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Abstract 

The aim of the study was to investigate the influence of some commercial probiotics 

on the growth of Clostridium difficile using the isothermal microcalorimeter, an 

instrument which can monitor the real time growth of bacteria. Commercial probiotic 

strains and products, Lactobacillus acidophilus LA-5®, Bifidobacterium lactis BB-12®, 

Probio 7® and Symprovetm were co-cultured with C. difficile in Brain Heart Infusion 

(BHI) broth supplemented with 0.1% (w/v) L-cysteine hydrochloride and 0.1% (w/v) 

sodium taurocholate and monitored in the microcalorimeter. Pseudomonas 

aeruginosa NCIMB 8628 was also co-cultured with C. difficile and studied. The 

results indicated inhibition of C. difficile by the probiotics. The inhibition of C. difficile 

was shown to be pH-dependent using neutralized and unmodified cell free 

supernatant (CFS) produced by the probiotic strains. However, concentrated CFS of 

the probiotics also inhibited the intestinal pathogen in a non pH-dependent manner, 

likely due to specific antimicrobial substances produced. The results also indicated 

that C. difficile growth was greatly influenced by the presence of sodium taurocholate 

and by the pH of the medium. A medium pH of between 6.45 and 6.9 demonstrated 

maximum growth of the organism in the microcalorimeter.  

Keywords: Clostridium difficile, probiotics, inhibition, isothermal microcalorimetry, 

co-culture 

1. Introduction 

Antibiotics can alter the composition of the microorganisms constituting the gut 

microbiota and result in complications such as Antibiotic-associated diarrhoea 

(AAD). One predominant opportunistic pathogen responsible for AAD is Clostridium 
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difficile; accountable for 20-30% cases of AAD and almost all cases of 

pseudomembranous colitis (Bartlett, 2002; Pochapin, 2000). It is known to be the 

most common nosocomial diarrhoeal pathogen in hospitalized patients and very 

important in terms of cost and extended stays in hospitals (Kuijper et al., 2006; 

Vonberg et al., 2008).  

C. difficile is a Gram-positive, anaerobic spore forming bacillus, which can be 

cultured from the stools of 1-3% of healthy adults and up to 80% of healthy 

newborns and infants (Bartlett, 2002; Viscidi et al., 1981). The spore form of the 

organism is central in disease transmission (Cloud and Kelly, 2007; Fekety et al., 

1981). It is resistant to heat, radiation, chemicals, and antibiotics (Gerding et al., 

2008). When germinated, the spores produce enterotoxin (Toxin A), and cytotoxin 

(Toxin B) which mediate severe inflammatory response and epithelial damage 

resulting in the main clinical symptoms and signs of C. difficile infection: secretory 

diarrhoea and pseudomembranous colitis (Rupnik et al., 2009). 

Standard treatment of C. difficile infection involves antibiotics, usually vancomycin 

and metronidazole. However, up to 24% of patients relapse from the infection within 

two months of first episode with the risk of additional recurrences increasing to 50-

65% after two or more episodes of the infection (Pepin et al., 2005; Sunenshine and 

McDonald, 2006). There is also reported resistance and reduced susceptibility of C. 

difficile to both metronidazole and vancomycin (Baines et al., 2008; Brazier et al., 

2008; Huang et al., 2009; Pelaez et al., 2002). An alternative approach for the 

management of the infection is therefore highly needed to ameliorate the current 

deficiency in management. 
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Some studies have supported the potential efficacy of some probiotics in the 

management of C. difficile infection but generally, the benefit of probiotics in the 

management of C. difficile infection is contentious (Allen et al., 2013; Goldenberg et 

al., 2013; Hickson, 2011; Na and Kelly, 2011; Pattani et al., 2013; Pillai and Nelson, 

2008; Rainkie and Kolber, 2013). For instance, a review published by Pillai and 

Nelson (2008) in the Cochrane library, which initially investigated the effect of 

probiotics either used alone or in conjunction with antibiotics for the treatment of C. 

difficile infection, reported that only one study out of the four that met the inclusion 

criteria showed significant benefit of the probiotics (Pillai and Nelson, 2008). One 

main problem that has been raised concerning the clinical efficacy of probiotics in 

trials is the species (or strain) specificity. Thus, the potentially very large number of 

probiotics and combination of probiotics that could be assessed in clinical studies 

make the quest to find the true role of probiotics in the management of C. difficile 

infection a challenge due to the possible specific characteristics required for 

demonstrable effect which may not be possessed by some probiotics (Smith, 2013). 

In vitro studies prior to clinical tests could therefore be advantageous, providing a 

means of identifying probiotic species, strains or products with anticlostridial activity 

before further laboratory and clinical studies, saving the clinical and economic cost of 

inapt studies. In vitro testing could also provide an understanding into the 

mechanisms by which probiotics act against C. difficile.  

The aim of the study was to investigate the influence of some commercial probiotics 

on the growth of C. difficile using the isothermal microcalorimeter (IMC), an 

instrument which has been established to measure bacterial growth in real time by 

monitoring net metabolic heat output, giving characteristic signatures for individual 

bacteria that are proportional to their growth (Beezer, 1980; Braissant et al., 2010; 
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Said et al., 2014). Noteworthy, traditional in vitro methods to study the effect of 

probiotics against intestinal pathogens involve either a broth culture or an agar 

diffusion assay (Lee et al., 2003; Naaber et al., 2004; Schoster et al., 2013). These 

methods only give endpoints, providing no information on the kinetics of inhibition. 

Also, the diffusion method may be subject to the diffusibility of inhibitory compounds. 

It is believed that IMC can overcome these limitations. 

2. Materials and methods 

Clostridium difficile NCTC 13565, purchased from the National Collection of Type 

Cultures (NCTC), Public Health England was used for the study. It is a toxigenic 

strain which had been previously isolated from the faeces of a patient with 

pseudomembranous colitis. Lactobacillus acidophilus LA-5® and Bifidobacterium 

lactis BB-12® from Chr. Hansen’s Culture Collection (Hørsholm, Denmark) were the 

commercial probiotic strains used in the study. The commercial probiotic product, 

Probio 7® was purchased from a local pharmacy in Brunswick Centre (London, UK). 

Symprovetm was obtained from Symprove Ltd., UK. Pseudomonas aeruginosa 

NCIMB 8628 was obtained from ConvaTec Ltd., UK. 

C. difficile and the probiotic strains were grown respectively in Reinforced Clostridial 

Medium (RCM, Oxoid) and de Man Rogosa Sharpe broth (MRS, Oxoid) 

supplemented with 0.05% (w/v) L-cysteine hydrochloride (MRSc) under anaerobic 

conditions (10% CO2, 10% H2 and 80% N2; Don Whitley DG250 Scientific Anaerobic 

workstation, UK) at 37oC. L-cysteine hydrochloride was used as a reducing agent, 

producing a pre-reduced culture medium suitable for anaerobic bacteria. P. 

aeruginosa was grown in Nutrient broth (NB, Oxoid) aerobically at 37oC. Cells were 



 7 

harvested when they reached the stationary phase of growth. The cells were washed 

in phosphate buffered saline (PBS), and resuspended in 15% (v/v) glycerol at an 

organism density of 108 CFU/mL and frozen in 1.8 mL aliquots over liquid nitrogen 

(Beezer et al., 1976). Glycerol was used as a cryoprotectant in all experiments 

reported in this work; it has been shown to have no effect on bacterial growth but to 

retain viability of organisms post-thawing (Morgan and Bunch, 2000). Aliquots were 

stored under liquid nitrogen until required.  

Frozen aliquots of the strains were thawed for 3 min by immersion in a water bath 

(40oC) and vortexed for 1 min before use. The strains and products were first studied 

as pure culture then co-cultured with C. difficile. For pure cultures, the thawed strains 

were inoculated into pre-warmed Brain Heart Infusion broth (BHI, Oxoid) 

supplemented with 0.1% (w/v) L-cysteine hydrochloride and 0.1% (w/v) sodium 

taurocholate (BHIct) to a population density of 106 CFU/mL in 3 mL calorimetric 

glass ampoules. Sodium taurocholate was added to induce germination of spores of 

C. difficile to recover them as vegetative cells. 30 µL of Symprovetm or hydrated 

Probio 7® (in 10 mL of PBS) was also inoculated into 2970 µL of BHIct (3 mL 

calorimetric ampoules). For co-cultures, 106 CFU/mL of the probiotic strains or 30 µL 

of hydrated or liquid commercial probiotic products were mixed with C. difficile. The 

sealed ampoules were vortexed for 10 s and loaded into the intermediate position of 

a Thermometric Thermal Activity Monitor 2277 (TAM 2277) (TA Instruments Ltd., 

UK). Loaded samples were allowed to equilibrate thermally at the intermediate 

position for 30 min before measurement. Data were collected every 10 s, with an 

amplifier range of 1000 μW using the software package, Digitam 4.1. Data were 

analysed using Origin Pro 8.6 (Microcal Software Inc.). Culture observation, plate 

counts and pH measurements (pHenomenal®, UK; the pH meter was calibrated with 
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buffers of known pH and the electrode was rinsed with ethanol solution to sterilize it 

between experiments) were done post IMC experiments. 

Culture supernatants of the probiotic strains were examined for their activity against 

C. difficile. The culture supernatants were prepared by cultivating the respective 

probiotic strain in MRSc at 37oC for 48 h under anaerobic conditions. The cells were 

removed by centrifuging at 3500 g for 10 min at 4oC. The supernatant was collected 

and filter-sterilized using a 0.22 µm membrane syringe filter. The pHs of the 

supernatants were examined and equal aliquots modified by adjusting the pH to 5, 6, 

7 and 8 with 5 M NaOH. The supernatants were also concentrated by freeze-drying 

(Modulyo D-230, Thermo Scientific, UK) and reconstituted with sterile distilled water 

to achieve 2.5-fold, 5-fold, 10-fold and 20-fold concentration of the supernatant, pH 

adjusted. Modified supernatants were filter-sterilized before use.  

1.5 mL of unmodified or modified cell free supernatants (CFS) of the probiotic 

strains, L. acidophilus LA-5®, B. lactis BB-12® was mixed with 1.5 mL of 2-fold 

concentrated BHIct (dsBHIct) in 3 mL calorimetric glass ampoule. The mixture was 

vortexed for 10 s. C. difficile was inoculated into this mixture and vortexed. Controls 

were conducted by replacing the CFS with MRSc broth. The ampoules were placed 

in the TAM 2277 and power-time measurements were taken. 

CFS of L. acidophilus LA-5® and B. lactis BB-12® were also examined for their 

activity against C. difficile by the agar well diffusion assay. C. difficile lawn was made 

by seeding 1 mL of a thawed culture of the organism in 15 mL molten BHIct agar 

(45oC). The agar was left to solidify. Wells of 9 mm diameter were made with a 

sterile borer and filled with 100 µL of unmodified and pH modified CFSs. The plates 
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were incubated at 37oC in a Don Whitley DG250 Scientific Anaerobic workstation, 

UK. The zones of inhibition were measured after 48 h of incubation.  

3. Results and discussion 

IMC is an established technique for monitoring bacterial growth (Braissant et al., 

2010). It produces net metabolic heat output proportional to growth and 

characteristic for different species of bacteria (Beezer, 1980; Braissant et al., 2010). 

Data obtained from the IMC is a plot of power (µW or µJs-1) versus time (t). Fig. 1 

shows the power-time curves of the pure cultures of the different strains and 

commercial probiotic products in BHIct. The curves are complex with peaks and 

troughs, which have been associated with the sequential utilization of major carbon 

sources typical for growth in complex media and also the diverse fermentation 

pathways utilized by a species (Beezer, 1980; Gaisford et al., 2009). The curves also 

show different onset time and area under the curve (AUC, depicting heat output) 

yielding individual signatures, which were used for strain or product identification. 

Experiments were performed in closed ampoules, which allowed anaerobic 

conditions to be maintained, mimicking the environment of the human gut. 

It is important to note that for the purpose of differentiation of microorganisms in the 

IMC (and per this study for strain identification), one needs to have control over the 

repeatability of growth curves of the aliquots of the microorganisms. This is usually 

difficult to achieve using freshly grown cultures for each experiment due to natural 

batch-to-batch variability, which can occur. To ensure control over repeatability, the 

microorganisms were cryopreserved in aliquots using a standardized protocol so that 

they were sourced from the same batch. It was however observed that 
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cryopreservation of C. difficile resulted in spores of the organism. Whilst the spore is 

important in disease transmission (Cloud and Kelly, 2007; Gerding et al., 2008), 

spore germination is essential for C. difficile to cause disease (Burns et al., 2010). To 

ascertain the vegetative growth of C. difficile and consequently, the influence of the 

probiotic strains and products on such possible growth, we firstly examined the effect 

of medium supplements on the germination and growth of C. difficile. Fig. 2 shows 

the growth of C. difficile in different media conditions. Growth of C. difficile was 

delayed in BHIc, (BHI broth supplemented with 0.1% (w/v) of the reducing agent, L-

cysteine hydrochloride) (this was shown as a long time-lag in the data). When further 

supplemented with 0.1% w/v sodium taurocholate, (BHIct) the data shows a 

significant faster growth, possibly due to the germination potential of sodium 

taurocholate (Giel et al., 2010; Sorg and Sonenshein, 2008). Growth was however 

not significantly influenced by further supplementation with 5mg/mL yeast extract 

(BHIcty). Previous studies have indicated germination of some strains of C. difficile in 

BHI broth (Paredes-Sabja et al., 2008) as others have shown the germination 

potential of taurocholate (Giel et al., 2010; Sorg and Sonenshein, 2008; Wheeldon et 

al., 2008; Wilson, 1983). For instance, a study by Paredes-Sabja et al. (2008) 

reported high levels of germination of six C. difficile strains in BHI broth, which they 

initially suggested to be due to the significant levels of inorganic phosphate ions and 

potassium ion content of the medium. Their results on the other hand differed from a 

study by Sorg and Sonenshein (2008) who reported a poor germination of two C. 

difficile strains in BHI medium. The spores from both studies were heat treated at 

80oC for 10 min or 60oC for 20 min respectively before introduction into the medium. 

However in the case of the present study, they were directly incubated without heat 

activation. The germination of spores of C. difficile by taurocholate has also been 
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reported a number of times (Giel et al., 2010; Sorg and Sonenshein, 2008; 

Wheeldon et al., 2008; Wilson, 1983). Although no specific receptor binding sites 

have been recognized in C. difficile unlike in Bacillus subtilis, a well-studied spore 

forming organism, it has been suggested that C. difficile possibly encode unknown 

receptor proteins to bind sodium taurocholate to trigger germination (Ramirez et al., 

2010). 

The optical density (OD) measurements at 600 nm (spectrophotometer, Heλiosα, 

Thermo Scientific) (Table 1) show that germination and exponential growth of C. 

difficile occurred in BHI medium supplemented with sodium taurocholate but not in 

unsupplemented medium during 24 h of incubation. This correlates with the IMC 

data and strengthens the effect of sodium taurocholate on the organism.  

Fig. 3 shows the power-time curves of co-cultures of C. difficile with the probiotic 

strains and products and with P. aeruginosa. When compared to the sole cultures of 

the strains and products, it can be observed that the power-time curves of the co-

cultures of C. difficile with the probiotics lacked the characteristic curve of C. difficile 

and were superimposed on the sole cultures of the probiotics except in the case of 

Probio7® where the growth curve of C. difficile can be identified in the data (between 

ca.10-17 h). The growth curve of C. difficile could also be identified in the co-culture 

with P. aeruginosa (between ca. 10-19 h). When a plate count of vegetative cells of 

C. difficile was done post IMC experiments on selective medium, Clostridium difficile 

selective agar supplemented with Clostridium difficile selective supplement 

(cycloserine 250 mg/L, cefoxitin 8 mg/L) and 0.7% (v/v) defibrinated horse blood 

(CDSAsb), no recoveries of vegetative C. difficile was obtained on plates for the co-

cultures with the probiotic strains and Symprovetm (Table 2). Growth of C. difficile 

was however observed for co-cultures with Probio 7® and P. aeruginosa. This made 
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us believe that the probiotic strains and Symprovetm may have inhibited the 

germination and consequent growth of C. difficile. It is possible that one or more C. 

difficile exo-product may have caused some cell death of P. aeruginosa during co-

culturing, since cell numbers of P. aeruginosa were lower after co-incubation with C. 

difficile relative to the other species. 

The pH and appearance of the pure and co-cultures of the strains and products after 

IMC measurements are given in Table 3. A decrease in pH is assumed to mean 

proliferation of lactic-acid producing species, and so is reflective of inhibition of C. 

difficile. The probiotic strains and Symprovetm appeared to decrease the pH of the 

medium the most while Probio 7® and P. aeruginosa decreased the pH of the 

medium the least although this pH reduction was more in respect to C. difficile. From 

Table 3, it appears that inhibition of C. difficile was pH-dependent. Thus, the 

probiotics may have firstly utilized the components of the medium and produced 

acidic metabolites, which may have prevented C. difficile spores from germinating 

and growing. In terms of appearance, where cloudiness for a co-culture appeared 

the same as cloudiness for a pure culture or product, this was assumed to indicate 

inhibition of C. difficile. 

Figs. 4 A and B and 5A and B show inhibition of C. difficile by the supernatants of the 

probiotic strains, L. acidophilus LA-5® and B. lactis BB-12® respectively. The control 

experiments for Figures 4 and 5 were conducted in dsBHIct diluted with MRSc, 

which produced a pH of 6.30 ± 0.04 pre-inoculation. The presence of MRSc caused 

the organism to metabolize for longer and caused changes in the power-time curve 

of C. difficile relative to Fig. 1, where C. difficile was inoculated into BHIct. The pHs 

of the CFS produced by both strains in MRSc were 4.12 ± 0.01 and 4.62 ± 0.01 

respectively. Even though the unmodified supernatants of both strains were able to 
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produce growth inhibition of C. difficile, the pH modified and concentrated 

supernatants showed different degree of inhibition inferring that degree of inhibition 

of C. difficile was species (or strain) specific. Also, while no growth of C. difficile was 

observed in the IMC for CFS of B. lactis BB-12® at pH 5, growth of C. difficile was 

observed with the CFS of L. acidophilus LA-5® (but with a long time-lag depicting 

inhibition). pH modified CFS of L. acidophilus LA-5® at pH 7 and 8, which produced 

final pHs of 6.71 ± 0.01 and 6.9 ± 0.04 respectively when mixed with dsBHIct 

enhanced growth of C. difficile significantly unlike that of B. lactis BB-12® which were 

still inhibitory to C. difficile. When mixed with dsBHIct, the CFS of L. acidophilus LA-

5® at pH 6 produced a final pH of 6.45 ± 0.07 pre-inoculation and only enhanced 

growth of C. difficile slightly relative to the control (Fig. 4A). The observations with 

the CFS of L. acidophilus LA-5® suggest that the optimum pH for growth of C. difficile 

may lie between pH 6.45 and 6.9. This observation correlates with findings from 

Wheeldon et al. (2008) who reported that the optimum pH range for germination of 

C. difficile was 6.5-7.5 with decreased rate and extent of germination at pH 5.5 and 

8.5 (Wheeldon et al., 2008). Complete inhibition of C. difficile in the IMC was also 

observed for a 5-fold concentrated CFS of B. lactis BB-12® and a 20-fold 

concentrated CFS of L. acidophilus LA-5®. Lower concentrations of both CFS 

decreased the AUC and added time-lag to the growth of C. difficile in the IMC. From 

Figs. 4 and 5, one can speculate the higher presence of other non-acidic metabolites 

produced by B. lactis BB-12® which may have resulted in superior inhibition. 

In the study, the inhibitory effect of unmodified CFS and pH modified CFS were 

assessed to determine if inhibition of germination and growth of C. difficile was solely 

due to acidic metabolites or was also due to the presence of other non-acidic 

metabolites produced by the probiotic strains. Whilst some inhibition was observed 



 14 

for the unmodified CFS, which suggest the likely production of organic acids such as 

lactic and acetic acids and hydrogen peroxide (Naaber et al., 2004; Tejero-Sarinena 

et al., 2012), upon pH modification, inhibition was reduced supporting that these 

substances indeed may have been acids. However there was a significant difference 

in the level of inhibition between L. acidophilus LA-5® and B. lactis BB-12® indicating 

inhibition was species (or strain) dependent, further supported by the use of the 

commercial products. Previous studies have also indicated the pH-dependency of 

inhibition of C. difficile by some probiotics. For instance, inhibition of C. difficile was 

reported by Schoster et al. (2013) to be only observed when the pH of the 

supernatants obtained from the probiotic species was not neutralized (Schoster et 

al., 2013). Trejo et al. (2006) also reported that the inhibition of isolated 

Bifidobacterium strains against C. difficile were dependent on their production of 

lactic and acetic acids (Trejo et al., 2006). Additionally, Naaber et al. (2004) also 

demonstrated the correlation of hydrogen peroxide and lactic acid production with 

inhibition of C. difficile by intestinal lactobacilli while Tejero-Sarinena et al. (2012) 

showed that these substances were lactic acid and acetic acid (Naaber et al., 2004; 

Tejero-Sarinena et al., 2012).  

In the present study, there also seems to be the presence of other non-acidic 

substances, likely bacteriocins or bacteriocin-like compounds (Anand et al., 1984, 

1985; Barefoot and Klaenhammer, 1983; Cheikhyoussef et al., 2008) that may 

account for the inhibitory activity seen in the study. Inhibitory activity was observed 

for pH modified CFS of B. lactis BB-12® and diluted CFS (results not shown) but was 

only observed when CFS obtained from L. acidophilus LA-5® was below pH 5 or was 

concentrated. Also whilst 5-fold concentrated CFS of B. lactis BB-12® produced total 

inhibition of C. difficile in the IMC, 20-fold concentration of CFS of L. acidophilus LA-
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5® was needed for total inhibition. The purported bacteriocins or bacteriocin-like 

compounds could have therefore been produced in larger quantities in the 

Bifidobacterium strain than the Lactobacillus. 

The diameters of growth inhibition zones of C. difficile (with the CFSs of the probiotic 

strains) are shown in Table 4. Data from the agar diffusion assay correlate with the 

IMC data but there was no indication that neutralized CFS of B. lactis BB-12® 

partially inhibited C. difficile or that of L. acidophilus LA-5® enhanced growth of C. 

difficile unlike the IMC data. In other words, the IMC data were more sensitive to 

subtle effects of co-culturing than the agar diffusion assays.  

4. Conclusions 

This study has shown that some commercial probiotics have inhibitory activity 

against C. difficile whilst others do not. Thus, inhibition and degree of inhibition may 

be species (or strain) dependent. Inhibition of C. difficile by the probiotic strains was 

pH-dependent, which suggest the likely production of organic acids, correlating with 

previous studies. The results further suggest that the probiotic strains may have 

produced other substances apart from the acids, which could have inhibited the 

germination and growth of C. difficile. These other substances, possibly bacteriocins 

or bacteriocin-like compounds, may have been produced in larger quantities in the 

Bifidobacterium strain than the Lactobacillus strain. The results also demonstrated 

that the germination and growth of C. difficile were influenced by pH and the 

presence of sodium taurocholate. pH of between 6.45 and 6.9 showed highest 

germination and growth of C. difficile; correlating with and lending weight to results 

obtained by Wheeldon et al. (2008). 
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In conclusion, this study has enhanced existing knowledge on factors that could 

influence the growth of C. difficile and showed the potential of some commercial 

probiotics in the possible management of C. difficile infection although further in vitro 

and in vivo animal studies will be needed to demonstrate the potential clinical benefit 

and the mechanism by which this will be achieved. The study has also showed the 

value of IMC in microbiological assays, demonstrating that it has the potential to 

address some microbiological problems.  
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Fig. 1. Power-time curves of pure cultures of C. difficile, L. acidophilus LA-5®, B. 

lactis BB-12®, P. aeruginosa, commercial probiotic products, Symprovetm and Probio 

7® inoculated to culture densities of 106 CFU/mL or 1 in 100 dilutions in BHIct 

(representing ca. 106 CFU/mL). Power-time curve of each culture was characteristic 

in the medium. 

Fig. 2. Power-time curves of C. difficile in different media condition: BHIc with and 

without supplementation with 0.1% w/v sodium taurocholate and 5 mg/mL yeast 

extract. Growth was significantly influenced with sodium taurocholate 

supplementation. 

Fig. 3. Comparison of the power-time curves of pure and co-cultures of C. difficile 

with L. acidophilus LA-5®, B. lactis BB-12®, P. aeruginosa, commercial probiotic 

products: Symprovetm and Probio 7®, each inoculated to culture densities of 106 

CFU/mL or 1 in 100 dilutions in BHIct. Power-time curves of co-cultures of C. difficile 

with L. acidophilus LA-5®, B. lactis BB-12® and Symprovetm lacked the characteristic 

curve of C. difficile and were superimposed on sole cultures of the probiotics. C. 

difficile growth curve can be identified in co-cultures with P. aeruginosa and Probio 

7® depicting that its growth was not inhibited when co-cultured with these strain or 

product. 

Fig. 4. Power-time curves of C. difficile in the CFS of L. acidophilus LA-5®, [A] 

unmodified and pH modified, [B] neutralized but concentrated 2.5-fold, 5-fold, 10-fold 

and 20-fold. Inhibitory activities of the CFS were lost upon neutralisation but 

inhibitory activities were observed for concentrated CFS. Total inhibition was 

observed in the microcalorimeter at 20-fold concentration. 
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Fig. 5. Power-time curves of C. difficile in the CFS of B. lactis BB-12®, [A] unmodified 

and pH modified, [B] neutralized but concentrated 2.5-fold and 5-fold. Inhibitory 

activities of the CFS were partially lost upon neutralisation. Total inhibition of C. 

difficile in neutralized CFS was observed in the microcalorimeter at 5-fold 

concentration. 

Table 1. Optical density of C. difficile culture in different medium condition after 24 h 

of incubation 

Medium OD 600 nm at 24 h 

BHIc 0.039 

BHIct 1.213 

BHIcty 1.323 

 

Table 2. Cell counts after IMC measurements of both pure and co-cultures (n=3; The 

values are mean ± SD)  

Culture Cell count after IMC measurements (log CFU/mL) 

C. difficile 6.00 ± 0.60 

L. acidophilus LA-5® 5.19 ± 0.19 

B. lactis BB-12® 6.47 ± 0.07 

P. aeruginosa 8.00 ± 0.06 

Symprovetm 8.35 ± 0.05 

Probio 7® 8.04 ± 0.05 

 Other species C. difficile 

L. acidophilus LA-5® + C. difficile 5.04 ± 0.09 0 
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B. lactis BB-12® + C. difficile 6.50 ± 0.03 0 

P. aeruginosa + C. difficile 6.36 ± 0.39 6.45 ± 0.02 

Symprovetm + C. difficile 8.36 ± 0.07 0 

Probio 7® + C. difficile 8.01 ± 0.11 5.94 ± 0.66 

 

Table 3. pH and appearance of cultures in BHIct post IMC measurements (n=3; The 

values are mean ± SD) 

Culture pH  Appearance 

C. difficile 5.88 ± 0.05 Very cloudy 

L. acidophilus LA-5® 5.13 ± 0.04 Slightly cloudy  

B. lactis BB-12® 4.92 ± 0.01 Moderately cloudy  

P. aeruginosa 5.30 ± 0.08 Moderately cloudy  

Symprovetm 4.72 ± 0.08 Very cloudy 

Probio 7® 5.38 ± 0.01 Moderately cloudy  

L. acidophilus LA-5® + C. difficile 5.24 ± 0.19 Slightly cloudy 

B. lactis BB-12® + C. difficile 4.92 ± 0.03 Moderately cloudy 

P. aeruginosa + C. difficile 5.38 ± 0.04 Very cloudy 

Symprovetm + C. difficile 4.76 ± 0.06 Very cloudy 

Probio 7® + C. difficile 5.39 ± 0.02 Very cloudy 

 

Table 4. Zones of inhibition of unmodified and neutralized cell free supernatant 

(CFS) of L. acidophilus LA-5® and B. lactis BB-12® against C. difficile. (n=4. The 

values are mean ± SD)  
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Cell Free Supernatants (CFS) Zone of inhibition of C. difficile (mm) 

L. acidophilus LA-5® CFS unmodified 7 ± 0.0 

L. acidophilus LA-5® CFS neutralized  0.0 ± 0.0 

B. lactis BB-12® CFS unmodified 7.5 ± 0.72 

B. lactis BB-12® CFS neutralized 0.0 ± 0.0 
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