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Abstract

Respiratory physiology is influenced by cognitive processes. It has been suggested that some cognitive states may be

inferred from respiration amplitude responses (RAR) after external events. Here, we investigate whether RAR allow

assessment of fear memory in cued fear conditioning, an experimental model of aversive learning. To this end, we

built on a previously developed psychophysiological model (PsPM) of RAR, which regards interpolated RAR time

series as the output of a linear time invariant system. We first establish that average RAR after CS1 and CS2 are

different. We then develop the response function of fear-conditioned RAR, to be used in our PsPM. This PsPM is

inverted to yield estimates of cognitive input into the respiratory system. We analyze five validation experiments

involving fear acquisition and retention, delay and trace conditioning, short and medium CS-US intervals, and data

acquired with bellows and MRI-compatible pressure chest belts. In all experiments, CS1 and CS2 are distinguished

by their estimated cognitive inputs, and the sensitivity of this distinction is higher for model-based estimates than for

peak scoring of RAR. Comparing these data with skin conductance responses (SCR) and heart period responses

(HPR), we find that, on average, RAR performs similar to SCR in distinguishing CS1 and CS2, but is less sensitive

than HPR. Overall, our work provides a novel and robust tool to investigate fear memory in humans that may allow

wide and straightforward application to diverse experimental contexts.

Descriptors: Psychophysiological model, Fear conditioning, Respiration, Heart period, General linear model

Cued fear conditioning is an experimental paradigm commonly

employed in the study of animal and human aversive memory. It

relies on successfully learning the association between a neutral

precursor (conditioned stimulus, CS) and an aversive sensory stim-

ulation (unconditioned stimulus, US). While CS1 in rodents often

elicit overt reactions (e.g., freezing), this is not the case in humans.

Instead, the assessment of fear learning relies on measuring the

activity of the autonomic nervous system, for example, via skin

conductance responses (SCR, Boucsein, 2012), cardiac responses

(Bohlin & Kjellberg, 1978; Castegnetti et al., 2016; Headrick &

Graham, 1969; Obrist, Webb, & Sutterer, 1969), pupil size

responses (Kluge et al., 2011; Korn, Staib, Tzovara, Castegnetti, &

Bach, 2016), or on assessing a modulation of the startle reflex

(Brown, Kalish, & Farber, 1951; Khemka, Tzovara, Gerster,

Quednow, & Bach, 2016).

Whether respiratory physiology could also be informative about

fear memory is less well known. Instructed threat results in altered

respiration period and amplitude on a time scale of minutes (Svebak,

1982; Willer, 1975). Actual aversive events influence respiratory

period, amplitude, and flow rate, on a time scale of seconds (Bach,

Gerster, Tzovara, & Castegnetti, 2016). Moreover, one study sug-

gested changes in respiratory period and, relatedly, end-tidal carbon

dioxide pressure (PetCO2), as a result of aversive conditioning (Van

Diest, Bradley, Guerra, Van den Bergh, & Lang, 2009). However,

we have recently shown that respiration amplitude responses (RAR)

may be better suited to distinguish cognitive processes than respira-

tion period (Bach et al., 2016). This motivates our current study in

which we consider a possibility that conditioned changes in RAR

may allow assessing fear memory. Respiration amplitude relates to

tidal volume but, importantly, our aim is not to precisely measure

tidal volume, for which a double-belt system would be required to

simultaneously capture both thoracic and abdominal compartments

(Binks, Banzett, & Duvivier, 2007). However, if the ratio between

thoracic and abdominal contribution is relatively constant within any

individual, it may be possible to approximate tidal volume up to a

linear constant from a single chest belt system. Here, we rely on the

type of single belt system standardly used in MRI scanners for cor-

recting breathing artifacts (Glover, Li, & Ress, 2000; Hutton et al.,
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2011). Our method could thus be easily applicable to a large number

of existing experimental setups.

We capitalize on a previously developed psychophysiological

model (PsPM) of event-related RAR (Bach et al., 2016), which is

formalized as a general linear model (GLM). We first analyze RAR

to CS1 and CS2 to establish an impulse response function for

fear-conditioned RAR. This PsPM is then inverted to yield an

amplitude estimate of the CS-associated input into the respiratory

system, which is assumed to directly relate to fear memory. We

then compare this model to peak-scoring methods. A priori, the

advantage of a model-based approach is that it circumvents the

choice of a pre-event baseline time window. In the case of short

intertrial intervals (ITI), this choice could potentially bias peak-

scoring estimates. The GLM implementation, instead, estimates the

baseline from the entire experimental time course, thus providing a

principled approach that allows meaningful comparison across stud-

ies. Second, the PsPM embodies assumptions about what response

components are relevant in distinguishing between conditions and

what can be treated as noise. Indeed, this approach has been shown

to afford more precise distinction of CS1/CS2 trials (i.e., predic-

tive validity) in the analysis of SCR (Bach, Flandin, Friston, &

Dolan, 2010; Staib, Castegnetti, & Bach, 2015), heart period

responses (HPR, Castegnetti et al., 2016), and pupil size responses

(Korn et al., 2016). To ensure that our results are not driven by fea-

tures of the particular data used for model construction, we validat-

ed the method on five further data sets. These validation data sets

involve different experimental designs and two different types of

chest belts to trace the respiratory activity, namely a bellows and a

pressure cushion system, to provide for wide applicability.

Method

Participants

Five independent samples of healthy, nonmedicated individuals were

recruited from the general population; for one of these samples, we

analyze both an acquisition and an extinction data set. All partici-

pants confirmed that they had no history of neurological, psychiatric,

or systemic disorders, and all had normal or corrected-to-normal

vision. We recorded data from 35 (Experiment 1, 23 females, aged

18–31 years, 23.4 6 3.4), 23 (Experiment 2, 10 females, aged 20–32

years, 23.8 6 3.0), 23 (Experiment 3, 13 females, aged 19–33 years,

26.2 6 4.8), 21 (Experiment 4, 8 females, aged 19–34 years, 25.7 6

4.6), and 20 (Experiment 5, 12 females, aged 18–30 years, 22.8 6

3.3) participants, for the five experiments. Because of electrode

detachment or malfunctioning of the data recording equipment, we

excluded two subjects from Experiment 1 and 5, four from Experi-

ment 2, three from Experiment 3, and five from Experiment 4. Three

further subjects were excluded from Experiment 1 because they stat-

ed after the experiment to not have perceived the US. One participant

did not complete Experiment 1. Therefore, for the five experiments,

29, 19, 20, 16, and 18 subjects, respectively, were included in the

data analysis. All participants gave informed written consent before

the experiment. The study was conducted in accordance with the

Declaration of Helsinki and approved by the governmental research

ethics committee (Kantonale Ethikkommission Z€urich). HPR and

SCR data from Experiment 1, 2, and 4 were included in a previous

methodological report (Castegnetti et al., 2016).

Experimental Procedure

Common settings. Unconditioned stimuli (US) were trains of

electric square pulses delivered on participants’ dominant forearm

with a pin-cathode/ring-anode configuration. The stimulus intensity

was set such that the perceived intensity was at around 90% of the

pain threshold. We estimated the pain threshold in two phases.

First, the intensity was gradually increased from being unperceiv-

able to a painful level. This determined an upper threshold for the

second phase, in which the subjects were asked to rate the per-

ceived intensity of 14 stimuli with different intensities. These rat-

ings were then linearly interpolated to estimate the intensity

corresponding to 90% of the pain threshold. In the MRI Experi-

ment 4, visual stimuli were presented via MR-compatible goggles

with a resolution of 800 3 600 pixels (Resonance Technology Inc.,

Northridge, CA). For all the other experiments, we used a 2000

diagonal LCD screen with an aspect ratio of 16:9 and a resolution

of 1,280 3 1,024 pixels at 50 Hz (P2014HT, Dell, Round Rock,

TX). With the exception of Experiment 5 (see dedicated paragraph

for details), the duration of the ITI was randomly determined to be

7, 9, or 11 s.

Experiment 1. Experiment 1 (data set code: FR) consisted of an

acquisition and an extinction/retention session. For the acquisition,

we used a delay fear conditioning paradigm with visual CS. The

US was a series of 250 1-ms long, square electric pulses delivered

at a frequency of 500 Hz, resulting in a total US duration of 0.5 s.

Current intensities were set to values between 1.0 and 6.7 mA

(mean 6 SD, 2.6 6 1.28 mA). Participants were exposed to 160

CS: 80 CS1, half of which coterminated with the US, and 80 CS2

that predicted the absence of the US. The two CS were two differ-

ent colors (screen plain blue or red for CS1/CS2) on a computer

screen. The US was delivered 3.5 s after the CS onset; CS and US

coterminated 0.5 s later. Participants were instructed to report the

color on the screen by pressing one of two designated buttons on

the keyboard. Both the CS1/CS2 colors and the button associa-

tions were counterbalanced across subjects. During the extinction/

retention session, participants were told to expect a shorter (six

CS1 and six CS2 only), but otherwise identical, experimental par-

adigm as the one employed in the acquisition phase. The electrodes

were again placed on participants’ forearm, but no shock was deliv-

ered. In this session, 16 participants were additionally presented a

startling auditory stimulation 3.8 s after the CS onset, which has

been shown to elicit respiratory responses by itself (Bach et al.,

2016) and thus interfere with the CS responses. Thus, only data

from the remaining 13 participants were included in the analysis of

the extinction/retention session.

Experiment 2. This was a trace fear conditioning task (data set

code: TC) with the same CS and US as in Experiment 1. Currents

were between 1.0 and 7.0 mA (mean 6 SD, 3.0 6 1.3 mA). CS

were presented for 3 s, after which a fixation cross appeared, fol-

lowed 1 s later by the US in 50% of the CS1 trials.

Experiment 3. The design of Experiment 3 (data set code:

DoxMemP) was similar to Experiment 1. The acquisition session

was identical to Experiment 1, while the extinction session con-

tained startle sounds for all trials and subjects, and was thus not

analyzed in the present report. Individual electric current intensities

were between 1.25 and 8.60 mA (mean 6 SD, 2.82 6 1.65 mA).

Experiment 4. Experiment 4 (data set code: VC1F) was a delay

fear conditioning task with visual CS, performed during MRI scan-

ning. It consisted of 16 blocks of 12 trials each. Eight blocks

entailed only explicitly instructed nonreinforced trials, and are not

analyzed here. The remaining eight blocks contained overall
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96 trials, evenly divided into CS2 and CS1. Half of the CS1

coterminated with the US. US consisted of five square electric

pulses with 0.2-ms duration and delivered at a frequency of 10 Hz,

resulting in a total stimulus duration of 0.5 s. Current intensities

were between 6 and 45 mA (mean 6 SD, 17.2 6 12.2 mA). Two

pairs of CS were presented, either simple (during four blocks) or

complex (during the other four blocks). Simple CS were Gabor

patches with different orientation (2908 or 3408, counterbalanced

across participants), while complex stimuli consisted of simple

stimuli overlaid with an additional Gabor patch oriented at 2308.

Both simple and complex CS lasted 4 s. A 2 3 2 analysis of vari-

ance (ANOVA) between complexity and CS type revealed no main

effect of complexity and no interaction between complexity and

CS type. Therefore, as indexed by SCR, simple and complex CS

appeared to elicit similar fear learning; they were then collapsed

for analysis of RAR.

Experiment 5. Experiment 5 (data set code: LI) was a delay fear

conditioning paradigm with auditory CS and longer stimulus onset

asynchrony (SOA). Eighty CS1 and 80 CS2 were presented to

each participant, and consisted of sine tones with constant frequen-

cy (220 and 440 Hz), delivered via a headset for 6.5 s, with intensi-

ty of about 80 dB. Electric shocks with a duration of 0.5 s served as

US, and occurred 6 s after 50% of the CS1 onsets, with electric

currents between 1.0 and 7.0 mA (mean 6 SD, 3.2 6 1.3 mA). The

ITI was randomly determined to be 11, 15, or 17 s. Participants

were instructed to report the type of the CS by pressing one of two

designated keys on the keyboard. Both the tone-key and the tone-

CS associations were counterbalanced across subjects.

Psychophysiological recording. In Experiment 1, 2, 3, and 5,

respiratory time series were collected with an aneroid chest bellows

(V94-19, Coulbourn Instruments, Whitehall, PA) and differential

aneroid pressure transducer (V94-15, Coulbourn). The signal was

amplified with a resistive bridge strain gauge transducer coupler

(V72-25B Coulbourn). We simultaneously recorded the electrocar-

diogram with four 45-mm, pregelled Ag/AgCl adhesive electrodes

attached to the four limbs. The experimenter visually identified the

lead (I, II, III) or the augmented lead (aVR, aVL, aVF) configura-

tion that displayed the highest R spike, and only recorded this con-

figuration. Data were preamplified and 50 Hz notch-filtered with a

Coulbourn isolated five-lead amplifier (LabLinc V75-11,

Coulbourn Instruments). Skin conductance was recorded from the

thenar/hypothenar of the nondominant hand using two 8-mm disk

Ag/AgCl cup electrodes (EL258, Biopac Systems Inc., Goleta, CA)

and 0.5% NaCl gel (GEL101, Biopac Systems Inc.; Hygge & Hug-

dahl, 1985) and fed into an SCR coupler/amplifier (V71-23, Coul-

bourn Instruments). All the data time series were digitized at 1000

Hz using a Dataq card (DI-149, Dataq Inc., Akron, OH) and

recorded with Windaq (Dataq Inc.) software. SCR data from

Experiment 5 were not analyzed as it appears that the best way of

modeling SCR may depend on the SOA, and a suboptimal model

could give the respiration measure an unfair advantage.

In Experiment 4, respiratory time series were recorded, at a

sampling rate of 496 Hz, with an MRI-compatible pressure cushion

system. Cardiac activity was measured at 500 Hz via a peripheral

pulse oximeter (PPO, SpO2 adult grip, Invivo, Gainesville, FL)

placed around the nondominant index finger and connected to a

wireless peripheral pulse unit via fiber optic. Both the respiratory

and the cardiac activity signals were transmitted to a wireless trig-

gering unit and then to the MRI console for recording. Skin con-

ductance was recorded with a data acquisition system (MP150,

Biopac Systems Inc.) coupled to a signal amplifier (GSR-100C,

Biopac Systems Inc.) at 1000 Hz sampling frequency.

Data Preprocessing

Data processing and analysis were performed with MATLAB

(Version R2015a, MathWorks Inc., Natick, MA), using routines in

PsPM 3.0 and custom-written code. Raw respiratory traces were

converted to interpolated respiration amplitude time series with a

previously published respiratory cycle detection algorithm (Bach

et al., 2016). The algorithm detected the sharp pressure reduction

recorded with chest bellows systems during inspiration. In particu-

lar, respiratory time series were mean centered, band-pass filtered

(0.01–0.6 Hz), and median filtered over 1 s. The resulting negative

zero crossings were set as the start of the inspirations. The method

was validated in the context of our previous report by comparison

with the visual detection of respiratory cycles by a trained expert

(SG) on a data set not used for developing the algorithm. As a result,

the automatic procedure had a sensitivity of 99.3% and true predic-

tive validity of 99.5%. For data obtained from the cushion/belt sys-

tem, the onsets of the inspirations were defined as the minima of the

respiratory trace. Hence, to analyze data from Experiment 4, the

algorithm was adapted to extract zero crossings of the derivative of

the time series (i.e., the extrema), from which the positive ones (i.e.,

the minima) were set as the start of the inspiration. A modified off-

line implementation (Paulus, Castegnetti, & Bach, 2016) of the Pan

and Tompkins (1985) real-time QRS detection algorithm was used

to identify QRS complexes, and translated into a heart period time

series. To extract the heart beats from the PPO time series in Experi-

ment 4, we used a custom template-matching algorithm as reported

previously (Castegnetti et al., 2016). Respiration amplitude time

series were band-pass filtered with a bidirectional Butterworth fil-

ter, with low-pass and high-pass cutoffs of 2 Hz and 0.01 Hz,

respectively. These were chosen to remove high-frequency noise

and the effects of possible slow movements of the recording device

during the experimental session. Single-trial responses were ana-

lyzed in a 11-s time window starting from the CS onset, correspond-

ing to the minimum time interval between subsequent CS onsets.

For model development and model-free scoring techniques, single-

trial responses were baseline-corrected by subtracting the respirato-

ry amplitude averaged during the 4 s before the CS onset, in line

with previous approaches to the cardiac response (Pollatos, Herbert,

Matthias, & Schandry, 2007). This baseline window reconciles the

need to average over approximately an entire respiratory cycle in

the respiration amplitude, and to minimize the effect of the previous

trial. Heart period time series were band-pass filtered with a bidirec-

tional Butterworth filter (0.015–0.5 Hz) as previously established

(Castegnetti et al., 2016). SCR data were filtered with a bidirection-

al Butterworth band-pass filter (0.0159–5 Hz), as recommended for

analysis of fear-conditioned SCR (Staib et al., 2015). For statistical

analysis of the HPR, we used a general linear convolution model

with a heart period response function derived from Experiment 1

(Castegnetti et al., 2016). For SCR analysis, we used the default

nonlinear model with a conditioned response window during the

entire CS/US interval, as implemented in PsPM 3.0 (http://pspm.

sourceforge.net, Bach, Daunizeau, Friston, & Dolan, 2010; Staib

et al. 2015).

Model Specification

In agreement with a previous approach (Bach et al., 2016), we

modeled the interpolated RAR as output of a linear time invariant
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system (LTI) that receives a brief impulse input upon detection of a

CS. LTI systems have two characteristic properties: first, the output

does not explicitly depend on time (time invariance); second, the

response to several inputs is the sum of the responses to the single

inputs (linearity). In most real systems, including the respiratory

system, these criteria are not strictly met. Indeed, the assumption of

pure summation of overlapping inputs is unrealistic when studying

the amplitude of the respiratory cycle, which is ultimately bounded

by functional residual capacity and total lung capacity. However,

we assume that, with our choice of the ITI, the approximation is

accurate enough for the LTI formalism to be applicable. Thus, if an

input x tð Þ produces the output y tð Þ, then the input x t1dð Þ, with

d 2 R, elicits y t1dð Þ. An LTI system is fully specified by its

response function (RF). Since the operation of convolution between

the functions f and g is defined as

f � gð Þ tð Þ5
ð1

0

f sð Þg t2sð Þds;

we can then model the response of a LTI system to an input by con-

volving this input with the RF, i.e.,

y tð Þ5RF tð Þ � x tð Þ:

Here, we assume an impulse input at CS onset, meaning that our

definition of RF should be interpreted as summarizing neural and

peripheral processes translating the external stimulus into a

respiratory response. Therefore, since the combination of these pro-

cesses is not accessible to the experimenter, we phenomenological-

ly construct the RF by studying the response of the system to a set

of known inputs. This approach led to the successful development

of a model for SCR (Bach, Flandin, Friston, & Dolan, 2009; Bach,

Flandin et al., 2010), HPR (Castegnetti et al., 2016), pupil (Korn

et al., 2016), and startle responses (Khemka et al., 2016).

GLM. After defining a forward model that specifies how a cogni-

tive input produces RAR, we need to invert this model to infer the

most likely input given the observed data. If the input onset is

known, we can estimate its amplitude using a GLM. Specifically, if

Y is a set of k observation and X is a design matrix, we can write a

GLM as

Y5Xb1�;

where � is independent and identically distributed noise. In our

case, the columns of the design matrix X, one per experimental

condition, contain an impulse input for each presentation of the

condition, separately convolved with the single components of the

RF. Hence, in the above formula, the vector of regression weights

b corresponds to the amplitude of the inputs. To infer the most like-

ly amplitude estimates b̂; we calculated the Moore-Penrose pseu-

doinverse X1 with the maximum likelihood method implemented

in the MATLAB function pinv:

Figure 1. Respiratory amplitude response. Response to CS1 (light gray) and CS- (dark gray), averaged across participants and trials, 6 SEM (thin

lines), obtained from the six data sets. Vertical dashed lines indicate US onset. Insets: Difference between average RAR to CS1 and CS-.
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b̂5X1Y:

Model construction. We built a response function aimed at dis-

criminating between the RAR to CS1 and CS2. To this end, we

built the RF from the difference between the grand means of the

responses to the two different stimuli obtained from the first data

set, as in a previous approach to HPR (Castegnetti et al., 2016) and

pupil responses (Korn et al., 2016). As a first step, we visually

identified a function class that qualitatively resembled the shape of

the difference between grand means. A gamma distribution seemed

a suitable candidate. To formalize the RF, we used the Nelder-

Mead algorithm implemented in the MATLAB function fmin-

search (Lagarias, Reeds, Wright, & Wright, 1998) to find the val-

ues of the shape parameter k, the scale parameter �, and the time

onset x0 that minimized the residual sum of squares (RSS) from the

gamma function

y5
A

hkC kð Þ
x2x0ð Þk21e2

x2x0
h :

We term this the early respiration amplitude response function

(ER) and formalize it as model G1 (Figure 1). To allow for subject-

specific variations in peak latency, we included its time derivative

(dER
dt

in Figure 1) as a second component in model G2, analogous to

previous approaches to fMRI, SCR, and RAR (Bach et al., 2009,

2016; Friston et al., 1998). Finally, we observed that the RAR dif-

ferentiates between conditions also at a later stage, namely, in a

window between 8 s and the end of the considered response (11 s).

We therefore created a third model, G3, which comprises the ER

and a late response function (LR, Figure 2). Finally, we also

defined a model G4 that includes ER, its derivative, and LR. To

estimate autonomic input from models G1 and G2, we recon-

structed the estimated RAR from the entire basis set and calculated

the signed maximal variation from baseline of this reconstructed

response between 2 and 11 s after CS onset, as established previ-

ously for SCR (Bach, Friston, & Dolan, 2013) and HPR (Casteg-

netti et al., 2016). In contrast, models G3 and G4 scored RAR in

terms of the signed difference between the estimated amplitudes of

LR and ER.

Model comparison and validation. Together with the model-

based approaches presented above, we tested a number of model-

free methods. In particular, we scored the RAR (a) by the ampli-

tude of the maximum positive peak in a time window between 2

and 11 s after the CS onset, (b) by the signed amplitude of their

maximal variation from baseline in this window, and (c) by the

average RAR within a window of 2–7 s. The interval for method

(c) is shorter because the discrimination power of the area under

the curve crucially depends on the width of the curve. We thus

optimize this width on the first data set, analogous with the model-

based approaches. To quantify predictive validity, we calculated

evidence for a model in which CS1 and CS2 estimates are drawn

from distributions with the same variance but different means. We

did this by calculating the RSS from a regression model in which

the vector of event types is the dependent variable, and the estimat-

ed responses per condition are the predictor, and that contained

subject-specific intercept terms, analogous to a repeated measures

ANOVA or paired t test. This RSS can be transformed into the

Akaike information criterion (AIC) via (Burnham & Anderson,

2004)

AIC5n log
1

n
RSS

� �
12k;

with n number of observations and k parameters, which was the

same for all models and therefore drops from AIC differences. A

smaller AIC indicates a higher model evidence. An absolute AIC

difference higher than 3 is often regarded as decisive, by analogy

to a classic p value (Penny, Stephan, Mechelli, & Friston, 2004;

Raftery, 1996). Hence, the main advantage of calculating the AIC

instead of t or p values is that AIC allows a meaningful comparison

between models.

To investigate the effects of the CS-US SOA on the RAR,

Experiment 2 and 5 employed different SOAs (4 and 6 s, respec-

tively, instead of 3.5 s as in Experiment 1, 3, 4, and 5). We tested

two model adjustments on data set 5, which had longer SOA and

therefore allows better disambiguation between these possibilities:

(a) the RF is time-locked to the CS and is thus unaffected by the

SOA, and (b) the RF is unchanged in shape and time-locked to the

US (model G1-40). We then validated the winning adjustment on

data set 2.

Although there was no reason to assume that the presented

models were biased toward any experimental condition, we none-

theless sought to empirically assess the unbiased nature of the

model-based approach. We did this on data set 1 by randomly per-

muting the trial indices, thus creating sets of RAR in which both

conditions contained CS1 and CS2 trials and responses in these

conditions are therefore not expected to differ. This permutation

was repeated 1,000 times and results averaged.

Results

We first ensured that participants learned the contingency between

CS and US. To do this, we contrasted the response to CS1 and

CS2 in two established psychophysiological measures: SCR and

HPR. As a result, we found that SCR and HPR significantly dis-

criminated CS1/CS2 in all experiments (Table 1).

Figure 2. Response functions. Early (ER) and late (LR) RFs obtained

from the difference between the RAR from Experiment 1.
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Respiratory Amplitude Response Function

The grand means of the RAR to CS1 and CS2, obtained from the

six data sets, are shown in Figure 1. With the exception of Experi-

ment 2 and 5, which involved different CS-US timings, respiratory

amplitude after CS1 tends to be lower than after CS2 in a window

centered around 4–5 s after the CS onset. A respiratory amplitude

higher after CS1 was observed about 8–11 s from the CS onset. In

addition, we found that the two traces typically start to diverge

about 2 s after the CS onset (i.e., 1.5 s before the US), ruling out

the possibility that the observed differences were only due to

expected or unexpected US omission at 3.5 s after CS onset.

Response functions were built on data from Experiment 1 exclu-

sively, and were obtained by subtracting the average RAR to CS2

from CS1, analogous with a previous approach (Castegnetti et al.,

2016). As stated above, we observed two critical windows in which

RAR seemed to discriminate the conditions. With this in mind, we

sought to construct separate components of the RF for each of these

windows. These components were later combined to obtain differ-

ent model variants. The gamma distribution that best fitted the ear-

lier difference had parameters k 5 2.57010 � 107, � 5 3.12410 �
1024, x0 5 28.02434 � 103. The value of the fitted amplitude A

was left as a free parameter during the GLM implementation. The

late RF was obtained in the same way, but restricting the fit to the

8–11 s window, resulting in parameters k 5 3.41302, � 5 1.10734,

x0 5 7.58288. The difference between the RAR to CS1/CS2,

together with the fitted early and late RFs, are depicted in Figure 2.

Model Comparison

Next, we compared the different models in terms of their predictive

validity, expressed as AIC. Model G3 (ER 1 LR) best discriminat-

ed CS1/CS2, but model G2 (ER 1 dER
dt

) was not decisively worse

(AICG3 2 AICG2 5 1.8, Table 2). G2 and G3 were thus selected as

best models and used for model validation.

Model Validation

Up to this point, we had compared models on the same data set on

which the response functions were developed, which is susceptible

to overfitting. We therefore validated our results on five indepen-

dent data sets. The results are displayed in Figure 3. In all short

SOA experiments, G3 had higher predictive validity than any peak-

scoring method. G2 performed similar to G3 in Experiment 1 and 3

and similar to peak scoring in Experiment 4 and in the fear reten-

tion phase of Experiment 1.

To validate the model on data sets 2 and 5, involving a longer

SOA, we first sought to identify the best way to adapt the model to

different SOAs. We did this on data from Experiment 5, with the

result that the CS2 and US-locked variants G2 (AICG2 5 265.4)

and G20 (AICG20 5 265.4) did not differ from each other, and both

outperformed peak scoring. In contrast, the two variants of G3

were not better than peak scoring, but G30 was better than G3. On

average, shifting the RF with the US thus appears to be the better

of the two tested adaptations to different SOAs. When we tested it

on data set 2, however, the performance of the US-locked G20/30

was similar to their CS-locked counterparts G2/G3. This may fol-

low from the fact that the SOA in Experiment 2 is only 0.5 s lon-

ger, causing G20/30 to differ slightly from G2/3, and possibly not

enough to produce substantially different results. In Figure 3, we

show model evidence for G20 and G30.
Finally, although we had no theoretical reason to believe that

our model-based approach overestimated CS1/CS2 differences,

we sought to rule this out empirically. We assessed this by analyz-

ing RAR in two conditions that do not systematically differ. We

randomly assigned CS1 and CS2 trials to either condition. We

performed this analysis on data set 1, finding that neither G2 nor

G3 differentiates between conditions (G2: t(28) 5 20.03, p 5 .50;

G3: t(28) 5 0.22, p 5 .48), as expected.

Comparison with Skin Conductance and Heart Period

Responses

To relate the above results to other psychophysiological measures

of fear learning, we compared the performance achieved by the

best model-based method for analyzing RAR to the performance of

analogous methods for the analysis of HPR and SCR. The results

are depicted in Figure 4. In the development data set 1, the RAR-

based analysis performed better than SCR, but worse than HPR;

although as this data set was used to develop the model-based

approaches for RAR and, in a previous report, for HPR, this

Table 1. SCR and HPR Results

Experiment

SCR HPR

df |t| p d AIC |t| p d AIC

1 28 3.23 .0032 0.60 298.8 5.85 <.001 1.09 2126.7
2 18 3.58 .0021 0.82 273.1 4.97 <.001 1.14 285.2
3 19 3.46 .0026 0.77 268.4 4.67 <.001 1.04 286.0
4 15 2.6 .022 0.65 256.0 2.12 .051 0.53 252.8
5 17 n.a. n.a. n.a. n.a. 3.83 .0013 0.90 272.4
1 retention 12 2.17 .047 0.60 250.3 2.33 .038 0.65 245.7

Note. The t and the p values are obtained from a paired t-test between subject-averaged responses to CS1 and CS-, together with the ensuing predic-
tive validity in terms of Akaike information criterion (AIC) and effect size d. n.a. 5 not available.

Table 2. Model Comparison

# Model description AIC |t| p

P1 Maximum variation from baseline 280.7 0.40 .69
P2 Peak scoring 282.3 0.96 .35
P3 Average in the 2–7 s window 287.7 1.94 .063
G1 Canonical response 298.6 3.21 .0033
G2 ER 1 dER

dt
2100.2 3.37 .0022

G3 ER 1 LR 2102.0 3.56 .0014
G4 ER 1 dER

dt
1 LR 293.5 2.67 .013

Note. Akaike information criterion (AIC, smaller is better) together with
the t and the p values obtained from model-free (P1 to P3) and the
model-based (G1 to G4) evaluations of the RAR in Experiment 1
(development data set). Absolute AIC differences larger than 3 are con-
sidered decisive. Models G2 and G3 outperform all alternative methods.
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comparison may be biased against SCR. In the validation data sets,

we observed a more nuanced pattern. RAR was comparable to SCR

in Experiment 2, 3, and 4; no SCR results were available for Experi-

ment 5. During fear retention under extinction (Experiment 1 reten-

tion), SCR performed better than RAR. HPR was markedly better

than RAR in all data sets, except fMRI Experiment 4, in which

RAR won over HPR. Note that, for the long SOA Experiment 5, we

used a US-locked version of the heart period response function for

the HPR analysis, as in our previous study. To support this choice,

we compared evidence for a CS2 and a US-locked HPR model,

with the result that the US-locked model (AIC 5 272.4) outper-

formed the CS-locked version (AIC 5 256.4), just as in our previ-

ous investigation with a 4-s SOA.

Finally, to put the present results into a physiological perspec-

tive, we qualitatively compared average RAR (Figure 1) with

simultaneously recorded HPR (Figure 5). Remarkably, to some

extent, the two measures appear to inversely correlate: longer heart

periods appear to be associated with lower respiratory amplitudes.

This is in line with the known effect of respiration on cardiac

activity, termed respiratory sinus arrhythmia, that causes increases

in the heart rate during periods of higher lung volume (Yasuma &

Hayano, 2004), and suggests that, through its effect on heart period,

RAR to CS1 may contribute to the observed HPR over and above

direct parasympathetic control of fear-conditioned bradycardia.

Discussion

In this paper, we present a novel technique for assessing human fear

learning from respiration recordings. First, we show differential

RAR to CS1 and CS2. We then use average RAR to formulate a

response function for a PsPM. This PsPM is inverted to yield esti-

mates of cognitive input amplitudes. These estimates are compared

to model-free methods commonly used in psychophysiological

research (e.g., peak-scoring, Furedy & Poulos, 1976) in terms of

their predictive validity, that is, the ability to distinguish CS1 and

CS2. It turns out that the PsPM outperforms all model-free meth-

ods, both in the development data set and in five validation data sets.

Figure 3. Model comparison. Bars represent predictive validity in terms of AIC (smaller is better) for three model-free methods (P1–P3) and the win-

ning models G2 and G3. For each experiment, we plotted the AIC with respect to the best model-free method MF* (P1 for Experiment 4; P2 for

Experiment 5; P3 for Experiment 1, 2, 3, and 1 extension). The horizontal dashed line represents the threshold below which AIC values are decisively

better than MF*. For models G2 and G3, effect sizes (Cohen’s d) were, respectively: 0.63, 0.66 (Experiment 1); 0.40, 0.83 (Experiment 2); 0.64, 0.59

(Experiment 3); 0.29, 0.64 (Experiment 4); 0.71, 0.38 (Experiment 5); 0.20, 0.42 (Experiment 1 retention).

Figure 4. Comparison of predictive validity (AIC, smaller is better) between RAR, HPR, and SCR. The horizontal dashed lines represent the decision

thresholds with respect to RAR. Positive and negative values indicate performances lower and higher than those obtained from RAR, respectively. For

Experiment 5, SCR analysis was not available. For Experiment 2 and 5, HPR analysis was adapted to the longer trace between CS and US by time-

locking the heart period response function to the US onset, similar to the RAR analysis.
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In particular, model G3, consisting of an early and a late com-

ponent, was the best model for experiments with short CS-US SOA

(3.5–4 s). Only in long SOA (6 s) Experiment 5, model G2 with

early response and its derivative, won the model comparison. This

reflects the descriptive observation that responses in Experiment 5

lack the late positive component, which, in contrast, is observed in

all other data sets (Figure 1, insets). However, the origin of this dis-

crepancy is unclear: besides the longer SOA, this was also the only

experiment using auditory CS instead of visual CS. Furthermore,

we were interested whether ER and LR could relate to RAR eli-

cited by short external events previously reported (Bach et al.,

2016). With a peak latency of 8.1 s, previously observed RAR

could relate to LR, which peaks at a longer latency (10.2 s), but not to

the short latency (5.1 s) ER. This is different from skin conductance

(Bach, Daunizeau et al., 2010), heart period (Castegnetti et al., 2016),

or pupil size (Korn et al., 2016) responses, for which such relation

between evoked and fear-conditioned responses could be made. We

note that the LTI system assumed to control RAR probably collapses

a broader range of neural and peripheral components than the models

associated with other psychophysiological measures.

To put our results into a psychophysiological context, we com-

pared predictive validity of RAR to HPR and SCR. On average,

RAR performance turned out to be comparable to SCR, but worse

than HPR. However, due to large trial-by-trial variability, RAR and

HPR analysis is implemented conditionwise, while the SCR is

analyzed on a trial-by-trial basis. It thus allows analyzing of the

evolution of the physiological response during the time course of a

single experimental session, giving SCR an additional advantage

over RAR.

Finally, for each data set, we compared the average respiratory

amplitude (Figure 1) to heart period (Figure 5). Qualitatively, the

plots suggest an inverse relationship between the two, since onsets

of the positive peak of the HPR and of the negative peak of the

RAR appear to correlate. This does not surprise, though, as lung

volume and cardiac frequency are known to be related (i.e., respira-

tory sinus arrhythmia, Yasuma & Hayano, 2004). Although it is

difficult to conclude the direction of causality, an intriguing

hypothesis is that the parasympathetic response to CS1 has a dual

effect on heart period: a direct one via cardiac afferents and an indi-

rect one via the respiratory system. As a further speculation, this

could possibly be the reason for the overall higher predictive validi-

ty of HPR compared to RAR. Additional investigation, possibly

with tight control over central input into the heart, would be

required to shed light on this question.

In summary, we introduce a novel, robust, model-based

approach for analyzing RAR in response to fear-conditioned stimu-

li, which was tested during acquisition and extinction of fear learn-

ing. We show that the method generalizes to data sets with diverse

experimental settings, conditioned stimuli, and types of breathing

belts.
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