
1 

 

Characterising Retroviral 

Restriction by TRIM Proteins 

 

Sam Jack Fraser 

 

 

 

 

 

University College London & the Francis Crick Institute 

PhD Supervisor: Dr Jonathan Stoye 

 

 

A thesis submitted for the degree of 

Doctor of Philosophy 

University College London 

September 2016



Declaration 

2 

 

 

 

 

 

 

 

I, Sam Jack Fraser, confirm that the work presented in this thesis is my own.  

Where information has been derived from other sources, I confirm that this has 

been indicated in the thesis.



 

 

3 

 

 

 

Abstract 



Abstract 

4 

 

Tripartite motif (TRIM) proteins are numerous in the human proteome, and a 

number of these molecules are known to restrict retroviral replication. 

   

TRIM5α (T5α) is one such factor.  It targets the viral capsid and imposes a block to 

infection between entry and reverse transcription.  Capsid recognition is mediated 

by the C-terminal B30.2 domain, which contains surface-exposed loops of high 

amino acid variability.  Restriction is then effected via proteasome recruitment and 

the induction of innate immune cascades.  Although T5α is well-characterised in 

this respect, other factors – such as the highly divergent TRIM1 (T1) – remain 

poorly understood.   

 

To further characterise the T1 restriction phenotype, chimeras of this protein and its 

non-restricting paralogue, T18, were generated by overlapping PCR.  The 

restriction activities of the resulting molecules were then measured using an 

established flow cytometry assay.  These experiments revealed that T1 also binds 

capsid via the B30.2 domain, although the majority of this region can be 

functionally replaced.  Other aspects of T1 biology addressed in this work include 

the contribution of N-terminal components to restriction potency, and the 

relationship between protein expression level and restriction activity. 

 

Following a number of attempts to generate a functional chimera of T1 and 5α, the 

latter half of this thesis explores how the spacing between capsid-binding and 

effector domains can influence restriction activity.  To this end, a panel of mutations 

were made in the linker 2 (L2) region of T5α, and their effects on restriction 

measured.  These experiments revealed that even small changes in interdomain 

spacing can have profound phenotypic consequences. 

 

Collectively, this work reinforces the notion that TRIM family members share a 

common overall design, allowing individual components to be shuffled between 

them.  At the same time, each molecule has been shaped by unique evolutionary 

pressures, which can render them sensitive even to relatively minor modifications. 
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1.1 Retroviruses 

1.1.1 Classification of retroviruses 

The retroviruses (Retroviridae) are a large family of enveloped, positive-sense RNA 

viruses.  They are characterised by a lifecycle involving reverse transcription of 

their genome into dsDNA, and the subsequent integration of this molecule into host 

chromatin.  The Retroviridae were classically assigned to one of four groups – A, B, 

C or D – according to their particle morphology as observed by electron microscopy 

(Vogt, 1997).  However, this system has since been displaced by a two-subfamily 

system, in which all retroviruses are divided between the Orthoretrovirinae and 

Spumaretrovirinae (Stoye et al., 2011) (Figure 1.1). The former can be further 

divided into 6 genera – the α, β, γ, δ and ε-retroviruses and the lentiviruses – while 

the latter comprises a single grouping, owing to unique aspects in their morphology 

and replication (Lochelt and Flugel, 1996; Yu et al., 1996b).   

 

 

Figure 1.1: Phylogeny of the Retroviridae  

The tree was derived by alignment of reverse transcriptase coding sequences. 
Simple retroviral genomes encode only the basic structural and catalytic proteins, 
while complex genomes contain additional, overlapping ORFs that encode various 
regulatory and accessory proteins (see Section 1.1.3). Genera from the 
Orthoretrovirinae are written in black font, and those from the Spumaretrovirinae in 
blue. Viruses of relevance to this work are highlighted in red. Adapted from Weiss 
(2006). 
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1.1.2 Retroviral particles 

Mature retroviral particles typically span 80–120 nm in diameter.  They are diploid, 

possessing two copies of genomic RNA (gRNA) that dimerise via a ‘kissing loop’ 

structure and are packaged with nucleocapsid (NC) proteins (Skripkin et al., 1994; 

Clever et al., 1996).  This complex, along with multiple viral enzymes, is contained 

within a hexameric lattice of capsid (CA) monomers to form the viral core.  Different 

retroviruses exhibit distinct core morphologies: for example, while N-MLV and most 

other orthoretroviruses possess spherical cores, in the lentiviruses this structure is 

conical, and in epsilonretroviruses, cylindrical (Figure 1.2). 

 

In a mature virion, the viral core is encased in matrix (MA) proteins, and the entire 

structure surrounded by a lipid envelope.  The envelope is studded with Env 

glycoproteins, which comprise a surface subunit (SU) that binds to the target cell, 

and a transmembrane subunit (TM) that mediates fusion between the viral and 

cellular membranes.   

 

 

 

 

Figure 1.2: Cross-sections of a mature retrovirus with (A) spherical and (B) 

conical core morphology 

gRNA is depicted in red; NC, blue; PR, pink; RT, red; IN, yellow; CA, green; MA, 
purple and Env, grey. 
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1.1.3 Retroviral genome organisation 

The retroviral genome is a single-stranded, non-segmented, positive-sense RNA 

molecule, ranging from 7–12 kb in length.  It exists within the virion as a homodimer, 

which is maintained through hydrogen bonding between 5’ loop structures called 

dimer linkage sequences (Jones et al., 1993).      

 

Like a eukaryotic transcript, the viral genomic RNA (gRNA) possesses a 5’ 

methylguanosine cap and a 3’ polyadenylated tail in order to support translation.  

Each end of the RNA has a repeat sequence (R) and a sequence unique to that 

terminus (U5 or U3).  These sequences are duplicated during reverse transcription, 

resulting in a double-stranded cDNA that is flanked by long terminal repeats (LTRs) 

with U3-R-U5 architecture (Figure 1.3).  After integration, the 5’ LTR directs 

transcription of the proviral DNA. 

 

Immediately downstream of the U5 region in gRNA is a primer-binding site (pbs).  

This binds the tRNA responsible for priming minus-strand DNA synthesis during 

reverse transcription.  Following the pbs, all retroviruses possess the gag, pol and 

env genes, in that order.  Gag encodes the structural proteins of the virus; pol, the 

replicative enzymes, and env, the glycoproteins that stud the outer surface of the 

virion.  Towards the 3’ end of this molecule is a polypurine tract (PPT), which 

primes plus-strand DNA synthesis.  Some retroviruses, including HIV-1, possess 

an additional PPT in the centre of the genome (cPPT) to permit dual initiation of 

plus-strand synthesis.  All retroviral gRNAs also contain a packaging signal (ψ) to 

promote their specific encapsidation during virion assembly. 

 

Complex retroviruses – such as HIV-1 – have a more elaborate genomic structure, 

containing additional genes encoded in overlapping reading frames (Figure 1.4).  

The proteins that they encode perform diverse functions, including transcriptional 

trans-activation and immune evasion (Emerman and Malim, 1998).   
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Figure 1.3: Retroviral nucleic acid metabolism 

Ψ indicates the location of the packaging signal. 
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Figure 1.4: A comparison of the proviral genomes of (A) simple and (B) complex 

retroviruses 

RRE: Rev-response element (described in Section 1.2.5). 
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1.1.4 Retroviral proteins 

Orthoretroviruses encode all of their structural and catalytic proteins within three 

open reading frames: gag, pol and env.  Each of these is translated as a 

polyprotein (Gag, Gag-Pol or Env), which is cleaved into its constituent parts during 

virion maturation (see Section 1.2.8).  Spumaviruses also encode Gag, Pol and 

Env, although their post-translational cleavage is comparatively limited.  This 

section will focus broadly on the structure and function of the orthoretroviral 

molecules; their spumaviral counterparts will be discussed in Section 1.1.6.  

Gag 

The group-specific antigen (Gag) polyprotein contains most of the structural 

proteins of the virus.  From the N-terminus, these are matrix (MA), capsid (CA) and 

nucleocapsid (NC).  Each of these components is integral to viral function; however, 

Gag itself plays a number of roles in the viral lifecycle prior to cleavage, including 

the recruitment of gRNA, trafficking of viral components to the plasma membrane, 

and the assembly and budding of nascent virions.  A detailed review of the role of 

Gag in these processes can be found in Freed (2015); the remainder of this section 

will deal with each of its cleavage products in turn.   

 

MA targets Gag to the plasma membrane during the assembly of both HIV and 

MLV virions (Ono et al., 2000; Li et al., 2013a).  To facilitate this process, the MA 

proteins of many retroviruses are myristoylated at their N-termini to permit 

hydrophobic interactions with the lipid bilayer (Rein et al., 1986; Bryant and Ratner, 

1990; Liu et al., 2011b).  It has been postulated that a patch of surface-exposed 

basic residues in the MA N-terminus might also contribute to this process, via 

electrostatic interactions with the acidic phospholipid head groups (Murray et al., 

2005).   

 

Although there is little sequence identity in the MA proteins of different retroviruses, 

there is strong conservation in their structural arrangement.  This consists of four 

α-helices that come together to form a globular core, which is then capped by a 

three-stranded β-sheet.  In the immature Gag polyprotein, a fifth helix links MA to 

the adjacent CA domain (Massiah et al., 1994; Conte and Matthews, 1998).  
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Crystal structures are available for MA from both HIV-1 and Moloney MLV 

(Momany et al., 1996; Riffel et al., 2002). 

 

CA forms a hexameric lattice that both protects the viral genome and interacts with 

numerous cellular co-factors necessary for replication.  For example, HIV-1 CA 

interacts with a host of factors involved in the nuclear import and trafficking of the 

viral pre-integration complex (PIC) (Price et al., 2012b; Chen et al., 2016).  The 

structure and function of CA are particularly pertinent to this project and will 

therefore be treated separately in Section 1.1.5. 

 

NC is a highly basic protein that co-ordinates Zn2+ ions and engages in various 

critical protein-nucleic acid interactions.  HIV-1 NC contains two zinc fingers with 

the canonical sequence CX4CX4HX4C, separated by a short, basic linker (Darlix et 

al., 1995), while that of MLV contains only a single zinc finger.  NC is required for a 

number of stages in the retroviral lifecycle, including genome dimerisation (Darlix et 

al., 1990); packaging of viral gRNA (Berkowitz et al., 1995); reverse transcription 

(Tsuchihashi and Brown, 1994; Cristofari and Darlix, 2002) and the integration of 

proviral DNA (Carteau et al., 1999).  All of these functions hinge on the ability of NC 

to function as a nucleic acid chaperone, facilitating structural rearrangements within 

these molecules to maintain them in thermodynamically stable conformations (Rein 

et al., 1998; Levin et al., 2005).    

 

Some retroviruses encode additional proteins within the gag reading frame.  For 

example, HIV-1 encodes an unstructured peptide called p6 at the extreme 

C-terminus of Gag, as well as spacer peptides 1 and 2 (SP1/2) at the junctions 

between CA and NC, and NC and p6, respectively.  SP1 and 2 contain cleavage 

sites that are important for proper maturation of the retroviral core (Accola et al., 

1998; de Marco et al., 2012), while p6 recruits ESCRT proteins during budding 

(Pornillos et al., 2002; Sette et al., 2010) and interacts with the viral accessory 

protein, Vpr (Salgado et al., 2009).  Meanwhile, MLV encodes p12 between MA 

and CA, which contributes to functions such as core stability and chromatin 

tethering (Wight et al., 2012). 
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Pol 

The polymerase (Pol) polyprotein encodes the viral enzymes necessary for 

replication.  From the N-terminus, these are protease (PR), reverse transcriptase 

(RT) and integrase (IN).  In orthoretroviruses, Pol is invariably translated as part of 

a Gag-Pol polyprotein (160 kDa).  Stepwise proteolytic cleavage then liberates 

each of the subunits during maturation of the virion (Section 1.2.8).   

 

PR is an aspartyl protease that functions as a homodimer.  It first auto-catalytically 

cleaves itself from the Pol polyprotein, and then mediates a series of 

carefully-timed, high-fidelity proteolytic events necessary for the maturation of 

nascent virions (Wiegers et al., 1998; Goodenow et al., 2002).  Each PR monomer 

consists of a β-hairpin followed by a wide loop, an α-helix and a second β-hairpin, 

all of which are present in duplicate; the active site of the enzyme lies in a cleft at 

the interface between monomers (Wlodawer and Erickson, 1993).  PR structures 

are available for HIV-1, HIV-2, feline immunodeficiency virus (FIV) and simian 

immunodeficiency virus (SIV), among others (Wlodawer et al., 1989; Mulichak et al., 

1993; Rose et al., 1993; Wlodawer et al., 1995).  Furthermore, crystal structures 

snapshotting the mechanism of proteolysis by HIV-1 PR have been captured to 

about 1.3 Å resolution (Shen et al., 2012).   

 

RT is the enzyme responsible for reverse-transcribing viral gRNA into an 

integration-competent cDNA.  It harbours multiple functions to this end, including 

RNA- and DNA-dependent DNA polymerase activities, and an RNaseH activity for 

degradation of the template.  HIV-1 RT forms an asymmetric heterodimer, with one 

subunit that comprises both polymerase and RNaseH domains (p66), and another 

that lacks the RNaseH component (p51).  Interestingly, despite identical amino acid 

sequences, the polymerase domains of each subunit exhibit distinct tertiary 

structures.  High-resolution crystal structures are available for the heterodimeric RT 

of HIV-1 and -2, and the monomeric RT of Moloney MLV (Jacobo-Molina et al., 

1993; Das et al., 2008; Ren et al., 2002). 

 

IN catalyses the steps necessary for the insertion of viral cDNA into host chromatin.  

It comprises three structural domains for this purpose: an N-terminal zinc-binding 
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domain, a catalytic core domain, and a C-terminal DNA-binding domain (Johnson 

et al., 1986; Engelman and Craigie, 1992).  Following reverse transcription, IN 

forms a complex with the viral cDNA known as an intasome.  Within this structure, 

the DNA undergoes a series of reactions in order to become integration-competent 

(Section 1.2.4).   

 

The structure of the PFV intasome was solved some time ago, revealing a 

homotetramer (a dimer of dimers) that tightly associates with two ends of the viral 

DNA (Hare et al., 2010; Maertens et al., 2010).  Until earlier this year, it was 

believed that orthoretroviral IN also functions as a tetramer; however, recent 

characterisation of the intasome from mouse mammary tumour virus (MMTV), a 

β-retrovirus, has instead revealed an octameric architecture (Ballandras-Colas et 

al., 2016).  This structure comprises a central tetramer with two flanking dimers, 

which associate with the core via their C-terminal domains (CTDs).  These dimers 

are functionally important because they supply the target-DNA-binding activity of 

the intasome.  This function cannot be provided in cis by the central tetramer due to 

a structurally restrictive linker region between the catalytic core and CTD of MMTV 

IN (compared to its longer, more flexible counterpart in PFV). The recent 

characterisation of the intasome of rous sarcoma virus (RSV), an α-retrovirus, 

revealed that this structure is also octameric, with one pair of integrase dimers 

engaging either end of the viral DNA for catalysis, while the other pair capture the 

target DNA ready for strand transfer. (Yin et al., 2016) 

 

Env 

Env encodes the envelope glycoproteins that stud the surface of the virion.  These 

are required both for adsorption to cell surface receptors, and for the subsequent 

fusion of viral and host membranes.   

 

The Env precursor of HIV-1 (gp160) is a heterodimer of surface (SU; gp120) and 

transmembrane (TM; gp41) subunits.  This polyprotein is translated directly into the 

endoplasmic reticulum (ER), where it undergoes co-translational glycosylation of 

several key residues, before assembling into trimers in the ER lumen.  The 

homotrimer then migrates to the Golgi apparatus, where each monomer is cleaved 
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into its constituent parts by subtilisin-like endoproteases (Hallenberger et al., 

1997a).  Crystal structures are available for HIV-1 Env in its native, trimeric form 

(Julien et al., 2013; Do Kwon et al., 2015). 

 

HIV-1 regulatory and accessory proteins 

Complex retroviruses such as HIV-1 possess a number of ORFs in addition to gag, 

pol and env (see Table 1.1).  These ORFs encode regulatory proteins, which are 

essential for replication, and accessory proteins, which are broadly dispensable in 

vitro, but may be required in vivo. 

 

  

 
 

Gene 
 

Protein Function(s) 

Regulatory 

tat Tat 

 

 Transcriptional trans-activation1 
 

rev Rev 

 

 Nuclear export of viral mRNA2 

 Temporal regulation of transcription3 
 

Accessory 

nef Nef 

 

 Downregulation of CD4 receptors4 

 Inhibition of T-cell activation5 

 Counteraction of SERINC3/5 (Section 1.3.2) 
 

vpr Vpr 

 

 Nuclear localisation of the PIC6 

 Cell cycle modulation7 

 Counteraction of SAMHD1 (Section 1.3.4) 
 

vif Vif 

 

 Counteraction of A3G (Section 1.3.3) 
 

vpu Vpu 

 

 Downregulation of CD4 receptors8 

 Counteraction of tetherin (Section 1.3.8) 
 

Table 1.1 Functions of the regulatory and accessory proteins encoded by HIV-1 

References: (1) Ruben et al., (1989); (2) Zapp and Green (1989); (3) Kim et al. 
(1989); (4) Garcia and Miller (1991); (5) Luria et al. (1991); (6) Heinzinger et al., 
1994); (7) Jowett et al. (1995); (8) Chen et al. (1993). 
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1.1.5 Structure of the retroviral capsid 

The retroviral capsid monomer (CA) is one of three structural proteins encoded 

within the gag reading frame.  The structure of this protein is particularly pertinent 

to this thesis as it is the target of numerous retroviral restriction factors. 

 

CA lies between MA and NC in the immature Gag polyprotein.  During maturation, 

it is proteolytically liberated from this precursor and condenses into a core structure 

that is conical in HIV-1 and spherical in MLV (Ganser-Pornillos et al., 2004).  

Although retroviruses differ tremendously in the primary sequence of CA, the 

secondary and tertiary structures of this protein are remarkably well-conserved (de 

Marco et al., 2010a). 

 

The HIV-1 CA monomer is split between a 150-residue N-terminal domain (NTD) 

and an 80-residue C-terminal domain (CTD) (Figure 1.5).  The former consists of a 

β-hairpin followed by seven α-helices, with a proline-rich loop between helices 4 

and 5 that binds the peptidyl prolyl isomerase, cyclophilin A (CypA) (Gamble et al., 

1996; Gitti et al., 1996; Du et al., 2011).  Meanwhile, the latter comprises 4 α-

helices, an unstructured region, and a core of highly conserved hydrophobic 

residues known as the major homology region (MHR), which coordinates 

conformational changes in CA during maturation (Gamble et al., 1997).  

Unsurprisingly, mutational inactivation of the MHR can have profound effects on 

virion morphology and infectivity (Purdy et al., 2008).  The NTD and CTD are joined 

in the middle by a flexible linker, which is required for their correct orientation in 

higher-order capsid structures (Arvidson et al., 2003).  

 

MLV CA is, in many ways, structurally reminiscent of its lentiviral counterpart.  The 

NTD comprises a β-hairpin followed by six α-helices, the first three of which 

superimpose almost perfectly on the HIV structure (Mortuza et al., 2004); however, 

unlike HIV, MLV CA does not bind CypA.  A crystal structure for the CTD of this 

protein is presently unavailable. 
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Figure 1.5: HIV-1 CA monomer 

The monomeric structure of HIV-1 CA. The N-terminal β-hairpin is indicated in 
green, and α helices in blue. PDB accession code: 2M8N (Deshmukh et al., 2013) 
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The mature retroviral core is a lattice of CA hexamers, punctuated by occasional 

pentamers that offer curvature at the top and bottom of the structure.  The mature 

core of HIV-1 consists of approximately 1500 CA monomers arranged in a 

hexameric lattice, with 12 pentamers that close the lattice into a fullerene cone: five 

at the apex and seven at the base (Briggs et al., 2004; Zhao et al., 2013).  Recent 

work has highlighted the importance of water molecules in the capsid structure, 

both for stabilising inter-hexamer interactions and permitting conformational 

changes that are requisite at different stages of the lifecycle (Gres et al., 2015). 

 

In the assembled lattice, each CA monomer is oriented such that the NTD is 

located on the outer surface and the CTD buried underneath.  Thus, the majority of 

residues in CA that govern restriction factor sensitivity map to the NTD.  Multiple 

interactions between CA monomers are responsible for preserving the integrity of 

this structure, including sixfold NTD-NTD interfaces within a hexamer (Ganser-

Pornillos et al., 2007); two- and threefold CTD-CTD interfaces between hexamers 

(Ivanov et al., 2007; Byeon et al., 2009); and individual NTD-CTD interfaces within 

hexamers (Pornillos et al., 2009; Yufenyuy and Aiken, 2013).  The latter interface 

also forms a binding pocket, which is necessary for interactions with numerous 

cellular cofactors, and is the target for various antiretroviral compounds 

(Bhattacharya et al., 2014; Price et al., 2014). 

 

Recent data has revealed that HIV-1 CA is the most genetically fragile of any 

protein for which this property has been quantified (Rihn et al., 2013).  In other 

words, it is highly intolerant of non-synonymous substitutions, with approximately 

70% of amino acid changes yielding non-viable mutants.  This low mutational 

robustness reflects the need for CA to form a diverse range of contacts in the 

mature core.  For example, an identical monomer must engage in different sets of 

interactions depending on whether it contributes to a hexamer or a pentamer.  In 

addition to these spatial restrictions, CA must also form contacts that are 

temporally conducive to the processes of uncoating and maturation, while 

interacting with a host of cellular co-factors that are critical for replication, including 

CPSF6, CypA, and components of the nuclear pore complex (Luban et al., 1993; 

Price et al., 2012a; De Iaco et al., 2013).  The MLV capsid is also relatively 

intolerant of mutation (Auerbach et al., 2006; Auerbach et al., 2007).   
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In summary, CA is subject to strong purifying selection in order to preserve both 

structure and function.  This renders it susceptible to immune recognition because 

it lacks the scope for diversification, perhaps explaining why nature has selected 

the capsid as an opportune antiretroviral target. 

 

1.1.6 The Spumaretrovirinae 

The Spumaretrovirinae (also known as foamy viruses; FVs herein) are a genus of 

retrovirus that were first described in the 1950s and isolated about twenty years 

later (Enders, 1954; Achong et al., 1971).  While these viruses induce cytopathic 

effects in vitro, there is currently no evidence of pathogenicity in humans or other 

animals (Linial, 2000). 

 

FVs are widespread among mammalian hosts, with isolates available from 

baboons, chimpanzees, gorillas, cats and cows, among others (Linial, 1999); 

(Meiering and Linial, 2001).  The first to be discovered – prototypic foamy virus 

(PFV) – was isolated from a human nasopharyngeal cell line in the seventies 

(Achong et al., 1971) and was the first member of the genus to be cloned and 

sequenced (Flügel et al., 1987; Maurer et al., 1988).  Eventual sequencing of other 

FV genomes revealed that these viruses are genetically distinct from all other 

retroviral genera – their closest known relatives being endogenous retroviruses of 

human and murine origin (Cordonnier et al., 1995).  In fact, given certain aspects of 

their lifecycle and the fact that infectious particles carry DNA rather than RNA, FVs 

are often regarded as ‘bridging the gap’ between retroviruses and the 

Hepadnaviridae, the only other family of reverse-transcribing viruses. 

 

Like all retroviruses, FV genomes possess the gag, pol and env ORFs.  These 

genes encode proteins with the same basic functions as those already described.  

However, there are marked differences that distinguish the FV molecules from their 

counterparts in other retroviral genera. 
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Gag 

 

In contrast to the orthoretroviral protein, FV Gag does not comprise individual MA, 

CA and NC subunits that are liberated during maturation.  Instead, it undergoes a 

single, PR-dependent cleavage at the C-terminus to yield full-length (p71) and 

truncated (p68) species that appear in the viral capsid at a ratio between 1:1 and 

1:4 (Enssle et al., 1997; Cartellieri et al., 2005).  The presence of both molecules is 

critical for optimal infectivity, though not for particle release (Enssle et al., 1997).  

FV Gag is also distinctive in its low abundance of lysine residues, with the majority 

of the protein’s basic content coming from arginines.  Interestingly, however, R-K 

substitutions do not appear to have a deleterious effect on FV replication in culture 

(Matthes et al., 2011).   

 

In place of the MA-CA-NC subdomain structure of orthoretroviral Gag, the FV 

protein possesses four coiled-coil (CC) domains that perform analogous functions 

(Matthes et al., 2011) (Figure 1.6).  At the N-terminus, CC1 appears to be involved 

in interactions between Gag and Env that are required for particle release, while 

CC2 mediates the homotypic Gag-Gag interactions that are necessary for capsid 

assembly (Tobaly-Tapiero et al., 2001).  Definitive functions have not been 

assigned to CC3 and 4, although there are indications that the former mediates an 

interaction between FV Gag and the light chain of dynein motor protein complexes, 

which is necessary for the trafficking of incoming virions to the 

microtubule-organising centre (MTOC) (Petit et al., 2003).  Like its orthoretroviral 

counterpart, FV Gag also harbours an L-domain for the recruitment of ESCRT 

proteins during egress. 

 

FV Gag is distinct from that of orthoretroviruses in that it lacks zinc finger motifs for 

genome packaging.  These are instead replaced with glycine-arginine-rich domains 

known as GR boxes, which reside at the C-terminus of Gag and bind DNA and 

RNA with equal affinity (Schliephake and Rethwilm, 1994; Yu et al., 1996c).  The 

primate variants possess three GR boxes, which contribute to genome binding, 

reverse transcription and chromatin tethering (Tobaly-Tapiero et al., 2008; Müllers 

et al., 2011).  A putative nuclear export signal (NES) has also been identified at the 
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N-terminus of FV Gag, indicating a role in the nuclear export of unspliced and 

singly spliced viral transcripts (Renault et al., 2011). 

 

 

 

Figure 1.6: A typical FV Gag molecule 

The Gag polyprotein of PFV compared to the MA-CA-NC subdomain architecture 
of orthoretroviral Gag. CC: coiled coil; L: late domain; GR: glycine-arginine box. 
Adapted from Müllers (2013).  
 

 

A crystal structure of the N-terminal domain of PFV Gag (PFV-Gag-NTD) is 

available at 2.4 Å resolution (Goldstone et al., 2013).  This revealed distinct 

structural divergence when compared to the orthoretroviral MA domain, despite 

conservation of function.  While the MAs of other retroviruses possess a highly 

basic region – and often a myristate moiety – at their N-termini, neither of these 

components are present in PFV-Gag-NTD.  Additionally, the tertiary structure of the 

latter comprises a mixed αβ topology with head and stalk domains.  This stands in 

stark contrast to the predominantly α-helical, globular structure of orthoretroviral 

MA (Conte and Matthews, 1998).  Despite these differences, however, the 

capsid-binding restriction factor, T5α (see Section 1.4.5) appears to bind both 

PFV-Gag-NTD and the NTD of orthoretroviral CA (Yap et al., 2008; Goldstone et 

al., 2013). 

 

Pol 

 

In the orthoretroviruses, either frameshift or readthrough of the gag stop codon 

enables the neighbouring pol ORF to be translated as part of a Gag-Pol 

polyprotein; it is then liberated by PR during virion maturation.  In FVs, however, no 

such fusion is detectable in infected cells, even when the active site of PR is 

mutated (Konvalinka et al., 1995b).   
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Instead, FV Pol is translated from a separate, singly spliced mRNA (Yu et al., 

1996a), and its expression is regulated post-transcriptionally by way of a 

suboptimal splice acceptor site upstream of its start codon (Lee et al., 2008).  While 

orthoretroviruses incorporate Pol into virions via covalent linkage to Gag, in FVs 

this is instead mediated by an interaction between Pol and the viral gRNA 

(Heinkelein et al., 2002).  FV Pol is also peculiar in that undergoes only a single 

internal cleavage during maturation, yielding free IN and a PR-RT fusion (Pfrepper 

et al., 1998).  Both molecules adopt a nuclear localisation (Imrich et al., 2000). 

 

Env 

 

Like the orthoretroviral protein, FV Env is translated from a spliced mRNA directly 

into the endoplasmic reticulum (ER), where it undergoes co-translational 

glycosylation of several key residues.  However, FV Env is distinct from the 

orthoretroviral glycoprotein in that it retains the signal peptide that directs 

translation to the ER.  This results in an Env precursor comprising an N-terminal 

signal peptide (termed the leader peptide, LP, from this point forward) in addition to 

the usual surface (SU) and transmembrane (TM) subunits.  The LP is 

proteolytically liberated by furin or furin-like proteases as the protein translocates 

through the secretory pathway (Duda et al., 2004; Geiselhart et al., 2004). 

 

FVs are largely intolerant of pseudotyping with heterologous Env glycoproteins, 

including those from MLV and VSVg (Lindemann et al., 1997; Pietschmann et al., 

1999).  This is attributable to an interaction between FV Gag and its cognate Env, 

which involves the N-termini of both partners and is essential for virion release 

(Wilk et al., 2001; Lindemann et al., 2001).  A crystal structure is available for PFV 

Gag in complex with the Env leader peptide (Goldstone et al., 2013). 

 

Accessory proteins 

 

Like other complex retroviruses, FVs encode genes in addition to the gag, pol and 

env ORFs.  FVs possess two such genes, both of which lie towards the 3’ end of 

the genome. 
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Tas (formerly bel-1) encodes a 36 kDa transcriptional trans-activator with 

analogous function to the Tat protein of HIV-1.  It harbours a C-terminal 

transcription activation domain and a centrally located DNA-binding domain (Blair 

et al., 1994; He et al., 1996), and binds to DNA sequences that contain conserved 

purine residues, but little other sequence identity (Kang et al., 1998).  PFV Tas is 

indispensable for replication, and may also control the transcription of specific 

cellular genes (Baunach et al., 1993; Wagner et al., 2000). 

 

Bet is an accessory protein found in all known foamy viruses.  It has numerous 

functions, including conferring resistance to superinfection (Bock et al., 1998); 

negative regulation of proviral transcription (Meiering and Linial, 2002); and 

inhibition of restriction by the APOBEC (A3) family of enzymes (Löchelt et al., 

2005).  The latter function is analogous to that of HIV-1 Vif; however, unlike Vif, Bet 

acts by preventing the incorporation of A3 into virions (Lukic et al., 2013; Jaguva 

Vasudevan et al., 2013). 
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1.2 Retroviral replication 

The retroviral lifecycle is complex and has been extensively described in a number 

of reviews (Perez and Nolan, 2001); (Amara and Littman, 2003); (Nisole and Saib, 

2004).  It can broadly be divided into an early phase, where virions enter the cell 

and travel to their site of genomic integration, and a late phase, where viral genes 

are expressed and progeny virions are synthesised, assembled and released.  The 

entirety of this process is detailed in Figure 1.7 (below).  Each stage is individually 

described in the sections that follow. 

 

 

 

 

Figure 1.7: The retroviral lifecycle 

(1) Adsorption; (2) cell entry; (3) uncoating; (4) reverse transcription; (5) nuclear 
trafficking and entry; (6) integration; (7) proviral transcription; (8) splicing and 
nuclear export; (9) translation; (10) assembly; (11) budding; (12) maturation.  
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1.2.1 Adsorption and entry 

The initial encounter between a retrovirus and its target cell is mediated by weak 

interactions between the viral envelope glycoprotein, Env (or cellular proteins that 

have been incorporated into the virion membrane) and cell surface receptors: 

typically heparin for MLV (Walker et al., 2002), and heparin sulphate for HIV-1 

(Saphire et al., 2001; Vivès et al., 2005).  This provisional interaction is not 

essential for infection, although it does improve the efficiency of viral entry by 

bringing virions into close proximity with their primary receptor (Ugolini et al., 1999).  

Once a virion is adsorbed to the cell surface, a stronger interaction between Env 

and the viral receptor can proceed.  This is sometimes supplemented by a 

secondary interaction with a co-receptor.   

 

In the case of MLV, the receptor utilised determines the tropism of the strain.  

MLVs can be classified into ecotropic, xenotropic, polytropic and amphotropic 

subgroups depending on their host range.  Ecotropic MLVs infect only mouse or rat 

cells using the mouse cationic amino acid transporter, mCAT-1 (Albritton et al., 

1989).  The remaining subgroups infect a broader range of mammalian hosts: 

amphotropic MLVs utilise the sodium-dependent phosphate transporter, Pit-2, to 

accomplish this (Kavanaugh et al., 1994), while poly- and xenotropic MLVs use 

different alleles of the Xpr1 cell-surface receptor (Kozak, 2010). 

 

In the case of primate lentiviruses, entry involves engagement with the CD4 

receptor, which is present on T-cells, macrophages, monocytes and dendritic cells 

– all of which are susceptible to infection by these viruses.  Briefly, the gp120 

subunit of Env binds to a membrane-distal region of CD4, thereby inducing a 

number of conformational changes in the former, first in the V1/V2 loops and 

subsequently in V3 (Kwong et al., 1998).  CD4 binding also induces the formation 

of two double-stranded β-sheets (Chen et al., 2005) which, in combination with the 

reconfigured V3 loop, facilitate the engagement of a co-receptor.   

 

Co-receptor binding by the V3 loop of gp120 is broadly considered the catalyst that 

triggers fusion of the viral and cellular membranes, specifically by externalising the 

hydrophobic gp41 fusion peptide of Env.  The only co-receptors known to be 
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important for HIV-1 infection in vivo are the chemokine receptors CXCR4 (for 

X4-tropic viruses) or CCR5 (R5-tropic viruses); viruses that can engage either 

co-receptor are dubbed R5X4 viruses (Berger et al., 1998).  With few exceptions, 

only R5 and R5X4 viruses are able to transmit between individuals (Keele et al., 

2008).  However, progression from R5 to X4 tropism in vivo is typically associated 

with rapid T-cell depletion and the onset of AIDS (Tersmette et al., 1989; Scarlatti 

et al., 1997). 

 

Once receptor and co-receptor are engaged, HIV-1 co-opts underlying cytoskeletal 

components to ‘surf’ across the membrane to a site where membrane fusion can 

occur (Lehmann et al., 2005).  Once a suitable region has been located, the 

exposed gp41 fusion peptide inserts into the host membrane, tethering the virion to 

the cell.  This anchoring induces the three gp41 subunits of each Env trimer to fold 

at a hinge region, bringing their N- and C-termini together to form a six-helix bundle 

(6HB) (Chan et al., 1997).  Because the N-termini are proximal to the cell 

membrane and the C-termini to the viral membrane, the formation of the 6HB 

brings the two partners together to create, and then stabilise, a fusion pore 

(Melikyan, 2008).  This is the portal through which the viral core enters the 

cytoplasm. 

 

1.2.2 Reverse transcription and uncoating 

Following internalisation, the viral core undergoes numerous transformations in 

order to become integration-competent.  These include the conversion of viral RNA 

into dsDNA (reverse transcription), the progressive displacement of capsid proteins 

(uncoating), and the trafficking of this reverse-transcribing structure, known as the 

reverse transcription complex (RTC), towards the nucleus.  The precise order and 

interdependence of these events remains the subject of ongoing research 

(reviewed by (Campbell and Hope, 2015));  however, in the interests of clarity, 

reverse transcription and uncoating will be covered in this section, and nuclear 

trafficking in the subsequent one (Section 1.2.3). 
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Reverse transcription  

 

Reverse transcription (Figure 1.8) is initiated by the annealing of a partially 

unwound host tRNA to an 18-nt primer binding site (pbs) at the 5’ end of the viral 

genome.  The tRNA species utilised for this purpose differs between retroviral 

genera.  For example, while HIV-1 uses tRNAlys3 (Wain-Hobson et al., 1985), MLV 

uses tRNApro (Peters et al., 1977).   

 

Minus-strand DNA synthesis is then initiated from the 3’ end of the tRNA primer 

and progresses towards the 5’ end of the genomic template, yielding a DNA-RNA 

hybrid.  The RNaseH activity of RT degrades the RNA portion of this structure, 

leaving behind a single-stranded DNA species known as minus-strand strong stop 

DNA.  This molecule possesses a repeat sequence (R) at its 3’ end, which enables 

it to hybridise with the complementary sequence at the 3’ end of the genomic 

template in a process called first-strand transfer.  Following this jump, minus-strand 

DNA synthesis is completed up to the pbs, and RNaseH degrades the majority of 

the remaining template. 

 

A short, purine-rich sequence towards the 3’ end of the viral RNA, known as the 

polypurine tract (PPT), is able to resist degradation by RNaseH and can therefore 

serve as a primer for plus-strand DNA synthesis.  RT proceeds from the 3’ end of 

the PPT towards the 5’ end of the minus-strand DNA, and then 18 nt into the 

unwound tRNA primer (up to and including the pbs) to yield a species called 

plus-strand strong stop DNA.  Further progression along the tRNA template is 

prohibited by a 1-methyladenine (m1A) residue.   

 

Once the 3’ tail of the tRNA has been copied, RT degrades the tRNA primer in its 

entirety, thereby liberating the 5’ end of the minus-strand DNA and enabling the 

plus-strand DNA to detach and reanneal with the opposing pbs.  Following this 

process – known as second-strand transfer – both minus- and plus-strand DNA 

synthesis are completed in full.  The resulting molecule has duplications of the 

U3-R-U5 sequences at either end, known as long terminal repeats, or LTRs.  The 

5’ LTR will ultimately serve as a promoter for transcription of the integrated provirus.   
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Figure 1.8: Reverse transcription 

Viral genomic RNA (gRNA) is depicted in blue and nascent DNA in red.  Dashed 
blue lines represent gRNA that has been degraded by RNase H.  Steps depicted 
include (1) gRNA prior to reverse transcription; (2) synthesis of minus-strand strong 
stop DNA; (3) first-strand transfer; (4) synthesis of plus-strand strong stop DNA; (5) 
second-strand transfer; (6) completion of reverse transcription and the formation of 
LTRs. 
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Uncoating 

 

Uncoating was classically defined as the complete dissociation of CA from the RTC 

shortly after viral entry (Aiken, 2006).  However, the growing appreciation of the 

role that CA plays in later stages of the lifecycle – including reverse transcription 

(Forshey et al., 2002); shielding of viral nucleic acids from cytosolic DNA sensing 

(Gao et al., 2013; Lahaye et al., 2013); translocation across the nuclear membrane 

(Matreyek and Engelman, 2011; Matreyek et al., 2013) and targeting of proviral 

DNA to transcriptionally active sites in the genome (Koh et al., 2013) – has  

warranted a revision of this definition. 

 

Although the exact timing of uncoating remains elusive, the fact that the HIV-1 core 

is about 20 nm too large to pass through a nuclear pore complex (Panté and Kann, 

2002; Ganser-Pornillos et al., 2007), combined with the recent observation that 

some CA remains associated with the viral cDNA after nuclear entry (Peng et al., 

2014; Hulme et al., 2015), indicates that it is likely to occur in two distinct phases: 

an initial loss of core integrity in the cytoplasm, followed by a complete dissociation 

of CA in the nucleus. 

 

The precise mechanism through which this process occurs remains the subject of 

considerable ongoing research.  Nevertheless, numerous hypotheses have been 

put forward in an attempt to reconcile the existing data, including mechanical stress 

imparted by the nascent viral cDNA during reverse transcription (Forshey et al., 

2002), and a tug-of-war-like strain generated by the opposing microtubule motor 

proteins, dynein and kinesin-1 (Lukic et al., 2014; Pawlica and Berthoux, 2014).  

Uncoating within the nucleus is thought to be an active process mediated by 

transportin-3 (TNPO3) (Zhou et al., 2011).  These models are supported by varying 

degrees of evidence and need not be mutually exclusive. 
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1.2.3 Nuclear trafficking and import 

In parallel to reverse transcription and uncoating, the viral RTC must be trafficked 

towards the nucleus.  To accomplish this, the virus exploits actin microfilaments for 

short-range movement near the cell periphery, and then microtubules (MTs) for the 

longer journey from the periphery to the nuclear membrane (Campbell and Hope, 

2005); (Naghavi and Goff, 2007).  Retroviruses specifically utilise stable MTs over 

their dynamic counterparts.  These are typified by post-translational modifications 

such as detyrosination and acetylation, and are recognised by motor proteins as 

specialised tracks for long-range vesicle trafficking.  This specific co-option of 

stable MTs explains the previously conflicting observation that HIV-1 is resistant to 

the pharmacological disruption of MT polymerisation (Sabo et al., 2013). 

 

Upon completion of reverse transcription and partial uncoating, the resulting 

structure is known as the pre-integration complex (PIC).  PICs are defined by their 

capacity for in vitro integration, and have offered a valuable system for the detailed 

characterisation of this process (Hansen et al., 1999).  The HIV-1 PIC is trafficked 

to the nucleus by virtue of a number of viral karyophilic elements, including MA, IN 

and Vpr (Rivière et al., 2010).  These components are central to the ability of HIV-1 

and other lentiviruses to enter the nuclei of non-dividing cells.  Other retroviruses, 

including MLV, depend on mitotic breakdown of the nuclear membrane for this 

process (Roe et al., 1993). 

 

In order to enter the nucleus of a resting cell, the lentiviral PIC must harness 

components of the nuclear pore complex (NPC) (Fassati et al., 2003; Zaitseva et 

al., 2009; Yeung et al., 2009).  In particular, Nup98, Nup153, Nup358 and TNPO3 

are required for both nuclear import and proper trafficking within the nucleus: 

depletion of these factors shifts the distribution of integration sites from gene-dense 

to gene-poor regions (Schaller et al., 2011; Ocwieja et al., 2011; Di Nunzio et al., 

2013).   On the viral side of this interaction, CA is the major determinant for nuclear 

import and trafficking events within the nucleus.  This is evidenced by the 

observation that the N57A and N74D mutations in HIV-1 CA cause a change in 

integration site preference from transcriptionally-active to -inactive regions, 
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phenocopying the knockdown of NPC components (Schaller et al., 2011; Ocwieja 

et al., 2011; Koh et al., 2013).   

 

Nuclear import of the lentiviral PIC is a complex process involving a large 

complement of host proteins.  During the early stages of infection, the viral core 

binds CPSF6 (Lee et al., 2012); this mediates interaction with the nuclear pore 

component, Nup358 (Bichel et al., 2013).  Upon engagement of Nup358, the 

kinesin-1 motor protein KIF5B traffics the Nup358-bound core away from the 

nuclear pore (Dharan et al., 2016).  Precisely how this facilitates nuclear import is 

currently unknown.  Putative mechanisms include the reduction of PIC size by 

Nup358-mediated uncoating, as well as increased permeability of the nuclear 

membrane following the cytoplasmic relocalisation of this protein.  Once the PIC is 

competent to access the nucleus, it is recognised as cargo by TNPO3, a member 

of the karyopherin-β family of nuclear transporters, and shuttled across the nuclear 

membrane (Chook and Süel, 2011).  

 

On the nucleoplasmic side of the NPC, the PIC is recognised by another NPC 

component, Nup153 (Matreyek et al., 2013).  Recent data from the Fassati lab 

suggests that this interaction maintains the integrity of the PIC (Chen et al., 2016), 

while CPSF6 targets it towards transcriptionally active regions of chromatin (Chin et 

al., 2015; Sowd et al., 2016).  Once the PIC arrives at its genomic destination, 

TNPO3 triggers the displacement of any remaining CA (and any bound factors, 

including CPSF6), freeing the viral cDNA to interact with the necessary chromatin-

tethering factors so that integration can ensue. 

 

1.2.4 Integration 

A defining step in the retroviral lifecycle is the integration of viral cDNA into the 

genome of an infected cell.  However, nuclear entry does not guarantee successful 

integration.  Viral DNA can undergo a number of circularisation reactions within the 

nucleoplasm that yield non-productive species and represent dead-ends for the 

virus (Farnet and Haseltine, 1991).  These include 2-LTR circles, which occur when 

the cellular machinery ligates the viral DNA end-to-end (Li et al., 2001); 1-LTR 
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circles, resulting from homologous recombination between LTRs (Kilzer et al., 

2003), and various autointegration products (Shoemaker et al., 1980). 

 

However, the population of PICs that do remain integration-competent must be 

targeted and tethered to host chromatin.  While the HIV-1 PIC associates with 

chromatin via the cellular co-factor LEDGF/p75 (Hombrouck et al., 2007), MLV 

relies on members of the chromatin-bound Bromodomain and Extra-Terminal 

(BET) family of proteins for this process (Gupta et al., 2013; Sharma et al., 2013; 

De Rijck et al., 2013).  Mutagenesis and fluorescence microscopy have revealed 

that the virally-encoded p12 also contributes to the chromatin tethering of MLV 

PICs (Elis et al., 2012; Wight et al., 2012).  These separate chromatin-targeting 

pathways result in distinct integration site preferences: while HIV-1 tends to 

integrate within the bodies of actively transcribed genes (Schroder et al., 2002), 

MLV integration is biased towards transcriptional start sites (Sharma et al., 2013).    

 

Integration is catalysed by the virally-encoded integrase (IN) enzyme.  IN functions 

as either an octamer (in α- and β-retroviruses) or a tetramer (in spumaviruses) and 

forms a complex with linear viral dsDNA known as the intasome.  While chromatin-

tethering factors are required to direct the intasome to the appropriate genomic 

location, the exact site of integration is governed by an interaction between 

residues in the CTD of IN and specific bases in the target DNA (Maertens et al., 

2010; Serrao et al., 2014).  

 

IN catalyses two sequential reactions that are necessary for integration (Figure 1.9).  

First, it processes the 3’ end of each strand of the viral DNA to reveal a conserved 

CA dinucleotide; this probably occurs within the cytoplasm (Fassati and Goff, 1999).  

Once the PIC has reached the site of integration, the second step – known as 

strand transfer – can proceed.  In this step, the newly exposed hydroxyl groups on 

the viral DNA are used in the nucleophilic attack of a pair of phosphodiester bonds 

on the target DNA, and the 3’ end of the viral DNA is simultaneously ligated to the 

5’ end of the host DNA (Vink et al., 1991).  This results in a dinucleotide overhang 

and a single-stranded region of either 4 (MLV) or 5 (HIV-1) nucleotides on either 

side of the attack site, both of which are subsequently repaired by cellular enzymes.  
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Once integration is complete, the viral DNA is referred to as a provirus and the 

early phase of the lifecycle is complete.   

 

 

 

 

 

Figure 1.9: Processing and integration of viral cDNA 

Adapted from Van Maele et al. (2006). 
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1.2.5 Transcription, splicing and nuclear export 

Transcription of the provirus is typically initiated from a promoter sequence at the 

U3-R boundary of the 5’ LTR.  This element is usually sufficient to drive constitutive 

expression of the viral genome, although this is somewhat dependent on factors 

such as cell type and the exact site of integration (Feinstein et al., 1982). Rabson 

(1997) provides a detailed description of retroviral RNA synthesis; this section will 

offer only a brief overview of this process. 

 

Transcription 

 

Shortly following integration, a period of limited transcription from the HIV-1 

provirus yields short, fully spliced mRNAs corresponding to the tat, rev and nef 

reading frames.  Once sufficient Tat has been synthesised, it directs the 

transcription of longer, incompletely spliced mRNAs encoding env, vif, vpr and vpu, 

along with unspliced transcripts that serve both as a template for gag-pol 

translation, and as gRNA for progeny virions (Kim et al., 1989; Pomerantz et al., 

1990). 

 

Tat directs transcriptional transactivation by recruiting the transcription elongation 

factor, P-TEFb, which itself is a complex of cyclin T1 and Cdk9 (Wei et al., 1998).  

Tat binds the cyclin T1 component of this complex, as well as the 

trans-activation-responsive (TAR) region found at the 5’ end of all viral transcripts.  

This brings Cdk9 in close proximity of the transcriptional machinery, enabling it to 

phosphorylate several residues within the C-terminal domain of the large subunit of 

RNA Polymerase II.  These modifications substantially increase the processivity of 

the enzyme (Kim et al., 2002). 

 

Transcription of the MLV provirus is less-well regulated, owing to the absence of a 

transcriptional trans-activator. Nevertheless, the U3 region contains a host of 

cis-regulatory sequences, including an E-box that binds basic helix-loop-helix 

(bHLH) transcription factors (Nielsen et al., 1992; Nielsen et al., 1994; Lawrenz-

Smith and Thomas, 1995). 

 



Chapter 1: Introduction 

 

54 

 

Splicing and nuclear export 

 

Upon dissociation from the proviral template, all viral transcripts are modified with a 

5’ methylguanosine cap and a 3’ polyA tail, and a subset are spliced to remove 

portions of the coding sequence.  While MLV produces only unspliced and singly 

spliced mRNAs, the presence of twelve splice sites in the HIV-1 genome yields 

more than 40 different transcripts of varying abundance (Purcell and Martin, 1993). 

 

As described on the previous page, HIV-1 transcription is temporally regulated.  

During the first wave of transcription, only completely spliced RNAs corresponding 

to tat, rev and nef are maintained, while any unspliced or singly spliced species are 

degraded upon synthesis.   

 

While Tat is crucial for boosting subsequent levels of transcription, Rev serves to 

control the export of mRNAs once they are synthesised.  Thus, as Rev protein 

levels accumulate with successive rounds of early transcription, longer mRNAs are 

eventually recognised and targeted for export.  This occurs by virtue of a 

Rev-response element (RRE), which is only present in singly- and unspliced viral 

transcripts, and a nuclear export signal (NES) found roughly in the middle Rev 

(Fischer et al., 1995).  The NES facilitates an interaction between the Rev-RNA 

complex and the karyopherin, Crm1, permitting the active transport of viral mRNA 

into the cytoplasm.  Rev can then return to the nucleoplasm through an interaction 

between its N-terminal NLS and importin-β (Henderson and Percipalle, 1997). 

 

Again, MLV lacks an equivalent trans-acting accessory protein.  However, it does 

contain a cis-acting cytoplasmic accumulation element (CAE), which is found 

towards the 3’ end of pol and mediates the export of transcripts through association 

with the nuclear export receptor, NXF1 (Sakuma et al., 2014).  Consistent with this 

notion is the observation that inserting a CAE into the genome of HIV-1 facilitates 

the Rev-independent expression of Gag.  Additionally, the 3’ U3 region of the MLV 

genome appears to be required for the export of full-length transcripts (Volkova et 

al., 2014). 
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1.2.6 Translation  

The synthesis of viral proteins is initiated upon recognition of the 5’ 

methylguanosine cap – which is present on all viral transcripts – by the ribosome. 

 

The gag reading frame encodes the structural proteins of the virus.  In 

orthoretroviruses, its translation yields a polyprotein that is ultimately cleaved into 

matrix (MA), capsid (CA) and nucleocapsid (NC) subunits, along with a number of 

smaller peptides.  As discussed in Section 1.1.6, spumaviral Gag has a rather 

different structure and remains largely uncleaved throughout the viral lifecycle.  In 

MLV, a heavily glycosylated form of this protein – glycoGag – is synthesised by 

translational initiation from an upstream CUG codon (Edwards and Fan, 1979); 

(Prats et al., 1989).  This yields a protein with an 88 aa leader sequence appended 

to the N-terminus, which directs it to the Golgi apparatus for the addition of 

carbohydrate moieties.  GlycoGag confers viral resistance to the SERINC3/5 and 

APOBEC restriction factors (see Sections 1.3.2 and 1.3.3, respectively) (Stavrou et 

al., 2013; Rosa et al., 2015, Usami et al., 2015).  Additionally, the Gag polyprotein 

of both MLV and HIV-1 is co-translationally myristoylated to facilitate association 

with the plasma membrane during assembly (Henderson et al., 1983; Bryant and 

Ratner, 1990). 

 

In orthoretroviruses, the pol reading frame – including protease (PR), reverse 

transcriptase (RT) and integrase (IN) – is translated as part of a Gag-Pol 

polyprotein.  This fusion is synthesised by translational readthrough of the gag stop 

codon, which is mediated by a pseudoknot structure in the transcripts of MLV (Wills 

et al., 1994) and by a -1 ribosomal frameshift in HIV-1 (Jacks et al., 1988).  In both 

cases, readthrough occurs with approximately 5% efficiency.  This phenomenon 

maintains a Gag to Gag-Pol ratio of approximately 20:1 in the producer cell, a ratio 

that is conserved among retroviruses and is important for late-phase events such 

as genome dimerisation and proteolytic processing (Shehu-Xhilaga et al., 2001).  In 

spumaviruses, on the other hand, Pol is translated independently of Gag. 

 

In all retroviruses, Env is synthesised from a spliced mRNA that lacks the former 

two reading frames.  Translation of the HIV-1 Env precursor (gp160) occurs on the 
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rough endoplasmic reticulum, where it undergoes co-translational glycosylation of 

several key residues and post-translational cleavage of the N-terminal signal 

peptide that got it there.  Upon entering the oxidising environment of the ER lumen, 

disulphide bonds form between the nascent gp160 monomers, facilitating their 

association into trimers (Earl et al., 1991).  The trimeric precursor is then 

translocated to the Golgi apparatus, where it is cleaved into surface (SU; gp120) 

and transmembrane (TM; gp41) subunits by resident subtilisin-like endoproteases 

(Hallenberger et al., 1997b; Willey et al., 1988).  This cleavage event weakens, but 

maintains, the Env trimer.   

 

In addition to gag, pol and env, complex retroviruses possess additional ORFs 

encoding regulatory and accessory proteins.  In HIV-1, these are vif and vpr, which 

are expressed from singly spliced transcripts; tat, rev and nef, from multiply spliced 

transcripts; and vpu, which is encoded on a bicistronic mRNA upstream of env 

(Schwartz et al., 1990). 

 

1.2.7 Assembly 

Once the full complement of structural and catalytic proteins have been 

synthesised, a complex orchestration of events leads to the assembly of immature 

virions.   

 

Early interactions between the NC domain of Gag and the packaging signal (ψ) of 

unspliced viral transcripts facilitates the specific encapsidation of viral genomes, 

while excluding all cellular and spliced viral RNA species.  MLV ψ consists of four 

stem-loops – two for packaging (SL-C/D) (D’Souza et al., 2001), and two for the 

initiation of genome dimerisation (DIS-1/2) (Ly and Parslow, 2002).  Conversely, ψ 

is poorly defined in HIV-1, with a variety of mutations in the 5’ UTR resulting in a 

reduction in packaging efficiency.  Indeed, it has been postulated that a 

‘conformational switch’ in this region shifts the RNA from a structure that is 

conducive to translation to one that promotes packaging (Lu et al., 2011b). 
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Following this initial encounter between Gag and gRNA, assembly of the viral core 

can proceed.  For both MLV and HIV-1, this requires association with the plasma 

membrane via the myristoylated MA domain of Gag.  Interestingly, this change in 

localisation reconfigures the Gag-RNA interaction from one involving primarily the 

5’ UTR of the latter, to one that spans the entire length of the genome (Kutluay et 

al., 2014). 

 

The MA domain specifically targets the assembling viral complex to lipid rafts:  

domains within the membrane that are enriched for certain classes of lipid, 

including cholesterol, phosphatidyl serine and phosphatidyl inositol (4,5) 

bisphosphate (PIP2) (Chan et al., 2008).  While the incorporation of cholesterol is 

critical for virion infectivity (Liao et al., 2003), acidic phospholipids such as PIP2 are 

required to form electrostatic interactions with basic residues in MA (Ono et al., 

2004), to externalise the covalently attached myristate residue (Saad et al., 2006), 

and to competitively displace any RNA bound to this region (Chukkapalli et al., 

2010).   Collectively, these phenomena ensure tight anchoring of Gag to the 

plasma membrane.  Once the viral complex is properly tethered, Gag 

polymerisation ensues.  This yields an immature hexagonal lattice of 1100-1800 

Gag molecules for MLV (Yeager et al., 1998) and 5000 molecules for HIV-1 (Briggs 

et al., 2004), collectively accounting for about 50% of total virion mass.   

 

The curvature and flexibility of this lattice have posed substantial technical 

obstacles to defining its structure.  However, a combination of electron microscopy 

and cryotomography recently accomplished this for the immature lattice of a 

truncated Gag from Mason-Pfizer monkey virus, a β-retrovirus (Bharat et al., 2012).  

Interestingly, this work revealed contacts between the unprocessed CA domains 

that are distinct from those found in the mature retroviral core.  It is presently 

unclear whether the transition from an immature lattice to a condensed core 

involves an intermediate phase of Gag disassembly (Keller et al., 2013; Frank et 

al., 2015). 

 

Env trimers are targeted to lipid rafts independently of Gag.  Genetic evidence 

suggests that this is mediated by the cytoplasmic TM subunit of Env, which both 

directs it to the plasma membrane and ensures its incorporation into virions through 
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an interaction with MA (Yu et al., 1993; Cosson, 1996; Murakami and Freed, 2000).  

Interestingly, however, neither deletion of the TM subunit (Einfeld, 1996), nor the 

replacement of Env with a heterologous glycoprotein (Briggs et al., 2003), prevent 

the incorporation of Env in virions, indicating that a direct interaction between Env 

and MA is not essential for this process.  Thus, a compensatory pathway must also 

exist, which may involve the recruitment of cellular proteins to act as a bridge 

between Env and MA (Checkley et al., 2011; Tedbury and Freed, 2014).  In any 

case, the trimerisation of MA is probably important for Env incorporation (Tedbury 

et al., 2013). 

 

The overall kinetics of virion assembly – from the initial detection of 

membrane-associated Gag to the formation of an immature lattice – have been 

estimated at 5-9 min on average, with an upper limit of around 20 min (Jouvenet et 

al., 2008; Ivanchenko et al., 2009). 

 

1.2.8 Budding and maturation 

Once all of the viral components have assembled at the plasma membrane, the 

immature virion must egress to the cell surface.  This process is initiated by the 

polymerisation of Gag at the assembly site, which deforms the planar lipid bilayer 

into a spherical, virion-like configuration (Carlson et al., 2008).  The resulting 

structure remains attached to the producer cell through a neck region.  Complete 

membrane fission requires that this region be severed by components of the 

cellular ESCRT machinery.  

 

The ESCRT pathway involves numerous protein complexes whose usual roles 

include cell abscission during cytokinesis and the biogenesis of multivesicular 

bodies (Hurley and Hanson, 2010).  Retroviruses possess late assembly (L-) 

domains for the recruitment of these proteins.  L-domains typically come in three 

flavours: P(T/S)AP, which is found in MLV MA and HIV-1 p6 (Garrus et al., 2001; 

Segura-Morales et al., 2005); LYPxnL, which is found at the MLV MA-p12 junction 

and in HIV-1 p6 (Segura-Morales et al., 2005; Strack et al., 2003), and PPxY, 

which is present in MLV p12, but absent in HIV-1 (Yuan et al., 2000).   
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The viral L-domains recruit either the ESCRT-I heterotetramer or the 

ESCRT-associated protein ALIX, which themselves activate ESCRT-III protein 

complexes, including CHMP2 and 4 (Wollert and Hurley, 2010).  These oligomers 

form long filamentous structures around the bud neck, which coil into a dome 

shape at the base of the virion (Shen et al., 2014).  It is possible that this process is 

completed upon hydrolysis of ATP by the VPS4 complex (Babst et al., 1998; Scott 

et al., 2005), although this remains the subject of ongoing investigation.  

Alternatively, recent data from super-resolution microscopy suggests that ESCRT 

components are recruited within the head of the budding virion, where their 

selective remodelling might act as the driving force for membrane scission (Van 

Engelenburg et al., 2014). 

 

Immediately following its release from the producer cell, the nascent virion 

undergoes a series of tightly regulated morphological changes that are necessary 

for subsequent infectivity.  This is known as maturation (Kohl et al., 1988; 

Konvalinka et al., 1995a).   

 

This process begins with the autocatalytic cleavage of PR from Pol shortly after the 

completion of budding.  Immediately following the autoprocessing of PR, RT and IN 

are cleaved from one another, although it remains unclear whether this 

phenomenon occurs in cis, trans, or some combination thereof (Pettit et al., 2004).  

PR then catalyses sequential cleavage events within Gag, liberating each of its 

constituents in a stepwise manner.  This temporal regulation is achieved by 

different rates of processing at each of the five Gag cleavage sites (Figure 1.10).  

In HIV-1, these sites fall into three categories according to their rate of processing 

by PR: rapid (SP1/NC), intermediate (SP2/p6, MA/CA) and slow (NC/SP2, 

CA/SP1).  By examining mutant virions that are defective for cleavage at each of 

these sites, it has been possible to deduce their respective contributions to 

maturation. 

 

SP1/NC cleavage activates the fusogenic potential of Env (Wyma et al., 2004) and 

promotes the condensation of NC with the viral RNA (de Marco et al., 2010b).  The 

resulting RNP particle is further processed by the SP2/p6 and NC/SP2 cleavages, 

which collectively free NC to act as a chaperone for the genome dimer (Kafaie et 
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al., 2008).  Cleavage at the MA/CA junction liberates CA-SP1 from the membrane 

and causes the immature Gag lattice to disassemble; CA/SP1 cleavage then frees 

CA entirely, enabling it to form the conical structure that typifies the core of HIV-1 

(de Marco et al., 2010b).  

  

In addition to unshackling the individual domains of Gag, these events facilitate 

conformational changes within them that allow new interactions to be established.  

For example, the liberation of CA from MA enables the N-terminal 13 residues of 

the former to fold into a β-hairpin, thereby initiating the formation of mature CA 

hexamers. 

 

The maturation process is less-well characterised for MLV virions, although it is 

known that cleavage between MA and p12 is not required for the formation of 

mature cores (Oshima et al., 2004).  Cleavage at the p12/CA site, however, is 

crucial for the subsequent round of reverse transcription and integration (Rulli Jr et 

al., 2006). 
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Figure 1.10: Retroviral maturation 

(A) A schematic depicting the structural rearrangements that convert an immature 
virion (left) to a mature particle with either spherical (top right) or conical (bottom 
right) core morphology.  Env trimers are shown in grey; MA, purple; CA, green; NC, 
blue; PR, pink; RT, red and IN, yellow.  (B) Sequential, PR-mediated proteolysis of 
the Gag-Pol precursor.  White triangles represent cleavage sites in Pol; red 
triangles, rapid cleavage sites in Gag; orange triangles, intermediate cleavage sites 
in Gag, and green triangles, slow cleavage sites in Gag. 
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1.2.9 Unique aspects of the Spumaretrovirinae lifecycle 

The processes described in this chapter so far apply predominantly to viruses of 

the Orthoretrovirinae subfamily.  The lifecycle of the spumaviruses is distinct in a 

number of ways, some of which unite them more closely with the Hepadnaviridae, 

a family of DNA viruses that includes hepatitis B virus (HBV).  Some of these 

differences are highlighted in Table 1.2. 

 

  
Orthoretrovirinae 

 
Spumaretrovirinae Hepadnaviridae 

Reverse 
transcription 

Occurs during early 
phase of the 
lifecycle; infectious 
particles contain 
RNA. 

Occurs during late 
phase of the 
lifecycle; infectious 
particles contain 
DNA.1  

Occurs during late 
phase of the 
lifecycle; infectious 
particles contain 
DNA. 
 

Nuclear 
entry 

Virions are not 
recycled 
intracellularly. 

  

Intracellular 
‘recycling’ of virions 
yields high 
copy-number in 
nucleus of the 
producer cell.2 

Intracellular 
‘recycling’ of virions 
yields high 
copy-number in 
nucleus of the 
producer cell.3 

 

Integration 
Essential for 
replication. 

Essential for 
replication.4 

 

Does not occur. 

Transcription 
Initiated from a 
single promoter. 

Initiated from 
multiple promoters.5 

 

Initiated from 
multiple promoters.6 

Assembly 

Gag binds RNA via 
NC domain. 

Gag binds DNA and 
RNA with equal 
affinity.7 

HBV core protein 
binds DNA and RNA 
with equal affinity.8  
 

Budding & 
maturation 

Budding occurs at 
the plasma 
membrane and 
maturation occurs 
extracellularly.  
 

Both processes 
occur within 
intracellular 
compartments such 
as the ER.9 
 

Both processes 
occur within 
intracellular 
compartments such 
as the ER.10 
 

Table 1.2: A comparison of orthoretroviruses, FVs and hepadnaviruses 

Orthoretroviral phenotypes are shaded in pink and hepadnaviral ones in blue. 
References: (1) Moebes et al. (1997); (2) Meiering et al. (2000); (3) Tuttleman et al. 
(1986); (4) Enssle et al. (1999); (5) Löchelt et al. (1993); (6) McLachlan (1991); (7) 
Yu et al. (1996c); (8) Nassal (1992); (9) Goepfert et al. (1999); (10) Ganem (1991). 
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1.3 Retroviral restriction factors 

Restriction factors are host-expressed proteins which form the basis of a 

cell-intrinsic antiviral response (Figure 1.11) (Yan and Chen, 2012).  Intrinsic 

immunity is distinct from the innate and adaptive arms in that the proteins 

responsible are usually constitutively expressed, although they may be upregulated 

by interferon (Tanaka et al., 2006; Carthagena et al., 2009; Abdel-Mohsen et al., 

2014).  This chapter will describe each of the major retroviral restriction factors in 

turn, beginning with those that inhibit viral entry. 

 

 

 

 

 

Figure 1.11: The retroviral lifecycle, illustrating the stage-specific blocks 

imposed by restriction factors 
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1.3.1 IFITMs 

The interferon-inducible transmembrane (IFITM) family of proteins comprises five 

members, of which three – IFITM1, 2 and 3 – are induced by both type I and II 

interferon.  These proteins are known to restrict the entry of a number of enveloped 

viruses, including influenza A virus, hepatitis C virus and HIV-1 (Brass et al., 2009; 

Lu et al., 2011a; Narayana et al., 2015). 

 

The IFITMs consist of a cytosolic N-terminus, followed by two hydrophobic 

intramembrane domains separated by a conserved intracellular loop.  IFITM1, 2 

and 3 also undergo post-translational modifications of several residues, some of 

which are imperative for restriction (Perreira et al., 2013).  The IFITMs block viral 

entry by preventing fusion between the host and viral membranes (Li et al., 2013b).  

One model for how they accomplish this is by reducing membrane fluidity, thereby 

preventing the changes in membrane curvature that are requisite for a hemifusion 

event. 

 

1.3.2 SERINC3/5 

Serine incorporator 3 and 5 (SERINC3 & 5) belong to a family of transmembrane 

carrier proteins that facilitate the incorporation of serine into lipids of the plasma 

membrane (Inuzuka et al., 2005).  Their role in the Env-dependent restriction of 

HIV-1 was independently reported by two groups, both of whom were seeking to 

identify the mechanism through which HIV-1 Nef and the structurally distinct MLV 

glycoGag are able to enhance the infectivity of HIV-1 virions (Rosa et al., 2015; 

Usami et al., 2015).  

 

The two groups discovered that Nef and glycoGag function by downregulating 

SERINC3 and 5 from the plasma membrane.  This prevents their incorporation into 

budding virions, where they have an inhibitory effect on replication.  A number of 

mechanisms for the restriction of HIV-1 by SERINCs have been postulated, 

including physical hindrance of Env trimer clustering and increasing the energy 

barrier for membrane fusion (Usami et al., 2015). It is also possible that these 
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proteins compromise infectivity by altering the lipid composition of the envelope 

(Waheed and Freed, 2010). 

 

Although little is presently known about the mechanism through which Nef 

overcomes SERINC-mediated restriction, a preliminary observation suggested that 

it may target the latter to Rab7+ endosomal compartments for eventual degradation 

by the lysosome (Rosa et al., 2015). However, more recent findings have shown 

that the downregulation of SERINC by Nef is dispensable and insufficient for 

antagonism. This indicates that virion exclusion is not the only mechanism through 

which Nef counteracts SERINC-mediated restriction. (Trautz et al., 2016)  

 

1.3.3 APOBEC family members 

The APOBEC family of proteins comprises eleven members, all of which have 

cytosine deaminase activity.  The substrate for these enzymes is typically 

single-stranded DNA, with a requirement for three bases preceding the target 

cytosine and a single one following it (Nabel et al., 2013).  A conserved glutamic 

acid in the catalytic site promotes the hydrolytic deamination of cytosine by 

deprotonating water, thereby providing a hydroxide ion that can be used for 

nucleophilic attack of the pyrimidine ring.  The net result is the replacement of the 

4’ amine with a carbonyl group – i.e. the conversion of cytosine to uracil. 

 

The APOBEC family has a colourful evolutionary history, evidenced by the 

extensive variation in gene copy number among mammals (Conticello et al., 2005).  

Although all mammals possess activation-induced cytidine deaminase (AID) and 

APOBECs 1, 2 and 3, there is evidence of particular gene expansion among the 

primates, where tandem duplications in the APOBEC3 locus have yielded a total of 

seven protein-coding genes (A3A-H).     

 

While it has been known for some time that the APOBEC family member AID 

contributes to adaptive immunity by promoting antibody diversity (Muramatsu et al., 

1999), work over the past decade has uncovered numerous other members that 

contribute to retroviral restriction.  APOBEC3G (A3G herein) was initially 

discovered as a dominant cellular factor that blocks the replication of Vif-deficient 
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HIV-1 in culture (Madani and Kabat, 1998; Sheehy et al., 2002).  Later studies 

revealed that a number of other proteins in the A3 subfamily – including A3D, A3F 

and A3H – harbour similar activities (Hultquist et al., 2011; Ooms et al., 2013).  

 

A3 enzymes are incorporated into budding virions in the producer cell via an 

RNA-bridged interaction with the NC domain of Gag (Apolonia et al., 2015).  

Shortly after budding, a substantial fraction of the incorporated restriction factor 

then becomes encapsidated in the viral core (Donahue et al., 2015).   

 

Restriction itself is manifested in the target cell, specifically during reverse 

transcription.  In the early stages of RT, degradation of the genomic RNA yields a 

single-stranded cDNA that is susceptible to modification by the encapsidated A3 

enzyme.  Deamination of this molecule provides an aberrant template for 

plus-strand synthesis, resulting in a high frequency of G-A mutations in the nascent 

proviral DNA (Harris et al., 2003; Mangeat et al., 2003).   

 

A3 enzymes can also inhibit the elongation of reverse transcripts in a 

deamination-independent manner, by associating with viral ssRNA and imposing a 

physical barrier to the progression of reverse transcriptase along the template 

(Iwatani et al., 2007; Bishop et al., 2008).  This steric hindrance requires a shift in 

the binding kinetics of the enzyme, from a fast off-rate (to permit rapid scanning for 

cytosine residues) to a much slower one (to pose a block to RT).  This transition is 

mediated by a gradual oligomerisation of A3 (Chaurasiya et al., 2014), and is 

utilised to a greater extent by A3F than by A3G (Kobayashi et al., 2014).  

A3-mediated restriction of other retroviruses – including MLV, HTLV-1 and various 

foamy viruses – has also been reported (Delebecque et al., 2006; Rulli et al., 2008; 

Ooms et al., 2012). 

 

Unsurprisingly, retroviruses have evolved various means of counteracting 

restriction by A3 proteins.  The HIV-1 viral infectivity factor (Vif) is an accessory 

protein that renders the virus resistant to restriction by A3.  Specifically, Vif recruits 

the Cullin5-ElonginB-ElonginC complex, which facilitates the polyubiquitination and 

proteasomal degradation of the restriction factor (Conticello et al., 2003).  MLV 

antagonises A3 by way of a heavily glycosylated form of Gag (glycoGag), which 
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confers resistance by excluding the enzyme from incorporation into virions (Boi et 

al., 2014). Meanwhile, foamy viruses counter restriction using the accessory 

protein, Bet, which appears to employ a mechanism that is distinct from both Vif 

and glycoGag (Chareza et al., 2012).  

 

The pressure to evade such viral countermeasures has resulted in numerous 

positively selected residues within genes of the A3 subfamily (Sawyer et al., 2004; 

Duggal et al., 2013).  Interestingly, some of these predate the emergence of 

modern lentiviruses, implying that an ancient – and perhaps still extant – selective 

force has helped to shape the evolution of this protein. 

 

1.3.4 SAMHD1 

Sterile alpha motif (SAM) and histidine/aspartic acid (HD) domain-containing 

protein 1 (SAMHD1) is a restriction factor that inhibits HIV-1 and SIV replication in 

cells of the dendritic and myeloid lineages, and in resting CD4+ T-cells (Laguette et 

al., 2011; Baldauf et al., 2012).  The HD domain of the protein is a deoxynucleoside 

triphosphate triphosphohydrolase (dNTPase), which cleaves its substrate at the 

phosphoester bond between the α-phosphate and the 5’ carbon of the ribose ring, 

thereby liberating the triphosphate moiety from its deoxynucleoside partner 

(Goldstone et al., 2011).  This depletes the cellular pool of dNTPs, thus preventing 

the restricted virus from completing reverse transcription (Lahouassa et al., 2012). 

 

The active form of SAMHD1 is a homotetramer with a total of 4 catalytic and 8 

allosteric sites.  Tetramerisation requires the C-terminal domain (CtD, residues 

584-629) and is dependent on allosteric activation by (d)GTP.  This induces 

conformational changes within the subunits that promote and stabilise their 

interaction with one another (Powell et al., 2011; Amie et al., 2013).  A structure of 

the SAMHD1 tetramer in complex with dGTP has been solved to 1.8 Å resolution 

(Zhu et al., 2013). 

 

While SAMHD1 limits the dNTP pool in differentiated and resting cells, it is inhibited 

in cycling cells to maintain sufficient dNTP concentrations for DNA synthesis.  The 

inactivation of SAMHD1 occurs post-translationally through the phosphorylation of 
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T592 by the cyclin A2/CDK1 complex (Tang et al., 2015).  This modification 

destabilises the tetramer by creating an electrostatic repulsion between the 

subunits, thereby inhibiting dNTPase activity.  This has a knock-on effect on 

restriction, partly explaining why cycling CD4+ T-cells are susceptible to HIV-1 

infection despite sustained expression of SAMHD1 (Baldauf et al., 2012).  

Interestingly, T592 phosphorylation is reduced in response to IFN-I, suggesting that 

viral threat can directly result in the heightened activation of this restriction factor 

(Cribier et al., 2013). 

 

In order to overcome SAMHD1 restriction in non-cycling cells, some retroviruses 

have evolved specialised countermeasures.  The HIV-2/SIVmac accessory protein, 

Vpx is one such example.  Vpx interacts with both the CtD of SAMHD1 and the 

Cullin4A complex (via the adaptor protein DCAF1) in order to promote the 

proteasomal degradation of the former (Schwefel et al., 2015).  The SAMHD1-CtD 

thus exhibits strong signatures of positive selection (Laguette et al., 2012), the 

hallmark of an ongoing evolutionary arms race between a restriction factor and its 

viral antagonist. 

 

1.3.5 REAF 

RNA-associated early-stage antiviral factor (REAF) is a recently discovered 

restriction factor that acts in the early phase of the retroviral lifecycle, either during 

or immediately following the initiation of reverse transcription (Marno et al., 2014).  

The protein was first identified in a genome-wide siRNA screen (Liu et al., 2011a), 

where its knockdown in HeLa cells was found to result in >50-fold rescue of viral 

titres. 

 

REAF has been shown to restrict HIV-1, HIV-2 and a number of SIVs, implying that 

its viral target is conserved at least among the primate lentiviruses. Although the 

mechanism of restriction is presently unclear, one hypothesis suggests that REAF 

associates with viral reverse transcription products and targets them for 

degradation (Marno et al., 2014).  However, whether this interaction occurs directly 

or via an adaptor molecule remains to be seen. 
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Given the general observation that HIV-1 and other retroviruses typically evolve 

means of evading restriction factors, it is likely that such a countermeasure also 

exists for REAF.  Consistent with this notion, REAF protein levels have been shown 

to decrease as soon as 1 h after viral challenge in HeLa cells (Marno et al., 2014), 

a phenotype that is lost with the addition of proteasome inhibitors.  This implies that 

HIV-1 targets REAF for proteasomal degradation in a fashion that mirrors the 

retroviral antagonism of A3G and SAMHD1. 

 

1.3.6 Capsid-targeting restriction factors: Fv1, T5α, TCyp and Mx2 

The history of research on capsid-binding restriction factors can be traced to the 

discovery of the murine restriction factor, Fv1, a dominant gene that confers mice 

with resistance to MLV (Lilly, 1970; Rowe and Hartley, 1972; Odaka, 1975).  More 

than twenty years following its discovery, the Fv1 gene was cloned and sequenced 

by a positional cloning method (Best et al., 1996), and a sequence alignment 

revealed that it is derived from the Gag sequence of an endogenous retrovirus of 

the MERV-L family (Stoye, 1998).   

 

The gene exists in two primary alleles, Fv1n and Fv1b, with the former conferring 

resistance to B-tropic MLV and the latter usually to N-tropic, although it is modestly 

active against B-tropic virus when expressed above endogenous levels (Hartley et 

al., 1970; Bishop et al., 2001).  The determinant responsible for the differential 

sensitivity of MLVs to alleles of Fv1 was later mapped to a single amino acid 

(residue 110) in the MLV capsid (Kozak and Chakraborti, 1996), although 

additional determinants have since been identified (Stevens et al., 2004; Ohkura 

and Stoye, 2013).  

 

Fv1 restricts MLV at a stage after reverse transcription but prior to genomic 

integration (Jolicoeur and Baltimore, 1976; Sveda and Soeiro, 1976).  It does this, 

in part, by binding to the MLV capsid via its C-terminal recognition domain (Bishop 

et al., 2001).  An exact mechanism of restriction is yet to be elucidated, but it is 

known that self-association of Fv1 via an N-terminal dimerisation domain is a 

prerequisite for restriction (Bishop et al., 2006; Yap et al., 2007).  It is also evident 
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that the capsid target must exist in its mature and multimeric form for a successful 

Fv1 interaction to occur (Dodding et al., 2005). 

 

A recent study characterising the restriction profiles of Fv1 orthologues from wild 

mice found that some are able to target non-MLV retroviruses, including lenti- and 

foamy viruses (Yap et al., 2014).  This work revealed several novel determinants of 

restriction in the C-terminus of Fv1, and reinforced the notion that this restriction 

factor has been defending mice against episodes of retroviral challenge since its 

endogenisation, at least 4 million years ago (Yan et al., 2009). 

 

Although Fv1 is a murine-specific factor, an Fv1-like activity became apparent in 

various primate cell lines in the late 1990s.  These cells restricted N-, but not 

B-MLV, and, like Fv1, the factor responsible appeared to be both dominant and 

saturable, although its effects were manifested prior to reverse transcription.  This 

activity was provisionally referred to as Ref1 (Towers et al., 2000, 2002).  Around 

the same time, several primate cell lines had been reported to block the replication 

of lentiviruses such as HIV-1 and SIVmac (Hofmann et al., 1999; Besnier et al., 

2002; Cowan et al., 2002; Hatziioannou et al., 2003).  Again, this phenotype was 

mediated by a factor that was dominant, saturable and acted pre-RT; it was 

denoted Lv1.  

 

It was eventually discovered that a single protein was responsible for both of these 

phenomena.  This was the alpha isoform of the T5 gene (T5α herein).  T5α was 

identified by screening a rhesus macaque cDNA library for genes that conferred 

human cells with resistance to HIV-1 infection (Stremlau et al., 2004).  It has since 

been discovered that T5α is also capable of restricting N-MLV and a panel of lenti- 

and foamy viruses (Perron et al., 2004; Yap et al., 2004; Saenz et al., 2005; Yap et 

al., 2008). 

 

A subsequent screen by the Luban group sought to identify the determinant for 

HIV-1 restriction in owl monkey kidney (OMK) cells (Sayah et al., 2004).  Given 

former evidence that Lv1 activity in OMK cells could be abolished using 

cyclosporine, a competitive inhibitor of CypA, the OMK cDNA library was screened 

for clones with homology to CypA.  This screen yielded an unexpected result: a 
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fusion product combining the T5 and CypA open reading frames, which is believed 

to have arisen via a LINE-I-mediated retrotransposition event that inserted a CypA 

cDNA into intron 7 of the T5 gene.  This fusion protein – TCyp – confers permissive 

human cells with anti-HIV-1 activity (Nisole et al., 2004).  Such fusions have since 

been identified in several primate lineages (Brennan et al., 2008; Newman et al., 

2008; Dietrich et al., 2010; Yu et al., 2013).  A more thorough treatment of both T5α 

and TCyp can be found in Section 1.4.5. 

 

More recently, myxovirus resistance 2 (Mx2) was identified as an 

interferon-inducible factor with restriction activity against HIV-1 (Goujon et al., 

2013; Kane et al., 2013; Liu et al., 2013).  Mx2 interacts directly with the HIV-1 

capsid via its N-terminal domain (Kong et al., 2014), and then effects restriction by 

stabilising the core, thus preventing uncoating (Fricke et al., 2014).  The N-terminal 

domain is both necessary and sufficient for capsid recognition, as is evidenced by 

the observation that fusing the N-terminal 91 amino acids of Mx2 to Fv1b yields a 

chimera with potent anti-HIV-1 activity (Goujon et al., 2015).  The C-terminal 

domain of Mx2 is responsible for dimerisation of the protein, a function that is also 

indispensable for its restriction activity (Fricke et al., 2014; Goujon et al., 2015). 

 

Recent work has uncovered circulating variants of HIV-1 with capsid mutations that 

confer resistance to Mx2 (Wei et al., 2016).  Correspondingly, sites of positive 

selection have been identified within Mx2 (Busnadiego et al., 2014; Sironi et al., 

2014), implying an ongoing evolutionary arms race between the two. 

 

1.3.7 TRIM28 

TRIM28 (T28 herein) is a restriction factor that targets the integrated provirus of 

MLV and induces its transcriptional silencing (Wolf et al., 2008).  T28 is recruited to 

a sequence element within the proviral DNA which closely overlaps with the 

conserved tRNApro primer-binding site of the ecotropic MLV genome.  This is 

mediated by members of the Krüppel-associated box (KRAB) family of zinc finger 

DNA-binding proteins, including ZPF809 (Wolf and Goff, 2009).  Upon recruitment 

to the proviral DNA, T28 itself recruits a complex of chromatin modifiers that serve 

to repress local transcription, including a histone deacetylase complex, a histone 



Chapter 1: Introduction 

 

72 

 

H3K9 methyltransferase, and the heterochromatin-associated protein, HP1 

(Schultz et al., 2001, 2002). 

 

T28 has also been shown to repress the transcription of endogenous retroviruses 

in neural progenitor cells (Fasching et al., 2015), a process that may be critical for  

proper brain development. 

 

1.3.8 Tetherin 

Tetherin (also known as bone marrow stromal antigen 2, BST-2) is an 

interferon-inducible restriction factor that causes fully formed virions to be retained 

on the surface of infected cells (Neil et al., 2008).   It is a type II transmembrane 

protein with unusual topology, comprising an N-terminal transmembrane domain 

and a C-terminal glycophosphatidylinositol (GPI) anchor, linked by an extracellular 

coiled-coil motif (Hinz et al., 2010; Schubert et al., 2010).  When a virion buds from 

a producer cell, one of the lipid anchors is incorporated into the viral membrane.  

This results in a physical link between cell and virus that prohibits the latter from 

being disseminated (Neil et al., 2008). 

 

Unsurprisingly, lentiviruses have evolved numerous countermeasures to 

antagonise the activity of tetherin, including HIV-1 Vpu, HIV-2 Env and SIV Nef (Jia 

et al., 2009; Hauser et al., 2010).  In the case of HIV-1 and -2, this involves 

sequestration of tetherin from the plasma membrane to a perinuclear compartment;  

less is known about the mechanism utilised by SIV Nef, although it is clear that the 

process is both clathrin-dependent (Serra-Moreno et al., 2013) and species-specific 

(Zhang et al., 2009). 
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1.4 The TRIM family 

The tripartite motif (TRIM) family has at least 100 representatives in the human 

proteome, with functions as diverse as transcriptional regulation (Cammas et al., 

2012); cell cycle control (Bell et al., 2013); embryonic development (Song et al., 

2011) and apoptosis (Bernardi and Pandolfi, 2003).  The family is defined by its 

tripartite N-terminus, which comprises a RING finger, either one or two B-boxes, 

and a coiled-coil region (otherwise known as the RBCC domain).  These modules 

appear in all family members with conserved order and spacing. 

 

While TRIM proteins are united by their N-terminus, they diverge significantly at the 

C-terminus, where a number of domains and combinations thereof have been 

reported (Ozato et al., 2008).  This has provided the basis for a classification 

system that divides human TRIMs into nine classes (Short and Cox, 2006) (Figure 

1.12).  Interestingly, this system appears to have a phylogenetic basis, indicating 

that the RBCC domain was assembled and fixed prior to the acquisition of 

C-terminal partners. 

 

1.4.1 The RING domain 

The RING domain is a relatively short, cysteine-rich motif that coordinates two zinc 

ions and is found in a range of functionally diverse proteins (Borden and Freemont, 

1996).  It resides at the extreme N-terminus of all TRIM family members, typically 

within 10-20 amino acids of the initiator methionine (Torok and Etkin, 2001); 

(Reymond et al., 2001), and has the canonical sequence 

CX2CX9-39CX1-3HX2-3CX2CX4-48CX2C, where C and H correspond to cysteine and 

histidine, respectively, and X denotes any amino acid.  The RING finger has E3 

ubiquitin ligase activity, mediating the transfer of ubiquitin from an E2 conjugating 

enzyme to a given target substrate and, in doing so, often targeting the substrate 

for destruction by the proteasome (Xu et al., 2003). 
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Figure 1.12: The classification of human TRIMs  

The first nine subgroups were identified by (Short and Cox, 2006), and the 
remaining three described later. R: RING domain; B1: B-box1; B2: B-box2; CC: 
coiled-coil motif; COS: C-terminal subgroup one signature domain; FN-III: 
fibronectin type III domain; B30.2-like: either the full B30.2 domain (PRYSPRY), or 
the PRY or SPRY subdomain in isolation; AR: acid-rich region; PHD-BROMO: plant 
homeodomain and bromodomain; NHL: NHL repeat; MATH: meprin and TRAF 
homology domain; ARF: ADP ribosylation factor-like GTPase; TM: transmembrane 
domain.  Dashed boxes represent domains that are absent in certain members of a 
given subgroup.  Figure is adapted from Meroni (2012). 
 
 



Chapter 1: Introduction 

 

75 

 

1.4.2 The B-boxes 

Immediately downstream of the RING domain is the B-box, another zinc-binding 

motif that mediates protein-protein interactions.  Given its structural and functional 

similarity to the RING finger, it has been proposed that the two domains diverged 

relatively recently from a common ancestor (Massiah et al., 2007).   

 

B-boxes come in two flavours: type 2 B-boxes (B2), which are found in all TRIM 

proteins, and type 1 (B1), present in fewer than half.  Despite their names, the two 

motifs share little primary sequence identity: the consensus for B1 is 

CX2CX6-17CX2CX4-8CX2-3C/HX3-4HX5-10H[C5(C/H)H2]), while for B2 it is 

CX2_4HX7-10CX1-4D/C4-7CX2CX3-6HX2-5H[CHC(D/C)C2H2], where C, D and H 

correspond to cysteine, aspartic acid and histidine, respectively, and X denotes any 

amino acid. 

 

The structure of B1 from T18 has been solved at high resolution, revealing an 

α-helix, two β-strands and three β-turns, which run from V117 to P164 and adopt a 

ββα topology in the tertiary structure (Figure 1.13A) (Massiah et al., 2006).  Like 

the RING domain, this structure coordinates two Zn2+ atoms: one by a cluster of 

cysteine residues (C119-C122-C142-C145) and the other by a tetrahedral 

arrangement of cysteine and histidine residues (C134-C137-H150-H155).  The 

structure of T18 B2 has also been solved by multidimensional NMR spectroscopy; 

despite the divergence in primary sequence, it exhibited a similar tertiary fold to 

that of B1 (Figure 1.13B) (Massiah et al., 2007).  Crystal structures of B2 are also 

available for the human and rhesus orthologues of T5α (Diaz-Griffero et al., 2009; 

Goldstone et al., 2014b).   
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Figure 1.13: Solution structures of (A) B-box1 and (B) B-box2 from T18 

Zinc atoms are shown in blue. PDB accession codes: 2FFW, 2DQ5, respectively. 
(Massiah et al., 2007, 2006) 
 

 

B2 is the only B-box motif present in T5α, where it serves to mediate the 

higher-order oligomerisation of T5 dimers into a supramolecular assembly (Li and 

Sodroski, 2008).  This is required to increase the avidity of the T5-capsid 

interaction, which itself is imperative for restriction (Perez-Caballero et al., 2005; 

Javanbakht et al., 2005).  Recently, the B-box domain of rhT5α has been 

crystallised in both dimeric and trimeric form (Keown et al., 2016; Keown and 

Goldstone, 2016).  This structure reveals two anti-parallel β-sheets per B-box 

monomer: the first sheet adopting a β1-β2 topology and the second sheet, 

β3-β4-α1-β5.  Again, this motif coordinates two zinc ions in a tetrahedral fashion 

(Figure 1.14).   

 

 

 

Figure 1.14: The B-box and coiled-coil of rhesus T5α 

Zinc atoms are shown in blue. PDB accession code: 5F7T. (Wagner et al., 2016) 
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In the dimeric structure, the interface between monomers involves a salt bridge 

between E120 of one partner and R121 of the opposing one.  This explains the 

former observation that charge-reversing mutations of surface-exposed residues 

(e.g. R121E) attenuate the restriction of HIV-1 by rhT5α, presumably by reducing 

its propensity for self-association (Diaz-Griffero et al., 2009).  Incidentally, the fact 

that the B-box of rhT5α has been observed to form both dimers and trimers in 

solution suggests that this oligomerisation interface is relatively plastic in nature, a 

trait that may lend itself well to recognising the varying curvatures of divergent 

retroviruses (discussed further in Section 1.4.5). 

 

1.4.3 The coiled-coil motif 

The coiled-coil (CC) motif is a highly α-helical region that comprises approximately 

100 amino acids and follows the B-box(es) in all TRIM family members.  Although 

this domain is invariably rich in hydrophobic residues (particularly leucine), the 

primary sequence conservation of CCs from different TRIMs is low. 

 

The CC motif was once believed to consist of several smaller sub-domains 

punctuated by α-helices.  However, more recent data from biochemical and 

crystallographic analyses of T25 have revealed that the domain actually constitutes 

a contiguous supercoil, with heptad and hendecad amino acid repeats that adopt a 

symmetrical 7-7-7-7-11-11-11-11-7-7-7-7 pattern (Sanchez et al., 2014).  The 

supercoil is canonically left-handed at the ends but unwinds towards the middle, 

where it adopts a slightly right-handed topology.  A multiple sequence alignment of 

54 human TRIMs revealed that this arrangement is remarkably well conserved, 

despite limited sequence identity.  Indeed, shortly after the characterisation of the 

T25 coiled-coil, a similar structure was observed in a CC-containing fragment of 

rhT5α (Goldstone et al., 2014b). 

 

CC folding is dependent on short stretches of amino acids known as trigger sites 

(Steinmetz et al., 2007).  These regions spontaneously form α-helices, thereby 

initiating a chain reaction that causes the remainder of the coiled-coil to ‘zip up’ into 

the appropriate conformation.  This progressive supercoiling is often inextricably 

linked to the formation of oligomers (typically dimers or trimers) with other 
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CC-containing proteins.  While all TRIM family members are capable of 

homodimerisation, the requirement for ‘compatible’ trigger sites limits the 

opportunity for heterodimerisation.  Where this does occur, it is usually between 

closely related family members, such as T1 and 18 (Reymond et al., 2001) (see 

Section 1.4.6).  

 

In the case of T5α, the CC motif is both necessary and sufficient for dimerisation 

(Berthoux et al., 2005; Javanbakht et al., 2006).  This is corroborated by the 

observation that restriction-defective T5α mutants act in a dominant-negative 

manner as long as they have an intact CC domain (Stremlau et al., 2004; Perez-

Caballero et al., 2005).  Given the low affinity of the T5-capsid interaction, 

dimerisation is indispensable for restriction (Langelier et al., 2008).  Indeed, 

signatures of positive selection within the CC may reflect the conformational impact 

of dimerisation for restriction specificity (Sawyer et al., 2005). 

 

1.4.4 The B30.2 domain 

Members of the C-I and -IV subgroups of the TRIM family are defined by the 

presence of a C-terminal B30.2 (or PRYSPRY) domain.  In T5α, this region is both 

necessary and sufficient for capsid recognition: substituting the rhT5α B30.2 

domain into the human orthologue endows the latter with a rhesus-like ability to 

restrict HIV-1 (Perez-Caballero et al., 2005; Yap et al., 2005).   

   

Crystal structures of the B30.2 domains from various TRIMs have been solved by a 

number of groups (Weinert et al., 2009; D'Cruz et al., 2013; Weinert et al., 2015).  

According to a model based on these structures, the domain consists of thirteen 

β-strands, with β1-3 residing in the recently acquired PRY domain and β4-13 in the 

ancestral SPRY domain.  These strands form two opposing β-sheets, giving rise to 

a hydrophobic, sandwich-like core.  The domain also contains four flexible loops, 

which protrude from one surface of the core and constitute the capsid-binding 

interface.  These loops are regions of high amino acid variability and are 

correspondingly referred to as the variable regions (VRs).  It is largely the 

species-specific polymorphisms within these regions that determine the panel of 
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retroviruses a given T5 orthologue is able to restrict (Stremlau et al., 2005; Ohkura 

et al., 2006).   

 

A catalogue of data from crystallographic, NMR and in silico simulation studies has 

revealed that the B30.2 domain makes multiple contacts with its viral target.  The 

prevailing model derived from these data positions VR2 and 3 within a single CA 

hexamer, while VR1 extends across the threefold axis to bridge adjacent hexamers 

(Biris et al., 2012, 2013; Kovalskyy and Ivanov, 2014).  Consistent with this notion 

is the structural plasticity of VR1, which may adopt conformations that position the 

same residue up to 30 Å apart in space (Ohkura et al., 2006).  It is likely that such 

flexibility has evolved to facilitate the recognition of divergent retroviral cores, which 

often differ in size, shape and curvature.  Perhaps a further adaptation to this 

pleiomorphy is the fact that T5α need only engage with a minority of capsid 

subunits (~25%) for restriction to ensue (Shi et al., 2013). 

 

Given their need to rapidly evolve with episodes of viral challenge, the VRs are 

hotspots of positive selection.  Interestingly, there is a propensity for charged 

residues to be particularly subject to these selective forces, indicating that the 

interaction between a B30.2 domain and its CA partner is likely electrostatic in 

nature.  For example, the removal of a single positive charge – R332P – in huT5α 

is sufficient to confer it with recognition of HIV-1 (Yap et al., 2005), while the 

analysis of N-MLV escape mutants reveals opposite charge preferences for the 

B30.2 domains of rhesus and human T5α (Ohkura et al., 2011; Ohkura and Stoye, 

2013). 

 

1.4.5 T5α and TCyp 

T5α and -Cyp (collectively referred to as T5 herein) are related proteins derived 

from the T5 gene.  Both molecules restrict retroviral replication prior to reverse 

transcription in a capsid-dependent manner (Stremlau et al., 2004; Sayah et al., 

2004).  However, while T5α orthologues are abundant among mammals and other 

vertebrates (Song et al., 2005a; van der Aa et al., 2009; Pacheco et al., 2010); 

(Fletcher et al., 2010), TCyp is the product of retrotransposition events that 

substituted the B30.2 domain for cyclophilin A (CypA) in a handful of primate 
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lineages (Brennan et al., 2008; Virgen et al., 2008).  This section will describe what 

is known about the nature of the T5-capsid interaction, as well as the mechanisms 

by which restriction is effected.  

 

Capsid recognition 

 

Retroviral cores are pleiomorphic structures that vary in hexamer number, 

pentamer distribution, and overall size and shape (Ganser-Pornillos et al., 2004; 

Benjamin et al., 2005; Heymann et al., 2008).  Indeed, even virions from the same 

quasispecies can exhibit discordant geometries (Welker et al., 2000).  This 

presents a challenge to capsid-binding restriction factors, which must recognise 

divergent retroviral targets with low primary sequence identity (Esteva et al., 2014). 

 

Until recently, much of our understanding of the T5-capsid interaction was based 

on genetic data – particularly the isolation of viral escape mutants (Ohkura et al., 

2011; Ohkura and Stoye, 2013).  Biochemical analyses were hampered by 

technical difficulties in purifying native T5, as well as the need for both interacting 

partners to be present in multimeric form (Diaz-Griffero et al., 2006; Yap et al., 

2007).  Nevertheless, some insight was gleaned thanks to the development of 

various in vitro assays for capsid binding.  These typically involved incubating the 

lysates from restriction factor-expressing cells with core-like assemblies of CA, and 

then detecting binding either through co-immunoprecipitation or electron 

microscopy (Stremlau et al., 2006; Hilditch et al., 2011).  Encouragingly, these 

methods yielded binding data that correlated well with restriction phenotypes. 

 

Since then, there have been numerous efforts to gain deeper structural insight into 

the T5-capsid interaction (Ganser-Pornillos et al., 2011; Goldstone et al., 2014b; 

Sanchez et al., 2014).  Collectively, these studies have given rise to a model in 

which T5 forms elongated, antiparallel dimers that self-associate into a hexameric 

lattice (Figure 1.15A); the resulting structure is geometrically complementary to the 

capsid target.  Regions of electron density within this structure reveal that the 

coiled-coils form the longitudinal axes of each dimer, while the B-box2 domains sit 

at opposing ends, where they can mediate homotypic interactions with 

neighbouring dimers.  The RING domains reside in close proximity to the B-box2 
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domains, but are thought to face outside the plane of assembly, where they can 

interact with components of the ubiquitination machinery. 

 

In the T5α dimer, a hairpin turn immediately after the coiled-coil causes the 

adjacent linker 2 (L2) region to double back towards the twofold axis of the dimer, 

where it terminates in a four-helix bundle.  This structure firmly anchors the B30.2 

domains at the centre of the dimer (Figure 1.15).  Conversely, in TCyp, CypA is 

attached to the neighbouring L2 region via an unstructured linker.  This confers the 

domain with a greater degree of conformational freedom (Goldstone et al., 2014b).  

It is also noteworthy that while the B-box2 domain is indispensable for 

T5α-mediated restriction (Javanbakht et al., 2005), this is not the case for TCyp, 

indicating that there are probably gross differences in the supramolecular 

structures of these two factors (Diaz-Griffero et al., 2007). 

 

The above model was recently validated by the Sundquist group, who used 

electron microscopy to visualise native T5 proteins in complex with 

disulphide-crosslinked HIV-1 cores (Li et al., 2016c).  Interestingly, this work 

revealed a distinct lack of uniformity within the T5 lattice, with hexamers spanning 

between 15 and 55 nm in diameter.  This phenotype may have evolved to 

accommodate inherent irregularities on the capsid surface arising from different 

chemical microenvironments, in addition to the more overt deformations created by 

pentamers.  A degree of flexibility in the T5 lattice may also be instrumental in 

permitting a single orthologue to adapt to the varying curvatures of distantly related 

viruses.   
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Figure 1.15: Prevailing models for the higher- and lower-order oligomerisation of 

T5α  

(A) The positions of individual domains within the T5α lattice.  The RING and 
B-box2 domains (purple and red) are positioned at the threefold vertices, while the 
coiled-coils (green) extend to form the hexamer edges and the B30.2 domains (red 
and brown) sit at the twofold axes of each edge. (B) Side-view of a single T5α 
dimer interacting with capsid. L2-E: an extended region within linker L2. 
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Mechanisms of restriction 

 

Early models of T5-mediated restriction were largely centred on the RING domain 

and its associated E3 ubiquitin ligase activity.  A number of groups proposed that 

T5 uses this activity to co-opt the proteasome and accelerate capsid uncoating, 

thereby imposing a block to the coupled process of reverse transcription (Perron et 

al., 2007; Kim et al., 2011).  This was based on the observation that particulate 

capsids are converted to soluble capsid proteins more rapidly in cells expressing 

T5α (Diaz-Griffero et al., 2006; Stremlau et al., 2006), and that both mutational 

inactivation of the RING finger (Perez-Caballero et al., 2005) and the use of 

proteasome inhibitors (Butler et al., 2002)  can increase viral titres under usually 

restrictive conditions. 

 

While it was initially believed that CA served as the substrate for ubiquitination, 

later studies have shown that T5 undergoes autoubiquitination of several residues 

once it is bound to the viral core (Yamauchi et al., 2008).  This gave rise to a model 

where translocation of Ub-T5 through the proteasome imparts mechanical stress 

on the attached virion, causing it to disassemble.  Given the recent finding that 

RING domains function as dimers (Yudina et al., 2015), and the trimeric interface of 

RINGs at each vertex of the T5 lattice, it is feasible that this occurs via the mutual 

activation of two RING domains followed by ubiquitination of the third.  This notion 

is supported by the observation that K45 and 50 are preferentially ubiquitinated in 

the rhT5α RING domain (Fletcher et al., 2015). 

 

While proteasome inhibitors relieve the block to reverse transcription, the 

observation that virions accumulate in the cytoplasm of MG132-treated cells – 

coupled with an absence of 2-LTR circles under these conditions – point towards 

an additional pathway that is effected prior to nuclear entry  (Campbell et al., 2008; 

Wu et al., 2006).  This, combined with the recent observation that T5α can mediate 

the autophagic degradation of virions (Mandell et al., 2014a, b), suggests that T5 

orchestrates a number of different restriction pathways, only some of which are 

proteasome-dependent.  
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In addition to the direct restriction of virions, it has been shown that T5 functions as 

an innate immune sensor, thereby contributing to the establishment of an antiviral 

state.  Upon the detection of retroviral cores, T5α works with the E2 

ubiquitin-conjugating enzyme complex, UBC13-UEV1A, to catalyse the synthesis of 

K63-linked polyubiquitin chains.  These molecules activate the TAK1 complex, 

initiating a signalling cascade that culminates in the stimulation of NF-κB and AP1, 

and the resultant transcription of pro-inflammatory genes (Pertel et al., 2011; 

Lascano et al., 2016).   

 

1.4.6 T1 and T18 

T1 and 18 are paralogous members of the C-I subfamily of TRIM proteins (Meroni 

and Diez-Roux, 2005).  Like T5α, both harbour a C-terminal B30.2 domain; 

however, the presence of two additional domains upstream of this region (COS and 

FN-III) makes them almost twice as long. 

T1 and 18 map to mirrored loci on opposing arms on the X chromosome, 

suggesting that one arose from the other following an intrachromosomal duplication 

event (Perry et al., 1998; Buchner et al., 1999).  The two proteins thus share 83% 

amino acid similarity (76% identity) and conserved domain boundaries, while the 

corresponding genes have 71% nucleotide identity and conserved splice sites 

(Perry et al., 1999).   

T1 and 18 form both homo- and heterodimers via their CC motifs, a phenomenon 

that is required for their localisation to microtubules (Short et al., 2002) and is 

indispensable for function (Cainarca et al., 1999).  Both proteins have been 

implicated in stabilising and organising microtubules, as well as anchoring other 

proteins to them (Short et al., 2002; Berti et al., 2004); mutations are thus linked to 

a host of disease phenotypes, including genetic disorders of embryonic midline 

structures (Cox et al., 2000), X-linked intellectual disabilities (Geetha et al., 2014) 

and end-stage breast cancer (Wang et al., 2016). 

Although T1 and 18 are both integral to embryonic development, they have distinct 

spatiotemporal expression profiles (Buchner et al., 1999).  T1 is expressed at a low 

level during early embryogenesis, where it is confined predominantly to the central 



Chapter 1: Introduction 

 

85 

 

nervous system and the developing heart (particularly in the ventricle walls and 

septum).  Expression of this protein increases in other organ systems – particularly 

the stomach, thyroid and kidney – later in embryogenesis.  Conversely, T18 is 

ubiquitously expressed among early embryonic tissues, but is not detectable in the 

heart.  Throughout embryogenesis, T18 is typically more abundant than T1. 

Quite apart from these studies, the Stoye group have reported that T1 – but not 

T18 – is able to restrict both wild-type N-MLV and a capsid mutant (N82D) (Yap et 

al., 2004).  This phenotype has since been reported by other groups (Uchil et al., 

2008), but at the time of writing remains poorly characterised. 

 

1.5 Aims of this project 

Although the restriction phenotype of T1 was first described more than a decade 

ago, there have been no attempts to characterise this activity since.  The main 

objectives of this thesis are thus to provide an insight into the basis of T1-mediated 

restriction (Chapter 3) and to draw comparisons between T1 and its distantly 

related cousin, T5α (Chapter 4).  Furthermore, given that these proteins diverge 

significantly in terms of their size, Chapter 5 will explore the impact of 

intramolecular domain spacing on facilitating a productive interaction with capsid.  

Each of these chapters will be prefaced with a brief introduction of their own to 

provide context to the results described therein. 
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2.1 Recombinant DNA 

2.1.1 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) was used to amplify genes from plasmids, 

produce chimeric DNA and add tags to proteins. 

 

A typical reaction consisted of 50 ng template DNA, 500 nM of each primer (Sigma), 

200 μM dNTPs, and 2.5 U PfuUltra DNA polymerase (Agilent) in the supplied buffer, 

made up to a final volume of 50 μL with dH2O.  Cycling parameters included 

denaturation at 95°C for 2 min, followed by 25 cycles of denaturation (95°C for 

1 min), primer annealing (57°C for 2 min), and extension (72°C for 3 min), before a 

final round of extension at 72°C for 10 min.  The annealing temperature was raised 

to 60°C when using primers with a melting temperature (Tm) exceeding 65°C.   

Thermal cycling was performed using the PTC-100 thermal cycler (MJ Research).  

 

All of the primers used in this project are listed in Appendix 7.1 of this thesis. 

 

2.1.2 Overlapping PCR 

Overlapping PCR is used to stitch together two fragments of DNA to produce a 

chimeric molecule.  Briefly, each fragment is independently amplified from its 

parental construct using primers with cross-complementarity at the ends which are 

to be joined.  The two fragments are then made contiguous in a second round of 

PCR (Figure 2.1).  Standard PCR conditions (Section 2.1.1) were used for these 

reactions. 
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Figure 2.1: Overlapping PCR 

Fragments from two constructs (A and B) are amplified using primer pairs P1-P2 
and P3-P4, respectively.  P2 and P3 have 5’ ends that are complementary to the 
opposing template, enabling the fragments to anneal in the centre following the first 
round of PCR.  Amplification of the resulting product with P1-P4 then yields a 
contiguous chimera. 
 

2.1.3 Site-directed mutagenesis 

Quikchange site-directed mutagenesis (Agilent) was used to introduce point 

mutations, insertions and deletions to a DNA template.  A typical reaction consisted 

of 10 ng of template DNA, 125 ng of each primer (Sigma), 200 μM dNTPs, and 

2.5 U PfuUltra DNA polymerase (Agilent) in the supplied buffer, made up to a final 

volume of 50 μL with dH2O.  Cycling parameters included an initial denaturation 

phase (95°C for 30 s), followed by 18 cycles of denaturation (95°C for 30 sec), 

primer annealing (55°C for 30 sec), and extension (68°C for 1 min per kb DNA).  

The reaction was then chilled at 4°C for 10 min.  Thermal cycling was performed 

using the PTC-100 thermal cycler (MJ Research).   

 

Following mutagenesis, the reaction was incubated with 20 U DpnI (NEB) at 37°C 

for 1.5 h.  DpnI selectively digests methylated DNA, thereby removing any template 

material and leaving the mutant behind.  After DpnI digestion, the remaining DNA 

was concentrated by ethanol precipitation (Section 2.1.10) and transformed into 
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XL10-Gold ultracompetent E. coli (Agilent) that had been pre-treated with 

β-mercaptoethanol (4 μL per 50 μL cells). 

 

2.1.4 Restriction digestion 

DNA was digested with restriction enzymes for the purposes of screening PCR 

clones and providing sticky ends for insert-vector ligation (Section 2.1.12).   

 

A typical 20 μL reaction consisted of up to 1.5 μg DNA and 1 U of restriction 

enzyme in the supplied buffer (NEB; Roche).  If performing a double-digest, then 

0.5 U of each enzyme was used in a buffer compatible with both.  Reactions were 

incubated at 37°C with gentle agitation for 1-3 h.  The digested fragments were 

then resolved by electrophoresis in a 0.8% (w/v) agarose gel (Section 2.1.5).  If 

required for downstream PCR or ligation reactions, the desired bands were excised 

and purified from the gel (Section 2.1.6). 

 

2.1.5 Agarose gel electrophoresis 

DNA fragments were separated by size using agarose gel electrophoresis.  

Agarose gels were made by dissolving 0.8-1.2% (w/v) agarose (Melford) in TBE 

Buffer (0.09 M Tris-HCl, 0.09 M borate, 2 mM EDTA) and adding SYBR Safe DNA 

stain (Invitrogen) at a final concentration of 1:2000.   

 

DNA samples were mixed with 10x loading buffer (0.25% bromophenol blue, 0.25% 

xylene cyanol FF, 30% glycerol) and loaded next to a ladder of DNA size markers 

(SmartLadder, Eurogentec).  Gels were run at 120 V for 30 min and then visualised 

using the Doc-It transilluminator (UVP). 

 

2.1.6 Extraction of DNA from agarose gels 

When DNA fragments were required for overlapping PCR or DNA ligation, they 

were first resolved by agarose gel electrophoresis (Section 2.1.5) and then 

extracted from the gel by placing it on a UV transilluminator and excising the 
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relevant band(s) with a scalpel.  The excised bands were dissolved in Buffer QG 

(Qiagen) at 60°C for 10 min with vigorous shaking.  Agarose and other 

contaminants were then removed using the MinElute Gel Extraction Kit (Qiagen), 

and the DNA was eluted in 10 μL of the supplied elution buffer. 

 

2.1.7 Gateway cloning 

The Gateway cloning system (Life Technologies) is a protocol that dispenses with 

the traditional cut-and-paste method for cloning DNA, instead relying on 

enzyme-directed recombination between proprietary recombination sequences.  In 

this project, the Gateway system was used to clone restriction factor genes into 

various destination vectors.   

 

The LxIY expression vector was the most frequently used (Figure 2.2), where L 

represents the LTR promoter that drives constitutive expression of the insert, x 

represents the insert, I represents the internal ribosome entry site (IRES), and Y 

represents the eYFP reporter gene.  When inducible expression of the restriction 

factor was required, an alternative vector system was used (see Section 2.2.7).  

 

 

Figure 2.2: The LxIY vector used for restriction factor expression 

 

Before putting a PCR product into the appropriate destination vector, it was first 

cloned into an entry vector by either BP recombination or directional TOPO cloning.  

In the former protocol, the PCR product is synthesised using modified primers that 

append attB sites to either end, facilitating enzyme-directed recombination between 

the attB-flanked PCR product and a supplied entry vector (pDONR221).  In the 

latter, the tetranucleotide CACC is appended to the 5’ end of a blunt-end PCR 

product to enable directional recombination into the pENTR-D-TOPO entry vector.  

This tetranucleotide has the additional benefit of embedding the start codon within 
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a Kozak sequence, thereby enhancing the translational efficiency of the gene 

(Kozak, 1987).  In both cases, successful entry clones were identified by selection 

with kanamycin and sequencing with the M13 forward and reverse primers (GATC 

Biotech).  These reactions are depicted graphically in Figure 2.3.  

 

 

Figure 2.3: BP recombination and the TOPO reaction are used to clone PCR 

products into the entry vector 

 

Both of the above reactions embed the PCR product between attL1 and attL2 sites.  

Because destination vectors carry complementary attR1 and attR2 sites, the PCR 

product can then be transferred from entry to destination vector via the LR 

recombination reaction (Figure 2.4).  Prior to LR recombination, the destination 

vector carries a suicide gene (ccdB) flanked by attR sites.  The recombination 

reaction substitutes the desired insert into the destination vector, while transferring 

the suicide gene to the entry vector.  The resulting expression clone can then be 

acquired by selection with ampicillin, while the suicide gene ensures removal of the 

entry clone. 
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Figure 2.4: The LR reaction is used to transfer a PCR product from the entry 

vector to an appropriate destination vector 

 

2.1.8 Transformation 

Transformation was used to propagate plasmid DNA for various downstream 

applications, including screening PCR clones and transfecting mammalian cells.  

The bacteria used for most applications were One Shot TOP10 E. coli (Invitrogen), 

although XL-10 Gold ultracompetent cells (Agilent) were used to transform DNA 

from mutagenesis reactions (Section 2.1.3), and Rosetta 2 DE3 competent cells 

(Novagen) were used to transform DNA for large-scale protein expression and 

purification (Section 2.4.1). 

 

Briefly, cells were defrosted in pre-chilled tubes and DNA was added at a volume 

not exceeding one-tenth that of the cells.  This mixture was left on ice for 30 min, 

heat-shocked at 42°C for 30 s, and then immediately returned to ice for 2 min to 

enable cell recovery.  250 μL SOC media (2% w/v tryptone, 0.5% w/v yeast extract, 

8.55 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 20 mM glucose) was added to the cells, 

before incubation at 37°C for 1 h with agitation (225 rpm).  20-100 μL of the 

outgrowth was then plated on LB-agar supplemented with the appropriate 

antibiotic(s) (see Table 2.1), before incubating at 37°C overnight. 

 

Antibiotic(s) Solvent Final concentration  Source 

Ampicillin-

Nafcillin 

Water 50 μg/ml each   Sigma 

Chloramphenicol Ethanol 25 μg/ml  Sigma 

Kanamycin Water 50 μg/ml  Sigma 

Streptomycin Water 50 μg/ml  Sigma 

Table 2.1: List of antibiotics used for the selection of transformants 



Chapter 2: Materials and Methods 

 

93 

 

2.1.9 Propagation and purification of plasmid DNA 

Following overnight incubation, a single colony was picked from a plate of 

transformants and added to 3 mL LB (1% tryptone, 0.5% yeast extract, 1% NaCl, 

pH 7) supplemented with the appropriate antibiotic(s), before a second overnight 

incubation at 37°C with agitation (225 rpm).   

 

If screening PCR clones, 2 mL of the overnight culture was pelleted at 13,000xg for 

3 min, and plasmid DNA was purified using the QIAprep Spin Miniprep Kit (Qiagen) 

according to the manufacturer’s instructions.  Clones were then screened by 

restriction digestion and agarose gel electrophoresis of the digested fragments.   

 

For larger scale production of plasmid DNA, 1 mL of the initial outgrowth was 

added to 35 mL LB supplemented with the appropriate antibiotic(s) and grown 

overnight once more at 37°C with agitation (225 rpm).  The cells were then pelleted 

at 4,000xg for 20 min and plasmid DNA was purified using the HiSpeed Plasmid 

Midi Kit (Qiagen). 

 

2.1.10 Concentration of DNA by ethanol precipitation 

DNA was concentrated by adding 0.1 volumes sodium acetate and 2.5 volumes 

100% ethanol and chilling the mixture at -80°C for 30 min.  The cooled mixture was 

then centrifuged at 18,000xg and 4°C for 15 min, and the supernatant replaced with 

500 μL 70% ethanol.  This mixture was centrifuged a second time under the same 

conditions, before removing the supernatant, air-drying the pellet for 5 min, and 

then resuspending it in 5 μL dH2O. Concentrated DNA was either stored at -20°C 

or immediately transformed into bacteria. 

 

2.1.11 Quantitation of DNA by spectrophotometry 

DNA was quantified by absorbance at 260 nm using a NanoDrop 2000 UV 

spectrophotometer. 
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2.1.12 DNA ligation 

Large-scale protein expression required the ligation of DNA into an appropriate 

expression vector, pET-47b (Novagen).  To achieve this, both insert and vector 

were digested with HindIII and XhoI in the appropriate reaction buffer.  The 

digested fragments were then resolved by electrophoresis on a 1% (w/v) agarose 

gel, and the relevant bands excised and purified (Section 2.1.6).  The volumes of 

insert and vector to use in the ligation reaction were calculated using the equation 

below, ensuring a minimum of 40 ng vector and an insert-to-vector ratio of ~8-10: 

 

 

 

The appropriate volumes of insert and vector were incubated with 1 μL T4 DNA 

ligase (NEB) in the supplied reaction buffer for 3 h at room temperature.  The entire 

reaction was then transformed into One Shot TOP10 E. coli cells (Invitrogen), and 

the transformants plated on LB-agar supplemented with kanamycin.  All ligation 

products were sequence-verified using the T7 forward and reverse sequencing 

primers (GATC Biotech). 

 

2.1.13 DNA sequencing 

DNA samples were shipped to GATC Biotech for overnight single-pass sequencing.  

All samples were diluted to 100 ng/μL in dH2O before shipping, and sequencing 

primers supplied at 10 μM.  The resulting chromatograms were analysed on 

SeqMan Pro (Lasergene) for sequence verification. 
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2.2 Cell culture & the restriction assay 

2.2.1 Maintenance of cell lines 

Human embryonic kidney (293T) cells and Mus dunni tail fibroblasts (MDTF) were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Life Technologies) 

supplemented with 10% foetal calf serum (FCS), 100 U/mL penicillin and 

100 μg/mL streptomycin.  Cells were maintained at 37°C under conditions of 95% 

humidity and 5% CO2, and passaged at a ratio of 1:10 every 3-4 days by adding 

1 mL trypsin-versene (0.05% w/v trypsin and 0.53 mM EDTA in PBS) to the 

monolayer and resuspending the detached cells in 9 mL fresh DMEM.  

 

2.2.2 Overview of the restriction assay 

Restriction was measured using an established two-colour flow cytometry assay 

(Bock et al., 2000).  Briefly, a vector carrying a restriction factor construct and an 

eYFP reporter was co-transfected into 293T cells with plasmids encoding the viral 

Gag, Pol and Env genes (Section 2.2.3).  This yielded ‘delivery viruses’ which could 

be used to transduce MDTF cells (Section 2.2.5).   

 

In parallel, ‘tester viruses’ – those viruses whose restriction was being measured – 

were generated by co-transfecting the appropriate gag, pol and env genes with an 

eGFP reporter construct.  These viruses were used to infect MDTF cells 48 h after 

transduction with the restriction factor construct (Section 2.2.6).  Restriction of the 

tester virus by the transduced construct was then measured 48 h post-infection by 

flow cytometry (Section 2.3.3).  This entire process is depicted graphically in Figure 

2.5. 



Chapter 2: Materials and Methods 

 

96 

 

 

Figure 2.5: The two-colour restriction assay 

 

2.2.3 Virus production by transient transfection 

293T cells in the log phase of growth were seeded in 6 cm dishes (Nunc) at a 

density of 2 x 106 cells per dish and left overnight to adhere.  The media was then 

replaced with 5.5 mL fresh DMEM, and the cells returned to incubation for at least 

4 h prior to transfection.  DNA was introduced to the cells by lipofection using 

TurboFect (Stratagene), according to the manufacturers’ instructions.  Briefly, equal 

masses of three plasmids (6 μg total DNA; see Section 2.2.4 for a description of the 

transfected constructs) were incubated with 600 μL serum-free DMEM and 12 μL 

TurboFect at room temperature for 20 min.  The mixes were than added to the cells 

dropwise, and the cells returned to incubation overnight. 

 

Approximately 15 h post-transfection, cells were stimulated with 5 mL fresh DMEM 

containing 10 mM sodium butyrate.  Sodium butyrate enhances transcription by 

acting as a histone deacetylase inhibitor (Candido et al., 1978), thereby increasing 

viral titres.  After 6 h, the media was replaced with 2.5 mL regular DMEM and the 

cells left to grow overnight.  The next morning, viruses were harvested by drawing 

off the media with a 5 mL syringe (BD Plastipak) and passing it through a 0.45 
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micron filter (Sartorius) to remove cells and debris.  The filtrate was divided into 

250 μL aliquots, frozen at -80°C for at least 2 h, and then titrated on MDTF cells to 

determine the volume of virus required to give an MOI ≈ 0.7. 

 

2.2.4 Plasmids used for virus production by transient transfection 

As described in Section 2.2.3, viruses were produced by transiently co-transfecting 

a total of 6 μg DNA.  This was split equally between three plasmids when producing 

MLVs and lentiviruses, and between two plasmids when producing foamy viruses.  

Table 2.2 shows a list of the plasmids used to produce each type of virus.  Note 

that all MLVs and lentiviruses were pseudotyped with VSVg Env.  This both 

broadens the viral tropism, thereby permitting infection of any cell type, and 

standardises viral entry so that any restriction data obtained can be attributed 

purely to post-entry events.  All foamy viruses were pseudotyped with SFV Env. 

 

 
 

Plasmid function 

 Gag-Pol Env Reporter 

Tester 

viruses 

G
a

m
m

a
 B-MLV pCIG3 B pVSVg pIRES2-EGFP 

N-MLV pCIG3 N pVSVg pIRES2-EGFP 

NB-MLV pHit60 pVSVg pIRES2-EGFP 

L
e
n

ti
 

HIV-1 p8.91 pVSVg pCSGW 

HIV-2 pHIV2GagPol pVSVg pHIV2gfp 

FIV pFP93 pVSVg pGiNWF 

F
o

a
m

y
 

PFV POO1 
pciSFV-

1Envwt 
eGFP reporter is 

present in the Gag-

Pol vector 

SFV SOO1 
pciSFV-

1Envwt 

FFV FOO3 
pciSFV-

1Envwt 

 

Delivery viruses 
 

pHit60 

 

pVSVg 

Expression vector 

with RF and eYFP 

reporter 

Table 2.2: Plasmids used in the transient transfection of 293T cells to produce 

retroviruses 



Chapter 2: Materials and Methods 

 

98 

 

2.2.5 Transduction of MDTF cells 

MDTF cells were seeded in 12-well plates (Corning) at a density of 5 x 104 

cells/well and left to adhere overnight.  Approximately 24 h after seeding, the cells 

were transduced with delivery virus at an MOI ≈ 0.7 and returned to incubation for 

48 h.   

 

2.2.6 Infection of transduced MDTF cells 

48 h post-transduction, MDTF cells were re-seeded in multiple wells at a density of 

5 x 104 cells/well, and then infected in duplicate with the appropriate tester virus 

(MOI ≈ 0.7).  After a further 48 h, the cells were harvested, pelleted and fixed for 

analysis by flow cytometry.  A full description of the preparation of samples for flow 

cytometry, and the acquisition and analysis of flow cytometry data, can be found in 

Section 2.3. 

 

2.2.7 Regulation of restriction factor expression by doxycycline induction 

To measure the relationship between the expression level of a restriction factor and 

the potency of restriction, C-terminally HA-tagged constructs were cloned into 

expression vectors with doxycycline-inducible promoters.   

 

2.2.7.1 Development of a doxycycline-inducible vector system 

Tet-On 3G is the third generation in a series of expression systems with 

doxycycline-inducible transcription.  In contrast to the former Tet-On and Tet-On 

Advanced systems, Tet-On 3G uses the PTRE3G promoter, which has a lower basal 

level of transcription (Loew, 2009), and the rtTA3 trans-activator, which has 

increased sensitivity to doxycycline (Zhou et al., 2006).  These two features 

combine to minimise transcriptional leakiness while maximising the level of 

induction. 

 

A former student in the Stoye lab generated an MDTF cell line constitutively 

expressing rtTA3 by stable transfection (‘R18 cells’ herein).  Retroviral vectors were 
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also produced, carrying both the PTRE3G promoter and attR sequences for Gateway 

cloning of restriction factor genes from their entry vectors (Section 2.1.7).   

 

Only two dox-inducible vectors were used in this project, denoted CS14 and CS15.  

In both vectors, the eYFP gene is placed furthest upstream in order to maximise 

reporter expression via cap-dependent translation.  The restriction factor construct 

was then placed downstream, either following an IRES (CS14), or directly after 

eYFP without any intervening IRES (CS15).  In the latter case, restriction factor 

translation can only occur via leaky ribosome scanning; thus CS15 provides a 

lower range of expression than does CS14.  The structure of both inducible vectors, 

as well as the non-inducible vector used in all other restriction experiments (Bock et 

al., 2000), is shown in Figure 2.6.  A more thorough account of the design and 

generation of these vectors can be found in Li et al. (2016b).  All of the protocols 

described herein are adapted from that work. 
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Figure 2.6:  The non-inducible and doxycycline-inducible vectors used for 

restriction factor expression  

The non-inducible vector LxIY was used to express restriction factor (RF) 
constructs in the vast majority of experiments described in this thesis.  In this 
vector, transcription is initiated from the U3 promoter, and the upstream position of 
the RF construct relative to eYFP ensures its overexpression.  However, when it 
was necessary to control the amount of restriction factor present in the cell, a CS14 
or CS15 vector was used instead: in these vectors, the U3 promoter is deleted to 
permit transcription from a TRE3G element, and the RF construct is placed 
downstream of the reporter in order to limit its expression. 
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2.2.7.2 Measuring restriction by restriction factors under doxycycline-

inducible expression 

R18 cells were seeded in 12-well plates (Corning) at a density of 5 x 104 cells/well 

and left overnight to adhere.  24 h after seeding, the cells were transduced with 

delivery virus (MOI ≈ 0.7) carrying a restriction factor construct in either a non- or 

dox-inducible vector.   

 

At least 48 h post-transduction, the cells were reseeded into 24-well plates 

(Corning) at a density of 2.5 x 104 cells/well.  Those cells transduced with a 

non-inducible construct were reseeded in regular DMEM, while those transduced 

with a dox-inducible construct were re-seeded in DMEM containing the appropriate 

concentration of doxycycline.  Approximately 24 h after re-seeding, the cells were 

infected with a tester virus (MOI ≈ 0.7) and, after a further 24 h, 5 μg doxycycline 

was added to boost reporter expression.  Cells were harvested for flow cytometry 

between 24 and 48 h after the second exposure to doxycycline. 

 

Restriction factor expression was quantified in parallel to the restriction assay by 

performing a western blot using a primary antibody against the C-terminal HA tag 

of the protein (Section 2.4.10). 
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2.3 Flow cytometry 

2.3.1 Preparation of samples for flow cytometry 

Confluent MDTF cells were detached by adding 1 mL trypsin-versene and 

incubating at 37°C for 10 min.  Once detached, the cells were fixed by 

resuspending in 3 mL 2% formaldehyde-PBS that had been pre-aliquoted into 5 mL 

round-bottom tubes (Corning).  The cells were then pelleted at 400xg for 10 min 

and the pellet resuspended in 150 μL regular PBS, before filtering through a 35 μm 

nylon mesh (Corning) to remove clumped cells and debris. 

 

2.3.2 Acquisition of data by flow cytometry 

All flow cytometry was performed using the FACSVerse flow cytometer and 

associated software (BD Biosciences).  Live cells were gated according to their 

forward-scatter versus side-scatter profile.  Untransduced and single-colour 

controls were then used to gate GFP-YFP-, GFP+YFP-, GFP-YFP+ and GFP+YFP+ 

populations within the live cell population.  Because GFP and YFP have 

overlapping emission spectra, a compensation matrix was employed to account for 

detection spillover.  10,000 cells were acquired for each experimental sample and 

the data outputted to FlowJo (Tree Star) for post-acquisition analysis. 

 

2.3.3 Calculation of restriction from flow cytometry data 

FlowJo was used to count the number of cells in each of the four live-cell 

populations: GFP-YFP-, GFP+YFP-, GFP-YFP+ and GFP+YFP+.  These numbers 

were then exported to Microsoft Excel and plugged into the formula below to 

calculate the restriction ratio: 
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This formula represents a ratio of the percentage of infected (GFP+) cells in 

populations expressing restriction factor (YFP+) versus those not (YFP-). 

 

Values ≤0.3 were taken as restriction, ≥0.7 as absence of restriction, and 

intermediate values as partial restriction. 
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2.4 Protein expression, purification and analysis 

2.4.1 Expression and harvesting of protein from E. coli  

One colony was picked from the plate of transformants and grown in 100 mL terrific 

broth (12 g tryptone, 24 g yeast extract, 4 mL glycerol, 100 mL 0.17 M KH2PO4 plus 

0.72 M K2HPO4) supplemented with kanamycin and chloramphenicol.  The 

following day, large-scale cultures were made by transferring 7.5 mL of overnight 

culture to 750 mL fresh TB with kanamycin and chloramphenicol.  These cultures 

were grown in 2 L flasks at 37°C with moderate agitation (180 rpm), until they 

reached an average optical density (OD) of 0.6.  At this point, the temperature was 

reduced to 20°C, and 1 mM IPTG added to induce protein expression.  The 

cultures were then left to grow overnight. 

 

The following morning, the bacteria were pelleted at 4000xg (4°C for 30 min).  The 

supernatant was decanted and the pellet weighed and resuspended in 7 mL lysis 

buffer (50 mM Tris pH8, 750 mM NaCl, 20 mM imidazole, 5 mM MgCl2, 5 mM ATP, 

0.5 mM TCEP, 0.2% v/v Triton) per gram of cells, by stirring at 4°C until 

homogenised.  The lysate was sonicated for 10 min (power output 4, duty cycle 

40%), and then pelleted at 56,000xg and 4°C for 1 hour.  The supernatant was then 

filtered in preparation for affinity purification. 

 

2.4.2 Protein purification by affinity to a nickel column 

Following filtration, bacterial lysate was placed on a nickel (Ni2+) column for affinity 

purification via the N-terminal His6 tag.  100 column volumes were loaded to enable 

binding, and then the column was washed in an equivalent volume of Buffer A 

(50 mM Tris pH8.0, 500 mM NaCl, 20 mM imidazole, 0.5 mM TCEP) in order to 

remove unbound species.  Upon completing the wash step, Buffer B (Buffer A + 

300 mM imidazole) was used to elute the bound protein. The increased 

concentration of imidazole in Buffer B outcompetes His6 for binding to the column, 

enabling any nickel-bound species to be displaced and eluted. 
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2.4.3 Protein purification by ion exchange chromatography 

To remove any contaminating species after affinity purification, the eluate from the 

nickel column was subjected to a second round of purification by ion exchange 

chromatography.   

 

Briefly, the concentration of salt in the eluate from the nickel column was reduced 

to 50 mM NaCl by diluting with Buffer C (50 mM Tris pH8.0, 0.5 mM TCEP), before 

loading onto a 55 mL Source Q anion exchange column which had been 

equilibrated in Buffer D (Buffer C + 50 mM NaCl).  A linear gradient was used from 

50 mM to 1 M NaCl over 10 column volumes, and the eluate collected in 10 mL 

fractions. 

 

2.4.4 Protein purification by size exclusion chromatography 

Following ion exchange chromatography, a final round of purification was 

performed by pooling and concentrating the relevant fractions, and then loading 

them onto an S200 16/60 size-exclusion column (GE Life Sciences) for gel filtration.  

The column was run with a flow rate of 0.3 mL min-1 and the protein collected in 

elution buffer (20 mM Tris pH8.0, 150 mM NaCl, 0.5 mM TCEP).   

 

2.4.5 Expression and harvesting of protein from mammalian cells 

To determine the protein expression levels for various restriction factor constructs, 

either MDTF cells (for non-inducible vectors) or R18 cells (for inducible vectors) 

were seeded at 5 x 104 cells/well in a 12-well plate.  A delivery virus containing the 

relevant construct was then used to transduce the cells with an MOI ≈ 0.7.  The 

transduced were left to grow for 48 h, before reseeding in T20 flasks (Thermo 

Scientific) at 1:5 dilution.  After a further 48 h, the cells were transferred to a T80 

flask and left to grow for a further 24 h. 

 

Upon reaching approximately 70% confluence, the cells were trypsinised, 

resuspended in DMEM and centrifuged at 300xg for 15 min to obtain a cell pellet.  

The pellet was resuspended in 1 mL PBS and centrifuged again at 300xg for 5 min.  
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The supernatant was then aspirated, and the pellet resuspended in RIPA buffer 

(150 mM NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 

50 mM Tris, pH 8.0; Sigma) with 1 protease inhibitor tablet added per 10 mL buffer. 

  

The resuspension was incubated at 4°C for >30 min to allow complete lysis of the 

cells.  The lysates were then centrifuged at 18,000xg for 10 min to separate the 

protein-containing supernatant from the cell debris.  Finally, the supernatant was 

removed and diluted in RIPA buffer (1:5) ready for quantitation by the BCA assay 

(Section 2.4.7).   

 

2.4.6 Quantitation of total protein by spectrophotometry 

Protein was quantified by absorbance at 280 nm using a NanoDrop 2000 UV 

spectrophotometer. 

 

2.4.7 Quantitation of total protein using the BCA assay 

Given the presence of detergent in RIPA buffer, total protein concentration in cell 

lysates was determined using the bicinchoninic acid (BCA) assay rather than the 

Bradford assay.  Briefly, 5 μL of each lysate sample (diluted 1:5) was added to 

separate wells of a 96-well plate (BD Falcon) alongside standards of known 

concentration (2000, 1000, 500, 250, 125, 62.5, 31.25 and 0 μg/mL).  200 μL of 

prepared BCA reagent (Thermo Fisher) was then added to all of the wells, before 

shaking for 30 s and incubating at 37°C for 30 min.  Following incubation, 

absorbance at 562 nm was measured using the Synergy 2 plate reader and 

associated software (Gen5).  A curve of standards was produced, and total protein 

concentration in the lysates was interpolated from the curve. 

 

2.4.8 Separation of proteins by SDS-PAGE 

Proteins were separated by size using a 4-20% Mini-Protean TGX Precast Gel 

(Bio-Rad).  Briefly, samples were mixed with dH2O and 5x SDS loading buffer 

(250 mM Tris-HCl pH6.8, 10% SDS, 12.5% β-mercaptoethanol, 0.1% w/v 
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bromophenol blue, 50% glycerol) to achieve a final concentration of 1 mg/mL. The 

samples were then boiled at 95°C for 5 min to remove any higher-order structures 

that might interfere with migration through the gel.  Approximately 10-30 μg of cell 

lysate or 10-100 ng of purified protein was loaded in each well, alongside a 

pre-stained protein ladder (PageRuler, Thermo Scientific).  Gels were run at 100 V 

for 50-70 min, depending on the size of the target protein, and then either stained 

with Coomassie Brilliant Blue (Sigma) for immediate visualisation, or transferred to 

a PVDF membrane for western blotting (Section 2.4.9). 

 

2.4.9 Electro-transfer to a PVDF membrane 

If using an SDS gel for western blotting, the proteins were first transferred to an 

Immobilon-FL PVDF membrane (Thermo Scientific) in SDS-free transfer buffer 

(5.8 g Tris, 2.9 g glycine, 200 mL methanol, 800 mL ddH2O) at 20 V for 90 min.  

The membrane was then blocked in 1:1 PBS and Odyssey blocking buffer 

(LI-COR) for either 1 h at room temperature, or overnight at 4°C. 

 

2.4.10 Western blotting by infrared detection 

To enable the precise quantitation of a protein band, an infrared detection system 

was used in place of chemiluminescence. 

 

Briefly, a blocked membrane was incubated with primary antibody diluted in 

Odyssey blocking buffer (LI-COR) supplemented with 0.2% Tween-20 for 1-3 h at 

room temperature, or overnight at 4°C.  The membrane was then washed in PBS 

supplemented with 0.1% tween (PBS-T) for 4 rounds of 5 min with gentle agitation.  

Next, the membrane was incubated for 1 h at room temperature with the 

appropriate secondary antibody, diluted in the same buffer as the primary but with 

the addition of 0.01% SDS to reduce non-specific binding.  The membrane was 

then washed 4 times in PBS-T as before.  A list of primary and secondary 

antibodies used in this project can be found in Table 2.3: List of antibodies used for 

western blots 
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Antibody Source Company Dilution 

Anti-HA Rabbit polyclonal Santa Cruz, Y-11, sc805 1:200 

Anti-GAPDH Rabbit monoclonal Cell Signalling, 14C10, #2118 1:2000 

Anti-rabbit-800 

Goat polyclonal 

IRDye 800CW 

conjugated 

LI-COR, #926-32211 1:10,000 

Table 2.3: List of antibodies used for western blots 

 

Because the secondary antibody used in this system is conjugated to an infrared 

dye, the membrane can be visualised using the 700 and 800 nm channels of a 

high-resolution infrared scanner (LI-COR).  This method achieves more accurate 

quantitation than chemiluminescent detection because of its greater sensitivity and 

the improved linearity between signal intensity and amount of protein.  Quantitation 

was performed by normalisation to a loading control using the Image Studio Lite 

software (LI-COR). 
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T5α has been extensively characterised since its first identification as a restriction 

factor, more than ten years ago (Stremlau et al., 2004).  However, this molecule is 

far from the only TRIM family member to exhibit such a phenotype.  In fact, at least 

19 others have been shown to restrict divergent retroviruses at distinct stages in 

their lifecycles (Uchil et al., 2008). 

 

T1 is one such factor.  Its ability to inhibit N-MLV replication was first identified by 

the Stoye group (Yap et al., 2004, 2005), but this observation has not been 

characterised since.  The aim of this chapter is thus to offer an in-depth analysis of 

the T1 restriction phenotype.  

 

3.1 Murine T1 restricts N-MLV comparably to its primate 

orthologues 

Previous work has shown that both human (hu) and African green monkey (agm) 

T1 are able to restrict N-MLV  (Yap et al., 2004; 2005).  However, prior to this work, 

it was not known whether this phenotype is shared by T1 orthologues of 

non-primate origin. To investigate this possibility, a cDNA expressing murine (m) 

T1 (Source Bioscience) was cloned into the LxIY expression vector and its 

restriction activity measured via the two-colour assay.  When challenged with 

B- and N-MLV, mT1 restricted the latter but not the former (Figure 3.1).  This 

phenotype is reminiscent of that already described for the primate variants, 

confirming that the restriction activity of T1 indeed extends to other mammals. 
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Figure 3.1: Restriction of N-MLV by the African green monkey (agm), human and 

murine orthologues of T1 

Graph shows the mean and SEM from three independent experiments (n = 6). 
 
 

3.2 T1 restricts a limited panel of retroviruses 

It is well established that T5α contains signatures of positive selection, and is 

correspondingly able to restrict divergent retroviruses (Sawyer et al., 2005; 

Johnson and Sawyer, 2009). To investigate whether T1 has a similarly broad target 

range, the restriction of a panel of lentiviruses (Figure 3.2) and foamy viruses 

(Figure 3.3) by two isoforms of agmT1 (T1L and T1S) was examined via the 

two-colour assay.  However, none of these viruses were restricted by either isoform, 

limiting the panel of known targets for T1 to N-MLV alone. 

 

One explanation for this limited target range might be the integral role that T1 plays 

in the development of embryonic midline structures.  Given the biologically 

fundamental nature of this process, it’s highly likely that the T1 gene has been 

subjected to negative selection over the course of its evolution.  This would 

promote sequence conservation at the protein level, in stark contrast to the 

extensive diversification seen among T5α orthologues. 
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Figure 3.2: T1 is unable to restrict a panel of lentiviruses 

Graphs show the restriction ratios obtained by challenging T1L and S from the 
African green monkey (Chlorocebus aethiops) with three lentiviruses: HIV-1, HIV-2 
and FIV.  N-MLV is included as a positive control (top left), and rhesus T5α (rhT5a), 
brown capuchin T5α (bcT5a) and cotton top tamarin T5α (cttT5a) are included as 
restriction factor controls.  Red bars denote full restriction (ratio < 0.3), grey bars, 
partial restriction (ratio 0.3-0.7) and black bars, absence of restriction (ratio > 0.7).  
Graph for N-MLV shows the mean and SEM from four (rhT5a, T1L, T1S) or three 
(bcT5a, cttT5a) independent experiments (n = 8 and 6, respectively). Graphs for 
the lentiviruses show the mean and SEM from three (rhT5a, T1L, T1S) or two 
(bcT5a, cttT5a) independent experiments (n = 6 and 4, respectively). 
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Figure 3.3: T1 is unable to restrict a panel of foamy viruses 

Graphs show the restriction ratios obtained by challenging T1L and S from the 
African green monkey (Chlorocebus aethiops) with three foamy viruses: PFV, SFV 
and FFV.  N-MLV is included as a positive control (top left), and rhesus T5α 
(rhT5a), brown capuchin T5α (bcT5a) and cotton top tamarin T5α (cttT5a) are 
included as restriction factor controls.  Red bars denote full restriction (ratio < 0.3), 
grey bars, partial restriction (ratio 0.3-0.7) and black bars, absence of restriction 
(ratio > 0.7).  Graph for N-MLV shows the mean and SEM from four (rhT5a, T1L, 
T1S) or three (bcT5a, cttT5a) independent experiments (n = 8 and 6, respectively). 
Graphs for the foamy viruses show the mean and SEM from four (PFV) or three 
(SFV, FFV) independent experiments (n = 8 and 7, respectively). 
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To determine whether T1 is indeed constrained by negative selection, an alignment 

of T1 cDNAs from a host of mammals (Table 3.1) was generated using PAML 4.8 

(Yang, 2007) (Error! Reference source not found.). To avoid false positives, a 90 

bp region present in certain splice variants was omitted from this analysis. 

 

Primates 

Human 

Chimpanzee 

Gorilla 

Orangutan 

Gibbon 

Rhesus macaque 

Baboon 

African green monkey 

Rodents 

Mouse  

Rat 

Kangaroo rat 

Guinea pig 

Squirrel 

Table 3.1: T1 orthologues used to construct a phylogenetic tree 

 

The selective pressures acting on a gene can be measured by calculating values 

for ω across all the sites in its DNA sequence, where ω equals the ratio of 

non-synonymous to synonymous substitutions at a particular site (dN/dS).  ω ≤ 1 is 

indicative of negative selection, while ω > 1 indicates positive selection.  Codeml 

was used to conduct this analysis, with the help of Dr George Young (Figure 3.5).  

 

Briefly, ω values were calculated and then pairs of models – one allowing and the 

other disallowing positive selection – were applied to the values obtained.  The 

models’ relative fits, as likelihood ratio tests, were then compared using a χ2 test 

(degrees of freedom = 2).  The model pairs M2a vs M1a and M8 vs M7 were 

compared in this way, and each comparison performed using two methods of 

codon frequency calculation (F3x4 and F61).  None of the alternative models 

provided a better fit to the data than the null hypothesis (p ≥ 0.584 across all tests), 

confirming that T1 is indeed highly conserved at the protein level. This might 

explain the limited ability of the molecule to recognise divergent retroviruses.   
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Figure 3.4: Phylogenetic tree of T1 DNA sequences 
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Figure 3.5: Workflow for measuring positive selection in T1 
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3.3 The short isoform of T1 restricts N-MLV more potently than 

the long 

The T1 gene undergoes alternative splicing to produce several transcripts, two of 

which encode proteins with a B30.2 domain.  Due to an alternative splice donor site 

in the middle of exon 7, these isoforms differ exclusively in the length of their FN-III 

domains, with the longer one (T1L) possessing 30 amino acids in the centre of the 

domain (residues 430-459) that are lacking in the short (T1S) (Figure 3.6).  T18 

also undergoes alternative splicing, although its longest isoform has an FN-III 

domain of equivalent length to that of T1S.  

 

 

 

Figure 3.6: The intron-exon structures of agmT1L/S  

 

 

At the start of this project, cDNAs for both agm isoforms were available in the lab, 

but only the short cDNAs were available for the human and mouse variants.  Thus, 

long isoforms were produced for each of these orthologues by overlapping PCR, 

using the short cDNAs as templates, and a pair of internal primers with portions of 

the missing sequence appended to their 5’ ends. 
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All six constructs were then cloned into the LxIY expression vector and their 

restriction activity measured via the two-colour assay.  Figure 3.7 shows the FACS 

plots from a typical experiment.  The plots clearly depict a more potent restriction of 

N-MLV by the short isoform than the long in all three cases.  This observation was 

highly reproducible, reaching statistical significance for each orthologue tested 

(Figure 3.8A).  Again, B-MLV was not restricted in any case and served as a 

negative control in these experiments (Figure 3.8B).  

 

The FN-III domain is a protein-protein interaction module of about 100 amino acids 

(in T1S).  It possesses a hydrophobic β-sandwich core, with flexible loops that 

protrude from either side to form the interaction surfaces.  The domain is present in 

a range of animal proteins and shows remarkable evolutionary conservation at the 

structural level (Marino-Buslje et al., 1998).  Since protein-protein interactions are 

pivotal for a number of biochemical phenomena, there are numerous mechanisms 

that might explain the relationship between the length of the FN-III domain and 

restriction activity. 

 

To investigate whether this phenotype is the result of differences in protein 

expression, a C-terminal HA tag was appended to each of the agm isoforms to 

enable their detection and quantitation by western blotting.  The tagged proteins 

restricted N-MLV comparably to their native counterparts (Figure 3.9A). 

 

The tagged constructs were transduced into MDTF cells to yield approximately 

20-40% YFP+ cells (Figure 3.9B), and the cells grown to about 70% confluency, 

before harvesting total protein for a western blot.  As Figure 3.9C shows, a slightly 

darker band was present for T1S-HA than T1L-HA; normalisation of these bands 

indicates that expression of the former is almost double that of the latter.  

Collectively, these data imply a correlation between protein concentration and 

restriction potency, which is underpinned by determinants in the FN-III domain. 
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Figure 3.7: Typical FACS plots obtained when challenging the agm, human and 

murine orthologues of T1L/S with N-MLV 

Values indicate the percentage of live cells that are present in each gate.  The 
proportion of double-positive cells (i.e. T1+

 cells infected with N-MLV) is highlighted 
in red to emphasise the difference in potency between the two isoforms. 
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Figure 3.8: Restriction profiles of agm, human and murine T1L/S 

Graph shows the mean and SEM from (A) at least five or (B) three independent 
experiments (n ≥ 10 and n = 6, respectively).  Statistical significance was 
established using an unpaired t-test: **** P ≤ 10-4 and *** P ≤ 10-3. 
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Figure 3.9: Quantitation of T1L/S protein expression 

(A) HA-tagged T1L/S restrict N-MLV comparably to their native counterparts. 
Graph shows the mean and SEM from three independent exp’ts (n = 10). (B) FACS 
plots of the cell populations harvested for western blotting. (C) Representative 
western blot of T1L/S-HA, using GAPDH as a loading control. (D) Quantitation of 
bands obtained by western blotting. Graph shows the mean and SEM from three 
independent exp’ts (n = 3). In all cases, statistical significance was established 
using an unpaired t-test: **** P ≤ 10-4, * P ≤ 0.05 and ns = not significant.   
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3.4 The majority of the T1 B30.2 domain can be functionally 

replaced with equivalent components from T18 

It has long been known that T5α interacts with capsid via surface-exposed loops 

known as variable regions, which reside within the C-terminal B30.2 domain 

(Ohkura et al., 2006).  Before this work, however, very little was known regarding 

the interaction between T1 and capsid.  Previously, reciprocal chimeras of T1S and 

its non-restricting paralogue, T18, had been made at position 314 (Yap et al, 2004).  

Restriction data from these constructs revealed that the determinants for capsid 

recognition lie in the C-terminal half of the protein; however, given that the B30.2 

domain is over 150 residues downstream of 314 (see Figure 3.10), this work lacked 

sufficient resolution to identify the specific regions that confer this property. 

 

Thus, an early aim of this project was to narrow down the regions within T1 that 

enable capsid recognition. To this end, reciprocal swaps were made between T1 

and 18 again, but this time at the start of the B30.2 domain, and the restriction 

phenotypes of the resulting chimeras were measured.  As expected, the T1 B30.2 

domain was sufficient to confer T18 with activity, while the reciprocal construct was 

inactive (Figure 3.11).  This rules out any contribution of the COS and FN-III 

domains to capsid recognition. 
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Figure 3.10: An alignment of the T1 and 18 protein sequences 

The short isoform of T1 (T1S) was used for this alignment; both sequences are 
from the agm orthologues.  Boundaries for the RBCC and B30.2 domains were 
established using the UniProt proteomics database, while those for the COS and 
FN-III domains were taken from Short and Cox (2006) and Li et al. (2016a), 
respectively.  The positions at which the 314 and B30.2 chimeras were made are 
indicated in red. 
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Figure 3.11: Restriction activities of B30.2-swapped chimeras of T1S and T18 

Restriction of N-MLV by T1S, T18 and chimeras where the B30.2 domain is 
exchanged between these proteins. Graph shows the mean and SEM from five 
independent experiments (n = 10).  Red bars denote full restriction (ratio < 0.3) and 
black bars, absence of restriction (ratio > 0.7).   
 

 

Having confirmed that capsid recognition is indeed mediated by the B30.2 domain, 

the next goal was to assess the contribution of the variable regions (‘VRs’ herein) 

to this process. In order to do this, the boundaries of each VR were established 

using a published alignment of TRIM sequences (James et al, 2007) (Figure 3.12).  

The T1 VRs were then individually substituted into 1-18B30.2 in an attempt to rescue 

restriction (Figure 3.13, Constructs A-D).  Interestingly, however, none of these 

components were individually sufficient to confer capsid recognition.  Following this 

observation, various combinations of T1 VRs were then substituted into 1-18B30.2 in 

the following manner:  VR1 and 2 (E); 2 and 3 (F); 1, 2 and 3 (G); and 1, 2, 3 and 4 

(H).  Surprisingly, however, these constructs were also inactive (Figure 3.13). 
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Figure 3.12: An alignment of the T1 and 18 B30.2 domains 

VR boundaries were established by comparing the T1 sequence with a published 
alignment of TRIM proteins, including T5α and T18, in which the topology of the 
B30.2 domains had been established (James et al., 2007).   
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Figure 3.13: Single and combinatorial substitutions of the T1 VRs into 1-18B30.2 

(A) The structures of Constructs A-H (Section 3.4). (B) Restriction of N-MLV by 
Constructs A-H. Graph shows the mean and SEM from five (T1S, 1-18B30.2), three 
(A-G) or two (H) independent experiments (n = 10, 6 and 4, respectively).  Red 
bars denote full restriction (ratio < 0.3) and black bars, absence of restriction 
(ratio > 0.7).   
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In addition to the VR sequences, the T1 and 18 B30.2 domains diverge at the 

C-terminus: T1 possesses an 18-residue C-terminal tail (CT) that is absent in T18.  

To investigate the possibility that the CT is required for restriction, the relevant 

sequence was removed from T1S and 18-1B30.2, and appended to T18.  However, 

the former two molecules remained restriction-competent without the tail, and the 

latter remained inactive despite it (Figure 3.14).  This indicates that the CT is 

neither necessary nor sufficient for capsid recognition. 

 

 

Figure 3.14: The C-terminal tail (CT) bears no impact on restriction  

Graph shows the mean and SEM from three independent experiments (n = 6). 
 

 

To account for the possibility that regions outside of the VRs and CT contribute to 

capsid recognition, a panel of chimeras were generated where bulk regions of T1 

B30.2 were substituted into 1-18B30.2 (Figure 3.15, Constructs I-Q).  Surprisingly, 

only three of these molecules – N, P and Q – acquired restriction activity.  
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Figure 3.15: Bulk substitutions of the T1 B30.2 domain into 1-18B30.2 

(A) The structures of Constructs I-Q (Section 3.4). (B) Restriction of N-MLV by 
Constructs I-Q. Graph shows the mean and SEM from four (T1S, Q), three (N-P) or 
two (I-M) independent experiments (n = 8, 6 and 4, respectively).  Red bars denote 
full restriction (ratio < 0.3) and black bars, absence of restriction (ratio > 0.7).  
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In parallel to the above experiments, the T18 VRs were substituted into the 

18-1B30.2 chimera (Figure 3.16, Constructs R-U).  Interestingly, the presence of VR1, 

3 or 4 from T18 had no effect on N-MLV restriction by this molecule, although this 

phenotype was attenuated by T18 VR2 (Construct S).  This latter observation is 

given more attention in Section 3.5. 

 

Collectively, these data indicate that the majority of the T1 B30.2 domain can be 

functionally replaced with the equivalent regions from T18, with the exception of the 

region flanked by VRs 2 and 3 (Table 3.2).  The only other region that might 

contribute to this phenotype is the one between VRs 3 and 4.  Unfortunately, it was 

not possible to examine this region within the timeframe of this project; however, a 

suitable construct has been synthesised at the time of writing and is currently being 

tested in the Stoye lab.  However, since all of the constructs that lacked this portion 

of T1 were inactive, it is highly likely that this component is also necessary for 

capsid recognition. 
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Figure 3.16: Single substitutions of the T18 VRs into 18-1B30.2 

(A) The structures of Constructs R-U (Section 3.4). (B) Restriction of N-MLV by 
Constructs R-U. Graph shows the mean and SEM from five (T1S, 18-1B30.2) or two 
(R-U) independent experiments (n = 10 and 4, respectively).  Red bars denote full 
restriction (ratio < 0.3) and grey bars, partial restriction (ratio 0.3-0.7).   
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Region in 

T1 B30.2 

Does equivalent 

region from T18 

preserve function? 

Construct(s) that 

demonstrate this 

Cross-

reference 

Pre-VR1 Yes N, P and Q Figure 3.15 

VR1 Yes R Figure 3.16 

VR1-2 Yes N Figure 3.15 

VR2  Partially S  Figure 3.16 

VR2-3 No O  Figure 3.15 

VR3 Yes T Figure 3.16 

VR3-4 Unknown – – 

VR4 Yes U Figure 3.16 

VR4-CT Yes P Figure 3.15 

CT Yes 
T1S and 18-1B30.2 ΔCT; 

N, P and Q 

Figure 3.14 

and Figure 

3.15 

Table 3.2: The majority of the T1 B30.2 domain can be functionally replaced with 

equivalent regions from T18 

CT = C-terminal tail. 
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3.5 T1 residue 595 is an important determinant of N-MLV 

capsid recognition 

The data presented in Section 3.4 showed that T18 VR2 can attenuate restriction in 

the context of a T18-1B30.2 chimera (Figure 3.16, Construct S).  Interestingly, the 

VR2 sequences of T1 and 18 differ by only a single amino acid: an asparagine in 

the former (T1L N595, T1S N565) is replaced by a histidine at the corresponding 

position in the latter (T18 H565).   

 

To determine whether this phenotype is unique to the 18-1B30.2 chimera, a single 

amino acid substitution was made in each of the wild-type T1 isoforms to produce 

T1L N595H and T1S N565H.  Curiously, this modification yielded an even more 

dramatic phenotype: N-MLV restriction was lost in both cases, albeit to a greater 

extent for T1L (Figure 3.17).  As expected, the reciprocal construct (T18 H565N) 

did not acquire restriction activity.  

 

 

Figure 3.17: H595 (T1L), 565 (T1S) is sufficient to inhibit the restriction of N-MLV 

Graph shows the mean and SEM from three (T1L/S constructs) or two (T18 
constructs) independent experiments (n = 6 and 4, respectively). Red bars denote 
full restriction (ratio < 0.3); grey bars, partial restriction (ratio 0.3-0.7) and black 
bars, absence of restriction (ratio > 0.7).  
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Collectively, these data suggest that a histidine at this position weakens capsid 

recognition, and that this attenuation is partly relieved by the N-terminus of T18 (the 

latter phenomenon is discussed further in Section 3.6). 

 

To verify whether this effect is unique to histidine, a panel of mutants were 

generated where each of the remaining 18 standard amino acids were introduced 

at position 595 in T1L, and the effect on restriction measured.  Interestingly, T1L 

was highly sensitive to these substitutions, with the vast majority completely 

inhibiting restriction activity (Figure 3.18).  In fact, only the acidic residues, D and E 

permitted restriction of N-MLV to a degree approaching that of wild-type. 

 

 

Figure 3.18: Restriction of N-MLV by T1L N595 mutants 

Graph shows the mean and SEM from three independent experiments (n = 6). 
Grey bars denote partial restriction (ratio 0.3-0.7) and black bars, absence of 
restriction (ratio > 0.7). 
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3.6 The restriction of N-MLV by T1 is affected by N-terminal 

components 

In Section 3.4, the inhibitory effect of H595/565 in T1L/S was shown to be partially 

rescued by the T18 N-terminus.  This phenomenon is corroborated by a previous 

observation by Yap et al. (2005), where a chimera of T18 and T1S made at position 

314 (18-1314) was shown to restrict N-MLV more potently than wild-type T1S.  

Given that this swap excludes the COS and FN-III domains, the only T18-derived 

regions that could possibly contribute to this phenotype are the RING, B-box and/or 

coiled-coil domains. 

 

To identify which of these regions is responsible for the enhanced restriction 

potency of 18-1314, the RING, B-box and coiled-coil domains of T1 were substituted 

into this molecule, first individually (Figure 3.19, Constructs A-C), then in 

combination (D-G), and finally as a single unit (H).  The majority of these molecules 

saw a return to the weaker phenotype of wild-type T1S – with the exception of 

those that retained the T18 B-boxes (A, C and E), indicating that this region is 

responsible for the enhanced potency of 18-1314.   

 

To verify this observation, the T18 B-boxes were introduced into full-length T1L 

and -S by overlapping PCR to produce T1L-B18 and T1S-B18.  As expected, 

restriction was augmented in both cases, especially for T1L (Figure 3.19C).  This 

confirms that the T18 B-boxes, when paired with a T1 B30.2 domain, yield a 

molecule with a restrictive potential similar to that of T5α.  
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Figure 3.19: The T18 B-boxes augment N-MLV restriction by T1 

(A) The structures of Constructs A-H (Section 3.6). (B) Restriction of N-MLV by 
Constructs A-H. Graph shows the mean and SEM from five (T1S, 18-1314, A-C) or 
four (D-H) independent experiments (n = 10 and 8, respectively). Where 
significance is shown, this is relative to T1S. (C) Restriction of N-MLV by T1L/S 
with and without the T18 B-boxes (B18). Graph shows the mean and SEM for three 
independent experiments (n = 6). In all cases, statistical significance was 
established using an unpaired t-test: *** P ≤ 10-3, ** P ≤ 10-2, * P ≤ 0.05 and 
ns = not significant.   
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3.7 The restriction phenotypes of T1, 18-1314 and T5α are 

probably not artefacts of overexpression 

All of the experiments described so far were performed using the LxIY vector, 

which is optimised for constitutive expression in mammalian cells.  One limitation of 

this approach is the potential for artefactual restriction phenotypes resulting from 

protein overexpression. 

 

To preclude the possibility that N-MLV restriction is a consequence of restriction 

factor overexpression, six constructs (huT5α, rhT5α, a chimera of the huT5α RBCC 

and rhT5α B30.2 domains [hurhT5α], agmT1L, agmT1S and 18-1314) were fused to 

a C-terminal HA tag and cloned into the CS14 and 15 vectors previously described 

(Section 2.2.7). These vectors differ from LxIY in two important respects: (1) the 

CMV promoter is replaced with PTRE3G, permitting transcription only in the presence 

of doxycycline, and (2) the restriction factor gene is placed downstream of the 

eYFP reporter, thereby attenuating its recognition by the ribosome. CS15 provides 

the lower range of expression levels, while CS14 provides a level intermediate 

between that of CS15 and LxIY. 

 

In a preliminary experiment, N-MLV restriction by each of the six constructs was 

tested in five conditions of increasing protein expression: (1) CS15 without dox; (2) 

CS14 without dox; (3) CS15 with dox; (4) CS14 with dox and (5) LxIY.  Western 

blots were performed in parallel to quantify the relative amount of protein under 

each condition.   

 

Conditions 1, 2 and 3 invariably yielded no detectable protein (Figure 3.20) and a 

corresponding absence of N-MLV restriction (Figure 3.21).  However, the results of 

condition 4 varied with different constructs. RhT5α expression fell just within the 

limits of detection and restricted N-MLV only weakly at this concentration.  In stark 

contrast, huT5α and hurhT5α were both more abundantly expressed and exhibited 

full restriction of N-MLV (albeit not quite as potently as when overexpressed in 

condition 5).  All three of the T1-derived constructs were detectable under condition 

4 and exhibited partial restriction phenotypes, with 18-1314 approaching the 

threshold for full restriction. 
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To investigate whether these observations are unique to N-MLV restriction, the 

same experiment was performed using HIV-1.  Given their inability to restrict the 

lentiviruses, all of the T1-derived constructs were excluded from this assay.  

Although huT5α is also inactive against HIV-1, this construct was included as a 

negative control here.  As expected, the restriction data obtained were similar to 

those for N-MLV: conditions 1, 2 and 3 yielded no activity against HIV-1, while in 

condition 4 a modest restriction phenotype manifested, albeit not quite to the levels 

seen in 5 (Figure 3.21C). 

 

These initial experiments confirmed that inhibition of both N-MLV and HIV-1 can 

occur at modest levels of T1 and 5α expression, albeit not as potently as when 

these factors are overexpressed.  However, this work used only a single 

concentration of doxycycline (1000 ng/mL), and therefore lacked sufficient 

resolution to determine a precise correlative relationship between protein 

expression level and restriction activity.   

 

In order to fine-tune these data, CS14 vectors bearing either T1L or 18-1314 were 

transduced into R18 cells and then exposed to eight concentrations of doxycycline 

ranging from 10 to 2000 ng/mL.  The lower limit for this experiment was chosen 

based on the previous observation that Fv1b exhibits a restriction phenotype that 

closely mirrors its endogenous counterpart when induced with 10 ng/mL 

doxycycline (Li et al., 2016b).  Cells grown in dox-free media were included as a 

negative control, and cells transduced with the LxIY vector as a positive. 
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Figure 3.20: Expression of six restriction factor constructs under five conditions 

The expression level of each construct was quantified by western blotting using an 
antibody against the C-terminal HA tag.  Untransduced R18 cells were used as the 
negative control.  The loading control is an extraneous band of unidentified origin 
that is detectable in all samples when αHA is used to probe R18 cell lysate. Where 
dox is present, it is added at a final concentration of 1000 ng/mL. REL: relative 
expression level (normalised to the loading control); AU: arbitrary units. 
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Figure 3.21: Restriction phenotypes of six constructs when expressed in 

inducible and non-inducible vector systems 

Graph shows the mean values from a preliminary experiment (n = 2). (n = 1 for 
rhT5α in the CS15 Dox negative condition). 
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As Figure 3.22 shows, T1L became partially active at 50 ng/mL [Dox] and 

maintained this phenotype up to the maximum concentration used in this 

experiment (2000 ng/mL).  The corresponding western blot shows that T1L protein 

became detectable at 50 ng/mL, and that this level of expression was roughly 

maintained at higher drug concentrations (with the exception of 1000 ng/mL); this 

aligns well with the restriction data.  Protein levels were about sevenfold greater 

when T1L was overexpressed. 

 

18-1314 was active at a slightly lower concentration of drug (20 ng/mL) and reached 

the threshold for full restriction at 100 ng/mL, before plateauing in a similar manner 

to T1L.  However, the corresponding western blot did not yield values that marry 

well with these data.  For example, the quantities of protein present following 

induction with 20 and 100 ng/mL [Dox] were roughly equivalent, despite the former 

yielding a partial restriction phenotype and the latter, full.  Conversely, 100 and 

2000 ng/mL [Dox] resulted in drastically different protein quantities, despite similar 

values for restriction.  Moreover, there appeared to be greater expression in the 

presence of 2000 ng/mL [Dox] than from the LxIY vector, which is also discordant 

with the restriction data.  It is possible that these discrepancies are due to technical 

issues with performing and/or quantifying the western blot; however, given that the 

blot for T1L was run in parallel, using an identical protocol, this seems unlikely.  

Unfortunately, time constraints prohibited further investigation into this issue. 

 

Given the data presented in Section 3.6, it is noteworthy that 18-1314 appeared to 

be more abundantly expressed than T1L in these experiments.  To confirm that this 

is the case, both factors were probed on the same membrane to enable a direct 

comparison of protein quantity (Figure 3.23A).  Under the four conditions tested (20, 

50 and 100 ng/mL doxycycline, plus overexpression), 18-1314 was visibly more 

abundantly expressed than T1L.  Given that LxIY was used in the experiments 

described in Section 3.6, the relative expression levels of each factor in this vector 

were quantified and compared (Figure 3.23B).  Indeed, 18-1314 was about twice as 

abundant as T1L when expressed from the LxIY vector.  However, given that T1S 

expression is also about twice that of T1L under this condition (Section 3.3), and 

that 18-1314 restricts N-MLV to a greater degree than T1S (Section 3.6), this is 

unlikely to be the sole reason for the enhanced restriction potency of this chimera.    
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Figure 3.22: Restriction of N-MLV by T1L and 18-1314 under titrated doxycycline 

(A) Restriction ratios are plotted for T1L and 18-1314 at nine concentrations of 
doxycycline (0, 10, 20, 50, 100, 500, 1000, 1500 and 2000 ng/mL). Restriction 
values obtained from overexpression are included as a positive control. Dotted 
lines mark the thresholds for partial (ratio 0.3-0.7) and full restriction (ratio < 0.3). 
Graph shows the mean and SEM from two independent experiments (n = 4). (B, C) 
Quantitative western blots of T1L (B) and 18-1314 (C) under eight conditions of 
expression.  Relative amounts of protein (in arbitrary units) were calculated by 
normalisation to GAPDH. 
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Figure 3.23: Comparative quantitation of T1L and 18-1314 

Each restriction factor was expressed under four conditions: three levels of Dox 
induction, plus overexpression. All eight samples were then run on the same gel 
and probed on the same membrane to enable a direct comparison of protein 
quantities. (A) Blots of T1L-HA and 18-1314-HA, using GAPDH as a loading control. 
(B) Comparative quantitation of T1L-HA and 18-1314-HA expressed from the LxIY 
vector. Values were obtained by normalisation to GAPDH.  
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3.8 Discussion 

The ability of T1 to inhibit N-MLV replication was first described more than a 

decade ago (Yap et al., 2004); however, at the start of this project, there had been 

no further attempts to characterise this phenotype.  The aim of this chapter was 

thus to offer a more detailed description of T1-mediated restriction.  Each of the key 

findings arising from this work will now be addressed in turn. 

 

T1 is constrained by negative selection 

 

T5α contains numerous signatures of positive selection, and is correspondingly 

able to restrict divergent retroviruses (Song et al., 2005b; Yap et al., 2008; Fletcher 

et al., 2010).  In order to verify whether T1 shares these properties, three 

orthologues of this protein were challenged with a panel of lenti- and foamy viruses.  

Unlike T5α, however, T1 was permissive to all of these viruses.  In support of these 

data, our phylogenetic analysis of the T1 gene reveals that it has been constrained 

by negative selective pressures over the course of its evolution. 

 

These observations are perhaps unsurprising given that T1 participates in the 

development of embryonic midline structures (Cox et al., 2000), a biologically 

fundamental process that necessitates strict functional conservation.  While T5α is 

free to diversify with successive rounds of viral challenge, the T1 protein sequence 

is constrained by its primary function.  Indeed, it could be argued that the 

T1-mediated restriction of N-MLV is merely an incidental phenomenon: a 

by-product of the domain architecture and microtubular localisation of this protein. 

 

The majority of the T1 B30.2 domain can be functionally replaced with the 

equivalent regions from T18 

 

The species-specific restriction profiles of T5α orthologues have been mapped to 

surface-exposed loops in the C-terminal B30.2 domain, known as variable regions 

(VRs) (Ohkura et al., 2006; Yap et al., 2008; Kono et al., 2009).  However, while 

the restriction activity of T1 had previously been mapped to the C-terminal half of 

the protein (Yap et al., 2005), the relative contribution of elements within this region 
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remained elusive.  We therefore sought to gain further insight by making C-terminal 

chimeras of T1 and its non-restricting paralogue, T18. 

 

Unsurprisingly, this work revealed that T1 also recognises capsid via the B30.2 

domain.  However, an extensive panel of chimeras generated within this region 

revealed that only a small fraction of T1-derived sequence is required for this 

phenotype, including VR2 and the sequences flanked by VRs 2-3 and 3-4.  This 

stands in stark contrast to T5α, where VRs 1, 2 and 3 and numerous inter-loop 

regions have been reported to contribute to restriction specificity in different 

orthologues (Song et al., 2005b; Ohkura et al., 2006). 

 

The requirement for T1 VR2 is particularly striking, given that this region differs by 

only a single amino acid between T1 and 18: an asparagine in the former (N595) is 

replaced by a histidine at the corresponding position in the latter (H565).  To 

determine whether this effect is unique to histidine, the remaining 18 amino acids 

were substituted at position 595 of T1L.  Interestingly, the results revealed a 

remarkably low mutational robustness of this region, with 17 out of 20 amino acids 

completely ablating restriction activity.  In fact, the only residues that maintained 

restriction competence, besides the wild-type asparagine, were aspartic and 

glutamic acid, both of which are negatively charged at physiological pH.  

Surprisingly, even glutamine, which shares biochemical properties with both 

asparagine and glutamic acid, appeared to have an inhibitory effect on capsid 

recognition at this position.  While there are no clear biochemical explanations for 

these patterns, it is hoped that the eventual structural characterisation of the T1 

B30.2 domain (see Section 4.3) will shed light on the molecular basis for these 

observations. 

 

There are number of caveats to the above data.  Firstly, in the absence of western 

blots for each mutant, we cannot be certain that the inactive constructs were 

adequately expressed. Moreover, even if they were, their inactivity could be 

attributed to a host of phenotypes that are unrelated to capsid binding, such as a 

change in localisation, or failure to initiate an effector pathway. While the genetic 

data in this chapter provide a good starting point for further investigation, they 

should be interpreted with caution until they are biochemically verified. 
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T1 protein concentration correlates with restriction potency 

 

T1 is alternatively spliced to produce multiple RNA species, two of which encode 

proteins with a B30.2 domain.  Interestingly, the shorter isoform (T1S) appears to 

restrict N-MLV with 2-3 fold greater potency than the long (T1L).  While this is 

certainly a modest difference, it was highly reproducible; we therefore sought to 

identify the biological property that underpins it.   

 

T1L and S differ in the length of their fibronectin type III (FN-III) domains by 30 

residues.  Since this domain is a protein-protein interaction module, and such 

interactions often regulate biochemical phenomena such as protein stability (Paci 

et al., 2012; Dar et al., 2014), the expression level of each isoform was quantified 

by western blotting.  As expected, T1S was expressed at a level approximately 

double that of T1L, suggesting that a shorter FN-III domain favours increased 

protein concentration.  This would endow the short isoform with a greater capacity 

to handle the incoming viral load.  However, the possibility that other variables 

contribute to this phenomenon cannot be excluded.  For example, determinants 

within the FN-III domain may influence the propensity for each isoform to associate 

with microtubules, which would in turn affect their abilities to intercept virions as 

they translocate towards the nucleus. 

 

However, the FN-III domain is not the only determinant that appears to have dual 

effects on expression level and restriction potency.  When generating the B30.2 

domain chimeras, we found that the VR2 loop of T18 was more inhibitory in T1L/S 

than in an 18-1B30.2 chimera, implying that determinant(s) in the T18 N-terminus can 

augment restriction.  This observation aligns well with a previous finding by Yap et 

al. (2005), where a chimera made between T18 and T1S at position 314 restricted 

N-MLV more potently than wildtype T1S.  By generating a panel of chimeras where 

N-terminal portions of T1 were substituted into 18-1314, we identified the B-boxes as 

the determinant responsible for this enhanced potency.  Subsequent western 

blotting revealed that, like T1S, 18-1314 is more abundantly expressed than T1L.  

Indeed, these data are in agreement with the observation that T18 expression 

typically exceeds that of T1 in the developing mouse embryo (Buchner et al., 1999). 
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Collectively, these data indicate that both the B-boxes and the FN-III domain can 

increase restriction potency by boosting protein expression levels.  The fact that 

18-1314 restricts N-MLV more potently than T1S suggests that these effects are 

additive, although it is difficult to conclusively establish this without a comparative 

blot of the two proteins.  Furthermore, given that the relative difference between 

T1L and S is only slightly less than that between T1L and 18-1314, it is likely that the 

T18 B-boxes also potentiate restriction in a concentration-independent manner.  

For example, it is conceivable that differences in the T1 and 18 B-box sequences 

(corresponding to 21% of residues) permit the latter to multimerise more efficiently 

than the former, thereby enhancing capsid binding through avidity effects. 

 

The T1 restriction phenotype is probably not an artefact of overexpression 

 

One limitation of the restriction assay developed by Bock et al. (2000), and used in 

the majority of experiments described in this chapter, is that it involves 

overexpression of the restriction factor in the transduced cell.  This raises the 

possibility that the restriction profiles described thus far do not accurately reflect 

endogenous phenotypes.  To assuage this concern, T1L, T1S and 18-1314 were 

each cloned into two separate, doxycycline-inducible vector systems: CS15 for 

low-level expression, and CS14 for intermediate.  Both vectors have previously 

been used to correlate expression level and restriction specificity for the murine 

restriction factor, Fv1 (Li et al., 2016b).   

 

Interestingly, while Fv1 exhibits modest restriction of MLV in the CS15 vector (Li et 

al., 2016b), the three constructs tested in this project were inactive under this 

condition.  Nevertheless, all three acquired partial activity when expressed from the 

CS14 vector.  While this provisional finding was interesting, it was derived using 

only a single concentration of doxycycline (1000 ng/mL).  Previous work has shown 

that a small fraction of this dose (10 ng/mL) is required to yield an endogenous-like 

restriction phenotype for Fv1 (Li et al., 2016b).  The restriction activities of T1L and 

18-1314 were therefore tested at eight concentrations of doxycycline, taking 

10 ng/mL as the lower limit. 
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T1L became partially active at 50 ng/mL doxycycline and maintained this level of 

activity up to 2000 ng/mL.  In agreement with these data, T1L protein levels were 

roughly equivalent at these concentrations.  18-1314 showed a similar trend, 

although it became active at a slightly lower concentration of drug (20 ng/mL) and, 

as expected, restricted N-MLV more potently than T1L at all higher concentrations.  

Unfortunately, however, the corresponding western blot did not align well with 

these data, and time constraints prohibited further investigation of this issue.   

 

It is important to be conscious of various limitations arising from the above 

experiments.  While technical issues may be partly to blame for the poor quality of 

the quantitative data, it is also possible that western blotting is simply a less 

sensitive measure of protein concentration than the restriction assay.  Furthermore, 

the apparent ‘plateaus’ in restriction activity observed upon induction with 

≥50 ng/mL [Dox] probably reflect the upper limit for transcriptional induction in this 

system, since a more potent phenotype is achievable when the restriction factors 

are overexpressed from the LxIY vector. 

 

Nevertheless, these experiments confirm the restriction-competence of T1 at lower 

concentrations of protein.  However, assessing the biological relevance of these 

findings will necessitate a precise quantitation of the endogenous levels of T1. 
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Chapter 4 Searching for parallels 

between T1 and T5α  
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Given its limited target range and lack of positive selection, it seems unlikely that 

T1 plays a key role in the cellular defence against retroviruses.  Instead, the utility 

of this protein lies in what it can teach us about the more prominent restriction 

factors – particularly T5α – by comparing what unites these proteins and what sets 

them apart. 

 

The T1 and 5α protein sequences are highly divergent: the former is almost double 

the length of the latter due to two additional domains between the RBCC and B30.2 

compartments (Figure 4.1A).  Furthermore, in Chapter 3, it became apparent that 

while the variable regions are critical for capsid recognition in T5α (Ohkura et al., 

2006; Anderson and Akkina, 2008), they are functionally replaceable in T1.  

Despite these differences, however, both factors are able to restrict N-MLV to 

comparable degrees.  This suggests that either there are common features that 

unite the two proteins, or that evolution has devised two distinct mechanisms for 

recognising and/or restricting N-MLV.  The focus of this chapter is thus to compare 

and contrast T1 and 5α in order to verify whether or not such parallels exist.   

 

4.1 T1 and 5α can be fused to produce a molecule with 

restriction activity 

Given that T1 and 5α each contain effector and capsid-binding domains, we 

reasoned that it might be possible to fuse them to generate a restriction-competent 

chimera.  To explore this possibility, reciprocal chimeras were made between 

agmT1S and rhT5α at two positions – one immediately following the coiled-coil and 

the other at the start of the B30.2 domain (Figure 4.1B).  Their restriction activities 

were then measured using the two-colour assay (Figure 4.2).   

 

As expected, neither of the chimeras with a T1 B30.2 domain were able to restrict 

the lentiviruses.  Surprisingly, however, their reciprocal counterparts were equally 

permissive to lentiviral replication.  Of the four chimeras, one (5-1B30.2) restricted 

N-MLV to a degree comparable to that of T1S.  Collectively, these data indicate 

that it is possible to produce a restriction-competent chimera of T1 and 5α, 

although the position at which the swap is made has an impact on this phenotype. 
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Figure 4.1: T1 compared with T5α  

(A) Schematic comparison of T1 and T5α. (B) Positions at which the T1-5α 
reciprocal chimeras were made.  Domain boundaries were established using the 
UniProt database (for T1) and Sastri et al. (2014) (for T5α).  
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Figure 4.2: Restriction profiles for the T1-5α reciprocal chimeras 

Graphs show the restriction activities of T5α (from the rhesus macaque), T1S (from 
the African green monkey), and reciprocal chimeras thereof.  Red bars denote full 
restriction (ratio < 0.3) and black bars, absence of restriction (ratio > 0.7).  Graphs 
show the mean and SEM from three independent experiments (n = 6). 
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4.2 A panel of N-MLV capsid mutants escape restriction by 

both T5α and T1 

Having established that T1 and 5α are sufficiently similar in their overall design to 

produce a functional chimera (Section 4.1), we next wanted to establish whether 

these proteins bind to similar epitopes on the N-MLV capsid. 

 

Prior to the start of this project, the Stoye group identified a number of mutations in 

N-MLV CA that confer escape from restriction by rhT5α (Ohkura et al., 2011).  This 

work revealed an extensive T5-binding interface, including residues in the formerly 

established Fv1-binding pocket (N82D, E92K, A95D), and in a cluster on the 

N-terminal side of this pocket (L4S, G8D, L10W).  A subsequent study revealed 

that some of these mutations facilitated the acquisition of compensatory mutations 

that confer escape from huT5α (L10W/E100K and N82D/N113K) (Ohkura et al, 

2013).  Collectively, these findings indicated that the T5-binding interface spans a 

much broader surface on the N-MLV capsid than had previously been thought 

(Stevens et al., 2004). 

 

To determine whether T1 recognises similar epitopes, we selected five mutants 

from the above experiments and measured their abilities to escape restriction by 

T1L, T1S and the 18-1314 chimera.  In all cases, viral titres were adjusted to 

account for relative differences in infectivity.  As Figure 4.3 shows, there was 

considerable variability in the degree of escape that each mutant accomplished.  

While N7K was able to escape restriction by T1L entirely, it retained some 

sensitivity to T1S and 18-1314, albeit to a lesser extent than wild-type in both cases.  

A similar phenotype was observed for L10W.  E92K was the most sensitive virus in 

the panel, retaining a degree of sensitivity to all three T1 constructs. Conversely, 

the double mutants were fully resistant to restriction.  In many cases, these 

phenotypes were distinct from those previously described for T5α (discussed in 

Section 4.4).   

 

Collectively, these data indicate that T1 and 5α engage with distinct epitopes on the 

N-MLV capsid surface, although it is possible that certain residues and motifs 

contribute to both binding interfaces.   
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Figure 4.3: Sensitivity of N-MLV capsid mutants to restriction 

Sensitivity of wild-type (WT) N-MLV and five capsid mutants to restriction by T1L, 
T1S and 18-1314. Graph shows the mean and SEM from four (T1L) or three (T1S, 
18-1314) independent experiments (n = 8 and 6, respectively). Statistical 
significance was established using an unpaired t-test: * P ≤ 0.05. Where 
significance is shown for T1S, this is relative to T1L, and for 18-1314, relative to 
T1S.  



Chapter 4: Searching for parallels between T1 and T5α 

 

154 

 

4.3 Expression and purification of a recombinant T1 B30.2 

domain  

The fact that T1 and 5α bind to N-MLV through distinct sets of interactions (Section 

4.2) implies that the B30.2 domains of these proteins diverge at the structural level.  

Unfortunately, while crystal structures exist for several B30.2 domains, including 

that of T5α (Yang et al., 2012), T25 (D'Cruz et al., 2013), and T72 (Park et al., 

2010), no such structure is currently available for T1.  We therefore set out to 

express and purify a recombinant T1 B30.2 domain for crystallisation trials.  

 

4.3.1 Expression of MBP-B30.2 in E. coli 

To express sufficient amounts of the T1 B30.2 domain, the corresponding region 

was amplified from the agmT1 gene using primers with inbuilt restriction sites 

(Table 4.1). The PCR product was then digested and ligated into an expression 

vector (pET47) that includes N-terminal His6 and MBP tags, to aid in protein 

purification and solubility, respectively. 

 

Forward 5’- CGTAGAAAGCTTACCCGACTAAAAACAAACAGCC  

Reverse 5’- GTTCGACTCGAGTTAATGACAGGTTTTCATCCC  

Table 4.1: Primers used to amplify the B30.2-encoding region of agmT1 

Emboldened sequences correspond to the restriction sites used to generate sticky 
ends for ligation: HindIII in the forward primer, and XhoI in the reverse. Bases 
upstream of these sites were selected at random. 
 
 

The resulting construct (MBP-B30.2 herein) was then sequence-verified and 

transformed into Rosetta 2 (DE3) cells (Novagen). This strain of E. coli is 

engineered to enhance the translation of eukaryotic proteins, thus circumventing 

the need for codon optimisation.  A full description of the protocol used for protein 

expression and harvesting can be found in Section 2.4.1 of this thesis. 
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4.3.2 Purification of MBP-B30.2  

Bacterial lysate was passed through a nickel column according to the protocol 

outlined in Section 2.4.2.  The trace obtained from the column is shown in Figure 

4.4: a clear peak of elution is visible soon after the imidazole concentration is 

increased.  The load, flowthrough and eluate were then run in parallel on an SDS 

gel (Figure 4.7A).  A band of the expected size (67.1 kDa) was observed, 

consistent with the successful expression and purification of MBP-B30.2.  However, 

the presence of multiple contaminating species warranted further purification by ion 

exchange chromatography (Figure 4.5).  Given the acidic isoelectric point of 

MBP-B30.2 (pI = 6.18), a Source Q anion exchange column was used for this 

purpose.  A full description of this protocol can be found in Section 2.4.3.   

 

Given that a peak of elution from the anion exchange column was visible between 

fractions A8 and A12, an aliquot from each of these fractions was loaded on an 

SDS gel in order to verify protein yield and purity (Figure 4.7A).  The relevant 

fractions were then pooled and further purified by size exclusion chromatography.  

This final step was taken to minimise the presence of extraneous contaminants that 

might interfere with the crystallisation process.  Figure 4.6 shows the trace obtained 

from the size exclusion column, with the peak of elution falling between fractions 23 

and 29.  These fractions were once again pooled, concentrated to 7.4 mg mL-1, and 

then run on a gel to check protein yield and purity (Figure 4.7B).  Although lower 

molecular weight bands were visible upon staining, MBP-B30.2 was visibly the 

predominant species, with an estimated purity of >95%. 
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Figure 4.4: Trace from the affinity purification of MBP-B30.2 
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Figure 4.5: Trace from the ion exchange chromatography of MBP-B30.2 
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Figure 4.6: Trace from the size exclusion chromatography of MBP-B30.2 
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Figure 4.7: MBP-B30.2 after various stages of purification 

MBP-B30.2 following (A) affinity purification (left) and ion exchange 
chromatography (right), and (B) size exclusion chromatography (sec) 
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4.3.3 Verification of MBP-B30.2 identity by mass spectrometry 

To confirm the identity of the purified protein, an aliquot of eluate from the size 

exclusion column was sent for analysis by mass spectrometry.  As Figure 4.8 

shows, a large peak was observed at 67,140.9 Da.  This value appears consistent 

with the theoretical mass of MBP-B30.2 following removal of the N-terminal 

methionine (67,131.5 Da), a common post-translational modification in bacteria 

(Giglione et al., 2004). 

 

Possible explanations for the slight discrepancy between the observed and 

theoretical masses include oxidation of methionine residues within the protein, as 

well as the intrinsic error associated with mass spectrometry of high molecular 

weight proteins. Nevertheless, the presence of a large peak within 9 Da of the 

theoretical mass was taken as evidence that the correct protein had been purified. 

 

A number of smaller peaks at both lower and higher molecular weights were also 

observed on the mass spectrum.  Those at a lower MW probably correspond to 

species that have lost their N-terminal His6 tag, but were able to co-purify with their 

full-length counterparts through homodimeric associations between MBP.  

Meanwhile, those at a higher MW likely represent proteins with gluconoylated or 

phosphogluconoylated His6 tags.  Such modifications are well-documented in E. 

coli expression systems (Geoghegan et al., 1999; Matthies et al., 2005). 

 

4.3.4 Crystallisation trials of MBP-B30.2 

To grow crystals of MBP-B30.2, neat (7.4 mg mL-1) and diluted (1.85 mg mL-1) 

samples were incubated in sparse matrix and systematic screens using the sitting 

drop method (Roksana Ogrodowicz, the Francis Crick Institute).  The latter 

concentration was chosen given its reported effectiveness in growing crystals of the 

T5α B30.2 domain (Yang et al., 2012).  The ratio of clear to precipitated drops 

obtained under these conditions indicated that both concentrations were 

favourable; however, no crystals grew within the timeframe of this project.  A list of 

screens used in these trials can be found in Appendix 7.2. 
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Figure 4.8: The mass spectrum deconvolution report for MBP-B30.2  
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4.4 Discussion 

Although T1 and 5α are divergent proteins, they are united in their ability to restrict 

N-MLV.  The aim of this chapter was to identify parallels between these factors that 

endow them with this common phenotype.  Each of the key findings arising from 

this work will now be discussed in turn. 

 

T1 and 5α can be fused to produce a restriction-competent chimera 

 

Given that T1 and 5α have common capsid-binding and effector domains, we 

reasoned that it might be possible to fuse them to generate a restriction-competent 

chimera.  To this end, reciprocal swaps were made between T1 and 5α, both 

immediately after the coiled-coil (1-5CC and 5-1CC) and at the start of the B30.2 

domain (1-5B30.2 and 5-1B30.2).  Although these chimeras were inactive against the 

lentiviruses, one of them (5-1B30.2) did restrict N-MLV to a degree approaching that 

of wildtype T1S.  This suggests that it is possible to generate a T5α-1 fusion with 

restriction activity, although the position at which the two molecules are joined has 

an impact on this phenotype.   

 

One explanation for these data is the contribution of the region immediately 

preceding the B30.2 domain to capsid recognition.  In T5α, this is known as Linker 

2 (L2), a predominantly α-helical region that serves to align the neighbouring B30.2 

domain with viral epitopes.  The analogous region in T1 is much longer, owing to 

the presence of two intervening domains (COS and FN-III) between the coiled-coil 

and B30.2 domain.  It is conceivable that capsid recognition by T5α B30.2 is 

contingent on the upstream L2 region, while T1 B30.2 can function adequately with 

either partner.  In other words, while T5α is sensitive to the spacing between 

capsid-binding and effector domains, T1 is relatively flexible in this regard (this 

notion is covered in depth in Chapter 5).  This hypothesis would explain the ability 

of 5-1B30.2 to restrict N-MLV, while the reciprocal construct is inactive. 

 

However, this hypothesis does not provide a satisfactory explanation for the 

inactivity of 1-5CC and 5-1CC, both of which contain B30.2 domains that are paired 

with their native N-terminal neighbours.  It has previously been shown through 



Chapter 4: Searching for parallels between T1 and T5α 

 

163 

 

molecular modelling that contacts between L2 and the preceding coiled-coil are 

required to maintain the integrity of the T5α dimer, thereby ensuring a productive 

interaction with capsid (Sastri et al., 2014).  If this is the case, then one explanation 

for the loss-of-function for 1-5CC and 5-1CC might be the lack of complementarity 

between the L2 region (in the former), or the analogous region from T1 (in the 

latter), and the coiled-coil to which it is attached.  This would prohibit the relevant 

region from docking onto the coiled-coil in the dimer, in turn preventing the B30.2 

domains from efficiently engaging with their target.  However, in the absence of 

structural data for these chimeras, it is difficult to conclusively establish the nature 

of the secondary and tertiary structures that they (fail to) form. 

 

Nevertheless, the fact that one of these molecules was restriction-competent 

indicates that T1 and 5α share a common overall design.  Both proteins are 

endowed with effector and capsid-binding domains, and these components appear 

to be at least somewhat cross-compatible, contingent on the position at which the 

two molecules are fused. 

 

T1 and 5α recognise distinct epitopes on the N-MLV capsid surface 

 

Having established that T1 and 5α can complement one another in a contiguous 

molecule, we next wanted to explore whether the two proteins recognise similar 

epitopes on the N-MLV capsid.  

 

Work from the Stoye group has already begun to define regions on the N-MLV 

capsid that are recognised by T5α.  This was accomplished by serial passage of 

virions in T5-expressing cells, and the subsequent isolation and characterisation of 

mutants that escape restriction (Ohkura et al., 2011; Ohkura and Stoye, 2013).  

These experiments revealed an extensive T5α-binding interface, spanning most of 

the capsid’s outer surface and incorporating residues positioned up to 29 Å apart.  

In order to establish whether the T1 B30.2 domain binds a similar set of epitopes, 

five escape mutants were selected from the above experiments (N7K, L10W, 

E92K, L10W/E100K and N82D/N113K), and tested for their ability to escape 

restriction from T1L, T1S, and the 18-1314 chimera described previously.  As shown 

in Table 4.2, these data varied considerably between mutants.  
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N-MLV capsid mutant 
 

 
 

N7K 
 

L10W E92K L10W/E100K N82D/N113K 

huT5α Escape 
 

Restriction 
 

Escape Escape Escape 

rhT5α Escape 
 

Escape 
 

 
Escape 

 
Escape Escape 

agmT1L Escape 
 

Escape 
 

 
Partial 
escape 

 

Escape Escape 

agmT1S 
Partial 
escape 

 
Partial 
escape 

 

Partial 
escape 

Escape Escape 

18-1314 
Partial 
escape 

 
Partial 
escape 

 

Partial 
escape 

Escape Escape 

Table 4.2: Restriction phenotypes of five N-MLV capsid mutants 

See Figure 4.3 for quantitative restriction data. 
 

 

N7K falls outside of the formerly established Fv1-binding pocket (Mortuza et al., 

2008); specifically, it resides in the apical loop of the conserved N-terminal 

β-hairpin (Mortuza et al., 2008).  Given that this mutation has a destabilising effect 

on the viral core (and a corresponding impact on viral fitness), it has been 

postulated that escape from restriction is conferred by rapid transition of the virion 

through a TRIM-sensitive state (Ohkura and Stoye, 2013).  While this model 

satisfactorily explains the loss of restriction by T5α and T1L, a question mark 

remains over the abilities of T1S and 18-1314 to partially overcome this effect.  In 

the latter case, it is conceivable that the T18 B-boxes endow a greater avidity effect 

than their counterparts in T1.  This might enable restriction to be effected before 

N7K has sufficient time to disassemble.  The case for T1S is less clear, however.  

While it’s feasible that the increased expression of T1S over L (see Section 3.3) 
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provides greater opportunity for restriction to occur within the timeframe of core 

integrity, this hypothesis hinges on T1S expression superseding that of T5α, which 

is also unable to restrict N7K prior to disassembly.  Parallel quantitation of the two 

proteins will be necessary to confirm whether or not this is the case. 

 

L10W maps to a shallow channel between the β-hairpin and helix α6 (the β-α6 

channel herein) of MLV CA (Figure 4.9).  In the wildtype structure, the aliphatic 

sidechain of leucine forms the base of this channel; substitution for the bulkier 

tryptophan elevates the base by ~2.3 Å.  Interestingly, this mutation inhibits 

restriction by rhesus, but not human, T5α (Ohkura et al., 2011), indicating that 

different T5 orthologues interact with distinct structures on the MLV capsid surface.  

Although T1L was unable to inhibit L10W, the fact that both T1S and 18-1314 

remained restriction-competent confirms that this is not due to elements within the 

T1 B30.2 domain.  Collectively, these data give rise to the rather bizarre notion that 

changes in the β-α6 channel can discriminate between the closely related rhesus 

and human T5αs, but not between the highly divergent B30.2 domains of huT5α 

and agmT1.  This discrepancy is even more startling in light of the fact that L10W 

has been shown to evade restriction by a broad panel of primate T5αs, including 

variants from the New World monkeys (Ohkura et al., 2011).  It is not immediately 

clear what sets the L10W-restricting factors apart from their inactive counterparts, 

especially given that members of the former group often have greater sequence 

identity with members of the latter than they do with each other. 

 

As was the case with the N7K mutant, E92K has a substantial impact on viral 

fitness, although it does not have appear to have a corresponding effect on core 

stability (Ohkura and Stoye, 2013).  This loss of fitness correlates with escape from 

restriction by both rhesus and human T5α.  Interestingly, this effect appears to be 

charge-dependent: a basic residue at position 92 causes escape from T5α with a 

concomitant loss of fitness, while acidic residues confer the inverse phenotype 

(Ohkura and Stoye, 2013).  Strangely, however, T1 appears to be relatively 

unhindered by this modification: in fact, E92K was the only mutant in the panel to 

retain sensitivity to all three T1 constructs.  This observation implies that the T1 

B30.2 domain is relatively insensitive to changes in charge, at least at this position 

in N-MLV CA. 
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Figure 4.9: The impact of L10W on the structure of N-MLV CA 

(A) Structural superimposition of wild-type N-MLV CA (grey) and the L10W mutant 
(blue). (B) The β-α6 channel in wild-type CA, with residue L10 indicated. (C) In the 
L10W mutant, the bulky side-chain of W10 obscures the base of this channel. 
Figure is taken from Ohkura et al. (2011), and reproduced here under the terms of 
the Creative Commons Attribution Licence.   
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The double mutants, L10W/E100K and N82D/N113K, were the only viruses in this 

panel to fully escape restriction by all five restriction factor constructs.  While the 

molecular basis for these data is unclear, work from Ohkura & Stoye (2013) 

demonstrated the importance of charge for the escape of a similar mutant 

(N82D/E100K).  Specifically, it was shown that removing arginine residues from the 

VR1 loop of huT5α (or introducing them at the corresponding positions in rhT5α) 

can restore restriction of this virus.  While it is not clear whether charge-reversing 

mutations would have a similar impact on the restriction of L10W/E100K and 

N82D/N113K, it is noteworthy that the VR1 loop of T1 B30.2 contains 8 charged 

residues (3 acidic and 5 basic), providing ample opportunity to explore this 

possibility in the future. 

 

Collectively, these data indicate that T1 and 5α engage with distinct epitopes on the 

N-MLV capsid surface, although it is likely that certain residues and motifs 

contribute to both binding interfaces.  This probably reflects underlying structural 

differences in the B30.2 domains of the two factors.  In order to confirm this 

hypothesis, we have successfully expressed and purified a recombinant form of the 

T1 B30.2 domain for crystallisation trials.  Although no crystals were grown within 

the timeframe of this project, the high quality of protein obtained from the 

purification has provided ample raw material for further work in this area.  Future 

attempts may benefit from using MBP as a seed to nucleate crystal formation, or 

perhaps introducing a cleavage site upstream of the B30.2 domain to enable 

removal of the tags after purification. 

 

Collectively, the data presented in this chapter indicate that, despite their 

divergence, T1 and 5α share a common overall design that enables them to 

complement one another in a contiguous molecule.  However, there are important 

differences that set these proteins apart, including their mechanisms of capsid 

recognition and their intramolecular requirements for effecting restriction.  The latter 

point will be the central focus of the next chapter. 
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Chapter 5 Characterising the 

requirements for a productive TRIM-

capsid interaction 
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Chapter 4 outlined efforts to produce a restriction-competent chimera of T1 and 5α.  

Given that all of the constructs described had intact capsid-binding and effector 

domains, it is curious that only one of them retained the ability to restrict N-MLV.  

This observation led us to consider the notion that it is not only the presence of 

certain domains that is important for restriction, but also the relative spacing 

between them. 

 

Linker 2 (L2) is a 64 amino acid region that runs between the coiled-coil and B30.2 

domain of T5α (Figure 5.1A).  L2 has been under extensive scrutiny in recent years, 

and a wealth of information is now available regarding its structure and contribution 

to the T5α dimer (Goldstone et al., 2014a; Sanchez et al., 2014). The N-terminal 

portion consists of two α-helices, α3 and α4, which are followed by an extended 

and largely unstructured region known as L2-E.  L2-E runs for 24 residues before 

terminating in a final helix, α5, which forms the C-terminal connection with the 

B30.2 domain.  In the T5α dimer, α3 and α4 interact with the B-boxes of the 

opposing monomer at either end of the dimer.  L2-E then doubles back along the 

coiled-coil and runs towards the twofold axis of the dimer, thereby positioning α5 at 

the centre, where it serves to align the B30.2 domains with complementary 

epitopes on the capsid surface (Figure 5.1B).   

 

The equivalent region in T1 is about three times as long (195 residues), and 

includes a COS domain (60 aa) for microtubule binding and an FN-III domain 

(100 aa) for mediating protein-protein interactions.  No structural information about 

the T1 dimer is currently available (nor, indeed, is it known whether T1 dimerisation 

is required for restriction at all), but it is likely that it differs substantially from T5α in 

this respect.  This may go some way towards explaining the relative difficulty in 

producing a functional chimera of the two proteins.   

 

The aim of the studies described in this chapter is to explore the impact of domain 

spacing on facilitating a productive interaction between TRIM and capsid.  The 

main focus of these studies will be the L2 region of T5α, since this is shorter and 

better characterised than its counterpart in T1.  For the purpose of this work, a 

productive interaction is defined as one that results in restriction of the virus 

concerned. 
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Figure 5.1: The T5α L2 region  

(A) Position of L2 within the rhT5α protein sequence. (B) Side-view of a T5α dimer 
interacting with the capsid surface.   
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5.1 Rhesus T5α is largely intolerant of deletions in L2 

To investigate the importance of L2 length for permitting a productive interaction 

between T5 and capsid, a panel of deletions were made in this region of rhT5α.  

The rhesus orthologue was chosen because it potently restricts a number of 

retroviruses, thereby providing a suitable baseline from which to compare any 

mutant phenotypes.   

 

In an initial experiment, the entirety of L2-E and the N-terminus of α5 (L2-α5 herein) 

were deleted from rhT5α to yield Construct A (Table 5.1; Figure 5.2).  Structural 

modelling of this mutation predicts repositioning of the B30.2 domains to either end 

of the dimer (Figure 5.3).  Unsurprisingly, this construct was inactive against all four 

of the viruses tested.  Following this observation, three smaller deletions were 

made in L2-α5, each containing progressively larger amounts of L2-E, but all still 

lacking the N-terminus of α5 (B-D).  However, these constructs were also largely 

inactive.  In fact, only D – which retains all but two residues of L2-E – yielded a 

protein with any restriction activity at all: a partial phenotype against FIV.   

 

To verify whether the inactivity of B and C was attributable to the missing 

N-terminus of α5, two more constructs were made with equivalent deletions in L2-E, 

but this time retaining helix α5 in its entirety (H and I).  However, as Table 5.1 

shows, the presence of α5 was insufficient to rescue restriction by these constructs, 

indicating that the portions of L2-E removed in B and C are necessary, either in 

size or sequence, for a productive capsid interaction. 

 

To further investigate the partially restrictive phenotype of D, the region concerned 

(residues 282-290) was split into two halves, and deletions made of each, yielding 

E (Δ282-285) and F (Δ286-290).  In silico modelling predicted similar structural 

manifestations for both mutations: the central position of the B30.2 domains is 

roughly maintained, but with a ~90° rotation relative to the axis of the coiled-coil 

(Figure 5.3).  Interestingly, E and F regained full activity against the lentiviruses, but 

were unable to restrict N-MLV.   

 



Chapter 5: The requirements for a productive TRIM-capsid interaction 

 

172 

 

To establish whether this phenotype is unique to the regions deleted in E and F, or 

simply a general consequence of shortening helix α5, a similarly sized deletion was 

made in the C-terminal half of α5 to produce G.  However, G was entirely inactive, 

indicating that the ability of E and F to recognise the lentiviral capsids is attributable 

to dispensable residues in the N-terminus of α5, rather than a general tolerance of 

α5 shortening. 

 

Table 5.1: Restriction phenotypes of the rhT5α deletion constructs  

Data show the mean and SEM (2 dp) from three independent experiments (n = 6).  
Black boxes represent full restriction; grey, partial, and white, absence of restriction 
 
 

 
Figure 5.2: Positions of the removed portions in the rhT5α deletion constructs 
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Figure 5.3: A structural model of wild-type and mutant T5α dimers  

(A) Wild-type; (B) Δ259-290 (Construct A); (C) Δ282-285/286-290 (Constructs E 
and F).  Models were constructed using the Pymol software.  Credit to Dr Neil Ball 
at the Francis Crick Institute, Mill Hill Laboratory. 
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5.2 Rhesus T5α tolerates small extensions in α5 

Having deleted portions of L2-α5, we next wanted to examine the consequences of 

extending it.  To this end, three sequences were inserted roughly in the middle of 

the α5 helix, specifically between residues 289 and 290 (see Table 5.2).  These 

sequences were designed specifically to lengthen the helix while preserving its 

secondary structure.     

 

 

Table 5.2: Sequences inserted into the centre of helix α5 in rhT5α  

The conformational effects of each insertion on the T5α dimer are shown in the 
right hand columns. Credit to David Goldstone (former Division of Molecular 
Structure, NIMR) for the design of these mutants. 
 

 

Figure 5.4 shows the predicted effect of the largest insertion, FRELFRL, on the 

structure of the T5α dimer: the B30.2 domains are pushed apart in opposite 

directions and swivelled with respect to the axis of the dimer.  Strikingly, the 

restriction data for these constructs were reminiscent of those seen with Constructs 

E and F in Section 5.1: in all three cases, lentiviral recognition was unperturbed, 

while N-MLV recognition was lost (Table 5.3). 
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Table 5.3: Restriction phenotypes of wild-type rhT5α and a panel of constructs 

with extended α5 helixes 

Data show the mean and SEM (correct to 2 dp) from three independent 
experiments (n = 6).  Black boxes represent full restriction; grey, partial restriction, 
and white, absence of restriction. 
 

 

Figure 5.4: A structural model of wild-type and mutant T5α dimers  

(A) Wild-type; (B) 289-FRELFRL-290. Models were constructed using the Pymol 
software.  Credit to Dr Neil Ball at the Francis Crick Institute, Mill Hill Laboratory. 
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5.3 Disrupting the secondary structure of α5 has variable 

effects on restriction by rhesus and human T5α 

Having altered the length of L2-α5, we next sought to examine the consequences 

of disrupting its secondary structure.  To this end, an alignment of the α5 

sequences from multiple primate T5αs was performed using an online protein 

alignment tool (Table 5.4).  This analysis revealed two highly conserved leucine 

residues that are likely to contribute to helix formation in this region.  Thus, each of 

these residues was mutated to proline – which has a propensity to disrupt α-helices 

– and the effect on restriction measured. 

 

 

Table 5.4: An alignment of α5 sequences from ten primate orthologues of T5α  

Conserved leucine residues are highlighted in red.  Alignment was performed using 
the Clustal Omega multiple sequence alignment tool (EMBL-EBI). 
 

 

As Table 5.5: shows, the effects of proline substitution on restriction were highly 

variable between constructs.  In rhT5α, L287P resulted in a rather dramatic 

phenotype: HIV-2 restriction was lost entirely, while HIV-1 and FIV restriction were 

both attenuated.  L293P was much better tolerated, with no discernible effect on 

lentiviral restriction. Recognition of N-MLV, however, was lost in both cases.  In 

huT5α, the equivalent mutations had an even more profound effect, with 

substitution of either residue completely ablating restriction of this panel of viruses. 
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Table 5.5: Restriction phenotypes of wild-type rhesus and human T5α and a 

panel of constructs with leucine-to-proline substitutions in helix α5 

Data show the mean and SEM (correct to 2 dp) from two (N-MLV) or three (HIV-1, 
HIV-2, FIV) independent experiments (n = 4 and 6, respectively).  Black boxes 
represent full restriction; grey, partial restriction, and white, absence of restriction. 
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5.4 CypA tolerates L2 deletions more readily than the B30.2 

domain 

Section 5.1 described the impact of L2 deletions on the restriction phenotype of 

rhT5α.  To determine whether these observations are unique to restriction factors 

containing a B30.2 domain, we synthesised a chimera comprising the N-terminus 

of rhT5α (residues 1-300) fused to the CypA domain of owl monkey TCyp (Yap, 

unpublished work).  This construct was designed specifically to incorporate the L2 

region of rhT5α in its entirety, thereby enabling a comparison of the two 

capsid-binding domains in the same N-terminal background.  The resulting 

molecule (T5α-Cyp herein) was restriction-competent (Table 5.6, Construct A).   

 

A number of deletions were then made in the L2 region of this construct by 

site-directed mutagenesis (Constructs B-F).  As the data show, these modifications 

were far better tolerated than their equivalents in rhT5α.  For all but the largest 

deletion (F), HIV-1 and FIV restriction were fully preserved.  The pattern for HIV-2 

restriction was a little less clear: interestingly, B restricted this virus more potently 

than the parental A, while C-F were permissive.  This phenomenon is discussed in 

greater detail in Section 5.5. 

 

 

Table 5.6: Restriction phenotypes of an artificial T5α-Cyp chimera and a panel of 

daughter constructs with L2 deletions 

Data show the mean and SEM (correct to 2 dp) from two independent experiments 
(n = 4).  Black boxes represent full restriction; grey, partial restriction, and white, 
absence of restriction. 
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5.5 The restriction specificity of TCyp is governed by multiple 

determinants 

It is curious that removing just 9 amino acids from T5α-Cyp boosts HIV-2 restriction 

by more than tenfold, whilst having no concomitant effect on the inhibition of HIV-1 

or FIV (Table 5.6, Constructs A and B).  This observation prompted us to conduct 

further enquiries into the determinants that govern restriction specificity in TCyp 

restriction factors.  This section is thus divided into three parts, each one exploring 

a separate determinant. 

 

5.5.1 Exon 7 

The 9 amino acid difference between Constructs A and B falls within the C-terminal 

half of helix α5, and is encoded by exon 7 (e7) of the T5 gene.  TCyp fusions have 

independently arisen in several primate lineages, but due to differences in the site 

of CypA retrotransposition, the owl monkey variant (omTCyp) retains e7, while the 

rhesus macaque orthologue (rhTCyp) does not.  These molecules also differ in 

their restriction profiles: the former potently restricts HIV-1, while the latter does not.   

 

To establish whether this difference can be attributed to the presence or not of e7, 

this region was deleted from omTCyp and the restriction activity of the resulting 

molecule measured (Figure 5.5). Curiously, we observed restriction of HIV-2 in 

these experiments, which is at odds with the restriction profile reported elsewhere 

(Wilson et al., 2008).  Nevertheless, the inhibition of HIV-1 and FIV is consistent 

with the literature, and neither of these activities were affected by the removal of e7, 

indicating that this region is inconsequential for restriction by omTCyp.  This stands 

in marked contrast to the situation with T5α-Cyp, where the presence of e7 appears 

to be inhibitory (Section 5.4, Constructs A and B) and in rhT5α, where it is essential 

(Section 5.1, Construct G).   
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Figure 5.5: Restriction phenotypes of wild-type and e7-deficient omTCyp 

Graph shows the mean and SEM from two independent experiments (n = 4). 
 

 

Collectively, these data suggest that the impact of e7 on TRIM-mediated restriction 

is highly context-dependent, with influences from both the downstream 

capsid-binding domain and the target virus concerned.  It is thus difficult to make 

any broad generalisations about its function on the basis of these data.    

 

5.5.2 Residues in the active site of CypA 

Modern rhTCyp has a strong affinity for the HIV-2 capsid, while the parental CypA 

molecule from which it is derived has a strong affinity for HIV-1 and only a weak 

one for HIV-2.  One group has suggested that this affinity switch can be attributed 

to two mutations in the active site of the CypA domain (Price et al., 2009).  The first 

of these (R69H) broadened specificity from HIV-1 to both viruses, while the second 

(D66N) enhanced HIV-2 restriction while ablating HIV-1 restriction entirely.  

 

To test this model in T5α-Cyp and its derivatives, the D66N mutation was 

introduced to each of Constructs A-F (Table 5.6), yielding A1-F1 (Table 5.7).  The 

expectation was that this would reverse the phenotypes described in Section 5.4: 

thus, in C1-F1, HIV-1 restriction would be lost and HIV-2 restriction gained.  
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Consistent with the findings of Price et al. (2009), this modification inhibited HIV-1 

restriction; surprisingly, however, there was no concomitant gain-of-function against 

HIV-2.  FIV restriction was much less affected by this change. 

 

 

 

Table 5.7: Restriction phenotypes of T5α-Cyp and its derivatives with the D66N 

active site mutation in CypA 

Data show the mean and SEM (correct to 2 dp) from two independent experiments 
(n = 4).  Black boxes represent full restriction; grey, partial restriction, and white, 
absence of restriction. 
 

 

Next, the R69H mutation was introduced to A and B, yielding A2 and B2 (Figure 

5.6).  This modification caused A to completely lose its limited ability to restrict 

HIV-2, although HIV-1 restriction was unaffected.  B underwent a very slight 

attenuation of HIV-2 restriction – again, with no impact on the restriction of HIV-1.  

Finally, the two mutations were introduced to A and B in combination to produce 

A3 and B3.  Both resulting constructs lost activity against HIV-1.  A3 also lost the 

ability to restrict HIV-2, while for B3 this function was merely attenuated. 

 

Collectively, these data suggest that while R69H and D66N might have converted 

the restriction specificity of rhesus CypA from HIV-1 to -2, this is not the case for 

owl monkey CypA, at least in the context of this artificial chimera.   
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5.5.3 Leader sequence 

In the splicing of T5 and CypA to produce a TCyp fusion, the splice acceptor site 

lies slightly upstream of the CypA coding region.  The resulting protein thus 

contains a short stretch of amino acids immediately N-terminal to the CypA domain 

known as the leader sequence.  This sequence differs slightly between the owl 

monkey and rhesus orthologues (Table 5.8). 

 

 

Table 5.8: The leader sequences of owl monkey and rhesus macaque TCyp 

 

To investigate the impact of this region on restriction specificity, the owl monkey 

leader in Constructs A and B (Table 5.6), was substituted for that of the rhesus 

macaque to produce A4 and B4 (Figure 5.6).  This modification had no effect on B; 

however, interestingly, it rescued the attenuated restriction of HIV-2 by A.  This 

suggests that the inhibitory effect of e7 in this context can be reversed by simply 

substituting the downstream leader sequence. 

 

Next, the impact of leader sequence substitution in the context of the mutations 

described in Section 5.5.2 was investigated.  To this end, the rhesus leader was 

again introduced to A and B, but this time in combination with either D66N, R69H, 

or both (Figure 5.6).   

 

In the case of A, the rhesus leader lost the ability to rescue the inhibitory effect of 

e7 on HIV-2 restriction when either D66N or R69H was also present (compare A4 

with A5 and A6, respectively).  Curiously, though, when the rhesus leader was 

paired with the double mutant (A7), HIV-2 restriction was restored.  Conversely, in 

the case of B, the rhesus leader rescued the attenuating effects of both D66N and 

R69H on HIV-2 restriction (compare B5 with B1, and B6 with B2, respectively).  

Interestingly, the double mutant (B7) restricted HIV-2 to a comparable degree as 

the one lacking either mutation (B4), despite the fact that each of these mutations 

attenuated HIV-2 restriction when present in isolation. 
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It is noteworthy that a strong inhibition of FIV was preserved for every construct 

described in this section.  This served as a useful internal control, indicating that all 

of the constructs were expressed and active, albeit with modified restriction profiles. 
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Data show the mean and SEM (correct to 2 dp) from two independent experiments 
(n = 4).  Black boxes represent full restriction; grey, partial restriction, and white, 
absence of restriction. 

Figure 5.6: Restriction phenotypes of Constructs A (e7-proficient) and B 

(e7-deficient) and their derivatives. 
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5.6 Discussion 

While T1 and 5α share common capsid-binding and effector modules, they differ 

substantially in how these regions are linked to one another.  In T5α, the coiled-coil 

and B30.2 domain are bridged by a 64-residue, highly α-helical Linker 2 (L2) 

region.  However, the analogous region in T1 is approximately three times as long 

and comprises two additional domains.  

 

Interestingly, while the T1 B30.2 domain is still able to interact with N-MLV when 

partnered with the L2 region of T5α, the reciprocal chimera (T5α B30.2 partnered 

with the equivalent portion of T1) is inactive (Section 4.1).  This implies that the 

relative position of the domains in T5α has been finely tuned over the course of 

evolution.  The aim of this chapter was thus to characterise the impact of 

intramolecular domain spacing on the T5-capsid interaction.  Each of the key 

findings arising from this work will now be discussed in turn. 

 

Modifications to the L2 region have variable effects on restriction by rhT5α  

 

To investigate the impact of L2 length on restriction by rhT5α, we deleted various 

portions within this region and measured the effect on restriction.  These 

modifications were broadly deleterious, with the vast majority yielding proteins with 

no restriction activity.  While the immediate implication of this observation is that 

the length of L2 influences capsid recognition, work published by the Campbell 

group identified two stretches of amino acids within this region (266-268 and 

275-277) that are required for both cytoplasmic body localisation and retroviral 

restriction (Sastri et al., 2010).  It is therefore possible that the loss-of-function 

exhibited by the mutants in this project is not related to changes in L2 length, but 

rather a direct consequence of removing these critical motifs.  

 

While it is not possible to formally exclude this possibility, the fact that the removal 

of residues 282-290 (which excludes both of these motifs) also impedes restriction 

suggests that the modulation of L2 length alone has an impact on restriction activity.  

Indeed, this is unsurprising in the context of a T5α dimer, where substantial losses 

in L2 would cause a dramatic reorientation of the B30.2 domains relative to the 
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capsid surface, and the potential loss of important contacts between restriction 

factor and virus.  Nevertheless, constructs with very small deletions (~ 4 aa) at the 

L2-E/α5 boundary, and in the N-terminus of α5 itself, retained restriction activity 

against the lentiviruses. 

 

Having considered the impact of shortening the L2 region, we next turned our 

attention to lengthening it: specifically, by extending the α5 helix.  To this end, three 

mutations (FRE, FREL and FRELFRL) were added to the centre of the helix in 

order to extend it by 1-2 additional turns.  In silico modelling of the longest insertion 

in the context of the dimer revealed that this change not only separates the B30.2 

domains by 22 Å, but also causes their rotation relative to the underlying coiled-coil.  

Despite these substantial conformational changes, however, all three mutants 

remained restriction-competent against the lentiviruses (although, again, N-MLV 

restriction was lost). 

 

It has previously been reported that the α-helical content of L2 is critical for 

restriction by rhT5α, perhaps by enabling it to dock on the coiled-coil and thus 

orient the B30.2 domains appropriately (Sastri et al., 2010; 2014).  However, this 

analysis focused on short stretches of amino acids within L2-E.  We therefore 

sought to examine the effect of secondary structural modifications on the 

downstream α5 helix.   

 

To do this, we identified two conserved leucine residues within α5 and substituted 

each for proline in both rhesus and human T5α.  While leucine has a high 

propensity to form α-helices, the side-chain of proline imposes a steric barrier to 

helix formation.  Surprisingly, the phenotypes arising from these mutations differed 

considerably depending on which position was mutated.  While L287P completely 

inhibited restriction of HIV-2 by rhT5α (and attenuated that of HIV-1 and FIV), 

L293P bore no effect on lentiviral restriction.  The impact of L287P is particularly 

surprising, given that deletion of the region including residue 287 (Δ286-290) bears 

no impact on lentiviral restriction.  Yet again, anti-N-MLV activity was lost in both 

cases.   
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The equivalent mutations in huT5α had even more profound consequences: 

mutating either residue to proline ablated activity against both the lentiviruses and 

N-MLV.  It is unclear whether the discrepant effects of proline mutagenesis on 

rhesus and human T5α are due to divergence in the surrounding sequences, or 

fundamental differences in the mechanism by which each orthologue binds to its 

target.  In any case, further characterisation of these mutants in order to confirm 

the predicted changes in their secondary structures (perhaps by circular dichroism 

or NMR), alongside a western blot to confirm their expression, will be necessary 

before any meaningful conclusions can be drawn.  

 

N-MLV restriction is highly sensitive to L2 modifications 

 

An interesting phenotype exhibited by a number of the L2 mutants described in this 

chapter was a complete loss of N-MLV restriction, even when lentiviral restriction 

was preserved.  This is particularly striking given the relatively conservative nature 

of these mutations: the deletion of just four amino acids at the L2-E/α5 boundary, 

for example.   

 

This observation may reflect the fact that lentiviruses possess conical cores, while 

for N-MLV and other gammaretroviruses, this structure is spherical.  In the absence 

of high-resolution structural data, it is hard to envisage precisely why a spherical 

core would place such tight restrictions on the T5α dimer, but it is possible that the 

higher degree of curvature on the capsid surface would position the viral epitopes 

in such a way as to constrain the conformational freedom of the B30.2 domains.  

Validating this hypothesis will require pairing the L2 mutants constructed in this 

project with other lenti- and gammaretroviruses, and perhaps members of other 

retroviral genera as well. 

 

CypA tolerates L2 modifications more readily than the B30.2 domain 

 

While the B30.2 domain consists of four variable loops – at least three of which 

make critical contacts with the capsid target (Ohkura et al., 2006) – the 

capsid-binding domain of TCyp need only interact with a single viral epitope: the 

Cyp-binding loop (Yoo et al., 1997).  This endows the latter with the freedom to 
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sample multiple monomers within a CA hexamer while still maintaining a productive 

interaction.  We therefore expected that modifications to the L2 region of TCyp 

might have a less severe impact on restriction than was the case for rhT5α.   

 

To examine this possibility, we generated a chimera consisting of the N-terminal 

portion of rhT5α (up to and including helix α5) fused to the CypA domain of owl 

monkey TCyp (T5α-Cyp).  In stark contrast to the data obtained from the rhT5α 

mutants, T5α-Cyp retained the ability to restrict HIV-1 and FIV even upon the 

removal of helix α5 and the majority of L2-E.  However, HIV-2 restriction was lost in 

almost every case.  Nevertheless, these data confirm that capsid recognition by 

CypA is relatively immune to modifications in the preceding L2 region, particularly 

when compared to the B30.2 domain. 

 

The restriction specificity of TCyp is governed by multiple determinants 

 

An interesting observation arising from the above experiments is that the removal 

of exon 7 (e7) from T5α-Cyp, which corresponds to just 9 amino acids, results in a 

>10-fold increase in the inhibition of HIV-2.  This led us to consider the role of e7 in 

restriction.   

 

To this end, we deleted the relevant region from wildtype omTCyp.  Interestingly, 

we observed restriction of HIV-2 by both wildtype and e7-deficient omTCyp, which 

is discordant with the phenotype described by other groups (Wilson et al., 2008).  

The reasons for this discrepancy are unclear; however, the fact that HIV-1 and FIV 

restriction were also unaffected by the removal of e7 indicates that this region is 

dispensable for restriction by omTCyp.  This is in marked contrast to the case for 

T5α-Cyp, where e7 has an inhibitory effect, and in rhT5α, where it appears to be at 

least partly required for restriction.  

 

Collectively, these data paint a rather convoluted picture of the role of e7 in 

restriction.  Recent work from the Zheng lab showed that e7 deficiency is 

associated with an inability to localise to cytoplasmic bodies and a reduced 

propensity for multimerisation (Liu et al., 2015).  While this certainly explains the 

dependence of rhT5α on e7, it is not clear whether these functions are simply 
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dispensable in the case of omTCyp, or whether other regions compensate for the 

loss of e7 in this protein.  It is also unclear why this region would inhibit HIV-2 

restriction by the T5α-Cyp chimera.  Further investigation into the role of e7 in a 

broader range of TRIM molecules is warranted before any meaningful conclusions 

can be drawn about its function.  

 

It is interesting to note that while the majority of T5α-Cyp deletion constructs 

retained the ability to restrict HIV-1, most of them were inactive against HIV-2.  The 

capsid structures of HIV-1 and -2 are broadly similar, although they differ in the 

conformation of the Cyp-binding loop due to the deletion of residue CA-88 in the 

latter.  One group has proposed that rhTCyp acquired the ability to restrict HIV-2 at 

the expense of HIV-1 by acquiring two mutations in the active site of CypA 

(R69H/D66N) (Price et al., 2009).  In particular, D66N is believed to have facilitated 

this interaction by inducing structural rearrangements within the active site that 

enabled it to accommodate the displaced Cyp-binding loop of HIV-2.   

 

Although these analyses were based on the rhesus orthologue, we reasoned that 

the same mutations might have a similar effect in owl monkey CypA.  We therefore 

introduced the D66N mutation to T5α-Cyp and each of its daughter constructs.  

Consistent with the findings of Price et al. (2009), D66N inhibited HIV-1 activity in 

all of these mutants; however, unlike the case for rhesus CypA, there was no 

concomitant gain-of-function against HIV-2. 

 

Collectively, these observations indicate that the recognition of capsid by TCyp 

involves the cooperation of multiple components: both e7 and D66N yield different 

restriction phenotypes depending on their context.  This prompted a more detailed 

enquiry into how the various determinants within TCyp interact to permit a 

productive capsid interaction.  To this end, a panel of modifications were made to 

both T5α-Cyp and its e7-deficient counterpart.  These included the D66N and 

R69H active site mutations, either alone or in combination; substitution of the owl 

monkey leader sequence for that of the rhesus macaque, and pairwise 

combinations thereof.  This analysis yielded a number of apparently conflicting 

phenotypes that are difficult to reconcile. 
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In the case of full-length T5α-Cyp, HIV-1 restriction was ablated by D66N, but 

unaffected by R69H or substitution of the leader sequence.  Strikingly, the 

attenuation of HIV-2 restriction imparted by e7 was rescued upon substitution of the 

owl monkey leader sequence for that of the rhesus macaque.  The leader 

sequence is a short stretch of amino acids found just N-terminal to the CypA 

domain due to the presence of a splice acceptor site upstream of the CypA coding 

region.  The owl monkey and rhesus leader sequences vary quite substantially; 

however, it is not immediately clear why the latter would rescue the attenuating 

effect of e7 on HIV-2 restriction while the former cannot. 

 

When the same modifications were made to the e7-deficient form of T5α-Cyp, the 

resultant phenotypes were markedly different from the above.  Again, HIV-1 

restriction was intolerant of D66N, but resilient to both R69H and substitution of the 

upstream leader sequence.  As expected, HIV-2 restriction was better preserved in 

the absence of e7; however, D66N ablated this phenotype, and both R69H and the 

D66N/R69H double mutant attenuated it.  Nevertheless, pairing any of these 

mutants with a rhesus leader sequence restored HIV-2 restriction.   

 

Given the lack of any obvious patterns in the above data, it is difficult to disentangle 

the contribution of each determinant to restriction.  This issue is further 

compounded by the fact that FIV restriction was unaffected by the vast majority of 

modifications described in this chapter.  This is particularly striking given that, like 

HIV-1, FIV interacts with CypA via a central proline residue (P90) in the 

Cyp-binding loop (Lin and Emerman, 2006).  However, it is possible that 

divergence elsewhere in the loop contributes to the discrepant phenotypes 

observed for HIV and FIV in this chapter.  Indeed, the Hatziioannou group have 

previously observed that FIV restriction is relatively unhindered by the addition of 

CsA, a competitive inhibitor of CypA, indicating that FIV might have an inherently 

higher affinity for CypA than its lentiviral cousins (Virgen et al., 2008).  If this is the 

case, then it is perhaps unsurprising that FIV restriction is robust in the face of 

TCyp modifications. 
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To summarise, this chapter has provided insight into several intramolecular 

requirements for facilitating a productive interaction between TRIM and capsid.  

While it appears that these are most stringent for restriction factors with a B30.2 

domain, there are also determinants immediately preceding the CypA domain that 

may affect restriction specificity.  However, defining the precise contribution of each 

of these determinants is difficult in the absence of structural data. 
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The focus of this thesis has been on retroviral restriction by TRIM proteins, with a 

particular emphasis on T1, T18, T5α and TCyp.  Although these factors have many 

distinct characteristics, they are nevertheless united by a few common themes.  

 

One idea that has cropped up repeatedly throughout this work is the notion that 

TRIM proteins share a common overall design.  This is epitomised by the ability of 

the T1 B30.2 domain to function adequately with components from both T5α and 

T18 (Chapter 3 and Chapter 4), and the generation of a restriction-competent 

chimera between rhesus T5α and owl monkey TCyp (Chapter 5). 

 

Nevertheless, each of these factors has undoubtedly been shaped by unique 

evolutionary forces, and this has resulted in certain distinct requirements, 

particularly in terms of how the modules are positioned relative to one another.  

This likely reflects the need for TRIM molecules to complement regularly spaced 

epitopes on the capsid surface, while simultaneously engaging components of the 

ubiquitination and innate immune signalling pathways.  Each factor has 

accomplished this in a slightly different way; as a result, introducing foreign 

components without consideration of the surrounding context may not always 

garner favourable results. 

 

Another issue arising from this work surrounds the definition of the term restriction 

factor itself.  While T5α is a prototypic member of this class of proteins, the antiviral 

activity of T1 is rarely considered.  Indeed, most of the recent literature concerning 

T1 (or MID2 as it is more commonly known) focuses on its role in non-infectious 

diseases, such as X-linked developmental disorders and advanced-stage breast 

cancer (Li et al., 2016a; Wang et al., 2016).  Thus, the restriction activity of T1 may 

be a phenotype of circumstance: a mere by-product of the subcellular localisation 

and domain complement of this protein.  Perhaps it would then be inaccurate to 

label it as a restriction factor per se, but rather a protein with an existing cellular 

function that happens to also have restriction activity.  Indeed, it could be argued 

that the likes of T28, SAMHD1 and SERINC3/5 also fall into this camp. 
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While this might seem like a semantic issue, these definitions could inform future 

searches for proteins with restriction activity – some of which may have clinical 

potential.  Currently, restriction factor candidates are identified using reverse 

genetic techniques, often in the form of RNAi screens.  However, such techniques 

may result in a number of candidates being overlooked, either because their 

knockdown has unrelated effects on cell viability, or because they are 

compensated for by more dedicated restriction factors.  Widening our definition will 

pave the way for novel approaches in the search for host-derived factors with 

antiviral activity.   

 

In many ways, the findings discussed in this work can be related to what is already 

known for the murine restriction factor, Fv1.  Much like the TRIM family members, 

Fv1 comprises both capsid-binding and multimerisation domains, although the 

precise mechanism by which restriction is effected remains elusive.  The modularity 

of Fv1 has previously been demonstrated by generating a C-terminal fusion with 

the owl monkey CypA domain; the resulting molecule acquired restriction activity 

against both HIV and FIV (Yap et al., 2007; Schaller et al., 2007).   

 

This restriction factor ‘reprogramming’ is mirrored in the case of T5α, where 

specificity can often be exchanged between primate orthologues (Stremlau et al., 

2005; Yap et al., 2005; Anderson and Akkina, 2008), and replacement of the B30.2 

domain with CypA has yielded novel factors with potent antiviral activity on several 

occasions (Sayah et al., 2004; Dietrich et al., 2010).  Similarly, the work presented 

in this thesis demonstrates that the T1 B30.2 domain can function adequately when 

paired with the N-terminus of either T5α or T18, and in fact restriction is even 

augmented in the latter case.  Moreover, previous work in the Stoye lab has shown 

that both T1 and T18 are restriction-competent when appended with a CypA 

domain (Yap et al., 2006). 

 

Collectively, these data reinforce the notion that capsid-binding restriction factors 

are comprised of interchangeable units that promote capsid association and 

multimerisation (Yap et al., 2007).  This opens the door to generating artificial 

restriction factors with tailored specificities and enhanced effector functions – some 

of which may have therapeutic potential. 
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7.1 Primer directory 

7.1.1 Primers used in Chapter 3 

To make the long isoform of murine T1 (Section 3.3) 

 

Name Template Sequence (5’-3’) 

mT1L P1 mT1S 
GGGGACAAGTTTGTACAAAAAAGCAGGCTACCATGGAAAC

ACTGGAGTCAG 

mT1L P2 mT1S 
TACTGCTTCCTTACATTTCCTTATCTCTGGCCACAGGCCC

CAACTACACCATGACTTACTGATGAAGTTAGCCTGGC 

mT1L P3 mT1S 
AAGGAAATGTAAGGAAGCAGTAAGCTGCTCAAGATTGGCC

GGTGCGCCACGAGGCAAGTACAATTCAGTGGATAGCTGG 

mT1L P4 mT1S 
GGGGACCACTTTGTACAAGAAAGCTGGGTTTAATGGCAAG

CTTTCATCC 

 

 

To make the long isoform of human T1 (Section 3.3) 

 

Name Template Sequence (5’-3’) 

huT1L P1 huT1S 
GGGGACAAGTTTGTACAAAAAAGCAGGCTACCATGGGTGA

AAGCCCAGCCTC 

huT1L P2 huT1S 
CTGCTTCCTTACATTTCCTTATCTCTGGCCACAGGCCCCA

ACTACACCATGACTTACTGATGAAGTTAGCCTGGCC 

huT1L P3 huT1S 
AAGGAAATGTAAGGAAGCAGTAAGCTGCTCAAGATTGGCC

GGGGCGCCACGAGGCCTGTATAATTCAGTAGACAG 

huT1L P4 huT1S 
GGGGACCACTTTGTACAAGAAAGCTGGGTTTAATGACAGG

TTTTCATCC 

 

 

To exchange the B30.2 domains of T1 and 18 (Section 3.4) 

 

Name Template Sequence (5’-3’) 

1-18B30.2 
P1 

agmT1S 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCACCATGGAAA

CACTGGAGTCTG 

1-18B30.2 
P2 

agmT1S GTTGGCTGTTTGTTTTTAGTCGGGTAGGTTC 

1-18B30.2 
P3 

agmT18 ACTAAAAACAAACAGCCAACCATTTAAACTG 

1-18B30.2 
P4 

agmT18 
GGGGACCACTTTGTACAAGAAAGCTGGGTTCACGGCAGCT

GCTCTGTGCAGTCC 

18-1B30.2 
P1 

agmT18 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCACCATGGAAA

CACTGGAGTCAG 
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18-1B30.2 
P2 

agmT18 GTTGGCTGTTTGTCTTCAACTTCCCAGGCTC 

18-1B30.2 
P3 

agmT1S GTTGAAGACAAACAGCCAACCCTTTAAATTG 

18-1B30.2 
P4 

agmT1S 
GGGGACCACTTTGTACAAGAAAGCTGGGTTTAATGACAGG

TTTTCATCCCAG 

 

 

To exchange the variable regions of T1 and 18 (Section 3.4) 

 

Name Template Sequence (5’-3’) 

T1 VR1 
FWD 

1-18B30.2* 

CTTGACAGTAGAAAAGGATGAAAGCTCTCTCTAAAGAAGA

GCCATACCCCAGAGAGGTTTAGTGGCACAGGGTGCTATGG

GGTAGCTGGAAATG 

T1 VR1 
REV 

1-18B30.2* 

CATTTCCAGCTACCCCATAGCACCCTGTGCCACTAAACCT

CTCTGGGGTATGGCTCTTCTTTAGAGAGCTTTCATCCTTT

TCTACTGTCAAG 

T1 VR2 
FWD 

1-18B30.2* 
CTATTGGTCTTGCTTACAAATCAGCTCCAAAGAATGAATG

GATTGGCAAGAACTCTGCTTC 

T1 VR2 
REV 

1-18B30.2* 
GAAGCAGAGTTCTTGCCAATCCATTCATTCTTTGGAGCTG

ATTTGTAAGCAAGACCAATAG 

T1 VR3 
FWD 

1-18B30.2* 

GCGCTCTGCCGCTGCAATAGTAACTTCGTGGTGAGACATA

ACAACAAGGAAATGCTGGTGGATGTGCCCCCACAGCTCCG

GCGCGTG 

T1 VR3 
REV 

1-18B30.2* 

CACGCGCCGGAGCTGTGGGGGCACATCCACCAGCATTTCC

TTGTTGTTATGTCTCACCACGAAGTTACTATTGCAGCGGC

AGAGCGC 

T1 VR4 
FWD 

1-18B30.2* 
CCCACCTTCACGGTGTGGAACAAATCCCTAATGATCTTGT

CTGGCTTGCCTATCCCAGACCATTTG 

T1 VR4 
REV 

1-18B30.2* 
CAAATGGTCTGGGATAGGCAAGCCAGACAAGATCATTAGG

GATTTGTTCCACACCGTGAAGGTGGG 

T18 VR1 
FWD 

18-1B30.2** 

GATTGCAGATGGAGCGTGATGAATCATCATCTAAGAAGAG

TCACACGCCTGAACGCTTCACCAGCCAGGGGAGCTATGGA

GCAGCAGGAAATATATTC 

T18 VR1 
REV 

18-1B30.2** 

GAATATATTTCCTGCTGCTCCATAGCTCCCCTGGCTGGTG

AAGCGTTCAGGCGTGTGACTCTTCTTAGATGATGATTCAT

CACGCTCCATCTGCAATC 

T18 VR2 
FWD 

18-1B30.2** 
CAATTGGCATTGCCTATAAATCAGCCCCGAAGCATGAATG

GATTGGGAAGAATGCCTCC 

T18 VR2 
REV 

18-1B30.2** 
GGAGGCATTCTTCCCAATCCATTCATGCTTCGGGGCTGAT

TTATAGGCAATGCCAATTG 

T18 VR3 
FWD 

18-1B30.2** 

GTCTTCTCTCGCTGCAACAATAACTGGGTGGTGAGACACA

ATAGCAAGGAAATCCCCATTGAGCCTGCTCCCCACCTGAA

GCGTCTG 

T18 VR3 
REV 

18-1B30.2** 

CAGACGCTTCAGGTGGGGAGCAGGCTCAATGGGGATTTCC

TTGCTATTGTGTCTCACCACCCAGTTATTGTTGCAGCGAG

AGAAGAC 
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T18 VR4 
FWD 

18-1B30.2** 
CCAACATTTACAATCTGGAACAAGTGTCTGACGATTATCA

CTGGGCTTCCTGCCCCAGATTTTATTG 

T18 VR4 
REV 

18-1B30.2** 
CAATAAAATCTGGGGCAGGAAGCCCAGTGATAATCGTCAG

ACACTTGTTCCAGATTGTAAATGTTGG 

* Construct A, Section 3.4 

** Construct S, Section 3.4  

 

 

To remove (or add) the C-terminal tail (Section 3.4) 

 

Name Template Sequence (5’-3’) 

+CT FWD agmT18 

CAGAGCAGCTGCCGTGCAACTGCAGGCCTCAAGAATCCCC

TTATGTTTCTGGGATGAAAACCTGTCATTGAACCCAGCTT

TC 

+CT REV agmT18 

GAAAGCTGGGTTCAATGACAGGTTTTCATCCCAGAAACAT

AAGGGGATTCTTGAGGCCTGCAGTTGCACGGCAGCTGCTC

TG 

ΔCT FWD 
agmT1S, 
18-1B30.2* 

CCTGAGCGGCAGGAATAAACCCAGCTTTC 

ΔCT REV 
agmT1S, 
18-1B30.2* 

GAAAGCTGGGTTTATTCCTGCCGCTCAGG 

* Construct S, Section 3.4  

 

 

To substitute position 595 in T1L (or 565 in T18) (Section 3.5) 

 

Name Template Sequence (5’-3’) 
T1L N595n 

FWD 
agmT1L, 
agmT1S 

CAAATCAGCTCCAAAG(NNN)GAATGGATTGGCAAG 

T1L N595n 
REV 

agmT1L, 
agmT1S 

CTTGCCAATCCATTC(NNN)CTTTGGAGCTGATTTG 

T18 
H565N 
FWD 

agmT18 
CTTATAAATCAGCCCCGAAGAATGAATGGATTGGGAAGAA

C 

T18 
H565N 
REV 

agmT18 
GTTCTTCCCAATCCATTCATTCTTCGGGGCTGATTTATAA

G 

 

 

 

 

 



Chapter 7: Appendix 

 

199 

 

To substitute the T18 RBCC domains for those of T1 (Section 3.6) 

 

Name Template Sequence (5’-3’) 
18-1314 R1 

P1 
18-1314* GGGGACAAGTTTGTACAAAAAAGCAGGCTACCATGGAAAC

ACTGGAGTCAGAACTGACCTGTCCAATCTGCCTAGAG 

18-1314 R1 
P2 

agmT1S 
TGATGACATGCCTGCAGGTAGGACACTG 

18-1314 R1 
P3 

agmT1S 
TACCTGCAGGCATGTCATCACCCTCAGC 

18-1314 R1 
P4 

18-1314* 
TTAATGACAGGTTTTCATCCC 

18-1314 B1 
P1 

18-1314* 
CACCATGGAAACACTGGAGTCAG 

18-1314 B1 
P2 

18-1314* 
CAATTCGCTCGGCGGAGGTCATGGTGTTGG 

18-1314 B1 
P3 

agmT1S 
GACCTCCGCCGAGCGAATTGCTTGCCAATTC 

18-1314 B1 
P4 

agmT1S 
GATGATCGCGGTGACGACCCACCAGTTTGC 

18-1314 B1 
P5 

18-1314* 
GGGTCGTCACCGCGATCATCAGGTGGCAGC 

18-1314 B1 
P6 

18-1314* 
TTAATGACAGGTTTTCATCCC 

18-1314 
CC1 P1 

18-1314* 
CACCATGGAAACACTGGAGTCAG 

18-1314 
CC1 P2 

18-1314* 
GATGGTCTCGGTGCCGCCCAACCAGTTTAC 

18-1314 
CC1 P3 

agmT1S 
GTTGGGCGGCACCGAGACCATCAGGTCGCATC 

18-1314 
CC1 P4 

agmT1S 
CATCACCTTCCCCTCTTTGATTTTGACAGCG 

18-1314 
CC1 P5 

18-1314* 
CAAAATCAAAGAGGGGAAGGTGATGAGGCTTCGC 

18-1314 
CC1 P6 

18-1314* 
TTAATGACAGGTTTTCATCCC 

* Construct  A, Section 3.6 
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To put the T18 B-boxes into T1 (Section 3.6) 

 

Name Template Sequence (5’-3’) 
T1-B18 P1 agmT1L, 

agmT1S 
CACCATGGAAACACTGGAGTCTG 

T1-B18 P2 agmT1L, 
agmT1S 

GGACCTTCTCACTAGACATGGCGGTGTTGG 

T1-B18 P3 agmT18 CATGTCTAGTGAGAAGGTCCTCTGCCAG 

T1-B18 P4 agmT18 GATGGTCTCGGTGCCGCCCAACCAGTTTAC 

T1-B18 P5 agmT1L, 
agmT1S 

TGGGCGGCACCGAGACCATCAGGTCGCATC 

T1-B18 P6 agmT1L, 
agmT1S 

TTAATGACAGGTTTTCATCC 

 

 

To add C-terminal HA tags to T1L, T1S and 18-1314 (Section 3.7) 

 

Name Template Sequence (5’-3’) 
T1-HA 
FWD 

agmT1L, 
agmT1S 

CACCATGGAAACACTGGAGTCTG 

18-1314-HA 
FWD 

18-1314* 
CACCATGGAAACACTGGAGTCAG 

HA REV 
agmT1L, 
agmT1S,
18-1314* 

CTAAGCGTAATCTGGAACATCGTATGGGTAATGACAGGTT

TTCATC 

* Construct  A, Section 3.6 
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7.1.2 Primers used in Chapter 4 

To make reciprocal chimeras of agmT1S and rhT5α (Section 4.1) 

 

Name Template Sequence (5’-3’) 

1-5CC P1 agmT1S 
GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGAAACACT

GGAGTCTG 

1-5CC P2 agmT1S GATGCTCCAGCTCTTTGATTTTGACAGCG 

1-5CC P3 rhT5α  AATCAAAGAGCTGGAGCATCGGTTGCAGGG 

1-5CC P4 rhT5α 
GGGGACCACTTTGTACAAGAAAGCTGGGTTCAAGAGCTTG

GTGAGCAC 

5-1CC P1 rhT5α 
GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGCTTCTGG

AATCCTGC 

5-1CC P2 rhT5α  TAACCTTTGTTTCTGAGATGAGCTCTCTC 

5-1CC P3 agmT1S CATCTCAGAAACAAAGGTTATGAAACTGAG 

5-1CC P4 agmT1S 
GGGGACCACTTTGTACAAGAAAGCTGGGTTTAATGACAGG

TTTTCATCC 

1-5B30.2 P1 agmT1S 
GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGAAACACT

GGAGTCTG 

1-5B30.2 P2 agmT1S TCACATCAACTGTTTTTAGTCGGGTAGGTTC 

1-5B30.2 P3 rhT5α ACTAAAAACAGTTGATGTGACACTGGCTAC 

1-5B30.2 P4 rhT5α 
GGGGACCACTTTGTACAAGAAAGCTGGGTTCAAGAGCTTG

GTGAGCAC 

5-1B30.2 P1 rhT5α 
GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGCTTCTGG

AATCCTGC 

5-1B30.2 P2 rhT5α GTTGGCTGTTCCAGTAGCGTCGGGCATCTG 

5-1B30.2 P3 agmT1S ACGCTACTGGAACAGCCAACCCTTTAAATTGG 

5-1B30.2 P4 agmT1S 
GGGGACCACTTTGTACAAGAAAGCTGGGTTTAATGACAGG

TTTTCATCC 

 

To amplify the B30.2 domain for expression in E. coli (Section 4.3) 

 

Name Template Sequence (5’-3’) 
MBP-
B30.2 
FWD 

agmT1S CGTAGAAAGCTTACCCGACTAAAAACAAACAGCC 

MBP-
B30.2 REV 

agmT1S GTTCGACTCGAGTTAATGACAGGTTTTCATCCC 
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7.1.3 Primers used in Chapter 5 

To make deletions in rhT5α (Section 5.1) 

 

Name Template Sequence (5’-3’) 
Δ 259-290 

FWD 
rhT5α GGCATCATTAAAAGGAGAGAGCTAACAG 

Δ 259-290 
REV 

rhT5α CTGTTAGCTCTCTCCTTTTAATGATGCC 

Δ 263-290 
FWD 

rhT5α GGATTGAGAACATGAGAGAGCTAACAG 

Δ 263-290 
REV 

rhT5α CTGTTAGCTCTCTCATGTTCTCAATCC 

Δ 272-290 
FWD 

rhT5α CCAAAAACTTTTCACAGAGAGCTAACAG 

Δ 272-290 
REV 

rhT5α CTGTTAGCTCTCTGTGAAAAGTTTTTGG 

Δ 282-290 
FWD 

rhT5α GTGTTTCGAGCTCCTAGAGAGCTAACAG 

Δ 282-290 
REV 

rhT5α CTGTTAGCTCTCTAGGAGCTCGAAACAC 

Δ 282-285 
FWD 

rhT5α GTGTTTCGAGCTCCTATGCTAGACATG 

Δ 282-285 
REV 

rhT5α CATGTCTAGCATAGGAGCTCGAAACAC 

Δ 286-290 
FWD 

rhT5α CCTGATCTGAAAGGAAGAGAGCTAACAG 

Δ 286-290 
REV 

rhT5α CTGTTAGCTCTCTTCCTTTCAGATCAGG 

Δ 291-295 
FWD 

rhT5α GCTAGACATGTTTGCCCGACGCTACTGG 

Δ 291-295 
REV 

rhT5α CCAGTAGCGTCGGGCAAACATGTCTAGC 

Δ 263-280 
FWD 

rhT5α GGATTGAGAACATGCCTGATCTGAAAGG 

Δ 263-280 
REV 

rhT5α CCTTTCAGATCAGGCATGTTCTCAATCC 

Δ 272-280 
FWD 

rhT5α CCAAAAACTTTTCACCCTGATCTGAAAGG 

Δ 272-280 
REV 

rhT5α CCTTTCAGATCAGGGTGAAAAGTTTTTGG 
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To make insertions in rhT5α (Section 5.2) 

 

Name Template Sequence (5’-3’) 
FRE FWD rhT5α GGAATGCTAGACATGTTTAGAGAGTTTAGAGAGCTAAC 

FRE REV rhT5α GTTAGCTCTCTAAACTCTCTAAACATGTCTAGCATTCC 

FREL 
FWD 

rhT5α 
GGAATGCTAGACATGTTTAGAGAGCTATTTAGAGAGCTAA

C 

FREL REV rhT5α 
GTTAGCTCTCTAAATAGCTCTCTAAACATGTCTAGCATTC

C 

FRELFRL 
FWD 

rhT5α 
GGAATGCTAGACATGTTTAGAGAGCTATTTAGACTATTTA

GAGAGCTAAC 

FRELFRL 
REV 

rhT5α 
GTTAGCTCTCTAAATAGTCTAAATAGCTCTCTAAACATGT

CTAGCATTCC 

 

 

To disrupt helix α5 in T5α (Section 5.3) 

 

Name Template Sequence (5’-3’) 
rhT5α 
L287P 
FWD 

rhT5α GATCTGAAAGGAATGCCAGACATGTTTAGAGAG 

rhT5α 
L287P 
REV 

rhT5α CTCTCTAAACATGTCTGGCATTCCTTTCAGATC 

rhT5α 
L293P 
FWD 

rhT5α GACATGTTTAGAGAGCCAACAGATGCCCGACGC 

rhT5α 
L293P 
REV 

rhT5α GCGTCGGGCATCTGTTGGCTCTCTAAACATGTC 

huT5α 
L285P 
FWD 

huT5α GATCTGAAAGGAATGCCAGAAGTGTTTAGAGAG 

huT5α 
L285P 
REV 

huT5α CTCTCTAAACACTTCTGGCATTCCTTTCAGATC 

huT5α 
L291P 
FWD 

huT5α GAAGTGTTTAGAGAGCCGACAGATGTCCGACGC 

huT5α 
L291P 
REV 

huT5α GCGTCGGACATCTGTCGGCTCTCTAAACACTTC 
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To remove exon 7 (Section 5.5) 

 

Name Template Sequence (5’-3’) 
omTCyp 
Δe7 FWD 

omTCyp CTACAAGTGTTTAAAGACGCCGCCGCCTGG 

omTCyp 
Δe7 REV 

omTCyp CCAGGCGGCGGCGTCTTTAAACACTTGTAG 

rhT5α Δe7 
FWD 

rhT5α GACATGTTTAGAGTTGATGTGACACTGG 

rhT5α Δe7 
REV 

rhT5α CCAGTGTCACATCAACTCTAAACATGTC 

 

 

To mutate residues in the active site of CypA (Section 5.5) 

 

Name Template Sequence (5’-3’) 
CypA 
D66N 
FWD 

T5αCyp* GTGTCAGGGTGGTAACTTCACACGCCATAATG 

CypA 
D66N REV 

T5αCyp* CATTATGGCGTGTGAAGTTACCACCCTGACAC 

CypA 
R69H 
FWD 

T5αCyp* GGTGGTGACTTCACACACCATAATGGCACTGG 

CypA 
R69H REV 

T5αCyp* CCAGTGCCATTATGGTGTGTGAAGTCACCACC 

* An artificial chimera consisting of rhT5α fused to CypA from owl monkey TCyp 

(see Section 5.4) 

 

 

To put the rhesus leader sequence into owl monkey CypA (Section 5.5) 

 

Name Template Sequence (5’-3’) 
Rhesus 
leader 
FWD 

T5αCyp* 
GACGCCGCCGCCGAAGAATCACCAGTACTTCTTGCCATGG

TCAATCC 

Rhesus 
leader 
REV 

T5αCyp* 
GGATTGACCATGGCAAGAAGTACTGGTGATTCTTCGGCGG

CGGCGTC 

* An artificial chimera consisting of rhT5α fused to CypA from owl monkey TCyp 

(see Section 5.4) 
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7.2 Screens used for crystallisation trials 

Below is a list of screens used for crystallisation trials of the T1 B30.2 domain 

(Section 4.3.4).    

 

Screen Company External link 

Anions Qiagen 

https://www.qiagen.com/products/protein/crystal

lization/compositiontables/pdf/1054288_ps_xtal

_anions-suite.pdf  

Classics Qiagen 

https://www.qiagen.com/products/protein/crystal

lization/compositiontables/pdf/1054292_ps_xtal

_classics-suite.pdf  

JCSG Core I Qiagen 
https://www.cicbiogune.es/services/userfiles/JC

SG-Core-I-Suite.pdf  

JCSG Core II Qiagen 
https://www.cicbiogune.es/services/userfiles/JC

SG-Core-II-Suite.pdf  

JCSG Core III Qiagen 
https://www.cicbiogune.es/services/userfiles/JC

SG-Core-III-Suite.pdf  

JCSG Core IV Qiagen 
http://services.mbi.ucla.edu/Crystallization/xtals
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