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We work on a parallelizable time-orientable Lorentzian 4-manifold and prove that
in this case, the notion of spin structure can be equivalently defined in a purely
analytic fashion. Our analytic definition relies on the use of the concept of a non-
degenerate two-by-two formally self-adjoint first order linear differential operator
and gauge transformations of such operators. We also give an analytic definition of
spin structure for the 3-dimensional Riemannian case. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4995952]

I. PLAYING FIELD

Let M be a connected smooth 4-manifold without boundary, not necessarily compact.
In this paper, we will be working with functions on M, densities on M, vector fields on M, metrics

on M, etc., and all of these will be assumed to be infinitely smooth. We will also be working with
differential operators acting on M and the coefficients of these differential operators will be assumed
to be infinitely smooth.

We will use Latin letters for anholonomic (frame) indices and Greek letters for holonomic (tensor)
indices. We will use the convention of summation over repeated indices; this will apply both to Greek
and to Latin indices.

A half-density is a quantity M→C which under changes of local coordinates transforms as the
square root of a density. We will be working with compactly supported two-columns of half-densities
and will define the inner product on pairs v , w of such 2-columns as 〈v , w〉 := ∫M w∗v dx . Here
x = (x1, x2, x3, x4) are local coordinates on M, dx = dx1dx2dx3dx4, and the star stands for Hermitian
conjugation.

Let L be a first order linear differential operator acting on 2-columns of half-densities. In local
coordinates, this operator reads L =Fα(x) ∂

∂xα + G(x), where Fα(x) and G(x) are some 2 × 2 matrix-
functions. The problem here is that these matrix-functions are not invariant under changes of local
coordinates. The standard way of providing an invariant analytic description of the operator L is by
means of its principal and subprincipal symbols defined as

Lprin(x, p) := iFα(x) pα , (1.1)

Lsub(x) :=G(x) +
i
2

(Lprin)xαpα
(x)=G(x) −

1
2

(Fα)xα (x), (1.2)

respectively. Here p = (p1, p2, p3, p4) is the dual variable (momentum) and the subscripts indicate
partial derivatives. It is known that Lprin and Lsub are invariantly defined matrix-functions on T ∗M and
M, respectively, see (Ref. 16, Subsection 2.1.3) and (Ref. 8, Appendix A) for details. Furthermore, it is
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easy to see that the principal and subprincipal symbols uniquely determine our first order differential
operator and that our operator is formally self-adjoint if and only if its principal and subprincipal
symbols are Hermitian.

Further on we work with 2 × 2 formally self-adjoint first order differential operators.

Definition 1.1. We say that the operator L is non-degenerate if

Lprin(x, p), 0, ∀(x, p) ∈ T ∗M \ {0}. (1.3)

Not every 4-manifold admits a non-degenerate operator. The following lemma establishes the
appropriate criterion.

Lemma 1.2. The manifold M admits a non-degenerate operator L if and only if it is
parallelizable.

Proof. Decomposing Lprin(x, p) with respect to the standard basis

s1 =

(
0 1
1 0

)
, s2 =

(
0 −i
i 0

)
, s3 =

(
1 0
0 −1

)
, s4 =

(
1 0
0 1

)
(1.4)

in the real vector space of 2 × 2 Hermitian matrices, we get

Lprin(x, p)= sjej
α(x) pα , (1.5)

where ej, j = 1, 2, 3, 4, are some real-valued vector fields. Here each vector ej(x) has coordinate
components ej

α(x), α = 1, 2, 3, 4.
Formula (1.5) establishes a one-to-one correspondence between principal symbols and tetrads

of vector fields. Furthermore, formula (1.5) allows us to rewrite the non-degeneracy condition (1.3)
as

det ej
α(x), 0, ∀ x ∈M. (1.6)

But condition (1.6) is the condition of linear independence of the vector fields ej . �

Remark 1.3. The critical element of the above proof is the fact that the dimension of our manifold
equals the dimension of the real vector space of 2 × 2 Hermitian matrices.

Remark 1.4. Further on, in Sec. IV, we will start referring to the above tetrad of vector fields
as a framing. This will be a purely terminological change, for the benefit of readers accustomed to
terminology used in topology and differential geometry.

Further on we assume that our 4-manifold M is parallelizable.

II. CORRESPONDENCE BETWEEN OPERATORS AND LORENTZIAN METRICS

Observe that the determinant of the principal symbol is a quadratic form in momentum p,

det Lprin(x, p)=−gαβ(x) pαpβ . (2.1)

We interpret the real coefficients gαβ(x)= gβα(x), α, β = 1, 2, 3, 4, appearing in formula (2.1) as
components of a (contravariant) metric tensor. It is known (Ref. 9, Lemma 2.1) that this metric is
Lorentzian, i.e., it has three positive eigenvalues and one negative eigenvalue.

It turns out that the Lorentzian metric defined in accordance with formula (2.1) has an additional
geometric property. In order to describe this property, we need some definitions.

Definition 2.1. A vector field u is said to be spacelike if (gαβ uαuβ)(x)> 0, ∀ x ∈M, lightlike if
(gαβ uαuβ)(x)= 0, ∀ x ∈M, and timelike if (gαβ uαuβ)(x)< 0, ∀ x ∈M.

Definition 2.2. The Lorentzian manifold (M, g) is said to be time-orientable if it admits a timelike
vector field.
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Observe that the trace of the principal symbol is a linear form in momentum p and the coefficients
of this linear form can be interpreted as components of a vector field. With the standard choice of
Pauli matrices (1.4), the linear form in question reads

trLprin(x, p)= 2e4
αpα . (2.2)

It is easy to see that the vector field e4 is timelike. Thus, formula (2.1) defines a time-orientable
Lorentzian metric on our parallelizable 4-manifold M.

Let us now perform the above argument the other way round. Suppose we have a parallelizable
4-manifold M equipped with a time-orientable Lorentzian metric. In this case, we have a timelike
vector field which we will denote by e4. Without loss of generality, we may assume that this timelike
vector field is normalised, i.e., that (gαβ e4

αe4
β)(x)=−1, ∀ x ∈M.

Lemma 2.3. One can choose vector fields e1, e2, and e3 such that the tetrad ej, j = 1, 2, 3, 4, is
linearly independent at all points of the manifold.

Proof. Let us fix a trivialization TM =M × R4 and view e4 as a smooth map M→ S3. Since S3

is parallelizable, its orthonormal frame bundle SO(3)→ SO(4)→ S3 is trivial and therefore admits a
section S3→ SO(4). Composing this section with the map M→ S3, we obtain the desired tetrad. �

Remark 2.4. The above argument also works for parallelizable manifolds of dimension 2 and 8.

Applying now the Gram–Schmidt process, we obtain new vector fields e1, e2, e3, and e4 such
that

(gαβ ej
αek

β)(x)=



0 if j , k,
+1 if j = k , 4,
−1 if j = k = 4,

(2.3)

for all x ∈M. Here the Gram–Schmidt process works because the restriction of a Lorentzian metric
to the orthogonal complement of a timelike vector gives a Riemannian metric. Finally, substituting
our tetrad ej, j = 1, 2, 3, 4, into (1.5), we obtain a principal symbol with the property (2.1).

III. GAUGE TRANSFORMATIONS AND SPIN STRUCTURE

From now on, the time-orientable Lorentzian metric is assumed to be fixed. We will work
with all possible 2 × 2 formally self-adjoint non-degenerate first order linear differential operators
corresponding, in the sense of formula (2.1), to the given metric. It was shown in Sec. II that the set
of such operators is non-empty. Our aim is to classify operators corresponding to the given metric.

We specify an orientation on our manifold and define the topological charge of our operator
as

ctop :=−
i
2

√
| det gαβ | tr

(
(Lprin)p1 (Lprin)p2 (Lprin)p3 (Lprin)p4

)
= sgn det ej

α, (3.1)

with the subscripts p1, p2, p3, p4 indicating partial derivatives with respect to the components of
momentum p = (p1, p2, p3, p4). It is easy to see that the number ctop defined by formula (3.1) can
take only two values, +1 or �1, and describes the orientation of the principal symbol relative to our
chosen orientation of local coordinates x = (x1, x2, x3, x4).

Let us choose a timelike co-vector field q and use it as a reference. It is easy to see that the
real-valued scalar function tr Lprin(x, q(x)) does not vanish. We define the temporal charge of our
operator as

ctem := sgn tr Lprin(x, q(x))= sgn(qαe4
α) , (3.2)

see also formula (2.2). Note that qαe4
α , 0 because both q and e4 are timelike. The number ctem

defined by formula (3.2) describes the orientation of the principal symbol relative to our chosen time
orientation.

We perform a primary classification of our operators based on the values of their topological and
temporal charges. Obviously, the four classes of operators in this primary classification correspond
to the four connected components of the Lorentz group.
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Further on, we assume the topological and temporal charges to be fixed.
In order to classify our operators further, we introduce an arbitrary smooth 2×2 complex-valued

matrix-function R of determinant one,

R : M→ SL(2,C), (3.3)

and consider the transformation
L 7→R∗LR. (3.4)

Transformation (3.4) of our differential operator L induces the transformation

Lprin 7→R∗L prinR (3.5)

of its principal symbol. (The induced transformation of the subprincipal symbol will be considered
later in Sec. VI.) Formulae (2.1), (3.3), and (3.5) imply that transformation (3.4) preserves our
Lorentzian metric g. Furthermore, it is easy to see that transformation (3.4) preserves the topological
charge (3.1) and the temporal charge (3.2).

We interpret (3.4) as a gauge transformation because it preserves the prescribed metric as well
as the prescribed topological and temporal charges.

Our analytic definition of spin structure is formulated as follows.

Definition 3.1. We say that the operators L and L̃ are equivalent if

L̃prin =R∗L prinR (3.6)

for some smooth matrix-function (3.3). An equivalence class of operators is called spin structure.

IV. MAIN RESULT

In this section, we will show that our analytic definition of spin structure, Definition 3.1, is
equivalent to the traditional geometric definition.

We begin by restating our analytic definition, Definition 3.1, in terms of framings. By a frame
at a point x ∈M, we mean a positively oriented and positively time-oriented orthonormal, in the
Lorentzian sense (2.3), frame in the tangent space T xM and by a framing of M a choice of a frame
at every point x ∈M depending smoothly on the point. In our case, we have an explicit formula (1.5)
establishing a one-to-one correspondence between principal symbols and framings. Any two framings
of the same manifold M are related by a uniquely defined smooth function f : M→ SO+(3, 1), where
SO+(3, 1) is the identity component of the Lorentz group. Rephrasing Definition 3.1, we will say that
two framings are equivalent if the function f relating them factors as

f : M→ SL(2,C)
Ad
−→ SO+(3, 1),

where Ad : SL(2,C)→ SO+(3, 1) is the adjoint representation. A spin structure on M is then an
equivalence class of framings.

Remark 4.1. The terminology used in mathematical literature and theoretical physics litera-
ture is somewhat different. In mathematical literature, a frame refers to a set of vectors at a given
point, whereas in theoretical physics literature, a frame refers to a set of vector fields. In the current
section, as well as in Sec. VII, we use terminology prevalent in mathematical literature. See also
Remark 1.4.

Note that a choice of reference framing on M provides a trivialization of the tangent bun-
dle TM so that any other framing is related to this reference framing by a smooth function f : M
→ SO+(3, 1). Two framings corresponding to functions f 1 and f 2 are equivalent in the above sense
if and only if there exists a smooth function h : M→ SL(2,C) such that f2 · Ad h= f1 as functions
M→ SO+(3, 1).

As the traditional definition of Lorentzian spin structure, we will use the definition from Baum,2,3

see also Bichteler.4 In the special case at hand, using the trivialization of the tangent bundle TM via
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the reference frame, it reads as follows. A spin structure on M is an equivalence class of commutative
diagrams

where π stands for the projection onto the first factor, and the map Φ is equivariant in that Φ(x, g)
=Φ(x, 1) · Ad g for all x ∈M and g ∈ SL(2,C). Two diagrams as above with the vertical mapsΦ1 and
Φ2 are called equivalent if there is a commutative diagram

such that π◦A= π and the map A is equivariant in that A(x, g)=A(x, 1)·g for all x ∈M and g ∈ SL(2,C).

Theorem 4.2. For parallelizable time-orientable Lorentzian 4-manifolds, the two definitions of
spin structure, our analytic definition and the traditional one, are equivalent.

Proof. Using the commutativity of the first diagram, writeΦ(x, g)= (x, φ(x, g)) for some function
φ : M × SL(2,C)→ SO+(3, 1) and observe that the equivariance condition on Φ translates into the
equation φ(x, g)= φ(x, 1) · Ad g. Therefore, the map Φ is uniquely determined by the map ψ : M
→ SO+(3, 1) given by ψ(x)= φ(x, 1).

Similarly, write A(x, g)= (x, α(x, g)) and observe that the equivariance condition on A translates
into the equation α(x, g)= α(x, 1) · g. Therefore, the map A is uniquely determined by the map
β : M→ SL(2,C) given by β(x)= α(x, 1). One can easily check that the second commutative diagram
then simply means that ψ2 · Ad β =ψ1 as functions M→ SO+(3, 1).

This completes the proof of the equivalence of two definitions of spin structure. Note that
the equivalence we established is not canonical in that it depends on the choice of reference
frame. �

Remark 4.3. According to (Ref. 3, Theorem 2), the equivalence classes of Lorentzian spin struc-
tures on M are classified by the cohomology group H1(M;Z2). This is an analogue of the well-known
classification of Riemannian spin structures, see Proposition 7.5 and Remark 7.6.

V. TOPOLOGICAL AND GEOMETRIC RESTRICTIONS

In Secs. I–III, we gave an analytic definition of the concept of Lorentzian spin structure. This
definition works only for parallelizable 4-manifolds equipped with time-orientable Lorentzian metric.
In Sec. IV, we proved, under the assumptions of parallelizability and time-orientability, equivalence of
our analytic definition to the traditional one. It is natural to examine how restrictive these assumptions
are.

Proposition 5.1. A non-compact time-orientable Lorentzian 4-manifold M is parallelizable if
and only if it is spin.



082301-6 Avetisyan et al. J. Math. Phys. 58, 082301 (2017)

Proof. According to Theorem 1 of Baum,3 a time-orientable Lorentzian manifold M is spin
if and only if w2(M) = 0. Therefore, if M is parallelizable, it is obviously spin. Conversely,
the tangent bundle of M is classified by a homotopy class of maps M→BSO+(3, 1). Since the
inclusion of SO(3) as a subgroup into SO+(3, 1) is a deformation retract, the classifying spaces
BSO+(3, 1) and BSO(3) are homotopy equivalent. According to Dold–Whitney,7 the homotopy classes
of maps M→BSO(3) are classified by the second Stiefel–Whitney class w2(M) and the first Pontrya-
gin class p1(M) ∈H4(M;Z). Since M is non-compact, the group H4(M;Z) vanishes, and the result
follows. �

In theoretical physics, the prevalent view is that physically meaningful spacetimes (Lorentzian
4-manifolds) are those that are non-compact and time-orientable. Thus, for physically meaningful
spacetimes, our parallelizability assumption is the necessary and sufficient condition for the existence
of spin structure.

One can, of course, adopt a purely mathematical approach and study Lorentzian 4-manifolds
that are either compact or non-time-orientable or both. For such Lorentzian 4-manifolds, our analytic
definition of spin structure may not work.

VI. CLASSIFICATION BEYOND SPIN STRUCTURE

Let us consider all possible operators corresponding to the specified Lorentzian metric [see (2.1)],
with specified charges [see (3.1) and (3.2)] and specified spin structure (see Definition 3.1). It turns
out that it is possible to classify them further as follows.

Let us define the covariant subprincipal symbol Lcsub(x) in accordance with formula

Lcsub :=Lsub +
i

16
gαβ {Lprin, adj Lprin, Lprin}pαpβ , (6.1)

where {F, G, H } :=FxαGHpα −FpαGHxα is the generalised Poisson bracket on matrix-functions and
adj is the operator of matrix adjugation

F =

(
a b
c d

)
7→

(
d −b
−c a

)
=: adj F (6.2)

from elementary linear algebra. Now take an arbitrary smooth matrix-function (3.3) and consider
the gauge transformation (3.4). It was shown in Ref. 9 that transformation (3.4) of our differential
operator L induces the transformation

Lcsub 7→R∗L csubR (6.3)

of its covariant subprincipal symbol.
Comparing formulae (1.2) and (6.1), we see that the standard subprincipal symbol and

covariant subprincipal symbol have the same structure, only the covariant subprincipal sym-
bol has a second correction term designed to “take care of” special linear transformations in
the vector space of unknowns v : M→C2. The standard subprincipal symbol (1.2) is invariant
under changes of local coordinates (its elements behave as scalars), whereas the covariant sub-
principal symbol (6.1) retains this feature but gains an extra SL(2,C) covariance property. In
other words, the covariant subprincipal symbol (6.1) behaves “nicely” under a wider group of
transformations.

Formulae (3.5) and (6.3) imply that the covariant subprincipal symbol can be uniquely represented
in the form

Lcsub(x)=Lprin(x, A(x)), (6.4)

where A = (A1, A2, A3, A4) is some real-valued co-vector field. We interpret the co-vector field
appearing in formula (6.4) as the electromagnetic co-vector potential.

It is easy to see that the electromagnetic co-vector potential is invariant under gauge trans-
formations (3.4), so it can be used for the purpose of further classification of our operators: the
electromagnetic co-vector potential defines the operator uniquely modulo a transformation (3.4).
Note, however, that this finer classification is not particularly interesting from the topological
perspective because co-vector fields form a vector space.
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VII. THE 3-DIMENSIONAL RIEMANNIAN CASE

Let M be a connected smooth 3-manifold without boundary, not necessarily compact. As in
Sec. I, let L be a 2 × 2 formally self-adjoint non-degenerate first order linear differential operator. In
dealing with the 3-dimensional case, we make the additional assumption

tr Lprin(x, p)= 0, ∀(x, p) ∈ T ∗M. (7.1)

Note that imposing condition (7.1) in the 4-dimensional setting would not make sense because it
would contradict non-degeneracy (1.3).

It is easy to see that under the assumption (7.1), the non-degeneracy condition (1.3) for our 2× 2
operator L is equivalent to the condition

det Lprin(x, p), 0, ∀(x, p) ∈ T ∗M \ {0}. (7.2)

But (7.2) is the standard ellipticity condition. Thus, in this section, we work with 2 × 2 formally
self-adjoint elliptic first order linear differential operators L with trace-free principal symbols which
act over a connected smooth 3-manifold M without boundary.

By analogy with Lemma 1.2, we have

Lemma 7.1. The manifold M admits an elliptic operator L with trace-free principal symbol if
and only if it is parallelizable.

The proof of Lemma 7.1 is similar to the proof of Lemma 1.2.
Further on, we assume that our 3-manifold M is parallelizable.
It is known13,17 that a 3-manifold is parallelizable if and only if it is orientable. Therefore, further

on, we assume that our 3-manifold M is orientable. Orientability is our only topological restriction.
We define the metric in accordance with formula (2.1). It is easy to see that this metric is

Riemannian.
From now on, the Riemannian metric is assumed to be fixed. We will work with all possible 2×2

formally self-adjoint elliptic first order linear differential operators with trace-free principal symbols
corresponding, in the sense of formula (2.1), to the given metric. Arguing as in Sec. II, it is easy to
see that the set of such operators is non-empty.

We specify an orientation on our manifold and define the topological charge of our operator as

ctop :=−
i
2

√
det gαβ tr

(
(Lprin)p1

(Lprin)p2
(Lprin)p3

)
= sgn det ej

α, (7.3)

and compare with formula (3.1). Of course, as we are now working in the 3-dimensional setting, the
free indices in formula (7.3) run through the values 1, 2, 3. Further on, we assume the topological
charge to be fixed.

In order to classify our operators further, we introduce an arbitrary smooth 2 × 2 special unitary
matrix-function R,

R : M→ SU(2), (7.4)

and, as in Sec. III, consider the gauge transformation (3.4). Comparing formulae (3.3) and (7.4), we
see that we are now more restrictive in our choice of matrix-functions R which is because we want
to preserve condition (7.1).

We define spin structure in the 3-dimensional Riemannian setting in accordance with Defini-
tion 3.1, having in mind the restricted choice of operators and gauge transformations. We begin
by restating our analytic definition in terms of framings. By a frame at a point x ∈M, we mean a
positively oriented orthonormal frame in the tangent space T xM and by a framing of M a choice
of a frame at every point x ∈M depending smoothly on the point. Framings exist because all ori-
entable 3-manifolds M are parallelizable. Furthermore, in our case, we have an explicit formula
establishing a one-to-one correspondence between trace-free principal symbols and framings: this
is formula (1.5) with indices j and α restricted to the set of values 1, 2, 3. Note that this one-to-one
correspondence between trace-free principal symbols and framings was first observed in (Ref. 5,
Appendix A). Any two framings of the same manifold M are related by a uniquely defined smooth
function f : M→ SO(3). Rephrasing Definition 3.1 with the restricted choice of operators and gauge
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transformations, we will say that two framings are equivalent if the function f relating them factors
as

f : M→ SU(2)
Ad
−→ SO(3),

where Ad : SU(2)→ SO(3) is the adjoint representation. A spin structure on M is then an equivalence
class of framings.

The following result was announced, without proof, in (Ref. 1, Sec. 7).

Theorem 7.2. For orientable Riemannian 3-manifolds, our analytic definition of spin structure
is equivalent to the standard definition of (Ref. 10, Sec. 2.1).

Proof. The proof of equivalence from Theorem 4.2 goes through with little change once
we replace the adjoint representation Ad : SL(2,C)→ SO+(3, 1) by the adjoint representation Ad :
SU(2)→ SO(3). �

In what follows, we provide a different proof of Theorem 7.2. This proof only works when M is
compact but it has the advantage that the equivalence it provides is canonical. The standard definition
of spin structure we will use in this proof is the one often used by topologists; it can be found in
Kaplan,12 Definition 1.7, or Milnor,15 Alternative Definition 2 (see also Remark 7.7 regarding the
latter definition at the end of this section).

According to that definition, a spin structure on M is a homotopy class of almost-framings of M.
By an almost-framing of M, one means a framing of the punctured manifold

M0 :=M \ {point}.

Two framings of M0 are said to be homotopic if they can be connected by a path of framings of M0.
Any framing of M gives rise to a homotopy class of almost-framings of M by restricting it to M0 and
taking the homotopy class of this restriction.

Proposition 7.3. This gives a well-defined map ψ from the set of spin-structures on M as defined
above to the set of the homotopy classes of almost-framings of M.

Proof. A function f : M→ SO(3) relating two framings of M restricts to a function f0 : M0

→ SO(3) relating their restrictions to M0. If the function f factors through M→ SU(2), its restric-
tion f 0 factors through M0→ SU(2). However, every function M0→ SU(2) is homotopic to a constant
function, which in addition can be chosen to send entire M0 to the identity element of SU(2). The com-
position of this homotopy with the adjoint representation SU(2)→ SO(3) then provides a homotopy
of the induced framings of M0. �

Proposition 7.4. The map ψ is a bijection from the set of spin-structures on M as defined above
to the set of the homotopy classes of almost-framings of M.

Proof. For the purposes of this proof, fix a reference framing of M so that any other framing is
obtained from the reference framing by applying a function f : M→ SO(3). This identifies the set of
all framings of M with the set Maps(M, SO(3)). The equivalence relation on the framings translates
into an equivalence relation on Maps(M, SO(3)), two functions f , g : M→ SO(3) being equivalent if
and only if there exists a function h : M→ SU(2) such that g(x)= Ad h(x) · f (x) for all x ∈M. Note
that the point-wise multiplication makes both Maps(M, SU(2)) and Maps(M, SO(3)) into groups and
the induced map

Ad∗ : Maps(M, SU(2))→ Maps(M, SO(3))

into a group homomorphism. The set of spin-structures on M is then identified with the quotient
Maps(M, SO(3))/Im Ad∗. The latter set in general does not carry a natural group structure because
Im Ad∗ need not be a normal subgroup.

Next, fix a reference framing of M0 by restricting the reference framing from M. The set of
the homotopy classes of almost-framings of M is then identified with the set [M0, SO(3)] of the
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homotopy classes of maps M0→ SO(3). With respect to this identification and the one from the
previous paragraph, the map

ψ : Maps(M, SO(3))/ Im Ad∗ −→ [M0, SO(3)]

is given by the formulaψ(f )= [f0], where [f 0] stands for the homotopy class of the map f0 : M0→ SO(3)
obtained by restricting f : M→ SO(3) to M0.

The map ψ is surjective because any map M0→ SO(3) extends to a map M→ SO(3) due to
the fact that π2(SO(3))= 0. The map ψ is also injective: suppose f , g : M→ SO(3) are such that
their restrictions f0, g0 : M0→ SO(3) are homotopic. Then g0 · f −1

0 : M0→ SO(3) is homotopic to the
constant map taking the entire M0 to the identity element in SO(3). Therefore, g0 · f −1

0 induces a trivial
homomorphism π1(M0)→ π1(SO(3)) on the fundamental groups. Keeping in mind that g0 · f −1

0 is
the restriction of g · f −1 and that π1(M)= π1(M0), we conclude that the map g · f −1 induces a trivial
homomorphism π1(M)→ π1(SO(3)) as well. The lifting criterion applied to the double covering
Ad : SU(2)→ SO(3) then implies that g · f −1 lifts to a map h : M→ SU(2), thereby ensuring that
g= Ad h · f . This completes the proof. �

Proposition 7.5. The set of spin-structures on M is in a bijective correspondence with the
cohomology group H1(M;Z2).

Proof. Proposition 7.4 identifies the set of spin-structures on M with the set [M0, SO(3)]. Since
SO(3)=RP3, one can use the cellular approximation theorem to identify the latter set with [M0,RP∞].
Here,RP∞ is the infinite dimensional real projective space, which is known to have the homotopy type
of the Eilenberg–MacLane space K(Z2, 1). Therefore, [M0,RP∞]= [M0, K(Z2, 1)]=H1(M0;Z2); see,
for instance, Theorem 4.57 of Hatcher.11 To finish the proof, one simply observes that H1(M0;Z2)
=H1(M;Z2). �

Remark 7.6. Proposition 7.5 is a well-known fact and it can be proved in a number of different
ways. See, for instance, (Ref. 10, second Proposition on p. 40) or Ref. 14.

Remark 7.7. Milnor15 defines a spin-structure on a CW-complex M as the homotopy class of
framings on the 1-skeleton M(1) which can be extended to framings on the 2-skeleton M(2). The fact
that this definition is equivalent to the definition of Kaplan12 for 3-manifolds M follows by combining
the fact that M(2) is a deformation retract of M0 with the Puppe exact sequence

0=
[∨

S2, SO(3)
]
−→

[
M(2), SO(3)

]
−→

[
M(1), SO(3)

]

of the cofibration M(1)→M(2)→
∨

S2; see, for instance, Davis–Kirk (Ref. 6, Theorem 6.42).
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