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SUMMARY

Knowledge about social hierarchies organizes hu-
man behavior, yet we understand little about the
underlying computations. Here we show that a
Bayesian inference scheme, which tracks the power
of individuals, better captures behavioral and neural
data compared with a reinforcement learning model
inspired by rating systems used in games such
as chess. We provide evidence that the medial
prefrontal cortex (MPFC) selectively mediates the
updating of knowledge about one’s own hierarchy,
as opposed to that of another individual, a pro-
cess that underpinned successful performance
and involved functional interactions with the amyg-
dala and hippocampus. In contrast, we observed
domain-general coding of rank in the amygdala and
hippocampus, even when the task did not require
it. Our findings reveal the computations underlying
a core aspect of social cognition and provide new
evidence that self-relevant information may indeed
be afforded a unique representational status in the
brain.

INTRODUCTION

Considerable evidence suggests that groups of humans, non-

human primates, and a variety of other species are arranged in

linear social dominance hierarchies that are stable over relatively

long periods of time. Knowing these relative social ranks is crit-

ical for selecting advantageous allies and avoiding potentially

dangerous conflicts (Cheney and Seyfarth, 1990; Rushworth

et al., 2013). At least two sources of information may be used

to guide judgments of social rank. One is the physical appear-

ance of an individual (e.g., facial features and body posture)

(Marsh et al., 2004; Todorov et al., 2008; Zink et al., 2008).

Such perceptual cues are thought to bewidely used in the animal

kingdom to indicate rank (e.g., plumage) (Byrne and Bates, 2010)

and may provide a relatively coarse heuristic with which to
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rapidly assess the threat posed by an unfamiliar individual in pri-

mates (e.g., an intruder) (Marsh et al., 2004; Todorov et al., 2008;

Whalen, 1998). In contrast, the other source of information,

namely, experience of previous encounters between (pairs of)

individuals, is more robust—albeit potentially incomplete, if not

all encounters arise. Research in animals, therefore, has empha-

sized that rank judgments depend critically on knowledge

acquired through learning, coupled with a highly developed

capacity for transitive inference (i.e., if A > B and B > C, then

A > C) (Byrne and Bates, 2010; Cheney and Seyfarth, 1990; Gro-

senick et al., 2007; Paz-Y-Miño C et al., 2004).

Although existing work in humans (Kumaran et al., 2012), com-

plemented by research in animals (Noonan et al., 2014; Rush-

worth et al., 2013), has provided evidence that the amygdala

and anterior hippocampus are selectively involved in the acqui-

sition and use of knowledge about a social (i.e., as opposed to

a non-social (Kumaran et al., 2012) hierarchy, three important is-

sues remain open. First, what are the neural computations that

support the learning of social hierarchies? Although a recent

line of research demonstrates that certain aspects of social

learning (e.g., about traits, trust games, and theory of mind

[ToM]) can be accounted for by reinforcement learning (RL)

mechanisms (Behrens et al., 2009; Burke et al., 2010; Hackel

et al., 2015; Hampton et al., 2008; King-Casas, 2005; Suzuki

et al., 2012), a rich theoretical framework formalizes the acquisi-

tion of structured knowledge (e.g., about social hierarchies and

networks) in Bayesian terms (Kemp and Tenenbaum, 2008;

Tervo et al., 2016). Which accounts better for social hierarchy

learning is not clear. Second, previous work has only examined

the neural substrates underlying learning about social hierar-

chies composed exclusively of other individuals (Chiao et al.,

2008; Kumaran et al., 2012; Zink et al., 2008). A key question,

therefore, is whether learning about dominance relationships

within one’s own hierarchy—arguably the most relevant type of

knowledge in the real world—recruits similar or distinct neural

mechanisms. Indeed, this has broader relevance for the funda-

mental question of whether self-related information is repre-

sented by distinct neural mechanisms (Amodio and Frith, 2006;

Denny et al., 2012; Mitchell et al., 2006), an issue that has been

difficult to answer definitively because of the natural intertwining

of the self/other dimension with the richness and quantity of prior

knowledge (e.g., in trait judgment tasks). Third, is there automatic
mber 7, 2016 ª 2016 The Authors. Published by Elsevier Inc. 1135
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Figure 1. Learn Phase: Experimental Task and Behavioral Data

(A) Training trials: timeline (left), behavioral data (right). Participants viewed adjacent items in the hierarchy: P4 versus P5 illustrated for Self condition (above,

yellow border around faces) and Other condition (below, blue border around faces). Yellow or blue (counterbalanced) signified the logo color of the company to

which individuals belonged. P5was the participant or a close friend for the Self andOther conditions, respectively. Participants selected the item they thought had

more power and received corrective feedback. Male participants saw only male individuals; female participants saw only female individuals. Right: training trial

performance across all 12 experimental blocks, averaged across all eight training trial types (e.g., P1 versus P2, P2 versus P3) and participants (Self condition:

green; Other condition: blue; error bars reflect SEM).

(B) Test trials: timeline (left), behavioral data (right). Participants viewed non-adjacent items in the hierarchy (P3 versus P6 illustrated), inferred the higher ranking

item, and rated their confidence in their choices; no feedback was provided. Right: performance over all 12 experimental blocks, averaged across all eight test

trial types (four of which included the participant or his or her friend [P2 versus P5] and four of which did not [e.g., P3 versus P6]) and participants (Self condition:

blue; Other condition: green; error bars reflect SEM).

(C) Hierarchy recall test (debriefing session): pictures of the sets of people in the Self andOther hierarchy conditionswere presented to participants, and theywere

asked to rank them in terms of their order in the hierarchy, with their performance timed. Example Self and Other hierarchies are illustrated (not shown to

participants): members of the yellow- and blue-logo companies, respectively. Note that the allocation of person to rank position (1 = high rank, 9 = low rank) was

randomized across participants, although P5 was always the participant or a close friend for the Self or Other condition. Right: performance (%) on hierarchy

recall test and time taken (seconds) (Self condition: green; Other condition: blue).
generation of neural signals reflecting rank in a social hierarchy

(hereafter termed ‘‘power’’ because it is considered a continuous

dimension in our study) that was learned through experience,

even when the task does not require it? Although previous work

(Kumaran et al., 2012) demonstrated that neural signatures of

power are generated when needed to perform an evaluation

task, ecological evidence suggests that the power of others

should be automatically represented, in an analogous fashion

to perceptual signals relating to trustworthiness (Engell et al.,

2007; Todorov et al., 2008; Winston et al., 2002).

To examine these issues, we developed a new experimental

task that builds on a prior study (Kumaran et al., 2012) used to

elucidate the neural substrates of hierarchy learning but incorpo-
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rates extra features. In the ‘‘Learn’’ phase of the task, partici-

pants acquired knowledge of two social hierarchies in parallel.

Although both hierarchies were comprised of unfamiliar mem-

bers of two fictitious companies, they were distinguished by

incorporating either the participants themselves (hereafter the

Self hierarchy) or close friends of the participants (hereafter the

Other hierarchy) (see Figure 1). Thus, our experimental design

afforded us the opportunity to identify putative differences in

the neural mechanisms that support learning about self-related

information, decoupled as far as possible from many forms of

preexisting and prior knowledge about the self that are inherent

in other studies (Denny et al., 2012; Jenkins et al., 2008; Kelley

et al., 2002; Macrae et al., 2004; Mitchell et al., 2005, 2006; Tamir



and Mitchell, 2011, 2012). We incorporated a direct test of the

effectiveness of our Self/Other manipulation using a specifically

tailored version of the classic implicit association test (IAT)

(Greenwald et al., 1998; Mitchell et al., 2006) (see below and

Supplemental Experimental Procedures). Finally, during a sec-

ond scanning (‘‘Categorization’’) phase, participants viewed pic-

tures of individuals from both hierarchies, allowing us to probe

the underlying representations of the hierarchies learned in the

previous phase and identify regions that automatically generate

signals of power, even when the task does not require it.

In sum, our experiment was specifically set up to elucidate the

computational mechanisms operating during social hierarchy

learning, examine whether distinct neural processes support

the learning and representation of self-relevant information

(i.e., the power of individuals within one’s own, compared with

another’s, social group), and determine whether signals reflect-

ing individuals’ power are automatically generated even in the

absence of task demands.

RESULTS

Learn Phase
During the Learn phase, participants completed training trials in

each of which a pair of adjacent people in the hierarchy was pre-

sented (e.g., P1 versus P2, where P = person; Figure 1): they

were required to learn through trial and error which person had

more power in each of two hierarchies relating to different com-

panies signified by colored logos (i.e., yellow and blue; each

company consisted exclusively of people of the same gender

as the subject). One hierarchy included the subject himself or

herself (the Self condition), and the other incorporated a close

friend (the Other condition; see Supplemental Experimental Pro-

cedures for the elicitation procedure). Our experimental design

incorporated a close friend in the Other condition, rather than

an acquaintance or unfamiliar other individual, in order to render

these conditions as similar as possible, thereby isolating the Self/

Other dimension (e.g., Mitchell et al., 2006). Following each

training trial block, participants completed test trials in which

they were required to select the more powerful of the two items

presented (e.g., P4 versus P6; Figure 1B) and rate their confi-

dence in their decisions on a scale ranging from 1 (guess) to 3

(very sure). Test trials, therefore, differed from training trials in

two critical ways: non-adjacent items in the hierarchy were pre-

sented during test trials (e.g., P4 versus P6), and no corrective

feedback was issued (although subjects knew that they would

ultimately be remunerated for correct answers). Confidence

judgements did not attract compensation. Importantly, partici-

pants could not rely on memorization (i.e., of the item from

each training pair associated with the positive outcome) to

perform successfully during test trials but instead were required

to deduce the correct item using knowledge of the underlying

hierarchy.

Behavioral Results
Participants improved their performance on training and test

trials over the course of the Learn phase: no significant differ-

ence was found between Self and Other conditions in terms of

reaction times (RTs) (Self: 1.49 [0.04] s and 1.52 [0.04] s; Other:
1.49 [0.04] s and 1.54 [0.05] s; training and test trials respectively,

SEM in brackets), the correctness of choices, or confidence rat-

ings (all p values > 0.2; Figures 1A and 1B). Following scanning,

participants were also tested on their explicit knowledge of the

hierarchy (hierarchy recall test; see Figure 1C and Experimental

Procedures). They performed proficiently (Figure 1C), with no

significant difference between conditions in terms of accuracy

(Self versus Other: 92.1% [2.7%] versus 84.1% [4.4%], mean

with SEM in brackets) or time taken (Self versus Other: 22.7 s

[2.1 s] versus 25.6 s [3.1 s], mean with SEM in brackets) (both

p values > 0.2).

Following scanning, participants also completed a version of a

classical psychological paradigm, the implicit association test

(see Figures 2 and S1 and Supplemental Experimental Proced-

ures) (Greenwald et al., 1998), which we adapted to probe the

extent to which participants incorporated themselves into the

Self hierarchy condition. There was a highly significant IAT effect,

evidenced by speeding of RTs in congruent trials (congruent:

690 ms [152.8 ms]; incongruent: 856 ms [30.2 ms]; t23 = 5.33,

p < 0.001; Figure 2; see Supplemental Experimental Proced-

ures). This evidence was complemented by related subjective

measures obtained through a debriefing questionnaire, in which

participants reported that they incorporated themselves in the

Self condition and their friends in the Other condition, to a similar

degree (p > 0.1) (see Table S8). These results demonstrate the

effectiveness of our experimental manipulation in the Self versus

Other condition, consistent with previous evidence that merely

assigning participants into different groups in an arbitrary fashion

can have substantial effects on behavior (i.e., higher monetary

sharing within a group, compared with across groups, in Volz

et al., 2009).

Computational Modeling
Existing models of transitive inference have been typically been

restricted in being able to learn only relatively small hierarchies

(i.e., six or fewer items) (Frank et al., 2003; von Fersen et al.,

1991). We therefore developed two novel models capable

of learning long hierarchies (i.e., here of nine items): one

involving (approximate) Bayesian inference and the other

involving reinforcement learning (see Supplemental Experi-

mental Procedures).

According to the first model, subjects treat the powers of indi-

viduals as a hidden or latent variable, about which they make

approximate Bayesian inferences. These inferences are based

on the likelihood of observations (i.e., the outcomes of training

trials that reveal which individual has more power). Given the

finding that participants required approximately 200 trials to

achieve proficiency (see Figures 1A and 1B), despite receiving

deterministic feedback during training, we modeled them as

having imperfect memory (as might, for instance, arise from a

changing environment). For a concrete implementation of forget-

ful Bayesian inference, we used an example of a popular class of

filtering algorithms known as sequential Monte Carlo (SMC)

methods (Doucet et al., 2000). These aim to infer the underlying

distribution of an evolving hidden variable, representing it

through a set of notional samples or particles. Forgetfulness is

straightforward to capture via a parameter (called s) in the

SMC model, which influences the tendency for particles to drift
Neuron 92, 1135–1147, December 7, 2016 1137



Figure 2. Implicit Association Test: Evi-

dence that Participants Incorporated Them-

selves into the Self Hierarchy

(A) Experimental design. Top: congruent condi-

tion: when the yellow logo (i.e., the color of the Self

company logo in this example) is displayed on the

same side as the word ‘‘Self’’ and when the blue

logo (i.e., the color of the Other company) is dis-

played on the same side as the word ‘‘Other.’’

Bottom: incongruent condition: when the yellow

logo is displayed on the side of the word ‘‘Other.’’

The rationale is that if participants have incorpo-

rated themselves into their own social group, they

should be faster to categorize faces according

to company membership in the congruent

(cf. incongruent) condition, in which the word

‘‘Self’’ is on the same side as the color of the

company logo (i.e., yellow). In contrast, RTs

should be slower in the incongruent condition, in

which the yellow logo is displayed on the side of the word ‘‘Other,’’ because of a Stroop-like effect (see Supplemental Experimental Procedures). Note that the

words ‘‘Self’’ and ‘‘Other’’ were not presented to participants during the experiment: profile pictures were denoted by ‘‘you’’ and ‘‘him’’ or ‘‘her.’’

(B) Mean latencies for the congruent (light gray) and incongruent (dark gray) trials, averaged across participants (see Supplemental Experimental Procedures for

details of analytic procedure). The IAT effect is the difference in response times between congruent trials and incongruent trials (error bars reflect SEM).
over time (see Supplemental Experimental Procedures). This

prevents asymptotic certainty and slows learning.

The second method involved RL. Typical RL methods that

assign values to items on the basis of their propensity to be asso-

ciated with a rewarding outcome (e.g., the Rescorla-Wagner rule

or Q learning; Watkins and Dayan, 1992) are known to fail in hi-

erarchy learning tasks. This is because each item (apart from

the top and bottom ranked) is equally associated with positive

and negative outcomes during training trials. Consequently, in

developing an RL account (hereafter termed RL-ELO) capable

of successful hierarchy learning performance, we sought inspira-

tion from algorithms used to update player ratings in games

(e.g., Yliniemi and Tumer, 2013) (e.g., the ELO rating system in

chess; see Supplemental Experimental Procedures), whose crit-

ical component is to increase or decrease the rating (i.e., power)

of the winning or losing individual in a pairwise contest or trial as

a function of the rating of one’s opponent (i.e., the winner has a

relatively small update if the opponent was estimated to bemuch

less powerful). This has been proved to work even in gargantuan

problems.

A critical qualitative difference between the SMC and RL-ELO

schemes concerns uncertainty. The SMC model inherently

models the uncertainty in the estimation of power. In contrast,

the RL-ELO, like temporal difference (TD) learning, maintains

only a single scalar estimate of power for each individual

(e.g., Niv et al., 2006; Schultz et al., 1997; although see Gersh-

man, 2015). Furthermore, the models differ in the nature of the

mechanism by which they update their estimates of the power

of individuals within the hierarchy (see below).

One principal aim of this study was to determine which of

these two models, the SMC mechanism or the RL-ELO mecha-

nism, was better able to capture participants’ data. At a behav-

ioral level, we quantified the fit of each of the SMC and RL-ELO

models, as well as previously developed models (value transfer

and Rescorla-Wagner), to participants’ choice behavior during

training and test trials. Using a maximum likelihood estimation

procedure to optimize a separate set of parameters for each
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participant (see Daw, 2011; Wimmer et al., 2012), we found

strong evidence (see Table 1) in favor of the SMCmodel accord-

ing to the log likelihood of each model and the corresponding

Bayesian information criterion (BIC) measure (Raftery, 1995).

We also examined a variant of the RL-ELO model, termed RL-

ELOF, which incorporated an extra parameter (i.e., s) to allow

forgetting (i.e., through the addition of Gaussian noise at each

time step); this did not significantly improve the fit of the RL

model indexed by BIC scores (see Table 1).

Interestingly, the difference between our two primary models

arose in the trials in the first half of the experiment (BIC = 185.0

versus 201.8 for SMC versus RL-ELO) rather than the second

half (BIC = 109.3 versus 111.7, respectively), consistent with

the notion that the SMC model captures behavior more effec-

tively than the RL model when participants are more uncertain

about the relative power of individuals during the early phase

of learning. This is explained by a qualitative difference between

the updating mechanisms of themodels: the RL-ELOmodel only

updates the values of the current items in a trial (i.e., uncon-

strained by the values of the other items). In contrast, the SMC

model naturally updates the values of items not present in a

given training trial, because it updates a posterior distribution

over all items on a trial-by-trial basis, because each particle con-

stitutes a particular belief about the values of all nine items in the

hierarchy. The reason that the difference inmodel fit is greatest in

the first half of the experiment is that this is the period whenmost

learning and hierarchy updating is occurring (e.g., see Figure 1).

This difference in updating mechanism makes the specific pre-

diction that the RL-ELO model should be much more sensitive

(i.e., in terms of influence on its predicted choices) than the

SMC model to the particular reinforcement history of items and

therefore trial order experienced. We provide evidence for this

predicted difference (see Figure S2: a significantly greater effect

of reinforcement history on negative log likelihood [NLL] for

the RL [cf. SMC] model, Z = 24.8, p < 0.0001). Notably, the

difference in updating mechanism also results in the SMC

model’s being able to more rapidly converge on the correct



Table 1. Results of Behavioral Model Fitting

Model Condition �LL BIC a b s q

SMC Self 136 283 – 0.64 (0.12) 0.11 (0.03) –

Other 137 285 – 0.65 (0.15) 0.15 (0.04) –

RL-ELO Self 144 299 1.35 (0.12) 1.83 (0.22) – –

Other 146 303 1.31 (0.15) 1.39 (0.08) – –

RL-ELOF Self 141 299 1.16 (0.22) 1.22 (0.23) 0.11(0.02) –

Other 142 301 1.06 (0.20) 1.18 (0.22) 0.13 (0.03) –

Value transfer Self 160 331 0.11 (0.01) 0.13 (0.01) – 0.22(0.02)

Other 161 333 0.10 (0.01) 0.14 (0.01) – 0.19 (0.02)

RW Self 191 393 0.05 (0.01) 0.37 (0.03) – –

Other 191 393 0.05 (0.01) 0.46 (0.08) – –

Base Self 200 400 – – – –

Other 200 400 – – – –

�LL, negative log likelihood. Average quantities reported. Models fit individually to participants. Mean (SEM) of best fitting parameters for each indi-

vidual reported (see Supplemental Experimental Procedures for description of models and parameters).
rank ordering: the difference between model fits (i.e., in terms of

negative log likelihood) showed a highly significant correlation

with subjects’ performance, with higher performing subjects

showing greater advantage for the SMCmodel (Pearson’s corre-

lation: R = �0.75 and �0.79 [p < 0.0001] for the Self and Other

conditions). Notably, the vast majority of subjects were better

fit by the SMC model (22 and 23 of 28 subjects in the Self and

Other conditions).

The task affords two additional measures by which themodels

can be compared: reaction times and confidence judgments.We

expect these to be related to the uncertainty associated with the

choices, captured by a trial-by-trial internal variable common to

both SMC and RL-ELO models, namely, choice entropy (see

Supplemental Experimental Procedures). A linear mixed-effects

model demonstrated that the SMC model also provided a supe-

rior fit to participants’ reaction time data, compared with the RL-

ELO model during both training (SMC, BIC = 8,492; RL-ELO,

BIC = 8,699) and test (SMC, BIC = 4,491; RL, BIC = 4,520) trials,

in which a choice entropy was entered as a fixed effect, and

participant and condition (Self or Other) were entered as random

effects (likelihood ratio compared with the null model, all

p values < 1 3 10�15). The choice entropy from the SMC model

also captured the confidence of participants in their responses

during transitive test trials more proficiently (SMC, BIC = 8,687;

RL-ELO, BIC = 8,733; likelihood ratio versus null model, all

p values < 1 3 10�15).

Neuroimaging Data
Neural Activity in the Amygdala and Anterior

Hippocampus Correlates with SMC-Modeled Difference

between the Power of Individuals during Test Trials

Given our finding that the SMC model best accounts for partici-

pants’ behavior (i.e., choices, RT, confidence data), we next

probed the neural data using its key internal variables. We first

focused on the test trial data, in which participants were pre-

sented with item pairs not seen during training trials (e.g., P3

versus P6), were not given corrective feedback, and were there-

fore required to use their estimates about individuals’ power. We
sought to identify regions where neural activity tracked the

(expectation over the) difference between the modeled distribu-

tions of the power of items in a given trial (see Figure 3A). To

achieve this, we created participant-specific trial-by-trial para-

metric regressors reflecting the unsigned power difference be-

tween items which were used to regress against the fMRI data

(see Supplemental Experimental Procedures).

We found a robust correlation between neural activity in

the amygdala, hippocampus, ventromedial prefrontal cortex

(vMPFC), and the difference between the power of individuals

as estimated by the SMC model (see Figure 3B and Table S1).

We also observed a tight correlation between neural activity

and item power difference in a region proximate to the fusiform

face area (FFA) (see Figure 3B). Results from an region-of-inter-

est (ROI) analysis performed separately in the Self and Other

conditions provide evidence that the left amygdala (Self: t27 =

1.95, p = 0.028; Other: t27 = 1.73, p = 0.044), ventromedial pre-

frontal cortex (Self: t27 = 2.27, p = 0.01; Other: t27 = 3.14,

p = 0.0013), and FFA-proximate region (Self: t27 = 2.75,

p = 0.005; Other: t27 = 3.33, p = 0.0011) code SMC-modeled dif-

ferences in power that support performance during test trials in

both conditions. Notably, these effects cannot be driven by dif-

ferences in reaction times between trials given that an earlier re-

gressor in the same general linear model captured such effects

(see Experimental Procedures). Together with a previous study

(Kumaran et al., 2012), these findings provide evidence that the

anterior hippocampus and amygdala play a specific role in social

rank judgements: indeed, activity in this region identified in this

previous study to be associated with model-agnostic measures

of hierarchy learning (i.e., social > non-social contrast, shown in

Figure 2B of Kumaran et al., 2012; ROI defined at p < 0.005

uncorrected) showed a robust correlation with the SMC-

modeled difference in power during test trials in the present

study (t27 = 6.17, p < 0.000001).

Hierarchy Updating: The SMCModel Provides a Superior

Fit to Neural Data Compared with the RL Model

Previous results provide evidence for shared signals in the amyg-

dala and hippocampus during performance of test trials, relating
Neuron 92, 1135–1147, December 7, 2016 1139



Figure 3. Learn Phase: Neural Activity in the

Amygdala, Hippocampus, and vMPFC Cor-

relates with SMC-Estimated Difference in

Individuals’ Power during Test Trials in Self

and Other Conditions

(A) Illustrative plot from a participant showing the

evolution over the experiment of the mean (i.e.,

expectation over the distribution of) power relating

to each of the nine individuals in the hierarchy.

(B) Activity in the bilateral amygdala (top right),

vmPFC and posterior cingulate cortex (top left),

bilateral anterior hippocampus (bottom left), and

region proximate to the fusiform face area (bottom

right) shows a significant correlation with SMC-

modeled absolute difference between individuals’

power in test trials. Activations are thresholded at

p < 0.005 uncorrected for display purposes but

significant in all regions at p < 0.001 uncorrected

and p < 0.05 whole-brain FWE corrected at peak

or cluster level. See Table S1 for a full list of

activations.
to both one’s own group (Self condition) and another’s group

(Other condition). We next turned our focus to training trials, in

which participants had the opportunity to update their beliefs

about the power of individuals in the Self and Other hierarchies

(i.e., on the basis of corrective feedback): this provided the basis

of successful performance in test trials. To identify signatures of

learning, we sought regions in which neural activity showed a

correlation with an internal measure, termed the hierarchy up-

date index (Figure 4A) (see Supplemental Experimental Proced-

ures) reflecting the degree to which participants updated their

estimates of the power of individuals from trial to trial. Specif-

ically, for each pair of items (e.g., P1 versus P2) we computed

the Kullback-Leibler divergence between the participants’ esti-

mates of the probability of one item winning against the other

before and after feedback, summing this quantity across all pairs

(see Supplemental Experimental Procedures). Note that the cor-

relation between the hierarchy update index and other measures

(e.g., chosen power) was relatively low (�0.2).

In a whole-brain analysis collapsed across both Self and Other

conditions, we found a robust correlation betweenMPFC activity

and the SMC-modeled hierarchy update index (MPFC: x, y, and

z coordinates �8, 44, and 10; Z = 5.04, family-wise error peak

level corrected p = 0.022) and also with the hippocampus and

the FFA-proximate region (see Table S3A). We also identified

significant correlations in a targeted ROI analysis in the MPFC

(t27 = 1.97, p = 0.030), left amygdala (t27 = 1.73, p = 0.047), bilat-

eral hippocampus (left: t27 = 3.70, p = 0.00048; right: t27 = 2.77,

p = 0.005), and FFA-proximate region (t27 = 3.28, p = 0.0014) but

not the vmPFC (p > 0.1). When the Self and Other conditions

were considered separately, significant effects were present in

the hippocampus (Self: left hippocampus t27 = 3.10, p =

0.0022, right hippocampus t27 = 2.94, p = 0.0033; Other: left hip-

pocampus t27 = 1.93, p = 0.032).

Previously we showed that the SMC model fit the behavior

more proficiently than the RL-ELOmodel and provided evidence

of their qualitative difference in hierarchy-updating mechanism

(e.g., see Figure S2). Here we compare the fit of these models

to the neural data, usingmodel-derived hierarchy update regres-
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sors, collapsed across Self andOther conditions, in regions of in-

terest defined anatomically and functionally (see Supplemental

Experimental Procedures) (Ashby and Waldschmidt, 2008; Niv

et al., 2015; Wilson and Niv, 2015). The relative differences in

BIC between models (Ashby and Waldschmidt, 2008; Raftery,

1995) provide strong support that the SMCmodel best captures

neural activity in amygdala, hippocampus, and MPFC (see

Table S2).

Activity in the MPFC Correlates with SMC-Modeled

Hierarchy Update Signal in the Self Condition during

Training Trials

We found that the correlation between MPFC activity and the hi-

erarchy update index was driven by the Self condition (whole-

brain analysis: MPFC: x, y, and z coordinates �6, 46, and 12;

Z = 4.22, p < 0.001 uncorrected and small-volume corrected

[SVC] p = 0.0040; MPFC ROI analysis, t27 = 2.73, p = 0.0055; Fig-

ure 4B and Table S3B). This finding remained robust when

we restricted our analyses to just those trials in which partici-

pants updated their knowledge about other individuals in the

hierarchy, excluding themselves and their friends (i.e., P4

versus P5, P5 versus P6; see Supplemental Experimental Pro-

cedures) (whole-brain analysis: Self: Montreal Neurological

Institute [MNI] x, y, and z coordinates �6, 46, and 12; Z = 4.25,

p < 0.001 uncorrected and SVC p = 0.0030; MPFC ROI analysis,

t27 = 2.93, p = 0.0034). No significant correlations were observed

in the MPFC in these analyses in the Other condition (ROI ana-

lyses: p values > 0.2). Further, an ROI analysis showed that there

was a greater correlation between MPFC activity and the hierar-

chy update index in the Self compared with the Other condition

(Self > Other: t27 = 1.83, p = 0.039), with no significant differences

found in this analysis in other regions (i.e., hippocampus, amyg-

dala, and FFA-proximate region: all p values > 0.1). No significant

differences were found in the reverse contrast (i.e., Other > Self)

in either awhole-brain analysis or ROI analysis (all p values > 0.2).

Furthermore, we found a robust between-subjects correlation

between performance (i.e., averaged across this experimental

phase) and the strength of the correlation betweenMPFC activity

and the hierarchy update index in the Self condition. This was the



Figure 4. Learn Phase: MPFC Activity Cor-

relates with SMC-Modeled Hierarchy Up-

date Signal Selectively in Self Condition

(A) Illustrative example from one subject showing

profile of SMC-modeled hierarchy update index

during training trials (see Supplemental Experi-

mental Procedures for details).

(B) Whole-brain analysis: significant correlation

between activity in MPFC and hierarchy update

index in Self condition (sagittal and coronal views:

MNI x, y, and z coordinates �6, 46, and 12;

Z = 4.22, p < 0.001 uncorrected and SVC

p = 0.0040) (Table S3B).

(C) Significantly greater correlation betweenMPFC

activity and updating of objective measure of hi-

erarchy knowledge (i.e., negative log likelihood of

responding correctly on all possible pairs of in-

dividuals) in Self compared with Other condition:

sagittal (left) and coronal (right) sections shown

(MPFC x, y, and z coordinates 2, 44, and 8; Z =

3.87, p < 0.001 uncorrected and SVC p = 0.021).

Display threshold is p < 0.005 uncorrected.
case at the whole-brain level in the MPFC in the Self condition

(x, y, and z coordinates �8, 42, and 8; p < 0.001 uncorrected

and SVC p = 0.043) and in the MPFC ROI (t27 = 2.07,

p = 0.024; trend in L amygdala ROI t27 = 1.61, p = 0.06). No

such correlation was found in the MPFC ROI in the Other condi-

tion, with a significantly greater correlation in the Self condition

(Self > Other: Z = 1.85, p = 0.032).

This hierarchy update analysis was based on participants’

subjective estimates of the power of individuals at a given

moment: we also derived an analogous measure capturing the

trial-by-trial change in participants’ objective knowledge of the

ground truth hierarchy. Although this quantity cannot be directly

computed by participants, it was highly correlated with the hier-

archy update index (i.e.,�0.8) and yielded robust differences be-

tween the Self andOther conditions in theMPFC in awhole-brain

analysis (Self > Other: whole-brain analysis MPFC x, y, and z co-

ordinates 2, 44, and 8; Z = 3.87, p < 0.001 uncorrected and SVC

p = 0.021, see Figure 4C: MPFC ROI analysis t27 = 3.56,

p = 0.00064). Of note, no significant correlations with this objec-

tive hierarchy update index were found in the MPFC in the Other

condition (ROI analyses: p values > 0.2).

Selective Coupling between MPFC and Amygdala and

Hippocampal Activity during Updating of Hierarchy

Knowledge in the Self Condition

Our results show that neural activity in theMPFC specifically cor-

relates with updating of hierarchy knowledge in the Self condi-

tion, with significant effects in the amygdala and hippocampus

observed across both Self and Other conditions. We next asked

whether neural activity in this part of theMPFC and the amygdala

and hippocampus, regions that are thought to be anatomically

connected (Beckmann et al., 2009; Carmichael and Price,

1995), exhibit greater functional coupling during updating of hier-

archy knowledge in the Self compared with the Other condition.

To do this, we performed a psychophysiological (PPI) analysis

(Friston et al., 1997; O’Reilly et al., 2012) (see Supplemental

Experimental Procedures for details): this was specifically set

up to ask in which brain regions the magnitude of functional

coupling of neural activity with the MPFC shows a significantly
greater correlation with the amount by which hierarchy knowl-

edge changes in the Self compared with the Other condition,

above and beyond that explained by differences in the basic cor-

relation between the hierarchy update index in the Self andOther

conditions (i.e., hierarchy update: Self > Other, as reported in the

preceding analysis). We observed significant effects in the

amygdala and hippocampus both in a whole-brain analysis

(see Table S4) and in targeted ROI analyses (left hippocampus

t27 = 2.35, p = 0.010, right hippocampus t27 = 1.65, p = 0.051;

left amygdala t27 = 2.14, p = 0.020, right amygdala t27 = 2.00,

p = 0.028). These results provide evidence for selective coupling

between the MPFC and the amygdala and hippocampus during

updating of hierarchy knowledge in the Self condition.

Correlation between Neural Activity in Amygdala,

Hippocampus, and MPFC and SMC-Modeled Power of

Chosen Individual during Training Trials

Having established that neural activity in the MPFC correlates

with updating of hierarchy knowledge in the Self condition, we

next asked whether another internal variable of the SMC model,

specifically, the expectation of the distribution (i.e., mean) of po-

wer of the chosen item (Figure 5A), was reflected in neural activ-

ity (see Supplemental Experimental Procedures, Table S5, for a

separate analysis relating to another internal variable: the en-

tropy over item pairs). We first performed an analysis collapsed

across Self and Other conditions (i.e., main effect): ROI analyses

provided evidence that chosen power was represented in

the amygdala (left: t27 = 2.62, p = 0.0071; right: t27 = 1.75,

p = 0.046) and ventromedial prefrontal cortex (t27 = 3.19,

p = 0.0018) (see Table S6A for results of whole-brain analysis).

We also observed significant differences between the Self and

Other conditions in terms of the correlation of neural activity with

chosenpower. In awhole-brain analysis,we found that neural ac-

tivity, in a similar region ofMPFC to that revealed by the hierarchy

update index analysis above, was significantly correlated with

trial-by-trial chosenpower in theSelf condition (MNIx, y, andzco-

ordinates4, 44, and2;Z=3.01,SVCp=0.037; seeTableS6B)but

not the Other condition (see Table S6C). Moreover, there was a

significant difference between the Self and Other conditions in
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Figure 5. Learn Phase: Correlation between

Neural Activity in the MPFC and SMC-

Modeled Chosen Power during Training

Trials: Self versus Other

(A) SMC-modeled (expectation over) posterior

distribution of chosenpower for illustrative subject.

(B) Results of whole-brain analysis: region of

MPFC identified by correlation of neural activity

with SMC modeled chosen power: Self > Other

(MNI x, y, and z coordinates: 6, 42, and 4; Z = 4.23,

significant at SVC p = 0.001 and p < 0.001 un-

corrected; see Table S6D). Display threshold is

p < 0.005 uncorrected.
the MPFC (see Figure 5B and Table S6D). Furthermore, this

finding remained robust when we restricted our analyses to only

those trials that did not involve the participant or his or her friend

(Self > Other: MNI x, y, and z coordinates 6, 42, and 4; Z = 4.31,

p < 0.001uncorrected andSVCp=0.001).No region showed sig-

nificant differences in the reverse contrast (i.e., Other > Self).

Similarly, in an ROI analysis based on this region of the MPFC,

we found significant differences between the Self andOther con-

ditions during test trials that did not involve the participant or his

or her friend (see Supplemental Experimental Procedures). Spe-

cifically, we found evidence for a difference in the correlation

between neural activity and the trial-by-trial SMC-modeled dif-

ference in individual’s power within the MPFC ROI (Self > Other

t27 = 1.69, p = 0.050), though not within amygdala, hippocampal,

vmPFC, and FFA-proximate ROIs (all p values > 0.1). Together,

these analyses, by focusing only on trials that did not involve

the participants themselves, suggest that the MPFC supports

the updating and representation of power information about

other individuals (i.e., rather than only oneself), when these indi-

viduals are part of our own social group rather than another

group (i.e., Self > Other) (see Discussion).

Categorization Phase
Behavioral Results

In the next phase of the experiment, we aimed to probe partici-

pants’ representations of the underlying hierarchies and to

examine differences between those involving oneself versus a

close friend. Participants completed an incidental categorization

task that did not require the retrieval of information about power

(Figure 6A), allowing us to ask whether signals relating to individ-

uals’ power were automatically generated even in the absence of

explicit task demands. Individual pictures of people in the Self

and Other hierarchies (with the exception of the profile pictures

of participants and close friends) were presented, and partici-

pants were required to determine to which company individuals

belonged (i.e., the yellow or blue logo, assignment counterbal-

anced). Participants performed this categorization task accu-

rately (Self: 81.8% [2.8%], Other 79.7% [2.96%]; Self reaction

time: 0.80 s [0.010 s]; Other reaction time: 0.80 s [0.013 s]; all

p values > 0.1). There was no difference in accuracy or RT as a

function of rank (p > 0.1).

Neuroimaging Data

We first set up a parametric model to identify regions whose

activity exhibited significant linear correlations with the rank of

individual people in the true underlying hierarchy. We found
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that neural activity in the left amygdala and anterior hippocam-

pus showed a significant positive correlation with rank across

Self and Other conditions (Figures 6B and 6C; Table S7). This

provides novel evidence that these neural structures automati-

cally generate rank signals even when the task does not require

it and complements studies showing obligatory processing of

perceptual cues of trustworthiness (though not dominance),

whereby less trustworthy faces elicit higher levels of amygdala

activity (Todorov et al., 2011; Winston et al., 2002). No region

showed a significant negative correlation with rank. The finding

that less powerful (i.e., lower ranked) individuals elicited higher

levels of activity is consistent with previous work examining sig-

nals relating to valence and dominance of faces based on phys-

ical appearance (Todorov et al., 2011), rather than associative

learning (i.e., as in this study).

We also observed a significant linear correlation between rank

and neural activity in the MPFC ROI derived from the Learn

phase (t27 = 1.86, p = 0.036; Figure 7) in the Self condition,

providing a parallel to the automatic valuation of items observed

in the vmPFC (Lebreton et al., 2009). No such correlation was

observed in the Other condition (p > 0.2). Although the difference

between this linear correlation between Self and Other condi-

tions was not significant in the MPFC ROI, we did observe a

significant interaction when rank extremes were considered

(i.e., Self/Other3 top/bottom rank: t27 = 1.98, p = 0.029), reflect-

ing the fact that MPFC activity distinguished between highest

and lowest ranks selectively in the Self condition. No such effect

was present in any of the other ROIs (amygdala, hippocampus,

or vmPFC; all p values > 0.1).

DISCUSSION

Although social hierarchies are a fundamental organizing struc-

ture of primate social groups, little is understood about the com-

putations underlying learning and also whether there are distinct

neural mechanisms that support the ability of primates to judge

the rank of others within their own social groups, compared

with other social groups. To address these questions, we first

developed two novel hierarchy learning models, one based

on reinforcement learning (RL-ELO) and the other on approxi-

mate Bayesian inference (SMC). We showed that participants’

behavior and neural data were better captured by the Bayesian

inference scheme, which inherently computes the uncertainty

about estimates of power (i.e., rank in a continuous dimension),

than by the uncertainty-insensitive RL model. We demonstrate



Figure 6. Categorization Phase: Amygdala

and Anterior Hippocampus Automatically

Generate Rank Signals: Linear Correlation

with Neural Activity

(A) Paradigm: during the Categorization phase,

participants viewed individuals from the Self and

Other hierarchies (with the exception of the profile

pictures denoting themselves and their friends;

each picture repeated four times) and categorized

them according to the company to which they

belonged (i.e., the companywith the yellow or blue

logo).

(B) Activity in the left amygdala and anterior hip-

pocampus shows a linear correlation with rank

(main effect: Self and Other conditions). Display

p < 0.005; significant at p < 0.001 uncorrected and

L amygdala (SVC p = 0.025), and L hippocampus

(SVC p = 0.034) (see Table S7).

(C) Parameter estimates from peak voxel in

main effect (i.e., collapsed across Self and

Other conditions) L amygdala and hippocampus

(see Table S7). Significant linear correlation

evident, with lower ranks (i.e., where 9 = lowest)

eliciting highest neural activity. Note that these

plots were derived from an ‘‘illustrative’’ model

(see Supplemental Experimental Procedures).

Statistical inference, however, was based strictly

on the parametric model (see Supplemental Experimental Procedures). Note that rank 5 is denoted by an empty slot, because the profile pictures

denoting the participants themselves (Self condition) or their friends (Other condition) were not presented.
that learning about one’s own social hierarchy, as opposed to

that of a close friend, was associated with distinct correlations

between internal variables of the SMCmodel andMPFC activity,

while shared signals for both hierarchy types were present in the

amygdala and hippocampus. Furthermore, we found that the

MPFC was selectively engaged during updating of knowledge

about one’s own hierarchy, a process that explained variance

in participants’ performance, and involved functional interac-

tions with the amygdala and hippocampus. Finally, we show

that neural signals that automatically represent the power of in-

dividuals were generated by the hippocampus and amygdala

even when the task did not require it, with power-related activity

in the MPFC specific to self-relevant hierarchies.

Emerging evidence suggests work that RL models that do not

maintain explicit estimates of uncertainty about decision vari-

ables are able to capture behavior and neural data in a wide

range of settings, including experiments involving trust games

(Hackel et al., 2015; King-Casas, 2005), theory ofmind (Hampton

et al., 2008), and inferring the preferences and actions of others

(Burke et al., 2010; Suzuki et al., 2012). A recent study (Hackel

et al., 2015) demonstrated that learning about the generosity of

an individual on the basis of informative feedback reflecting his

or her propensity to share a monetary endowment was well

captured at the behavioral and neural levels by a reinforcement

learning model. These findings raise the question of whether

learning about the power of individuals in a social hierarchy—

another trait-level characteristic like generosity, for which

learning is typically feedback-based (i.e., ecologically through

observation of the outcome of dyadic contests, mirrored exper-

imentally by training trials in our task)—could also be mediated

by an RL process maintaining scalar quantities. Our study, how-
ever, provides compelling evidence against this hypothesis.

Specifically, we found that the SMC model provided a quantita-

tively better fit than the RL model across behavioral (i.e., choice,

RT, and confidence data) and neural levels. Of course, this pro-

vides evidence for the key differentiating constructs underlying

SMC, namely, forgetful, uncertainty-sensitive inference. Other

approximate Bayesian implementations could lead to the same

behavior and neural signals.

The current results dovetail with previous work that used a

related paradigm to show that the anterior hippocampus

and amygdala as identified here—regions that are coupled

by massive bidirectional connectivity (Fanselow and Dong,

2010)—play a specific role in the acquisition of knowledge about

social hierarchies (Kumaran et al., 2012). That study, however,

was not able to investigate the computational mechanisms un-

derlying learning; rather, neural activity in these regions was

correlated directly with model-agnostic behavioral indices of

learning. In contrast, our work implies that the anterior hippo-

campus and amygdala supports social hierarchy learning by

maintaining and updating beliefs about the power of individuals

through the operation of a probabilistic model, evidenced by sig-

nificant correlations between neural activity in these structures

and internal variables of the SMC model (e.g., the differences

in power between individuals during test trials). Indeed, the

higher order representation of the uncertainty in one’s beliefs

naturally sustained by probabilistic models (compared with RL

approaches) may be advantageous in deciding whether to

approach or avoid an individual on the basis of estimated differ-

ences in power. Furthermore, our finding that the hippocampus

supports such model-based representations of social hierar-

chies connects with the notion that these structures constitute
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Figure 7. Activity in MPFC Shows a Linear

Correlation with Rank in the Self Condition

during the Categorization Phase

(A) Region of MPFC defined on the basis of the

results of a separate fMRI phase (i.e., learning;

see Supplemental Experimental Procedures for

details).

(B) Parameter estimates averaged across MPFC

ROI in the Self condition (above) and Other con-

dition (below). A significant linear correlation be-

tween neural activity and rank in the Self but not

the Other condition is evident. These plots were

derived from an ‘‘illustrative’’ model; however,

statistical inference was based strictly on the

parametric model (see Supplemental Experi-

mental Procedures). Note that rank 5 is denoted by

an empty slot, because the profile pictures de-

noting the participants themselves (Self condition)

or friend (Other condition) were not presented.
a cardinal example of relational knowledge of the environment

that can be flexibly accessed (e.g., for reasoning or recall)

(Cohen and Eichenbaum, 1994; Eichenbaum, 2004). How this

type of hippocampal representation for structural forms (i.e., hi-

erarchies) accrued across multiple experiences is compatible

with a key role for the hippocampus in supporting memory for

individual episodes constitutes an important area for future

research (Eichenbaum, 2004; Kumaran and McClelland, 2012;

Zeithamova et al., 2012).

Our experimental design was specifically configured to

address a key question that has not been explored in previous

studies, namely, whether learning about a hierarchy of which

one is a part recruits similar or distinct neural mechanisms

than learning about a hierarchy that is composed entirely of other

individuals. The difference had notable behavioral signatures,

both in the congruency RT effect observed in the IAT and from

information obtained at debriefing, which suggested that the

participants found the scenario naturalistic. At a neural level, in

contrast to the shared representations for hierarchies in the

Self andOther condition in the amygdala and anterior hippocam-

pus, we found signatures of MPFC activity that were selective to

the Self condition, a finding that cannot be attributed to differ-

ences in performance, because this was comparable across

conditions. Specifically, MPFC activity showed a robust correla-

tion with the degree to which participants updated their knowl-

edge of the hierarchy from trial to trial. The relevant area of the

MPFC was the only region to show a significantly greater corre-

lation between neural activity and this SMC model-derived hier-

archy update signal in the Self condition than the Other condition

(i.e., no significant difference was observed in the amygdala or

hippocampus). Furthermore, we found evidence for a selective

coupling between the MPFC and the amygdala and hippocam-
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pus during updating of hierarchy knowl-

edge in the Self condition, consistent

with the anatomical connectivity between

these regions (Beckmann et al., 2009;

Carmichael and Price, 1995). A nearby

MPFC region also exhibited significantly
greater correlation between neural activity and SMC model-

estimated chosen power in the Self compared with the Other

condition (i.e., in both training and test trials). Interestingly, this

dissociation between the amygdala and anterior hippocampus

and the MPFC was also evident under very different circum-

stances: when participants were performing an incidental cate-

gorization task (i.e., scanning phase 2: Figures 6 and 7). Even

though information concerning the power of individuals was

irrelevant in this setting, we observed specific coding of self-

related information about power, and domain-general coding

of power, in theMPFC and amygdala and anterior hippocampus,

respectively.

Our results, therefore, align with several strands of research

that have implicated a similar ventral region of the MPFC in the

representation and processing of self-relevant information

(Adolphs, 2009; Denny et al., 2012; Jenkins et al., 2008; Kelley

et al., 2002; Kumaran and Maguire, 2005; Macrae et al., 2004;

Mitchell et al., 2005, 2006; Mobbs et al., 2009; Ochsner et al.,

2004; Tamir and Mitchell, 2011, 2012; Wittmann et al., 2016).

This evidence has come from a range of studies: experiments

in which participants are asked to judge the applicability of traits

to themselves compared with others (Denny et al., 2012; Kelley

et al., 2002; Mitchell et al., 2006), work suggesting that items

subjected to self-related processing are afforded privileged sta-

tus in memory (Macrae et al., 2004), and research on construct-

ing imagined scenarios involving either oneself or others (De

Brigard et al., 2015; FeldmanHall et al., 2012; Hassabis et al.,

2014; Schacter and Addis, 2007). A natural constraint of this pre-

vious body of work (see Denny et al., 2012, for a meta-analysis),

however, is that MPFC activity elicited in relation to self-attribu-

tions (e.g., trait judgments such as ‘‘am I trustworthy?’’),

compared with other-related judgments (e.g., ‘‘is Bill Clinton



trustworthy?’’), could reflect either differences in prior knowl-

edge about oneself or instead unique aspects of self-related rep-

resentation and processing. Critically, our experimental design

allowed us to effectively isolate the learning and representation

of self-related information from prior knowledge in two ways.

First, the power of individuals in the Self and Other hierarchies

was arbitrary and needed to be learned ‘‘from scratch,’’

rendering prior knowledge concerning oneself irrelevant. Sec-

ond, our paradigm allowed us to demonstrate that the MPFC ef-

fects reported were robust to the exclusion of trials involving the

‘‘you’’ and ‘‘him or her’’ profile pictures (i.e., trials in which the

participant or his or her friend was directly involved, such as

the P5 versus P6 training trial), providing evidence that the

MPFC represents the power of individuals in one’s own hierar-

chy, a dimension that is known to exert significant behavioral in-

fluences (Chang et al., 2011; Cheney and Seyfarth, 1990).

Hence, our results provide compelling evidence that neural

mechanisms operating in the MPFC are distinctive with respect

to self-related information and accordingly suggest that self-

relevant information may indeed be uniquely represented in the

brain, with consequent implications for the regulation of cooper-

ative and competitive interactions (Apps et al., 2016; Crockett

et al., 2014; Seyfarth and Cheney, 2012).

It is interesting to relate our work to evidence suggesting that

the anterior cingulate cortex gyrus (ACCg), a region that con-

tains Brodmann areas 24 a/b and 32 (Apps et al., 2016) and

whose anterior portion overlaps with the MPFC region identi-

fied in our study, makes an important contribution to social

cognition (Apps et al., 2016; Rudebeck, 2006). An emerging

perspective suggests that the ACCg plays a key role in facili-

tating cooperative and competitive interactions, by tracking

parameters such as the value and cost of options to others

(Apps et al., 2016; Chang et al., 2013). As such, neuronal activ-

ity in ACCg has been referred to as situated in an Other-centric

reference frame, with neurons in this region coding specifically

for reward receipt by the other individual in a dictator game,

contrasting with the self-centric coding (i.e., for reward receipt

by self) of neurons in other regions such as the orbitofrontal

cortex (Chang et al., 2013). On the face of it, evidence for

other-referenced coding in the ACCg runs contrary to our

MPFC findings; in fact, our results are entirely consistent with

this perspective. Specifically, we show that the MPFC supports

the learning and representation of power information about

other individuals, when these individuals are part of our group

rather than another group (i.e., Self > Other). As noted previ-

ously, our findings were robust to the exclusion of trials in

which participants themselves were involved. As such, our re-

sults suggest that the ACCg/MPFC tracks the motivation of

others through representations that not only code for the values

and costs of reward to other individuals (Apps et al., 2016), but

also incorporates rank information, particularly within one’s

own social group, dovetailing with behavioral evidence con-

cerning the influence of social dominance and familiarity on

cooperative behavior (Chang et al., 2011; Molenberghs, 2013;

Seyfarth and Cheney, 2012).

Our results, however, do provide an apparent contrast with

recent work arguing thatMPFC representations do not inherently

distinguish between self-related and other-related information
(i.e., are ‘‘agent independent’’) (Garvert et al., 2015; Nicolle

et al., 2012). Specifically, one study (Nicolle et al., 2012) argued

that differentMPFC regionsmay represent value in the context of

a temporal discounting task as a function of whether this infor-

mation is directly relevant to the choice to be executed or not,

rather than whether it is self relevant or other relevant. Several

factors may account for this discrepancy: one key difference is

that in our study, the power of individuals in both the Self and

Other hierarchies was arbitrary and needed to be learned

through experience. Hence in our study, the emphasis was on

learning new self-relevant information rather than on simulation,

whereby another’s preferences could be simulated using one’s

own preexisting preferences as an anchor (Garvert et al.,

2015). Such a simulation would have been futile in our paradigm,

because the power of individuals in the Other hierarchy could not

be assessed using oneself as a template. One hypothesis, there-

fore, is that the learning and representation of recently experi-

enced self-related information is subserved by a distinct ventral

part of theMPFC, which if appropriate can be leveraged to simu-

late the preferences and behavior of others, a notion that aligns

with the proposal that the simulation of other individuals similar

to oneself recruits this region of MPFC (Jenkins et al., 2008;

Mitchell et al., 2006).

Conclusions
Linear hierarchies and related structures (e.g., trees) are perva-

sive throughout the social domain but are also of more general

importance in organizing information in an efficient way to facil-

itate inductive inferences (Kemp and Tenenbaum, 2008). Our

study reveals neural computations by which observations of

pairwise ‘‘contests’’ are used to update estimates of individuals’

power within a hierarchy and provides compelling evidence that

a Bayesian inference scheme, which has certain parallels with

the Trueskill ratings system (Herbrich et al., 2006) used in

large-scale multiplayer games, underlies this process, rather

than a simpler RL mechanism. At the same time, our results, in

ascribing a specific role to the MPFC in the learning of one’s

own social hierarchy under tightly controlled experimental condi-

tions, invigorate the debate concerning whether self-relevant in-

formation is indeed afforded a unique representational status in

the brain.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for a full description of task,

computational models, and fMRI analysis procedures.

Phase 1: Learn, Scanned

In this phase of the experiment, participants acquired knowledge about the

Self and Other hierarchies in parallel, with blocks of Self trials alternating

with blocks of Other trials and training trial blocks alternating with test trial

blocks (see Figure 1 and Supplemental Experimental Procedures for details

of trial schedule).

Phase 2: Categorization, Scanned

In this phase, participants were presented with individual face pictures from

the Self and Other hierarchies (excluding the profile pictures depicting them-

selves in the Self condition or their friends in the Other condition) while

performing an incidental categorization judgement (see Figure 6 and Supple-

mental Experimental Procedures).
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