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Abstract

During fear conditioning, pupil size responses dissociate between conditioned stimuli that are contingently paired

(CS1) with an aversive unconditioned stimulus, and those that are unpaired (CS-). Current approaches to assess fear

learning from pupil responses rely on ad hoc specifications. Here, we sought to develop a psychophysiological model

(PsPM) in which pupil responses are characterized by response functions within the framework of a linear time-

invariant system. This PsPM can be written as a general linear model, which is inverted to yield amplitude estimates of

the eliciting process in the central nervous system. We first characterized fear-conditioned pupil size responses based

on an experiment with auditory CS. PsPM-based parameter estimates distinguished CS1/CS- better than, or on par

with, two commonly used methods (peak scoring, area under the curve). We validated this PsPM in four independent

experiments with auditory, visual, and somatosensory CS, as well as short (3.5 s) and medium (6 s) CS/US intervals.

Overall, the new PsPM provided equal or decisively better differentiation of CS1/CS- than the two alternative

methods and was never decisively worse. We further compared pupil responses with concurrently measured skin

conductance and heart period responses. Finally, we used our previously developed luminance-related pupil responses

to infer the timing of the likely neural input into the pupillary system. Overall, we establish a new PsPM to assess fear

conditioning based on pupil responses. The model has a potential to provide higher statistical sensitivity, can be

applied to other conditioning paradigms in humans, and may be easily extended to nonhuman mammals.

Descriptors: General linear model, Response functions, Auditory, Visual, Somatosensory

Fear conditioning paradigms rank among the most fundamental

and widespread experimental procedures to elucidate the neuro-

physiology of aversive learning across different species (Maren,

2001). Discriminant delay fear conditioning involves presenting

initially neutral, conditioned stimuli (CS), in various modalities,

one of which (CS1) coterminates with an aversive unconditioned

stimulus (US), such as a mild electric stimulation, while the other

(CS-) is always presented alone.

Fear conditioning is often probed by measuring autonomic

responses. Several studies have demonstrated differential pupil size

responses to CS1/CS- in cats (Oleson, Ashe, & Weinberger, 1975;

Oleson, Westenberg, & Weinberger, 1972) and humans

(Greenberg, Carlson, Cha, Hajcak, & Mujica-Parodi, 2013; Her-

mans et al., 2016; Kluge et al., 2011; Pollak et al., 2010; Reinhard

& Lachnit, 2002; Reinhard, Lachnit, & K€onig, 2006; Visser et al.,

2016; Visser, Kunze, Westhoff, Scholte, & Kindt, 2015; Visser,

Scholte, Beemsterboer, & Kindt, 2013). This resonates with a rich

literature showing that pupil size is influenced by a wide range of

neuropsychological processes in humans (Granholm & Steinhauer,

2004) such as perception of various arousing stimuli (Bayer,

Sommer, & Schacht, 2011; Bradley, Miccoli, Escrig, & Lang,

2008; Hermans, Henckens, Roelofs, & Fern�andez, 2013; Korn &

Bach, 2016; Prehn et al., 2013; Preller et al., 2014; V~o et al., 2008).

However, there is a lack of universally accepted quantitative meth-

ods for analyzing pupil responses, and the approaches used at pre-

sent are rather inhomogeneous and unspecified. They typically rely

on methods such as peak scoring or calculating the area under the

curve (AUC) within ad hoc defined time windows.

Here, we sought to formalize extant knowledge on pupil size

responses to CS1 and CS- in a psychophysiological model

(PsPM). This affords a more principled approach to estimating the

underlying fear learning process (Bach & Friston, 2013). Fear

learning, in this approach, is quantified by the amplitude of a cog-

nitive input into the pupil system. The aim of the current study was

to develop a method that provides a minimum variance estimate of

this cognitive input. In order to evaluate the method and compare it
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with previous approaches to the quantification of fear learning, we

relied on simple fear conditioning experiments in which it can be

assumed a priori that a CS/US association is established and pupil

responses to CS1 or to CS- can be assumed to differ on average.

Although in these validation experiments only two conditions need

to be distinguished (a discrimination problem), the goal of the

method is to provide minimum-variance estimates of fear learning

also in situations in which it may vary across more than just two

levels, for example, to provide trial-by-trial estimates of fear learn-

ing or to assess parametric manipulations of fear memory. Of

course, since pupil size reflects many other psychological process-

es, too (Korn & Bach, 2016), a specific inference on fear learning

rests on a suitable experimental design in which conditions only

differ on this dimension.

As in a previous study (Korn & Bach, 2016), we conceptualized

pupil size responses as output of a linear time-invariant system that

receives cognitive inputs at the onset of the CS. The amplitude of

these neural inputs supposedly depends on a fear learning process.

This linear time-invariant system is unambiguously characterized

by its impulse response function. Under these assumptions, the

amplitude of putative inputs can be inferred from observed data by

inverting a general linear model (GLM). For such a GLM, the

design matrix is formed by convolving event onsets with the

impulse response function with unit amplitude. This approach is

commonplace in the analysis of neuroimaging data (Friston, 2005;

Friston, Jezzard, & Turner, 1994), and has more recently been

extended in the form of PsPM to skin conductance responses (SCR;

Bach, Flandin, Friston, & Dolan, 2009), heart period responses

(Paulus, Castegnetti, & Bach, 2016), and respiratory responses

(Bach, Gerster, Tzovara, & Castegnetti, 2016). A similar approach

has been used for pupil size measurements related to detecting audi-

tory events (Knapen et al., 2016) and perceptual decision making

(de Gee, Knapen, & Donner, 2014). Overall, estimating neural pro-

cesses via model-based approaches tends to improve the signal-to-

noise ratio (Bach & Friston, 2013). For example, model-based anal-

ysis of SCR (Staib, Castegnetti, & Bach, 2015), heart period

responses (Castegnetti et al., 2016), respiration responses (Casteg-

netti, Tzovara, Staib, Gerster, & Bach, in press), and possibly also

startle eyeblink responses (Khemka, Tzovara, Gerster, Quednow, &

Bach, 2016) provides better discrimination of CS1/CS- responses

than peak scoring measures in fear conditioning paradigms.

For some data types (e.g., skin conductance), responses to CS1

and CS- look very similar and only differ by their amplitude (Bouc-

sein, 1992). For others, such as heart period, responses appear to be

composed of several components: one reflecting a response to the

CS, which is the same for CS1 and CS-, and an added component

with different time course for the CS1 (Castegnetti et al., 2016).

Crucially, in this study, it appeared that the common heart period

response to the CS differs across experiments and may depend on

specific perceptual characteristics that do not necessarily generalize

across studies. However, we found that by only modeling the

CS1-related component, CS1 and CS- could be reliably distin-

guished, such that there is no need to model common CS responses

(Castegnetti et al., 2016). Indeed, additionally modeling such

responses would influence parameter estimates for CS- and CS1

equally, such that their contrast would be unchanged. This is the

approach that we pursue here for pupil size responses.

Thus, our first aim was to develop a model that describes fear-

conditioned pupil size responses. Such a model would provide a

useful methodological tool to enhance power when analyzing fear

conditioning experiments. To test wide generalizability, we validat-

ed the model on three experiments with CS from different sensory

modalities (visual, auditory, and somatosensory) and one experi-

ment with a longer presentation of auditory CS. Additionally, we

compared the newly developed pupil model to SCR and heart peri-

od models with respect to their discrimination of CS1 and CS-.

Crucially, the system modeled by our response functions proba-

bly collapses an effector organ system together with parts of the

peripheral and central neural system. The pupillary system offers

the advantage that the system is partly known. Changes in lumi-

nance elicit pupillary responses via a well-characterized neural cir-

cuit (McDougal & Gamlin, 2008) and share a common final

(neural and muscular) pathway with pupil responses elicited by

cognitive processes (Korn & Bach, 2016). This allowed us to build

on our previous model for such luminance-related pupil responses

(Korn & Bach, 2016), which corresponds to the common parts of

the system and estimate the temporal evolution of inputs from

higher nodes in the central nervous system into this pupillary sys-

tem during fear conditioning. The plausibility of this result demon-

strates consistency between the current and our previous model.

Method

Participants

We recruited participants for five independent fear conditioning

experiments from the general and student population (see Table 1

for details). Participants reported to be healthy and drug free. All

five samples were independent except for two persons: one partici-

pated in Experiment 1 and 3 and one in Experiment 1 and 4. The a

priori criterion for excluding participants from analysis was more

than 35% of missing data points (see Data Preprocessing). Partici-

pants received monetary compensation. The study, including the

form of taking written informed consent, was conducted in

Table 1. Overview of Tasks and Participants

Experiment
n initial
sample

Age in years
(mean 6 SD)

n
female

n final
sample

Experiment 1: Auditory CS (40 CS1US1,
40 CS1US-, 80 CS-)

22 26.4 6 5.2 15 19

Experiment 2: Auditory CS (48 CS1US1,
48 CS1US-, 96 CS-)

20 23.1 6 3.0 10 12

Experiment 3: Visual CS (24 CS1US1, 24 CS1US-,
48 CS-, 96 stimuli in nonreinforced context)

20 27.7 6 5.6 15 17

Experiment 4: Somatosensory CS (24 CS1US1,
24 CS1US-, 48 CS-)

18 24.4 6 4.4 7 18

Experiment 5: Long auditory CS (20 CS1US1,
20 CS1US-, 40 CS-)

21 22.6 6 3.3 13 15
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accordance with the Declaration of Helsinki and was approved by

the governmental research ethics committee (Kantonale Ethikkom-

mission Z€urich).

Psychophysiological Recording and Delivery of

Unconditioned Stimuli

Testing was performed in a dark, soundproof chamber (with back-

ground illumination provided by the monitor; see experimental set-

up for specific luminance values at participants’ eyes). Participants’

heads were positioned on a chin rest in front of the monitor (Dell

P2012H, 20” set to an aspect ratio of 5:4, 60 Hz refresh rate). Head-

to-monitor distance was 70 cm in Experiment 1 and 55 cm other-

wise. Pupil diameters and gaze direction for both eyes were

recorded with an EyeLink 1000 System (SR Research, Ottawa, ON,

Canada) at a sampling rate of 500 Hz unless otherwise indicated.

We used the 9-point calibration implemented in the EyeLink 1000

software for calibrating gaze direction.

Skin conductance was recorded from the thenar/hypothenar of

the nondominant hand with two 8-mm disk Ag/AgCl cup electro-

des (EL258, Biopac Systems Inc., Goleta, CA) and 0.5% NaCl gel

(GEL101, Biopac; Hygge & Hugdahl, 1985). The SC signal was

measured with an SCR coupler/amplifier (V71-23, Coulbourn

Instruments) and digitized at 200 Hz, using a Dataq card (DI-149,

Dataq Inc., Akron, OH) and recorded with Windaq (Dataq Inc.)

software.

In Experiment 1 and 2, electrocardiogram (ECG) was recorded

with four 45-mm, pregelled Ag/AgCl adhesive electrodes attached

to the four limbs. The experimenter visually identified the lead

(I, II, III) or the augmented lead (aVR, aVL, aVF) configuration

that displayed the highest R spike, and only recorded this configu-

ration. Data were preamplified and 50 Hz notch-filtered with a

Coulbourn isolated five-lead amplifier (LabLinc V75-11, Coul-

bourn Instruments, Whitehall, PA), digitized at 1000 Hz.

The US consisted of a train of electric square pulses delivered

with a constant current stimulator (Digitimer DS7A, Digitimer,

Welwyn Garden City, UK) on participants’ dominant forearm

through a pin-cathode/ring-anode configuration. The experimenter

set the current such that perceived shock intensity was just below

the pain threshold. The pain threshold was estimated in a procedure

consisting of two phases. First, the experimenter increased the

intensity from an unperceivable to a painful level. The latter was

then used as the upper threshold in the second phase. Participants

rated the perceived intensities of 14 stimuli of different intensities

on a scale from 0% (no sensation) to 100% (very unpleasant). For

the experiment, we used an intensity that participants would have

rated as 85% (based on a linear interpolation of the 14 subjective

ratings).

Experimental Setup

Common settings–timing. All tasks used a delay fear condition-

ing procedure. In the first four experiments, CS presentations lasted

4 s. In the fifth experiment, CS were presented for 6.5 s. Half of the

occurrences of the CS1 were reinforced with a US (CS1US1 tri-

als), and half of them were not reinforced (CS1US- trials). In

CS1US1 trials, US onset was at 0.5 s before CS1 offset. CS-

were never paired with a US (CS- trials). The temporal order of the

different trial types was randomized. The intertrial interval was ran-

domly determined to be 7, 9, or 11 s in the first four experiments

and 11, 15, or 17s in the fifth experiment. Assignment of stimuli to

either CS1 or CS- was counterbalanced across participants.

Common settings–behavioral responses. To ensure that partici-

pants remained awake throughout the experiment, they were

instructed to indicate the difference between the physical properties

of the CS stimuli (i.e., we did not ask participants to indicate

whether the stimulus was CS1 or CS-; instead, we asked them to

indicate, for example, whether the tone was low or high pitched;

see below). They had to press one of two keys for each of the CS

types. Keys were counterbalanced across participants.

Data use. For model development, we used data from Experiment

1, which were collected specifically for the current report. For

model validation, we used data from Experiment 2 to 4, which

were collected in the context of other studies. Pupil data from these

experiments has not been reported previously. Experiment 5 was

specifically collected for this study and was used to test whether

the model can be extended to setups with longer CS presentation.

The data sets of the five experiments will be made available in an

online repository (accessible via http://pspm.sourceforge.net).

Software. All experiments were programmed in MATLAB using

the Cogent 2000 toolbox (www.vislab.ucl.ac.uk) for Experiment 1,

2, and 5 and psychtoolbox (http://psychtoolbox.org) for Experiment

3 and 4.

Experiment 1–Simple auditory CS. CS consisted of two sine

tones with constant frequency (220 Hz or 440 Hz, 50-ms onset and

offset ramp). Sound stimuli were created in MATLAB and con-

verted to sound files with the inbuilt wavwrite function. Sounds

were played with Cogent 2000 and delivered via headphones

at approximately 60 dB (HD 518, Sennheiser, Wendemark-

Wennebostel, Germany). Assignment of low- and high-pitched

sounds to CS1 and CS- was counterbalanced across participants.

During the entire task, a white fixation cross (height/width 1.678

visual angle) was presented on a gray background (72.7 cd/m2). In

total, there were 40 CS1US1, 40 CS1US-, and 80 CS- trials in

two sessions, which were separated by a brief self-paced break.

Experiment 2–Simple and complex auditory CS. SCR and

ECG data from this experiment were published previously (Casteg-

netti et al., 2016; Staib et al., 2015). Two sets of CS1/CS- were

used (simple stimuli: sine tones with a constant frequency of 400

or 800 Hz over the entire 4-s interval; complex stimuli: a train of

four frequency modulated sounds of 1 s each, which were rising

from 400 to 800 Hz or falling from 800 to 400 Hz). Stimuli were

delivered at about 68 dB with headphones (HD518, Sennheiser).

Assignment of the auditory stimuli to CS1 and CS- was counter-

balanced across participants. Trials were presented in 16 mini-

blocks of 12 trials each, which were separated by brief self-paced

breaks. Simple or complex stimuli were presented in alternating

miniblocks. For all analyses reported here, we pooled responses to

simple and complex stimuli since analyses of the SCR data did not

reveal an interaction between fear learning and complexity. In 25%

of all trials, a brief startle sound was presented. To avoid potential

biases in the pupillary responses due to startle sounds, these trials

were excluded from all analyses presented here. A white fixation

cross (height/width 0.428 visual angle) was presented on a gray

background (77.1 cd/m2) throughout the task. Participants had to

indicate the physical property of the CS (i.e., whether simple CS

were low or high pitched, or whether complex CS were rising or

falling). If participants failed to respond or responded incorrectly,

the fixation cross turned red. To avoid any possible contamination

of pupil traces with luminance changes and/or reactions to

Pupil responses and fear conditioning 3
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feedback about missing or wrong performance, these trials were

excluded from all analyses (mean percentages 6 standard devia-

tions of included trials disregarding the startle trials: CS1US1

0.93 6 0.10; CS1US- 0.97 6 0.06; CS- 0.96 6 0.06).

Experiment 3–Visual CS. Four sets of CS1/CS- were used. Sim-

ple CS consisted of Gabor patches rotated to the left or to the right;

complex CS consisted of plaids created from two Gabor patches

that were overlaid on each other with a 2308 angle, rotated to the

left or to the right. Diameter of the Gabor patches was 13.798 visual

angle, and the height/width of the fixation cross in intertrial inter-

vals was 0.838 visual angle. Assignment of the visual stimuli to

CS1 and CS- was counterbalanced across participants. The experi-

ment was split into 16 miniblocks of 12 trials each. In each mini-

block, either simple or complex CS were presented. Eight

miniblocks used complex and simple CS (reinforced). In the

remaining eight miniblocks, participants were instructed that no

US would occur (nonreinforced). These nonreinforced miniblocks

allowed us to measure the “pure” pupil responses to the sensory

features of the visual stimuli. Odd-numbered miniblocks were rein-

forced and even-numbered miniblocks were not reinforced. Partici-

pants were explicitly informed whether reinforcement would occur

within a miniblock type or not. This was signaled by different

background colors (yellow: 116.9 cd/m2; light purple: 101.1 cd/

m2), which were counterbalanced across participants. Importantly,

they were not informed which of the two CS stimuli presented in a

reinforced miniblock would be associated with the US. That is,

they had to learn the CS-US contingencies just as in the other

experiments. We report mean responses to all stimuli in the non-

reinforced blocks; otherwise, data from these blocks were not ana-

lyzed. Following the same rationale as Experiment 2, we pooled

data for simple and complex stimuli and excluded trials in which

participants did not correctly indicate the physical properties of the

CS (mean percentages 6 standard deviations of included trials:

CS1US1 0.81 6 0.15; CS1US- 0.82 6 0.19; CS- 0.85 6 0.17). In

10 participants, the sampling rate of the pupil recordings was 1000

Hz. Data from these participants were downsampled to 500 Hz.

Experiment 4–Somatosensory CS. Two sets of somatosensory

CS1/CS- were applied to the intermediate phalanges of the index

and middle fingers of the nondominant hand using one constant

current stimulator for each finger (Digitimer DS7A, Digitimer;

simple stimuli: stimulations to either index or middle finger; com-

plex stimuli: stimulations of different temporal structure to both

index and middle fingers). CS intensity was set to a perceivable but

not unpleasant level. To ensure that participants were able to dis-

criminate the somatosensory stimuli, we included a training session

without any reinforcement before the actual fear conditioning

experiment. To reduce generalization from this initial nonreinforce-

ment context, the screen background color was changed from yellow

(98.0 cd/m2) to light purple (97.3 cd/m2) or vice versa (counterbal-

anced across subjects). Participants were asked to fixate a white fixa-

tion cross (height/width 1.158 visual angle). Again, we pooled data

for simple and complex stimuli and excluded trials in which partici-

pants did not correctly indicate the physical properties of the CS

(mean percentages 6 standard deviations of included trials:

CS1US1 0.94 6 0.08; CS1US- 0.95 6 0.07; CS- 0.93 6 0.09).

Experiment 5–Long simple auditory CS. All settings were the

same as in Experiment 1 except for the timing and the trial num-

bers. CS duration was 6.5 s (and not 4 s), and thus the US1 lasted

from 6 to 6.5 s (and not from 3.5 to 4 s) after CS onset. There were

20 CS1US1, 20 CS1US-, and 40 CS- trials in two sessions,

which were separated by a brief self-paced break.

Data Preprocessing

The EyeLink 1000 System uses an online parsing algorithm to

detect saccades and fixations. All subsequent analyses were per-

formed in MATLAB (Version R2013a, Math Works, Natick MA)

on the basis of the routines reported in our previous article (Korn &

Bach, 2016). Time series were analyzed from the beginning of the

first stimulus presentation until 15 s after the last event.

Pupil measurements obtained from a video-based eye tracker

depend on the gaze angle (Hayes & Petrov, 2015). Therefore, par-

ticipants were asked to fixate a central fixation cross in all experi-

ments. No explicit free viewing or blinking periods were included

in the tasks. If fixation was not maintained, trials were not aborted

or repeated (because this would have altered the contingencies in

the fear conditioning procedures). Instead, we excluded missing

data points from the analyses as detailed in the following para-

graph. We did not filter the pupil time series because in our previ-

ous analyses (Korn & Bach, 2016) filtering did not affect our

results (or made them less interpretable).

All data points for which x- or y-gaze positions exceeded an a

priori threshold of 6 58 visual angle were treated as missing data

points. For the data reported in our previous article (Korn & Bach,

2016), including or excluding data points for which fixation was

broken resulted in quantitatively very similar results. Overall, miss-

ing data points could potentially result from exceeding the gaze

angle threshold, blinking, or brief head movements. Since we

excluded missing data points, we did not distinguish between the

different reasons for missing data points (i.e., we did not track head

movements). Specifically, all missing data points were linearly

interpolated for preprocessing but subsequently excluded before

model inversion. Within each participant, we analyzed the pupil

(left or right) for which more data points were available. If more

than 35% of the data points were missing, participants were exclud-

ed from analyses, similar to our previous work (Korn & Bach,

2016).

Time series were z-scored (by subtracting the mean and divid-

ing by the standard deviation) within each session and participant

to account for between-subjects variance in overall pupil size. Pre-

processing routines and the final model will be implemented in the

open-source MATLAB toolbox PsPM, which is freely available

under the GNU General Public License and obtainable from http://

pspm.sourceforge.net

Mean Responses and Empirical Response Functions

To obtain a mean response, we extracted data segments following

trial onset, and averaged these segments first within and then across

participants. The segments were 10 s long. For illustration and for

the development of the response functions, grand mean responses

were baseline corrected by subtracting the respective first data

point from the entire length of the segments.

We took a data-driven approach to develop a linear time-

invariant system that models the difference of the anticipatory

responses elicited by CS1 versus CS-. A linear time-invariant sys-

tem is unambiguously characterized by its response function. To

derive such a response function empirically, we used the difference

in the grand means between responses to CS1US- and CS- in the

data set of Experiment 1. In this phenomenological approach, nei-

ther the exact analytical form of the response function nor its
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parameters were intended to reflect biophysical reality. A gamma

probability density function offered an analytical description that

provided a good approximation to the empirical data:

d tð Þ5c
ðt2t0Þk21 e

2ðt2t0Þ
h

hkCðkÞ
;

where d is the z-scored steady-state pupil diameter, t is time, t0 is

the onset latency, and C is the gamma function, and t0, k, h, and c
are free parameters. Parameters were estimated using ordinary least

squares minimization and a Nelder-Mead simplex search algorithm

as implemented in the MATLAB function fminsearch.

Model Inversion

This function can then be convolved with a time series of unity

inputs, which specify the occurrences of CS, to obtain a predicted

time series of pupil responses under the given model with unity

amplitude. This predicted time series is compared to the observed

data time series of pupil size measurements by inverting a GLM.

The amplitudes of the putative inputs into the pupil are the parame-

ter estimates of the GLM. Such a GLM can be written as

Y5Xb1E;

where Y is the measured pupil data time series, X is the design

matrix (which contains the time series of the different kinds of

inputs representing the experimental design, convolved with the

components of the response functions), b is a vector of amplitude

parameters, and E is normally distributed noise (Friston, 2005;

Friston et al., 1994). Specifically, we inverted GLMs separately for

each participant to infer parameter estimates for the participant-

specific amplitudes of the input into the pupillary system. We sepa-

rately modeled CS1US- and CS- responses, such that the resulting

design matrix included three regressors, one of them specifying the

intercept. Furthermore, we implemented additional GLMs that use

the derivative of the response function as an additional basis func-

tion (resulting in a design matrix with five regressors). All GLMs

were inverted using a maximum likelihood method implemented in

the MATLAB function pinv. Participant-specific amplitudes were

then determined as parameters of the corresponding design matrix

column (one-component response function). In the case of two-

component response functions, we reconstructed the estimated

response by multiplying the basis set with the response estimates.

We then computed the maximal (signed) excursion of the recon-

structed response for each CS type to quantify the amplitude, and

this summarizes the first-level model into one parameter per condi-

tion (Bach, Friston, & Dolan, 2013). As described above, time peri-

ods with missing data were removed before model inversion.

Model Comparison and Validation

The aim of the current report is to find the procedure that best dis-

tinguishes pupil responses to CS1 and CS-, where the temporal

occurrences of CS1 and CS- are known a priori. For this purpose,

we compared our approach with two classical methods, namely,

peak scoring and taking the AUC. Our model-based approach is

based on a finite linear time invariant system that thus requires that

response functions “return to baseline” (i.e., the beginning and the

ending of the response functions need to take the same value). To

fulfill this, we based the estimation of the pupil response functions

on a time window of 10 s. Therefore, we also based peak scoring

and calculating the AUC on a time window of 10 s after CS onset.

This mitigates a potential criticism that a model-based approach is

more sensitive than peak scoring only because it is based on a larg-

er data window. Nevertheless, we also verified our main results by

performing peak scoring and calculating the AUC in windows of

the lengths of the CS duration.

We calculated the signed maximum for peak scoring and the

signed AUC in each CS1US- and CS- trial and averaged these

within these two conditions (i.e., CS1US- and CS-) within partici-

pants. For the PsPMs, we used the participant-specific amplitudes

for the two CS types as estimated from the inverted GLMs (i.e., the

maximal signed excursion of the reconstructed response for each

CS type; see previous section).

To compute the validity for each method, the participant-

specific values for the two CS conditions (i.e., means of peaks,

means of AUCs, or estimated amplitudes) were then inserted into a

regression model. In this model, known event types (CS1 or CS-)

define the dependent variable, and estimated response amplitudes

to CS1US- and CS- for each participant serve as independent vari-

able, complemented by regressors for subject-specific intercepts.

The residual sum of squares (RSS) from this regression model was

then transformed into Akaike Information Criterion (AIC), which

specifies the evidence for a model in which CS1 and CS- estimates

are drawn from distributions with different means, rather than the

same mean. This is analogous to a paired t test, and we provide t
and p values for the paired sample t test across participants. To

compute AIC, we used the following formula (Burnham & Ander-

son, 2004):

AIC5n log
RSS

n

� �
12 r11ð Þ;

where n is the number of observations (i.e., two observations,

CS1US- and CS-, per participant in our case) and r is the number

of regressors in the regression model. The values for n and r were

the same for all methods such that differences in AIC between

methods are identical to differences in negative log likelihood, or

Bayesian information criterion. This is because results from all

first-level models, including those containing more complex basis

functions, were collapsed into one amplitude parameter per condi-

tion. AIC differences can be interpreted as log Bayes factors, where

smaller AIC values indicate higher predictive validity (Bach &

Friston, 2013; Castegnetti et al., 2016; Staib et al., 2015). An abso-

lute AIC difference of more than 3 is often regarded as decisive, by

analogy to a classic p value (Penny, Stephan, Mechelli, & Friston,

2004; Raftery, 1995): a classic p< .05 means that the probability

of the data given the null model is smaller than 5%. An absolute

AIC difference larger than 3 means that the probability of the infe-

rior model given the data is smaller than 5% (since p< e23 � .05).

We also report effect sizes of the CS1/CS- difference as

Cohen’s d, which relates to the t value of a paired t test by

d5
tffiffiffi
n
p :

We validated the pupil model derived from Experiment 1 in Exper-

iment 2 to 4. For future applications, we wanted to base the most

promising model on the maximum amount of data available to us

and therefore derived an additional response function from the data

of the first four experiments combined. We checked that the results

Pupil responses and fear conditioning 5



obtained with that model were consistent with those of the model

using the response function based on Experiment 1 only. For illus-

tration, we also depict separate response functions for the three val-

idation data sets of Experiment 2 to 4, but these were not used for

analyzing the data.

Analyses of SCR and Heart Period Data

To put our pupil size model into perspective, we sought to compare

it to other psychophysiological measures. Previous reports have

established PsPM approaches for SCR and ECG data that outper-

form classic peak-scoring approaches in discriminating responses

to CS1US- versus CS- (Castegnetti et al., 2016; Staib et al., 2015).

We therefore used the model comparison procedure described

above to test whether the three measurement modalities differ in

their predictive validity. SCR and ECG data for Experiment 2 have

been reported previously (Castegnetti et al., 2016; Staib et al.,

2015). Data from the other experiments have not been reported. In

Experiment 1, we recorded SCR and ECG data; in Experiment 3

and 4, we only recorded SCR data.

We used the default analyses procedures described previously

and as implemented in PsPM 3.0. In brief, for analysis of the SCR,

we used the default dynamical causal model (DCM; Bach, Dauni-

zeau, Friston, & Dolan, 2010; Staib et al., 2015) with an anticipato-

ry sympathetic arousal window corresponding to the CS/US

interval. ECG data were converted to heart period time series,

which were analyzed using the default GLM for fear-conditioned

heart period responses (Castegnetti et al., 2016). Again, the number

of regressors r were the same for all methods such that differences

in AIC between methods are identical.

Modeling the Inputs into the Pupillary System Elicited by

Fear Conditioning

On the basis of the luminance response model, established in our

previous report (Korn & Bach, 2016), we estimated the inputs that

elicit pupil size responses related to the anticipation of aversive

stimuli (i.e., to CS1US- versus CS- responses) and to the aversive

stimuli themselves (i.e., to CS1US1 versus CS1US- responses).

For this, we assumed inputs in the form of gamma probability den-

sity functions with four free parameters (see Mean Responses and

Empirical Response Functions). We fitted the convolution of the

luminance-related response function with the assumed input to the

normalized pupil size response (using ordinary least squares mini-

mization and a Nelder-Mead simplex search algorithm).

Results

Model Development on the Basis of Pupillary Responses in

Auditory Fear Conditioning

Mean pupil size responses in Experiment 1 showed an influence of

auditory fear conditioning on pupil size (Figure 1A). Both CS1 and

CS- elicited an initial stimulus-related dilation, which reached an

initial peak around 1.1 s after CS onset. This dilation was sustained

until around 4.5 s in CS1US- trials. In contrast, pupil size decreased

in CS- trials to a lower level after the initial dilation. Thus, CS1

and CS- trials differed before US delivery. As expected, the US1

resulted in a rapid pupil dilation that peaked at around 1.1 s after

US onset. At around 6 s after CS offset, pupil size reached baseline

levels. Since the intertrial interval randomly lasted 7, 9, or 11 s, this

makes it very unlikely that pupil responses in a given trial were

influenced by pupil responses in preceding trials.

For model development, we fitted a gamma probability density

function to the difference between CS1US- and CS- trials (Figure

1A, see Table 2 for parameter values). We then used this as response

function in a GLM. This model distinguished CS1 and CS- better

(i.e., had better predictive validity) than two commonly used methods

(i.e., comparing the peaks or the AUC, between conditions; see indi-

cators Figure 2, Table 3). Including the derivative of this response

function improved predictive validity further in Experiment 1.

Model Validation in Auditory, Visual, and Somatosensory

Fear Conditioning

Up to this point, we tested our model on the same data set that was

used for model development. As this approach may be biased in

favor of the model, we aimed at validating the model in indepen-

dent data sets. To demonstrate wide generalizability, we used three

fear conditioning experiments employing the same timing as

Experiment 1 but three different sensory modalities of CS: auditory

(as in the development data set), visual, and somatosensory CS (see

Figure 1B–D for mean responses). In the second auditory experi-

ment (Experiment 2), the model-based approach was decisively

better than peak scoring but did not differ from using the AUC. We

note that this was the smallest data set because data from several

participants had to be excluded due to missing values. In the visual

experiment (Experiment 3), the model-based approach provided

better predictive validity than using the AUC to differentiate

CS1US- and CS- but did not differ from using peak scoring. In the

somatosensory experiment (Experiment 4), the model with the

response function developed on the basis of the first auditory

experiment decisively outperformed the two classic methods (see

Figure 2 and Table 3 for indicators of predictive validity). In all

three validation data sets, the model including the response func-

tion without its derivative provided better predictive validity than

the model that included both the response function itself and its

derivative. This difference between models with and without deriv-

ative was decisive in Experiment 2 but not in Experiment 3 and 4.

Taken together, our newly developed GLM-based approach

was better than or at least as good as the two commonly used

approaches across three sensory modalities of CS. This result holds

even though pupil responses to the CS differed in shape across the

four experiments.

For illustration, we derived response functions for the three vali-

dation data sets separately and additionally a response function

based on the first four experiments combined (Figure 1B–E, see

Table 2 for parameter estimates). This latter response is based on

the maximum amount of data (with the same timing) available to

us, and thus we cannot validate it using independent data. Incorpo-

rating this response function in our model resulted in values of pre-

dictive validity that allowed similar conclusions to those derived

from the a priori model development data set (see Table 4). We

suggest using—and thus validating—this response function for

analyzing future fear conditioning experiments.

Model Validation in Auditory Fear Conditioning with a

Longer CS Presentation

We validated our model in an additional independent data set, in

which the CS presentation lasted 6.5 s instead of 4 s (using the

response function from Experiment 1 and the response function from

the first four experiments combined). Our model-based approach

6 C.W. Korn et al.



Figure 1. Mean pupil size responses (left) and response functions (right) fitted to the differences between CS1US- and CS-. Thick lines represent

mean responses and thin lines represent standard SEM. CS presentation lasted from 0 s to 4 s and US delivery occurred at 3.5 s after CS onset. In the

right panels, fitted response functions are shown in black. These response functions describe the standard shape of the pupil size response to the differ-

ence between CS1US- and CS- and thus characterize the linear time-invariant systems used to model the pupil time series. A: Experiment 1: Auditory

fear conditioning with simple tones. This data set was used for model development. B–D: The presented response functions are depicted for illustra-

tion. B: Experiment 2—Auditory fear conditioning. C: Experiment 3—Visual fear conditioning. D: Experiment 4—Somatosensory fear conditioning.

E: Average across all four experiments. Experiment 2–4 were used for model validation. The response function depicted in (E) was used for the analy-

ses reported in Table 4.
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outperformed the two classic methods (see Figure 2 and Table 3 and

4 for model comparison and Figure 3 for mean responses).

Comparing Pupil Model with Skin Conductance and Heart

Period Models

To put our results into a psychophysiological context, we sought to

compare them to other peripheral measurement modalities often

used to assess fear conditioning. We have previously developed

PsPM approaches for analyzing fear conditioned SCR and heart

period responses (Castegnetti et al., 2016; Staib et al., 2015).

Therefore, we aimed at comparing these three measurement modal-

ities (see Table 5 for indicators of predictive validity).

The pupil model provided decisively better predictive validity

than the SCR and heart period models in Experiment 1. In Experi-

ment 2, the pupil did not differ from the SCR model but was deci-

sively worse compared with the heart period model. In Experiment

3 and 4, we recorded SCR but not heart period data. In Experiment

3, the pupil model outperformed the SCR model, while in Experi-

ment 4 the opposite was the case. To summarize, the pupil response

model decisively outperformed the SCR model in two out of four

experiments, performed better than the heart period model in one

experiment, and decisively worse in another.

To explore whether a common underlying neural process drives

the three different autonomic responses, we correlated the differ-

ences between estimated response amplitudes for CS1US- and

CS- trials across participants. In Experiment 1, pupil measurements

were correlated to SCR and to heart period measurements—pupil

and SCR: Pearson’s r 5 .741; p 5 .0038; pupil and heart period:

r 5 .717; p 5 .0058; SCR and heart period: r 5 .656; p 5 .0149;

across all four experiments, we tested eight correlations and there-

fore the appropriate Bonferroni-corrected significance level was

.0063. In Experiment 2, none of the correlations survived Bonfer-

roni correction—pupil and SCR: r 5 .157; p 5 .6639; pupil and

heart period: r 5 .731; p 5 .0164; SCR and heart period: r 5 .481;

p 5 .1598. In Experiment 3 and 4, only pupil and SCR were mea-

sured. After Bonferroni-correction, the two measures did not corre-

late significantly in Experiment 3, r 5 .477; p 5 .0528, and showed

a trend in Experiment 4, r 5 .603; p 5 .0080. Overall, we tentative-

ly infer from these correlation analyses that pupil, SCR, and heart

period models capture some degree of common variance, which

might suggest a common underlying neural process. But further

experiments directly aimed at testing this are needed.

In sum, comparing the newly developed pupil response model

to state-of-the-art analyses of SCR and heart period responses

showed that the best measurement modality depended on the data

set and thus possibly on the sensory modality of the CS. Hence, our

current findings do not establish an overall superiority of any of the

three measurement modalities. Nevertheless, our results convey

that analyzing fear-conditioned pupil size responses is a robust and

useful alternative to SCR and heart period responses.

Additional Pupil Model Including US Response

Up to this point, we did not explicitly estimate responses in

CS1US1 trials in the GLMs, since we wanted to exclude the pos-

sibility that US1 responses may contaminate the estimation of the

CS1 versus CS- difference. However, including an explicit model

of the response to the US1 could mitigate this problem and may

allow for increasing the amount of trials by using both CS1US-

and CS1US1. This might offer a better discrimination of

responses to CS1 versus CS-. We therefore derived a response

function for the response to the US1 on the basis of the mean

Figure 2. Graphical illustration of the differences in predictive validity (i.e., AIC) between the different methods (see Table 3 for numerical values of

the same data and for the corresponding t, p, and d values). For each experiment, the difference in AIC was calculated with respect to the best non-

PsPM method (peak scoring for Experiment 1 and 3 and AUC for the other experiments). The horizontal line represents the decision thresholds of 6 3.

In Experiment 1, 4, and 5, PsPMs outperformed peak scoring and calculating the AUC. In Experiment 2 and 3, PsPMs did not differ decisively from

peak scoring or calculating the AUC.

Table 2. Parameters of Response Functions for the Difference
Between CS1US- and CS-

Experiment k h [s21] c t0 [s]

Experiment 1: Auditory CS 7.18 0.52 1.7 0.002
Experiment 2: Auditory CS 1.96 3.40 3.2 1.351
Experiment 3: Visual CS 1.85 2.71 3.4 1.288
Experiment 4: Somatosensory CS 22.52 0.21 0.5 0.001
All four experiments combined 5.94 0.75 1.7 0.002

Note. The parameters are of the best-fitting gamma probability density
function. Since we use a phenomenological approach, these parameters
are not supposed to reflect biophysical reality. For example, the differ-
ence in onset latencies t0 between the response function of Experiment
1 and the response function of Experiment 2 can in part be explained
by the fact that the best fitting gamma probability density function in
Experiment 1 has a very shallow initial slope.

8 C.W. Korn et al.
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difference of CS1US1 and CS1US- trials from Experiment 1.

Parameters for the function of the response to the US1 were

k 5 1.90; h 5 1.57 s21; c 5 2.9; t0 5 3.76 s; for comparability, the

onset defined with respect to the beginning of the CS (i.e., 3.5 s

before the US onset). The two response functions for US1 and

CS1 shared only a small amount of variance in the total 10-s win-

dow considered (R2 5 .0218; see also the two predicted responses

in Figure 4A,B), such that their input amplitudes could indepen-

dently be estimated in a GLM.

We then implemented these two response functions in a model

that included an intercept and five additional regressors (one

regressor for all CS1 responses, one for all CS- responses, one for

US1 responses, one for US- responses in CS1US- trials, one for

US- responses in CS- trials). In Experiment 1, 3, and 4, this model

allowed a decisively better predictive validity for discriminating

CS1 and CS- responses than the model that only takes CS1US-

trials into account, and was equal in Experiment 2 (compare Table

3 with Table 6).

In addition, this model has the potential to address whether the

omission of the US1 in CS1US- trials elicits a response that

resembles the response to the US1 itself (Bach & Friston, 2012;

Spoormaker et al., 2012). We did not find strong evidence for such

an overall omission response: Parameter estimate for US- in

CS1US- trials did not differ from parameter estimates for US- in

CS- trials in Experiment 1, 3, and 4. The only significant difference

emerged in Experiment 2, t(11) 5 4.35; p 5 .0046, after Bonferroni

correction for multiple testing. In contrast, the parameter estimates

for responses to the US1 were significantly different from zero

and from the parameter estimates for US- trials, all ps< .01 after

Bonferroni correction.

To make sure that the CS1 estimation in the CS1US1 trials

was not biased by US1 occurrence, we tested an additional model

with two separate regressors for responses to the CS1 in

CS1US1 and CS1US- trials. The parameter estimates for the

CS1US1 and CS1US- regressors did not differ significantly from

each other in any of the experiments (after Bonferroni correction).

Thus, a model that explicitly accounts for US responses may

have the potential to further improve the CS1 and CS- discrimina-

tion based on pupillary responses, but some caution is warranted to

ensure that the CS estimation in CS1US1 trials is not biased by

the US1 response.

Estimating the Inputs into the Pupillary System

Intriguingly, defining response functions for pupil responses during

fear conditioning can serve two purposes: First, they can be used

for specifying PsPM approaches to distinguish CS1 and CS- trials

based on pupil time series, as demonstrated above. Second, they

can provide information about the time course of the upstream sig-

nals impinging on the pupillary system. We have previously char-

acterized similar inputs in three different tasks (an auditory oddball

task, an emotional word task, and a perceptual discrimination task;

Korn & Bach, 2016). Here, we provide an analogous characteriza-

tion with respect to fear conditioning.

Under the assumption that pupis responses (PSR) elicited by

fear conditioning paradigms share a common final pathway with

PSR elicited by luminance changes, we can estimate the inputs into

this final pathway. We used our previous characterization of

luminance-related PSR (Korn & Bach, 2016) and fitted inputs

(with the form of a gamma probability distribution) so that the pre-

dicted output of the pupillary system approximated the observed

pupil time series for the response to CS1US- (Figure 4A) and

Table 4. Model Comparison with a Response Function Based on the First Four Experiments

AIC values (smaller is better) t-, p- and d-values

Experiment

GLM with
response function

from first four
experiments

GLM with response
function from first
four experiments
plus derivative

GLM with response
function from first
four experiments

GLM with response function
from first four experiments

plus derivative

Experiment 1: Auditory CS (n 5 19) -41.6 -51.4 t(18) 5 4.54; p 5 .0003;
d 5 1.04

t(18) 5 5.64; p< 10-4;
d 5 1.29

Experiment 2: Auditory CS (n 5 12) -23.8 -14.1 t(11) 5 3.30; p 5 .0070;
d 5 0.95

t(11) 5 1.90; p 5 .0831;
d 5 0.55

Experiment 3: Visual CS (n 5 17) -25.1 -25.5 t(16) 5 2.85; p 5 .0116;
d 5 0.69

t(16) 5 2.90; p 5 .0105;
d 5 0.70

Experiment 4: Somatosensory CS (n 5 18) -27.8 -27.0 t(17) 5 3.07; p 5 .0069;
d 5 0.73

t(17) 5 3.00; p 5 .0085;
d 5 0.70

Experiment 5: Long auditory CS (n 5 15) -28.2 -26.0 t(14) 5 3.47; p 5 .0037;
d 5 0.90

t(14) 5 3.19; p 5 .0066;
d 5 0.82

Note. In contrast to Table 3, here the first four experiments were combined to derive the response function used for estimating the values presented in
this table (see Figure 1E). Predictive validity with respect to differentiating CS1US- and CS- responses is given as Akaike Information Criterion
(AIC). For completeness, t, p, and Cohen’s d values are given.

Figure 3. Mean pupil size responses (left) for auditory fear conditioning

with long CS presentation (Experiment 5). CS presentation lasted from

0 s to 6.5 s and US delivery occurred at 6 s after CS onset. Thick lines

represent mean responses and thin lines represent SEM.
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US1 (Figure 4B). As expected, the fitted inputs for these two

responses differed markedly in shape: The input into the response

to the US1 was much steeper and peaked rather immediately at

US1 onset (i.e., at 3.5 s). In contrast, the input into the response to

the CS1US-response was shallower and peaked around 2 s after

CS1 onset.

Discussion

In this article, we present a PsPM that allows assessing fear learn-

ing from pupil time series. This model can be readily used in exper-

imental practice. Importantly, we showed that stimuli of three

different sensory modalities led to similar fear-conditioned pupil

size responses. Our PsPM allowed decisively better or equal dis-

crimination of CS1 and CS- than the two methods commonly used

in the literature (i.e., the model showed higher or equal predictive

validity). This was found not only in the data set on which the

response function was developed but also in four independent data

sets with auditory, visual, and somatosensory CS. The relative per-

formance of the two extant methods differed between the validation

data sets without an obvious pattern, something that urges further

investigation. However, when regarded across all experiments, our

PsPM approach provided the best predictive validity. Modeling the

derivative of the response function in addition to the canonical

response function itself reduced predictive validity in the validation

data sets such that a model containing only the canonical response

function emerged as best option.

Our aim was not to provide a model physiological realism, and

the formalization of the response function in terms of a gamma

probability density function was based on mathematical parsimony.

Instead, our model fulfilled the aim of reliably distinguishing

between CS1 and CS- trials. This was the case, although mean

pupillary responses differed between sensory modalities. Incorpo-

rating modality-specific differences may enhance predictive validi-

ty within the same modality at a loss of generality. We finally

formulate a response function that is based on all four experiments

with the same timing and thus on the maximum amount of data

available to us. This response function must be validated in the

future using independent data sets. Our response functions were

based on the differences between the mean responses to CS1US-

and CS- responses. We have previously shown for heart period

responses and respiratory responses that there is no theoretical rea-

son and indeed no empirical evidence that this approach overesti-

mates CS1/CS- differences (Castegnetti et al., 2016; Castegnetti

et al., in press).

Our model provides a powerful approach to assess the question

whether fear conditioning can be inferred from pupil size responses

or not in a given data set. The model is thus not aimed at character-

izing the forward relation from psychological processes to pupil

size but instead at making the reverse statement about the most

likely psychological process given the data. Put differently, a

decoding classification (Ghaderyan & Abbas, 2016; Kriegeskorte,

2011; Naselaris, Kay, Nishimoto, & Gallant, 2011; Poldrack, 2011)

was not the goal of the study since the experimenter sets a priori

when CS1 and CS- occur within the experiment. Instead, the mod-

el is optimized for features of the pupil response traces that are

indicative of the learning process in fear conditioning. This makes

our model useful for researchers who want to probe for experimen-

tal manipulations or for participant characteristics that could poten-

tially alter the underlying learning process (e.g., fear extinction,

social context, or phobic patients; Kroes, Schiller, LeDoux, &

Phelps, 2016). Indeed, by providing equal or higher predictive

validity than peak scoring or calculating the AUC, our model

increases statistical power, which is beneficial for analyzing such

experimental manipulations.

Four of the experiments reported here employed a delay fear

conditioning paradigm with the same CS/US interval of 3.5 s and

the same CS/US contingencies (i.e., the CS1 predicted the US in

50% of the cases). In an additional experiment with longer CS pre-

sentation, the model outperformed classic methods and therefore

may very well generalize to different timings. Nevertheless, it is an

open question how well the model generalizes to delay condition-

ing paradigms with different contingencies, to trace conditioning

paradigms, and/or to reward conditioning paradigms. We expect

that the same model will be useful in experiments that vary, for

example, CS/US contingencies or US strength. We also expect our

model to be applicable for different timings. The shape of the

inferred response function depends in part on the fact that the pupil

showed a sustained dilation for CS1 trials that was reduced or

absent in CS- trials. A longer interval between CS and US onsets

seems to extend this prolonged dilation (Reinhard et al., 2006).

Therefore, the same response function may still confer good

Table 5. Comparison of Measurement Modalities

AIC values (smaller is better) t and p values

Tasks

Pupil (GLM
with response
function from
Experiment 1) SCR Heart period

Pupil (GLM
with response
function from
Experiment 1) SCR Heart period

Experiment 1: Auditory CS (n 5 13) 224.6 215.7 220.3 t(12) 5 3.27;
p 5 .0067

t(12) 5 2.03;
p 5 .0648

t(12) 5 2.69;
p 5 .0196

Experiment 2: Auditory CS (n 5 10) 215.2 216.9 218.7 t(9) 5 2.33;
p 5 .0447

t(9) 5 2.59;
p 5 .0290

t(9) 5 2.87;
p 5 .0184

Experiment 3: Visual CS (n 5 17) 225.9 215.8 NA t(16) 5 2.96;
p 5 .0093

t(16) 5 1.54;
p 5 .1431

NA

Experiment 4 Somatosensory CS (n 5 18) 228.5 233.7 NA t(17) 5 3.16;
p 5 .0058

t(17) 5 3.76;
p 5 .0016

NA

Note. Results are based on the maximum available number of participants for the respective measurement modalities. Predictive validity with respect
to differentiating CS1US- and CS- responses is given as Akaike Information Criterion (AIC). For completeness, t and p values with respect to differ-
entiating CS1US- and CS- responses are listed for all three measurement modalities. The response function for the pupil model was developed from
data of Experiment 1 (see Figure 1A).
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predictive validity, although even better results might be obtained

from a specifically developed response function that captures such

a prolonged dilation.

Interestingly, a study using reward conditioning in monkeys

showed that lesions of the anterior cingulate cortex reduced the sus-

tained dilation typically observed in CS1 trials (Rudebeck et al.,

2014) while initial responses to the CS were preserved. This sug-

gests that different neural mechanisms mediate temporally separa-

ble components of conditioned pupil responses. Our model can be

easily extended to allow for dissociating such components. We pro-

vided a first step toward this goal by proposing an additional model

that explicitly incorporated a separate response function for the

pupil responses to the US. This model possessed the added advan-

tage that both CS1US- and CS1US1 trials could be used for dif-

ferentiating CS1 and CS- trials.

We tested whether the pupil allowed a better characterization of

fear conditioning than two other physiological measurement

modalities commonly used for this purpose: SCR and heart period

responses (Castegnetti et al., 2016; Staib et al., 2015). The pupil

response model outperformed the SCR model in two out of four

data sets and the heart period model in one out of two data sets.

Thus, these results were not entirely conclusive. It is an open

empirical question whether the best measurement methods—and

thus PsPM analysis approaches—depend on the sensory modality

of the CS or whether they depend on differences between partici-

pant samples. At the very least, our findings show that the pupil

provides a reliable measure of fear conditioning that can improve

or complement other measurement modalities. We also found ini-

tial and tentative evidence that the indicators for fear conditioning

obtained from pupil size, SCR, and heart period responses correlat-

ed with each other to some degree, which suggests that these cap-

ture a shared underlying neural process. Such correlations are

interesting from the vantage point of the underlying neuroanatomy.

SCR are solely determined by the sympathetic branch of the auton-

omous nervous system and heart period responses—at least, the

early responses—are influenced by the parasympathetic branch

(Paulus et al., 2016). In contrast, pupil size is antagonistically relat-

ed to both sympathetic and parasympathetic branches for constric-

tion and dilation, respectively (McDougal & Gamlin, 2008). Thus,

pupil responses can be expected to correlate with both SCR and

heart period responses, which is what we found—at least in Experi-

ment 1. A promising avenue for future research would be to assess

possibly differential correlations between these measurement

modalities across different fear conditioning paradigms.

We have previously proposed a PsPM to characterize how the

pupil reacts to luminance changes (Korn & Bach, 2016). We

Figure 4. Fitted input into the pupillary system elicited by (A) the

CS1US- and (B) the US1. The observed data is taken from Experiment

1 (see Figure 1A). The inset shows in purple the luminance-related

response function developed in our previous study (Korn & Bach,

2016). Convolving the fitted input with the luminance-related pupillary

response function results in the predicted output of the system. A:

Observed data are the difference between the means for CS1US- and

CS- trials. B: Observed data are the difference between the means for

CS1US1 and CS1US- trials.

Table 6. Model Accounting for Responses to the US

Experiment
AIC values

(smaller is better)
t and

p values

Experiment 1:
Auditory CS (n 5 19)

254.2 t(18) 5 5.97;
p< 1024

Experiment 2:
Auditory CS (n 5 12)

229.9 t(11) 5 4.15;
p 5 .0016

Experiment 3:
Visual CS (n 5 17)

229.0 t(16) 5 3.33;
p 5 .0043

Experiment 4:
Somatosensory CS (n 5 18)

233.3 t(17) 5 3.72;
p 5 .0017

Note. Predictive validity with respect to differentiating CS1 and CS-
responses in model that explicitly accounts for (potential) responses to
the US in CS1US1 and CS1US- trials. Akaike Information Criterion
(AIC) as well as t and p values are listed. A comparison with the values
given in Table 3 shows that the model that includes response functions
for responses to the US performs better for all experiments.
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harnessed this model to infer the likely time course of the inputs of

the central nervous system into the pupillary system that elicit the

fear-conditioned pupil responses, under the assumption of a com-

mon final pathway in the peripheral pupillary system. We obtained

the plausible result that the inputs eliciting US1 responses are

more peaked and rapid than those eliciting the difference between

CS1 and CS- responses. It will be interesting to extend these anal-

yses to setups with different timings and possibly different contin-

gencies between CS and US. This may offer a way to reliably infer

whether the pupil responses, which allow the differentiation of

CS1 and CS-, are locked in time to the occurrence of the CS or

whether they in part depend on the timing of the US.

One key advantage of fear conditioning paradigms rests in their

applicability across different species. Nevertheless, popular read-

outs such as SCR or freezing are applicable mainly in humans and

rodents, respectively. Pupillary responses may offer a common

measurement modality across species. This is especially pertinent

since recent investigations in rodents (McGinley, David, & McCor-

mick, 2015; Reimer et al., 2014), monkeys (Ebitz & Platt, 2015;

Joshi, Li, Kalwani, & Gold, 2016; Rudebeck et al., 2014), and

humans (Eldar, Cohen, & Niv, 2013; Yellin, Berkovich-Ohana, &

Malach, 2015) have elucidated the relationship between pupil size

and neural signals from cortical and subcortical structures. The

basic logic of our GLM-based approach can be readily extended to

nonhuman pupil responses. An intriguing possibility is that the

response function derived here will generalize to other mammals.

In sum, we provide an explicit psychophysiological model for

pupillary responses that allows a reliable characterization of human

fear conditioning, and can thus complement or supersede existing

measures.
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