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Abstract
As a new way of training generative models, Generative Ad-
versarial Net (GAN) that uses a discriminative model to guide
the training of the generative model has enjoyed considerable
success in generating real-valued data. However, it has limi-
tations when the goal is for generating sequences of discrete
tokens. A major reason lies in that the discrete outputs from
the generative model make it difficult to pass the gradient up-
date from the discriminative model to the generative model.
Also, the discriminative model can only assess a complete
sequence, while for a partially generated sequence, it is non-
trivial to balance its current score and the future one once
the entire sequence has been generated. In this paper, we pro-
pose a sequence generation framework, called SeqGAN, to
solve the problems. Modeling the data generator as a stochas-
tic policy in reinforcement learning (RL), SeqGAN bypasses
the generator differentiation problem by directly performing
gradient policy update. The RL reward signal comes from
the GAN discriminator judged on a complete sequence, and
is passed back to the intermediate state-action steps using
Monte Carlo search. Extensive experiments on synthetic data
and real-world tasks demonstrate significant improvements
over strong baselines.

Introduction
Generating sequential synthetic data that mimics the real
one is an important problem in unsupervised learning. Re-
cently, recurrent neural networks (RNNs) with long short-
term memory (LSTM) cells (Hochreiter and Schmidhuber
1997) have shown excellent performance ranging from nat-
ural language generation to handwriting generation (Wen
et al. 2015; Graves 2013). The most common approach to
training an RNN is to maximize the log predictive likelihood
of each true token in the training sequence given the pre-
vious observed tokens (Salakhutdinov 2009). However, as
argued in (Bengio et al. 2015), the maximum likelihood ap-
proaches suffer from so-called exposure bias in the inference
stage: the model generates a sequence iteratively and pre-
dicts next token conditioned on its previously predicted ones
that may be never observed in the training data. Such a dis-
crepancy between training and inference can incur accumu-
latively along with the sequence and will become prominent
as the length of sequence increases. To address this prob-
lem, (Bengio et al. 2015) proposed a training strategy called
∗Weinan Zhang is the corresponding author.
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scheduled sampling (SS), where the generative model is par-
tially fed with its own synthetic data as prefix (observed to-
kens) rather than the true data when deciding the next token
in the training stage. Nevertheless, (Huszár 2015) showed
that SS is an inconsistent training strategy and fails to ad-
dress the problem fundamentally. Another possible solution
of the training/inference discrepancy problem is to build
the loss function on the entire generated sequence instead
of each transition. For instance, in the application of ma-
chine translation, a task specific sequence score/loss, bilin-
gual evaluation understudy (BLEU) (Papineni et al. 2002),
can be adopted to guide the sequence generation. However,
in many other practical applications, such as poem genera-
tion (Zhang and Lapata 2014) and chatbot (Hingston 2009),
a task specific loss may not be directly available to score a
generated sequence accurately.

General adversarial net (GAN) proposed by (Goodfellow
and others 2014) is a promising framework for alleviating
the above problem. Specifically, in GAN a discriminative
net D learns to distinguish whether a given data instance is
real or not, and a generative net G learns to confuse D by
generating high quality data. This approach has been suc-
cessful and been mostly applied in computer vision tasks of
generating samples of natural images (Denton et al. 2015).

Unfortunately, applying GAN to generating sequences
has two problems. Firstly, GAN is designed for generat-
ing real-valued, continuous data but has difficulties in di-
rectly generating sequences of discrete tokens, such as texts
(Huszár 2015). The reason is that in GANs, the genera-
tor starts with random sampling first and then a determistic
transform, govermented by the model parameters. As such,
the gradient of the loss from D w.r.t. the outputs by G is
used to guide the generative model G (paramters) to slightly
change the generated value to make it more realistic. If
the generated data is based on discrete tokens, the “slight
change” guidance from the discriminative net makes little
sense because there is probably no corresponding token for
such slight change in the limited dictionary space (Goodfel-
low 2016). Secondly, GAN can only give the score/loss for
an entire sequence when it has been generated; for a partially
generated sequence, it is non-trivial to balance how good as
it is now and the future score as the entire sequence.

In this paper, to address the above two issues, we follow
(Bachman and Precup 2015; Bahdanau et al. 2016) and con-
sider the sequence generation procedure as a sequential de-
cision making process. The generative model is treated as an
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agent of reinforcement learning (RL); the state is the gener-
ated tokens so far and the action is the next token to be gener-
ated. Unlike the work in (Bahdanau et al. 2016) that requires
a task-specific sequence score, such as BLEU in machine
translation, to give the reward, we employ a discriminator to
evaluate the sequence and feedback the evaluation to guide
the learning of the generative model. To solve the problem
that the gradient cannot pass back to the generative model
when the output is discrete, we regard the generative model
as a stochastic parametrized policy. In our policy gradient,
we employ Monte Carlo (MC) search to approximate the
state-action value. We directly train the policy (generative
model) via policy gradient (Sutton et al. 1999), which natu-
rally avoids the differentiation difficulty for discrete data in
a conventional GAN.

Extensive experiments based on synthetic and real data
are conducted to investigate the efficacy and properties of
the proposed SeqGAN. In our synthetic data environment,
SeqGAN significantly outperforms the maximum likelihood
methods, scheduled sampling and PG-BLEU. In three real-
world tasks, i.e. poem generation, speech language gener-
ation and music generation, SeqGAN significantly outper-
forms the compared baselines in various metrics including
human expert judgement.

Related Work
Deep generative models have recently drawn significant
attention, and the ability of learning over large (unla-
beled) data endows them with more potential and vitality
(Salakhutdinov 2009; Bengio et al. 2013). (Hinton, Osin-
dero, and Teh 2006) first proposed to use the contrastive di-
vergence algorithm to efficiently training deep belief nets
(DBN). (Bengio et al. 2013) proposed denoising autoen-
coder (DAE) that learns the data distribution in a supervised
learning fashion. Both DBN and DAE learn a low dimen-
sional representation (encoding) for each data instance and
generate it from a decoding network. Recently, variational
autoencoder (VAE) that combines deep learning with sta-
tistical inference intended to represent a data instance in
a latent hidden space (Kingma and Welling 2014), while
still utilizing (deep) neural networks for non-linear mapping.
The inference is done via variational methods. All these gen-
erative models are trained by maximizing (the lower bound
of) training data likelihood, which, as mentioned by (Good-
fellow and others 2014), suffers from the difficulty of ap-
proximating intractable probabilistic computations.

(Goodfellow and others 2014) proposed an alternative
training methodology to generative models, i.e. GANs,
where the training procedure is a minimax game between
a generative model and a discriminative model. This frame-
work bypasses the difficulty of maximum likelihood learn-
ing and has gained striking successes in natural image gen-
eration (Denton et al. 2015). However, little progress has
been made in applying GANs to sequence discrete data gen-
eration problems, e.g. natural language generation (Huszár
2015). This is due to the generator network in GAN is de-
signed to be able to adjust the output continuously, which
does not work on discrete data generation (Goodfellow
2016).

On the other hand, a lot of efforts have been made to gen-
erate structured sequences. Recurrent neural networks can

be trained to produce sequences of tokens in many applica-
tions such as machine translation (Sutskever, Vinyals, and
Le 2014; Bahdanau, Cho, and Bengio 2014). The most pop-
ular way of training RNNs is to maximize the likelihood of
each token in the training data whereas (Bengio et al. 2015)
pointed out that the discrepancy between training and gen-
erating makes the maximum likelihood estimation subopti-
mal and proposed scheduled sampling strategy (SS). Later
(Huszár 2015) theorized that the objective function under-
neath SS is improper and explained the reason why GANs
tend to generate natural-looking samples in theory. Conse-
quently, the GANs have great potential but are not practi-
cally feasible to discrete probabilistic models currently.

As pointed out by (Bachman and Precup 2015), the se-
quence data generation can be formulated as a sequen-
tial decision making process, which can be potentially be
solved by reinforcement learning techniques. Modeling the
sequence generator as a policy of picking the next token,
policy gradient methods (Sutton et al. 1999) can be adopted
to optimize the generator once there is an (implicit) re-
ward function to guide the policy. For most practical se-
quence generation tasks, e.g. machine translation (Sutskever,
Vinyals, and Le 2014), the reward signal is meaningful only
for the entire sequence, for instance in the game of Go (Sil-
ver et al. 2016), the reward signal is only set at the end of the
game. In those cases, state-action evaluation methods such
as Monte Carlo (tree) search have been adopted (Browne
et al. 2012). By contract, our proposed SeqGAN extends
GANs with the RL-based generator to solve the sequence
generation problem, where a reward signal is provided by
the discriminator at the end of each episode via Monte Carlo
approach, and the generator picks the action and learns the
policy using estimated overall rewards.

Sequence Generative Adversarial Nets
The sequence generation problem is denoted as follows.
Given a dataset of real-world structured sequences, train
a θ-parameterized generative model Gθ to produce a se-
quence Y1:T = (y1, . . . , yt, . . . , yT ), yt ∈ Y , where Y is
the vocabulary of candidate tokens. We interpret this prob-
lem based on reinforcement learning. In timestep t, the state
s is the current produced tokens (y1, . . . , yt−1) and the ac-
tion a is the next token yt to select. Thus the policy model
Gθ(yt|Y1:t−1) is stochastic, whereas the state transition is
deterministic after an action has been chosen, i.e. δas,s′ = 1

for the next state s′ = Y1:t if the current state s = Y1:t−1
and the action a = yt; for other next states s′′, δas,s′′ = 0.

Additionally, we also train a φ-parameterized discrimina-
tive model Dφ (Goodfellow and others 2014) to provide a
guidance for improving generator Gθ. Dφ(Y1:T ) is a prob-
ability indicating how likely a sequence Y1:T is from real
sequence data or not. As illustrated in Figure 1, the dis-
criminative model Dφ is trained by providing positive ex-
amples from the real sequence data and negative examples
from the synthetic sequences generated from the generative
model Gθ. At the same time, the generative model Gθ is up-
dated by employing a policy gradient and MC search on the
basis of the expected end reward received from the discrim-
inative model Dφ. The reward is estimated by the likelihood
that it would fool the discriminative model Dφ. The specific
formulation is given in the next subsection.
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Figure 1: The illustration of SeqGAN. Left:D is trained over
the real data and the generated data byG. Right:G is trained
by policy gradient where the final reward signal is provided
by D and is passed back to the intermediate action value via
Monte Carlo search.

SeqGAN via Policy Gradient
Following (Sutton et al. 1999), when there is no interme-
diate reward, the objective of the generator model (policy)
Gθ(yt|Y1:t−1) is to generate a sequence from the start state
s0 to maximize its expected end reward:

J(θ) = E[RT |s0, θ] =
∑
y1∈Y

Gθ(y1|s0) ·QGθDφ(s0, y1), (1)

where RT is the reward for a complete sequence. Note that
the reward is from the discriminator Dφ, which we will dis-
cuss later. QGθDφ(s, a) is the action-value function of a se-
quence, i.e. the expected accumulative reward starting from
state s, taking action a, and then following policy Gθ. The
rational of the objective function for a sequence is that start-
ing from a given initial state, the goal of the generator is
to generate a sequence which would make the discriminator
consider it is real.

The next question is how to estimate the action-value
function. In this paper, we use the REINFORCE algorithm
(Williams 1992) and consider the estimated probability of
being real by the discriminatorDφ(Y

n
1:T ) as the reward. For-

mally, we have:

Q
Gθ
Dφ

(a = yT , s = Y1:T−1) = Dφ(Y1:T ). (2)

However, the discriminator only provides a reward value for
a finished sequence. Since we actually care about the long-
term reward, at every timestep, we should not only consider
the fitness of previous tokens (prefix) but also the resulted
future outcome. This is similar to playing the games such
as Go or Chess where players sometimes would give up the
immediate interests for the long-term victory (Silver et al.
2016). Thus, to evaluate the action-value for an intermediate
state, we apply Monte Carlo search with a roll-out policyGβ
to sample the unknown last T − t tokens. We represent an
N -time Monte Carlo search as{

Y 1
1:T , . . . , Y

N
1:T

}
= MCGβ (Y1:t;N), (3)

where Y n1:t = (y1, . . . , yt) and Y nt+1:T is sampled based on
the roll-out policy Gβ and the current state. In our experi-
ment, Gβ is set the same as the generator, but one can use
a simplified version if the speed is the priority (Silver et al.
2016). To reduce the variance and get more accurate assess-
ment of the action value, we run the roll-out policy starting
from current state till the end of the sequence for N times to
get a batch of output samples. Thus, we have:

Q
Gθ
Dφ

(s = Y1:t−1, a = yt) = (4){
1
N

∑N
n=1Dφ(Y

n
1:T ), Y

n
1:T ∈ MCGβ (Y1:t;N) for t < T

Dφ(Y1:t) for t = T ,

where, we see that when no intermediate reward, the func-
tion is iteratively defined as the next-state value starting from
state s′ = Y1:t and rolling out to the end.

A benefit of using the discriminator Dφ as a reward func-
tion is that it can be dynamically updated to further improve
the generative model iteratively. Once we have a set of more
realistic generated sequences, we shall re-train the discrimi-
nator model as follows:

min
φ
−EY∼pdata [logDφ(Y )]− EY∼Gθ [log(1−Dφ(Y ))]. (5)

Each time when a new discriminator model has been ob-
tained, we are ready to update the generator. The proposed
policy based method relies upon optimizing a parametrized
policy to directly maximize the long-term reward. Following
(Sutton et al. 1999), the gradient of the objective function
J(θ) w.r.t. the generator’s parameters θ can be derived as

∇θJ(θ) = EY1:t−1∼Gθ
[ ∑
yt∈Y

∇θGθ(yt|Y1:t−1) ·QGθDφ(Y1:t−1, yt)
]
.

(6)

The above form is due to the deterministic state transi-
tion and zero intermediate rewards. The detailed derivation
is provided in the appendix. Using likelihood ratios (Glynn
1990; Sutton et al. 1999), we build an unbiased estimation
for Eq. (6) (on one episode):

∇θJ(θ) '
1

T

T∑
t=1

∑
yt∈Y

∇θGθ(yt|Y1:t−1) ·QGθDφ(Y1:t−1, yt) (7)

=
1

T

T∑
t=1

∑
yt∈Y

Gθ(yt|Y1:t−1)∇θ logGθ(yt|Y1:t−1) ·QGθDφ(Y1:t−1, yt)

=
1

T

T∑
t=1

Eyt∼Gθ(yt|Y1:t−1)[∇θ logGθ(yt|Y1:t−1) ·QGθDφ(Y1:t−1, yt)],

where Y1:t−1 is the observed intermediate state sampled
from Gθ. Since the expectation E[·] can be approximated by
sampling methods, we then update the generator’s parame-
ters as:

θ ← θ + αh∇θJ(θ), (8)

where αh ∈ R+ denotes the corresponding learning rate
at h-th step. Also the advanced gradient algorithms such as
Adam and RMSprop can be adopted here.

In summary, Algorithm 1 shows full details of the pro-
posed SeqGAN. At the beginning of the training, we use the
maximum likelihood estimation (MLE) to pre-train Gθ on
training set S. We found the supervised signal from the pre-
trained discriminator is informative to help adjust the gener-
ator efficiently.

After the pre-training, the generator and discriminator are
trained alternatively. As the generator gets progressed via
training on g-steps updates, the discriminator needs to be re-
trained periodically to keeps a good pace with the generator.
When training the discriminator, positive examples are from
the given dataset S, whereas negative examples are gener-
ated from our generator. In order to keep the balance, the
number of negative examples we generate for each d-step is
the same as the positive examples. And to reduce the vari-
ability of the estimation, we use different sets of negative
samples combined with positive ones, which is similar to
bootstrapping (Quinlan 1996).



Algorithm 1 Sequence Generative Adversarial Nets
Require: generator policy Gθ; roll-out policy Gβ ; discriminator

Dφ; a sequence dataset S = {X1:T }
1: Initialize Gθ , Dφ with random weights θ, φ.
2: Pre-train Gθ using MLE on S
3: β ← θ
4: Generate negative samples using Gθ for training Dφ
5: Pre-train Dφ via minimizing the cross entropy
6: repeat
7: for g-steps do
8: Generate a sequence Y1:T = (y1, . . . , yT ) ∼ Gθ
9: for t in 1 : T do

10: Compute Q(a = yt; s = Y1:t−1) by Eq. (4)
11: end for
12: Update generator parameters via policy gradient Eq. (8)
13: end for
14: for d-steps do
15: Use current Gθ to generate negative examples and com-

bine with given positive examples S
16: Train discriminator Dφ for k epochs by Eq. (5)
17: end for
18: β ← θ
19: until SeqGAN converges

The Generative Model for Sequences
We use recurrent neural networks (RNNs) (Hochreiter and
Schmidhuber 1997) as the generative model. An RNN
maps the input embedding representations x1, . . . ,xT of
the sequence x1, . . . , xT into a sequence of hidden states
h1, . . . ,hT by using the update function g recursively.

ht = g(ht−1,xt) (9)
Moreover, a softmax output layer z maps the hidden states

into the output token distribution
p(yt|x1, . . . , xt) = z(ht) = softmax(c+ V ht), (10)

where the parameters are a bias vector c and a weight ma-
trix V . To deal with the common vanishing and exploding
gradient problem (Goodfellow, Bengio, and Courville 2016)
of the backpropagation through time, we leverage the Long
Short-Term Memory (LSTM) cells (Hochreiter and Schmid-
huber 1997) to implement the update function g in Eq. (9).
It is worth noticing that most of the RNN variants, such as
the gated recurrent unit (GRU) (Cho et al. 2014) and soft at-
tention mechanism (Bahdanau, Cho, and Bengio 2014), can
be used as a generator in SeqGAN.

The Discriminative Model for Sequences
Deep discriminative models such as deep neural network
(DNN) (Veselỳ et al. 2013), convolutional neural network
(CNN) (Kim 2014) and recurrent convolutional neural net-
work (RCNN) (Lai et al. 2015) have shown a high perfor-
mance in complicated sequence classification tasks. In this
paper, we choose the CNN as our discriminator as CNN has
recently been shown of great effectiveness in text (token se-
quence) classification (Zhang and LeCun 2015). Most dis-
criminative models can only perform classification well for
an entire sequence rather than the unfinished one. In this pa-
per, we also focus on the situation where the discriminator
predicts the probability that a finished sequence is real.1

1In our work, the generated sequence has a fixed length T , but
note that CNN is also capable of the variable-length sequence dis-
crimination with the max-over-time pooling technique (Kim 2014).

We first represent an input sequence x1, . . . , xT as:

E1:T = x1 ⊕ x2 ⊕ . . .⊕ xT , (11)

where xt ∈ Rk is the k-dimensional token embedding
and ⊕ is the concatenation operator to build the matrix
E1:T ∈ RT×k. Then a kernel w ∈ Rl×k applies a convo-
lutional operation to a window size of l words to produce a
new feature map:

ci = ρ(w ⊗ Ei:i+l−1 + b), (12)

where ⊗ operator is the summation of elementwise pro-
duction, b is a bias term and ρ is a non-linear function.
We can use various numbers of kernels with different win-
dow sizes to extract different features. Finally we apply
a max-over-time pooling operation over the feature maps
c̃ = max {c1, . . . , cT−l+1}.

To enhance the performance, we also add the highway ar-
chitecture (Srivastava, Greff, and Schmidhuber 2015) based
on the pooled feature maps. Finally, a fully connected layer
with sigmoid activation is used to output the probability that
the input sequence is real. The optimization target is to min-
imize the cross entropy between the ground truth label and
the predicted probability as formulated in Eq. (5).

Detailed implementations of the generative and discrimi-
native models are provided in the appendix.

Synthetic Data Experiments
To test the efficacy and add our understanding of SeqGAN,
we conduct a simulated test with synthetic data2. To simulate
the real-world structured sequences, we consider a language
model to capture the dependency of the tokens. We use a
randomly initialized LSTM as the true model, aka, the ora-
cle, to generate the real data distribution p(xt|x1, . . . , xt−1)
for the following experiments.

Evaluation Metric
The benefit of having such oracle is that firstly, it provides
the training dataset and secondly evaluates the exact perfor-
mance of the generative models, which will not be possi-
ble with real data. We know that MLE is trying to mini-
mize the cross-entropy between the true data distribution p
and our approximation q, i.e. −Ex∼p log q(x). However, the
most accurate way of evaluating generative models is that
we draw some samples from it and let human observers re-
view them based on their prior knowledge. We assume that
the human observer has learned an accurate model of the
natural distribution phuman(x). Then in order to increase the
chance of passing Turing Test, we actually need to min-
imize the exact opposite average negative log-likelihood
−Ex∼q log phuman(x) (Huszár 2015), with the role of p and
q exchanged. In our synthetic data experiments, we can con-
sider the oracle to be the human observer for real-world
problems, thus a perfect evaluation metric should be

NLLoracle = −EY1:T∼Gθ

[ T∑
t=1

logGoracle(yt|Y1:t−1)
]
, (13)

where Gθ and Goracle denote our generative model and the
oracle respectively.

At the test stage, we use Gθ to generate 100,000 se-
quence samples and calculate NLLoracle for each sample by

2 Experiment code: https://github.com/LantaoYu/SeqGAN

https://github.com/LantaoYu/SeqGAN


Table 1: Sequence generation performance comparison. The
p-value is between SeqGAN and the baseline from T-test.

Algorithm Random MLE SS PG-BLEU SeqGAN
NLL 10.310 9.038 8.985 8.946 8.736
p-value < 10−6 < 10−6 < 10−6 < 10−6
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Figure 2: Negative log-likelihood convergence w.r.t. the
training epochs. The vertical dashed line represents the end
of pre-training for SeqGAN, SS and PG-BLEU.

Goracle and their average score. Also significance tests are
performed to compare the statistical properties of the gener-
ation performance between the baselines and SeqGAN.

Training Setting
To set up the synthetic data experiments, we first initialize
the parameters of an LSTM network following the normal
distribution N (0, 1) as the oracle describing the real data
distribution Goracle(xt|x1, . . . , xt−1). Then we use it to gen-
erate 10,000 sequences of length 20 as the training set S for
the generative models.

In SeqGAN algorithm, the training set for the discrimina-
tor is comprised by the generated examples with the label
0 and the instances from S with the label 1. For different
tasks, one should design specific structure for the convolu-
tional layer and in our synthetic data experiments, the kernel
size is from 1 to T and the number of each kernel size is be-
tween 100 to 2003. Dropout (Srivastava et al. 2014) and L2
regularization are used to avoid over-fitting.

Four generative models are compared with SeqGAN. The
first model is a random token generation. The second one is
the MLE trained LSTMGθ. The third one is scheduled sam-
pling (Bengio et al. 2015). The fourth one is the Policy Gra-
dient with BLEU (PG-BLEU). In the scheduled sampling,
the training process gradually changes from a fully guided
scheme feeding the true previous tokens into LSTM, towards
a less guided scheme which mostly feeds the LSTM with its
generated tokens. A curriculum rate ω is used to control the
probability of replacing the true tokens with the generated
ones. To get a good and stable performance, we decrease ω
by 0.002 for every training epoch. In the PG-BLEU algo-
rithm, we use BLEU, a metric measuring the similarity be-
tween a generated sequence and references (training data),
to score the finished samples from Monte Carlo search.

Results
The NLLoracle performance of generating sequences from the
compared policies is provided in Table 1. Since the evalua-

3Implementation details are in the appendix.
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(b) g-steps=30, d-steps=1, k=30
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(c) g-steps=1, d-steps=1, k=10
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Figure 3: Negative log-likelihood convergence performance
of SeqGAN with different training strategies. The vertical
dashed line represents the beginning of adversarial training.

tion metric is fundamentally instructive, we can see the im-
pact of SeqGAN, which outperforms other baselines signif-
icantly. A significance T-test on the NLLoracle score distribu-
tion of the generated sequences from the compared models
is also performed, which demonstrates the significant im-
provement of SeqGAN over all compared models.

The learning curves shown in Figure 4 illustrate the su-
periority of SeqGAN explicitly. After about 150 training
epochs, both the maximum likelihood estimation and the
schedule sampling methods converge to a relatively high
NLLoracle score, whereas SeqGAN can improve the limit of
the generator with the same structure as the baselines sig-
nificantly. This indicates the prospect of applying adversar-
ial training strategies to discrete sequence generative mod-
els to breakthrough the limitations of MLE. Additionally,
SeqGAN outperforms PG-BLEU, which means the discrim-
inative signal in GAN is more general and effective than a
predefined score (e.g. BLEU) to guide the generative policy
to capture the underlying distribution of the sequence data.

Discussion
In our synthetic data experiments, we find that the stability
of SeqGAN depends on the training strategy. More specifi-
cally, the g-steps, d-steps and k parameters in Algorithm 1
have a large effect on the convergence and performance of
SeqGAN. Figure 3 shows the effect of these parameters. In
Figure 3(a), the g-steps is much larger than the d-steps and
epoch number k, which means we train the generator for
many times until we update the discriminator. This strategy
leads to a fast convergence but as the generator improves
quickly, the discriminator cannot get fully trained and thus
will provide a misleading signal gradually. In Figure 3(b),
with more discriminator training epochs, the unstable train-
ing process is alleviated. In Figure 3(c), we train the genera-
tor for only one epoch and then before the discriminator gets
fooled, we update it immediately based on the more realistic
negative examples. In such a case, SeqGAN learns stably.



The d-steps in all three training strategies described above
is set to 1, which means we only generate one set of nega-
tive examples with the same number as the given dataset,
and then train the discriminator on it for various k epochs.
But actually we can utilize the potentially unlimited num-
ber of negative examples to improve the discriminator. This
trick can be considered as a type of bootstrapping, where
we combine the fixed positive examples with different neg-
ative examples to obtain multiple training sets. Figure 3(d)
shows this technique can improve the overall performance
with good stability, since the discriminator is shown more
negative examples and each time the positive examples are
emphasized, which will lead to a more comprehensive guid-
ance for training generator. This is in line with the theo-
rem in (Goodfellow and others 2014). When analyzing the
convergence of generative adversarial nets, an important as-
sumption is that the discriminator is allowed to reach its op-
timum given G. Only if the discriminator is capable of dif-
ferentiating real data from unnatural data consistently, the
supervised signal from it can be meaningful and the whole
adversarial training process can be stable and effective.

Real-world Scenarios
To complement the previous experiments, we also test Se-
qGAN on several real-world tasks, i.e. poem composition,
speech language generation and music generation.

Text Generation
For text generation scenarios, we apply the proposed Seq-
GAN to generate Chinese poems and Barack Obama polit-
ical speeches. In the poem composition task, we use a cor-
pus4 of 16,394 Chinese quatrains, each containing four lines
of twenty characters in total. To focus on a fully automatic
solution and stay general, we did not use any prior knowl-
edge of special structure rules in Chinese poems such as
specific phonological rules. In the Obama political speech
generation task, we use a corpus5, which is a collection of
11,092 paragraphs from Obama’s political speeches.

We use BLEU score as an evaluation metric to measure
the similarity degree between the generated texts and the
human-created texts. BLEU is originally designed to auto-
matically judge the machine translation quality (Papineni et
al. 2002). The key point is to compare the similarity between
the results created by machine and the references provided
by human. Specifically, for poem evaluation, we set n-gram
to be 2 (BLEU-2) since most words (dependency) in classi-
cal Chinese poems consist of one or two characters (Yi, Li,
and Sun 2016) and for the similar reason, we use BLEU-3
and BLEU-4 to evaluate Obama speech generation perfor-
mance. In our work, we use the whole test set as the refer-
ences instead of trying to find some references for the fol-
lowing line given the previous line (He, Zhou, and Jiang
2012). The reason is in generation tasks we only provide
some positive examples and then let the model catch the pat-
terns of them and generate new ones. In addition to BLEU,
we also choose poem generation as a case for human judge-
ment since a poem is a creative text construction and human
evaluation is ideal. Specifically, we mix the 20 real poems

4
http://homepages.inf.ed.ac.uk/mlap/Data/EMNLP14/

5
https://github.com/samim23/obama-rnn

Table 2: Chinese poem generation performance comparison.
Algorithm Human score p-value BLEU-2 p-value

MLE 0.4165 0.0034 0.6670
< 10−6

SeqGAN 0.5356 0.7389
Real data 0.6011 0.746

Table 3: Obama political speech generation performance.
Algorithm BLEU-3 p-value BLEU-4 p-value

MLE 0.519
< 10−6 0.416 0.00014SeqGAN 0.556 0.427

Table 4: Music generation performance comparison.
Algorithm BLEU-4 p-value MSE p-value

MLE 0.9210
< 10−6 22.38 0.00034SeqGAN 0.9406 20.62

and 20 each generated from SeqGAN and MLE. Then 70
experts on Chinese poems are invited to judge whether each
of the 60 poem is created by human or machines. Once re-
garded to be real, it gets +1 score, otherwise 0. Finally, the
average score for each algorithm is calculated.

The experiment results are shown in Tables 2 and 3, from
which we can see the significant advantage of SeqGAN over
the MLE in text generation. Particularly, for poem composi-
tion, SeqGAN performs comparably to real human data.

Music Generation
For music composition, we use Nottingham6 dataset as our
training data, which is a collection of 695 music of folk tunes
in midi file format. We study the solo track of each music. In
our work, we use 88 numbers to represent 88 pitches, which
correspond to the 88 keys on the piano. With the pitch sam-
pling for every 0.4s7, we transform the midi files into se-
quences of numbers from 1 to 88 with the length 32.

To model the fitness of the discrete piano key patterns,
BLEU is used as the evaluation metric. To model the fitness
of the continuous pitch data patterns, the mean squared error
(MSE) (Manaris et al. 2007) is used for evaluation.

From Table 4, we see that SeqGAN outperforms the MLE
significantly in both metrics in the music generation task.

Conclusion
In this paper, we proposed a sequence generation method,
SeqGAN, to effectively train generative adversarial nets for
structured sequences generation via policy gradient. To our
best knowledge, this is the first work extending GANs to
generate sequences of discrete tokens. In our synthetic data
experiments, we used an oracle evaluation mechanism to
explicitly illustrate the superiority of SeqGAN over strong
baselines. For three real-world scenarios, i.e., poems, speech
language and music generation, SeqGAN showed excellent
performance on generating the creative sequences. We also
performed a set of experiments to investigate the robustness
and stability of training SeqGAN. For future work, we plan
to build Monte Carlo tree search and value network (Silver et
al. 2016) to improve action decision making for large scale
data and in the case of longer-term planning.

6
http://www.iro.umontreal.ca/˜lisa/deep/data

7
http://deeplearning.net/tutorial/rnnrbm.html

http://homepages.inf.ed.ac.uk/mlap/Data/EMNLP14/
https://github.com/samim23/obama-rnn
http://www.iro.umontreal.ca/~lisa/deep/data
http://deeplearning.net/tutorial/rnnrbm.html
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Appendix
In Section 1, we present the step-by-step derivation of Eq. (6) in the paper. In Section 2, the detailed realization of the
generative model and the discriminative model is discussed, including the model parameter settings. In Section 3, an interesting
ablation study is provided, which is a supplementary to the discussions of the synthetic data experiments.

Proof for Eq. (6)
For readability, we provide the detailed derivation of Eq. (6) here by following (Sutton et al. 1999).

As mentioned in SEQUENCE GENERATIVE ADVERSARIAL NETS section, the state transition is deterministic after an action
has been chosen, i.e. δas,s′ = 1 for the next state s′ = Y1:t if the current state s = Y1:t−1 and the action a = yt; for other next
states s′′, δas,s′′ = 0. In addition, the intermediate rewardRas is 0. We re-write the action value and state value as follows:

QGθ (s = Y1:t−1, a = yt) = Ras +
∑
s′∈S

δass′V
Gθ (s′) = V Gθ (Y1:t) (14)

V Gθ (s = Y1:t−1) =
∑
yt∈Y

Gθ(yt|Y1:t−1) ·QGθ (Y1:t−1, yt) (15)

For the start state s0, the value is calculated as

V Gθ (s0) = E[RT |s0, θ] (16)

=
∑
y1∈Y

Gθ(y1|s0) ·QGθ (s0, y1),

which is the objective function J(θ) to maximize in Eq. (1) of the paper.
Then we can obtain the gradient of the objective function, defined in Eq. (1), w.r.t. the generator’s parameters θ:

∇θJ(θ)

= ∇θV Gθ (s0) = ∇θ[
∑
y1∈Y

Gθ(y1|s0) ·QGθ (s0, y1)]

=
∑
y1∈Y

[∇θGθ(y1|s0) ·QGθ (s0, y1) +Gθ(y1|s0) · ∇θQGθ (s0, y1)]

=
∑
y1∈Y

[∇θGθ(y1|s0) ·QGθ (s0, y1) +Gθ(y1|s0) · ∇θV Gθ (Y1:1)]

=
∑
y1∈Y

∇θGθ(y1|s0) ·QGθ (s0, y1) +
∑
y1∈Y

Gθ(y1|s0)∇θ[
∑
y2∈Y

Gθ(y2|Y1:1)Q
Gθ (Y1:1, y2)]

=
∑
y1∈Y

∇θGθ(y1|s0) ·QGθ (s0, y1) +
∑
y1∈Y

Gθ(y1|s0)
∑
y2∈Y

[∇θGθ(y2|Y1:1) ·QGθ (Y1:1, y2)

+Gθ(y2|Y1:1)∇θQGθ (Y1:1, y2)]

=
∑
y1∈Y

∇θGθ(y1|s0) ·QGθ (s0, y1) +
∑
Y1:1

P (Y1:1|s0;Gθ)
∑
y2∈Y

∇θGθ(y2|Y1:1) ·QGθ (Y1:1, y2)

+
∑
Y1:2

P (Y1:2|s0;Gθ)∇θV Gθ (Y1:2)

=

T∑
t=1

∑
Y1:t−1

P (Y1:t−1|s0;Gθ)
∑
yt∈Y

∇θGθ(yt|Y1:t−1) ·QGθ (Y1:t−1, yt)

= EY1:t−1∼Gθ [
∑
yt∈Y

∇θGθ(yt|Y1:t−1) ·QGθ (Y1:t−1, yt)], (17)

which is the result in Eq. (6) of the paper.

Model Implementations
In this section, we present a full version of the discussed generative model and discriminative model in our paper submission.



The Generative Model for Sequences We use recurrent neural networks (RNNs) (Hochreiter and Schmidhuber 1997) as the
generative model. An RNN maps the input embedding representations x1, . . . ,xT of the sequence x1, . . . , xT into a sequence
of hidden states h1, . . . ,hT by using the update function g recursively.

ht = g(ht−1,xt) (18)

Moreover, a softmax output layer z maps the hidden states into the output token distribution

p(yt|x1, . . . , xt) = z(ht) = softmax(c+ V ht), (19)

where the parameters are a bias vector c and a weight matrix V .
The vanishing and exploding gradient problem in backpropagation through time (BPTT) issues a challenge of learning long-

term dependencies to recurrent neural network (Goodfellow, Bengio, and Courville 2016). To address such problems, gated
RNNs have been designed based on the basic idea of creating paths through time that have derivatives that neither vanish nor
explode. Among various gated RNNs, we choose the Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997)
to be our generative networks with the update equations:

ft = σ(Wf · [ht−1,xt] + bf ),
it = σ(Wi · [ht−1,xt] + bi),
ot = σ(Wo · [ht−1,xt] + bo),
st = ft � st−1 + it � tanh(Ws · [ht−1,xt] + bs),
ht = ot � tanh(st),

(20)

where [h,x] is the vector concatenation and � is the elementwise product.
For simplicity, we use the standard LSTM as the generator, while it is worth noticing that most of the RNN variants, such as

the gated recurrent unit (GRU) (Cho et al. 2014) and soft attention mechanism (Bahdanau, Cho, and Bengio 2014), can be used
as a generator in SeqGAN.

The standard way of training an RNN Gθ is the maximum likelihood estimation (MLE), which involves minimizing the neg-
ative log-likelihood −

∑T
t=1 logGθ(yt = xt| {x1, . . . , xt−1}) for a generated sequence (y1, . . . , yT ) given input (x1, . . . , xT ).

However, when applying MLE to generative models, there is a discrepancy between training and generating (Bengio et al. 2015;
Huszár 2015), which motivates our work.

The Discriminative Model for Sequences Deep discriminative models such as deep neural network (DNN) (Veselỳ et al.
2013), convolutional neural network (CNN) (Kim 2014) and recurrent convolutional neural network (RCNN) (Lai et al. 2015)
have shown a high performance in complicated sequence classification tasks. In this paper, we choose the CNN as our dis-
criminator as CNN has recently been shown of great effectiveness in text (token sequence) classification (Zhang and LeCun
2015).

As far as we know, except for some specific tasks, most discriminative models can only perform classification well for a whole
sequence rather than the unfinished one. In case of some specific tasks, one may design a classifier to provide intermediate
reward signal to enhance the performance of our framework. But to make it more general, we focus on the situation where
discriminator can only provide final reward, i.e., the probability that a finished sequence was real.

We first represent an input sequence x1, . . . , xT as:

E1:T = x1 ⊕ x2 ⊕ . . .⊕ xT , (21)

where xt ∈ Rk is the k-dimensional token embedding and ⊕ is the vertical concatenation operator to build the matrix E1:T ∈
RT×k. Then a kernel w ∈ Rl×k applies a convolutional operation to a window size of l words to produce a new feature map:

ci = ρ(w ⊗ Ei:i+l−1 + b), (22)

where ⊗ operator is the summation of elementwise production, b is a bias term and ρ is a non-linear function. We can use
various numbers of kernels with different window sizes to extract different features. Specifically, a kernel w with window size
l applied to the concatenated embeddings of input sequence will produce a feature map

c = [c1, . . . , cT−l+1]. (23)

Finally we apply a max-over-time pooling operation over the feature map c̃ = max {c} and pass all pooled features from
different kernels to a fully connected softmax layer to get the probability that a given sequence is real.

We perform an empirical experiment to choose the kernel window sizes and numbers as shown in Table 5. For different tasks,
one should design specific structures for the discriminator.

To enhance the performance, we also add the highway architecture (Srivastava, Greff, and Schmidhuber 2015) before the
final fully connected layer:

τ = σ(WT · c̃+ bT ),
C̃ = τ ·H(c̃,WH) + (1− τ ) · c̃,

(24)



Table 5: Convolutional layer structures.
Sequence length (window size, kernel numbers)

20
(1, 100),(2, 200),(3, 200),(4, 200),(5, 200)

(6, 100),(7, 100),(8, 100),(9, 100),(10, 100)
(15, 160),(20, 160)

32
(1, 100),(2, 200),(3, 200),(4, 200),(5, 200)

(6, 100),(7, 100),(8, 100),(9, 100),(10, 100)
(16, 160),(24, 160),(32, 160)

whereWT , bT andWH are highway layer weights, H denotes an affine transform followed by a non-linear activation function
such as a rectified linear unit (ReLU) and τ is the “transform gate” with the same dimensionality as H(c̃,WH) and c̃. Finally,
we apply a sigmoid transformation to get the probability that a given sequence is real:

ŷ = σ(Wo · C̃ + bo) (25)

whereWo and bo is the output layer weight and bias.
When optimizing discriminative models, supervised training is applied to minimize the cross entropy, which is widely used

as the objective function for classification and prediction tasks:

L(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ), (26)

where y is the ground truth label of the input sequence and ŷ is the predicted probability from the discriminative models.

More Ablation Study
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Figure 4: Negative log-likelihood performance with different pre-training epochs before the adversarial training. The vertical
dashed lines represent the start of adversarial training.

In the DISCUSSION subsection of SYNTHETIC DATA EXPERIMENTS section of our paper, we discussed the ablation study
of three hyperparameters of SeqGAN, i.e., g-steps, d-steps and k epoch number. Here we provide another ablation study which
is instructive for the better training of SeqGAN.

As described in our paper, we start the adversarial training process after the convergence of MLE supervised pre-training.
Here we further conduct experiments to investigate the performance of SeqGAN when the supervised pre-training is insufficient.

As shown in Figure 4, if we pre-train the generative model with conventional MLE methods for only 20 epochs, which is far
from convergence, then the adversarial training process improves the generator quite slowly and unstably. The reason is that
in SeqGAN, the discriminative model provides reward guidance when training the generator and if the generator acts almost
randomly, the discriminator will identify the generated sequence to be unreal with high confidence and almost every action
the generator takes receives a low (unified) reward, which does not guide the generator towards a good improvement direction,
resulting in an ineffective training procedure. This indicates that in order to apply adversarial training strategies to sequence
generative models, a sufficient pre-training is necessary.
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