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Abstract: Lower Urinary Tract Symptoms (LUTS) affect a significant
proportion of the population and often lead to a reduced quality of life.
LUTS overlap across a wide variety of diseases, which makes the diagnos-
tic process extremely complicated. In this work we focus on the relation
between LUTS and Urinary Tract Infection (UTI). The latter is detected
through the number of White Blood Cells (WBC) in a sample of urine:
WBC≥ 1 indicates UTI and high levels may indicate complications. The
objective of this work is to provide the clinicians with a tool for support-
ing the diagnostic process, deepening the available knowledge about LUTS
and UTI. We analyze data recording both LUTS profile and WBC count
for each patient. We propose to model the WBC using a random partition
model in which we specify a prior distribution over the partition of the
patients which includes the clustering information contained in the LUTS
profile. Then, within each cluster, the WBC counts are assumed to be gen-
erated by a zero-inflated Poisson distribution. The results of the predictive
distribution allows to identify the symptoms configuration most associated
with the presence of UTI as well as with severe infections.
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1. Introduction

Lower Urinary Tract Symptoms (LUTS) define a group of symptoms that com-
prises urgency, pain, stress incontinence and voiding problems. They particularly
affect elderly population with 40% of the men and 28% of the women with age
between 70 and 79 years (Irwin et al. (2006)) suffering from them. This group
of symptoms is related to a number of diseases (from neurological pathologies
to anxiety and stress) which are not directly identified by disjoint groups of
LUTS, making the diagnostic process complicated. Often LUTS indicate the
presence of Urinary Tract Infection (UTI), a condition that may lead to chronic
problems when not readily diagnosed and consequently require time consuming
and expensive treatments.

Given the difficulty in interpreting LUTS, specific exams are commonly em-
ployed in order to assess the presence of the infection. The published data show
that the best biological indicator of UTI available is pyuria (≥ 1 White Blood
Cell count (WBC) μl−1) detected by microscopy of a fresh unspun, unstained
specimen of urine (Khasriya et al. (2010); Kupelian et al. (2013)). In the presence
of symptoms, any pyuria (≥ 1 WBC μl−1) correlates with other independent
inflammatory and microbiological markers distinguishing patients from controls
(Khasriya et al. (2010); Kupelian et al. (2013); Gill et al. (2015)). This proce-
dure allows counting the WBC, but on the other side it can only be performed
in specific laboratories, requiring time to return the results as well as represent-
ing a consistent cost for the health system. Therefore, it is common practice
to use dipsticks for examining urine samples, which can reveal the presence of
White Blood Cells (WBC) which in turn indicate UTI. Dipsticks can be used by
non-specialized clinicians and deliver a result in few instants. However, Khasriya
et al. (2010) investigated the diagnostic power of dipstick urinalysis and iden-
tified deficiencies. Thus, an infection can be present much earlier than being
diagnosed using a dipstick increasing significantly the risk of chronicity.

For all these reasons, it is valuable to study the relation between LUTS and
UTI from a statistical point of view, in order to provide tools for assisting
the clinicians during the diagnostic process. This is the broad objective of this
work.

The starting point of our analysis is a dataset containing information about
patients affected by LUTS for which the counts of the WBC from the micro-
analysis have been recorded together with the symptoms profiles. The latter
are vectors of binary indicators which indicate the presence of the symptoms.
The WBC counts in the dataset are zero more than 50% of the time, i.e. more
than half of the patients do not show microscopic evidence of UTI. We thus
propose an approach to model the relation between the WBC counts (response)
and the LUTS profiles (covariates), which extends nonparametrically the well
known class of the zero-inflated distributions (Neelon, O’Malley and Normand
(2010)). This class of distributions has been extensively employed in a number
of applications: it involves the specification of a parameter that regulates the
inflation of the probability for a specific outcome which could not be modeled
according to standard distributions.
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Specifically, we propose a Bayesian random partition model (Lau and Green
(2007)) in which the covariates are used jointly with the response to inform the
clustering structure of the observations which has been a priori assumed to fol-
low a Chinese Restaurant Process (Aldous (1985)). For a review about random
partition models with covariates see Müller and Quintana (2010). Within each
cluster we treat the WBC counts as independent and identically distributed
(iid) random variables distributed according to a Zero-Inflated Poisson (ZIP)
distribution with cluster specific parameters. In this way we assume the covari-
ates to affect the response only through the clustering structure. This latter
assumption can be relaxed to allow also the mean of the Poisson component to
depend on the covariates. We call the resulting model Bayesian Nonparametric
ZIP model (BNP-ZIP).

BNP-ZIP allows to associate different combinations of the covariates with
different probabilities of having UTI (i.e. WBC≥1) as well as with different
levels of severity of UTI. The results of the study highlight the importance
of the voiding class of symptoms for both the probability of being diagnosed
with UTI and also its level of severity (which increases with the number of
WBC in the urine). Differently, the urgency and stress incontinence symptoms
have low probability of being associated with UTI when they appear alone or
combined. We also believe that the predictive distributions which depend on
the covariates may represent a useful tool for supporting the clinicians in the
diagnostic process.

The rest of the work is organized as follows. In Section 2 we introduce and
discuss the zero-inflated models, while in Section 3 we describe our nonparamet-
ric approach. Section 4 presents the analysis of the LUTS dataset. We conclude
the paper with a discussion of the results in Section 5.

2. Models with zero-inflated (or deflated) distributions

Count data with out-of-pattern number of zeros are common in numerous real
world applications. Modeling such data without accounting for the excess of
zeros may lead to biased estimates of the parameters. The common approach
to deal with this problem involves the use of mixture models in which a distri-
bution over counts (e.g. Poisson distribution, Negative Binomial distribution,
etc.) is mixed with a Dirac measure located in correspondence of the value 0.
The most famous approaches include Hurdle models (Mullahy (1986)) and Zero-
Inflated models (Lambert (1992)). The first type of models specifies a mixture
of a point mass at zero and a zero truncated distribution for the non-zero obser-
vations. Differently, Zero-Inflated models mix a standard distribution with the
Dirac measure and consequently model the inflation (or the deflation) of the
probability of the zero outcomes.

In this work we focus prominently on Zero-Inflated Poisson (ZIP) distribu-
tions. ZIP models can be extended to incorporate covariate information through
regressions using convenient link functions on both the mixing probability and
the mean parameter of the Poisson distribution. In order to account for the het-
erogeneity of the patients, random effect models are also employed (Hall (2000),
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Leann Long et al. (2015), Agarwal, Gelfand and Citron-Pousty (2002)). Random
effects can either be assigned individually to each observation or to clusters of
observations. The latter approach is more parsimonious in the number of pa-
rameters to be estimated but, when the clustering structure of the observations
is not known a priori, it is often problematic to determine the number of clusters
and their compositions in order to assign effectively the random effect avoiding
problems of overfitting.

This motivates our proposed approach. Placing a prior distribution over the
partition of the observations allows learning from the data the clustering struc-
ture and capturing patients heterogeneity within the data.

3. Bayesian nonparametric ZIP model (BNP-ZIP)

We present in this section a nonparametric model capable of dealing with obser-
vations having excess of zeros and accounting for clustering of individuals. We
briefly show some properties of the model and we discuss Markov Chain Monte
Carlo (MCMC) algorithms for posterior and predictive inference.

3.1. Random partition zero-inflated Poisson model

It is often of interest to model response variables within clusters. This allows us
to account for possible patterns within the data as well as for highly dispersed
observations and outliers. A common assumption is to consider the observations
within each cluster as generated iid from a distribution having cluster-specific
parameters. However, when the data are not naturally in clusters, it is also
convenient to learn the clustering structure from the data. Thus, the strategy
employed in this work consists in specifying a convenient prior over the partition
of the patients and to fit independent models within each cluster. This modeling
strategy belongs to the class of Random Partition Models (RPM, Lau and Green
(2007)).

Let us introduce a convenient notation to deal with the partition of a set. The
collection of sets ρn = {S1, . . . , Sk} defines a partition of the set N = {1, . . . , n}
if
⋃k

j=1 Sj = N and Sj

⋂
Sj′ = ∅ for all j different from j′. We can consider N

to be the set containing the labels of the observations while the sets in ρn denote
clusters of observations with k being the number of clusters. The same partition
can also be identified by using the cluster assignment vector s = (s1, . . . , sn),
whose components take value into the set of cluster labels, i.e. {1, . . . , k}.

Let y = (y1, . . . , yn) be a collection of variables presenting an out-of-pattern
number of zero observations. We assume the following joint model for the com-
ponents of y:

y | ρn,μ∗,λ∗ ∼
k∏

j=1

∏
i∈Sj

[(1− μ∗
j )δ0(yi) + μ∗

jPoisson(yi | λ∗
j )], (1)
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where μ∗
j ∈ (0, 1) and λ∗

j ∈ (0,+∞) are cluster-specific parameters, while δ0(yi)
is the Dirac measure which places a unitary mass of probability in correspon-
dence of yi = 0.

Within each cluster, the model in (1) is a mixture between two distributions:
the first one is a point mass located at 0 and the second one is a Poisson dis-
tribution with cluster-specific mean equal to λ∗

j . The model above implies that
Pr(yi = 0 | si, μ∗

si , λ
∗
si) = 1 − μ∗

si + μ∗
siexp(−λ∗

si) and consequently that the
probabilities of all other outcomes different from 0 follow a rescaled Poisson
distribution. The role of the parameter μ∗

j is crucial since it determines the in-
flation level for the probability of the 0 outcome. Note that under a conventional
Poisson distribution with mean λ we have Pr(yi = 0 | λ) = exp(−λ).

An alternative distribution on the counts may be employed in (1) instead
of the Poisson. A common example is represented by the Negative Binomial,
which having two parameters can account for over-dispersed observations within
each cluster. A useful parameterization of the Negative Binomial that can be
employed in this context is the one involving mean and dispersion parameters.
Assuming these parameters together with the parameter controlling the zero-
inflation to be cluster-specific allows writing an equivalent random partition
Zero-Inflated NB (ZINB) model.

3.2. Prior partition model

A RPM requires the specification of a prior distribution over ρn. A common
choice is to use the distribution over partitions implied by the so called Chinese
Restaurant Process (CRP, Aldous (1985))

p(ρn | α) ∝
k∏

j=1

α(nj − 1)!, (2)

where α is a positive scalar parameter and nj is the cardinality of cluster Sj .
The distribution above implies that also k is random taking value in {1, . . . , n}.
We clarify the role of α showing how to sample sequentially a partition from the
CRP. Let us consider the point i = 1 and assign it to cluster j = 1 (i.e. S1) with
probability 1. CRP assumes that the probability for the observation i = 2 to be
assigned either to a new cluster or to cluster j = 1 is proportional to α and the
cardinality of S1 (i.e. n1, that in our example is equal to 1) respectively. The
same procedure applies for all other points up to i = n. Thus, α determines the
number of different clusters k.

3.3. Clustering with covariates information

When covariates are available, it can be convenient to modify the CRP prior
for the partition of the observations in (2) in order to include clustering in-
formation contained within the covariates. This is equivalent to assume higher
prior probability for two individuals having the same (or similar) covariate pro-
file to co-cluster. The specification of a distribution over the partition of the
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observations which could include covariates information has recently received
remarkable attention in RPM literature and the variety of solutions have been
discussed by Müller and Quintana (2010).

In this work we opt for specifying a model for the covariates in order to
construct a covariate dependent model on the partition of the observations. This
strategy is one of the most common in practice for its computational tractability
and it has been introduced by Müller, Erkanli and West (1996). Extensions have
been presented by Shahbaba and Neal (2009), Park and Dunson (2010), Molitor
et al. (2010), Müller, Quintana and Rosner (2011), Hannah, Blei and Powell
(2011). Let us consider a matrix of binary covariates X with n rows and D
columns and denote with xi = (xi1, . . . , xiD) a generic row of X. Similarly to
y, we assume clusters of rows of X to be generated by the same distribution. We
use ζ∗

j = (ζ∗j1, . . . , ζ
∗
jD) to denote the cluster-specific parameters for the model

of the covariates and we write

X | ρn,Z∗ ∼
k∏

j=1

∏
i∈Sj

D∏
d=1

Bernoulli(xid | ζ∗jd), (3)

where Z∗ = (ζ∗
1 , . . . , ζ

∗
k).

The formulation proposed above allows to modify (2) writing the conditional
probability of the partition given the covariates, which is

p(ρn | α,X,Z∗) ∝
k∏

j=1

α(nj − 1)!
∏
i∈Sj

D∏
d=1

Bernoulli(xid | ζ∗jd), (4)

and we adopt the latter to be the prior over the random partition of the ob-
servation. The second part in the distribution above represents the likelihood
of the covariates within cluster Sj which takes larger values in clusters having
similar covariates. This corrects the probability of the partition implied by the
CRP favoring clusters containing homogeneous covariate patterns.

An advantage of the proposed model on the partition of the observations is
the flexibility with respect to the covariate type. In (4), modifying the model on
the covariates with other suitable distributions allows the user to include in the
partition information from different (or mixed) covariate types. On the other
hand, the main disadvantage of this formulation arises when a large number of
covariates is included in the model. In this situation, the clustering information
contained in the covariates tends to dominate the partition which becomes in-
sensitive to the clustering patterns contained in the outcome. A possible solution
to this problem has been presented by Wade et al. (2014).

3.4. Joint probability model

We call the resulting model Bayesian Nonparametric ZIP model (BNP-ZIP),
which can be summarized by the following joint probability model

p(y,X, ρn,μ
∗,λ∗,Z∗, α) =

p(y | ρn,μ∗,λ∗)p(X | ρn,Z∗)p(ρn | α)p(μ∗,λ∗,Z∗)p(α),
(5)
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where (μ∗,λ∗) are independent of Z∗. From (5) we can derive p(y, ρn,μ
∗,λ∗,

Z∗, α | X), which gives an RPM with a covariate dependent partition.
An important aspect of the proposed formulation is that the joint model in

(5), when p(ρn | α) is as in (2), corresponds to the joint model under a Dirichlet
Process Mixture (DPM, Lo (1984)) model in which a Dirichlet Process (DP,
Ferguson (1973); Antoniak (1974)) prior is specified for the parameters of the
response and the covariates. Specifically, the joint model in (5) can be rewritten
as the following hierarchical model:

yi, | μi, λi ∼ (1− μi)δ0(yi) + μiPoisson(yi | λi)

xi | ζi ∼
D∏

d=1

Bernoulli(xid | ζid)

(μi, λi, ζi) | G ∼ G =

∞∑
j=1

v∗j
∏
l<j

(1− v∗l )δ(μ∗
j ,λ

∗
j ,ζ

∗
j )

(6)

v∗j | α ∼ Beta(v∗j | 1, α)
(μ∗

j , λ
∗
j , ζ

∗
j ) ∼ p(μ∗

j , λ
∗
j , ζ

∗
j ) = p(μ∗

j , λ
∗
j )p(ζ

∗
j )

α ∼ p(α).

The random quantity G in the model above has been constructed using the so
called stick-breaking procedure and it has been proved by Sethuraman (1994) to
be DP distributed. Details about the relationship between CRP and DP may be
found in Blackwell and MacQueen (1973) while the connection between RPM
and DPM models is presented in Quintana and Iglesias (2003). The equiva-
lence between the BNP-ZIP and a DPM model is very useful when performing
posterior inference.

3.5. Prior specification

The model described above is completed by specifying the hyperprior distri-
butions for the parameters. We assume independent prior distributions for the
cluster specific parameters

μ∗
j ∼ Beta(μ∗

j | aμ, bμ)
λ∗
j ∼ Gamma(λ∗

j | aλ, bλ)

ζ∗
j ∼

D∏
d=1

Beta(ζ∗jd | aζ , bζ).

We also assume a prior distribution for the parameter α of the distribution
of ρn. This parameter takes value into the set of positive real numbers, thus
we employ a Gamma prior distribution with parameters aα and bα. However a
prior distribution over subsets of its real support can also be employed when in
(6) the random distribution G is replaced with its truncated version (up to K
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mixture components)

GK =

K∑
j=1

v∗j
∏
l<j

(1− v∗j )δ(μ∗
j ,λ

∗
j ,ζ

∗
j )
,

for computational reasons. A detailed discussion about the approximation of
G with GK has been presented in Ishwaran and James (2002). When GK is
employed Ohlssen, Sharples and Spiegelhalter (2007) discuss the choice of a
Uniform prior distribution for α.

3.6. Posterior inference and MCMC

The model described above is a joint RPM model on the response and the
covariates. The connection between the proposed RPM and the DPM model
highlighted above is convenient since it allows using available efficient Markov
Chain Monte Carlo (MCMC) algorithms developed for DPM models for sam-
pling from the posterior distributions. A review of these algorithms is found in
Neal (2000).

In a Gibbs fashion, the posterior inference can be divided in three main
stages. In the first stage we resample ρn from its full conditional, whereas in
the second one we resample the cluster specific parameters of the response and
the covariates from their full conditional distributions and finally we resample
α from its full conditional distribution. The first stage can be performed using
the Algorithm 8 in Neal (2000), or alternatively through the Blocked Gibbs
sampler proposed by Ishwaran and James (2001). The cluster specific param-
eters are resampled independently across clusters. A Metropolis-within-Gibbs
step can be designed for the parameters of the response, while known full con-
ditional distributions are available for the parameters of the covariate model.
The resampling of α can be performed using a Metropolis-within-Gibbs step.
Alternatively, imposing a Gamma prior on α leads to tractable full conditional
distribution as discussed in Escobar and West (1995).

Posterior inference for BNP-ZIP can be also performed using WinBUGS (Lunn
et al. (2000)), JAGS (Plummer et al. (2003)) or Stan (Carpenter, Gelman and
Hoffman (2015)) softwares for Bayesian inference. JAGS code is provided in the
appendix. All these softwares implement a truncated version of the DPM model
to perform inference (details about the truncated approach to DPM models are
presented in Ishwaran and James (2001)).

Posterior predictive inference is a key aspect of BNP-ZIP. Using the distri-
bution in (2) for the partition allows the model to grow in complexity when
new observations arise adding clusters to the partition. Furthermore, enriching
(2) with the information of the covariates, as showed in (3), encourages obser-
vations with similar covariates to be assigned to the same cluster and hence to
predict similar responses. In a standard statistical problem the response of a
new individual is unknown and needs to be evaluated, while the covariates are
available. Denoting with x̃ and ỹ respectively the covariates and the response
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for a new individual, the predictive distribution p(ỹ | y,X, x̃) can be evaluated
within the MCMC scheme assigning the new individual to a cluster given the
available information (x̃ included) and sampling from the distribution in (1)
using the parameters μ∗

s̃ and λ∗
s̃, where s̃ is the cluster allocation for the new

observation with covariates x̃. Note that if s̃ indicates a new cluster the two
parameters are sampled from their prior distributions. Details of this procedure
are presented in Müller, Quintana and Rosner (2011).

4. Data Analysis: Lower urinary tract symptoms

In this section we present the analysis of the LUTS data using the BNP-ZIP
model. After a detailed presentation of the data, we describe the results in terms
of clustering of the patients and of predictive inference. We also highlight the
medical implications of the results.

4.1. Data

In this study we consider n = 1424 patients at the first visit attendance at
the Lower Urinary Tract Service Clinic (Whittington Hospital, London, UK).
All patients are female over 18 years of age. For each of them the result of
the microanalysis of a sample of urine has been recorded in terms of the WBC
count. Presence of WBC in the urine (regardless of the quantity) indicates the
presence of Urinary Tract Infection (Kupelian et al. (2013)). It is worth noticing
that a large number of WBC is also the sign of a high degree of inflammation
and thus can be somehow treated as an indicator of the severity of the infection.
The empirical distribution of WBC count is strongly positively skewed: this is
due to the fact that over 50% of the counts is equal to 0. Moreover the WBC
counts different from 0 are highly dispersed, ranging from 1 to 3840.

For each of the patients a profile of LUTS has been recorded. Each profile
contains information about four different types of symptoms: urgency symp-
toms, pain symptoms, stress incontinence symptoms and voiding symptoms. We
recorded the profiles by binary vectors with 4 components, each taking value
equal to 1 when the correspondent category of symptoms is activated and zero
otherwise. On average patients have between 2 and 3 categories activates, and
there are 66 patients that do not show any symptom. 161 patients suffer from
all four categories of symptoms.

4.2. Prior settings

For the analysis of the data described above we set the hyperparameters aμ =
bμ = aζ = bζ = 1, implying minimal prior information. Also the hyperparam-
eters aλ and bλ are set equal to 1. We adopt the blocked Gibbs sampler to
sample from the full conditional distribution of the partition, approximating
the complexity of the model up to a certain number of possible occupied clus-
ters. We consider K = 70 as maximum number of clusters and we also set the
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hyperparameters aα and bα equal to 1. The truncation of the Dirichlet process
has been discussed by several authors. Following the results in Ishwaran and
James (2002), the adopted truncation level leads to negligible approximation
error (given the levels of α explored by the Gibbs sampler). A different practical
approach to determine K has been discussed by Ohlssen, Sharples and Spiegel-
halter (2007), who employ also a Uniform prior for α on the set (0, 10). This
allows to set a priori the largest possible approximation error.

We initialize the MCMC chain taking random starting points from the prior
distributions. We save 20000 samples after a burnin period of 10000 interactions.
The convergence of the MCMC chain to the posterior distribution has been
assessed by trace plots and computing sample autocorrelations and effective
sample sizes.

4.3. Results

In this section we present the results obtained fitting the BNP-ZIP on the LUTS
dataset. We recall that the objective is to identify the categories of symptoms
most associated with infection, i.e. with a count of WBC larger than 0. Further-
more, we want to assess which category of LUTS indicate a high level of WBC,
which is then related to the severity of the UTI.

4.3.1. Clustering output

The starting point of our analysis consists in investigating the posterior distri-
bution of the partition of the observations, i.e. p(ρn | y,X).

In order to investigate the composition of the clusters in terms of patients we
compute the posterior probability for all pairs of observations to be assigned to
the same cluster. These probabilities can be computed using the samples from
p(ρn | y,X) of the MCMC algorithm. With the aim of highlighting the patterns
that lead to the clustering structure, we plot the probabilities of co-clustering
ordering the observations according to different criteria. Figure 1 shows the
probabilities of co-clustering ordering the patients for increasing values of WBC
(left panel) and grouping the observations in terms of observed combinations of
the covariate profiles (right panel).

In the left panel, blocks of observations with large probability of co-clustering
are clearly visible along the diagonal of the plot. These blocks correspond to
groups of observations having similar responses. Evidently, these do not mix
with other groups, indicating quite distinct clusters of patients. An interesting
exception is represented by the first block that represents the patients with
response equal to 0. In our dataset the patients with WBC equal to 0 are 717.
This block mixes with the blocks on the top right corner, which are those with
the largest value of WBC, underlying the difficulty of the diagnostic process for
UTI: similar patients (in terms of symptoms) may have a severe infection (using
the number of WBC for evaluating the severity of UTI) or no UTI.
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Fig 1. Levelplots of the probabilities of co-clustering of the patients ordered by increasing
value of the response (left panel) and combinations of activated covariates (right panel).

Table 1

Combinations of the covariates. The columns From and To identify the positions of the
groups of patients sharing the same combination of covariates in Figure 1 (right panel)

.

Index Urgency Pain Incontinence Voiding From To
1 0 0 0 0 1 66
2 1 0 0 0 67 220
3 0 1 0 0 221 285
4 0 0 1 0 286 362
5 0 0 0 1 363 394
6 1 1 0 0 395 494
7 1 0 1 0 495 712
8 1 0 0 1 713 785
9 0 1 1 0 786 797
10 0 1 0 1 798 917
11 0 0 1 1 918 936
12 1 1 1 0 937 990
13 1 1 0 1 991 1159
14 1 0 1 1 1160 1246
15 0 1 1 1 1247 1263
16 1 1 1 1 1264 1424

The right panel in Figure 1 displays the co-clustering probabilities rearrang-
ing the patients by different combinations of the covariates. Specifically, each
covariate profile is composed by four binary indicators which imply 16 different
combinations of covariates (all observed in the dataset).

Table 1 indexes the different combinations of the covariates following the or-
der in which they appear in the right panel of Figure 1. Moreover, it gives the
exact positions of the groups of patients characterized by the same covariate pro-
file on the levelplot. Looking at the areas with high probability of co-clustering
in the right panel of Figure 1 we notice that patients having the first seven
combinations of covariates tend to co-cluster with the patients presenting the
same symptoms and also with some of the patients having only one category
activated. From the left panel of the same figure we know that ordering the pa-
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Fig 2. Symptom indicators (black) for the six largest clusters in ρ∗n, i.e. the partition esti-
mated minimizing the Binder loss function. For each panel (corresponding to a cluster), the
horizontal axis is related to the symptoms, whereas vertical axis shows the patients for each
cluster. The number in the top-left corner of each panel corresponds to the cluster size.

tients based on the value of WBC highlights distinct clusters. Therefore, finding
high co-clustering probabilities for these indexes of symptoms implies that these
are likely to indicate specific mixture components. On the other hand, indexes
from 8 to 16 show less evident clustering structure (with some exception for
example for index 12). This indicates that the symptom configurations coded
with these indexes may belong to different mixture components which are also
connected with different values of the WBC.

We further characterize the clusters in terms of symptoms considering a point
estimate of ρn, say ρ∗n = {S∗

1 , . . . , S
∗
k}, and controlling which symptoms are

activated for the different sets of ρ∗n. We estimate ρ∗n minimizing the Binder
loss function (Binder (1978)), using p(ρn | y,X). This can be done using the R
package mcclust (https://cran.r-project.org/web/packages/mcclust/).

In Figure 2 we display the composition (in terms of symptoms) of the six
largest clusters, which contain 75% of the patients. Each panel corresponds to a
cluster: each row of the plot corresponds to a patient while the x-axis represents
the four symptoms. Black cells indicate activated symptoms. In most of the
panels in Figure 2 a pattern is evident. For example cluster S∗

1 (top-left panel),
which corresponds to the largest estimated cluster, contains mainly patients
with urgency symptoms and stress incontinence symptoms. Other examples are
S∗
4 (bottom-left panel), which contains mainly patients with the pain symptom

activated, or S∗
5 which shows patients with all symptoms activated. Recalling

https://cran.r-project.org/web/packages/mcclust/
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Fig 3. Posterior predictive distirbution of the probability of WBC equal to 0, given the co-
variate indexes in Table 1. The black line in each box represents the median.

that each cluster is associated with similar covariates as well as with response
values generated by the same distribution, finding a pattern in the covariates
implies that particular symptoms, or combination of symptoms, are predictive
of similar response levels.

In order to have a better understanding of how different combinations of
symptoms relate with the response, in particular for those symptoms which
have high uncertainty about the clustering assignment, we explore the predictive
distribution of the response conditioning on symptoms combinations.

4.3.2. Predictive inference

Treating the symptom profiles as random in order to incorporate the covariate
information in the partition of the observations has remarkable advantages in
practice when the objective is to predict the level of WBC (the response), given
the symptom profile x̃. The BNP-ZIP will tend to assign the new patient to the
cluster characterized by similar/equal symptoms combination, and thus predict
a value of the response similar to the response of the patients in that cluster.
This practical advantage has been widely discussed in the literature by Müller,
Erkanli and West (1996), Müller, Quintana and Rosner (2011), Park and Dunson
(2010), Hannah, Blei and Powell (2011) (among the others) and in the review
papers by Müller and Quintana (2010) and Cruz-Marcelo et al. (2013).

We analyze the predictive distribution p(ỹ | y, x̃,X) in order to gain some
understanding about the relationship between the different covariates combina-
tions and the presence and severity of UTI. In Figure 3, we plot the posterior
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predictive distribution of y, p(ỹ = 0 | y,X, x̃), for x̃ equal to the different com-
binations of the covariates indexed according to Table 1. This is equivalent to
the predictive distribution of not having UTI. This figure shows that the covari-
ates with index 2,4 and 7 have posterior median probability of WBC equal to
0 close to 0.9 and with small dispersion. Moreover, Figure 2 seems to suggest
that these covariate indexes often co-cluster (see top-left panel relative to S∗

1 ).
Also covariate index 1 has a similar median, but with larger dispersion. The first
three combinations of the covariates highlight that the categories of urgency and
stress incontinence (or their combination) are associated with low probability of
UTI, while index 1 corresponds to the configuration without symptoms. Other
combinations present similar and very high median probability of having UTI.
Interestingly, the profiles presenting voiding category activated have low medi-
ans for the probability of WBC equal to 0 and small dispersion. This is evident
especially for index 10 and 13, which seem to often belong to the same clus-
ter (see top and bottom right panels referring to S∗

3 and S∗
6 in Figure 2). Also

pain symptoms seem connected with infection, although the respective distribu-
tions are right skewed or very dispersed (see box plots relative to the covariates
indexed as 3, 6, 9 and 12).

In order to study the relation between the categories of symptoms and the
severity of UTI, we compute the distribution of the third quartile of the pre-
dictive distribution for all the combinations of the covariates. While clinicians
commonly agree that high levels of WBC are connected with complicated in-
fections, the third quartile of the distribution of the WBC does not have per
se a clinical interpretation. In fact, the choice of the third quartile has only a
statistical interpretation. The distributions of these quantities for all symptoms
combinations are displayed in Figure 4. The distributions displayed are often
right skewed with very long tail. The median of all distributions is smaller than
20. The largest median is associated with profile 14, which has also the second
longest tail. Profiles 14 and 8 are characterized by the voiding category activated
together with the urgency and stress incontinence categories, which confirms the
results about the probability of having UTI. This suggests that not only voiding
category indicates high probability of UTI, but also it indicates severe infection
(when combined with urgency and stress incontinence problems).

We have performed a similar analysis using a ZINB within-cluster likelihood,
which we call Bayesian Nonparametric ZINB model (BNP-ZINB). This has been
done to check whether the Poisson assumption within each cluster could be too
restrictive. We compare the BNP-ZIP with BNP-ZINB using the Brier score
function as described in Section 4.3.3. The results of this comparison show that
BNP-ZIP produces more accurate prediction for the presence of infection, while
it is comparable to the BNP-ZINB for predicting high values of WBC.

The results of the analysis are of considerable clinical importance. Most clin-
icians assume that pain is the primary symptom indicative of urinary infection.
In fact, some doctors will not consider the diagnosis of UTI in the absence
of pain. Thus, the findings of this work suggest that the treatment of the in-
fection should reverse this situation. Regrettable, urologists assume that the
voiding symptoms are caused by a structural obstruction of the urethra and
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Fig 4. Distribution of the third quartile of the predictive distribution of WBC, given the
covariate indexes in Table 1. The black line in each box represents the median.

treat affected women by stretching the urethra. This procedure is unlikely to
help infection and carries the risk of causing urinary incontinence. Instead, it
is more likely that the voiding symptoms arise because of the inflammation in-
duced by swelling of the urethra induced by the infection which in turn causes
a relative obstruction to the urinary outflow.

4.3.3. Comparison with related methods

We evaluate the performance of the proposed method comparing it with a
Bayesian ZIP model (see for example Neelon, O’Malley and Normand (2010))
and with a DPM of Poisson distributions equivalent to the BNP-ZIP except
for the absence of zero-inflating parameters in the likelihood. In order to per-
form the comparison we divide the the entire data set into a training set (which
contains 80% of the records) and a test set, both maintaining the same pro-
portion of covariate types as the whole data set. After fitting the model on the
training set we evaluate predictive performance using the test set. We use the
distribution of the Brier score (Brier (1950)) which is calculated as

Brier(q) =
1

m

m∑
i=1

(
f
(q)
i − y

(q)
i

)2

where y
(q)
i is equal to 1 if yi > q and 0 otherwise, f

(q)
i is the predictive

probability under the model to observe a response larger than q and m is
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the dimension of the test set. Small values of the Brier score function in-
dicate good predictions. We consider q = 0, 10, 45, the latter two being the
third quartile and mean of the WBC. The results show that the nonparamet-
ric methods outperform evidently the parametric ZIP. Instead, between the
BNP-ZIP and DPM of Poisson distributions the differences are less evident
(especially for the discretization level equal to 10), but in favor of the pro-
posed method. The same conclusions can be achieved also comparing the mod-
els in terms of Deviance Information Criterion (Spiegelhalter et al. (2002)).
Although the predictive performances are similar, the main difference between
a DPM of Poisson distributions and the BNP-ZIP is in the cluster composi-
tion and consequently their interpretation, which we reckon more natural and
connected to traditional ZIP regression models. In fact, in our model clusters
with the same combination of covariates can accommodate both the excess of
zeros and the non-zero counts. On the other hand, the DPM creates clusters
with the mean of the Poisson very close to zero to accommodate the excess
number of zeros, but it also yields extra clusters if for same combination of
symptoms a significant number of high counts are observed. As a result, our
model leads to a more parsimonious representation of the clustering struc-
ture.

Traditional methods for the analysis of WBC counts using the symptoms as
predictors include Classification And Regression Trees (CART, Breiman et al.
(1984)) and random forests (Breiman (2001)). These are likelihood-free methods
which partition progressively the covariate space according to some decision rule
in order to reduce the variability of the associated response variable within each
partition set. We compare the partition obtained through these methods with
the one estimated by the proposed technique. Both CART and random forests
highlight the importance of voiding symptoms. For random forests this has been
evaluated using the decrease in residual sum of squares in a cluster (or node)
achievable splitting on a certain variable. The importance of voiding symptoms
in the analysis with BNP-ZIP has been underlined and it seems evident looking
at the division between the groups of indexes in Figure 3 and 4.

4.3.4. Sensitivity analysis

The BNP-ZIP requires the specification of four pairs of hyperparameters, namely
(aα, bα), (aζ , bζ), (aμ, bμ) and (aλ, bλ). We check the sensitivity of our model to
different choices of the hyperparameters, focusing on the effects on cluster com-
positions. We propose two different checks. The first one consists of computing
the absolute values of the difference (entry-wise) of the co-clustering probability
matrices obtained with the values of the hyperparameters in Section 4.2 (used
as reference values) and under alternative scenarios. We summarize the dis-
tribution of the entries of the upper-triangular matrix containing the absolute
valued differences of the co-clustering probabilities using 95% credible intervals.
The second method consists of estimating the mode of the number of clusters
(ordered by size) which contains 95% of the patients under different choices of
the hyperparameters.



BNP-ZIP model for urinary tract infection 3303

Table 2

Results of the sensitivity analysis for different choices of hyperparameters. Upper bound
refers to the upper bound of the 95% credible intervals of distribution of the absolute values

of the differences of the co-clustering probabilities. Mode indicates the mode of the
distribution of the number of clusters (ordered by size) which contain 95% of the patients.

Scenario E(k) V (k) Upper bound Mode
Reference 7.84 44.57 - 10
(i) aα = 1, bα = 5 2.51 3.59 0.0575 10
(ii) aα = 3, bα = 1 19.02 95.27 0.1465 14
(iii) aα = 5, bα = 5 7.84 13.87 0.0690 10
(iv) aα = 3, bα = 2 10.84 34.18 0.1975 15

Table 3

Results of the sensitivity analysis for different choices of hyperparameters. Upper bound
refers to 95% credible intervals of distribution of the absolute values of the differences of the

co-clustering probabilities. Mode indicates the mode of the distribution of the number of
clusters (ordered by size) which contain 95% of the patients.

Scenario Upper bound Mode
Reference - 10
(aζ = 0.5, bζ = 0.5), (aμ = 1, bμ = 1), (aλ = 1, bλ = 1) 0.0510 10
(aζ = 1.5, bζ = 1.5), (aμ = 1, bμ = 1), (aλ = 1, bλ = 1) 0.0380 10
(aζ = 1, bζ = 1), (aμ = 1, bμ = 1), (aλ = 1, bλ = 0.1) 0.1485 13
(aζ = 1, bζ = 1), (aμ = 1, bμ = 1), (aλ = 0.1, bλ = 0.1) 0.0875 12
(aζ = 1, bζ = 1), (aμ = 0.5, bμ = 0.5), (aλ = 1, bλ = 1) 0.0610 10
(aζ = 1, bζ = 1), (aμ = 1.5, bμ = 1.5), (aλ = 1, bλ = 1) 0.0535 10

We start considering the sensitivity of the proposed model to aα and bα, keep-
ing the reference values for the other hyperparameters. We set different scenarios
in order to have different values of prior expectation and variance of the number
of clusters, i.e. E(k) and V (k) (formulae for approximating these quantities are
presented by Jara, Garćıa-Zattera and Lesaffre (2007)). The reference choice,
aα = bα = 1, leads, for n = 1424, to E(k) ≈ 7.84 and V (k) ≈ 44.57, which
we reckon to be a good trade-off between prior mean and prior variance (e.g.
compare E(k) with the prior standard deviation of k). The scenarios considered
are presented in Table 2.

The results presented in Table 2 show that the proposed model is robust to
the choices of hyperparameters in scenario (i) and (iii) compared to the reference
scenario. Differently, scenarios (ii) and (iv) are less robust. This suggests that
increasing the prior expectation of the number of clusters impact the posterior
inference in particular when this variations does not correspond to a propor-
tional increase in the variance of k.

We use the same strategy to assess the sensitivity of the model to the hyper-
parameters for the distributions of the cluster specific parameters. In addition
to the choice adopted in this work, i.e. aζ = bζ = aμ = bμ = aλ = bλ = 1 we
consider the scenarios in Table 3. The hyperparameters aα and bα are set equal
to 1 in all scenarios above. Results for all scenarios (including the reference one)
are in the same table. These show that under the stated criteria the BNP-ZIP is
robust to different values of aζ , bζ , aμ and bμ. Differently, the clustering compo-
sition is slightly affected by the choice of aλ, bλ. In fact, the distribution of the
differences of co-clustering probabilities shifts to higher values following higher
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prior variances for λ∗
j . In the same way also the mode of the number of clusters

containing the 95% of the patients increase.

5. Discussion

The present work proposes an approach for the study of Lower Urinary Tract
Symptoms (LUTS) and their relation with Urinary Tract Infection (UTI). LUTS
comprise a group of symptoms that can indicate a variety of diseases, however
they are frequently associated with UTI. The latter is identified through the
presence of White Blood Cells (WBC) in the urine. Moreover, large WBC counts
can also be connected with the severity of the infection and the degree of in-
flammation. Finally, UTI can become chronic if treatments for acute infections
are not delivered promptly. For these reasons it is valuable to gain insight into
the relationship between LUTS and UTI and to provide the clinicians with a
tool capable of supporting the diagnostic process.

To this end, we propose a model for a dataset of patients affected by LUTS
and for which both the symptoms profiles and WBC counts have been provided.
More than half of the patients present WBC counts equal to 0, forcing a model-
ing strategy that could take this into account. Thus, we propose a Zero-Inflated
Poisson model for the WBC with cluster-specific parameters. We employ a prior
distribution on the possible partitions of the observations that includes also clus-
tering information within the covariates. Covariate information is incorporated
by modeling the covariates as random and deriving the distribution of the par-
tition given the covariates.

The proposed model strategy, called BNP-ZIP, builds on existing literatures
about covariates dependent random partition models and Zero-Inflated (or de-
flated) distributions. BNP-ZIP allows estimating the probability of having UTI
and the level of UTI (measured in number of WBC in the urine) given the pa-
tients’ symptoms. Thus, it identifies the combinations of covariates related with
the largest probability of having UTI as well as those connected with the largest
counts of WBC. Furthermore, the covariate dependent partition can model the
over dispersion in the data by including a larger number of clusters leading to
robust estimates. BNP-ZIP can be specified also as a Dirichlet Process Mixture
of the response variable and the covariates jointly. This property, which has
already been widely used in the Bayesian literature, simplifies posterior com-
putations, allowing also the use of convenient MCMC samplers for numerical
approximations.

The results show the importance of the urgency and stress incontinence symp-
toms. Patients with these symptoms activated are often clustered together and
have probability close to 0.9 to have WBC equal to 0, which is equivalent to
the absence of the infection. On the other hand voiding symptoms are highly
related with a large probability of having UTI. Furthermore, a large number of
WBC is predicted for the combinations of covariates including voiding category
together with the urgency and stress incontinence symptoms, which underlines
the importance of voiding symptoms in evaluating UTI. In fact, this has strong
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clinical impact since in clinical practice pain symptoms are generally considered
related with infection and voiding symptoms are instead treated as consequences
of structural obstruction of the urinary tract. In this sense, the estimated predic-
tive distributions may offer an interesting tool for clinicians to support diagnosis.

Appendix

We provide below the JAGS code for BNP-ZIP.

model{

C <- 10000 # Zero-trick (see Neelon et al, 2010)

for(i in 1:N) {

z[i] <- step(y[i] - 1) # Indicator function for y>0

lambda[i] <- lamj[g[i]] # Parameter for Poisson distribution

p.y[i] <- muj[g[i]] # Parameter for zero-inflation

##### ZIP model #####

pz.y[i] <- p.y[i]*(1 - exp(-lambda[i])) # Probability of y>0

ll[i] <- (1 - z[i]) * log(1 - pz.y[i]) + z[i] * (log(pz.y[i]) + y[i] *

log(lambda[i]) - lambda[i] - loggam(y[i] + 1) -

log(1 - exp(-lambda[i]))) # Log-likelihood

phs[i] <- -ll[i] + C # Zero-trick

zeros[i] ~ dpois(phs[i]) # ‘‘zero’’ is a vector with n 0 components

##### Covariate model #####

for(p in 1:P) {

x[i,p] ~ dbern(phi[g[i],p])

}

g[i] ~ dcat(psi[]) # distribution over the cluster assignment

}

##### Within-cluster priors ######

for(clus in 1:K) {

muj[clus] ~ dbeta(1,1)I(0.01,0.99)

lamj[clus] ~ dgamma(1,1)

for(p in 1:P) {

phi[clus,p] ~ dbeta(1,1)I(0.01,0.99)

}

}

##### Dirichlet Process Prior #####

alpha ~ dgamma(1,1)

for(clus in 1:(K - 1)) {

V[clus] ~ dbeta(1,alpha)

}

psi[1] <- V[1] # Stick breaking

for(clus in 2:(K - 1)) {
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psi[clus] <- V[clus] * (1 - V[clus-1]) * psi[clus-1] / V[clus-1]

}

psi[K] <- 1 - sum(psi[1:(K - 1)])

}

This uses a trick to code the Zero-Inflated Poisson model which have been em-
ployed in the WinBUGS code of Neelon, O’Malley and Normand (2010) (available
at http://people.musc.edu/~brn200/winbugs/).

Abbreviations

Table 4

List of abbreviations.

Acronym Full Name
BNP-ZINB Bayesian Nonparametric Zero-Inflated Negative Binomial
BNP-ZIP Bayesian Nonparametric Zero-Inflated Poisson
CART Classification And Regression Trees
CRP Chinese Restaurant Process
DP Dirichlet Process
DPM Dirichlet Process Mixture
LUTS Lower Urinary Tract Symptoms
MCMC Markov Chain Monte Carlo
RPM Random Partition Model
UTI Urinary Tract Infection
WBC White Blood Cells
ZINB Zero-Inflated Negative Binomial
ZIP Zero-Inflated Poisson
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