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Abstract. Image quality transfer (IQT) aims to enhance clinical images
of relatively low quality by learning and propagating high-quality struc-
tural information from expensive or rare data sets. However, the original
framework gives no indication of confidence in its output, which is a sig-
nificant barrier to adoption in clinical practice and downstream process-
ing. In this article, we present a general Bayesian extension of IQT which
enables efficient and accurate quantification of uncertainty, providing
users with an essential prediction of the accuracy of enhanced images.
We demonstrate the efficacy of the uncertainty quantification through
super-resolution of diffusion tensor images of healthy and pathological
brains. In addition, the new method displays improved performance over
the original IQT and standard interpolation techniques in both recon-
struction accuracy and robustness to anomalies in input images. AQ1

AQ2

1 Introduction

A diverse range of technological and economical factors constrain the quality
of magnetic resonance (MR) images. Whilst there exist bespoke scanners or
imaging protocols with the capacity to generate ultra high-quality data, their
prohibitive cost and lengthy acquisition time render the technology impractical
in clinical applications. On the other hand, the poor quality of clinical data often
limits the accuracy of subsequent analysis. For example, low spatial resolution of
diffusion weighted images (DWI) gives rise to partial volume effects, introducing
a bias in diffusion tensor (DT) measurements [1] that are widely used to study
white matter in terms of anatomy, neurological diseases and surgical planning.

Super-resolution (SR) reconstruction potentially addresses this challenge by
post-processing to increase the spatial resolution of a given low-resolution (LR)
image. One popular approach is the single-image SR method, which attempts
to recover a high-resolution (HR) image from a single LR image. Numerous
machine-learning based methods have been proposed. For instance, [2,3] use
example patches from HR images to super-resolve scalar MR and DW images
respectively, with an explicitly defined generative model relating a HR patch to a
LR patch and carefully crafted regularisation. Another generative approach is the

c⃝ Springer International Publishing AG 2016
S. Ourselin et al. (Eds.): MICCAI 2016, Part II, LNCS 9901, pp. 1–9, 2016.
DOI: 10.1007/978-3-319-46723-8 31

A
u

th
o

r
 P

r
o

o
f

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79548695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 R. Tanno et al.

sparse-representation methods [4,5], which construct a coupled library of HR and
LR images from training data and solve the SR problem through projection onto
it. Image quality transfer (IQT) [6] is a general quality-enhancement framework
based on patch regression, which shows great promise in SR of DT images and
requires no special acquisition, so is applicable to large varieties of existing data.

A key limitation of above methods is the lack of a mechanism to communicate
confidence in the predicted HR image. High quality training data typically come
from healthy volunteers. Thus, performance in the presence of pathology or other
effects not observed in the training data is questionable. We expect methods
to have high confidence in regions where the method has seen lots of similar
examples during training, and lower confidence on previously unseen structures.
However, current methods implicitly have equal confidence in all areas. Such an
uncertainty characterisation is particularly important in medical applications
where ultimately images can inform life-and-death decisions. It is also beneficial
to downstream image processing algorithms, such as registration or tractography.

In this paper, we extend the IQT framework to predict and map uncertainty
in its output. We incorporate Bayesian inference into the framework and name
the new method Bayesian IQT (BIQT). Although many SR methods [2–5] can be
cast as maximum a posteriori (MAP) optimisation problems, the dimensionality
or complexity of the posterior distribution make the computation of uncertainty
very expensive. In contrast, the random forest implementation of the original
IQT is amenable to uncertainty estimation thanks to the simple linear model at
each leaf node, but the current approach computes maximum likelihood (ML)
solution. BIQT replaces this ML based inference with Bayesian inference (rather
than just MAP) and this allows the uncertainty estimate to reflect unfamiliarity
of input data (see Fig. 1(a)). We demonstrate improved performance through
SR of DT images on Human Connectome Project (HCP) dataset [7], which has
sufficient size and resolution to provide training data and a testbed to gauge
the baseline performance. We then use clinical data sets from multiple sclerosis
(MS) and tumour studies to show the efficacy of the uncertainty estimation in
the presence of focal tissue damage, not represented in the HCP training data.

2 Methods

Here we first review the original IQT framework based on a regression forest. We
then introduce our Bayesian extension, BIQT, highlighting the proposed efficient
hyperparameter optimisation method and the robust uncertainty measure.

Background. IQT splits a LR image into small patches and performs quality
enhancement on them independently. This patch-wise reconstruction is formu-
lated as a regression problem of learning a mapping from each patch x of Nl

voxels in the LR image to a corresponding patch y(x) of Nh voxels in the HR
image. Input and output voxels are vector-valued containing pl and ph values,
and thus the mapping is x ∈ RNlpl → y(x) ∈ RNhph . Training data comes from
high quality data sets, which are artificially downsampled to provide matched
pairs of LR and HR patches. For application, each patch of a LR image is passed
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Bayesian Image Quality Transfer 3

through the learned mapping to obtain a HR patch and those patches combine to
estimate a HR image. To solve the regression problem, IQT employs a variant of
random forests [8]. The method proceeds in two stages: training and prediction.

During training, we grow a number of trees on different sets of training data.
Each tree implements a piecewise linear regression; it partitions the input space
RNlpl and performs regressions in respective subsets. Learning the structure of a

tree on dataset D = {xi,yi}
|D|
i aims to find an ‘optimal’ sequence of the following

form of binary partitioning. At the initial node (root), D is split into two sets DR

and DL by thresholding one of J scalar functions of x, or features, f1, ..., fJ . The
optimal pair of a feature fm and a threshold τ with the most effective splitting
is selected by maximising the information gain [9], IG(fm, τ,D) ! |D| · H(D) −
|DR| ·H(DR)− |DL| ·H(DL) where |D| denotes the size of set D and H(D) is the
average differential entropy of the predictive distribution P(y|x,D,H) given by

H(D) ! −
1

|D|

∑
x∈D

∫
P(y|x,D,H) · log P(y|x,D,H) dy. (1)

Maximising the information gain helps selecting the splitting with highest con-
fidence in predictive distributions. This optimization problem is solved by per-
forming golden search on the threshold for all features. The hypothesis space
H specifies the class of statistical models and governs the form of predictive
distribution. In particular, IQT fits the ML estimation of a linear model with a
Gaussian noise. To control over-fitting, a validation set DV with similar size to
D is used and the root node is only split if the residual error is reduced. This
process is repeated in all new nodes until no more splits pass the validation test.

At the time of prediction, every LR patch x is routed to one of the leaf nodes
(nodes with no children) in each tree through a series of binary splitting learned
during training, and the corresponding HR patch is estimated by the mode
of the predictive distribution. The forest output is computed as the average
of predictions from all trees weighted by the inverted variance of predictive
distributions.

Bayesian Image Quality Transfer. Our method, BIQT follows the IQT
framework described above and performs a patch-wise reconstruction using a
regression forest. The key novelty lies in our Bayesian choice of H (Eq. (1)).
For a given training set at a node, D = {xi,yi}N

i=1, BIQT fits a Bayesian lin-
ear model y = Wx + η where the additive noise η and the linear transform
W ∈ RNhph×Nlpl follow isotropic Gaussian distributions P(η|β) = N (η|0,β−1I)
and P(W||α) = N (W||0,α−1I), with W| denoting the row-wise vectorised ver-
sion of W. The hyperparameters α and β are positive scalars, and I denotes an
identity matrix. Assuming for now that α,β are known, the predictive distribu-
tion is computed by marginalising out the model parameters W as

P(y|x,D,H) = P(y|x,D,α,β) = N (y|WPredx, σ2
Pred(x) · I) (2)
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Fig. 1. (a) 1D illustration (i.e. both x,y ∈ R ) of ML and Bayesian linear models
fitted to the data (blue circles). The red line and shaded areas show the mode and
variance (uncertainty) of P(y|x, D, H) at respective x values. Bayesian method assigns
high uncertainty to an input distant from the training data whilst the ML’s uncertainty
is fixed. (b) 2D illustration of the input (grey) and output (red) patches.

where the ith columns of matrices X and Y are given by xi and yi, the mean
linear map WPred = YXT (XXT +α

β
I)−1 and the variance σ2

Pred(x) = xT A−1x+

β−1 with A = αI + βXXT . The mean differential entropy in Eq. (1) can be
computed as H(D) = Nhph|D|−1

∑
x∈D log(xT A−1x + β−1) (up to constants).

The predictive variance σ2
Pred(x) provides an informative measure of uncer-

tainty over the enhanced patch y(x) by combining two quantities: the degree
of variation in the training data, β−1 and the degree of ‘familiarity’, xT A−1x
which measures how different the input patch x is from the observed data. For
example, if x contains previously unseen features such as pathology, the familiar-
ity term becomes large, indicating high uncertainty. The equivalent measure for
the original IQT, however, solely consists of the term, β−1 determined from the
training data, and yields a fixed uncertainty estimate for any new input x (see
Fig. 1(a)). Once a full BIQT forest F is grown, we perform reconstruction in the
same way as before. All leaf nodes are endowed with the predictive distributions
of the form in Eq. (2), and BIQT quantifies the uncertainty over the HR output,
y(x) as the predictive variance at leaf nodes (at which x arrives after traversing
respective trees) ⟨σ2

Pred(x)⟩F averaged over trees in the forest F .
A priori the hyper-parameters α and β are unknown, so we optimise them

by maximising the marginal likelihood P(D|α,β). As WPred is in fact a solution
of L2 regularisation problem with smoothing α/β, this optimisation procedure
can be viewed as a data-driven determination of regularisation level. Although
a closed form for P(D|α,β) exists, exhaustive search is impractical as we have
to solve this problem for every binary splitting (characterised by a feature and
a threshold) at all internal nodes of the tree. We thus derive and use the multi-
output generalisation of the Gull-Mackay fixed-point iteration algorithm [10]

βnew =
1 − βold · |D|−1trace(A(αold,βold)−1XXT )

1
|D|Nhph

∑Nhph

j=1

∑|D|
i=1[yji − µj(αold,βold)T xi]2

(3)

αnew =
Nlpl − αold · trace(A(αold,βold)−1)

1
Nhph

∑Nhph

j=1 µj(αold,βold)T µj(αold,βold)
(4)
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where µj(α,β) = β ·A(α,β)−1
∑D

i=1 yjixi. Whilst the standard MATLAB opti-
misation solver (e.g. fminunc) requires at least 50 times more computational
time per node optimisation than for IQT, this iterative method is only average
2.5 times more expensive, making the Bayesian extension viable. We use this
over Expectation Maximisation algorithm for its twice-as-fast convergence rate.

3 Experiments and Results

Here we demonstrate and evaluate BIQT through the SR of DTI. First we
describe the formulation of the application. Second, we compare the baseline
performance on the HCP data to the original IQT. Lastly, we demonstrate
on clinical images of diseased brains that our uncertainty measure highlights
pathologies.

Super-Resolution of DTIs. Given a LR image, BIQT enhances its resolution
patch by patch. Each case takes as input a Nl = (2n + 1)3 cubic patch of voxels
each containing pl = 6 DT elements, and super-resolves its central voxel by
a factor of m (so the output is a Nh = m3 patch with each new voxel also
containining ph = 6 DT components). For all the experiments, we use n = 2

and m = 2 (Fig. 1(b)) and so the map is R750=53×6 → R48=23×6. The features
{fi} consist of mean eigenvalues, principal orientation, orientation dispersion
averaged over central subpatches of different widths = 1, 3, 5 within the LR
patch.

Training data is generated from 8 randomly selected HCP subjects and used
for all subsequent experiments. We use a subsample of each dataset, which con-
sists of 90 DWIs of voxel size 1.253 mm3 with b = 1000 s/mm2. We create
training pairs by downsampling each DWI by a factor of m and then fitting the
DT to the downsampled and original DWI. A coupled library of LR and HR
patches is then constructed by associating each patch in the downsampled DTI
with the corresponding patch in the ground truth DTI. Training of each tree
is performed on a different data set obtained by randomly sampling ≈105 pairs
from this library, and it takes under 2 h for the largest data sets in Fig. 2.

Testing on HCP dataset. We test BIQT on another set of 8 subjects from the
HCP cohort. To evaluate reconstruction quality, three metrics are used: the root-
mean-squared-error of the six independent DT elements (DT RMSE); the Peak
Signal-to-Noise Ratio (PSNR); and the mean Structural Similarity (MSSIM)
index [11]. We super-resolve each DTI after downsampling by a factor of 2 as
before, and these quality measures are then computed between the reconstructed
HR image and the ground-truth. BIQT displays highly statistically significant
(p < 10−8) improvements (see Fig. 2) on all three metrics over IQT, linear regres-
sion methods and a range of interpolation techniques. In addition, trees obtained
with BIQT are generally deeper than those of the original IQT.

Standard linear regression performs as well as the Bayesian regression due to
the large training data size. However, with BIQT, as you descend each tree, the
number of training data points at each node gets smaller, increasing the degree
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Fig. 2. Three reconstruction metrics of various SR methods as a function of train-
ing data size; RMSE (left), PSNR (middle) and MSSIM (right). The performance of
LR (yellow) and BLR (purple) coincide. The results for linear and nearest-neighbour
interpolation are omitted for their poor performance.

of uncertainty in model fitting, and so the data-driven regularisation performed
in each node-wise Bayesian regression becomes more effective, leading to better
reconstruction quality. This is also manifested in the deeper structure of BIQT
trees, indicating more successful validation tests and thus greater generalisability.
Moreover, the feedforward architectures of trees and parallelisability of patch-
wise SR means highly efficient reconstruction (a few minutes for a full volume).

Figure 3 shows reconstruction accuracies and uncertainty maps for BIQT
and IQT. The uncertainty map of BIQT is more consistent with its recon-
struction accuracy when compared to the original IQT. Higher resemblance is
also observed between the distribution of accuracy (RMSE) and uncertainty
(variance). The BIQT uncertainty map also highlights subtle variations in the
reconstruction-quality within the white matter, whereas the IQT map contains
flatter contrasts with discrete uncertainties that vary greatly in the same region
(see histograms in bottom row). This improvement reflects the positive effect of
the data-driven regularisation and better generalisability of BIQT and can be
observed particularly in the splenium and genu of the Corpus Callosum, where
despite good reconstruction accuracy, IQT assigns higher uncertainty than in
the rest of the white matter and BIQT indicates a lower and more consistent
uncertainty. Thus, the BIQT uncertainty map displays higher correspondence
with accuracy and allows for a more informative assessment of reconstruction
quality. Note that while the uncertainty measure for IQT is governed purely by
the training data, for BIQT the uncertainty also incorporates the familiarity of
the test data.

Testing on MS and tumour data. We further validate our method on images
with previously unseen abnormalities; we use trees trained on healthy subjects
from HCP dataset to super-resolve DTIs of MS and brain tumour patients (10
each). We process the raw data (DWI) as before, and only use b = 1200 s/mm2

measurements for the MS dataset and b = 700 s/mm2 for the tumour dataset.

A
u

th
o

r
 P

r
o

o
f
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(a) BIQT (b) Original IQT

Fig. 3. Reconstruction accuracy and uncertainty maps. (top row) The voxel-wise
RMSE as a normalised colour-map and its distribution; (bottom row) Uncertainty
map (variance) over the super-resolved voxels and its distribution for (a) BIQT and
(b) IQT. Trees were trained on ≈4 × 105 patch pairs.
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Fig. 4. (a), (c) Normalised uncertainty map (variance is shown i.e. the smaller the more
certain) for BIQT (middle row) and IQT (bottom row) along with the T2-weighted
slices (top row) for MS (with focal lesions in orange) and edema (contours highlighted),
respectively. (b). The RMSE for MS and control subjects (averaged over 10 subjects
in each case).

The voxel size for both datasets is 23 mm3. The MS dataset also contains lesion
masks manually outlined by a neurologist. Figure 4(a), (c) middle row shows
that the uncertainty map of BIQT precisely identifies previously unseen features
(pathologies in this case) by assigning lower confidence than for the remaining
healthy white matter. Moreover, in accordance with the reconstruction accuracy,
the prediction is more confident in pathological regions than in the cerebrospinal
fluid (CSF). This is expected since the CSF is essentially free water with low
SNR and is also affected by cardiac pulsations, whereas the pathological regions
are contained within the white matter and produce better SNR. Each BIQT tree
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appropriately sends pathological patches into the ‘white-matter’ subspace and
its abnormality is detected there by the ‘familiarity’ term, leading to a lower
confidence with respect to the healthy white matter. By contrast, IQT sends
pathological patches into the CSF subspace and assigns the fixed corresponding
uncertainty which is higher than what it should be. In essence, BIQT enables
an uncertainty measure which highly correlates with the pathologies in a much
more plausible way, and this is achieved by its more effective partitioning of the
input space and uncertainty estimation conferred by Bayesian inference. More-
over, Fig. 4(b) shows the superior generalisability of BIQT even in reconstruction
accuracy (here SR is performed on downsampled clinical DTIs); the RMSE of
BIQT for MS patients is even smaller than that of IQT for healthy subjects.

4 Conclusion

We presented a computationally viable Bayesian extension of Image Quality
Transfer (IQT). The application in super resolution of DTI demonstrated that
the method not only achieves better reconstruction accuracy even in the pres-
ence of pathology (Fig. 3(b)) than the original IQT and standard interpolation
techniques, but also provides an uncertainty measure which is highly correlated
with the reconstruction quality. Furthermore, the uncertainty map is shown to
highlight focal pathologies not observed in the training data. BIQT also per-
forms a computationally efficient reconstruction while preserving the generality
of IQT with large potential to be extended to higher-order models beyond DTI
and applied to a wider range of modalities and problems such as parameter
mapping and modality transfer [6]. We believe that these results are sufficiently
compelling to motivate larger-scale experiments for clinical validation in the
future.
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