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Abstract

Motivated by the analogy between successive interference cancellation and iterative belief-propagation on erasure channels,
irregular repetition slotted ALOHA (IRSA) strategies havereceived a lot of attention in the design of medium access control
protocols. The IRSA schemes have been mostly analyzed for theoretical scenarios for homogenous sources, where they areshown
to substantially improve the system performance compared to classical slotted ALOHA protocols. In this work, we consider
generic systems where sources in different importance classes compete for a common channel. We propose a newprioritized
IRSA algorithm and derive the probability to correctly resolve collisions for data from each source class. We then make use
of our theoretical analysis to formulate a new optimizationproblem for selecting the transmission strategies of heterogenous
sources. We optimize both the replication probability per class and the source rate per class, in such a way that the overall system
utility is maximized. We then propose a heuristic-based algorithm for the selection of the transmission strategy, which is built
on intrinsic characteristics of the iterative decoding methods adopted for recovering from collisions. Experimentalresults validate
the accuracy of the theoretical study and show the gain of well-chosen prioritized transmission strategies for transmission of data
from heterogenous classes over shared wireless channels.

Index Terms

Random MAC strategies, slotted ALOHA, prioritized transmission schemes, successive interference cancellation, bipartite
graphs, unequal resource allocation.

I. I NTRODUCTION

In the era of Internet of the Things, the number of devices (sensors, machine terminal devices, portable devices, etc.) that
are simultaneously connected to the network is expected to grow very rapidly in the near future [1], [2]. When a massive
number of devices share the same channel resources, there isan obvious need for networks to be opportunistically designed
with adaptive and distributed protocols. In this context, random medium access control (MAC) protocols have received alot
of attention since they do not require explicit coordination between wireless network users. At the same time, when different
classes of sources compete for a common channel, as illustrated in Fig. 1, a prioritized allocation of available resources among
sources is necessary in order to optimize the overall network utility. The adoption ofprioritized random MAC strategies in
future networks is thus desirable, creating the need for effective optimizations of multi-sources resource allocation strategies.

The slotted ALOHA (SA) protocol has been widely considered as one effective random MAC strategy, where users randomly
select the time slots where they transmit information. If different users select the same time slot for transmission, a packet
collision is experienced. While collided packets were irremediably lost in early versions of SA, recent studies have shown
that collisions can be resolved by network diversity, multiuser detection, network coding strategies [3]–[5], or by successive
interference cancellation (SIC) techniques [6] which substantially improves the system throughput. The key concept behind
SIC is that each user might send repetitions of the same message in different slots. If two messages from two different sources
are sent in the same time slot (i.e., if a collision is experienced), the base station (BS) might recover the messages through
SIC if one of the collided messages has been decoded previously. The throughput gain in applying SIC to SA schemes has
been initially formalized in contention resolution diversity slotted ALOHA (CRDSA), where each user sends its own message
within a MAC frame and eventually a replica in a randomly selected slot [6]. If a message is correctly decoded (with no
collisions), it can be used to remove the potential interference contribution caused by the replicated message. Using similar
concepts, authors proposed a novel random access protocol that exploits SIC in a tree algorithm in [7]. A further analysis of
such SIC-based random MAC protocol is proposed in [8].

An improvement of CRDSA has been proposed in [9], where the author introduced the optimized transmission technique
for irregular repetition slotted ALOHA (IRSA) algorithm. It consists in a random SA protocol where the number of replicas
that each user sends per frame (i.e., the replication rate) is not limited to two (or to any deterministic value) and it is rather
randomly selected according to a pre-determined transmission probability distribution. A key connection is shown between
the SIC in IRSA and the belief-propagation (BP) decoder of erasure codes on graphs [9]. This has opened the possibility of
applying theory of rateless codes (and codes on graph in general) to IRSA schemes to optimize users’ transmission strategies
via proper selection of their transmission probability distribution [10]–[16]. For example, the IRSA has been improved with
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Figure 1. Scenario with multiple sources (cameras) communicating to a central base station. Different levels of priority could be given to the sources, with
high- medium- and low-priority cameras, for example, whichreceive different shares of the network resources.

coded slotted ALOHA schemes [10], as well as frameless slotted ALOHA protocols, in which the MAC frame size is not
a priori selected [11], [12]. However, to the best of our knowledge, none of the recent works on random slotted ALOHA
protocols with SIC have considered unequal allocation of the channel resources among users. We exactly aim at filling this
gap and extend the IRSA framework to prioritized random MAC protocols for heterogenous wireless sources.

We propose aprioritized IRSA algorithm, in which sources are of different classes, which transmit information to a common
BS with a random IRSA strategy to access the channel. Within aMAC frame, each source randomly selects the replicas and the
time slots to occupy, independently from other sources. Each prioritized source class is identified by an utility function and a
transmission strategy. The utility function is a non decreasing function of the received rate and it is such that sourcesin higher
priority classes experience a larger utility score than users in lower priority classes for a given received rate. The transmission
strategy defined by the BS is characterized by the source rateand the transmission probability distribution (also defined as
replication probability distribution) in IRSA, which is different in each class. The transmission probability distribution drives
the replication rate of sources in each class, hence the performance of the system. Our objective is to find the best transmission
strategy that maximizes the expected utility over all classes. Following the analogy between SIC and theory of codes on graph
[9], we analytically derive the probability to correctly resolve collisions for data in each source class along with theexpected
utility per class. Our theoretical analysis studies the performance of the iterative decoding algorithms for resolving collisions
in unequal transmission cases. It resembles the AND-OR treeasymptotic analysis of LDPC codes over erasure channels. We
exploit intrinsic characteristics of codes on graphs codes, i.e., the convergency of the iterative decoding method, inorder
to derive decoding probability for random transmission probability distributions. Because of the analogy between collision
recovery schemes in IRSA and iterative message-passing algorithms on graph, we note that the UEP analysis of IRSA can
be linked to UEP studies for irregular LDPC codes [17]–[19].However, there is a crucial difference between the UEP MAC
strategy considered in our work and UEP rateless coding schemes. While in the latter case the code designer controls the
output nodes (check nodes) rather than the input nodes (message nodes), this is exactly the opposite in the IRSA case, where
the system designer controls the input nodes (source nodes)rather than the output nodes (time slot nodes). This requires a
different analysis of the problem compared to [17], for example.

Our new analysis is then used to find the best unequal transmission strategy among classes in terms of both the replication
probability and source rate per class, in such a way that the expected weighted utility is maximized. The underlying intuition
is that more important classes should correctly receive more messages than low priority classes. This is possible either by
sending more messages from high-priority classes (i.e., bytuning the resource allocation strategy) or by sending messages
with a transmission rate that guarantees a lower failure probability. Results validate the accuracy of the theoreticalstudy and
show the gain of unequal transmission strategies for heterogenous classes. They also show that the proposed method perform
well when compared to optimal solutions computed by simulations.

In summary, the main contributions of this work are:

• a theoretical study of the system performance in IRSA schemes with unequal transmission strategies, which leads to the
asymptotic message error probability per class as well as global stability conditions;

• a new optimization problem aimed at finding the best transmission strategy in prioritized IRSA strategies, in terms of
both source rate and replication probability per class, fora set of heterogenous classes;

• a solving method based on intrinsic characteristics of the iterative decoding method adopted for recovering from collisions,
along with proper heuristics to derive random transmissionstrategies for different sources.

The reminder of this paper is organized as follows. Section II describes the scenario under consideration, together with key
features of IRSA schemes. The theoretical analysis for prioritized IRSA strategies is derived in Section III, where we also
provide simulation results to validate the theory. The optimization problem aimed at finding the best transmission strategy for
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Figure 2. Example of realization of IRSA strategies for two sources and four time slots per MAC frame.

Table I
NOTATION ADOPTED IN THE PERFORMANCE ANALYSIS.

Name Description
TS time slot over which a source can access the channel and send areplica message
TMAC MAC frame duration
N = TMAC/TS transmission slots per MAC frame
Ck set of sources of classk
Lk = |Ck| number of sources assigned to classk
Rk number of messages correctly received in classk
Uk(Rk) utility function for classk

prioritized sources is formulated in Sec IV. The solving method and simulation results are also provided. Finally, we conclude
in Section V.

II. FRAMEWORK

In the following, we first describe the system model considered in our work, then we detail key features of the SIC technique
and the IRSA framework.

A. System Model

We considerM sources communicating to a common base station, that needs to decode the messages received from the
sources. Sources are categorized inK priority classes and we denote byCk the set of active sources within the source classk.
Let Lk = |Ck| be the number of sources in classk with M =

∑

k Lk. Without loss of generality, we assume that the source
classes are sorted from the most important (C1) to the least one (CK).

We assume the time axis to be discretized in MAC frames of duration TMAC and we assume that at most one source packet
is sent per source within a MAC frame. This means that at mostLk messages can be sent per MAC frame from sources of
classk. In our system, the sources access the channel according to the IRSA protocol [9]. Each MAC frame of durationTMAC

is composed ofN slots of durationTS = TMAC/N . Each slot corresponds to a transmission interval, where one message or
several interfering messages are sent. The traffic of the network is then computed asG = M/N . Within a MAC frame, each
source transmitsl replicas of one source message, as depicted in Fig. 2. Each replica is transmitted within one time slot and
replicas sent from the same source are allocated to different slots, which are uniformly selected at random among theN total
available slots. The replication ratel is selected by the source at random following a transmissionprobability distribution. We
denote this distribution by{Λl,k}l for sources of classk, whereΛl,k is the probability that a source from the classk transmits
l replicas within the MAC frame.

The transmission processes are handled independently by all sources. This might lead to interference on the wireless channel.
We assume that if a time slot is selected only by one source, the BS correctly receives the message. When multiple sources
select the same time slot for a replica transmission, a collision is experienced. The messages interfere and the information
transmitted over the time slot cannot be immediately recovered. However, the receiver implements successive interference
cancellation (SIC) to partially or fully resolve collisions. This is illustrated by an example in Fig. 2. In the third time slot
of the first MAC frame, the message sent by source1 (m1) collides with the message of source2 (m2). This means that
the BS receives messagem2 interfered bym1, making the messages undecodable. However, thanks to SIC techniques, the
collision might be resolved. In particular, the BS can recover m1 from the time slot1, and oncem1 is revealed,m2 can be
“cleaned” from the interference with SIC algorithms. We assume that a perfect SIC is performed and the message is recovered
with no errors [9]. In a more general scenario, this interfering-cancelation procedure is iterated and may permit the recovery
of the whole set of bursts transmitted within the same MAC frame. We refer readers to [9] for a detailed description of SIC
techniques applied to IRSA strategies.

Finally, we denote byRk ∈ [0, . . . , Lk] the number of messages from classk that are correctly received at the decoder. The
reception ofRk messages leads to an utility functionUk(Rk), which is a non-decreasing function of the rate. Let denote by
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(a) Time slot representation (b) Graph-based representation

Figure 3. Example of bipartite graph associated with the IRSA scheme, with3 sources of one message each.

Figure 4. Graph representation for the considered MAC protocol. Sources of different classes encode the information into messages that are sent in some
of theN time slots selected at random.

RRR = [R1, R2, . . . , RK ] the vector of received rates (or received messages) for all classes. The overall utility function for the
system is given by

U(RRR) =

K∑

k=1

wkUk(Rk) (1)

wherewk is a priority score that characterizes the importance of class k, and it is such that
∑

k wk = 1. Usually important
classes have large weightwk. The notation adopted in this work is summarized in Table I.

B. Graph-based representation of IRSA

To study the performance of SIC strategies applied to IRSA protocols, a graph-based representation has been introducedin
[9], which shows the analogy between random MAC protocols and codes on graph. Each MAC frame can be identified by a
bipartite graph where sources are represented by burst nodes (BNs), that correspond to messages, and transmission timeslots
are considered as slot nodes (SNs). The degree of a node defines the number of outgoing, respectively incoming edges. The
probability of having a degree-l BN of classk is given byΛl,k and the probability of having a degree-l SN is denoted byΩl.
The degree of a BN corresponds to the repetition rate adoptedby the corresponding source in the MAC frame. The degree
of a SN corresponds to the number of interfering messages. Finally, the iterative message recovering procedure is associated
to a message-passing algorithm along the graph. An example of the bipartite graph representation is shown in Fig. 3, where
the MAC frame depicted in Fig. 3(a), characterized by5 time slots and3 sources with one message each, is identified by the
bipartite graph in Fig. 3(b), with5 SNs and 3 BNs.

In Fig. 4, we extend the graph-based representation to the scenario with heterogenous sources that is considered in our work.
Each source inCk is identified by a BN classk, which transmits message replicas over the MAC frame independently from
any other BNs. The frame status can then be represented by thebipartite graphG = (B,S,E) whereB is the set ofM burst
nodes,S is the set ofN SNs, andE is the set of edges. An edge(v, e) represents a transmission of BNv in the time slote.
In this case, we say thatv is a neighbor ofe. Recall that having a degree-l BN of classk corresponds to having a source from
classk sendingl message replicas within a MAC frame. Analogously, a degree-l SN reflects a time slots in whichl messages
have been transmitted. The transmission strategy of the IRSA can then be identified by anode-perspective degree distribution
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with the following polynomial representations

Λk(x) =
∑

l

Λl,kx
l, Ω(x) =

∑

l

Ωlx
l (2)

From the node-perspective degree distributions, we can also derive theedge-perspective degree distributions. We defineλl,k

the probability for an edge to be incident to a degree-l BN of classk as follows

λl,k =
lΛl,k
∑

l lΛl,k
. (3)

Then, the edge-perspective degree distributionλ(x) is given by

λ(x) =
∑

l

λl,kx
l−1 =

Λ′
k(x)

Λ′
k(1)

(4)

whereΛ′
k(x) = dΛk(x)/dx. Analogously, the probability of having an edge attached toa degree-l SN is

ρl =
lΩl
∑

l lΩl
. (5)

Hence, the edge-perspective degree distributionρ(x) is given by

ρ(x) =
∑

l

ρlx
l−1 =

Ω′(x)

Ω′(1)
. (6)

whereΩ′(x) = dΩ(x)/dx.
Different (Λk(x), Lk) pairs lead to different frequency of accessing the channel and different transmission rates for the

sources of classk, creating an unequal allocation of the channels among different source classes. In the following section, we
show how the degree distribution is used to derive a collision recovery probability per source class, which is the probability
that a message sent from a source of a given class is successively received.

III. C OLLISION RESOLUTION PROBABILITY

We now evaluate the error probability for the prioritized IRSA schemes described above. The theoretical study is evaluated
under the assumption of very large frame sizes (N → ∞), hence the analysis presented next will refer to this asymptotic setting.
The asymptotic assumption leads to theoretical analysis which is substantially simplified but yet accurate, as alreadyproved in
the literature [9], [11]. In the following, we will adopt “asymptotic setting” and “large network assumption”, interchangeably.

In the following, first we derive the SN degree distribution in the case of prioritized transmission strategies. Then, toderive
the decoding error probability, we extend the asymptotic analysis in [9] to the case of heterogenous sources. Finally, we provide
global conditions for the stability of the iterative decoding process.

A. Node Degree Distributions

In our scenario, the base station assigns to each classk a transmission strategy, which is defined by a transmission distribution
Λk(x). From Λk(x), the edge-perspective distributionλk(x) can be evaluated as in Eq. (4). The degree distribution for the
SNs,Ω(x) as well asρ(x), need to be computed. In [9], the SN-degree distribution is derived for the case in which all BNs
follow the same distributionΛ(x). Here, we extend the analysis to the case of different distributions for different classes of
sources, or equivalently for different types of BNs. We denote by Pk(nk) the probability thatnk edges connectnk BNs of
classk to the same SN. This probability is given by

Pk(nk) =

(
Lk

nk

)

pnk

k (1− pk)
Lk−nk (7)

pk =

∑

j jΛj,k

N
(8)

wherepk is the probability that a BN of classk has an edge incident to the considered SN. Note thatpk corresponds to the
probability that one source from classk transmits a replica in the considered time slot. The degree distributionΩl for the SNs
then becomes

Ωl =
∑

n1,...,nK :n1+...+nK=l

P1(n1)P2(n2) . . . PK(nK) (9)

=
∑

n1,...,nK :n1+...+nK=l

∏

k

(
Lk

nk

)(∑

j jΛj,k

N

)nk (

1−
∑

j jΛj,k

N

)Lk−nk

, l = 0, . . . ,M
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(a) Bipartite graph. (b) Tree associated to(v1, e3).

Figure 5. Example of the tree representation associated to(v1, e3) in the bipartite graph, assuming that the BNv1 is of classk and it is the root of the tree
Ti,k of depth2i = 4.

We can simplify Eq. (9) as follows. We denote byXi the event of having the sourcei transmitting in a time slott. This event
occurs with probabilitypi = (

∑

j jΛj,k)/N if sourcei is from the classk. Since each source independently selects the time
slots for transmission, we have thatX1, X2, . . . , XM are independent Bernoulli processes, each one with its own probability
of successpi. ThenΩl = P (SM = l) can be modeled as a Poisson binomial process [20], whereSM = X1 +X2 + . . .+XM

is the sum of the considered events (i.e.,SM sources transmitting in the time slott). This permits to express Eq. (9) as

Ωl =
∑

A∈Fl

∏

i∈A

(1− pi)
∏

i∈Ac

pi (10)

whereFl is the set of all subsets ofl integers that can be selected inM , A is one of these possible subsets, andAc is the
complement ofA, given by{1, 2, . . . ,M} \A. From [21], [22], the above expression becomes

Ωl =
1

M + 1







M∑

j=1

C−jl

[
M∏

m=1

(
1 + (Cj − 1)pm

)

]






=
1

M + 1







M∑

j=1

C−jl

[
K∏

k=1

(
1 + (Cj − 1)pk

)Lk

]





(11)

whereC = exp[2πi/(M + 1)], with i =
√
−1. The last equality follows from the fact that sources from the same class have

the same probability of successpk. Finally, for largeM and smallpi’s, Ωl can be approximated by a Poisson process [23]

Ωl ≈

(
M∑

m=1
pm

)l

exp

(

−
M∑

m=1
pm

)

l!
=

(
K∑

k=1

Lkpk

)l

exp

(

−
K∑

k=1

Lkpk

)

l!
(12)

Note that we are considering large frame size networks (N → ∞), which leads also to largeM values. Finally, eachpi is
inversely proportional toN and it becomes small for large MAC frame size (i.e., largeN ). This then justifies the assumptions
considered to derive the above approximation.

We can then derive the node degree distribution for SNs as

Ω(x) =

M∑

l=1

Ωlx
l ≈ exp(−χ)

M∑

l=1

(χx)l

l!
(13)

whereχ =
∑K

k=1 Lkpk. Under the assumption of large networks, Eq. (13) can be further simplified asΩ(x) ≈ exp(−χ(1−x)).
Finally, from Eq. (6), the edge-perspective degree distribution for a SN becomes

ρ(x) =
Ω′(x)

Ω′(1)
= exp(−λ(1 − x)) = exp

(

−G
∑

k

Λ′
k(1)

∑

k Lk
(1− x)

)

(14)

whereG =
∑

k Lk/N is the traffic of the network.
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B. Collision Recovery Probability

We now study the collision recovery probability and analyzethe asymptotic behavior of the message-passing algorithm used
in the SIC method. We extend the analysis in [9] and consider the case of prioritized transmission strategies. The analysis
considers the AND-OR tree asymptotic analysis, which is frequently used in evaluating rateless codes performance [24], [25]
and it has been already introduced for IRSA strategies [9], [11].

First, we show the dependency among the nodes in the SIC algorithm and provide an example in Fig. 5(a) that has two
iterations in the decoder. We see that the slot nodee5 receives a clean (i.e., not interfered) message fromv2, which can then be
decoded at the first step of the SIC procedure. We say that the edge(v2, e5) is revealed at the first iteration step and it can be
removed from the graph, leading to a reduced graph. The decoded message fromv2 is then passed along the edge(v2, e3) to
remove the interference at the third time slot of the MAC frame, namelye3. This means that the edge(v2, e3) is also revealed
and removed from the graph. If at theith iteration step of the decoding the message from the burst node v3 has also been
decoded (and so the message along(v3, e3) has been passed), the message fromv1 can be decoded through the slot nodee3.

Dependencies between nodes in the graph can be described by atree representation [24], which permits to study the iterative
burst decoding process. Considering a burst nodev, we are interested in the probability of decoding the message through a
slot nodee. The associated tree is the one describing the neighborhoodof e. This tree is rooted atv, with e as only branch
going out fromv, while the nodee has branches to the neighboring burst nodes excludingv, as shown in Fig. 5 for the(v1, e3)
edge.

In more details, let denote byTi,k the constructed tree of depth2i with a BN of classk (e.g.,v1) as a root. Each node
at depth2i, 2i − 2, . . . , 2, 0 are BNs (of classk for the root and of any class for the other depths value) whilethe nodes
at depth2i − 1, 2i − 3, . . . , 3, 1 are SNs. Finally, the nodes at depth2i, 2i− 2, . . . , 2, 0 are denoted by OR-nodes, while the
nodes at depth2i− 1, 2i− 3, . . . , 3, 1 are AND-nodes in the tree representation. In the tree representation, a BN at depth2i
(a SN at depth2i− 1) is marked with1 if it is decoded (if it receives a clean message) at theith iteration step, and marked
with 0 otherwise. For the message sent fromv1 to be decoded at theith decoding step through the slot nodee3, the slot
nodee3 has to be marked with1. This happensif all the other(l − 1) neighboring BNs ofe3 are decoded or marked with1
(AND-operator), wherel is the degree of the slot node under consideration. We denoteby zi the probability of the slot nodes
at depth2i− 1 to be marked with0. We consider now the probability that any BN of degreel at depthi in the tree is marked
with 1. This happensif at least one of the remaining(l− 1) neighboring SNs is marked with1, i.e., if it has a non-interfered
message (OR-operator). We denote byyi,k the probability that the message along the considered edge is not decoded. In our
IRSA scheme, the messages transmitted by the sources are notknown a priori and they need to be decoded. This means that
none of the BNs is known a priori before the decoding process starts, i.e.,y0,k = 1, ∀k andz0 = 1 and all leafs are initially
marked with0.

We now evaluate the probability of having a BN of classk unknown after theith iteration of the decoding process. This is
given by

yi,k = P{all AND nodes at depth2i− 1 are marked with 0} =
N−1∑

l=1

zl−1
i−1λl,k = λk(zi−1) (15)

wherezi−1 is the probability of having a AND-node at depth2i − 1 that is marked with0 andλl,k is the probability for an
edge to be incident to a degree-l BN of classk. Each child of a AND-node is a OR-node of classk with probabilityqk, given
by

qk =
LkΛ

′
k(1)

∑K
k=1 LkΛ′

k(1)

which is the ratio between the average number of edges going out from all BNs of classk, namelyLkΛ
′
k(1), and the average

number of total edges in the graph, namely
∑K

k=1 LkΛ
′
k(1). It follows that

zi−1 = 1− P{all OR nodes at depth2i− 2 are marked with 1} (16a)

= 1−
M−1∑

l=1






1− P{one OR node at depth2i− 2 is marked with 0}

︸ ︷︷ ︸
∑

K
k=1

qkyi−1,k







l−1

ρl (16b)

= 1−
M−1∑

l=1

[

1−
K∑

k=1

qkyi−1,k

]l−1

ρl (16c)

= 1− ρ

(

1−
K∑

k=1

qkyi−1,k

)

(16d)
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Figure 6. Feedback loop associated to the iterative decoding probability described in Eq. (17). Each error probabilityyi,k is evaluated as a function of the
zi−1, while zi−1 is evaluated as a function of a weighted sum of allyi−1,k probabilities. This recursion creates the feedback loop depicted in the figure.

where in Eq. (16b) the probability of having one OR node at depth 2i − 2 marked with0 is given by
∑K

k=1 qkyi−1,k. This
corresponds to the probability of having a OR node at depth2i− 2 and of classk marked with0, weighted by the probability
of having a OR node of classk as child. Substituting Eq. (16d) into Eq. (15), we obtain thefollowing recursion

yi,k = λk (zi−1) (17)

zi−1 = 1− ρ

(

1−
K∑

k=1

qkyi−1,k

)

with y0,k = 1, ∀k, q0 = 1 1. Note that the error probabilityyi,k is recursively derived assuming that the OR nodes at depth
2i− 2 are actually roots of trees with depth2i− 2 and are independent from each others. Substituting Eq. (14)into Eq. (17),
we obtain

yi,k = λk

(

1− exp

(

−G

∑

k LkΛ
′
k(1)

∑

k Lk

K∑

k=1

qkyi−1,k

))

(18)

Finally, let Pe(k, I) be the probability for the base station of not correctly decoding the message sent from a BN of classk
when a iterative SIC technique is adopted with a maximum ofI iterations. As already observed in Fig. 5, the message (BN)
of classk can be decoded through any neighboring SN. It means thatPe(k, I) is computed as the probability that the message
cannot be decoded through any edge at theith iteration of the SIC algorithm, which means that

Pe(k, I) =

N∑

l=0

ylI,k Λl,k (19)

C. Stability Conditions

We are now interested in evaluating the conditions under which the SIC algorithm asymptotically (i → ∞) converges with
zero failure probability. We first observe that the iterative decoding process described in Eq. (17) can be seen as a feedback
loop (Fig. 6) of which we can study the global stability, by deriving the conditions under which the system asymptotically
converges to null error probability, i.e., to an equilibrium point (yyy⋆, z⋆) = (000, 0), for any initial probability(yyy, z). The global
stability can be guaranteed if the error probabilityzi decreases at every decoding iteration, converging then to azero error
probability for i → ∞.

We first note that the control equations that characterize the feedback system, as well as the iterative decoding probability
of Eq. (17), are

z = 1− ρ(1−
∑

k

qkyk)

yk = λk(z)

1In the above analysis we have assume a tree ensemble representation, which implies that the bipartite graph is loop-free, since loops introduce correlation
in the evolution of the message error probabilities. This istrue for large networks.
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Table II
CONSIDERED POLYNOMIAL DISTRIBUTIONS PER CLASSΛk .

Index Label Transmission Probability DistributionΛk(x)

1 Λa(x) 0.5102x2 + 0.4898x4

2 Λb(x) 0.5631x2 + 0.0436x3 + 0.3933x5

3 Λc(x) 0.5465x2 + 0.1623x3 + 0.2912x6

4 Λd(x) 0.5x2 + 0.28x3 + 0.22x8

5 Λe(x) 0.08x3 + 0.14x4 + 0.3x5 + 0.17x6 + 0.14x7 + 0.17x9

6 Λf(x) 0.4977x2 + 0.2207x3 + 0.0381x4 + 0.0756x5 + 0.0398x6+
0.0009x7 + 0.0088x8 + 0.0068x9 + 0.0030x11 + 0.0429x14 + 0.0081x15 + 0.0576x16
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Figure 7. Comparison of the theoretical and simulated edge-perspective degree distributions for a system withK = 2, N = 200, L1 = L2, and
Λ1(x) = Λf(x) andΛ2(x) = Λa(x).

as shown in Fig. 6. By substituting Eq. (14) in the above equations, we obtain the following control equation for the feedback
system

z = 1− exp

(

−
∑

k LkΛ
′
k(1)

N

K∑

k=1

qkλk (z)

)

︸ ︷︷ ︸

f(z)

(20)

and we can guarantee global stability iff(z) < z, ∀z. This means that we should have

1− exp

(

−G

∑

k LkΛ
′
k(1)

∑

k Lk

K∑

k=1

qkλk (z)

)

< z . (21)

In the following, we show how the global stability can be exploited to solve the transmission optimization problem in prioritized
MAC algorithms.

D. Analytical Performance Validation

We now provide simulation results to validate the theoretical analysis provided above and study the performance of the
random MAC transmission protocol in different settings. Weset the maximum number of iterations used in the burst decoding
algorithm toI = 100. For each simulated scenario, we average the experienced utility function over1000 simulated loops. We
test the theoretical analysis for different transmission probabilities, provided in Table II.

Fig. 7 first depicts the theoretical and simulated edge-perspective degree distribution for a scenario withN = 200 transmission
slots in a MAC frame,K = 2 source classes with the same number of burst nodes (i.e.,L1 = L2), and with the following
degree distributionsΛ1(x) = Λf(x) andΛ2(x) = Λa(x) that have been shown to be effective in random MAC strategies[9].
We see that the theoretical performance is in agreement withthe simulation results, which means that the assumption of large
networks used in the analysis still holds in the case of finitesize of the MAC frame (N = 200), as observed in other works
[9].

We further provide a comparison between simulations and theoretical results in terms of both normalized throughput and
utility function. We consider an illustrative scenario with two classes with priority given byw1 = 0.7 andw2 = 0.3 (this means
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Figure 8. Heterogenous system performance vs. network loadG for the case ofK = 2, w1 = 0.7, and w2 = 0.3, L1 = L2, Λ1(x) = Λd(x) and
Λ2(x) = Λa(x). Different numbers of transmission slotsN are considered.

that class1 is more important than class2), with the same number of burst nodesL1 = L2, and two different distributions
Λ1(x) = Λd(x) andΛ2(x) = Λa(x). In Fig. 8, both the average of the normalized throughput andthe overall utility function
are depicted as a function of the traffic loadG for 1000 simulation runs, for different size ofN of the MAC frame. The traffic
load G =

∑

k Lk/N varies with the number of burst slotsL1 = L2, for a fixedN . The normalized throughput is evaluated
asG(1 − Pe(k, I)), and we only show the throughput for class1 since the results are mostly similar for all classes. We see
that there is again a good match between theoretical and simulated results for allN larger than50. WhenN = 50, the error
in considering an asymptotic behavior is non negligible, but yet the utility function behavior is accurate. In particular, when
N = 50, both theoretical and simulation values of the mean utilityincreases withG for G < 0.6, have a peak between[0.6, 0.8],
and decrease beyond a traffic value of0.8. We have obtained similar trends in other experiments for different scenarios, and
all confirm the validity of the analysis for large MAC frames and the possibility to characterize the optimal traffic load,even
with small MAC frames.

We now illustrate the performance of prioritized transmission schemes for sources with different importance. In Fig. 9, the
message error rate and the overall utility function are given as functions of the traffic loadG for a sample scenario withN = 200
transmission slots, two classes with the same number of slots (L1 = L2) but with different priorities (w1 = 0.7 andw2 = 0.3).
The traffic loadG =

∑

K LK/N again varies with the number of burst nodes in each class. In order to illustrate the benefits
of prioritized transmission when sources are heterogeneous, we compare the performance of equal and unequal transmission
probabilities for different classes. For the equal transmission strategy, denoted by EEP, we considerΛ1(x) = Λ2(x) = Λe(x);
while for the case of unequal transmission strategy, denoted by UEP, we consider different distributionsΛ1(x) = Λe(x) and
Λ2(x) = Λb(x), which correspond to different transmission probabilities (namely higher replication rate for the most important
classes). We first observe that theoretical results again match the simulations results computed over1000 simulation runs. The
results also show the benefit of prioritized transmission policies when source have different priorities. In Fig. 9(a),we see
that the message error probability per class is higher for the EEP strategy than for prioritized strategy under consideration.
We also observe that a EEP strategy leads to a waterfall effect in proximity of a threshold value ofG = 0.6, while the UEP
strategy has a larger threshold value ofG = 0.7. A larger threshold value implies a larger throughput, since a larger number
of sources actively transmit messages within a given MAC. This gain achieved by the UEP strategy is due to the change in the
transmission protocol for different classes: in our example, the class2 adopts a replication rate followingΛ2(x) rather than
Λ1(x), with a maximum node degree of5 rather than9. This reduces the overall number of messages sent in a MAC frame,
hence also the load of the network. This reduced replicationrate mainly affects class2 rather than class1, which is more
important in our example. This leads to an overall utility function that reaches a maximum of43.2 dB for the UEP strategy,
as opposed to the maximum of40.8 dB of the EEP strategy, see Fig. 9(b).

Another example of prioritized transmission is provided inFig. 10, where the same scenario of Fig. 9 is considered, but
with a different number of burst nodes in each class, i.e.,L2 = αL1, with α = 0.1 andα = 0.33. We see again that the
theoretical and the simulation results are generally in accordance, especially in the low and high traffic regions. We further
see that the number of burst nodes per class affects the performance of the prioritized transmission solution. In particular,
reducing the number of burst in the lower importance class improves the overall system performance. Finally, we observethat
theoretical study is an upper bound of the simulated performance and the theoretical value ofG⋆ is an upper bound of the
simulated value ofG⋆, whereG⋆ the threshold value beyond which the error probability rapidly reaches1 and a waterfall
effect is experienced.
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Figure 9. System performance vs. network loadG for the case ofN = 200, K = 2, w1 = 0.7, andw2 = 0.3, L1 = L2. For the UEP caseΛ1(x) = Λe(x),
andΛ2(x) = Λb(x) For the EEP case,Λ1(x) = Λ2(x) = Λe(x).
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Figure 10. System performance vs. network loadG for the case of UEP transmission, forN = 200, K = 2, w1 = 0.7, andw2 = 0.3, L2 = αL1,
Λ1(x) = Λe(x), andΛ2(x) = Λb(x).

Overall, the above results illustrate that prioritized transmission is beneficial when sources have different importance, and
that the system performance is dependent on both the replication rates (or the transmission probabilities) and the number of
burst nodes. In the following, we show how this theoretical study of MAC protocol strategies can be adopted in practical
resource allocation optimization problems.

IV. PRIORITIZED RANDOM ACCESSOPTIMIZATION

Based on the above theoretical analysis, we formulate now a transmission policy optimization aimed at finding the best
(Λk(x), Lk) per class, such that the network resources are not under-utilized but not over-utilized either. More in details,
we choose both the transmission probability and the source rate for each class, such that the overall system performanceis
maximized. The optimization, carried out by the base station, finds the best tradeoff between throughput and message decoding
probability for the all sources.

A. Problem Formulation

Let denote byΛΛΛ = [Λ1(x),Λ2(x), . . . ,ΛK(x)] the transmission policy vector with the transmission probability distributions
for each class. By varyingΛΛΛ and the number of burstsLk for source classk, we can actually modify the expected received
throughput for each class. As the throughput corresponds toan utility function score for each class, as shown in Eq. (1),we
can modify the overall system performance by tuningΛΛΛ and{Lk}. In particular, we can optimize the overall utility of a system
with heterogenous sources by maximizing the throughput of most important classes and sacrificing the throughput of least
important ones. This leads to prioritized transmission strategies that are necessary for systems with sources that have different
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utility functions. Hence, instead of maximizing the overall throughput, we optimize the best transmission strategy(ΛΛΛ,LLL) and
select the one that maximizes the overall utility function,evaluated as follows

(ΛΛΛ⋆,LLL⋆) = arg max
(ΛΛΛ,LLL)

U(ΛΛΛ,LLL) (22)

= arg max
(ΛΛΛ,LLL)

{
L1∑

R1=0

L2∑

R2=0

. . .

LK∑

RK=0

U(R1, R2, . . . , RK)P (I)
r (R1, R1, . . . , RK ;ΛΛΛ,LLL)

}

whereU(R1, R1, . . . , RK) is the system utility function defined in Eq. (1) whileP (I)
r (R1, R1, . . . , RK ;ΛΛΛ,LLL) is the probability

of correctly receivingR1, R2, . . . , RK messages for sources of class1, 2, . . . ,K, respectively. This corresponds to the
probability of receivingR1, R2, . . . , RK messages either with no collisions or messages with collisions that can be resolved
with the iterative message recovering strategies (i.e., SIC) after a maximum number ofI iterations.

Since the transmission processes are handled independently by all sources, we can derive the probability of correctly receiving
the the messages from different sources as follows

P (I)
r (R1, R1, . . . , RK ;ΛΛΛ,LLL) =

K∏

k=1

P
(I)
k (Rk; Λk(x), Lk) (23)

=

K∏

k=1

(
Lk

Rk

)

[1− Pe(k, I)]
RkPe(k, I)

Lk−Rk

whereP
(I)
k (Rk; Λk(x), Lk) is the probability for a source of classk to recoverRk out of Lk messages after theI-th IC

iteration, and1 − Pe(k, I) is the probability for the base station to correctly receivethe message sent from a source of class
k. We can then express the expected distortion as

U(ΛΛΛ,LLL) =

L1∑

R1=0

L2∑

R2=0

. . .

LK∑

RK=0

K∑

k=1

wkUk(Rk)

LK∏

RK=0

(
Lk

Rk

)

[1− Pe(k, I)]
RkPe(k, I)

Lk−Rk . (24)

and the problem formulation to be solved becomes

(ΛΛΛ⋆,LLL⋆) : argmax
ΛΛΛ,LLL

U(ΛΛΛ,LLL) (25a)

s.t.Λk(x) ≤ Λk+1(x) ∀x ∈ [0, 1], ∀k (25b)

where the priority constraint in Eq. (25b) permits to reducethe search space. In particular, we constraint the optimization to an
unequal recovery probability among classes such that sources from more important classes have a larger probability of correctly
transmitting their messages compared to lower important sources. This translates in imposingPe(k, i) ≤ Pe(k+1, i) for class
k more important than classk+1. From Eq. (19), the priority condition can be generalized asΛk(yi−1,k) ≤ Λk+1(yi−1,k+1).
The optimization problem in Eq. (25) results in maximizing the overall system utility.

B. Approximated Solution

The optimization problem in Eq. (25) might not be easily solved with conventional optimization frameworks. The expected
utility function is evaluated as a weighted sum of binomial distributions, each of them having a probabilityPe(k, I). Although
Pe(k, I) can be considered as a sigmoid function to simplify the formulation, there is no a convenient optimization framework
that is able to address the above problem jointly for bothΛΛΛ andLLL variables, to the best of our knowledge. Thus, we propose a
solving method that exploits an intrinsic property of the coded slotted ALOHA: the message error probability usually follows
a waterfall effect [25], having an error probability approaching 0 for traffic networkG lower than a given thresholdG⋆, and
rapidly approaching1 beyondG⋆. The threshold valueG⋆ is usually defined as the value that is the limit of the region where
the condition of stability hold.

In the following, we approximate the message error probability Pe(k, I) to 0 when the stability condition is respected, i.e.,
when the convergency of the iterative message decoding algorithm is assumed. By imposing the global stability condition of
Eq. (21), we have the following instance of the optimizationproblem:

(ΛΛΛ⋆,LLL⋆) : argmax
ΛΛΛ,LLL

K∑

k=1

wkU(Lk) (26a)

s.t.Λk(x) ≤ Λk+1(x) ∀x ∈ [0, 1], ∀k (26b)

exp

(

−G

∑

k LkΛ
′
k(1)

∑

k Lk

K∑

k=1

qkλk (x)

)

> 1− x ∀x ∈ [0, 1] . (26c)
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Algorithm 1 Prioritized Random Access Protocol Optimization

1: step 1): Define the setLON defined as the set of pairs(ΛΛΛ,LLL) in the ON region:

LON : {(ΛΛΛ,LLL) s.t. the constraint in Eq. (26c) is verified}

2: step 2): Optimize the utility function within the ON region as follows

(ΛΛΛ⋆,LLL⋆) : arg max
(ΛΛΛ,LLL)∈LON

K∑

k=1

wk U(Lk)

s.t.Λk(x) ≤ Λk+1(x) ∀x ∈ [0, 1], ∀k

0.1 0.2 0.3 0.4 0.5 0.6 0.7

15

20

25

30

35

40

45

L
1
/N

M
ea

n 
U

til
ity

 

 

Exhaustive Search − N=100
Algorithm 1 − N=100
Exhaustive Search − N=200
Algorithm 1 − N=200

Figure 11. Optimized system performance vsL1 for the case ofΛ1(x) = Λ2(x) = Λe(x). The best value ofL2 is optimized for each valueL1.

where we have assumed a null error probability if the constraint in Eq. (26c) is met for all classes, i.e., if the conditions for
global stability are met. This means that theLk messages sent from sources of classk are correctly received. The experienced
utility function in each class is thereforUk(Lk), and the global utility is the weighted sum of class utilities.

In the following, we denote byON region the set of pairs of(ΛΛΛ,LLL) such that the stability condition is respected. The above
optimization problem permits to select the ON region of the system and to seek for a solution within the region where all
packets are decoded. This instance of our optimization problem in Eq. (25) offers simpler solution to the selection of the best
transmission strategy.

The optimization problem can be easily solved in two steps, as described in Algorithm 1. The first step (Step1) defines the
boundaries of the ON region by simply solving Eq. (26c), for the global stability. Then, finding the best pair(ΛΛΛ⋆,LLL⋆) in the
ON region reduces to solving the optimization in Step2. This optimization has an objective function that has the form of a
weighted sum of utility functions subject toK affine constraints. Thus, it can be easily solved for concaveor linearU(Lk)
by concave or linear programming optimization, or by more general gradient-based optimization methods for more general
non-decreasing utility functionsU(Lk).

C. Simulation Results

We now provide simulation results to study the performance of the prioritized random MAC transmission protocol in
different settings. We set the maximum number of iterationsused in the burst decoding algorithm toI = 100. For each
simulated scenario, we average the experienced utility function over1000 simulated loops. As utility function, we consider
Uk(Rk) = log(Rk), ∀k, which resembles a typical image quality metric. In SectionIII-D, we have shown that the theoretical
study of Section III-B is an upper bound of the simulated performance and the theoretical value ofG⋆ is an upper bound
of the simulated value ofG⋆, whereG⋆ is the end of the ON region where the error probability is negligible. While the
asymptotic theoretical bound is surely good to design reliable replication ratesΛ(x), it might lead to approximate solutions for
the optimization of the resource allocationLLL in finite MAC size. In the following, first we show the main limitations of the
optimization method based purely on the theoretical study.Then, we describe how these bounds combined with well-chosen
heuristics can be adopted to jointly optimize(ΛΛΛ,LLL) for selecting effective prioritized transmission strategies and we show that
the proposed approximated algorithm still achieves performance that is close to the optimal one.
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Figure 12. Example of ON region for a system with two source classes,N = 200, Λ1(x) = Λe(x), andΛ2(x) = Λa(x).

We first study the optimization of the number of burst nodes per class. In Fig. 11, we show the global utility function as
a function of the number of burst nodes in class1 (namely,L1 normalized byN ), for the case of two source classes, with
different importancew1 = 0.7, w2 = 0.3, identical transmission probability distributionsΛ1(x) = Λ2(x), andN = 100 or
200. For each value ofL1, we evaluate the best value ofL2 and plot the corresponding global utility score. The Algorithm
1 is considered for the optimization, where the global stability condition has been imposed by Eq. (26c) in the first step of
the optimization algorithm. These results are compared with simulations results where the optimalL2 for eachL1 is found by
exhaustive search. For bothN = 100 andN = 200, we notice that the global stability condition imposes a stringent condition,
leading to a tight bound of the ON region compared to the simulated one. This leads to a mean utility score that is almost
as good as the optimal one. However, we notice that the model is not highly reliable for large values ofL1. For example,
for L1/N = 0.7 in both cases ofN = 100 or 200 slots, the theoretical optimization leads to a substantialdrop in the utility
function. This drop is due to the mismatch between theoretical and simulation results aroundG⋆, as discussed in Section III-D.

We now better study the effect of the mismatch between theoretical stability conditions and actual ones in the optimization
algorithm. We recall that the ON region is the one that satisfies the global stability in Eq. (26c). We show in Fig. 12 the
ON region for a case withK = 2 classes,N = 200 transmission slots, and the transmission probability distributions are
Λ1(x) = Λe(x), andΛ2(x) = Λa(x). The ON region boundaries are derived as a function of the number of burst nodes (or
equivalently the traffic) both from simulations and from thetheoretical analysis through the global stability condition of Eq.
(20). In the simulations we evaluate the ON region as the one where the decoding error probability after SIC is lower than
10−4. As expected, the theory gives an ON region (in blu diamonds)that is more extended than the actual one (red points),
since the theoretical ON region gives an upper bound on the value of traffic G⋆ that represents the transition between ON
and OFF regions of the SIC algorithm. Unfortunately, the best LLL derived from Algorithm 1 approaches the boundary of the
ON region defined by theoretical stability conditions, which is exactly the unsafe region where the theory does not necessary
match the actual behavior of the system. This means that for most cases, the optimization of Algorithm 1 would select a
transmission strategy such that the network is actually overloaded, which results in a poor mean utility function. Based on
these observations, we can actually overcome the main limitation of the theoretical study with the effective followingheuristics.

The key concept is that we would like the system to workalmost at the boundaries of the ON region, but notexactely
at the boundaries. A first solution is to use the theoretical study to evaluate the boundaries, and then run simulations ina
neighborhood of the boundaries to predict the actual ON region. This method is however not always feasible because of
the computational complexity in simulating the consideredscenario. However, for all the scenarios considered in our work,
we empirically observe that the theoretical ON region extends beyond the actual one by about0.1G. Thus, a good heuristic
solution, called Algorithm 2, consists in first evaluating the theoretical bound on the ON region and then translating into a “safe
boundary” by reducing the boundaries by10%. Finally, we can seek for the best(ΛΛΛ,LLL) within the safe boundary region only,
where the decoding error probability is actually zero. It isworth noting that the best(ΛΛΛ,LLL) is selected as the best resource
allocationLLL such that the utility function is maximized and(ΛΛΛ,LLL) is on theactual ON region boundaries. Note that it is much
better to work with a traffic load that is slightly lower than the optimal oneG⋆, rather than working at a traffic load slightly
larger thanG⋆. Working beyond the actual ON boundaries leads to a state of error probability that is quickly approaching
1, such that the achieved throughput can quickly fall to zero.In the following, we illustrate this statement by comparingthe
performance of Algorithm 1 and Algorithm 2.

We propose now experiments where we compare the performanceof Algorithm 1 and Algorithm 2. To evaluate the set of
pairs(LLL,ΛΛΛ) that satisfies the stability constraints in the first step of both Algorithms, Eq. (26c) can be solved for example by
differential evolution [26] as shown in [9]. The best polynomial distribution can also be evaluated by numerical analysis by
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Figure 13. Optimization performance for Algorithm 1 and Algorithm 2 for a system withN = 200, and source importance given as(w1, w2) = (0.7, 0.3).
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Figure 14. Mean utility vs. the MAC frame sizeN , when{Lk} is optimized in the case of2 and4 source classes.

fixing a maximal degree for the BNs [27]. However, for the sakeof simplicity, in the following we consider the polynomial
distributionsΛk(x) derived from [9] and provided in Table II, which have been optimized to maximize the traffic thresholdG⋆.
Any distribution in the table is a candidate for being assigned as transmission strategy to a given source class. However, our
optimization can be applied to any other sets of polynomial distributions that satisfies Eq. (26c). We compare the performance
of both algorithms to an exhaustive search through all(LLL,ΛΛΛ) possible pairs, which leads to optimal performance in our scenario.
For the sake of clarity, we show the results of our joint optimization overLLL andΛΛΛ as functions of one parameter at time.

Fig. 13(a) depicts the mean utility function as a function ofthe number of burst slots in the first classL1, for Λ1(x) =
Λ2(x) = Λc(x), N = 200 transmission slots, and source importance(w1, w2) = (0.7, 0.3). For each value ofL1, the number
of messages in the second classL2 is optimized with the different algorithms. Analogously, in Fig. 13(b), the optimal utility
function is depicted for different polynomial distributionsΛ1(x), where the indexes on the x-axis follow the order in Table II.
For each distributionΛ1(x), Λ2(x) and (L1, L2) are optimized with the algorithms under comparison. For both figures, the
optimization based on the theoretical ON region does not match the optimal results achieved by exhaustive search. This is due
to the mismatch between theoretical and actual ON region, asdescribed above. However, we can observe that the optimization
based on the safe ON region in Algorithm 2 achieves a performance that approaches the optimal one. We also observe that
by increasing the number of BNs dedicated to the most important class (i.e.,L1) the global utility function increases (Fig.
13(a)). This is expected since a more prioritized transmission strategy is offered for large values ofL1. If we rather look at the
evolution of the global utility function as a function of several transmission probability distributions in Fig. 13(b), we notice
an almost constant behavior. This is justified by the fact that the MAC frame can be efficiently utilized and by properly tuning
Λ2(x), L1, andL2 for each value ofΛ1(x), the system achieves a large enough throughout to be in the floor region of the
logarithmic utility function.
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We further evaluate the performance of the optimization method proposed in Algorithm 2 in different system settings and
provide in Fig. 14(a) the mean utility function as a functionof the number of transmission slotsN , given that two classes are
considered withΛ1(x) = Λe(x), andΛ2(x) = Λa(x). The optimization consists in finding the best pair(L1, L2) for each value
of N , for two different pairs of weight(w1, w2). The optimal performance obtained via exhaustive search iscompared to the
one obtained with Algorithm 2. In all cases, we see that the Algorithm 2 reaches mean utility scores that are almost optimal.
As expected, we also observe that the global utility function increases withN . Finally, we run experiments in a larger system
with K = 4 classes with importance(w1, w2, w3, w4) = (0.6, 0.2, 0.1, 0.1). The overall utility function is again provided as a
function of the MAC frame sizeN when the number of messages is optimized with Algorithm 2 andExhaustive search. The
polynomial distribution is set toΛk(x) = Λe(x) for all k = [1, 4]. The results in Fig. 14(b) confirm the good match of the
performance of our heuristic-based optimization algorithm with the optimal performance. We notice again that the achieved
overall utility function increases with the MAC frame sizeN , as expected.

In conclusion, we have shown that the SIC theory can be applied to practical optimization problems, namely resource
allocation strategies for prioritized sources. An optimalresource allocation should be evaluated either by finite-length analysis
(which is unfortunately not available in the literature forIRSA cases) or by simulation results (not feasible in terms of
computational complexity). Thus, we have proposed an effective heuristic solution that is practical to use and achieves
performance approaching the optimal one.

V. CONCLUSIONS

We have proposed prioritized new IRSA transmission strategies for systems with sources with different levels of importance.
We have derived a theoretical study of the system performance in IRSA schemes with heterogenous sources and analyzed
the asymptotic message error probability per class, as wellas the global stability conditions. We have then proposed a new
optimization problem aimed at finding the best transmissionstrategy in prioritized IRSA, in terms of both the replication
probability and the source rate per class. A carefully designed heuristic-based algorithm has also been developed in order
to optimize the transmission strategy in realistic conditions. Simulation results have validated our theoretical analysis and
demonstrated the gain of the proposed prioritized strategy. The proposed solution is practical and yet accurate, achieving
performance close to the optimal one. This work provides themain theoretical and practical tools for a system designer to
optimally select transmission strategies for prioritizedsources communicating to a common base station in an uncoordinated
way.
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