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Abstract
The building sector contributes significantly to global en-

ergy consumption and emission of greenhouse gases. Ther-
mal insulation along with installation of energy-efficient
building systems can reduce energy needs while preserving
or improving occupant comfort levels. Still sensible control
decisions, to harmoniously and effectively operate all build-
ing thermal systems, can be used to further improve building
energy performance and/or thermal comfort. In this article,
a simulation-assisted methodology is presented to automat-
ically generate such decisions. There are two ingredients to
our approach: a thermal simulation model — a surrogate of
the real building — used to evaluate the effects of potential
decisions; and, a cognitive adaptive optimization algorithm
used to intelligently search for the “best” control decision.
A user-defined cost function is used to compare various de-
cision strategies. Corroborating simulation results are pre-
sented to quantify the expected benefits of the proposed ap-
proach.
Categories and Subject Descriptors

J.2 [Physical Sciences and Engineering]: Engineering;
I.2.8 [Problem Solving, Control Methods, and Search]:
Control theory; J.7 [Computers In Other Systems]: Pro-
cess control
General Terms

Algorithms, Performance, Management
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Energy Efficiency in Buildings, Adaptive Optimization,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
BuildSys’11, November 1, 2011, Seattle, WA, USA.
Copyright 2011 ACM 978-1-4503-0749-9 ...$10.00

Large-Scale Systems, Non-Linear Systems

1 Introduction
The European target of reduction of greenhouse gases by

20% until 2020 while allowing economic and demographic
growth, is unattainable unless certain measures are taken. In
2008, the Total Final energy Consumption (TFC) of the EU
27 amounted to 49EJ, with the Household sector contribut-
ing to 25.4% of the TFC on average and with the inclusion
of the Services sector bringing the contribution up to 40.8%
of the TFC. Similar conclusions can be drawn for other re-
gions of the world, suggesting the necessity to develop tech-
nologies and methods to reduce energy consumption in these
sectors. According to [4], energy used for heating accounts
to one-fifth and one-third of the TFC in the Household and
Services sectors, respectively. Apart from public policy ac-
tions aimed at raising consumer awareness — i.e. turning
building users into “prosumers” — other possibilities at mol-
lifying the problem exist: first, optimization of the building
envelope, and; second, improving effectiveness in utilization
of energy. In the former case, many approaches exist and
have been studied extensively in the literature; while in the
latter, Building Energy Management Systems (BEMS) can
be used to monitor and control the use of energy in the build-
ing. Studies show that smart and predictive control strate-
gies are viable methods to reduce building thermal energy
demand [13, 15].

In current practice, the majority of BEMS, use simplis-
tic rule-based controllers. Alternative approaches such as
predictive, intelligent comfort, and predictive weather-data
based controllers have been suggested to tackle but also
exploit the slow dynamics of thermal systems in buildings
[2, 9, 12, 13] — with these approaches being in most cases
data-driven. Progress in building technologies, weather fore-
casting and low-cost embedded computing systems pave the
way for implementation of intelligent controllers in building
control applications. The use of Model Predictive Control
(MPC) has been suggested, e.g. in [6], as a viable option.
In [13] practical experiments with passive cooling via MPC
have been reported to reduce overheating by approximately



1K. Energy reduction while maintaining high user comfort
by means of MPC has been investigated in the OptiControl
Project, in which a theoretical potential of up to 40% reduc-
tion of Non-Renewable Primary Energy (NRPE) use is es-
timated [14]. In the presence of uncertainties, the expected
benefits are smaller but, to date, there is little experimental
evidence as to the actual savings potential.

1.1 The PEBBLE Project
In Project PEBBLE (Positive Energy Buildings through

Better controL dEcisions), the goal is the development of
model-based controllers, for the holistic operation of all
energy-influencing systems in the building, and the deploy-
ment and evaluation of such strategies in three real-world
large-scale office buildings. Simulation models for each of
these buildings were created in TRNSYS, EnergyPlus and
Modelica. The Cognitive Adaptive Optimization (CAO) al-
gorithm is used to efficiently explore the large decision space
and identify “good” controllers to be applied to the real
building, with the goal of maximization of the “Net Expected
Benefit” (NEB) [11]. For simple buildings, the potential of
adapting the CAO algorithm for building control has been
investigated in [8].

In this paper (parts of) a validated TRNSYS building
model of a real building, the Center for Sustainable Build-
ing (ZUB) in Kassel, Germany is used and connected with
the CAO algorithm. The cost function used to evaluate po-
tential decisions depends on the simulated energy demand
and the level of comfort which is measured using the Fanger
index [1]. In Section 1.2 the ZUB building is described; the
definition of the control problem along with the connection
between the CAO algorithm and the TRNSYS model is de-
scribed in Section 2; results obtained are presented in Section
3; and, conclusions along with suggestions for future work
in Section 4.

1.2 Center for Sustainable Building (ZUB)
The ZUB building, built in 2001, located at the campus

of the University of Kassel, Germany is an exemplary low-
energy building. The ZUB has three floors, a basement and
an atrium in contact with a nearby building. It is occupied by
researchers in the field of building physics, equipped with a
significant number of sensors, and used for experimental in-
vestigations in the field of energy optimization and building
technologies.

The overall volume of the heavy-weight construction is
6882m3, the net heated floor area is 1332m2 and the main
floor space is 892m2 [16]. Floor height is close to 4m
and the annual heat demand is between that of a low-energy
building and a passive house, approximately 30kWh/m2 or
5.3kWh/m3; electricity consumption based on the heated
net floor area is approximately 20kWh/(m2a) [7, 16]. The
building has three Thermally Activated Building Systems
(TABS): (i) a basement slab or ground heat exchanger; (ii)
radiant floors, and; (iii) radiant ceiling systems.

For heating and cooling purposes, floor and ceiling TABS
utilize district hot-water in the winter and cooling from the
basement slab during summer. A central mechanical ventila-
tion system with heat recovery and natural night-time venti-
lation with open windows in the atrium ensure in an energy-

efficient manner the conditioning of offices and rooms. A
window/façade ratio close to one, favorable building orien-
tation, and adjustable shading devices provide for high so-
lar gains during the winter months and prevent from solar
overheating in the summer while maintaining a high-degree
of solar utilization. There are approximately 1300 mea-
surement points (temperature, humidity, energy flows etc.)
throughout the building, making the validation of the thermal
model described in the next Section possible. More details
about the ZUB and its energy concept are given in [7, 16].

2 Methodology
To evaluate the effect of control actions on the building

energy performance a thermal simulation model was created
using the TRNSYS building simulation tool. A second ingre-
dient is the CAO algorithm implemented in MATLAB. The
dynamic interaction between the two components was estab-
lished using a master-slave relationship with the MATLAB
script invoking the TRNSYS simulation as needed. Select-
ing the “best” control strategy for the following day requires
a few hundred calls to the simulation engine, so computa-
tional cost along with reliability and stability issues should
be considered for real-world implementation. In the follow-
ing the proposed approach is described in more detail.
2.1 Building thermal simulation model

Figure 1 shows the ZUB building model, designed us-
ing Google SketchUp, with shading groups in purple. Since
TABS can be operated independently for each room, each
physical room was defined as a separate thermal zone, for a
total of 26 zones to model the whole building.

Figure 1. Whole ZUB building model designed using
Google SketchUp, comprising 26 thermal zones.

To properly ascertain the effects of primary beam, dif-
fuse, and long-wave radiation within each zone, detailed ge-
ometric characteristics are needed. The detailed radiation
model selected uses semi-analytic methods for the view fac-
tor calculations. 1

The atrium at the back of the building consists of three
thermal (convective) air-nodes, — one per floor, — com-
bined to a single (radiative) zone. This new feature simplifies
the simulation of thermal stratification.

A detailed simulation for each zone, while necessary for
validation purposes, is too detailed for the needs of design-
ing the decision strategies. For this reason a reduced-model

1The model used is available since TRNSYS version 17, and has
the limitation that each thermal zone should be closed and convex.



was created, shown in Figure 2, and is essentially a cutout of
the building that preserves all relevant characteristics from
the whole model — this model will be called the Tower in
the following. Below the basement, two additional thermal
zones constitute the soil bed that thermally interacts with the
building, especially during base slab operation. Thus, the
model has seven real and two auxiliary thermal zones, and
the atrium zone comprises three thermal air-nodes:
• soil bed below basement (SOIL) and (SOIL_LOW),
• basement (CELLAR),
• ground, first and second floor (R007), (R107), (R207),
• atrium (AT009, AT109, AT209).

Figure 2 shows the Tower with the same shading groups
as for the whole building. In addition the jutty on the ground
floor, is not included in the thermal model of the Tower, and
is modeled as a shading group. The blue colored walls of the

Figure 2. Tower and shading groups used in the thermal
simulation model.

Tower indicate external walls; the dark-gray walls are de-
fined as adiabatic walls permitting no heat flux across the
walls. This is only an approximation, however, available
measurement data showed only small temperature deviations
in neighboring rooms (±5K, depending on the season), and
using these measurement data as boundary conditions did not
lead to significantly different results. More details on the val-
idation of the model can be found in [3].

As mentioned earlier, the building is equipped with three
different TABS. The mass flow of the heating/cooling fluid
and the flow temperature (in case of heating) are model input
parameters.

Airflows in the building are modeled using TRNFlow,
which is the integration of COMIS into TRNSYS. COMIS is
a multi-zone air flow and contaminate transport model devel-
oped within IEA-Annex 20 and evaluated in Annex 23 [5].
The TRNFlow network consists of thermal (indoor) and ex-
ternal (outdoor) air-nodes connected via air-links allowing
for simulation of natural ventilation. The air-links are used
to model large openings (windows, doors, etc.) and cracks
(ventilation bypass for the office-doors). Air-links are char-
acterized by their dimensions, discharge coefficients, and
opening factors, the latter are model parameters existing only
for large openings. The mechanical ventilation system is
modeled with fans, ducts and other equipment stringed to-
gether via auxiliary air-nodes, which can be subject to de-
fined conditions in terms of temperature and humidity.

The building model, flow parameters of TABS, opening

factors of windows and doors, and behavior under certain
conditions were validated using available measured data.

2.2 Simulation set-up
The set-up depicted in Figure 3 comprises two major

parts: the MATLAB environment (instance 1), and the TRN-
SYS simulation (simulation.dck), represented by the upper
left and lower box, respectively. MATLAB (instance 1) in-
cludes the CAO algorithm, a parameter file and the simula-
tion call. The TRNSYS simulation embraces weather data,
TRNSYS Type155, and the whole building model includ-
ing basic parameters such as geometric and wall definitions.
Type155 represents an embedded MATLAB environment,
indicated as (instance 2). Data exchange between the two
MATLAB instances is realized by means of *.mat files.

Figure 3. Simulation set-up: Illustration how MATLAB
(instance 1) calls TRNSYS and interacts with MATLAB
(instance 2) being part of the TRNSYS simulation.

The building parameters and physical constants that are
required by Type56 are either given as constant values or as
input-variables to be supplied by Type155. In addition to the
specification of certain building parameters, Type155 sup-
plies schedules or provides control actions to be expected in
reality. Supplied schedules include occupancy profiles and
internal gains, window or mechanical ventilation operation,
external shading control, to mention but a few. Type155 is
essentially a MATLAB script; it allows the inclusion of in-
dividual device control rules and furthermore opens an inter-
face for more complex controls such as the ones used here.
Although the occupancy profile is input as a schedule, for fu-
ture real operation this profile could be supplied dynamically
from a database, using values recorded from in-building sen-
sors.

Establishing the two-way interaction whereby dynamic
schedules created from the CAO algorithm are passed to
TRNSYS is a prerequisite for the development of the control
strategies. A second requirement is the polling of weather
forecasts so that weather files can be created for the simu-
lation. The procedure of parameter search for certain con-



trollers being part of the building, is named an experiment.
An experiment is conducted for a certain prediction horizon.
In a typical control design scenario the CAO algorithm calls
the TRNSYS simulation a few hundred times during one ex-
periment, each time to simulate for the prediction horizon of
one day — of course, the number of times TRNSYS needs to
be invoked hinges upon the complexity of the building and
the starting initial guess for the controller.
2.3 Cognitive Adaptive Optimization

To assess the performance of the CAO algorithm assume
a controller is to be designed to control ideal cooling in three
thermal zones of the building. A simple proportional con-
troller of the form:

U = θX , (1)

is assumed; here U = [u1,u2,u3]
T are the control actions

shown in Table 1, X = [x1, . . . ,x9]
T are the building states

shown in Table 2 and θ∈R3×9 is a matrix, to be determined,
containing the controller gains.

Table 1. Control actions

Control Action Description Range
u1 T setpoint of Zone R007 [20−30]◦C
u2 T setpoint of Zone R107 [20−30]◦C
u3 T setpoint of Zone R207 [20−30]◦C

Table 2. Controller state variables
Variable Description

x1 Outside Temperature
x2 Outside Relative Humidity
x3 Radiation on Window Façade
x4 Tair of Zone R007
x5 Relative Humidity of Zone R007
x6 Tair of Zone R107
x7 Relative Humidity of Zone R107
x8 Tair of Zone R207
x9 Relative Humidity of Zone R207

As part of the optimization process a series of candidate
controllers θc ∈ Θc is created. To evaluate and compare per-
formance the following cost function is used:

J = w tanh(A1E2 +B)+(1−w) tanh(A2

3

∑
i=1

F2
i
3

+B); (2)

here E is the total energy demand per time-step (i.e. power);
and Fi is the Fanger PPD index [1] in zone i ∈ {1, . . . ,3}.
The Fi take values in the range [5%− 100%] representing
the percentage of persons dissatisfied due to poor thermal
comfort conditions prevailing in the zone.

A trade-off between energy and thermal comfort exists:
on one hand, good thermal comfort requires maintaining
zone conditions within strict limits, and this typically re-
quires increased use of the HVAC systems and more energy;

on the other hand, permitting slight discomfort (to within
ranges set by comfort standards) can mean that less condi-
tioning is required and therefore more energy can be saved.
In the proposed cost function in Equation 2 w is a user-
defined weight to adjust the relative importance between en-
ergy (E) and thermal comfort (Fi); here w = 0.1 was used.
In 2 B = 2 was selected so that Fanger index values over
30%− 40% (high discomfort) are strongly penalized while
values between 5%− 15% (reasonable discomfort) are tol-
erated; see Figure 4. Finally, A1, A2 are normalization con-
stants for E and F , respectively.
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Figure 4. Sigmoid cost function

To design a proper controller for the building, the CAO
optimization process starts and, using weather and occu-
pancy forecasts for the prediction horizon, a controller (i.e.
a set of proper gains θ) is designed. The CAO [8] algorithm
is a local search algorithm, used to improve an initial con-
troller provided by an expert or by an Approximate Optimal
Control design process (AOC) such as in [10].

Table 3. Cognitive adaptive optimization
1: Input: θ0,K,N,K1 //Initial Controller
2: Repeat for k = 0 : K1−1 //Initial exploration
3: Jk = J(θk) //Run using the simulator
4: end
5: Repeat for k = K1 : K−1
6: Jk = J(θk) //Run on the simulator
7: Ĵk (θk) = ϑτ

kφ(θk) //Construct the estimator
8: θ̄ = argmin

θk

Jk //The best controller so far

9: Θc = {θ
( j)
c |θ̄+αζ

( j)
k , j ∈ {0, . . . ,N}, . . .

. . . ζ
( j)
k ∼N (0,1)}

10: θk+1 = argmin
θc∈Θc

Ĵk (θc) //Select the best

11: end
12: JK = J(θK)

13: Output: θ = argmin
θK

JK

A sketch of the algorithm is shown in Table 3. Line 1
provides an initial controller to the algorithmic framework



for further improvement. In Lines 2− 4, K1 controllers are
created, exploring the area around the initial controller, and
are evaluated using the cost function in (2) via simulations in
TRNSYS (simulator). In Line 7 a Support Vector Machine
(SVM) estimator [17] is created using the controllers eval-
uated on the simulator so far and their corresponding cost
function values, and in Line 8 the “best” controller θ̄ (accord-
ing to the cost function) among them is selected. With this
controller, in Line 9 a set of approximately 1000 candidate
controllers is created. In Line 10 each candidate controller
θc ∈ Θc is evaluated using the estimator 2 and the best con-
troller is selected for evaluation on the simulator in the next
iteration of the algorithm. When K iterations are executed, in
Line 12 the best controller of the experiment is determined.
In practice, this would be the controller for the real building
the following day and state variables would be measurement
data obtained from the in-building sensors.
3 Results and discussion

To test the CAO and TRNSYS connection, and to as-
sess the performance of the CAO algorithm, the following
building control design task is considered: variation of the
building-zone setpoints of an ideal AC system, to minimize
energy while maintaining acceptable comfort levels. Occu-
pancy in Zones R107 and R207 is assumed to be from 9:00-
17:30, allowing for a 45min lunch break at 12:30, with 3
people in each zone; zone R007 is assumed to be unoccu-
pied for the day of the experiment. Occupancy and weather
predictions are assumed to be exact. Real weather data of
a hot summer day in Kassel (August 10th, 2001) were used,
see Figure 5.

Figure 5. Inside and outside temperatures (left axis) and
global horizontal radiation (right axis).

Upon application of the CAO algorithm to find the best
θ, the building response obtained is shown in Figures 5, 6,
and 7. As people enter the building and the Fanger index in-
creases (09:00–10:00, Figure 6), the controller cools zones
R107 and R207 (Figure 7), while in zone R007 the temper-
ature is free floating as there is no occupancy. When peo-
ple exit the building for the night, the controller shuts-down
the AC systems (since it does not have information about the

2Invoking TRNSYS for the evaluation would incur unmanage-
able computational costs.

next day and is unable to define strategies like night cooling),
to save energy (Figure 7). Moreover, the possibility to save
energy during lunch break is identified as there are no occu-
pants inside the building. The controller changes (increases)
the setpoints but does not completely turn off the cooling,
since people re-enter the building after lunch break. Note
here, that the algorithm designs the controller using only oc-
cupancy prediction and without any information regarding
actual building schedules.

Figure 6. PPD characteristics for the best controller
found (θK).

Figure 7. Useful cooling energy demand during one day
with CAO operation.

To evaluate the potential energy savings of the controller,
two rule-based controllers are defined: one that cools the
rooms at constant temperature during the 24-hour period
(blue line in Figure 8) and one that cools the rooms dur-
ing the day only (red line in Figure 8). These controllers
are compared to four controllers produced by the CAO al-
gorithm (circles in Figure 8) with respect to total energy de-
mand, and average Fanger PPD values while the zone is oc-
cupied. The different controllers generated by the optimiza-
tion process indicate convergence to different local optima.
A Pareto front is formed by the two static rule-based con-
trollers (red and blue lines in Figure 8), defining a limit in
their performance.



In all cases the CAO algorithm performs better, leading
to a theoretical energy saving potential for this simple exam-
ple varying from 5%− 14%, while maintaining comfort at
similar levels. This is due to the fact that the controller pro-
duced is allowed to vary the setpoints for the ACs during the
day — rather than using a constant value.

Figure 8. Control performance chart demonstrating the
advantage of CAO algorithm against static controllers.

Type 155 in Figure 3 was operated non iteratively, which
significantly decreased the primary computing time. Ap-
proximately 200− 500 iterations are required to reach a lo-
cal optimum, starting with a naïve controller (θ =0). Not
every experiment leads to the same local optimum, but in all
cases a performance improvement is obtained. Each iteration
lasts approximately 25sec (on an Intel Core 2 Duo CPU, 2.66
GHz CPU), thus an experiment takes between 1.4−3.5h.
4 Conclusions and Future Work

In the present work a stochastic optimization algorithm
is linked to TRNSYS, so that energy performance in build-
ing operation can be optimized. The controller produced
by the optimization process exhibits intelligent behavior, by
saving energy during the night and during occupant’s lunch
break, and outperforms two static rule-based controllers act-
ing upon the same building, leading to 5%–14% energy sav-
ings, while keeping comfort at acceptable levels.

The present work will be extended to the full building
(simulated and real) with enhanced control features, such
as day-night mechanical and natural ventilation, cool ceil-
ing, etc. as has been investigated in [13]. This increased
complexity require careful selection of the starting point for
the optimization and the computational complexity will in-
crease. The performance of the CAO algorithm will be com-
pared with results obtained from a standard optimization tool
(e.g. GENOPT) in a future paper. Furthermore, the param-
eters of the cost function need to be investigated systemati-
cally, to ensure scalability to buildings of higher complexity.
Additionally in future work we address how to realize occu-
pancy predictions.
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