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ABSTRACT

We present an effective approach to evaluate the performance of multi-channel silicon (Si) photonic systems. The
system is composed of strip Si photonic waveguides (Si-PhWs) with uniform cross-section or photonic-crystal
(PhC) Si waveguides (Si-PhCWs), combined with a set of direct-detection receivers. Moreover, the optical
field in each channel is the superposition of a continuous-wave nonreturn-to-zero ON-OFF keying modulated
signal and a white Gaussian noise. In order to characterize the optical signal propagation in the waveguides, an
accurate mathematical model describing all relevant linear and nonlinear optical effects and its linearized version
is employed. In addition, two semi-analytical methods – time- and frequency-domain Karhunen-Loève series
expansion – are used to assess the system bit-error-rate (BER). Our analysis reveals that Si-PhCWs provide
similar performance as Si-PhWs, but for 100× shorter length. Importantly, much worse BER is achieved in
Si-PhCWs when one operates in slow-light regime, due to the enhanced linear and nonlinear effects.

Keywords: BER evaluation, silicon interconnects, photonic crystal waveguides, Karhunen-Loève expansion,
nonlinear pulse propagation

1. INTRODUCTION

Silicon optical interconnects have recently attracted great interest, due to primarily the significant potential to
improve the performance and lower the cost of chip-scale optical networks.1,2 The main advantages of silicon-
on-insulator (SOI) platforms are perhaps the potential for system integration, which stems from the high-index
contrast of Si waveguides,3 combined with the large optical nonlinearity of Si, which allows for the design of chip-
level active photonic devices with new or improved functionalities.4 One promising approach to further increase
the potential for system integration of the SOI platform is to employ photonic crystal (PhC) waveguides,5,6 which
can provide access to slow-light (SL) propagation regime.7,8 In particular, a unique feature of the SL regime is
that it enhances the linear and nonlinear optical effects, e.g., frequency dispersion, free-carriers (FCs) dispersion
(FCD), and self- and cross-phase modulation (SPM, XPM), thus further decreasing the device footprint. In
addition, due to great demand for large data transmission capacity and high data rates, wavelength-division-
multiplexing (WDM) technology is key technology to be used in future communication systems. Therefore, it is
particularly important to understand the characteristics of multi-channel optical signals propagating in photonic
communication systems containing Si waveguides.

In this paper, a detailed investigation on the performance of multi-channel Si photonic systems is presented.
Specifically, we assume that the WDM photonic system contains either a strip single-mode silicon photonic
waveguide (Si-PhW) or a Si PhC waveguide (Si-PhCW) as the Si optical interconnect, and direct-detection
receivers to demultiplex and detect the optical signal in each channel, with M channels considered. The photonic
system considered in this work is schematically depicted in Fig. 1. Our analysis employs two theoretical models,
namely a model that describes the multi-channel signal propagation in Si Waveguides, based on a system of
coupled nonlinear Schrödinger equations (NLSEs), which fully incorporates linear and nonlinear optical effects,
including FCD, FC absorption (FCA), SPM, XPM, two-photon absorption (TPA), FC dynamics, as well as the
coupling between FCs, and the optical field and a simplified model, namely the linearized version of the full
model. The bit-error rate (BER), the main quantity characterizing the performance of the communication link,
is calculated by utilizing the time- and frequency-domain Karhunen-Loève series expansion (KLSE) method.9–11

Corresponding author: Nicolae C. Panoiu, E-mail: n.panoiu@ucl.ac.uk

Silicon Photonics and Photonic Integrated Circuits V, edited by Laurent Vivien, Lorenzo Pavesi, Stefano Pelli, 
Proc. of SPIE Vol. 9891, 989116 · © 2016 SPIE · CCC code: 0277-786X/16/$18 · doi: 10.1117/12.2223187

Proc. of SPIE Vol. 9891  989116-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/20/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



ODO000oo00000 oGOOO0000000 
G G G G G G G G G 0 0 0 

G G G G G G G G G 0 o O 

G G G G G G G o O G 0 cia 
c000000000 G G G G G O o 00000 GoGGOOGGGOOO 

Source MUX

waveguide

DEMUX Receiver

…

1

2

M

1λ

2λ

Mλ

…

1D

2D

MD
…

O-filter Photodiode E-filter 

Si-PhCW

Si-PhW

Figure 1: Schematic of the multi-channel photonic system, consisting of an array of lasers, MUX, silicon waveg-
uide, DEMUX, and direct-detection receivers containing an optical band-pass filter, photodetector, and an elec-
trical low-pass filter. The waveguide is either a strip waveguide with uniform cross-section or a PhC waveguide.

2. THEORY OF MULTI-CHANNEL OPTICAL SIGNAL PROPAGATION

Two theoretical models used to investigate the propagation of multi-wavelength optical signals in two types of
Si waveguides are introduced in this section. The first approach is based on a system of coupled NLSEs whereas
the second approach employs a linearized version of the full model, used in a parameter domain where the signal
propagation is rigorously described. As illustrated in the central block of Fig. 1, the Si waveguide is either
a single-mode Si-PhW with uniform cross-section, buried in SiO2 cladding, or a Si-PhCW, consisting of a line
defect in a two-dimensional honeycomb lattice of air holes in a Si slab. The optical modes of the latter waveguide
possesses both fast-light (FL) and slow-light (SL) spectral regions. For convenience, we refer to the Si-PhCW
when operated in these two regions as Si-PhCW-FL and Si-PhCW-SL, respectively.

2.1 Full Theoretical Model

The system of coupled equations describing multi-channel optical signal propagation and its interaction with
FCs can be written as:12–14

j
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Here, the ith pulse envelope is ui(z, T ), i = 1, . . . ,M , measured in
√

W, z is the propagation distance, T
represents the time in a reference system moving with velocity, vg,ref , i.e. T = t− z/vg,ref where t is the physical
time, and ωi is the ith channel carrier frequency. The waveguide is characterized by the following parameters:
κi measures the overlap between the optical mode and the active area of the waveguide, αin is the intrinsic loss
coefficient and is equal to 1 dB cm−1 (50 dB cm−1) for Si-PhW (Si-PhCW), τc is the FC relaxation time (in our
analysis we assumed τc = 0.5 ns), δnfc and αfc are the FC-induced refractive index change and FC loss coefficient,
respectively, and are given by δnfc = σnN and αfc = σαN , where N is the FC density, σα = 1.45× 10−21(λ/λ0)2

(in units of m2), and σn = σ(λ/λ0)2 (in units of m3), with σ and λ0 = 1550 nm being a power dependent
coefficient15 and a reference wavelength, respectively. The nonlinear waveguide coefficients, γi and γij , describe
SPM and XPM interactions, respectively, and the coefficient Cik in (1b) quantifies the rate at which the optical
energy is transferred from the optical field to FCs; it is given by the following relations:

Cik =


γ′′i

~ωiAnl
, i = k,

4γ′′ik
~(ωi + ωk)Anl

, i 6= k.
(2)
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Moreover, Anl is the effective transverse area in which FCs are generated, with Anl = wh (Anl = ah) in the
Si-PhW (Si-PhCW) case, and β2,i is the second-order dispersion coefficient.

2.2 Linearized Model

In order to linearize the system (1), we express the optical field in the ith channel as the superposition between
the corresponding optical signal and a Gaussian noise:

ui(z, T ) =
[√

Pi(z) + ai(z, T )
]
e−jΦi(z), (3)

where Pi(z) stands for the ith channel CW signal power, ai(z, T ) is the complex additive Gaussian noise, and
Φi(z) represents a global phase shift. The CW signals yield the steady-state FC density, Ns, with the expression
derived from (1b): Ns(z) =

∑
i,k ξikPi(z)Pk(z), where ξik = τcCik.

To linearize (1), we first substitute (3) into (1) and then discard all quadratic and higher-order terms in
ai(z, T ). This leads to the following system of equations:
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Here, Ωi = ω − ωi, A′i(z,Ωi) = F{a′i(z, T )}, and A′′i (z,Ωi) = F{a′′i (z, T )}, with a′i(z, T ) and a′′i (z, T ) being
in-phase and quadrature noise components, respectively. Importantly, the FC-mediated interactions among
different channels result in an interchannel cross-talk mechanism, revealed by the terms proportional to Ns in
(4a) and (4b).

3. KARHUNEN-LOÈVE SERIES EXPANSION METHOD FOR BER CALCULATION

To implement the KLSE method, two assumptions are made: firstly, the direct-detection receivers for each
channel are identical and secondly, the demultiplexer will not induce additional noise correlations.

3.1 Time Domain Formulation

For the time domain KLSE method, we define r1(t) = S + ai(t) + jaq(t) as the receiver input optical signal,
where ai(t) and aq(t) are the in-phase and quadrature noise components, respectively, and S is the amplitude
of the CW signal. The “0” (“1”) bit is represented by S = 0 (S2 = P ). After the optical filter described by
the response function, ho(t), the signal can be written as r2(t) = S + vi(t) + jvq(t), where v(t) = ho(t) ⊗ a(t).
Moreover, after passing through the ideal square-law photodetector and the electrical filter described by the
response function, he(t), the electrical signal is obtained as:

y(t) =

∫ ∞
−∞

he(t)
{

[S + vi(t− t′)]
2

+ v2
q (t− t′)

}
dt′. (5)
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In order to determine the BER, firstly, we need to expand the signal S and noise components vi, vq in KL
series, with deterministic functions {φkα(t)} and {ψkα(t)}, orthonormal to the weight function he(t):

16

S =
∑
α≥1

sαφα(t), (6a)

vi(t) =
∑
α≥1

pαφα(t), (6b)

vq(t) =
∑
α≥1

qαψα(t), (6c)

where for convenience the channel index, k, has been dropped. Then we calculate the correlation matrix using
a well-known algorithm17 and from it the moment-generating function (MGF), Ψy(ζ), of the random variable y
defined by (5) is calculated as:18

Ψy(ζ) = E{e−ζy} =

2M∏
α=1

exp
(
− |ηα|

2ζ
1+2δαζ

)
√

1 + 2δαζ
. (7)

Here, δα are the eigenvalues of the correlation matrix and ηα are the expectation values of the signal at the
output of the optical filter. Finally, we evaluate the system BER defined by the following relation:

P =
1

2

[
P(y > yth|S = 0) + P(y < yth|S =

√
P )
]
, (8)

where yth is the decision threshold. Implementing the Riemann-Fourier inversion formula of the MGF, we can
measure these probabilities as follows:19

P(y > yth|S = 0) = −
∫ −|ζ̄|+∞
−|ζ̄|−∞

Ψy(ζ|S = 0)

2πjζ
eζythdζ,
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√
P ) =

∫ |ζ̄|+∞
|ζ̄|−∞

Ψy(ζ|S =
√
P )

2πjζ
eζythdζ,

where ζ̄ is a real constant that defines the integration path in the complex plane, ζ.

3.2 Frequency Domain Formulation

In this subsection we briefly outline the frequency domain method.10,11,20 Thus, in this case the phtocurrent
(5) can be expressed as,

y(t) =

∫ ∞
−∞

∫ ∞
−∞

Y ∗(f1)K(f1, f2)Y (f2)e2πj(f2−f1)tdf1df2, (9)
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Figure 2: Comparison of the system BER calculated via the time- and frequency-domain KLSE method. The
8-channel Si-PhW (a), Si-PhCW operating in the FL regime (b), and a Si-PhCW operating in the SL regime (c)
systems are considered. The input signal power in each channel is P = 5 mW. The relative difference of BER cal-
culated via the two methods is quantified by ∆r log10(BER) = [log10(BER)FD− log10(BER)TD]/ log10(BER)FD.
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where the Hermitian kernel in this equation is given by:

K(f1, f2) = H∗o (f1)Ho(f2)He(f2 − f1). (10)

Here, Ho(f) = F{ho(t)} and He(f) = F{he(t)}, are frequency-domain response functions of the optical and
electrical filters, respectively. Similarly, Y (f) is expanded in a full basis of eigenfunctions of the Fredholm integral
equation, which is defined by the kernel K(f1, f2). After obtaining the correlation matrix, one calculates the
MGF of the statistical variable y and the BER using a procedure similar to the one employed in the time-domain.

3.3 Comparison Between the Two Methods

To verify the validity of the two methods we compared their predictions, the results being summarized in
Fig. 2. In this figure, we plot the dependence on the SNR of the relative difference of the BER calculated using
the two KLSE methods, where this relative BER difference is defined as ∆r log10(BER) = [log10(BER)FD −
log10(BER)TD]/ log10(BER)FD. We performed this analysis for three channels, namely for channel 3, 6, and 7,
in an 8-channel Si-PhW, Si-PhCW-FL, and Si-PhCW-SL system. The plots in Fig. 2 show that the predictions
of the two methods agree well, particularly at large values of the SNR.

4. ANALYSIS OF SYSTEM PERFORMANCE

In this section we consider generic multi-channel photonic systems containing both types of Si waveguides, name-
ly Si-PhW and Si-PhCW. In both cases the bit window is T0 = 100 ps, the channel spacing is ∆ω = 25 GHz,
and the reference wavelength for the Si-PhW, Si-PhCW-FL, and Si-PhCW-SL systems is 1550 nm, 1550 nm, and
1523.9 nm, respectively. Also, the dispersion and nonlinear waveguide coefficients at the reference wavelength
are: β2 = 0.5 ps2 m−1 and γ = (166.8 + 50.8j) W−1 m−1 for the Si-PhW, β2 = −3.3× 102 ps2 m−1 and γ =
(750.1 + 228.6j) W−1 m−1 for Si-PhCW-FL, and β2 = −4.3× 104 ps2 m−1 and γ = (6.94 + 2.12j)× 103 W−1 m−1

for the Si-PhCW-SL. The length of the Si-PhW (Si-PhCW) is L = 5 cm (L = 500 µm), unless otherwise stated.

The first system parameter considered in our study is the optical power of the signal, since it is perhaps the
physical quantity that most significantly influences the photonic system performance. The reason for this is that
larger optical power leads to stronger nonlinear optical effects in the waveguide and a larger amount of generated
FCs, both effects modifying the optical properties of the waveguide. Thus, the dependence of the transmission
BER of the three 8-channel systems just described on the input power in each channel is presented in Fig. 3. In
this figure, we show the BER corresponding to channel 1 and channel 6. We choose different channels because
in the 8-channel Si-PhCW-SL system, the dispersion characteristics of the optical guiding mode imply that the
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Figure 3: Maps of log10(BER) vs. power and SNR, calculated for a 8-channel Si-PhW system (left), a Si-PhCW
operating in the FL regime system (middle), and a Si-PhCW operating in the SL regime system (right). The
top and bottom panels correspond to channel 1 and channel 6, respectively.
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larger is the channel index, the smaller is the group-velocity and consequently the more enhanced are the linear
and nonlinear optical effect. As a result, in such a dispersive system the quality of the transmitted signal strongly
depends on the channel index. However, this analysis is not valid in the cases of the Si-PhW and Si-PhCW-FL
systems, a conclusion validated by the small difference between the data plotted in Figs. 3(a) and 3(d), and in
Figs. 3(b) and 3(e).

Another key finding of this investigation is that the system BER increases with the input power, provided
that the value of the SNR is kept constant. In addition, the Si-PhW system provides relatively small transmission
BER either when the input power is small or when the value of SNR is large. Moreover, the Si-PhCW-FL system
has the best performance, since it provides a larger parameter space where the system BER is smaller than an
upper-bound limit commonly used in optical communications systems, namely BER < 10−9. This is true despite
the fact that the length of this waveguide is 100× shorter than that of the Si-PhW. On the other hand, when
the same PhC waveguide is operated in the SL regime it provides the worst signal quality as compared to the
other two system configurations. One way to improve the performance of this system is to decrease the input
power in each channel, to a level that ensures that the BER is smaller than 10−9.

The waveguide length is another key parameter that strongly influences the transmission BER, so that it is
worth to investigate this dependence in order to provide guidance to the design of highly efficient Si waveguides
for on-chip optical interconnects. To this end, different lengths of both Si-PhW and Si-PhCW waveguides were
considered, but the ratio of these two waveguide lengths was fixed to 100, with the aim of providing a clear
comparison among different systems by only using one variable – the waveguide length. The dependence of the
system BER versus the waveguide length, in the case of the three 8-channel systems described above and for
the signal power, P = 5 mW, is presented in Fig. 4. A key feature illustrated by this figure is that for all three
systems the BER decreases when the waveguide length decreases. In addition, the Si-PhCW operated in the FL
regime can provide the best performance among the three cases investigated, as in this case the BER is smaller
than the threshold of 10−9 in almost the entire parameter space covered by Figs. 4(b) and 4(e).
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Figure 4: Maps of log10(BER) vs. waveguide length and SNR, calculated for a 8-channel Si-PhW system (left),
a Si-PhCW operating in the FL regime system (middle), and a Si-PhCW operating in the SL regime system
(right). The top and bottom panels correspond to channel 1 and channel 6, respectively. The input power in
each channel is P = 5 mW.

5. CONCLUSIONS

In conclusion, a detailed analysis of bit-error rate in multi-channel photonic systems containing silicon waveg-
uides was presented. Both a strip waveguide with uniform cross-section and a photonic crystal waveguide were
considered as two generic types of such optical interconnects. Moreover, we extended our analysis to an im-
portant physical regime pertaining to photonic crystal waveguides, namely slow-light propagation, where both
linear and nonlinear optical effects are strongly enhanced. Our analysis of the bit-error rate in these photonic
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systems revealed that reduced device footprint can be achieved by using photonic crystal waveguides when they
operate in the fast-light regime. On the other hand, significant degradation of the system performance was
observed when the photonic crystal waveguide was operated in the slow-light regime at similar power levels,
because the enhanced linear and nonlinear optical effects induce large inter-channel cross-talk. Importantly,
the theoretical models introduced in this study can also be applied to other, more complex devices of practical
interest. For example, other photonic devices can be added in the system by properly modifying the theoretical
models describing the optical field dynamics in the silicon waveguides. This shows that, among other things, our
work is particularly relevant to the development of future chip-scale optical interconnects implemented on the
silicon-on-insulator platform.
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