous system, the
function is implemented in a structure that is analogous
(within limits) to Shannon’s Differential Analyzer (DA; Shannon,
1941). The DA machine is composed of shafts connected by
movement conveying devices such as gear boxes. When a shaft
representing an independent variable is turned, all other shafts
are constrained to turn accordingly. The implications of this
analogy will be examined elsewhere, excepting the following
observations.

(a) The objective function seeks maximization of energy
efficiency, that is, vector (shaft) rotations are sought that
maximize energy inflows at the expense of minimal rotation
effort.
(b) A coherent model (tightly coordinated packets) collapses
combinatorial complexity of the task and thus allows
‘‘intuitive’’ navigation of large combinatorial spaces, as in
chess:

‘‘Intuition is the ability to assess a situation, and without
reasoning or logical analysis, immediately take the correct
action. An intuitive decision can arise either as the result of long
thought about the answer to the question, or without it’’

—(Beim, 2012, p. 10).

The experience of ‘‘intuition’’ is produced by the ability to
relate, via sufficiently tight coordinations, particular moves to
the global objective (winning the game)—amove is ‘‘sensed’’ to
improve or degrade the overall position (in the chess literature,
this ability has been compared to a GPS in the player’s mind
showing whether moves take one towards or away from
the goal (Palatnik and Khodarkovsky, 2014)). Such guiding
intuition is not confined to chess but is a universal attribute
of complex analysis and problem solving that is informed by
coherent models.

‘‘The mass of insufficiently connected experimental data was
overwhelming. . .however, I soon learned to scent out that which
was able to lead to fundamentals and to turn aside from
everything else, from the multitude of things which clutter the
mind and divert it from the essential’’

—(Einstein, 1949, p. 17).

FIGURE 7 | Thinking “apple is ripening” involves rotating “apple”
packet vector from the (sour-green) to (sweet-red) terminal positions
via some intermediate angular positions. Neuron x1 responds to co-firing
of “sour” and “green” neurons, xM responds to co-firing of “red” and “sweet,”
etc. Neuron xM responds to the firing succession x1 → x2 → . . . →xm formed
of diagonal elements in the color-taste matrix. Thinking “apple is rotting”
engages different elements residing in different rotation trajectories. In a
simulation, firings can be associated with different values, contracting the
matrix attributes and assigning value to the “ripening” trajectory; namely, the
sum of values in the x1 → x2 → . . . →xm firing succession (spur of the matrix).

Navigating and connecting massive sensory data requires
a model that guides subsequent probes and enables
determination (however approximate) of whether the
data lies within the range of variation afforded by the model,
or falls outside the range and invalidates the model. As per
Figure 1, probabilistic prediction and inference are at the
foundation of the modeling process.
(c) Coordinations in systems of nested packets can be
expressed as optimization operations in vector spaces (Dorny,
1975) and as functions over tensors or multi-vectors
(Clifford vectors) of geometric algebra (Hestenes and Sobczyk,
1999; Doran and Lasenby, 2003). Complexity reduction
in such systems can involve rank reduction and tensor
contractions.
(d) In the nervous system, complexity reduction can involve
neurons responding to trajectories of packet vectors; that
is, particular successions of their angular positions. In other
words, such neurons respond to particular thinking patterns,
as illustrated in Figure 7.

Summary
This section outlined a parsimonious theory of understanding
where foundational ideas in systems neuroscience (Hebbian
assembly) and probabilistic learning theory (variational
free energy minimization) converge on the notion of a
neuronal packet—a neuronal assembly ‘‘wrapped’’ in Markov
blanket. Cognitive processes are defined as operations on
neuronal packets providing a unifying formalism to express
the function of understanding as well as phylogenetic and
ontogenetic development of intelligence culminating in that
function: allocating neurons—allocating cohesive neuronal
groupings—adjusting groupings—apprehending coordinated
adjustments—combining and coordinating groups (mental
modeling). Psychologically, the process encompasses the
progression from sensing, to perceiving, to understanding.
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Mathematically, this formalism suggests operations on vector
spaces (via a geometric calculus).

The ensuing theory grounds cognitive development in
thermodynamics, suggesting a straightforward relationship
between self-organization and evolution (packets are
thermodynamically sculpted and operations evolve). Evolution
engages an interplay between the internal (packet manipulations
demand energy) and external processes (where the environment
supplies energy), propelled by the need to improve energy
efficiency. Organism-environment coupling is probabilistic,
allowing a dual account: doing work to extract energy
manifests as sampling and information gathering. The energy-
saving tendency to maintain cohesive and stable packets
is motivated by the minimization of surface tension in the
packet boundary surface. Surface tension is a fundamental
parameter expressing the thermodynamically favored direction
of internal processes in any system. In a neuronal system,
favored processes include increasing cohesion (reducing
interface area in individual packets) and merging (reducing
the total interface across the packet set). Minimization of
surface tension entails minimization of a thermodynamic
free energy in packet surfaces and equates to avoiding
surprise (minimizing variational free energy in probabilistic
inference). On that theory, packets are the substrate of
inference.

One might ask whether the solutions that minimize
variational free energy are stable and—from a technical
perspective—are these functionals convex. By virtue of
the dynamic and itinerant nature of biological systems
(especially in the context of a circular causality implicit
in self organization), it is highly unlikely that the energy
functionals describing behavior are convex. Heuristically, this
means that there will be many minima—or solutions. The
implicit multi-stability provides a nice mathematical image
of speciation—and indeed variants within any phenotype.
In other words, there is no unique free energy minimum,
in the same sense that there is no unique phenotype;
each system adapts to its own econiche—finding its own
solution.

The notion that quasi-stable neuronal packets—and their
manipulation—underlie perception resonates with theories that
associate perceptual units with quasi-stable solutions in mean
field models; for example, neural field models that account for
the neurogeometry of the cortex and the impact of visual input
(e.g., Sarti and Citti, 2015). According to Sarti and Citti (2015), in
the absence of visual input, quasi-stable solutions correspond to
hallucinatory patterns. Notwithstanding the possibility of quasi-
stable neuronal clusters engendering hallucinatory experiences,
our theory predicates mental modeling on the formation of
quasi-stable packets that maintain their integrity throughout
episodes of absent and/or varying input. Such quasi-stable
units allow the experience of continuing, self-identical objects
that arise from (i.e., are superposed upon) discontinuous and
varying sensory streams. More generally, the neuronal packet
model is compatible with the mean field models that furnish a
dynamics of neuronal systems from metastability and symmetry
breaking—and associating system behavior under stimulation

with quasi-stable states and active transient responses (Wilson
and Cowan, 1972, 1973; Bressloff et al., 2002). Examining
conceptual commonalities and reconciling differences between
these models may help overcome their inherent limitations
(e.g., Destexhe and Sejnowski, 2009) and offer synthetic
perspectives.

ANALYSIS

This section compares the proposal in the preceding section
to other theories described in ‘‘Theories of Understanding’’.
Since our proposal rests on the notion of neuronal packets, we
discuss how the idea conforms to the principles of neuroscience
and present some recent data concerning the properties of
neuronal structures consistent with those attributed to neuronal
packets. Finally, we consider an approaches to understanding
motivated by complementary ideas based on ‘‘intuitive physics
engines’’.

Comparing Theories
The theories in ‘‘Theories of Understanding’’ complement our
formulation. Moreover, they appear to reflect different facets
of understanding, as conceptualized above. The ‘‘foundational
theory of understanding’’ (Newton, 1996), which grounds
understanding in self-directed (volitional, attentive) activities
reconciling sensory inflows with memory structures and current
goals, is consistent with our theory that associates understanding
with goal satisfaction via self-directed allocation of neuronal
resources. The idea that evolution has gradually shifted response
targets away from the sensory periphery, producing internal
efferent-afferent loops that can be decoupled from the motor
output (Humphrey, 2000, 2006) is formally expressed in the
model of self-adaptive resource allocation.

The key insights in the theory of understanding by Chart
(2000) appear to be formally expressed and substantiated by our
treatment. Chart (2000) derives understanding from simulations
involving effortful (work- consuming) operations on mental
models built of ‘‘mutors’’:

‘‘Mutors are both the building blocks and the motors of mental
models. . .mutors are active: they actually do the work on the input,
and produce the output. They are not rules by which the input can
be transformed into the output; rather, they are machines which
effect the transformation’’

—(Chart, 2000, p. 47).

These intuitive notions correlate closely with the idea of effortful
vector rotation and other ideas (see Figure 6; note similarities
between Chart’s theory and Shannon’s DA. The theories also
differ in that one is centered on the work requirement and the
other is oblivious to it).

The doing work requirement in Kauffman (2000), predicating
intelligence on the ability to invest energy in performing
thermodynamic work cycles directed, in part, on erecting
constraints for the subsequent energy releases, appears to be
fully upheld in our theory (e.g., boundary energy barriers
constrain composition and movement of packet vectors
thus constraining energy release in vector rotation which,
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in turn, constrains condition at the boundary). The idea
of associating intelligence with ‘‘approximate constrained
optimization’’ in the service of need satisfaction (Glasser, 1984;
Werbos, 1996, 1998) is inherent in the notion of probabilistic
resource optimization. Our proposal ascertains a reciprocal
and complementary relationship between probabilistic resource
optimization via resource grouping, statistical explanation
(Salmon, 1970) and probabilistic inference, as discussed
above.

Simplification (Kitcher, 1981) and compression—postulated
to be the definitive characteristic of explanation
(‘‘comprehension is compression’’, Chaitin, 2006)—are the
product of enfolding, collapsing multiple resources into
a single unit. In essence, alternating enfolding–unfolding
serve to break large combinatorial problems into sets of
much smaller ones, yielding profound complexity reduction.
Furthermore, simplification is isomorphic with complexity
minimization inherent in minimizing variational free energy
and, by implication, thermodynamic complexity costs.

Finally, our theory gives operational expression to some of
the central claims in the psychological theory of understanding.
Developmental psychology predicates development of a capacity
to understand, from infancy to maturity, on the growing
ability to conduct ‘‘co-instantaneous mental coordinations’’ and
thus apprehend relations abstracted from the current sensory
input:

‘‘. . .to coordinate data yielded by his own actions the child must
appeal to unobservable, deductive relations which transcend his
actions’’

—(Piaget, 1978, p. 12).

Our proposal defines processes underlying ‘‘mental
coordinations’’ and makes them responsible for all levels of
understanding, from handling toys to formulating abstract
theories. From the resource optimization standpoint,
coordinating packets in nested packet groupings provides a
scalable mechanism for compression and complexity reduction.
From the psychological standpoint, coordination combines
disparate and unrelated entities into ‘‘situations’’ imbued with
meaning. That is, meaning is imputed by relations.

Neuronal Packets
A ‘‘neuronal packet’’ is a system-theoretic idea derived from
conceptualizing the nervous system as a probabilistic resource
optimization system with self-adaptive capabilities (Yufik,
1998b). The starting point was attempting to formulate Hebbian
assemblies (Hebb, 1949, 1980) as material entities: what
makes assemblies distinct, how does the system ‘‘know’’ where
one assembly ends and another begins? Once formed, why
wouldn’t assemblies succumb to entropic erosion and dissolve
momentarily? Drawing on Haken (1983, 1993), packets were
hypothesized to be formed by phase transitions in associative
networks and sculpted by an interplay between thermodynamic
forces (reduction of thermal free energy in the inter-phase
surface) favoring coalescence and forces of lateral inhibition
resisting coalescence. This interplay dynamically optimizes

responses: through lateral inhibition, packets capture regularities
in the sensory stream.

Arguably, the existence of boundary mechanisms was implicit
in the notion of assembly, the consequences (structure variation,
induction of meaning, etc.) were fully anticipated by Hebb:

‘‘. . .we have come to a classical problem. . .the meaning of
‘‘meaning’’.. . . a concept is not unitary. Its contents may vary from
one time to another, except for a central core whose activity may
dominate in arousing the system as a whole. To this dominant core,
in man, a verbal tag can be attached; but the tag is not essential.
The concept can function without it, and when there is a tag it may
be only a part of the ‘‘fringe’’. The conceptual activity that can be
aroused with a limited stimulation must have its organizing core,
but it may also have a fringe content, or meaning, that varies with
the circumstances of arousal’’

—(Hebb, 1949, p. 133; see Figure 5).

The notion of intrinsic organization of cortical activity ‘‘that
is so called because it is opposed to the organization imposed
by sensory events’’ (p. 121), the necessity for assemblies to be
sustained over time (p. 121), the possibility of forming ‘‘latent’’
associations between stimuli that have never co-occurred in
the past (p. 132), the ‘‘coalescence’’ of assemblies (p. 132), and
numerous other ideas in Hebb (1949) place the packet concept
within Hebb’s framework.

The concept of a ‘‘neuronal packet’’ is consistent with other
system-level theories of cognition. The theory of neuronal group
selection (TNGS; Edelman, 1992, 1993; Edelman and Tononi,
2000) associates cognitive functions with the formation of
‘‘neuronal groups’’ and establishment of ‘‘re-entrant mappings’’
between groups (Edelman and Gally, 2013; see Figure 6). In
Gestalt psychology, packets manifest in the notion of ‘‘gestalt
bubbles’’ (Lehar, 2003a,b), or ‘‘segregated wholes’’ that enable
meaning (‘‘. . . meaning follows the lines drawn by natural
organization; it enters into segregated wholes’’ (Köhler, 1947,
p. 82)). Significantly, ‘‘segregated wholes’’ were subject to
forceful manipulation (the idea organizing ‘‘force fields’’ in
the brain that ‘‘extend from the processes corresponding to
the self to those corresponding to the object’’ (Köhler, 1947,
p. 177; 1948)). The idea of ‘‘forceful’’ interactions was later
associated with the activity of consciousness: in the brain,
consciousness is ‘‘put to work’’ exerting a controlling influence
on the stimuli-triggered and volitional (self-generated) motor
responses (Sperry, 1969). Interestingly, the notion of force fields
as underlying perception has been revisited in the context of
gauge theories for the brain using variational free energy as the
underlying Lagrangian (Sengupta et al., 2016). Formally, this is
closely related to the autopoietic destruction of (free energy)
gradients in synergetic formulations of brain function (Tschacher
and Haken, 2007).

A ‘‘neuronal packet’’ is a speculative concept—the implicit
packets (or assemblies) are not amenable to direct observation
but have to be inferred in terms of their functional connectivity
and underlying conditional independence. However, recent
empirical data appears to uphold the concept. Packets are
thermodynamically plausible because their [re]use minimizes
energy expenditure. That is, the possibility of re-use is inherent
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in the packet idea. Reusable neuronal groups (‘‘bubbles’’)
were discovered in the hippocampus of awake, free-moving
animals (mice; Lin et al., 2005, 2006; Tsien, 2007). Empirical
verification was enabled by recent technical advances allowing
simultaneous recording of activity of 260 neurons: recordings
were made in the CA1 region in animals subjected to
different perturbations (shaking, elevator drops, air puffs)
and in the resting state. Multiple discriminant analysis
(MDA) was carried out over half-second sliding windows
in recordings accumulated over several hours, revealing the
formation of distinct ‘‘bubbles’’, Or groupings of neuronal
activity that were well separated in the functional 3-D
space (contracted by MDA from the 520-D space). The
ensuing bubbles represented ‘‘integrated information about
perceptual, emotional and factual aspects of the events’’ (Tsien,
2007, p. 55). After the ‘‘bubbles’’ were formed, subsequent
responses could be characterized in different compositions, e.g.,
an ‘‘earthquake’’ type situation begins in the ‘‘resting bubble’’,
transits to the ‘‘earthquake bubble’’ and returns to the ‘‘resting
bubble’’—thus following a distinct trajectory in the functional
space.

The possibility of resource tuning (changing resource
characteristics depending on those of the task) is inherent
in the concept of resource allocation (see Figure 2).
Task-dependent changes in the receptive fields of individual
neurons (see rotation of neuronal response vectors) have
been demonstrated in a broad range of tasks and conditions
including different stimulation modalities (auditory, visual)
and durations of exposure (Fritz et al., 2003, 2007; Kohn
and Movshon, 2004; Elhilali et al., 2007). For example,
recordings of individual neurons in A1 in ferrets performing
tone-discrimination tasks revealed distinct and predictable
changes in spectro-temporal receptive fields (‘‘task-specific
signatures’’; Fritz et al., 2007). In the earlier experiments,
neurons in the prestriate area V4—in monkeys attending
to visual stimuli—demonstrated robust attentional gating of
their receptive fields: a neuron having two stimuli within its
receptive field selectively suppressed its responses to one or the
other stimulus depending on the task (Moran and Desimone,
1985).

Task-dependent changes in the responses of neuronal
populations (rotation of population, or packet vectors) were
demonstrated by Georgopoulos and his group in studies of
neuronal correlates of target reaching in monkeys. Neurons
in M1 are broadly tuned to the direction of movement, with
each neuron exhibiting a preferred direction—defining the
orientation and the magnitude of the neuronal response vector.
It was shown that population response vectors—obtained as
the vector sum of weighted neuronal response vectors over the
population of responding motor neurons—track the direction
of the hand movement (Georgopoulos et al., 1988, 1993).
In a similar fashion, weighted sums of neuronal responses
over populations of sensory neurons were shown to align
closely with the overt characteristics of sensory processing
(Jazayeri and Movshon, 2006). Furthermore, it was shown
recently that population responses adapt to task variations,
involving subsets of neurons particularly relevant to the current

task (‘‘high-precision neurons’’; Purushotaman and Bradley,
2005).

The overall approach of conceptualizing cognitive
processes as optimization of neuronal resources has received
experimental support and theoretical emphasis in the recent
studies of visual perception (Gepshtein et al., 2013) and
the analysis of candidate mechanisms in the brain capable
of anticipation and long-term planning (‘‘prospective
optimization’’; Sejnowski et al., 2014). Perhaps, the most
compelling argument in favor of the present theory can be
garnered from the work reported by Ito (1993, 2008), Salman
(2002), Baillieux et al. (2008); Ellis and Newton (2010),
Murdoch (2010), and Rosenbloom et al. (2012) suggesting
a possibility that mental activities are controlled by internal
models in the cerebellum (Ito, 2008), with movement and
thought engaging identical control mechanisms (Ito, 1993).
On the theory that understanding boils down to packet
coordination, pieces of the understanding puzzle seem to
be falling in place. That is, the critical function of packet
coordination hypothesized in Figure 6 may be evident in the
cerebellum.

Key components of ‘‘understanding’’ include value-
assignment (reward likelihood attribution), packet mobilization
and effortful, context-sensitive variation, packet coordination,
output suppression and response selection. These components
map, under a gross simplification, onto a functional
neuroanatomy comprising prefrontal cortex (PC), subcortical
structures; including the basal ganglia, thalamus, and cerebellum,
and the limbic system (Rosenbloom et al., 2012). The
orbitofrontal, anterior cingulate and dorsolateral regions
in PC interact with each other and the limbic system
and subcortical structures. In particular, the orbitofrontal
cortex and limbic system participate in reward-attribution,
while the dorsolateral and anterior cingulate regions
‘‘facilitate intellectually effortful decisions’’ (Rosenbloom
et al., 2012, p. 256). Frontal areas are involved in response
suppression, while the cerebellum mediates a key mechanism of
understanding: packet coordination. Via the cerebellum, precise
timing—necessary for sensorimotor coordination (Salman,
2002)—becomes an integral part of situational understanding
that is manifest in the ability to not only compose, in the mind,
coordinated activities fine-tuned to the current situation but
also to identify proper moments for releasing and terminating
them.

Energy barriers play a crucial role in coordinated timing. On
the present theory, folding into packets creates a continuous
energy landscape in associative networks (peaks and valleys form
energy barriers that separate pools of neurons endowing them
with a conditional independence that create Markov blankets).
The implicit barriers may be regulated by the limbic system
(regulation of the ‘‘cortical tone’’ (Luria, 1973)), via the classical
ascending neuromodulatory systems. For example, down
regulation (stress, fear, low motivation) raises energy barriers,
while up regulation (joy, arousal, high motivation) lowers
them. This sort of regulation or (neuromodulatory) arousal,
directly affects cognitive performance as follows. Optimal
performance requires optimal ‘‘cortical tone’’ (underlying the
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Yerkes—Dodson law of optimal performance (Eysenck and
Keane, 1995)). Excessive down regulation blocks attentive access
to packet internals (as in suddenly forgetting a familiar name)
or arrests attention within a packet (vacillation, inability to
escape from recurring thoughts). By contrast, excessive up
regulation precludes sustained focus and predisposes to spurious
associations. In pathological extremes, the landscape is either
flattened, turning sensory inflow into undifferentiated flux
(e.g., Alzheimer’s disease), or loses integrity and decomposes
into pockets of narrowly constrained skills (e.g., autism).
When a packet dissolves, the contents are not forgotten but
irrevocably lost. We shall re-visit this point briefly in the
discussion.

The mechanism of mental modeling is ubiquitous across
species. For example, sensing a prey initiates hunting behavior
in a snake. If the prey suddenly disappears, the snake starts
searching for it but only in the vicinity of the location where
the prey was last sensed. By contrast, a dog chasing a prey that
goes out of sight (e.g., a rabbit disappearing behind bushes)
can initiate an interception maneuver; i.e., running towards a
location where the prey is likely to re-emerge (Sjölander, 1995).
Figuratively, the snake’s hunting model contains one packet
whose boundaries are statistically determined and genetically
fixed (the radius and duration of search are consistent with
the behavior of animals typically consumed by snakes—thus
yielding adaptive fitness). Dogs and other higher animals possess
repertoires of specialized packets amenable to situation-sensitive
variations (a prey’s velocity, distances, etc.). Chimpanzees can
combine some genetically available activities (reaching with a
stick, piling up objects and climbing to obtain a reward reflect
their genetic repertoire) but coordinating such activities appears
to be approaching the limits afforded by their nervous system.
Human modeling capabilities in infancy are rudimentary (e.g., at
6 months, infants search for a toy after it was covered but, if the
toy is removed and placed (in full view) under a different cover,
they keep searching for it where it was first perceived (Bower,
1974)). Human capabilities develop rapidly, from coordinating
a few variables in handling toys (e.g., ball placement in a toy
catapult, given the distance to the target) to coordinating deeply
nested variable structures in the creation of abstract theories.
We propose that the formalism of neuronal packets and packet
coordination characterizes essential features of the underlying
mechanism at all stages of cognitive development.

So far, understanding and mental modeling have been
discussed in the context of problem solving and prediction
(Toulmin, 1961), without addressing the impact of emotion
on these cognitive activities. The thermodynamic framework
suggests a natural expression of that impact (Yufik, 1998a),
by identifying emotional control with thermoregulation and
temperature with the level of arousal (it is interesting to
note that Aristotle attributed to the brain the function of
thermoregulation, Gross (1995)). In particular, the neuronal
packet model represents boundary free energy (the height
of packet energy barrier) U as a function of temperature
approximated as U(T) = σ – Tdσ/dT where σ is a stability
coefficient computed as the ratio of the summary strength of the
internal vs. external associative links in the packet (σ > 1: such

that the packet disintegrates when σ approaches unity, bringing
U(T) in to the vicinity of kT, where k is the Boltzmann constant).
Increasing T lowers the barriers while decreasing T (stress,
fear, anxiety) results in their elevation. Low barriers enable
easy (low energy cost) transitions between packets (expansive,
compositional thinking) while elevated barriers hamper the
transitions.

Temperature variations can be local (focused thinking) or
global (diffuse). Diffuse temperature increases lower energy
barriers and ‘‘shake up’’ the system, entailing re-distribution
of neurons among packets, followed by focused (selective)
manipulations in the resulting structures (the term ‘‘cognition’’
derives from the Latin ‘‘cogito’’ meaning ‘‘to shake together’’,
‘‘intelligence’’ derives from the Latin ‘‘intelligo’’ meaning ‘‘to
select among’’, Koestler, 1964, p. 120). As noted earlier,
the overall temperature dependency of the packet system
approximates the Yerkes-Dodson law of performance (optimal
levels of arousal yield optimal cognitive performance). More
generally, temperature regulation engages global self-regulatory
loops allowing the organism to reconcile conditions in the
outside with those inside and thus maintain a form of
homeostasis. Arguably, thermal regulation transcends the
hierarchy of functional levels in the organism—from changes
in the cell membrane permeability and neurotransmitter flow
(e.g., changes in the release, reuptake and repriming of synaptic
vesicles; the micro level) to changes in packet composition (the
mesa level), and further to emotional shifts entailing changes
in overt macro responses (advance or retreat; the macro level).
These views are generally consistent with those formulated in
Damasio and Carvalho (2013) andDamasio andDamasio (2016).

Alternative Theories
A recent theory of cognitive mechanisms involved in the
understanding of physical scenes (e.g., a determining whether
a stack of blocks is going to hold or to topple) derives
understanding from the operation of an ‘‘intuitive physics
engine’’ (IPE) combining simulation of interaction between
objects with probabilistic inference, by treating simulation
runs as statistical samples (Battaglia et al., 2013). Simulating
interactions is the crux of the matter, how is this accomplished
in IPE? To demonstrate human-like performance, IPE employs
open dynamics engine (ODE1) offering a library of routines
(equations, methods and algorithms) to simulate rigid body
dynamics. If IPE succeeds in emulating humans, what would this
tell about the mechanisms of scene understanding in the brain?
Stated differently, what makes IPE brain-like?

Three constraints in employing the ODE library are claimed
to qualify IPE as a theory of scene understanding: only
elementary rules of physics are selected in ODE, Monte
Carlo procedures inject probabilities into simulation runs, and
inference calculations are carried out to a crude approximation.
Consider applying these constraints in a toy catapult problem
(e.g., balancing two objects on a plank): w1L1 = w2L2 is the
most elementary rule, simulation varies the values of L1 and
L2, probability distributions are associated with variation ranges

1http://www.ode.org
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L1 and L2, and all calculations discard small terms and round
the results. If that is what underlies understanding, the question
remains: how is the rule w1L1 = w2L2 obtained, represented
and exercised? The probabilistic inference and approximation
components in IPE only postpone the inescapable conclusion
that understanding boils down, literally, to mental arithmetic.
With that, any human-like behavior can be readily imitated and
explained (e.g., a child failing to understand that ball needs
to be moved away from the center of the catapult when the
distance to the target increases, has her Monte Carlo flip the sign,
i.e., computes L2 −∆L2, instead of L2 + ∆L2,).

In short, results in Battaglia et al. (2013) appear to
demonstrate that combining methods of analytical mechanics
with probabilistic inference allows rough and quick assessment
of interaction dynamics in simple mechanical systems. Whether
these results have anything to do with human understanding
or intuition is open for debate. In lieu of entering the debate,
this article has outlined a complementary approach to the
issue.

DISCUSSION AND SUGGESTIONS FOR
FURTHER RESEARCH

Brain is complex, dynamic self-organizing system (Bressler,
1994; Singer, 2009). Self-organization requires a flow of
thermodynamic energy through a system acting as a conduit
between an energy source and energy sink. At equilibrium,
energy transfer by thermodynamic forces is accompanied
by generation of entropy. Deviations from equilibrium is
accompanied by a decrease in the rate of entropy production,
eventually producing conditions where stable structures emerge
in the form of spatial (e.g., Bérnard cells), temporal (e.g.,
Belousov-Zhabotinsky reaction) or spatiotemporal structures
(Glansdorff and Prigogine, 1971; Prigogine and Stengers,
1984, 1997; Prigogine, 1994; Bak, 1996; Jensen, 1998). The
brain belongs in the continuum of self-organizing systems
(Bressler, 1994; Kelso, 1995; Camazine et al., 2001). Sustained
self-organization in far-from-equilibrium systems is contingent
on the existence of internal mechanisms capable of removing
entropy from the volume occupied by the system and depositing
it outside the volume (Morowitz, 1978, 1979; England, 2013;
Prokopenko et al., 2014). The development of intelligence implies
a reduction of entropy within the brain’s volume—to levels
allowing emergence of stable structures that can both amplify
energy inflows and direct the investment of a growing portion
of that inflow towards creating more entropy reducing structure.
In a sense, a self-organizing (self-adaptive) system keeps folding
upon itself, producing increasing degrees of internal order.
Human intelligence requires a degree of order, engendering
stable but flexible structures (neuronal packets) and reproducible
internal processes (thinking). This combination gives rise to the
experience of interacting with an orderly environment amenable
to understanding, as follows.

The requirements of facilitating energy import from the
outside—and structure generation of the inside—converge when
structures are flexible (but stable) and reflect regularities in
the external conditions. With that, reciprocity is established

between internal ‘‘objects’’ and environment. A self-organizing
system becomes aware of the ‘‘objects’’— including itself as
an object; i.e., when objects become amenable to internal
manipulation, establishing relations between objects expressing
higher-order regularities in the environment. The availability
of such manipulations rests on having reduced the rate of
entropy production, down to levels that allowing reversibility
of thinking. That is, no thinking is possible if one cannot:
(1) dwell on object A; (2) switch from object A to object
B and return to B; and (3) keep all the objects intact
in the course of 1 and 2. Reversibility endows quasi-
stable objects with self-identity, thus rendering thought
possible and making the environment (the universe of
persevering, self-identical objects) understandable. The
relationship between reversibility and understanding is
manifest in the foundational principles of psychology, logic
and mathematics.

In psychology, this relationship was first articulated in the last
century by Piaget, in the form of a reversibility principle and
the notion that cognitive structures—and operations on those
structures—in mature adults acquire the property of algebraic
groups. In logic, the relation underlies The Law of Identity
formulated by Aristotle as the key axiom from which reasoning
derives. The Law of Identity (A ≡ A) (and the corollary of
non-contradiction and excluded middle) asserts preservation of
self-identity in things despite changes. Things neither appear
nor disappear spuriously, they remain self-identical over time
and do not change without a cause. Finally, in mathematics,
the relation is expressed in the foundational principle of set
induction and cardinality attribution formulated by Cantor
(1915/1955):

‘‘We will call by the name ‘‘power’’ or ‘‘cardinal number’’ of M the
general concept which, by means of our active faculty of thought,
arises from the aggregate M when we make abstraction fromm and
the order in which they are given’’

—(Cantor, 1915/1955, see Tiles, 1989,
p. 99).

In short, set is induced on a group by the ‘‘active faculty of
thought’’ that treats the group, reversibly and alternatively, either
as a manifold or as a unit abstracted from the manifold.

The criteria of causality are hard to explicate (e.g., leading
to the recent notion of ‘‘graded causation’’ (Fitelson and
Hitchcock, 2011; Halpern and Hitchcock, 2015)) but, nuances
aside, causality concerns a relation between some A and B:
changes in A are (or are not) the cause of changes in (B). By
contrast, the set operation dwells on A. The operation underlies
mathematics (and abstractive thinking in general) and enables
compositionality; i.e., combining A and B into a new unit A, B
→ (AB) amenable to reversible decomposition (AB)→A, B, and
so on, indefinitely.

According to the theory of neuronal packets, the above
principles are rooted in (and express) packet unfolding/enfolding
and inter-packet coordination (causality). Unfolding gives
access to the packet’s sensory contents, while enfolding
abstracts from them. Alternating between enfolding and
unfolding can be visualized as moving up and down a
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cone; with the sensory data at the base. On the way
up, the sensory component is reduced—and is completely
removed (abstracted away) at the apex. Symbolic labels
that could be attached at the apex (e.g., labels ‘‘apple’’
and ‘‘Apple computer’’) have no sensory overlaps with the
corresponding objects. The essence of thinking is effortful
packet manipulation, with the process alternating sporadically
between imagining and reasoning (syntactic manipulation of
labels). Crucially, the process is different from—and does not
reduce to—pattern recognition. This contention will be discussed
elsewhere.

The development of order in self-organizing systems implies
the emergence of Markov blankets; i.e., encountering a
confluence of conditions that allows the system to self-segregate,
or fold into components that remain coupled to the system
but acquire conditional independence. In living organisms,
mechanisms start to form that regulate the ‘‘permeability’’ of the
blankets, i.e., facilitating inflow of energy and matter necessary
for sustaining independence and integrity at the level consistent
with survival. One might imagine that further development
creates higher-order regulatory mechanisms comprised of nested
components ‘‘wrapped’’ in Markov blankets.

When analyzing the thermodynamic underpinnings of life,
Schrodinger introduced the notion of negentropy extraction:
‘‘the device by which an organism maintains itself at a
fairly high level of orderliness (low level of entropy) really
consists in continually sucking orderliness from its environment’’
(Schrodinger, 2006, p. 73). Negentropy extraction involves active
sampling and harvesting of information from the environment.
The induction of Markov blankets and increase of order via
partitioning of associative networks into nearly homogeneous
subsets (neuronal packets) equates to internal generation of
information (Salmon, 1970). Thermodynamic free energy is
therefore diverted from dissipating organismal structure and
is stored in ATP molecules at the packet surface, to be
released in the work of composing and re-shaping packets
for further free energy minimizing inference. Our theory
defines the increase of order via constructing models as
negentropy generation (orderliness is manufactured inside the
system).

Minimization of boundary free energy can drive
self-organization and self-assembly in microstructures (Syms
et al., 2003) and influence first-order phase transitions, inducing
critical phenomena (surface-induced order and disorder
(Lipowsky, 1984)). The coexistences of phases in a first-order
transition is described by Landau-Lifsitz potential with several
minima, with spontaneous symmetry breaking (e.g., packet
formation) on obtaining one of the minima (producing order
and the disordered phase characterized by a vanishing order
parameter (Lipowsky, 1984)). In general, identifying the
thermodynamic variable with the surface area of a packet offers
a hypothetical Lagrangian or Lyapunov function that poses some
interesting analytic and practical questions. From a technical
point of view, it motivates a formal analysis of the relationship
between the surface area (thermodynamic free energy) and
variational free energy. From a practical point of view, the
surface area can be treated as an order parameter, which is either

minimized or conserved—in accord with Hamilton’s principle
of stationary or least action.

Transition from negentropy extraction to negentropy
generation encompasses a continuum of intelligent processes,
from rudimentary (plant intelligence, e.g., Trevawas, 2002;
Marder, 2013) to the most elaborate (human intelligence).
In the latter, a spectrum of mechanisms can be involved
operating in conjunction with neuronal mechanisms; e.g.,
from limbic neuromodulation to glial cell function (Chung
et al., 2015); from synaptic processes to microtubules (Penrose,
1997). All such mechanisms exploit thermodynamic forces
to optimize energy extraction and utilization in the interest
of survival (e.g., sunflowers tracking the sun). Accordingly,
the formalism of self-adaptive resource optimization applies
across the continuum of biological intelligence. Emulating
biological intelligence in artifacts would require a range of
designs, including analog (super-Turing network (Siegelmann,
1999; Cabessa and Siegelmann, 2011)), digital and digital-analog
hybrids.

Our proposal associates self-organization in the physical
substrate with minimization of free energy, and asserts
isomorphism between variational and thermodynamic
expressions of free energy. Under both expressions, the
process involves self-partitioning in the substrate yielding
internally cohesive and externally weakly coupled (statistically
quasi-independent) components. As astutely noted by a
reviewer, the concept of energy minimization resonates with
some classical techniques in pattern analysis (e.g., energy
minimization in Hopfield networks) and image processing. In
general, minimization of an ‘‘energy functional’’ is used to obtain
image segmentation into ‘‘meaningful’’ regions (‘‘objects’’)
having uniform feature intensity and separated by non-uniform,
low-intensity patches. Minimization can be sought of some local
energy-like expression (Lucas and Kanade, 1981) or a global
energy functional (Horn and Schunck, 1981; Bruhn et al., 2005).
In the former case, the ‘‘energy functional’’ takes the form E(u,
B) → min where u is the smoothed image and B is a curve
segmenting the image (i.e., the union of ‘‘object’’ boundaries;
Mumford and Shah, 1989; Shah, 1992).

Mathematical ideas motivating boundary detection by
minimizing energy functionals (Mumford and Shah, 1985)
appear to be converging on our proposal postulating free energy
minimization in the interface or boundary separating neuronal
packets from the surrounding structure, thus providing further
support to the hypothesis that packets underlie perception of
‘‘objects.’’ Note that our overall proposal deals with models
of input (rather than percepts) and thus calls for expanding
the conceptual basis and the corresponding mathematical
apparatus, as compared to those employed in image processing.
In particular, the free energy minimization requirement is
associated not only with segmenting images into packets
(‘‘objects’’) but, crucially, with the subsequent operations on
packets, such as coordinated rotation of packet vectors. In
other words, the energy functional needs to be extended to
include minimization over two variables: the boundary energy
and the action. We believe that examining relations between
energy-like function minimization in image processing and
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variational and thermodynamic energy minimization in mental
modeling is likely to yield informative and practically useful
results, presenting a challenge for further research.

It is interesting to note that the vector manipulation
formalism adopted in the present theory overlaps, to a degree,
with the theory of morphogenesis in Thom (1975). In particular,
the theory expresses morphogenesis (change of form) in a system
M in terms of a vector field X on M determining the system’s
macroscopic dynamics. However, the overlap is limited since the
intent was to ‘‘construct an abstract, purely geometrical theory,
independent of the substrate of forms and the nature of the forces
that create them’’ (Thom, 1975, p. 8). Similar attempts can be
found in other system-theoretic studies of complex structures
(e.g., Casti, 1979). Most system theories, including Thom (1975),
focus on the general conditions of stability and resilience; i.e., the
system’s ability to absorb external disturbances without dramatic
consequences for its steady-state and transient behavior. By
contrast with system-theoretic proposals, the present proposal
resonates with the objective reinstating the primacy of action and
bodily grounded experiences in the theory of intelligence (Nunez
and Freeman, 2014) and is interested in the physical properties of
the substrate and the forces, seeking to relate them to resilience
and adaptive changes. Nonetheless, system theories offer a rich
mathematical apparatus and key insights (e.g., concerning the
role of topological factors in biological morphogenesis (Thom,
1975)), that may contribute to a comprehensive theory of
cognition.

Summary
Life emerges in networks of interacting material entities under
a confluence of conditions that allow regions in the network
to fold into bounded units statistically independent from the
environment. Sustaining life requires regulating the flow of
energy and matter through the boundary. The dual requirement
of maintaining independence from the environment, while
extracting sustenance from it, is resolved in progressively
improving regulatory mechanisms ascending from the boundary
to the internals. The progress is enabled by folding in
neuronal networks and culminates in mental modeling involving
manipulation of folded units (packets).

A detailed examination of the above hypothesis suggests
a metaphor of brain function that comprises Bayesian and
Aristotelian components, as follows. The interaction between
an organism and its environment is probabilistic (no action
is guaranteed to yield the expected outcome), necessitating
Bayesian inference to predict and prepare for counterfactual
outcomes before their onset; i.e., the cybernetic or Bayesian
brain (Conant and Ashby, 1970; Knill and Pouget, 2004; Seth,
2014). Self-organization creates structures and operations in the
system allowing logical inference; i.e., the Aristotelian brain.
The Aristotelian brain builds on the foundation of the Bayesian
brain in the course of self-adaptive resource optimization. The
need to invest work in operating on structures equilibrates the
Aristotelian-Bayesian system in the brain: self-partitioning into
packets establishes both reference sets for Bayesian inference and
a trade-off between the amount of cognitive work the system can
invest and the amount of surprise it can tolerate.

The self-adaptive resource optimization framework (Yufik,
1998b, 2002; Yufik and Malhotra, 1999; Yufik and Sheridan,
2002) offers a simple account of cognitive processes, highlighting
the crucial role ofMarkov blanket induction in neuronal systems,
as a pivotal optimization mechanism.

From the perspective of Bayesian inference, induction
equates to dynamic partitioning of large inference problems
into a hierarchical succession of simpler problems, minimizing
complexity (through dimension reduction) with the least loss of
accuracy. Anticipatory inference (e.g., counterfactual prediction)
is integral to optimization. This formalism is consistent with
the functional organization of memory, distinguishing long-term
(model parameters) and short-term (postdictive) components: in
this (Bayesian) setting structure learning and inference can be
expressed as optimization on vector constructs, such as Clifford
vectors or tensors (e.g., Dorny, 1975; Smolensky, 1990; Doran
and Lasenby, 2003).

From the perspective of physics, abductive reasoning equates
to placing associative networks into regulated variational free
energy landscapes where cohesive subnetworks (‘‘bubbles’’)
reside in valleys separated by energy barriers. This (variational
and thermodynamic free) energy landscape defines expenditures
(energy consumption and dissipation) in terms of the
computational complexity—accuracy trade-offs and motivates
optimization (Sengupta et al., 2013). From the perspective of
psychology, induction underlies the unparalleled efficacy of
human reasoning, by enabling transition from sensation to
perception and from perception to understanding.

From the perspective of systems neuroscience, the function
of understanding appears to be mediated by the Aristotelian-
Bayesian brain via collaborative engagement of the thalamo-
cortical system (associative network), the limbic systems
(emotive thermoregulation) and the cerebellum (coordination).
The theoretical perspective offered in this article is based on
a fundamental, cornerstone of systems neuroscience (Hebbian
assembly), by attributing biophysical properties to the assemblies
that, arguably, are implicit in—and have been anticipated
by—the original concept.

Finally, from the perspective of technology, implementation
of the optimization and induction mechanisms speaks to a
transition from machine learning to machine understanding.
Advances in machine intelligence over the last half century
have been associated primarily with perfecting techniques for
computing weight distributions in fixed topology (perceptron-
type) networks yielding a mapping between the input and
output vectors (learning, pattern recognition). The store
of algebraic ideas that have been employed in the task is
rich, going back to Tichonov’s regularization and iterative
error reduction methods by Gauss, but finite and appearing,
despite the recent strides (e.g., deep learning), to be nearing
exhaustion. Simulation of understanding involves networks
of varying topology and operations on dynamic vector
structures, with the weights intact. Implementing such
simulations could exploit algebraic ideas that have been
largely untapped, promising advances in autonomous systems
and other critical applications that, arguably, are not accessible
via the methods of machine learning. These distinct but
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complementary perspectives indicate possible avenues for
further investigation.
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