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Abstract—An information-theoretic projection design framework is proposed, of interest for feature design and compressive

measurements. Both Gaussian and Poisson measurement models are considered. The gradient of a proposed information-theoretic

metric (ITM) is derived, and a gradient-descent algorithm is applied in design; connections are made to the information bottleneck. The

fundamental solution structure of such design is revealed in the case of a Gaussian measurement model and arbitrary input statistics.

This new theoretical result reveals how ITM parameter settings impact the number of needed projection measurements, with this

verified experimentally. The ITM achieves promising results on real data, for both signal recovery and classification.

Index Terms—Information-theoretic metric, information bottleneck, projection design, gradient of mutual information, compressive sensing
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1 INTRODUCTION

DIMENSIONALITY reduction plays a pivotal role in many
machine-learning applications, including compressive

measurements [1] and feature design [2], [3], [4]. Although
there is interest in nonlinear representations [5], linear com-
pressive measurements and feature design are desirable
because they are amenable to theoretical analysis and guar-
antees [6], and such representations can also be readily
implemented experimentally [7]. Linear dimensionality
reduction is achieved by multiplying a signal of interest
with a measurement matrix, and the number of rows of this
matrix defines the number of measurements/features; that
number is ideally small relative to the dimension of the orig-
inal data vector. One typically assumes additive noise in the
measurement, which is often modeled as being Gaussian
[8], [9]. However, there are low-photon-count applications
for which a Gaussian noise model is inappropriate, and a
Poisson measurement model is desired. There are far fewer
theoretical results for the Poisson case.

Among the various criteria for measuring the informa-
tion in a compressive measurement or in feature design,
mutual information is widely used [10], [11], due to its ubiq-
uitous presence as an information loss measure, as well as
its close relationship to Bayesian classification error [12].
Mutual-information-based measurement design for the

Gaussian model has been considered in [8] for signal recov-
ery, and in [4] for classification (feature design). If one
designs compressive measurements based only on a classifi-
cation criterion, the features may be good for an algorithm to
classify, but a human may also wish to look at the underly-
ing data (e.g., a medical scientist may wish to confirm an
algorithm-defined diagnosis), and poor signal recovery
may undermine that objective. It is therefore of interest to
jointly balance the goals of feature design (for classification)
and signal-recovery quality.

In this paper, we propose an information-theoretic metric
(ITM) by balancing two performance metrics linked to the
data. The proposed ITM is able to accommodate non-Gauss-
ian inputs and Poisson measurement noise. Further, we also
consider two types of constraints for the ITM, an energy
and orthonormality constraint (on the characteristics of the
projection vectors), which are widely utilized in many
applications.

Under proper settings of the model, the proposed ITM
is like the information bottleneck (IB) [13], which has
been widely used in various applications, including docu-
ment clustering [14], gene-expression analysis [15], video
search [16], feature design [17] and speech recognition [18],
among many others. The case for which the input signal is
Gaussian and there is Gaussian measurement noise has
been investigated in [19], where an analytic solution of the
IB problem has been revealed.

In situations for which the input signal and/or the mea-
surement is not Gaussian, the mutual information terms
involved in the ITM generally do not possess analytic forms
under almost all common input distributions. A goal of this
paper is to develop numerical algorithms as well as theoreti-
cal results for projection-matrix design under the ITM, for
general Gaussian and Poisson measurement models, for
non-Gaussian input signals. Despite the lack of analytic
mutual information expressions, the gradients of mutual
information for both Gaussian and Poisson measurement
models possess relatively simple forms, which have
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connections to the Minimum Mean Square Error (MMSE)
estimator [8], [20], [21], [22], [23]. Hence, gradient-descent
methods may be adopted to infer a desired measurement
matrix. In the context of compressive sensing, this paper is
believed to be the first for which a balance between signal
recovery and classification is considered.

The ITM setup has a parameter b thatmay be tuned, which
weighs between the classification and signal-recovery objec-
tives. As detailed below, for b < 0 we jointly consider the
goals of classification and recovery; with b ! �1 we opti-
mize only for signal recovery, and when b ¼ 0 we optimize
only for classification. For b > 0 the ITM considers classifica-
tion with a penalty (“bottleneck”) imposed on signal recov-
ery. For b > 0, our new theory demonstrates that larger b

encourages fewer number of linear measurements/features
used in the classifier. This result for b > 0 under the energy
constraint has an interesting waterfilling-like interpretation,
generalizing the mode alignment-scheme in [8], [24] to the IB.
Further, the derived waterfilling-like interpretation for ITM
under the energy constraint is valid for arbitrary sourcemodel
and extends the result in [19].

The ITM under the orthonormality constraint is related to
calculation of volumes on the Stiefel manifold, where the
derivation of an analytical solution is known to be challeng-
ing [25]. We shed light on its analytical solution by postulat-
ing a Gaussian input and Gaussian noise with diagonal
variance as in [19], and a fixed-point-type solution is
derived, for which analytic solutions are realized for
b ! �1 and b ¼ 0. While aspects of this theory is limited
to the case of a Gaussian source, the experiments (numerical
methods) are not.

We demonstrate how the theoretical results may be
used in practice, for projection design or supervised
dimensionality reduction. Specifically, we provide numer-
ical results on several datasets, and compare the perfor-
mance of the proposed ITM to Linear Discriminant
Analysis (LDA) [26], Information Discriminant Analysis
(IDA) [12] and a R�enyi-entropy method [2], [3]. For a
Gaussian measurement model, limiting cases of the ITM
correspond to special cases in [8] and [4], to which we also
compare. For the Poisson measurement model, we apply
the ITM on real measured data from a compressive pho-
ton-counting hyperspectral camera (the measurement sys-
tem in [27]), and demonstrate that designed projection
matrices can yield improved performance on preserving
both signal recovery and classification information, rela-
tive to random measurement design [28].

The remainder of the paper is organized as follows. In
Section 2, we provide a formal definition of the proposed
ITM and related optimization problems of interest. We
derive explicit forms of the gradients of the ITM in
Section 3, and summarize a gradient-based numerical algo-
rithm for the ITM. In Section 4 we present two theorems,
on the solution structure for the ITM under energy and
orthonormality constraints on the measurement matrix,
and we elaborate on the interpretations of these theoretical
results. We present experimental results for the ITM in
Section 5, for both Gaussian and Poisson measurement
models; for the Poisson case, the methods are applied to
real data from a measurement system. Finally, we conclude
the paper in Section 6.

2 INFORMATION-THEORETIC FRAMEWORK FOR

DESIGNED MEASUREMENTS

2.1 Problem Statements

The setup we consider is characterized by the Markov
sequence X ! Y ! ~Y ! X̂. Two types of signal models are
considered. For the first, discrete X 2 f1; . . . ; Lg denotes the
class label, and Y 2 Rn are data conditioned on X. Alterna-
tively, for the second signal model, the discrete X in the
Markov sequence is replaced by a continuous random vari-
able X0 2 Rp, and ðX0; Y Þ are assumed to be jointly Gauss-

ian. ~Y 2 Rm is the compressive form of Y with m � n, and

X̂ is the estimatedX (or X̂0 is the estimatedX0), based on ~Y .
For the first model, pXðX ¼ iÞ ¼ pi, with pi > 0 andPL
i¼1 pi ¼ 1. The random variable Y is modeled as drawn

from a mixture model: PY ¼
PL

i¼1 PXðX ¼ iÞPY jXðY jX ¼ iÞ
¼
PL

i¼1 piPY jXðY jX ¼ iÞ. We consider general conditional

distributions PY jX.

The mapping Y ! ~Y is stochastic, and is here effected
first in terms of the deterministic linear mapping FY , where
F 2 Rm�n is a measurement matrix. For both the Gaussian
and Poisson measurement models that are the focus of this
paper, the m-dimensional signal FY defines the mean of

the mapping Y ! ~Y . Specifically, for the Gaussian measure-
ment channel

P ~Y jY ¼ Nð ~Y ;FY;L�1Þ; (1)

where L 2 Rm�m is the precision of the additive noise in the
Gaussian measurement.

For the Poisson measurement model

P ~Y jY ¼ Poisð ~Y ;FY þ �Þ ¼
Ym
i¼1

Poisð ~Yi; ðFY Þi þ �iÞ; (2)

whereF 2 Rm�n
þ , � 2 Rm

þ is the “dark current,” and Yi repre-
sents component i of vector Y (this subscript notation iden-
tifies vector components throughout the paper). For the
Poisson case we also require that the components of Y are
non-negative. One may view Y 2 Zn

þ as the n-dimensional

Poisson rate of the original signal, and FY is the compres-

sive form of the Poisson rate. In (2), Poisð ~Y ;FY þ �Þ denotes
a vector Poisson distribution, while Poisð ~Yi; ðFY Þi þ �iÞ is
the common scalar Poisson distribution; the form of the dis-
tribution is assumed understood from the context in which
it is used, to not complicate notation.

For the second model discussed above, ðX0; Y Þ are drawn
jointly Gaussian, and therefore Y is not restricted to be non-
negative. Hence, the second model is restricted to the case
in (1), the Gaussian measurement model. If interested in the
Poisson measurement model, Y may be treated as the log of
the Poisson rate.

The proposed ITM is characterized by a linear combina-
tion of mutual information IðX; ~Y Þ and IðY; ~Y Þ; Shannon
entropy with the natural logarithm is considered below.
The ITM setup for defining F is

max
F

ITMðF;bÞ :¼ max
F

IðX; ~Y Þ � bIð ~Y ; Y Þ
� �

; (3)

where b 2 R controls the relative importance of the two
mutual-information metrics.
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We consider two different types of constraints on F. The
first is the energy constraint:

1

m
trðFFT Þ � 1; (4)

where the trace trð�Þ manifests an energy regularization on
the measurement. The second constraint imposes that the
projections are orthonormal:

FFT ¼ Im; (5)

where Im is them�m identity matrix.
In compressive sensing, one often requires that F obey

unit-norm row constrains or, instead, orthonormality con-
straints [12]. For communications applications, one may
desire the energy constraint, requiring the rows have unit-
norm on average [29].

We consider the first signal model (discrete X) unless
otherwise specified, for both the Gaussian and Poisson mea-
surement models. It is assumed that PX and PY jX are known

a priori. However, we do not assume any specific form of
PY jX, thus a general mixture model is considered for Y . On

the other hand, for the second signal model, for which
ðX0; Y Þ are jointly Gaussian, the ITM for the Gaussian mea-
surement model possesses an analytical expression, thereby
enabling a direct optimization and analysis [8], [13].

2.2 Mutual Information Metrics

The mapping Y ! ~Y constitutes the heart of the compres-
sive measurement or linear feature design, and we wish to
design F such that it preserves desired information. The
mutual information is employed as in (3), from two perspec-
tives, which we motivate here.

In [8] the authors considered compressive sensing, and
the goal was to recover Y from ~Y . The measurement model
P ~Y jY was assumed to be Gaussian as in (1), and PY was arbi-

trary. In the experiments in [8], a mixture model was used

for Y : PY ¼
PL

i¼1 PX¼iPY jX¼i; in [8] the focus was not on

recovering X, but rather on estimating Y . In that case the

mutual information of interest is IðY ; ~Y Þ, and the goal is to

designF such that IðY ; ~Y Þ is maximized. This design frame-
work may be justified by noting that it has been shown
recently that [30]

MMSE � 1

2pe
expf2½hðY Þ � Ið ~Y ;Y Þ	g; (6)

where hðY Þ is the differential entropy of Y and MMSE ¼
Eftr½ðY � EðY j ~Y ÞÞðY � EðY j ~Y ÞÞT 	g is the minimum mean-
square error, so that by maximizing mutual information one
may hope to achieve a lower reconstruction error.

For the classification problem considered in [4], the objec-
tive was to recover the class label X from ~Y , and therefore

the goal there was to design F to maximize IðX; ~Y Þ. This is
justified by recalling the Bayesian classification error
Pe ¼

R
P ~Y ð~yÞ½1�maxXPXj ~Y ðxj~yÞ	d~y, and noting that it has

been shown in [31] that

Pe �
1

2
HðXj ~Y Þ; (7)

where HðXj ~Y Þ ¼ HðXÞ � IðX; ~Y Þ, and Hð�Þ denotes the
entropy of a discrete random variable. Since HðXÞ is inde-
pendent of F, minimizing the upper bound to Pe is equiva-

lent to maximizing IðX; ~Y Þ.
There are practical settings for which both signal recovery

and classification are of interest simultaneously, which moti-
vates the proposed ITM in 3 when b � 0. Note that b ¼ 0 cor-
responds to the case that only the classification task is of
interest and b ! �1 optimizes only for the signal recovery.

2.3 Connections to the Information Bottleneck

When b > 0, the proposed ITM is like the IB and the goal is

to recover X from ~Y , but one wishes to constrain the num-
ber of measurements/features m, this defining the
“bottleneck”. In the language of the IB [13], X is the
“relevant” information we principally wish to recover;

Y 2 Rn is the input signal that depends on X, ~Y 2 Rm is the

compressive measurement or representation of Y , and X̂ is

the estimate ofX, based on ~Y . We note, however, that the IB
does not typically impose constraints on F, like we do in (4)
and (5).

Due to different settings in the model, our ITM setup in
(3) differs from the one proposed in [13]. Most importantly,
in [13] b was assumed to be nonnegative, which implies

that the goal is to design F to maximize IðX; ~Y Þ, while

simultaneously minimizing Ið ~Y ; Y Þ; since the maximization

of IðX; ~Y Þ and the minimization of Ið ~Y ; Y Þ does not gener-
ally occur simultaneously for some F, the choice of b

defines the relative importance of these two metrics on the
design of F. In this manner the model effectively seeks a
low-complexity model, which is effective at retaining the
“relevant” information X, while reducing complexity

through simplified ~Y , that may not be effective for recover-
ing Y . Our motivation is expanded beyond cases typically
associated with the IB model, as we will also allow b < 0,
permitting consideration of the case of joint interest in signal
recovery and classification.

In general, one cannot perform the optimization in (3)
analytically, and therefore numerical procedures are
required. Specifically, one must take the gradient of
ITMðF;bÞ with respect to F, for specified choices of b.
While ITMðF;bÞ itself may be difficult to compute, expand-
ing on recent analysis, one may express the gradient of
ITMðF;bÞ in closed form, amenable to optimization algo-
rithms (e.g., gradient descent).

3 GRADIENTS OF THE ITM MODEL

3.1 Explicit Forms for the Gradients

We introduce two theorems on gradients of the ITM, for
both Gaussian and Poisson measurement models. We
always assume the regularity conditions, specifically, that
the order of integration and differentiation can be inter-
changed freely, e.g. the order of the differential operators
@

@Fij
and the expectation operator Eð�Þ may be interchanged.

This assumption is mild and almost always valid in practice
[32].

The following two theorems are straightforward to estab-
lish given results from [4], [20], [21].
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Theorem 1. For the Gaussian measurement model in (1) under
the first signal model, for arbitrary PY jX such that the mixture
distribution PY is consistent with the assumed regularity con-
ditions, the gradient of the ITM rFITMðF;bÞ with respect to
the projection matrix F is given by

rFITMðF;bÞ ¼ LF ~E � bLFE; (8)

where E ¼ E ðY � E½Y j ~Y 	ÞðY � E½Y j ~Y 	ÞT
h i

is the MMSE
matrix, and

~E ¼ E ðE½Y j ~Y ;X	 � E½Y j ~Y 	ÞðE½Y j ~Y ;X	 � E½Y j ~Y 	ÞT
h i

.

Theorem 2. For the Poisson measurement model in (2) under the
first signal model, for arbitrary PY jX such that the mixture dis-
tribution PY is consistent with the assumed regularity condi-
tions, the gradient of the ITM rFITMðF;bÞ with respect to
the projection matrix F is given by

½rFITMðF;bÞij	 ¼ E E½Yjj ~Y ;X	log E½ðFY Þij ~Y ;X	
E½ðFY Þij ~Y 	

" #

� b
�
E Yjlog ððFY ÞiÞ
� �

� E E½Yjj ~Y 	logE½ðFY Þij ~Y 	
� ��

:

(9)

where ð�Þij denotes the ijth entry of the matrix and ð�Þi denotes
the ith entry of the vector.

All theorem proofs are provided in the Appendix. Note
that Theorems 1 and 2 are valid for arbitrary mixture model
for PY provided it satisfies the regularity conditions.

3.2 Gradient-Based Numerical Design

A numerical solution to the optimization in (3) can be real-
ized via a gradient-descent method. The matrices E and ~E
involved in Theorems 1 and 2 can be readily calculated by
Monte Carlo integration; we elaborate on this calculation
when presenting experimental results. The algorithm is
summarized as follows:

1) Initialize F and either set or learn all the input distri-
butions from the training datasets.

2) Use Monte Carlo integration to calculate the gradi-
ent. For Gaussian measurement model, the posteri-
ors PY j ~Y and PY j ~Y ;X possess analytical expressions
when signal Y is assumed to be a Gaussian mixture
model (GMM) [4]. Likewise, these posteriors may be
readily approximated when the signal Y is assumed
to be a log-GMM, and the details are presented in
Section 5.4. Therefore, the calculation of the gra-
dients in Theorems 1 and 2 reduces to calculating the

expectation E½fð ~Y ;XÞ	 of some function f . It can be
approximated via the Monte Carlo integration

E½fð ~Y ;XÞ	 
 1
S

PS
i¼1 fðð~y; xÞiÞ, and fð~y; xÞig, i ¼ 1; . . . ;

S are samples drawn from the distribution P ~Y ;X,

which can be obtained via the well-known Metropo-
lis-Hastings algorithm [33].

3) Update the projection matrix as Fnew ¼ projðFoldþ
drFITMðF;bÞÞ, where d is the step size and projð�Þ
projects the matrix to the feasible set either defined
by the energy constraint in (4) or the orthonormality
constraint in (5), i.e., re-normalize the matrix to sat-
isfy the energy constraint or using Gram-Schmidt

method to ortho-normalize the matrix to satisfy the
orthonormality constraint.

4) Repeat previous step until convergence.
The above procedure (particularly the Monte Carlo inte-

gration) is attractive to implement for the specific forms of
PY jX assumed when presenting experimental results. In

general, the ITM is neither a convex nor a concave function
of F, and therefore we are not guaranteed a global-optimal
solution. In all experiments we have considered the solution
converged to a useful/effective solution from a random
start. When presenting experimental results, we also discuss
how the positivity constraint on F is imposed for the
Poisson measurement model.

4 THEORETICAL ANALYSIS

In the previous section we proposed a numerical algorithm
for design of the measurement matrix F based on the gradi-
ent-descent method, for solving the ITM construction in (3),
with either constraint (4) or (5). We now investigate the the-
oretical characteristics of the solution structure. In [19], an
analytic solution to the unconstrained IB model has been
investigated, under the assumptions that X0 is a continuous
random variable and ðX0; Y Þ are jointly Gaussian (our second
signal model), and a Gaussian measurement model has
been assumed as well; by contrast, for our first signal model,
of principal concern, X is discrete. In this section, we first
present a generalized water-filling-like [34], [35] solution to
the Gaussian measurement model with the energy con-
straint as in (4). Specifically, as in [19] we assume a Gaussian
measurement model, but we consider general statistics for
Y , rather than assuming PY is Gaussian (because X is also
not Gaussian, but is discrete).

Assuming the Gaussian measurement model in (1), we
first define symbols that will be used in the statement of the
theorem. Consider E and ~E as defined in Theorem 1. The
covariance matrices of X, X0, Y , Y jX and Y jX0 are denoted

as SX , S0
X , SY , SY jX and SY jX0 , respectively. Define

E0
b ¼ ~E � bE. Consider the singular value decomposition

for F, and eigenvalue decomposition for E0
b and S ¼ L�1:

F ¼ UFDFV
T
F , E0

b ¼ UE0
b
DE0

b
UT
E0
b
and S ¼ USDSU

T
S , respec-

tively, where UF, VF, UE0
b
and US are m�m, n� n, n� n

and m�m orthonormal matrices, respectively. The eigen-
values in DF and DE0

b
are in descending order. The eigen-

values in DS are in ascending order, and we express

DS ¼ diagðs2
1; . . . ; s

2
mÞ.

Theorem 3. The optimal linear matrix F� for the ITM for the
Gaussian measurement model in (1) under the first signal
model and energy constraint in (4), for arbitrary source
statistics PY , is

F� ¼ U�
FD

�
FV

�T
F ; (10)

where U�
F ¼ US, V �

F ¼ UE0
b

and D�
F ¼ diagð

ffiffiffiffiffi
��
1

p
; . . . ;

�ffiffiffiffiffiffi
��
m

p
Þ; 0	: Define

fiðb; ��
i Þ ¼ s2

i f½UT
E0
b

~EUE0
b
	ii � b½UT

E0
b
EUE0

b
	iig

�1 (11)
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The elements ��
1; . . . ; �

�
m satisfy the following fixed-point solu-

tion:

if 1=h < fiðb; 0Þ; then ��
i ¼ 0;

otherwise ��
i is such that 1=h ¼ fiðb; ��

i Þ;
(12)

where h � 0 is the Lagrange multiplier which ensures the

energy constraints 1
m trðFFT Þ � 1. In particular, if b > 1,

��
i ¼ 0 for i ¼ 1; . . . ;m.

The ITM with the orthonormality constraint under arbi-
trary PY jX can be viewed as a optimization problem related to
calculating volumes on the Stiefel manifold,where the deriva-
tion of an analytical solution is known to be particularly chal-
lenging [25]. Rather than seeking the solution under the first
signal model, we alternatively address the problem with the
second signal model in which ðX0; Y Þ are jointly Gaussian,

and the noise precision matrix is diagonal L ¼ s�1Im with
s > 0. For this case a structural fixed-point type solution is
presented, and analytical solutions when b ¼ 0 and b ! �1
can be readily deduced. We now present a result for the solu-
tion of the ITMunder the orthonormality constraint.

Theorem 4. Assume the second signal model in which ðX0; Y Þ
are jointly Gaussian and the noise precision L ¼ s�1Im with
s > 0. There exists a nonsingular matrix WðFÞ 2 Rm�m

which simultaneously diagonalizes FðSY þ sImÞFT and

FðSY jX0 þ sImÞFT , such that WFðSY þ sImÞFTWT ¼ Im

and WFðSY jX0 þ sImÞFTWT ¼ diagfa1; . . . ;amg. We have

that faigmi¼1 is a collection of m arbitrary eigenvalues out of n

eigenvalues fvigni¼1 of the matrix ðSY þ sImÞ�
1
2ðSY jX0 þ sImÞ

ðSY þ sImÞ�
1
2, whose specific choice of those m eigenvalues

depends on F., i.e., faigmi¼1 ¼ [i2G1ðFÞfvig for some

G1ðFÞ � f1; 2; . . . ; ng depending on F with jG1j ¼ m. Let
UðFÞ 2 Rn�m be constituted by m eigenvectors corresponding
respectively to the eigenvalues faigmi¼1. The optimal orthogonal
linear matrix F� under the orthonormality constraint with
b 2 ð�1; 0Þ satisfies the following fixed-point equation:

F� ¼ W�1ðF�ÞUT ðF�ÞðSY þ sImÞ�
1
2; (13)

and the following optimization:

argmin
F

flog detððWðFÞÞ2Þ � 1

b

X
i2G1ðFÞ

logvig: (14)

When b ¼ 0, the above fixed-point solution admits an ana-
lytic solution that

F� ¼ orthðUT
1 ðSY þ sImÞ�

1
2Þ; (15)

where U1 is constituted by the eigenvectors corresponding to

the smallest m eigenvalues of the matrix ðSY þ sImÞ�
1
2

ðSY jX0 þ sImÞðSY þ sImÞ�
1
2. orthð�Þ denotes an orthonormal

basis of the row space of the argument matrix.
When b ! �1, the above fixed-point solution also admits

an analytic solution that

F� ¼ orthðUT
2 ðSY þ sImÞ�

1
2Þ; (16)

where U2 is constituted by the eigenvectors corresponding to

the smallestm eigenvalues of the matrix ðSY þ sImÞ�1.

4.1 Discussion

Theorems 3 and 4 provide fixed-point type solutions for
the form of F�, under energy and orthonormality con-
straints, respectively. Note that fiðb; ��

i Þ defined in (11) is a
function of F�, and hence so are all f��

i g and all fsig,
through the matrices E and ~E, which are both a function
of the complete F�. Therefore, fiðb; ��

i Þ should be viewed
in (11) as a function of ��

i , with all other parameters associ-
ated with F� at their optimal settings (the fsig are not opti-
mized, but are assumed known characteristics of the
measurement noise). This suggests an iterative solution
for the parameters of F� in (10) under the energy con-
straint. Similarly, an iterative solution is also available for
F� under the orthonormality constraint via (13). In the
below experiments we perform design of F� based on gra-
dient descent (using Theorems 1 and 2), since that
approach is also applicable to the Poisson case we consider
in experiments. The key contribution of Theorem 3 is that
it provides insight into the characteristics of the solution of
the ITM for Gaussian measurements but arbitrary source
statistics PY jX; these insights are consistent with findings

of experimental results in Section 5. Theorem 4 sheds light
on the solution structure of the ITM under the orthonor-
mality constraint, and provides analytic solutions for two
extreme cases where b ¼ 0 and b ! �1.

The values ffiðb; 0Þg correspond to “steps”, and if the
“water level” 1=h is lower than the step level fiðb; 0Þ, then
the corresponding ��

i ¼ 0. When the water level 1=h >

fiðb; 0Þ, the corresponding ��
i 6¼ 0. The non-zero values ��

i

are not the difference 1=h� fiðb; 0Þ, but rather the value �y
i

for which we achieve equality 1=h ¼ fiðb; �y
i Þ.

The results in Theorems 3 and 4 reduce to published
results for special cases. For example, when b ¼ 0 the

problem reduces to the goal of classification based on ~Y ,
without any concern for recovering Y , or on the com-
plexity of F� [4]. In this case fiðb ¼ 0; ��

i Þ is only a func-

tion of the generalized MMSE matrix ~E, and does not
depend on the spectral properties of E, which is explic-
itly tied to reconstruction quality. It can also be demon-
strated that in the limiting case where b ! �1, we
recover the result in [8], which was only concerned with

recovering Y from ~Y .
We now examine what the result in Theorem 3 implies.

First consider the role of si in fiðb; ��
i Þ. The smaller the

noise variance s2
i , the more likely 1=h > fiðb; 0Þ, and

therefore the more likely that the ith eigenvector of the
noise covariance will contribute to utilized U�

F on the left
decomposition of F�. What this says is that F�Y 2 Rm

resides in a linear subspace of Rm spanned by the weak-
est-energy noise eigenvectors (the number of which are
“turned on” depends on the water level 1=h which is con-
nected to the energy constraint). This is expected, as by
utilizing the eigenvectors of S where the additive noise is

weakest to define utilized elements of U�
F,

~Y resides in a
linear subspace where the noise is weakest. This charac-
teristic of the left singular vectors of F� is consistent
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across all designs of for a Gaussian measurement
model [4], [8].

Concerning the right singular vectors of F�, they are
linked to the eigenspectrum of the MMSE matrix E and

the generalized form ~E. For the simplified case of a
Gaussian source PY and a focus only on recovery
b ! �1, this simplifies to the case in [8] for which the
right singular vectors of F� span a linear subspace where
the input signal is largest, corresponding to the principal
components of the source.

We now consider the role of b under the energy con-
straint, which from (3) impacts the care one places in recov-

ery (the degree to which IðY ; ~Y Þ is emphasized). For large

and positive b, large values of IðY ; ~Y Þ are de-emphasized,
implying that the measurement matrix F� should only cap-
ture the most “relevant” information about the label X, but
the “complexity” of F� should be as little as possible. This
was discussed in [19] heuristically for a Gaussian source,
where here we extend to arbitrary input statistics PY jX, and

we make the heuristic reasoning explicit. Note that as b

becomes more positive, more indices i are likely to satisfy

the inequality h > 1
s2
i

f½UT
E0
b

~EUE0
b
	ii � b½UT

E0
b
EUE0

b
	iig, which

means that the associated ��
i ¼ 0. This demonstrates explic-

itly that with increasing b the notion of reducing the com-
plexity of F� means that its rank is diminished; we
emphasize and demonstrate below that this defines the
number of needed measurements m. A reduced rank of F�

implies that fewer measurements (features) are used,
because the number of measurements may be set to the
rank. Hence, for increasing b > 0 the “bottleneck” in the
ITM is the number of features/measurements used for
classification.

While Theorem 3 is only for a Gaussian measurement
model, we observed the same phenomenon with respect to
b for the Poisson measurement model. Specifically, we
observed that increasing b favors lower-rank F�, even in the
Poisson case (detailed in Section 5.4).

According to Theorem 4, the optimal orthogonal projec-
tion is applied to the input signal Y via the following three
steps. First, Y is multiplied by a covariance matrix

ðSY þ sImÞ�
1
2, and signal Y is transformed in the way that

the variance of noise S is incorporated. The second step,
where an essential compression occurs, is that the trans-

formed signal is then mapped via UT to the eigenspaces

spanned by m eigenvectors of ðSY þ sImÞ�
1
2ðSY jX0 þ sImÞ

ðSY þ sImÞ�
1
2, and the specific choice of suchm eigenvectors

is manifested via the optimization in (14). Finally, an invert-

ible transform W�1 is applied to form an orthonormal basis
of the compressedm-dimensional space.

Since F is naturally required to be full-rank, the range of
b under the orthonormality constraint is confined as
b 2 ð�1; 0	. When b ! �1, the ITM is simplified to the
case where pure signal recovery is considered, and b ¼ 0
corresponds to the pure classification problem. As we
observe from the analytic expressions presented in Theorem
4, in the former extreme case, the m-dimensional eigen-
matrix U2 solely depends on the signal variance SY itself,
whereas in the latter case, the conditional variance SY jX0

plays a role in the matrix U1.

5 EXPERIMENTS

5.1 Summary of the Proposed Algorithms

The experiments considered below are performed in the
context of the first model discussed in Section 2.1 (discrete
X). There are three steps associated with implementing the
above methods in the subsequent experiments:

1) Learn PY jX and PY , based on available training data.
The X corresponds to the class label in the examples
considered. The distribution PY jX is modeled as a

GMM, and the GMM parameters are learned using
the EM algorithm based on training data, as in [36].
There is a discrete probability distribution on X
(probability of each data class), and therefore PY is
also a GMM (discussed further below).

2) Given the learned signal statistics, design the optimal
projectionF via the algorithmdescribed in Section 3.2.

3) In the testing phase, we test the accuracy of the esti-
mated X̂ and/or Ŷ , based on the designedF. To esti-

mate X̂ and/or Ŷ , we use the GMM signal model

from Step 1. To estimate Ŷ , we use the same analytic
CS inversion method as introduced in [36]. When

estimating X̂, we maximize PXjY (which can be

expressed analytically, given the signal model).
Providing further details, in our experiments for the

Gaussian measurement model, we impose the GMM

PY jX¼i ¼
PLðiÞ

j¼1 n
ðiÞ
j NðmðiÞ

j ;S
ðiÞ
j Þ, meaning that the distribution

of Y for each discrete X is a GMM. Further, PY , with
the class label summed out is also a GMM: PY ¼PL

i¼1 PY jX¼iPX¼i ¼
PL

i¼1

PLðiÞ
j¼1 pin

ðiÞ
j NðmðiÞ

j ;S
ðiÞ
j Þ, where n

ðiÞ
j ,

j ¼ 1; . . . ; LðiÞ are the GMM coefficients within class i. m
ðiÞ
j

and S
ðiÞ
j , j ¼ 1; . . . ; LðiÞ are the means and covariance matri-

ces of the respective LðiÞ Gaussian components. As detailed
in [4], [36], the GMM parameters may be readily learned
based on training data.

In addition to being easily sampled, the GMM has the
advantage of an analytic posterior PY j ~Y , which is also a

GMM [36], specifically PY j ~Y ¼
PL

i¼1 ~piPY j ~Y ;X¼i, with analytic

expressions for f~pig and PY j ~Y ;X¼i (see [36] for details on

these GMM expressions). This posterior naturally induces
an analytical Bayesian classifier maxiPX¼ij ~Y , where

PX¼ij ~Y ¼ ~pi, and an analytical MMSE estimator Ŷ for the

input signal Y , Ŷ :¼ E½Y j ~Y 	 ¼
PL

i¼1 ~pi

PLðiÞ
j¼1 ~n

ðiÞ
j ~m

ðiÞ
j .

5.2 Related Methods

IDA [12] and LDA [26] are two popular information-theo-
retic supervised dimensionality reduction algorithms, and
they both are derived for a mixture model for Y , across the

L classes, i.e., PY ¼
PL

i¼1 piNðmi;SiÞ (LDA and IDA assume
a single Gaussian per class). LDA aims to simultaneously
maximize between-class features and minimize the scatter

of the projected data within each class. Let mY ¼
PL

i¼1 pimi

denote the mean of Y , SY ¼
PL

i¼1 piðSi þ ðmi � mY Þðmi �
mY ÞT Þ represents the covariance of Y , and L is the precision
matrix of the Gaussian noise. The information-theoretic cri-

terion ILDAðX; ~Y Þ is
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ILDAðX; ~Y Þ ¼ 1

2
log

 
ð2peÞm detðFSYF

T þ L�1ÞÞ

� 1

2
log ðð2peÞm det

 
F

 XL
i¼1

piSi

!
FT þ L�1

!!
;

(17)

The optimal solution maximizing ILDAðX; ~Y Þ is available
analytically [26].

IDA seeks to maximize mutual information IðX; ~Y Þ
directly, which can be expressed as IIDAðX; ~Y Þ ¼ hð ~Y Þ �
hð ~Y jXÞ, where hð�Þ is the differential entropy, and

hð ~Y jXÞ ¼ 1
2

PL
i¼1 pi log ðð2peÞm detðFSiF

T þ L�1ÞÞ: In order

to calculate hð ~Y Þ, IDA imposes a Gaussian approximation,
with learned covariance SY . Hence, under this approxima-

tion, hð ~Y Þ ¼ 1
2 log ðð2peÞ

m detðFSYF
T þ L�1ÞÞ. The maximi-

zation on IIDAðX; ~Y Þ can be carried out by the gradient
descent method [12].

Making a connection to the proposed ITM framework
in (3), consider the case b ¼ 0, for which we are only
interested in classification. Further, assume only a single
Gaussian (not a GMM) per class X. In this case the ITM
reduces to the IDA criterion. Hence, in the limit b ! 0,
the difference between our ITM and IDA is that in ITM
we employ a GMM per class X. Of course, the ITM also
extends to cases b 6¼ 0.

In order to apply LDA and IDA, we must convert the

model PY jX¼i ¼
PLðiÞ

j¼1 n
ðiÞ
j NðmðiÞ

j ;S
ðiÞ
j Þ used in our projection

design to a form that LDA and IDA may employ (single
Gaussian per class). We use the overall mean and covari-
ance for class X ¼ i as the associated parameters of the
class-i Gaussian model. While this simplified model is used
in LDA and IDA design , classification and signal recovery
with the F so learned are performed using the full mixture

model, with PY jX¼i ¼
PLðiÞ

j¼1 n
ðiÞ
j NðmðiÞ

j ;S
ðiÞ
j Þ. Therefore, all

algorithms studied here use the same model for classifica-
tion and for estimation of Y , and the only difference is mani-
fested in how F is learned. A similar LDA and IDA design
and test procedure was employed in [4].

We also consider the information-theoretic supervised
dimensionality reduction method proposed in [2], [3].
Instead of using the Shannon entropy, they used quadratic
R�enyi entropy to define the mutual information as

IT ðX; ~Y Þ ¼
XL
i¼1

Z
ðP ~Y¼y;X¼i � P ~Y¼yPX¼iÞ2dy: (18)

The derivative of the quadratic R�enyi mutual information
can be expressed analytically for the GMM signal [2], [3].

5.3 Satellite and USPS Data

For the Gaussian measurement model in (1), we conduct
experiments on the satellite and USPS datasets. Both data-
sets are available online and have been used in [4], [12]. The
satellite dataset contains 36-dimensional feature vectors of
satellite data, comprised of pixel values of a 3� 3 neighbor-
hood in 4 spectral channels. The six class labels for the cen-
tral pixel are real soil, cotton crop, grey soil, damp grey soil,
soil with vegetation stubble, and very damp grey soil. The
training set contains 4,435 samples, and the testing set con-
tains 2,000 samples. The USPS data contains grey scale
images of dimension 256 for handwritten ten single-digits.
There are 7;291 training samples and 2;007 testing samples.

As stated above, the parameters of the GMM are learned
via the EM algorithm. Unless otherwise stated, we consider

LðiÞ ¼ 5 mixture components for each class; similar results

were found for LðiÞ ¼ 1 and LðiÞ ¼ 10. The noise covariance

matrix S is set to be 10�6Im, where Im is the m�m identity
matrix (we are essentially doing feature learning in this
application, as in [4]). When performing the Monte Carlo
integrations, 500 samples were applied to calculate E and
~E. The performance of the gradient descent algorithm can
be significantly affected by the choice of step size, and
smaller step size usually leads to a better performance but a
slower convergence rate. For these two datasets, we find
that a good trade-off between speed and performance is
achieved when the step size is chosen between 0:1 to

1 percent of the trðFFT Þ, and we use 500 gradient iterations
in the experiments on these two datasets. We compare per-
formance of the proposed ITM under various settings of b
to the LDA, IDA and R�enyi methods.

In Tables 1, 2, 3 and 4, we present respectively classifica-
tion accuracy and fractional error for signal recovery on the
Satellite data under the energy and orthonormality con-
straints with LðiÞ ¼ 5, where the fractional error is defined

as
kŶ�Y k22
kY k22

, where Ŷ is the estimate of Y . As explained in the

previous section, the pure classification and pure signal
recovery cases correspond to b ¼ 0 and b ¼ �1;000, respec-
tively (values of b < �1;000 yielded almost identical res-
ults, indicating that this approached the asymptotic limit).

We also present classification accuracy and fractional
error for signal recovery on the Satellite data under the
energy constraint with LðiÞ ¼ 1 in Tables 5 and 6. The results
under orthonormality constraint are similar, and are omit-
ted for brevity.

Under both the energy and orthonormality constraints, it
can be easily observed that the advantage of the ITM for
joint classification and recovery comes from b < 0, when

TABLE 1
Classification Accuracy on the Satellite Datasets under the Energy Constraint with LðiÞ ¼ 5

m IDA LDA R�enyi PC PSR b ¼ �10 b ¼ �5 b ¼ �2 b ¼ �1:5 b ¼ �1 b ¼ �0:5

1 0:4940 0:6325 0:6213 0:6455 0:4835 0:4815 0:4840 0:4860 0:4865 0:4890 0:4935
2 0:8190 0:7925 0:8012 0:8295 0:8230 0:8270 0:8265 0:8275 0:8260 0:8262 0:8265
3 0:8565 0:8535 0:8551 0:8600 0:8400 0:8415 0:8440 0:8450 0:8545 0:8550 0:8575
4 0:8675 0:8560 0:8610 0:8695 0:8525 0:8545 0:8620 0:8625 0:8620 0:8675 0:8690
5 0:8685 0:8640 0:8655 0:8680 0:8650 0:8660 0:8675 0:8685 0:8690 0:8685 0:8695

PC and PSR stand for pure classification (as in [4]) and pure signal recovery (as in [8]), which correspond to the case b ¼ 0 and b ¼ �1;000, respectively.
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one can balance the goals of signal classification (Tables 1, 3
and 5) and recovery (Tables 2, 4 and 6). For m ¼ 1, it seems
that the classification performance is less sensitive to the
tuning of b. Note that for b ¼ �0:5 and for number of meas-
urementsm � 2, the ITM classification accuracy is almost as
good as the pure-classification case (b ¼ 0 and [4]), and bet-
ter than LDA, IDA and R�enyi method). However, there is a
marked gain in recovery accuracy versus these three

alternatives, as indicated in Tables 2, 4 and 6. Such a
designed F has the significant advantage of excellent recov-
ery and classification simultaneously.

When b > 0, ITM considers pure classification, and
increasing b further penalizes signal recovery (b > 0 seeks
the fewest number of classification features). More specifi-
cally, the rank of the projection matrix is controlled by the
value of b > 0, as suggested by Theorem 3. In order to

TABLE 2
Fractional Error of the Signal Recovery on the Satellite Datasets with Various Values of b under the Energy Constraint LðiÞ ¼ 5

m IDA LDA R�enyi PC PSR b ¼ �10 b ¼ �5 b ¼ �2 b ¼ �1:5 b ¼ �1 b ¼ �0:5

1 2:2632 2:5170 2:3270 2:3882 2:2552 2:2588 2:2608 2:2704 2:2761 2:2903 2:3334
2 0:6451 1:9027 0:6761 0:5558 0:5337 0:5341 0:5377 0:5430 0:5449 0:5482 0:5524
3 0:6244 0:6876 0:6512 0:5233 0:4250 0:4216 0:4311 0:4400 0:4501 0:4604 0:4897
4 0:5143 0:5975 0:5170 0:4718 0:3204 0:3271 0:3275 0:3285 0:3290 0:3298 0:3320
5 0:4871 0:5813 0:5042 0:3889 0:2903 0:2909 0:2919 0:2930 0:2929 0:2913 0:2989

TABLE 3
Classification Accuracy on the Satellite Datasets under the Orthonormality Constraint with LðiÞ ¼ 5

m IDA LDA R�enyi PC PSR b ¼ �10 b ¼ �5 b ¼ �2 b ¼ �1:5 b ¼ �1 b ¼ �0:5

1 0:4840 0:5385 0:5211 0:5940 0:4785 0:4805 0:4810 0:4835 0:4860 0:4935 0:4900
2 0:8240 0:7760 0:7904 0:8290 0:7990 0:8050 0:8070 0:8080 0:8095 0:8125 0:8255
3 0:8480 0:8500 0:8502 0:8525 0:8235 0:8280 0:8300 0:8315 0:8420 0:8465 0:8480
4 0:8680 0:8575 0:8619 0:8710 0:8610 0:8615 0:8620 0:8635 0:8640 0:8655 0:8695
5 0:8720 0:8620 0:8683 0:8725 0:8670 0:8635 0:8645 0:8675 0:8675 0:8715 0:8795

PC and PSR stand for pure classification (as in [4]) and pure signal recovery (as in [8]), which correspond to the case b ¼ 0 and b ¼ �1;000, respectively.

TABLE 4
Fractional Error of Signal Recovery on the Satellite Datasets with Various Values of b under the Orthonormality Constraint with

LðiÞ ¼ 5

m IDA LDA R�enyi PC PSR b ¼ �10 b ¼ �5 b ¼ �2 b ¼ �1:5 b ¼ �1 b ¼ �0:5

1 2:3318 3:7341 2:8723 2:4284 2:2841 2:2847 2:2852 2:2896 2:2949 2:3071 2:3356
2 0:6811 1:4982 0:7497 0:6846 0:6240 0:6286 0:6365 0:6439 0:6510 0:6684 0:6773
3 0:6524 0:6111 0:6237 0:5499 0:4906 0:4976 0:4993 0:5004 0:4993 0:5203 0:5287
4 0:5343 0:5393 0:5562 0:4504 0:3617 0:3633 0:3632 0:3782 0:3797 0:3863 0:3894
5 0:4284 0:5228 0:4342 0:3883 0:2906 0:2901 0:2909 0:2987 0:2983 0:3006 0:3079

TABLE 5
Classification Accuracy on the Satellite Datasets under the Energy Constraint with LðiÞ ¼ 1

m IDA LDA R�enyi PC PSR b ¼ �10 b ¼ �5 b ¼ �2 b ¼ �1:5 b ¼ �1 b ¼ �0:5

1 0:4515 0:5822 0:5835 0:6315 0:4592 0:4614 0:4620 0:4625 0:4633 0:4645 0:4690
2 0:7918 0:7714 0:7892 0:8083 0:7995 0:8014 0:8025 0:8033 0:8045 0:8053 0:8071
3 0:8218 0:8227 0:8220 0:8412 0:8294 0:8304 0:8314 0:8325 0:8333 0:8345 0:8352
4 0:8282 0:8301 0:8293 0:8514 0:8383 0:8403 0:8416 0:8422 0:8438 0:8450 0:8463
5 0:8323 0:8338 0:8319 0:8592 0:8321 0:8330 0:8346 0:8359 0:8366 0:8375 0:8389

PC and PSR stand for pure classification (as in [4]) and pure signal recovery (as in [8]), which correspond to the case b ¼ 0 and b ¼ �1;000, respectively.

TABLE 6
Fractional Error of the Signal Recovery on the Satellite Datasets with Various Values of b under the Energy Constraint with LðiÞ ¼ 1

m IDA LDA R�enyi PC PSR b ¼ �10 b ¼ �5 b ¼ �2 b ¼ �1:5 b ¼ �1 b ¼ �0:5

1 2:3812 2:4131 2:3911 2:3982 2:3452 2:3481 2:3542 2:3601 2:3663 2:3722 2:3783
2 0:6812 2:1396 0:7821 0:5912 0:5512 0:5541 0:5617 0:5680 0:5712 0:5753 0:5812
3 0:6512 0:7123 0:7029 0:5612 0:4325 0:4416 0:4443 0:4480 0:4513 0:4652 0:4712
4 0:6125 0:6240 0:6284 0:5016 0:3641 0:3671 0:3718 0:3807 0:3893 0:3984 0:4012
5 0:5471 0:5618 0:5345 0:4234 0:3121 0:3292 0:3378 0:3406 0:3484 0:3581 0:3691
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verify the theoretical result, we set m ¼ n, i.e., F 2 Rn�n.
Note that in our experiments, F is non-zero for any b, since

we implement the energy constraint as 1
m trðFFT Þ ¼ 1 in all

the experiments.
In order to calculate an approximate rank, we thresh-

old the singular values of the numerically obtained pro-
jection matrix at 10 percent of the largest singular value
(because of the numerics, F� is not exactly low-rank, as
stipulated in Theorem 3). In order to obtain the rank-
reduced F� 2 Rr�n, one may truncate F� to be in Rr�n,
by taking any r linearly independent rows and normaliz-

ing to satisfy the energy constraint on traceðF�ðF�ÞT Þ. In

Table 7, we list the rank and classification performances
under various values of b.

The rank-controlling property of the ITM, for b > 0, has
important practical importance and b > 0 defines the num-
ber of measurements needed, an important output of the
ITM setup. The performance of the original F� 2 Rn�n and
the rank-reduced and renormalized F� 2 Rr�n were virtu-
ally identical, for signal classification.

We next consider the USPS dataset. In Figs. 1 and 2
we show signal classification and recovery results under
the energy and orthonormality constraints, for the same
cases as considered in the above tabular results, as a
function of b < 0, but for a larger range of measure-
ments m. We observe that for classification under both
constraints, quantified in Figs. 1a and 2a, IDA performs
poorly and the performance of ITM gradually grows
with increase of b, with the best result achieved under
b ¼ 0 (which corresponds to [4]). However, the b ¼ 0
case yields poor signal recovery for both cases (Figs. 1b
and 2b), and LDA and IDA yield particularly poor recov-
ery results. The results for the R�enyi method are similar
to IDA, and are omitted for brevity. Part of the reason
for the poor performance of IDA in the classification case
may be due to the fact that IDA approximates the mutual

information IðX; ~Y Þ up to second-order statistics, which
does not work well on the USPS datasets. Again, for

TABLE 7
Classification and Rank under Various Values

of b on the Satellite Datasets

b Rank CA CA (rank-reduced)

100 1 0.6343 0.6311
50 2 0.8139 0.8083
10 4 0.8642 0.8622
1 9 0.9012 0.8981

CA stands for classification accuracy.

Fig. 1. Classification accuracy and fractional error for signal recovery on
the USPS datasets under the energy constaint. (a) The classification
accuracy under various values of b. (b) The fractional error of signal
recovery under various values of b. In (b), the same symbol identifica-
tions are used as in (a).

Fig. 2. Classification accuracy and fractional error for signal recovery on
the USPS datasets under the orthonormality constraint. (a) The classifi-
cation accuracy under various values of b. (b) The fractional error of sig-
nal recovery under various values of b. In (b), the same symbol
identifications are used as in (a).
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b ¼ �0:5, the ITM setup yields a good balance between
recovery and classification.

For the USPS data, we consider b > 0 in Table 8. We
again observe the rank-controlling property of b > 0, this
defining the number of measurements/features for classifi-
cation, with recovery penalized.

5.4 Poisson Compressive Hyperspectral Camera

We consider a compressive chemical sensing system based
on the wavelength-dependent signature of chemicals, at
optical frequencies. The details of the measurement system
are provided in [27]. Summarizing briefly, multi-wave-
length (hyperspectral) photons are scattered off a sample,
and a digital mirror microdevice (DMD) is used to perform
binary linear projections (binary projections on the fre-
quency-dependent signature). For our purposes the key
points are that the data are Poisson, as in (2) and the ele-
ments of the measurement matrix F are either 1 or 0. Nei-
ther [8] nor [4] considered the Poisson measurement model.

Assume that there are T chemicals of interest, and that
the hyperspectral sensor performs measurements at n
wavelengths. The observed data are represented
~Y jX  Poisð ~Y ;FðC expðZXÞ þ �ÞÞ, where Y ¼ C expðZXÞ,
ZX 2 RT is conditioned on label X, ~Y 2 Zn

þ represents the

count of photons at the n sensor wavelengths, � 2 Rn
þ repre-

sents the sensor dark current, and the t-th column of

C 2 Rn�T
þ reflects the mean Poisson rate for chemical t. The

expression expðZXÞ denotes a pointwise exponentiation of
ZX , and ZX is drawn from a GMM. One Gaussian per chem-
ical was sufficient.

This signal model corresponds to Poisson factor analysis
[37], where C are the factor loadings and expðZXÞ are the
factor scores; we have also added a dark current. We here
consider T factors, as there are T chemicals, but this is not
necessary. Methods like those discussed in [37] may be
used to learn the model. The measurements for this study
were performed in our laboratory, and will be made avail-
able for others to experiment with.

The measurement matrix, which controls the states of the
micro-mirrors, is binary, i.e., F 2 f0; 1gm�n. Instead of
directly optimizing F, we put a logistic link on each value
Fij ¼ logitðMijÞ. By the chain rule, we can state the gradient
with respect to M as: ½rMIBðFðMÞ;bÞij	 ¼ ½rFIBðF;bÞij	
½rMFij	. Matrix M was initialized at random, and we
threshold the logistic at 0.5 to get the final binary F. 100
Monte Carlo samples are used to calculate the MMSE
matrix. 1;000 iterations of the gradient-descent have been
used. Ten (T ¼ 10) chemicals are considered in this test: ace-
tone, acetonitrile, benzene, dimethylacetamide, dioxane,

ethanol, hexane, methylcyclohexane, octane, and toluene. A
Bayesian classifier maxiPX¼ij ~Y and MMSE estimator

~Y ¼ E½Y j ~Y 	 are readily employed for classification and sig-
nal recovery problems, respectively, and they can be calcu-
lated as follow.

The posterior of the class labelX can be expressed as

PX¼ij ~Y ¼
P ~Y jX¼iPX¼iR
X P ~YjX¼iPX

¼
P ~Y jX¼iPX¼iPT
j¼1 P ~YjX¼jPX¼j

; (19)

where P ~Y jX¼i ¼
R
Z Poisð ~Y ;FðC expðZÞ þ �ÞÞN ðZ;mi;L

�1
i Þ,

which can be readily calculated via Monte Carlo integration.
In order to calculate the posterior PY j ~Y , we employ the

Laplace approximation [33]. More specifically, each mixture

component in the prior ZX 
PT

i¼1 piNðmi;L
�1
i Þ may be

viewed as a model for the observed data, and pi represents
the probability of model i. Using the Poisson likelihood
function PoisðFðC expðZXÞ þ �ÞÞ, we may apply a Laplace
approximation for the posterior of ZX for model/mixture
component i. Via the Laplace approximation, we update

each mixture-component prior Nðmi;L
�1
i Þ to a Laplace-

approximated posterior. This is done for each mixture com-
ponent i 2 f1; . . . ; Lg, and the model evidence is employed
for the updated/posterior mixture probabilities. The overall

TABLE 8
Classification and Rank under Various Values

of b on the USPS Datasets

b Rank CA CA (rank-reduced)

500 1 0.3416 0.3410
400 2 0.4129 0.4092
100 6 0.8812 0.8821
50 11 0.9131 0.9119

CA stands for classification accuracy.

Fig. 3. Classification accuracy and fractional error for signal recovery on
the chemical sensing dataset. (a) The classification accuracy under vari-
ous values of b. (b) The fractional error of signal recovery under various
values of b. In (b), the same symbol identifications are used as in (a).
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posterior on ZX is an updated Gaussian mixture model, and
the MMSE estimator is the mean of the updated Gaussian
mixture model.

In Fig. 3 we present the average performances of classifi-
cation and signal recovery under various settings of b (we
learn a signal model based on measured training data, and
that model is used with different b for design of F); 10
experiments were performed for each case, and the error
bars were tight (omitted for simplity, and to not clutter the
figures). The b ¼ 0 results are best for classification (subfig-
ure (a)) and b ¼ �1000 is best for recovery (subfigure (b)).
Random design performs poorly (probability of 1/0 in F set
at 0.5). As in the previous examples, by setting b ¼ �0:5, we
achieve a good balance between classification and recovery
performance (here recovery of the factor score).

In Table 9, we summarize design results when b > 0
where we set m ¼ n, and via the rank infer the number of
needed measurements r (in this case we are only interested
in classification, and b controls the number of measure-
ments). It is observed that the rank of the projection is
manipulated by the value of b, which is similar to the
Gaussian case.

6 CONCLUSIONS

We have developed an information-theoretic metric (ITM)
for linear dimensionality reduction. Gradients of the ITM
have been derived for Gaussian and Poisson measurement
models. Two types of constraints have been considered and
the structure of the optimal linear projections have been
derived explicitly for the Gaussian-measurement case. It
has been shown that the proposed ITM is able to preserve
simultaneously the information for signal recovery and clas-
sification when ITM parameter b < 0, and for b > 0 one
can control the number of measurements for classification
(number of linear features).

APPENDIX A
APPENDIX: PROOFS OF THEOREMS

Proof of Theorems 1 and 2. These two theorems directly
follow from gradient results in [4], [20], [21], [32]. Note
that

rFITCðF;bÞ ¼ rFIðX; ~Y Þ � brFIðY ; ~Y Þ: (20)

For Gaussian measurement model, by [4], we have that

rFIðX; ~Y Þ ¼ LF ~E; (21)

where

~E ¼ E ðE½Y j ~Y ;X	 � E½Y j ~Y 	ÞðE½Y j ~Y ;X	 � E½Y j ~Y 	ÞT
h i

.

By [20], [32],

rFIðY ; ~Y Þ ¼ LFE; (22)

where E ¼ E ðY � E½Y j ~Y 	ÞðY � E½Y j ~Y 	ÞT
h i

. Combining

those two equalities, we have Theorem 1.

Similarly, for Poisson measurement model, by [21], we
have that

rFIðX; ~Y Þ ¼ E E½Yjj ~Y ;X	log E½ðFY Þij ~Y ;X	
E½ðFY Þij ~Y 	

" #
; (23)

and

rFIðY ; ~Y Þ;
¼ E Yj log ððFY ÞiÞ

� �
� E E½Yjj ~Y 	 logE½ðFY Þij ~Y 	

� �
:

(24)

Combining those two equalities, we have Theorem 2. tu

Proof of Theorem 3. Consider the Karush-Kuhn-Tucker
(KKT) condition of ITM, the optimal F� should satisfy
the follow conditions:

rF ITMðF;bÞ þ h � ð1� 1

m
trðFFT ÞÞ

�� 				
F¼F�

¼ 0; (25)

h � ð1� 1

m
trðF�F�T ÞÞ ¼ 0; (26)

where h � 0 is the Lagrange multiplier. By Theorem 1,
we have

2

m
F� ¼ LF�E

0�
b ; (27)

2

m
F�F�T ¼ LðF�E

0�
b F

�T Þ: (28)

By taking a transpose on both sides of (27), we obtain
2
mF�T ¼ E

0�
b F

�TL, and thus L and F�E
0�
b F

�T are commut-

able. By [38], two symmetric matrices are commutable if
and only if they are simultaneously diagonalizable.
Therefore we have

U�
F ¼ ULP

�
U ¼ USP

�
U ; (29)

V �
F ¼ U�

E
0�
b

P�
V ; (30)

where the optimal orthogonal matrices P�
U and P�

V

leverage the effect of reordering among the associated
eigenvalues. Since we have ordered the eigenvalues of

S and E
0�
b , without loss of generality, we may assume

that P�
U ¼ Im and P�

V ¼ In. It is straightforward to ver-
ify that our analysis still holds with non-identity P�

U

and P�
V .

Notice that ITMðF;bÞ and the energy constraint is
invariant under arbitrary orthogonal transformation on

the measurement ~Y . We apply the orthogonal transform

S1=2UT
S on ~Y and obtain the equivalent Gaussian

TABLE 9
Classification and Rank under Various Values

of b on the Chemical-Sensing Dataset

b Rank CA CA (rank-reduced)

1 1 0.6771 0.6766
0.9 4 0.8664 0.8583
0.7 8 0.9012 0.8931
0.5 9 0.9411 0.9373

CA stands for classification accuracy.

1160 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 6, JUNE 2017



measurement model

~Y 0 ¼ S1=2DFV
T
F Y þW 0; (31)

where W 0  N ð0; ImÞ. Hence the original ITM problem is
equivalent to the following optimization problem:

max
f�1;...;�mg

IðX; ~Y
0 Þ � bIðY ; ~Y

0 Þ

s.t.
Xm
i

�i � m and �i � 0; i ¼ 1; . . . ;m;
(32)

where f�1; . . . ; �mg ¼ DiagðDÞ :¼ DiagðDFD
T
FÞ. LðDÞ is

the Lagrangian

LðD; h; hiÞ ¼

IðX; ~Y
0 Þ � bIðY ; ~Y

0 Þ þ h �
 
m�

Xm
i

�i

!
þ
Xm
i

hi�i:
(33)

where h; hi � 0 are the Lagrange multipliers. By the
result in [29], we have

@ IðX; ~Y
0 Þ � bIðY ; ~Y

0 Þ

 �

@D
¼ Diagð~LD�1

S Þ; (34)

where ~L ¼ UT
E

0
b

E
0
bUE

0
b
. Apply the KKT condition

@LðD;h;hiÞ
@D ¼ 0, we obtain that the optimal eigenvalues

f��
i g

m
i¼1 should satisfy the following fixed point equation

hðDSÞi � ð~LÞi ¼ hiðDSÞi; (35)

where ðÞi denotes the ith diagonal element and ð~LÞi is the
fi as defined in the statement of the theorem.

By complementary slackness of KKT condition, if
��
i > 0, then hi ¼ 0. Hence, we may conclude that h > 0.

Therefore, in this case, we obtain ��
i ¼ �y

i , where �y
i is a

positive solution of the equation hðDSÞi ¼ ð~LÞi. We note

ð~LÞi is a function of �i.
On the other hands, if hðDSÞi ¼ ð~LÞi does not possess

a positive solution of �i, then hi > 0. Therefore, we must

have ��
i ¼ 0 and hðDSÞi � ð~LÞi ¼ hiðDSÞi > 0. Thus we

derive the condition hðDSÞi > ð~LÞi.
We now consider the case when b > 1. Notice that

X ! Y ! ~Y forms a Markov chain. By the data process-
ing inequality [39], we have

IðX; ~Y Þ � IðY ; ~Y Þ: (36)

Therefore,

ITMðF;bÞ � ð1� bÞIðY ; ~Y Þ: (37)

When b > 1, we have ITMðF;bÞ < 0, given that

IðY ; ~Y Þ > 0. The maximum 0 is obtained when

IðY ; ~Y Þ ¼ 0, which can be achieved by setting F ¼ 0, i.e.,
��
i ¼ 0 for all i ¼ 1; ;m. tu

Proof of Theorem 4. The existence of the matrix W is
guaranteed by constituting W via the generalized eigen-

vectors of FðSY jX0 þ sImÞFT and FðSY þ sImÞFT [38],

and suchW is nonsingular.

The ITM can be calculated as

ITMðF;bÞ ¼ IðX0; ~Y Þ � bIð ~Y ; Y Þ; (38)

¼ hð ~Y Þ � hð ~Y jX0Þ � bhð ~Y Þ þ bhð ~Y jY Þ: (39)

Recall that for d-dimensional random variable

X0  N ðmX0 ;SX0 Þ ¼ 1
2 log ðð2peÞ

d detðSX0 ÞÞ [39]. Since that

ðX0; Y Þ is jointly Guassian, it follows that ~Y and ~Y jX0 are
also Gaussian random variables with variance

S ~Y ¼ FSYF
T þ S and S ~Y jX0 ¼ FSY jX0FT þ S, respec-

tively [40]. Therefore, we have

argmax
F

ITCðF;bÞ;

¼ argmax
F

fhð ~Y Þ � hð ~Y jX0Þ � bhð ~Y Þ þ bhð ~Y jY Þg;
(40)

¼ argmax
F

fð1� bÞ log detðS ~Y Þ � log detðS ~Y jX0 Þ

þ b log detðSÞg;
(41)

¼ argmax
F

fbðð1
b
� 1Þlog detðS ~Y Þ �

1

b
log detðS ~Y jX0 Þ

þ log detðSÞÞg;
(42)

As b 2 ð�1; 0Þ, we have

argmax
F

ITMðF;bÞ;

¼ argmin
F

fð1
b
� 1Þ log detðS ~Y Þ

� 1

b
log detðS ~Y jX0 Þ þ log detðSÞg;

(43)

¼ argmin
F

fð1
b
� 1Þ log detðS ~Y Þ

� 1

b
log detðS ~Y jX0 Þg;

(44)

¼ argmin
F

fð1
b
� 1Þ log detðFSYF

T þ SÞ

� 1

b
log detðFSY jX0FT þ SÞg;

(45)

Let WðFÞ be the matrix simultaneously diagonalizing

FðSY jX0 þ sImÞFT and FðSY þ sImÞFT such that

WFðSY jX0 þ sImÞFTWT ¼ diagfa1; . . . ;amg (46)

WFðSY þ sImÞFTWT ¼ Im: (47)

Claim that faigmi¼1 are eigenvalues of the matrix

ðSY þ sImÞ�
1
2ðSY jX0 þ sImÞðSY þ sImÞ�

1
2 and UðFÞ ¼

ðSY þ sImÞ
1
2FTWT ðFÞ is formed by their corresponding

eigenvectors.
To see this, it is straightforward to check that

UT ðFÞUðFÞ ¼ Im and UT ðFÞðSYþ sImÞ�
1
2ðSY jX0 þ sImÞ

ðSY þ sImÞ�
1
2UðFÞ ¼ diagfa1; . . . ;amg.
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We note that even though the eigenvalues of

ðSY þ sImÞ�
1
2ðSY jX0 þ sImÞðSY þ sImÞ�

1
2 are independent

of F, the specific choice of the m eigenvalues faigmi¼1

does depend on F. Hence UðFÞ is also a function of F.
Therefore, we end up with a fixed-point equation where
the optimal orthogonal F� must obey:

F� ¼ W�T ðF�ÞUT ðF�ÞðSY þ sImÞ�
1
2: (48)

The original ITM can be expressed as

argmax
F

ITMðF;bÞ;

¼ argmin
F

( 
1

b
� 1

!
log detðFSYF

T þ SÞ

� 1

b
log detðFSY jX0FT þ SÞ

)
;

(49)

¼ argmin
F

( 
1

b
� 1

!
log detðW�1W�T Þ

� 1

b
log detðW�1diagfa1; . . . ;amgW�T Þ

)
;

(50)

¼ argmin
F

f�log detðW�1W�T Þ

� 1

b
log detðdiagfa1; . . . ;amgÞg;

(51)

¼ argmin
F

(
log detððW ðFÞÞ2Þ � 1

b

X
i2G1ðFÞ

logvi

)
: (52)

When b ! 0�, the above ITM is essentially the solu-
tion of the following optimization:

argmax
F

ITMðF;bÞ ¼ argmin
F

(
� 1

b

Xm
i¼1

logai

)
; (53)

¼ argmin
F

(Xm
i¼1

logai

)
; (54)

where the minimum is achieved by choosing faigmi¼1 as

the smallest m eigenvalues of ðSY þ sImÞ�
1
2ðSY jX0þ

sImÞðSY þ sImÞ�
1
2. Let U1 be the matrix formed by the

corresponding eigenvectors. The fixed-point equa-
tion (48) becomes

F� ¼ W�T ðF�ÞUT
1 ðSY þ sImÞ�

1
2: (55)

Claim that the above fixed-point equation admits an ana-
lytical solution:

F� ¼ orthðUT
1 ðSY þ sImÞ�

1
2Þ: (56)

It is enough to verify that U� ¼ ðSY þ sImÞ
1
2F�TW �T ðFÞ is

the eigenvector matrix corresponding to the smallest m

eigenvalues of ðSY þ sImÞ�
1
2ðSY jX0 þ sImÞðSY þ sImÞ�

1
2.

By using the Gram-Schmidt method, we can rewrite

F� ¼ LUT
1 ðSY þ sImÞ�

1
2, where L 2 Rm�m is a lower tri-

angular matrix with positive diagonal entries. Hence, we

have thatWðF�Þ ¼ L�1 and the following expressions

W ðF�ÞF�ðSY jX0 þ sImÞF�TWT ðF�Þ;
¼ diagfa1; . . . ;amg

(57)

WðF�ÞF�ðSY þ sImÞF�TWT ðF�Þ ¼ Im: (58)

Note that the optimization in (53) is independent of

W ðFÞ. Therefore, we have that F� ¼ orthðUT
1

ðSY þ sImÞ�
1
2Þ

For the case when b ! �1, the ITM boils down to the
following problem:

argmax
F

ITMðF;bÞ ¼ argminFf�log detðFSYF
T þ SÞg:

(59)

By the similar arguments, there exist a W 2 Rm�m such
that

WðFÞWT ðFÞ ¼ diagfa1; . . . ;amg; (60)

WðFÞFðSY þ sImÞFTWT ðFÞ ¼ Im: (61)

Further, faigmi¼1 are eigenvalues of the matrix

ðSY þ sImÞ�1 and UðFÞ ¼ ðSY þ sImÞ
1
2FTWT ðFÞ is

formed by their corresponding eigenvectors. Hence, we
have that

argmax
F

ITMðF;bÞ

¼ argmin
F

f�log detðFSYF
T þ SÞg;

(62)

¼ argmin
F

f�log detðW�1W�T Þg; (63)

¼ argmin
F

f
Xm
i¼1

logaig: (64)

In order to solve the above optimization, we require that

faigmi¼1 are the smallest m eigenvalues of ðSY þ sImÞ�1

and the optimal projection matrix is given by

F� ¼ orthðUT
2 ðSY þ sImÞ�

1
2Þ; (65)

where U2 is constituted by the eigenvectors correspond-
ing to the smallest m eigenvalues of the matrix

ðSY þ sImÞ�1. tu
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