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Abstract

Multiple connected devices sharing common wireless resources might create interference if they access the channel simulta-
neously. Medium access control (MAC) protocols generally regulate the access of the devices to the shared channel to limit signal
interference. In particular, irregular repetition slotted ALOHA (IRSA) techniques can achieve high-throughput performance when
interference cancellation methods are adopted to recover from collisions. In this work, we study the finite length performance for
IRSA schemes by building on the analogy between successive interference cancellation and iterative belief-propagation on erasure
channels. We use a novel combinatorial derivation based on the matrix-occupancy theory to compute the error probability and we
validate our method with simulation results.

I. I NTRODUCTION

When networked devices share common wireless resources, signal interference might be experience. Medium access control
(MAC) strategies need to properly control users transmission to limit this interference [1]–[3]. However, in future networks a
massive number of devices will be connected to the Internet (e.g., Internet of Things and machine-to-machine communications)
and MAC protocols need to be more and more distributed. Random slotted ALOHA (SA) with successive interference
cancellation (SIC) strategies, for example, have recentlygained attention because they do not require coordination,and they
are able to recover from interfering signals.

Bipartite graphs are a useful framework to study random MAC strategies or, more generally, transmission of successive
signals from several sources in different time slots. When edges in the bipartite graph are randomly generated, the analysis of
belief propagation (BP) decoding is usually performed asymptotically, i.e., for an infinite number of sources and time slots.
Finite length analysis has been investigated when edges arerandomly selected from the transmission time slots, as the case of
finite length analysis for LDPC codes [4]. However, the reverse case in which the source nodes randomly create the edges is
still an open topic that we address in this work.

In this work, we consider random SA with SIC strategies as themain target application, where each source sends information
to a central base station (BS) in time slots that are uniformly selected at random independently from the other sources. Packets
sent in the same time slot from different users interfere among each others and cannot be immediately decoded. However, SIC
strategies are able to mitigate the effect of these collisions through iterative message-passing techniques and recover corrupted
data at the decoder. Within this framework, we study the decoding performance of BP schemes in finite length settings, namely
for small MAC frame size. Within a MAC frame, each source follows a transmission probability distribution that drives the
replication rate of the sources, hence the performance of the system. Our objective is to compute the decoding error probability,
i.e., the probability of not decoding correctly the source information. We first introduce a combinatorial derivation of the packet
collision probability using the matrix occupancy framework. Then, we evaluate iteratively the decoding error probability by
studying the number of collisions that can actually be resolved by interference cancellation. The proposed analysis isexact but
it has a computational complexity that grows with the MAC frame size. We therefore show how achieve an approximated but
still accurate analysis at a reduced computational cost. Simulation results validate our study in different transmission settings
with small MAC frames.

In the seminal work of [5], a key connection has been drawn between SIC strategies in irregular repetition slotted ALOHA
(IRSA) and the iterative BP decoder of erasure codes on graphs. This has opened the possibility to apply theory of rateless
codes to IRSA schemes and analyze their performance [6], [7], which is essential to optimize users’ transmission strategy (e.g.,
transmission probability) [8]. These works are mainly focused on deriving asymptotic system performance for large MACsize
frames. They however cannot be easily applied in optimizingresource allocation strategies in actual IRSA schemes, as shown
in [8]. To the best of our knowledge, only the works in [9], [10] investigated finite-length performance analysis for IRSA
scheme. Both look at the average stopping sets and derive an upper bound on the error probability in IRSA. These bounds
have low computational complexity but they are not necessarily tight for very small MAC frames. In our work, we rather
derive a semi-analytic analysis for finite length IRSA schemes, which permits to compute error probabilities exactly, even for
small frames.
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École Polytechnique Fédérale de Lausanne (EPFL), SignalProcessing Laboratory - LTS4, CH-1015 Lausanne, Switzerland. Email: {laura.toni,
pascal.frossard}@epfl.ch.

This work was partially funded by the Swiss National ScienceFoundation (SNSF) under the CHIST- ERA project CONCERT (A Context-Adaptive Content
Ecosystem Under Uncertainty), project nr. FNS 20CH21 151569.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79550046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1607.02385v1


2

p1 p1

p2 p2

p3p3

MAC frame

User 1

User 2

User 3

Slot 1 Slot 2 Slot 3 Slot 4
time

p3

Fig. 1. Transmission example of IRSA strategy with a MAC frame composed of four slots. Sourcei sends the source packetpi. There are three users
attempting a transmission according to the degree vectord = [2, 2, 3].

II. SYSTEM MODEL

We consider a system ofk sources that communicate with a common BS. The IRSA strategyis the adopted MAC protocol [5].
We assume the time axis to be discretized in MAC frames, each of those composed oft time slots. Within a MAC frame,
each source transmitsd replicas of the source packetp, as depicted in Fig. 1. Thed distinct time slots used for transmission
are selected uniformly at random among thet total available slots. The replication rated is randomly selected by each user
following the transmission probability distributionΛΛΛ = [Λ1, . . . ,ΛDmax

], whereΛd is the probability that a user transmitsd
replicas, andDmax is the maximum number of allowed packet replicas per MAC frame. Within a MAC frame, each source
selects its replication rate independently from the others, leading to replication vector (named in the following as source degree
vector)d = [d1, . . . , dk], di ∈ {1, . . . , Dmax} that is experienced with probabilityPΛΛΛ(d) =

∏k

i=1 PΛΛΛ(di) =
∏k

i=1 Λdi
.

Each realization ofk sources accessing the time slots of a MAC frame can be described by ak×t binary matrixM = (mij),
calledcollision matrix, with rows and columns corresponding to users and slots, respectively. We havemij = 1 if the ith user
transmits in thejth slot, andmij = 0 otherwise. The collision matrixM associated with the example in Fig. 1 is given by

M =





1 0 1 0
0 1 0 1
0 1 1 1



 .

The weight of a columnmj in M is given by
∑k

i=1 mij and it represents the number of packets sent in the time slotj. Thus,
columns with unity weight, e.g.,[100]T , represent singleton slots that allow an immediate decoding of the message. On the
contrary, columns with a weight greater than one, e.g.,[110]T , represent slots in which messages collide and cannot be directly
decoded. Collided messages can however be recovered by SIC strategies. If packets are sent by two users in the same time slot
but one of them can be recovered from a singleton slot, then the second packet can be decoded by interference cancelation.
For example, messagep1 in M is recovered from the first slot, which is a singleton one. Then, canceling the messagep1 from
the other interfering messages we obtainM

′ = [0 0 0 0; 0 1 0 1; 0 1 1 1] and messagep3 can also be decoded. As long as one
singleton slot is experienced, the iterative decoding process proceeds. If the SIC process resolves all collisions, then no source
packets are lost within the MAC frame of interest. If the SIC process stops before completion, it leaves packets undecoded
and the SIC process fails.

In this work, we are interested in evaluating the probability of failure in the SIC process, i.e., the probability that a packet
is lost when transmitted through the IRSA protocol. We denote this packet loss rate (PLR) byPL, and it can be written as1

PL =
k

∑

u=2

u

k
PΛΛΛ(u) (1)

wherePΛΛΛ(u) is the probability of havingu unrecovered packets whenk users transmit over a frame oft slots with degree
distributionΛΛΛ. We condition to a given degree distribution vector as follows

PL =
∑

d∈D

k
∑

u=2

u

k
PΛΛΛ(u | d) P (d)

=
∑

d∈D

k
∑

u=2

u

k
P (u | d)

k
∏

i=1

Λdi
(2)

1For the sake of notation, we omit the dependency of the packetloss probabilities on(k, t).
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with D denoting the set of all the possible packet repetition vectors allowed by the distributionΛΛΛ. Denoting byD the number
of possible replication rates, i.e., replication rates with Λd > 0, |D| = Dk. In the next section, we compute the PLRPL for
small MAC frame sizet.

III. F INITE LENGTH PERFORMANCE

A. Matrix-Based Formulation

Because of the source independence, collision matrices areequivalent in terms of PLR upon permutations (both across
rows or columns). We can therefore study the IRSA performance by only looking at the column vectors which are present
within a given matrixM. This is possible exploiting the combinatorial matrix-occupancy theory [11], dealing with sets of balls
randomly assigned into groups of bins. Random access channel problems can be viewed as occupancy problems by considering
packets and slots as balls and bins, respectively. The number of bins with only one ball, for example, represents the number
of singleton slots.

In more details, letC = {c1, c2, . . . , c|C|} be the set of all possible column vectors that can be present in M, with column

cq = [c
(1)
q , c

(2)
q , . . . , c

(k)
q ]T taking values in{0, 1}k. Let us then define theoccupancy vector n = [nc1 , nc2 , . . . , nc|C|

] associated
with a matrixM as a vector that shows how many times each column inC is present inM. Note that for the sake of notation,
we omit the dependency ofn from C. Specifically,ncq is the number of times the columncq is present in the matrix of
interest. For example, definingc1 = [1 0 0]T , c2 = [0 1 1]T , andc3 = [1 0 1]T , the occupancy vector associated withM is

n =
[

nc1 = 1, nc2 = 2, nc3 = 1, ncq,q>3 = 0
]

.

Finally, we defineCl ⊆ C as the subset of column vectors with weightw(cq) =
∑k

j=1 c
(j)
q = l, andCl,i ⊆ Cl as the subset

of column vectors with weightl and ci = 0. It is worth noting that each occupancy vector corresponds to multiple collision
matrices that are equivalent in terms of PLR.

We are now interested in finding conditions under which an occupancy vector represents a collision matrix in the case ofk
sources,t time slots, and degree vectord. First, we impose that exactlyt columns are present in the matrix:

∑

q:cq∈C

ncq = t (3)

Then, we impose that the degree vector is respected. This means that an occupancy vector is feasible if it leads to a matrixin
which exactlydi entries are non-zero in theith row of the collision matrix. This translates in the following set of constraints

Dmax
∑

l=1

∑

q:cq∈Cl,i

ncq = t− di, i = 1, . . . , k. (4)

SinceCk has only one column vector (i.e., the vector with all1 entries) andCk−1 hask possible column vectors (i.e., each
vector with only one out ofk null entry), we can impose the abovek+1 constraints — (3) and (4) — by properly evaluating
the occupancy of thek + 1 column vectors inCk and Ck−1. Let us denote bŷn the reduced occupancy vector, defined as
the column vectors with weight at mostk − 2. Formally, n̂ = [ncq ]cq∈Ĉ , with Ĉ = C \ Ck−1 ∪ Ck. We can then decompose
any occupancy vector asn = [n̂ f(n̂,d)], with f(n̂,d) representing the occupancy of thek + 1 column vectors inCk and
Ck−1. Thesek + 1 unknown f(n̂,d) = [f1(n̂,d), . . . , fk+1(n̂,d)] are derived by imposing the constraints (3) and (4). If
fi(n̂,d) ≥ 0, ∀i, then the occupancy vector[n̂ f(n̂,d)] is a feasible one for the transmission settings(k, t,d). We defineI(n̂)
an indicator function such thatI(n̂) = 1 if [n̂ f(n̂,d)] is a feasible one for the transmission settings(k, t,d), andI(n̂) = 0,
otherwise.

B. Packet Loss Probability

Equipped with the matrix-occupancy representation, we canexpress the error probabilityP (u | d) in (2) as

P (u | d) =
∑

n̂

Qu(k, [n̂ f(n̂,d)]) P (n̂ | d)

whereP (n̂|d) is the probability of experiencing an occupancy vector[n̂ f(n̂,d)], whenk users transmit overt slots given the
repetition vectord. The indicator functionQu(k,n) returns1 if the the SIC process with a collision matrix associated with n

stops atu undecoded packets and returns0 otherwise. We compute both terms below.
The probabilityP (n̂|d) is zero if I(n̂) = 0, otherwise it is evaluated as the ratio between the number ofcollision matrices

with occupancy vector[n̂ f(n̂,d)] and the total number of collision matrices in the same transmission settings. The former is
given by the following multinomial coefficients

t!

∏

cq∈Ĉ

ncq !
k+1
∏

i=1

fi(n̂,d)!



4

while the total number of collision matrices that can be experienced under the settings(k, t,d) is
∏k

j=1

(

t
di

)

from the
independency of the sources. This leads to

P (n̂|d) =















[

∏k

j=1

(

t
di

)

]−1
t!

∏

cq∈Ĉ

ncq !
k+1∏

i=1

fi(n̂,d)!

if I(n̂) = 1

0, otherwise

(5)

We then deriveQu(k,n) iteratively. We consider thejth iteration of the decoding process, wherek−j packets are undecoded,
andn(j) = [n

(j)
c1 , n

(j)
c2 , . . .] is the occupancy vector of the collision matrix at thejth decoding step. Note thatn = n

(0) is the
occupancy vector before the decoding process starts. At thejth iteration of the decoding process, one message is decodedonly
if there exists at least one weight-1 column vector, i.e., if∃ c ∈ C1 s.t. n(j)

c > 0.
If the condition is satisfied, then the decoder can proceed tothe next step. At the decoding iterationj+1, there arek− j−1

undecoded packets and the occupancy vector of the collisionmatrix is denoted byn(j+1). The latter is derived recursively
from n

(j). Let us consider the column vector with them-th entry being non-zero, i.e.,c ∈ C \ ∪lCl,m, and let us denote by
c
(m) its complementary inm a column vector equal toc but with them-th entry set to zero. For example, ifc = [11001],

then c
(2) = [10001]. Then, in the case in which them-th element ofC1 hasn(j)

cm > 0, n(j+1) can be written fromn(j) as
follows

n
(j+1)

c(m) = n(j)
c + n

(j)

c(m) ∀c ∈ C \ ∪lCl,m

n
(j+1)

c(m) = 0

n(j+1)
c

= n(j)
c

∀c ∈ {∪lCl,m \ c(m)} (6)

We thus recursively evaluate the indicator functionQu as

Qu(k − j,n(j)) = Qu(k − j − 1, u,n(j+1)). (7)

If there are no weight-one columns in the collision matrix, the decoder terminates at iterationj with k− j undecoded packets
andQu becomes

Qu(k − j,n(j)) =







1, k − j = u

0, otherwise
(8)

Finally, denoting byN the set of reduced occupancy vectorsn̂ such thatI(n̂) = 1, the decoding error probability of (2)
results in

PL =
∑

d∈D

k
∑

u=2

u

k

∑

n̂∈N

Qu(k, [n̂ f(n̂,d)](0))
t!

∏

cq∈Ĉ

ncq !
k+1
∏

i=1

fi(n̂,d)!

k
∏

i=1

Λdi
(

t
di

) (9)

We now comment on the complexity of the proposed semi-analytical study. Both the combinatorial and iterative steps in (9)
are performed over all possible degree vectorsd ∈ D and all possible reduced occupancy vectorsn̂ ∈ N . The cardinality of
D andN is given respectively by

|D| = Dk and |N | ≤

(

Ĉ + t− 1

t

)

with Ĉ =
∑k−2

n=0

(

t

n

)

. The upper bond on|N | is derived as follows. We first recall that̂C is the dimension of the reduced
occupancy vector̂n and that the entries of̂n need to satisfy (3). Looking at the problem ast balls intoR bins, the number
of possible combinations of the reduced vector is

(

Ĉ+t−1
t

)

. Among these, only the reduced occupancy vectors that satisfy (4)
belong toN .

It is worth noting that the cardinality ofD and N both scales withk and t. However, the probability of experiencing
a given reduced vector and a given degree vector can be easilyderived from (2). Therefore, an approximated PLR can be
evaluated by performing the iterative procedureQu(k,n) only for the most likely reduced vectors. This substantially reduces
the computational complexity while preserving accuracy.

IV. N UMERICAL RESULTS

We now provide the simulation results to validate the proposed solution in finite-length systems, i.e., with small size MAC
framest ∈ [4, 7]. We consider different settings withk sources andt time slots. For each(k, t) pair we consider different
transmission probabilities, i.e., different degree distributionsΛ(x), following [5]. For each of these scenarios, we evaluate the
decoding error probability from (9). Then, for eachΛ(x), we generate1000 realizations of collision matrices and simulate the
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Fig. 2. Comparison of the theoretical and simulation results for different(k, t) pairs in the case oft = 6 andΛ(x) = 0.2x+ 0.5x2 + 0.3x4.

TABLE I
k = 4, t = 6, Λ(x) = 0.25x2 + 0.75x3 .

u Pr[U = u] theory Pr[U = u] sim
2 0.140730 0.141390
3 0.130158 0.130110
4 0.094203 0.093460
PL 0.262186 0.261738

IRSA protocol and the SIC decoding with belief propagation and we evaluateu/k. We then average this ratio over the1000
realization to evaluate the average loss probability.

We now provide simulation results in terms of normalized throughput, defined as(1 − PL)k/t. This metric is usually
adopted to evaluate the performance of MAC strategies and itdirectly reflects the error probabilityPL. In Fig. 2, we provide
the normalized throughput as a function of the trafficG = k/t for a scenario witht = 6 andΛ(x) = 0.2x+ 0.5x2 + 0.3x4.
Results are provided for both simulation results and theoretical ones, namely the finite length analysis proposed in this work
and the asymptotic analysis derived in [5]. We also provide an approximated solution (labeled MLV — most likely vectors),
where the iterative evaluation ofQu in (9) is performed only over the occupancy vector with a probability P (d) ≥ 10−3. The
results show a weak match between asymptotic theory and the simulations results, from here the need for finite length analysis.
From the results, we also observe a good match between finite length theory (both exact and approximated) and simulations,
showing the accuracy of our study. The model is validated also in the results provided from Table I, where we provide the
final packet loss ratePL but also a partial performance of the decoding process (i.e., the probability of stopping the decoding
step atu unknown denoted byPr[U = u]). The good match between theory and simulation is confirmed in these experiments.

Finally, in Table II we compare our analysis with the asymptotic analysis of [5] and the finite-length analysis of [9]. We see
that, especially for small value of the traffic networkG, the asymptotic analysis is far away from the actual performance, and
that our study is more precise than [9] especially for large values of the traffic networkG. This accuracy comes at a price of
a large computational complexity. Because of the complexity factor, (9) might be too expensive to evaluate for realistic MAC
frames (hundreds of time slots). However, in Table II we observe that the approximated solution MLV nicely scales with the
MAC frame without significantly affecting the accuracy.

V. CONCLUSIONS

We carried out an evaluation of the IRSA performance in finite-length settings, using combinatorial theory and matrix-
occupancy theory. Simulation results validate the derivedanalysis for small MAC frames and show the improved match
between theory and simulation results with respect to the state of the art performance studies.
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