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Abstract

Pavlovian fear conditioning is widely used as a laboratory model of associative learning in human and nonhuman

species. In this model, an organism is trained to predict an aversive unconditioned stimulus from initially neutral

events (conditioned stimuli, CS). In humans, fear memory is typically measured via conditioned autonomic responses

or fear-potentiated startle. For the latter, various analysis approaches have been developed, but a systematic

comparison of competing methodologies is lacking. Here, we investigate the suitability of a model-based approach to

startle eyeblink analysis for assessment of fear memory, and compare this to extant analysis strategies. First, we build

a psychophysiological model (PsPM) on a generic startle response. Then, we optimize and validate this PsPM on three

independent fear-conditioning data sets. We demonstrate that our model can robustly distinguish aversive (CS1) from

nonaversive stimuli (CS-, i.e., has high predictive validity). Importantly, our model-based approach captures fear-

potentiated startle during fear retention as well as fear acquisition. Our results establish a PsPM-based approach to

assessment of fear-potentiated startle, and qualify previous peak-scoring methods. Our proposed model represents a

generic startle response and can potentially be used beyond fear conditioning, for example, to quantify affective startle

modulation or prepulse inhibition of the acoustic startle response.

Descriptors: Fear-potentiated startle, Fear conditioning, Electromyography, Psychophysiological model, Affective startle modulation

Predicting threat from environmental events is a fundamental ability

of humans and many nonhuman species, and engages species-

specific defensive responses to facilitate survival. To investigate

such fear memory, classical (Pavlovian) fear conditioning para-

digms are commonly used, in which an initially neutral conditioned

stimulus (CS) predicts an upcoming aversive unconditioned stimu-

lus (US). Besides addressing a basic associative learning mecha-

nism, such paradigms are also thought to model psychiatric

conditions in humans such as posttraumatic stress disorder (PTSD)

and other anxiety disorders (Lissek et al., 2005; VanElzakker,

Dahlgren, Davis, Dubois, & Shin, 2014). Consequently, fear condi-

tioning is used to develop interventions for the prevention or erasure

of pathological fear (Carmichael & Lockhart, 2012; Grillon, Cordo-

va, Morgan, Charney, & Davis, 2004; Reist, Duffy, Fujimoto, &

Cahill, 2001; Schiller et al., 2010). Such investigations require an

ability to detect subtle differences in fear memory strength. In

rodent species, fear conditioning with unescapable foot shock

results in freezing behavior that is easy to quantify (LeDoux, 1998).

In contrast, humans do not exhibit overt freezing. Instead, human

fear memory is often assessed via activity of the autonomic nervous

system as measured with skin conductance response (SCR; Bach,

Daunizeau, Friston, & Dolan, 2010; Staib, Castegnetti, & Bach,

2015), heart period response (HPR; Castegnetti et al., 2016), or

pupil size (Kluge et al., 2011; Korn, Staib, Tzovara, Castegnetti, &

Bach, 2016; Reinhard, Lachnit, & K€onig, 2006). Yet, SCR are sus-

ceptible to internal emotional, cognitive, and motor processes unre-

lated to fear memory and typically require long intertrial intervals

(ITIs) because of slowness of the peripheral signal (Boucsein, 2012;

Hamm & Vaitl, 1996). Similarly, HPR may reflect motor prepara-

tion independent of stimulus valence (Hamm & Vaitl, 1996).

In light of these limitations, an interesting approach for assess-

ing fear memory is to measure an increase of the innate startle

response, a phenomenon termed fear-potentiated startle (Blumen-

thal et al., 2005; J. S. Brown, Kalish, & Farber, 1951; Grillon,

Ameli, Woods, Merikangas, & Davis, 1991; VanElzakker et al.,

2014; Vanman, Boehmelt, Dawson, & Schell, 1996). In contrast to

autonomic indices, this measure is less prone to nonspecific arous-

al, specifically measures aversive (rather than appetitive) learning

(Lipp, Sheridan, & Siddle, 1994), and allows fear memory quantifi-

cation across the life span (Grillon & Baas, 2003). Critically, it also

affords direct comparison to many nonhuman species (Ameli, Ip,
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& Grillon, 2001; Grillon & Baas, 2003). Thus, unlike freezing or

various autonomic indices, it comprises a truly translational mea-

sure and can be assessed even in simple organisms such as Aplysia
(Carew, Walters, & Kandel, 1981).

In general, the startle reflex is a fast defensive response to an

unexpected intense auditory, visual, or haptic stimulus, and appears

to be aimed at protecting an organism from an imminent blow to

the head (Yeomans, Li, Scott, & Frankland, 2002). It results in a

postural change and, particularly easy to measure, an eyeblink

response (Lang, Bradley, & Cuthbert, 1997). While this response

pattern is rather stereotypical, its vigor appears adapted to trade off

costs and benefits (Bach, 2015), leading to a higher startle magni-

tude when an attack is evaluated to be more likely such as during

the time point of an expected US. To quantify fear learning in

humans, one usually uses electromyography (EMG) to record the

response of the musculus orbicularis oculi to loud tones with fast

rise times, presented at anticipated US onset (Blumenthal et al.,

2005), which we term here startle eyeblink response (SEBR).

To quantify SEBR magnitude, previous studies have used mea-

sures of area under the curve, peak amplitude, or peak latency of a

preprocessed EMG (Blumenthal et al., 2005). Crucially, however,

there is a lack of consensus in selecting the preprocessing steps,

most reliable target measures, and the time window to search for a

response (Blumenthal et al., 2005; Grillon et al., 1991). Thus, it

often appears that analysis settings depend on the laboratory or

even on experiment-specific considerations, rather than on system-

atic investigations of robustness and sensitivity to detect differ-

ences between SEBR to CS1 and CS-.

The goal of this study was, therefore, to fill this lacuna and to

systematically investigate the sensitivity of different strategies for

SEBR analysis. Importantly, each analysis scheme makes (implicit)

assumptions on how the SEBR is generated, but uses only a limited

number of data features to quantify SEBR, such as peak amplitude.

We have previously demonstrated for SCR, HPR, respiratory mea-

sures, and pupil size responses that such implicit assumptions can

be made explicit in a psychophysiological model (PsPM). This

model specifies, in mathematical form, the expected shape of the

response (Bach et al., 2010; Bach, Flandin, Friston, & Dolan, 2009;

Bach, Gerster, Tzovara, & Castegnetti, 2016; Korn & Bach 2016;

Paulus, Castegnetti, & Bach, 2016). The shared variance between

expected response with unit amplitude and actual data, assessed,

for example, in a regression model, can then be used to quantify

response magnitude. This approach makes use of the entire data

time series and theoretically affords more robust fear memory

assessment—something we have shown empirically for SCR (Bach

et al., 2010; Staib et al., 2015), HPR (Castegnetti et al., 2016), and

pupil size (Korn et al., 2016). Here, we seek to create a model for

SEBR in the existing PsPM framework.

To this end, we assume that SEBR is the output of a linear time

invariant system, which is characterized by its impulse response

function. We investigate whether SEBR has a stereotypical shape

and timing, and create a PsPM for SEBR. In a second step, we used

an independent fear retention data set in which CS1/CS- learning

was well established, to examine whether the SEBR amplitude, esti-

mated by inversion of this PsPM, differentiates between CS1 and a

CS- (which we term predictive validity; Bach & Friston, 2013). In

line with previous SCR approaches (Bach, Friston, & Dolan, 2013),

the method was then optimized with respect to predictive validity,

and validated on an independent fear retention and an additional fear

acquisition data set. At the same time, we compare the predictive

validity of our model-based approach to four established SEBR

analysis methods using Bayesian model comparison as previously

established (Bach, 2014). To put these methods into psychophysio-

logical context, we finally compare SEBR with the predictive validi-

ty afforded by SCR and HPR.

Method

Design and Participants

Experiment 1 was designed for the development of a quantitative

SEBR model, such that we measured SEBR in the absence of any

other manipulation. Experiment 2 used a fear-potentiated startle

design to determine the optimal model structure and preprocessing

steps for inferring fear retention under extinction from SEBR.

Experiment 3 served as independent validation of results from

Experiment 2. In Experiment 4, we sought to demonstrate that our

model-based approach can be used to quantify fear acquisition.

Experiment 2–4 used visual stimuli as CS, and an unpleasant elec-

tric stimulation as US.

Four independent samples were recruited from the student and

general population in Zurich: 20 participants (13 females, age

range 19–33 years, mean age 6 SD: 22.84 6 3.35 years) for Experi-

ment 1, 23 participants (16 females, 19–33 years, 25.6 6 4.22

years) for Experiment 2, 35 participants (23 females, 18–31 years,

23.3 6 1 years) for Experiment 3, and 18 participants (nine

females, 19–33 years, 23.12 6 3.3 years) for Experiment 4. One

participant in Experiment 1 and one in Experiment 3 did not com-

plete the experiment and were excluded. Three participants from

Experiment 2, four from Experiment 3, and three from Experiment

4 were excluded because of EMG, SCR, or US electrode detach-

ment during the experiment. Experiment 3 included a startle group

(15 participants), and a no-startle group (15 participants). We

sought to demonstrate the robustness of our method, and therefore

did not exclude any nonresponders (no/low EMG response to star-

tle stimuli) from data analysis. All participants gave written

informed consent. The experiment was conducted in accordance

with the Declaration of Helsinki, and its study protocol, including

the form of taking consent, was approved by the governmental

ethics committee (Kantonale Ethikkomission Zurich).

Task Procedure

In Experiment 1 (data set code: SMD), we presented 25 acoustic

startle probes randomly with an ITI of 7 to 11 s (mean 9 s) while

participants fixated a white cross on a black computer screen.

Experiment 2 (data set code: DoxMemP) was designed to mea-

sure fear retention under extinction. During an acquisition phase,

participants were presented with a 4-s CS1 or CS- (red or blue

screen background) in which 50% of CS1 trials coterminated with

a 0.5-s electric stimulation as US. The color/CS association was

balanced across participants, and participants were not instructed

about the identity of CS1 and CS-. In total, 180 trials at an ITI of 7

to 11 s (mean 9 s) were presented during the acquisition phase.

During an extinction session 1 week later, participants were pre-

sented with 20 CS1 and 20 CS- in randomized order, but without

any US. On every extinction trial, a startle probe occurred at

expected US onset (i.e., 3.5 s after CS onset). Fear memory expres-

sion decays under extinction such that the number of trials to ana-

lyze must strike a balance between excluding trials with decayed

responses and minimizing measurement noise, which requires

more trials. Previous studies using SEBR to assess fear extinction

have typically reported a reduction in the strength of fear memories
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after 2–6 trials (Andreatta & Pauli, 2015; L. A. Brown, LeBeau,

Chat, & Craske, 2016; Lindner et al., 2015). Here, we used the first

5 CS1 and 5 CS- trials of Experiment 2 and 3 for building and val-

idating our model. We additionally include an exploratory post hoc

analysis to investigate the performance of our model as a function

of the number of included trials.

Experiment 3 (data set code: FR) was used to assess fear memo-

ry under extinction similar to Experiment 2 but with minor differ-

ences during the extinction phase. Fear retention was evaluated 1

day after acquisition. Six CS1/CS- were presented together with a

startle probe 3.8 s after CS onset. In line with Experiment 2, we

analyzed five CS1 and five CS- trials to differentiate CS1/CS-.

We included an additional group of participants in which no startle

probes were presented, neither during retention nor during acquisi-

tion, such that we could analyze SCR and HPR during retention.

Experiment 4 (data set code: SS) investigated fear memory dur-

ing acquisition with a design similar to the acquisition phase of

Experiment 2. Eighty trials were presented with a random ITI of 7

to 11 s (mean 9 s). CS1 coterminated with the US on 25% of the

trials. On 25% of the CS1 (always nonreinforced) and 25% of the

CS- trials, a startle sound was presented at the anticipated US onset

time (i.e., 3.5 s after of CS1 onset).

Stimuli and Apparatus

In accordance with guidelines from Blumenthal (1988) and Blu-

menthal et al. (2005), white noise sounds of 50 ms length with< 2

ms onset ramp and �100 dB sound pressure were used as startle

probes and delivered via headphones (Sennheiser HD 201, Germa-

ny), using the PC’s in-built sound card (Realtek high definition

audio) and an external sound amplifier (K4102, Velleman, Bel-

gium). Sound volume was determined offline using a white noise

sound of 2 s duration and a sound level meter (SL-200, Voltcraft,

Germany). For Experiment 1–2, sound onset was controlled by

recording the output of the sound card together with EMG, and all

analyses relate to the measured startle sound onset. For Experiment

3–4, we ran the experiment scripts post hoc and recorded the output

of the sound card together with event markers, for 300 and 120

sounds, respectively. We then corrected the event markers that

were recorded together with the EMG by the minimum measured

sound onset delay per experiment. This reflects a realistic scenario

in many laboratories where only event markers but not startle

sounds are measured together with EMG.

In Experiment 2–4, the US was a 500-ms train of 250 square

pulses with individual pulse width of 1 ms (Experiment 2 and 3) or

0.2 ms (Experiment 4). The US was delivered via a pin-cathode/

ring-anode configuration attached on the participant’s right forearm

using a constant current stimulator (Digitimer DS7A, Digitimer

Ltd, UK). US intensity was calibrated for each individual to a

clearly uncomfortable level by adapting the current amplitudes in

three phases before the start of the experiment. First, current was

increased from 0.5 mA in steps of 0.5 mA to a level where the par-

ticipant reported that the stimulus was clearly painful. Next, partici-

pants received 14 randomly selected stimulations below the pain

threshold while the participant rated perceived intensity on a 0 (no
shock detected) to 100 (painful shock) scale. Finally, the final

intensity was set just below the reported pain threshold to a clearly

unpleasant level (intensity mean 6 SD: 2.82 6 1.64 mA, 3.0 6 1.50

mA, and 3.2 6 1.44 mA for Experiment 2–4, respectively).

Eyeblink responses were measured via EMG activity of the

periorbital region of the musculus orbicularis oculi using a pair of

4 mm Ag/AgCl cup electrodes. One of them was placed

approximately 10 mm below the lower eyelid in line with the pupil

in forward gaze and the other on the external canthus, at a distance

of approximately 10 mm from the first (Blumenthal et al., 2005;

Grillon et al., 1991). EMG signals were amplified using a Coul-

bourn high-gain bioamplifier (V75-04; Coulbourn Instruments,

Whitehall, PA) with analogue band-pass filter (13 Hz–1 kHz), an

amplifier coupling of 1 Hz, and adjustable gain. The output signal

was digitized at 1 kHz using a Dataq card (DI-149, Dataq Inc.,

Akron, OH) and recorded with Windaq (Dataq Inc.) software for

the entire duration of the experiment.

In the acquisition phase of Experiment 2–4, and in the no-startle

group in the retention phase of Experiment 3, we recorded skin

conductance from the thenar/hypothenar of participants’ nondomi-

nant hand, using 8 mm Ag/AgCl cup electrodes (EL258, Biopac

Systems Inc., Goleta, CA) and 0.5% NaCl gel (GEL101, Biopac;

Hygge & Hugdahl, 1985). Skin conductance signal was amplified

with an SCR coupler/amplifier (V71-23, Coulbourn Instruments).

Further, we recorded electrocardiogram (ECG) through four

45 mm, pregelled Ag/AgCl adhesive electrodes, attached to the

limbs. Prior to the experiment, the experimenter chose, for each

participant, the lead (I, II, III) or augmented lead (aVR, aVL, aVF)

configuration that provided the highest R spike. ECG was pream-

plified and 50 Hz notch-filtered with a Colbourn isolated five-lead

amplifier (LabLinc V75-11, Coulbourn Instruments).

Data Preprocessing

All data were analyzed in MATLAB (version R2013b; Math-

Works, Natick, MA) with PsPM 3.0 (http://pspm/sourceforge.net)

and custom code that is available from the authors.

Continuous EMG data were initially filtered using a 4th order

Butterworth band-pass filter with cutoff frequency of 28 Hz and

250 Hz, following previous literature (Barker, Reeb-Sutherland, &

Fox, 2014). Mains noise was removed with a 50 Hz notch filter.

Filtered continuous EMG signals were rectified and smoothed

using a 4th order Butterworth low-pass filter with a time constant

of 3 ms corresponding to a cutoff frequency of 53.05 Hz (Blumen-

thal et al., 2005). In subsequent steps, we optimized initial prepro-

cessing filter frequencies on data from Experiment 2.

Skin conductance data were filtered with a bidirectional Butter-

worth 1st order filter and cutoff frequencies of 0.0159 and 5 Hz,

and downsampled to 10 Hz. They were analyzed with a nonlinear

model (dynamic causal model, DCM) of the anticipatory SCR.

This procedure infers activity of the sympathetic nervous system,

given changes in the recorded SCR signal (Bach et al., 2010), and

provides an estimate of sympathetic arousal on a trial-by-trial level

(Bach et al., 2010; Staib et al., 2015). We used only those CS1 tri-

als that were not paired with a US (CS1/US- trials) or startle

sound, to avoid contamination by the electric stimulus or by motion

artifacts. To put this method into context, we also computed a

model-free peak-scoring measure of the anticipatory SCR as imple-

mented in the PsPM function scr_peakscore (Boucsein, 2012). We

defined a window of 1 to 4.5 s after CS onset, within which we

searched for the onset of a SCR, similar to our previous work (Staib

et al., 2015). It is recommended to only analyze responses with a

minimum onset latency of 1 s (Boucsein, 2012), thus motivating

the start of this window. The end of this window, 1 s after the antic-

ipated US onset, ensures that SCR to the US omission are not taken

into account. After finding the onset of a SCR, the actual SCR

peak was identified within a second window, starting from 0.5 to

5 s after the SCR onset, in keeping with standard recommendations

(Boucsein, 2012).
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Preprocessing of HPR data. QRS complexes were identified

semiautomatically in the ECG data through a modified offline ver-

sion (Paulus et al., 2016) of the Pan and Tompkins (1985) real-time

QRS detection. Interbeat intervals were then linearly interpolated

at 10 Hz to create a time series of equidistant time points (Paulus

et al., 2016), which were band-pass filtered with a bidirectional

Butterworth filter (0.015–0.5 Hz). HPR were analyzed with a

model-based approach. We implemented a single-component

canonical response function (i.e., conserved across subjects) in a

general linear convolution model, in which the average response

amplitude is estimated as a free parameter (Castegnetti et al.,

2016). Reconstructed HPR were used to identify the maximum

signed deviation from baseline in response to CS1 and CS-, within

a window of 0 to 11 s poststimulus onset. These estimates were

contrasted in order to quantify fear memory, similar to our previous

work (Castegnetti et al., 2016).

SEBR Model Specification

Linear time-invariant systems. We assumed that the SEBR y(t)

is the output of a linear time-invariant (LTI) system with the defin-

ing properties linearity and time invariance. By linearity, input and

output are linearly mapped so the responses to several inputs can

be obtained by summing the responses to individual inputs. Time

invariance means that the output does not explicitly depend on

time. In principle, linearity ensures pure summation of two overlap-

ping inputs, which may be unrealistic for startle response. Howev-

er, because startle responses are not measured in quick succession,

violations of this assumption bear little relevance for our model.

We note that this could be relevant if one sought to apply the model

to prepulse inhibition paradigms in which the prepulse itself can

sometimes elicit startle responses (Blumenthal et al., 2005).

Mathematically, the output y(t) of a LTI system can be fully

described by convolving input x(t) with the system’s response func-

tion h(t) and can be written as

y tð Þ5x tð Þ � h tð Þ5
ð1

0

x t2 sð Þ h sð Þ ds

Here, we assume x(t) is an instantaneous (delta) input at startle

sound onset. This implies that the SEBR is constant between trials.

We sought to develop empirically h(t), the response function (RF)

for SEBR.

Models. Data from Experiment 1 were used to construct the RF of

the presumed LTI system. We extracted epochs of 500-ms duration

after the onset of each startle sound. Individual responses from all

participants were entered into principal component analysis (PCA).

The first principal component (PC) was approximated with a gam-

ma distribution with shape parameter k, scale parameter h, time

onset x0, and amplitude A. The best-fitting parameters for this gam-

ma distribution were determined by minimizing the residual sum of

squares using the Nelder-Mead simplex direct search algorithm

implemented in the MATLAB function fminsearch (Lagarias,

Reeds, Wright, & Wright, 1998).

y05
A

hkC kð Þ
x2x0ð Þk21e2

x2x0ð Þ
h ;

We term this the canonical startle eyeblink response function

(SEBRF) and formalize it as model M1 (Figure 1). The second PC

resembled a time derivative of the first component. Rather than

approximating the second component, we directly computed the

time derivate of the gamma response function (SEBRF’), which

was included together with the SEBRF into a model M2, analogous

to previous models for SCR (Bach et al., 2009, 2013), HPR

(Castegnetti et al., 2016; Paulus et al., 2016), respiration (Bach

et al., 2016), and fMRI (Friston et al., 1998). Since the tail of the

first PC component was not well fitted by M1 (Figure 1), we creat-

ed a third model M3 that combined the SEBRF with a Gaussian

function to model the response tail. Additional components of M2

and M3 were orthogonalized to the canonical SEBRF using the

Gram-Schmidt algorithm. The time derivative of the first compo-

nent in model M2 can potentially account for small variations in

the startle latency, as long as they are small compared to the overall

SEBR duration. Larger variations may occur physiologically, or

also because of variations in the precise startle sound onset, which

is often not recorded online. To more explicitly account for such

variation, we created model M4, which was equivalent to model

M1 but with onset latency as a free parameter, to be estimated from

the data.

General linear models. Under the assumption that SEBR are the

output of an LTI system that receives an input with constant shape

and latency but variable amplitude (M1–M3), we can harness

Figure 1. Startle eyeblink response (SEBR) for Experiment 1. a: SEBR (black line), averaged across all trials and participants, together with the first

and second principal components (PCs). The second PC resembles the derivative of first PC. b: Fitted gamma response function and its time derivative

(SEBRF and SEBRF’; M2) of the first PC.
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general linear convolution modeling (GLM) to estimate the ampli-

tude of the input. This GLM can be written as

Y5bX1e;

where X is design matrix in which each column is obtained by con-

volving impulse functions at startle onset with each component of

the RF. Y is the vector of observations (time series data), b is a vec-

tor of input amplitude parameters, and � is the error that is assumed

to be independent and identically distributed. The maximum-

likelihood amplitude estimates b̂ are computed using the Moore-

Penrose pseudoinverse, implemented in MATLAB function pinv.

We can then compute the estimates for different experimental con-

ditions (CS1 and CS- mean startle amplitude in our case). In case

of several basis functions, such as model M2 and M3, we recon-

structed the estimated SEBR from the entire basis set and quanti-

fied startle response amplitude as the signed absolute variation

from zero over a time window of 500 ms, analogous to previous

approaches (Bach et al., 2013). GLMs were computed by collaps-

ing all trials for each condition into one (M1) or two (M2/M3)

regressors. In an additional approach M2ST, we accounted for

trial-by-trial fluctuations in startle latency by modeling each trial

with two unique regressors.

Dictionary-matching algorithm. To invert model M4, startle

latency had to be estimated, which obviates a GLM approach. We

finessed this problem by using a dictionary-matching algorithm.

Each element in our dictionary specified a unit startle response

described by model M1, at all potentially observable latencies giv-

en the discrete time resolution. We considered latencies between

x0 2 0.02 s to x0 1 0.13 s for Experiment 2. For Experiment 3–4,

we expanded this window by twice the standard deviation of the

measured sound onset delay. The dictionary was then multiplied

with the data, and the element that maximized the signed inner

product with the data was entered as regressor into a GLM and

used to estimate the SEBR amplitude for all regressors concurrent-

ly. We either specified one dictionary for all trials per condition in

the entire experiment (M4) or one dictionary per trial (M4ST).

Filter Optimization

Filter settings can have an impact on model performance (Bach

et al., 2013; Staib et al., 2015). If the true response function is

known, the optimal filter can be determined using the matched fil-

ter theorem. As this is not the case here, we take an empirical

approach to filter optimization and use Bayesian model comparison

to evaluate predictive validity under different filter parameters. We

varied the high-pass cutoff frequency between 10 to 90 Hz and the

low-pass cutoff frequency between 200 to 490 Hz in steps of 10

Hz. For each combination of high- and low-pass cutoff frequencies,

we recomputed response functions and reestimated CS1 and CS-

SEBR amplitudes. We used Experiment 2 to optimize our filter set-

tings and independently validated this on data from Experiment 3

and 4.

Normalization

Within-subject normalization of CS1 and CS- estimates has been

shown to increase predictive validity in SCR analysis, as this

reduces the impact of participants with high between-trials variance

at the group level (Staib et al., 2015). In order to test the effect of

such normalization, we computed single-trial estimates of SEBR

using our model-based approach (model M4ST) and all peak-

scoring methods, and z-scored the estimates within each partici-

pant, across CS1 and CS- trials. We then computed the mean dif-

ference CS1/CS- from the normalized scores, per participant.

Unless otherwise stated, we will discuss results of nonnormalized

estimates of the SEBR.

Model-Free Methods (Peak-Scoring)

We compared our model to four existing peak-scoring methods

from the literature, developed and optimized by several research

groups. For the first method (we term this B1 from Barker et al.,

2014), we band-pass filtered EMG data with a 4th order Butter-

worth filter between 28 Hz and 250 Hz, followed by notch filtering

to remove 50 Hz harmonics noise (Barker et al., 2014). Rectified

signals were smoothed using a 20-ms moving average. We then

computed the maximum startle amplitude between 20 to 120 ms

after startle onset and baseline corrected it using the average EMG

activity within a 20-ms time window prior to the onset of the startle

stimulus (Barker et al., 2014).

The second peak-scoring method was adapted from Bradford

et al. (2014; termed here Br). EMG data were high-pass filtered

using a 4th order Butterworth filter with cutoff frequency 28 Hz.

The filtered signals were rectified and smoothed using another 4th

order 30 Hz cutoff Butterworth low-pass filter. The startle response

was quantified as the maximum amplitude between 20 and 120 ms

after the startle onset relative to the average from a 50-ms preonset

baseline (Bradford, Kaye, & Curtin, 2014).

As a third peak-scoring method, we followed the guidelines

published by Grillon et al. (1991; termed here G1). We used a 4th

order Butterworth filter to band-pass filter EMG data between 1 Hz

and 490 Hz and notch-filtered to remove 50 Hz harmonics. Filtered

data were rectified and smoothed using a 20-ms moving average.

The startle response was quantified as maximum amplitude

between 21 and 120 ms after the startle onset relative to the average

from a 20-ms postsound onset baseline.

The fourth peak-scoring method was adapted from Balderston

et al. (2015; termed G2 as it represents a development of algorithm

G1). We band-pass filtered the EMG signal with a 4th order Butter-

worth filter at 30–490 Hz, and applied a notch filter to remove 50

Hz harmonics. Filtered EMG data were rectified and smoothed

using a 20-ms moving average. The peak startle amplitude for each

trial was measured as the maximum EMG amplitude between 20

and 100 ms after startle sound onset (Balderston et al., 2015).

Methods Comparison

We evaluated the different methods by comparing their ability to

predict CS type (CS1/CS-) from startle amplitude measures on a

group level using Bayesian model comparison. For single-trial

methods (M2ST, M4ST, peak-scoring, SCR), we computed mean

CS1 and CS- scores per participant; all other methods yield just

one value per condition per participant.

To compute model evidence, we used a linear regression model

that predicted CS1 and CS- type (dependent variable) as linear

function of the estimated startle amplitude (independent variable),

together with subject-specific intercepts (across CS type) to

account for between-subjects variability (equivalent to a paired t
test). The model was inverted using MATLAB’s in-built maximum

likelihood function glmfit. The residual sum of squares (RSS) from

this model was then converted into Akaike information criterion

(AIC) by

Modeling startle-blink EMG to assess fear learning 5



AIC5n � log
1

n
RSS

� �
12k;

where n is the number of observations and k is the number of

parameters of the predictive model (Burnham & Anderson, 2004).

Lower values represent higher model evidence. Note that predictive

models from all methods have the same number of parameters. We

computed AIC difference between two models as approximation to

the relative model evidence for a statement that responses to CS1

and CS- are drawn from two distributions with different mean,

rather than one distribution. An absolute AIC difference of greater

than 3 is usually regarded as decisive. This is because, at a classical

a level of a 5 .05, the probability of the data given the null hypoth-

esis is p< .05. Similarly, for an AIC difference larger than 3, the

relative probability of the inferior model given the data is

p< e23 � :05 (Penny, Stephan, Mechelli, & Friston, 2004). In

addition to AIC, we also report paired t tests and the ensuing

Cohen’s d5 tffiffi
n
p (where n is the sample size) for illustration.

Results

Fear Learning During Acquisition

Given that ground truth (i.e., true startle potentiation) is not known,

we relied on assuming that participants learned the CS/US associa-

tion in Experiment 2–4. This assumption was independently con-

firmed from conditioned SCR during the acquisition phase. In all

experiments, anticipatory sympathetic arousal was significantly

higher for CS1 than CS-. This was revealed by paired t tests for

Experiment 2, t(19) 5 3.46, p< .01, and Experiment 4,

t(14) 5 3.31, p< .005. For Experiment 3, a repeated measures anal-

ysis of variance (ANOVA) with factors group and CS revealed a

significant main effect of CS1/CS-, F(1,28) 5 8.02, p< .01, but

no main effect or interaction involving group.

Startle Eyeblink Response Function

Using Experiment 1, we extracted epochs of EMG data between 0

to 500 ms with respect to startle sound onset to model our response

functions. Figure 1a depicts the mean startle response, across all

participants and trials, and the first two PCs. The first and second

PC accounted for 59.7% and 9.3% of the total variance across all

participants and trials, respectively. Hence, the SEBR can be

regarded as rather stereotypical. The second PC resembled a time

derivative of the first component. A gamma response function

(SEBRF; M1) was fitted on the first component. Model M2 con-

tained the SEBRF together with its time derivative (Figure 1b).

Since M1 did not capture the tail of the response sufficiently, we

combined the gamma with a Gaussian function (M3; response

function not shown in figure). The fitted model parameters are

listed in Table 1. The amplitude of the SEBRF, and its derivative

in M2, were left as free parameters that were used to calculate the

SEBR amplitude corresponding to different conditions. Model M4

was the same as M1 but with latency left as additional free

parameter.

Initial Model Comparison During Fear Retention

In Experiment 2, all models were able to distinguish between CS1

and CS-, while in Experiment 3, all models except M2ST and M4

discriminated between CS1 and CS- (Table 2). We used AIC as a

measure of predictive validity where smaller AIC reflects better

discrimination between CS1 and CS-. In Experiment 2, the best

model M2ST performed marginally but not decisively better than

model M4ST (AIC difference 5 2.92), such that both models were

chosen for further analysis. In Experiment 3, where the startle

sound onset was not recorded online, model M4ST performed deci-

sively better than M2ST (Figure 2b; black bars), possibly due to

small variation in startle sound onset not captured in the GLM

inversion of models M1–M3.

Table 1. Model Parameters for Initial and Optimized Filter Band

Model parameters (Before filter optimization)
Model parameters (After filter

optimization)

# Model description k h x0 m r k h x0

M1 SEBRF 2.5320 0.0154 0.0383 – – – – –
M2ST SEBRF 1 SEBRF’ 2.5320 0.0154 0.0383 – – 3.7167 0.0103 0.0340
M3 SEBRF 1 Gaussian function 2.5320 0.0154 0.0383 0.2119 0.1854 – – –
M4ST SEBRF with latency as free parameter) 2.5320 0.0154 0.0383 – – 3.5114 0.0108 0.0345

Note. Initial filter band 28–250 Hz, optimized filter bands 60–480 Hz (M2ST) and 50–470 Hz (M4ST).

Table 2. Paired T Test for the Difference Between CS1/CS- for Different Models with Initial Filter Band (28–250 Hz)

Experiment 2 Experiment 3 Experiment 4

# Model description t(19) p Cohen’s d t(14) p Cohen’s d t(14) p Cohen’s d

M1 SEBRF 4.23 <.001 0.95 2.62 <.05 0.68 2.26 <.05 0.58
M2 SEBRF 1 SEBRF’ 4.78 <.001 1.07 2.57 <.05 0.67 2.26 <.05 0.58
M2ST SEBRF 1 SEBRF’ (single trial) 5.00 <.0001 1.12 1.94 .07 0.50 2.26 <.05 0.58
M3 SEBRF 1 Gaussian function 4.27 <.001 0.95 2.55 <.05 0.66 2.02 .06 0.52
M4 SEBRF with latency as free parameter 4.37 <.001 0.98 1.97 .07 0.51 3.61 <.005 0.93
M4ST SEBRF with latency as free parameter (single trial) 4.68 <.001 1.05 2.89 <.05 0.74 3.08 <.01 0.80

Note. See corresponding Figure 2 for AIC.
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Filter Optimization

Next, we searched for filter settings that maximized predictive

validity of model M2ST and M4ST for Experiment 2. For each fil-

ter setting, the response function was refitted. We varied the high

cutoff frequency between 10–90 Hz and the low cutoff frequency

between 20–490 Hz. Changing the high-pass cutoff frequency had

little impact on the model performance. A band-pass filter with cut-

off frequencies of 60–480 Hz resulted in the best predictive validity

for model M2ST while the best filter band for M4ST was 50–470

Hz. The fitted model parameters are listed in Table 1.

Predictive validity for model M2ST with optimized filter set-

tings for Experiment 2 was decisively improved when compared to

our initial filter settings (AIC difference: 3.24, Figure 2a). Similar-

ly, model M4ST with optimal filter settings discriminated CS1

and CS- decisively better than initial model M4ST (AIC difference

4.79; Figure 2a). Crucially, M2ST and M4ST with optimized filters

did not decisively differ from each other (AIC difference 1.37).

Next, we validated our optimal models M2ST and M4ST in fear

retention Experiment 3. As in the initial comparison, M4ST per-

formed decisively better than all other models (Figure 2b; light

gray bars). Based on its superiority in Experiment 3 and its nonin-

feriority in Experiment 2, we chose model M4ST as the final model

with an optimized filter band of 50–470 Hz.

Model Comparison During Fear Acquisition

To validate the generalizability of our model, we computed the pre-

dictive validity of SEBR to distinguish CS1/CS- during fear acqui-

sition in Experiment 4. We show performance of all our models

with initial filter settings along with optimal filters (Figure 2c;

black bars—initial filter settings, and gray bars—optimized filter

settings). M4ST again performed decisively better than model

M2ST and all other models except model M4, which was decisive-

ly better than all other model-based methods.

Comparison with Peak-Scoring Methods

Next, we compared predictive validity of M4ST with four different

peak-scoring methods (Table 3, Figure 3). In Experiment 2, our

model performed similar to peak-scoring method Br and decisively

better than the other three peak-scoring methods (Figure 3a). As fil-

ter settings in our model were optimized on Experiment 2, the com-

parison of optimized model-based analysis and peak-scoring

methods might be biased. In Experiment 3, M4ST performed deci-

sively better than peak-scoring method Br and similar to all other

peak-scoring methods (Figure 3b). However, in Experiment 4,

M4ST was decisively less sensitive than peak-scoring methods G2

and Br, comparable to B1, and decisively better than G1 (Figure

3c).

Effect of Normalization

We sought to investigate the effect of normalizing single-trial

SEBR estimates on predictive validity, both our model-based

(M4ST) and all the peak-scoring methods (Figure 4, Table 4). Pre-

dictive validity for Experiment 2 did not decisively differ for non-

normalized or normalized estimates obtained from model M4ST

(AIC difference 1.18). Normalizing the estimates of peak-scoring

methods resulted in a decisively higher predictive validity for

method B1 (AIC difference 3.45) but not for the remaining meth-

ods. In Experiment 3, normalizing resulted in an improved perfor-

mance for M4ST (AIC difference 4.61) as well as for methods B1,

Figure 2. Initial model comparison and filter optimization. The graph

shows predictive validity (i.e., ability to distinguish CS1 from CS-

responses) quantified as Akaike information criterion (AIC, smaller is

better). Dark gray: initial filter settings; light gray: optimized filter set-

tings. Dashed lines represent the decision thresholds with respect to the

best model (absolute AIC difference> 3). a: Experiment 2. b: Experi-

ment 3. c: Experiment 4.

Table 3. Paired T Test for the Difference Between CS1/CS- for Different Methods

Experiment 2 Experiment 3 Experiment 4

# Model description t(19) p Cohen’s d t(14) p Cohen’s d t(14) p Cohen’s d

M4ST Best model-based method 5.21 <.0001 1.17 3.09 <.05 0.80 3.12 <.01 0.81
B1 Barker et al. (2014) 4.51 <.001 1.01 3.10 <.05 0.80 3.23 <.01 0.96
Br Bradford et al. (2014) 5.21 <.0001 1.17 2.69 <.05 0.69 3.72 <.005 0.96
G1 Grillon et al. (1991) 4.49 <.001 1.00 3.30 <.01 0.85 0.92 .37 0.24
G2 Balderston et al. (2015) 4.80 <.001 1.07 3.00 <.05 0.77 4.63 <.001 1.20
SCR Model-based SCR analysis (Staib et al., 2015) 1.79 .10 0.46
SCR_p Peak-scoring SCR analysis (Boucsein, 2012) 1.49 .16 0.39
HPR Model-based HPR analysis (Castegnetti et al., 2016) 2.10 .06 0.54

Note. See corresponding Figure 3 for AIC. M4ST uses optimized filter band (50–470 Hz).
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G1, and G2 (AIC difference 5.90, 9.90, and 6.00, respectively) but

not for Br. Similarly in Experiment 4, normalizing the estimates

resulted in significantly better discriminatory power for model

M4ST (AIC difference 4.64) and peak scoring method B1 and G2

(AIC difference 7.04) but not Br and G1, while G2 became signifi-

cantly worse (AIC difference 3.14).

Comparison to SCR and HPR

We sought to put our results and, in particular, the differences

between different SEBR analysis methods into the context of other

psychophysiological measures. To this end, half of the participants

in Experiment 3 were not exposed to startle sounds during the

retention test (no-startle group) such that we could analyze their

SCR and HPR. Results are included in Table 3 and 4 and show that

SEBR is by far more sensitive than measures derived from SCR

and HPR.

SEBR as a Function of Number of Extinction Trials

When measuring fear retention under extinction, a critical question

is how many trials to include in the analysis: increasing trial num-

ber may increase the signal-to-noise ratio during measurement, but

also include trials with weakened fear memory. To investigate how

fear memory can be assessed in the retention session, we computed

the predictive validity of each modality and method as a function

of the number of trials included. For Experiment 2, the highest pre-

dictive validity was obtained for three CS1 and three CS- trials,

with method B1 (AIC 242.72, Figure 5) and normalized estimates.

This was followed by method Br (AIC 236.21 for three trials and

normalized estimates and 235.51 for five trials and nonnormalized

estimates), and by M4ST (AIC 235.49 for five trials and

Figure 4. Comparison of M4ST with other methods for trial-by-trial normal-

ized response measures. The graph shows predictive validity, quantified as

Akaike information criterion (AIC, smaller is better) for model M4ST, four

peak-scoring methods (B1, Br, G1, G2), and SCR. Dashed lines represent the

decision thresholds with respect to the best model (absolute AIC differ-

ence> 3). a: Experiment 2. b: Experiment 3. c: Experiment 4.

Figure 3. Comparison of M4ST with other methods. The graph shows

predictive validity, quantified as Akaike information criterion (AIC,

smaller is better) for model M4ST, four peak-scoring methods (B1, Br,

G1, G2), SCR (model-based analysis), peak-scored SCR (SCRp), and

HPR. Dashed lines represent the decision thresholds with respect to the

best model (absolute AIC difference> 3). a: Experiment 2. b: Experi-

ment 3. c: Experiment 4.

Table 4. Paired T Test for the Difference Between CS1/CS- for Normalized Estimates from Different Methods

Experiment 2 Experiment 3 Experiment 4

# Model description t(19) p Cohen’s d t(14) p Cohen’s d t(14) p Cohen’s d

M4ST Best model-based method 5.08 <.0001 1.14 3.67 <.01 0.95 3.70 <.005 0.96
B1 Barker et al. (2014) 4.88 <.001 1.09 3.84 <.01 0.99 4.12 <.005 1.06
Br Bradford et al. (2014) 5.23 <.0001 1.17 2.98 <.05 0.77 3.68 <.005 0.95
G1 Grillon et al. (1991) 4.48 <.001 1.00 4.54 <.001 1.17 1.17 .26 0.30
G2 Balderston et al. (2015) 4.61 <.001 1.03 3.75 <.01 0.97 4.24 <.001 1.10
SCR Model-based SCR analysis (Staib et al., 2015) 2.03 .06 0.52

Note. See corresponding Figure 4 for AIC. M4ST uses optimized filter band (50–470 Hz).
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nonnormalized estimates and 234.48 for five trials and normalized

estimates).

For Experiment 3, the highest predictive validity was observed

for method G1 (AIC 227.16), when considering the first five trials

of each CS1/CS- normalized responses. This was followed by

methods B1 and G2 (AIC 221.60 and 220.88, respectively) and

model-based method M4ST, with an AIC of 220.24, for five trials

and normalized estimates. All startle approaches outperformed the

other two modalities. SCR had the best predictive validity for four

trials (AIC 211.8, for normalized estimates) and HPR for six trials

(AIC 29.65). The peak-scoring approach for SCR gave the highest

predictive validity when considering three trials (AIC of 25.27),

which was decisively worse than the one obtained for model-based

SCR analysis.

Discussion

In this study, we developed a novel model-based analysis method

for SEBR and validated its suitability for quantifying fear learning

in humans. We first derived a canonical SEBRF to model orbicula-

ris oculi EMG responses to a startle probe. From a range of possi-

ble models, model M4ST emerged as the most robust model in fear

retention Experiment 2–3. This model explicitly estimates SEBR

latency and amplitude on individual trials using a dictionary-

matching algorithm, and can thus account for small variations in

startle latency. We show that this model also generalizes to a differ-

ent data set during fear acquisition (Experiment 4). Analysis of

four extant peak-scoring methods (Balderston et al., 2015; Barker

et al., 2014; Bradford et al., 2014; Grillon et al., 1991) yields a het-

erogeneous picture. For each data set, a different peak-scoring

method emerges as winning method. Crucially, the winning meth-

od from each experiment is significantly outperformed by another

peak-scoring method in another experiment. This is even the case

when comparing the two very similar fear retention Experiments

2–3, while M4ST is among the winning methods for both data sets.

Thus, the model-based approach appears to be a robust method that

generalizes to different experimental circumstances. However, the

observed heterogeneity in peak-scoring methods urges further

investigation. Finally, we observed that within-subject normaliza-

tion of CS1/CS- estimates resulted in higher predictive validity for

most, but not all methods.

All startle analysis methods significantly outperformed SCR/

HPR. While SEBR and SCR are common measures to quantify

fear, HPR is less often used. A possible reason is that, due to respi-

ratory arrhythmia, HPR is a relatively noisy measure, and peak-

scoring HPR requires averaging over many trials. This is different

from SCR or SEBR, which can be scored on a single-trial level.

Overall, this comparison suggests that SEBR can assess fear reten-

tion more precisely than SCR or HPR.

From our findings, we conclude that our model provides a pow-

erful method to infer human fear learning from SEBR. However,

several model limitations need to be taken into account. We

assumed that the SEBR can be described by a LTI system and,

thus, that the response to two subsequent stimuli can be represented

by pure summation of their independent output. This assumption is

obviously irrelevant for experiments with an interval between

Figure 5. Comparison of different number of trials included in analysis, for model M4ST, four peak-scoring methods (B1, Br, G1, G2), SCR (model-

based analysis), peak-scored SCR (SCR_Peak), and HPR. The graph shows predictive validity, quantified as Akaike information criterion (AIC,

smaller is better). a: Experiment 2, nonnormalized response measures. b: Experiment 2, nonnormalized response measures. c: Experiment 2, normal-

ized response measures. d: Experiment 3, normalized response measures.
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startle probes that exceeds the duration of the SEBR, which is typi-

cally the case in fear-potentiated startle studies. Also, in affective

startle modulation paradigms, in which startle magnitude is small-

est during pleasant emotional state and largest during unpleasant

state (Cuthbert, Bradley, & Lang, 1996), long ITIs are typically

used. Thus, our model could be applied well in these experimental

paradigms to differentiate between pleasant and unpleasant stimuli.

In contrast, paradigms to investigate prepulse inhibition of the

acoustic startle response employ a brief nonstartling stimulus

before the startle probe (Wynn et al., 2004). Because the prepulse

can by itself elicit a startle response (Blumenthal et al., 2005), the

LTI assumption may not be appropriate for this situation. More-

over, the prepulse may potentially change the shape of the SEBR.

However, these issues are, in principle, accessible with the model-

ing technique used here, and the applicability of the current model

to prepulse inhibition experiments could be assessed in further

experiments. Additionally, differences in laboratory settings and

equipment may result in variations in the shape of the startle

response, and this mandates our model to be tested under different

conditions and experimental paradigms.

While our model well captures SEBR amplitude differ-

ences between CS1 and CS-, the ultimate goal is to also

measure small changes in fear potentiation. It is a challenging

question whether any SEBR analysis method can capture

small differences in CS1 reinforcement probability, or US

magnitude. Crucially, startle amplitude seems to change with

US probability or strength, but the relation between SEBR

and expected US magnitude is not necessarily linear (Bach,

2015), and, under some circumstances, it is even nonmono-

tonic (Davis & Astrachan, 1978). Thus, at present our model

(or any peak-scoring approach) does not allow inferring

predicted US magnitude or probability from measured

SEBR. Deriving such a relation remains a task for future

investigations.

To summarize, our model is consistently able to differentiate

CS1 from CS- responses in different experimental setups, during

fear extinction and acquisition, and can be readily used for mea-

suring fear retention. By contrast, peak-scoring methods show a

large heterogeneity across data sets and may thus generalize less

well to different experimental circumstances. Thus, the model-

based approach shows more versatility compared to other investi-

gated methods. With this work, we hope to contribute to ongoing

research efforts aimed at maximizing the sensitivity of fear mem-

ory measures.
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