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Are adolescents more vulnerable to the harmful effects
of cannabis than adults? A placebo-controlled study in
human males
C Mokrysz1, TP Freeman1, S Korkki2, K Griffiths3 and HV Curran1

Preclinical research demonstrates that cannabinoids have differing effects in adolescent and adult animals. Whether these findings
translate to humans has not yet been investigated. Here we believe we conducted the first study to compare the acute effects of
cannabis in human adolescent (n = 20; 16–17 years old) and adult (n= 20; 24–28 years old) male cannabis users, in a placebo-
controlled, double-blind cross-over design. After inhaling vaporized active or placebo cannabis, participants completed tasks
assessing spatial working memory, episodic memory and response inhibition, alongside measures of blood pressure and heart rate,
psychotomimetic symptoms and subjective drug effects (for example, ‘stoned’, ‘want to have cannabis’). Results showed that on
active cannabis, adolescents felt less stoned and reported fewer psychotomimetic symptoms than adults. Further, adults but not
adolescents were more anxious and less alert during the active cannabis session (both pre- and post-drug administration).
Following cannabis, cognitive impairment (reaction time on spatial working memory and prose recall following a delay) was greater
in adults than adolescents. By contrast, cannabis impaired response inhibition accuracy in adolescents but not in adults. Moreover,
following drug administration, the adolescents did not show satiety; instead they wanted more cannabis regardless of whether they
had taken active or placebo cannabis, while the opposite was seen for adults. These contrasting profiles of adolescent resilience
(blunted subjective, memory, physiological and psychotomimetic effects) and vulnerability (lack of satiety, impaired inhibitory
processes) show some degree of translation from preclinical findings, and may contribute to escalated cannabis use by human
adolescents.
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INTRODUCTION
An estimated 13% of 15–16-year olds in Europe and 23% of
15–17-year olds in the USA have taken cannabis in the previous
year.1,2 Globally the median age of first cannabis use falls between
18–19 years old,3,4 indicating that approximately half of all
cannabis users start before reaching adulthood.
The main psychoactive ingredient of cannabis, delta-9-

tetrahydrocannabinol (THC), acts on the endocannabinoid (eCB)
system, primarily as a partial agonist of the cannabinoid receptor
CB1R. Studies with adult cannabis users have found altered eCB
levels in cerebrospinal fluid5 and downregulated cortical CB1Rs,6,7

relative to non-using controls. Although research into adolescent
development of the eCB system remains in its infancy, it appears
to undergo dynamic changes throughout adolescence,8 with
evidence of increasing CB1R density continuing into late adole-
scence9,10 (although also see Ellgren et al.8 and Moore et al.11), and
changing levels of eCBs in the prefrontal cortex and nucleus
accumbens throughout adolescence.8,9 The eCB system is also
thought to have an important role in neural reorganization and
maturational processes occurring during adolescence,12,13 and has
recently been implicated in the maturational pruning of glutama-
tergic synapses14 and development of GABA-ergic systems15 in
the prefrontal cortex. Disruption of the eCB system by cannabis

use during adolescence may therefore interfere with brain
development such that adolescents are particularly susceptible
to cannabis-related harms.16

Compared with non-using controls, adolescent cannabis users
have poorer cognitive and executive functioning in some domains
(for example, verbal and spatial working memory, attentional
processes17,18), alongside differing task-related neural responses
(for example, greater BOLD response during response inhibition19

and spatial working memory tasks20), and morphological differ-
ences in medial temporal and frontal cortices21 and white matter
integrity.22,23 However, findings are mixed, limited by cross-
sectional designs and small samples, and necessarily correlational
in nature.16 Epidemiological findings further suggest that younger
age of cannabis use onset may be associated with increased risk of
addiction,24–27 cognitive impairment16,28,29 and psychotic
illness.30–32 Again such findings are limited since individuals
starting use at a younger age will also typically have more cannabis
exposures over a longer period of time, making it hard to
dissociate the specific effect of age.
In rodents, repeated administration studies further suggest

greater vulnerability to cannabis-related harm in adolescents.
Adolescent exposure led to adulthood deficits in novel object
recognition and spatial working memory, but not spatial learning.9

In adolescent rhesus monkeys Verrico et al.33,34 found that both
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acute and repeated doses of THC led to impaired spatial but not
object working memory; further, repeated THC prevented the
maturational improvement in spatial working memory typically
seen at that age, but did not affect the earlier developing object
working memory. However, direct comparisons between adoles-
cent and adult chronic exposure are scarce and findings have
been inconsistent.35–40

Evidence from acute administration studies in rats of increased
adolescent vulnerability to the effects of cannabis is also mixed,
with some suggesting acute cannabinoid treatment has a greater
impairing effect on spatial and non-spatial learning (THC)39,40 and
object recognition (WIN55, 212-2)41 in adolescent compared with
adult rats. Others however report the opposite, with evidence of
greater acute impairments in adult rodents—including impaired
novel object recognition (WIN55, 212-2)38 and spatial learning
(WIN55, 212-2).42 Further, adult rats developed conditioned place
(WIN55, 212-2)43 and taste (THC)35 aversion to cannabinoid
treatment while adolescents did not, and adults produced more
vocalizations when handled while intoxicated, suggesting greater
drug-induced aversion.35 THC has also been found to have less
anxiogenic44 or even anxiolytic42 effects, alongside reduced
locomotor-suppression effects,44 in adolescent rats compared
with adults. Translation of these findings to humans is limited by a
number of factors, including the common use of potent synthetic
cannabinoids with full CB1 receptor agonism rather than THC (for
example, WIN55, 212-2), and often high doses compared with
typical human consumption.
Despite mixed findings, cannabinoid administration studies in

adolescent rodents and non-human primates predominantly
suggest that the adolescent brain is differentially sensitive to the
effects of cannabis. Should these findings translate to humans,
these age-related sensitivities may contribute to an increased risk
of cannabis-related harms in teenagers. Indeed, it has been
suggested that if adolescents are less sensitive to the acute
negative effects (for example, increased anxiety) of cannabis (and
other recreational substances, as has been suggested for alcohol45)
then this may lead to greater drug consumption than adults.44

However, acute studies in humans have rarely explored the
influence of age on drug effects. Indeed, we are aware of no
controlled studies in which cannabis was administered to
individuals under 18 years of age.
The present study therefore aimed to compare the acute effects

of cannabis in adolescent and adult users. In adults, acute
cannabis administration typically induces episodic memory
impairments46,47 and may impair working memory and response
inhibition.48,49 Acutely cannabis also increases subjective drug-
related experiences (for example, feeling ‘stoned’), and psychoto-
mimetic symptoms.50,51 On the basis of preclinical findings, we
hypothesized that adolescents would be less sensitive to the
intoxicating35,43,44 and anxiogenic42,44 effects of cannabis com-
pared with adults. Further, given links between earlier onset of
cannabis use and psychosis,30–32 we predicted more psychotomi-
metic effects of cannabis in adolescents than adults. Finally, we
hypothesized greater cognitive impairment following cannabis in
adolescents than adults,39–41 as indexed by spatial working
memory, episodic memory and response inhibition.

METHODS
Design and participants
A mixed within- and between-subjects, double-blind, cross-over design
was used to compare the acute effects of active and placebo cannabis on
adolescents and adults. Treatment order was counterbalanced for task
version and randomized via random number generator within each
age group.
We recruited 20 adolescent (aged 16–17 years) and 20 adult (24–28

years) male cannabis users, via local and online (social media) advertising
and word-of-mouth. The following inclusion criteria were assessed at

telephone screening: male gender (due to evidence of sex differences in
onset of puberty and ontogeny of adolescent brain development); current
cannabis use between 1 and 3 days per week; at least 6 months of regular
(at least once per week) cannabis use; no extended period (41 month) of
daily use; score ⩽ 3 on the Cannabis Severity of Dependence Scale
reflecting the validated adolescent cut-off for dependence;52 no other illicit
drug was used more than twice per month; no current mental health
problem or history (personal or immediate family) of psychosis-related
disorders; healthy-range body mass index and blood pressure (BP).
Participants were asked to remain abstinent from all drugs including
alcohol but not cigarettes for 24 h before each testing session.
The study was approved by UCL Research Ethics Committee. All

participants provided written informed consent (in the UK 16–17-year olds
are able to provide informed consent without additional parental consent
or assent). Participants were reimbursed for their time (£7.50 per hour) and
travel expenses.

Drug administration
Medicinal-grade active (Bedrobinol; THC 12.0%) and placebo (THC o0.3%)
cannabis were imported under UK Home Office license from Bedrocan
(Veendan, The Netherlands). Dose was weight-adjusted as age differences
in body weight were anticipated. Following previous protocols,53–55

participants received 0.89 mg kg− 1 of cannabis, corresponding to
~ 8.0 mg THC for an individual weighing 75 kg. This dose corresponds to
that contained in about a third of a typical joint.56 Similar doses have
previously been shown to produce robust subjective effects via the
administration method used in this study.53–55

Drug was administered via a Volcano Medic vaporizer (Storz and Bickel,
Tuttlingen, Germany), operating at 210 °C. This method has been shown
to be safe, producing equivalent pulmonary and plasma cannabinoid
levels to those from smoked cannabis, but with lower expired carbon
monoxide levels.57–59 Vapor was collected in a ‘balloon’ with a non-return
valve, and inhaled according to a previous timed breath-holding
protocol.55 Participants inhaled, held their breath for 8 s and repeated
this at their own pace until the balloon was empty. Each dose was
vaporized in two sequentially administered balloons to minimize residual
cannabinoids.

Measures
Baseline assessments. Premorbid verbal intelligence was assessed by the
Wechsler Test of Adult Reading,60 and scores were adjusted for age.
Depression and anxiety were assessed on the Beck Depression Inventory61

and Beck Anxiety Inventory.62 A validated short version of the UPPS-P
Impulsive Behaviour Scale (SUPPS-P)63,64 indexed impulsivity and the
Schizotypal Personality Questionnaire65 indexed schizotypy.

Drug use. A structured interview recorded: lifetime use (yes/no); time
since last use (days); duration of use (years); frequency (days/month); and
amount per session (alcohol units (standard UK units of alcohol; equivalent
to 8 g of pure alcohol or ~ 3/5ths of a NIAAA standardized drink) per typical
drinking session; cigarettes/day; other illicit drugs grams/pills/tabs). Instant
urine drug screens at the start of every session assessed recent use of illicit
drugs (amphetamine, barbiturates, benzodiazepines, cocaine, MDMA,
methamphetamine, methadone, opiates, oxycodone, phencyclidine
(Supplementary Table S1).66 Problematic drug use was assessed using
the Cannabis Abuse Screening Test,67 the Fagerstrom Test for Nicotine
Dependence68 and the Alcohol Use Disorders Identification Test.69

Physiological measurements. Body weight, BP and heart rate were
measured at baseline. BP and heart rate were monitored throughout drug
administration sessions.

Subjective ratings. Participants provided ratings from 0 (not at all) to 10
(extremely) for ‘Stoned’, ‘High’, ‘Feel drug effect’, ‘Like drug effect’ ‘Alert’,
‘Anxious’, ‘Paranoid’, ‘Dry mouth’, ‘Enhanced color perception’, ‘Enhanced
sound perception’, ‘Want to have food’ and ‘Want to have cannabis’, at
− 6 min (apart from ‘Feel drug effect’ and ‘Like drug effect’), +7 min,
+34 min and +77 min (drug administration started at 0 min).

Psychotic-like symptoms. Participants completed the Psychotomimetic
States Inventory (PSI), a self-report questionnaire sensitive to the acute
psychotomimetic effects of cannabis.70,71
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Memory tasks
Prose recall: This episodic memory task was adapted from the
Rivermead Behavioural Memory Test battery.72 Participants listened to a
30 s story and then for 1 min wrote down what they remembered
immediately and again after ~ 1 h. Each story contained 21 ‘idea units’ and
scoring was systematic.
Spatial N-back: A computerized spatial version of the N-back task73,74

was used to assess spatial working memory. Stimuli appeared sequentially
in one of the six possible locations on screen, around a fixation cross.
Participants responded ‘yes’ or ‘no’ as to whether the stimulus was in the
same position as the stimulus one before (low load; ‘1-back’) or two before
(high load; ‘2-back’). Performance was indexed by discriminability (d’) and
reaction time for correct trials.

Response inhibition
Stop signal: A staircase tracking version of the stop signal was used to
measure response inhibition.75 Stimuli (white arrows) appeared sequen-
tially in the center of the screen; participants responded when the white
arrow pointed left or right by pressing either the left or right arrow key. On
25% of trials, the arrow became blue following a variable delay (signal
trials); on these trials participants were instructed to not press either arrow
key (that is, inhibit the prepotent response). Performance was assessed
with stop-signal reaction time and accuracy on no-signal trials.

Procedure
Following screening, participants attended a 1-h baseline session during
which they provided informed consent, completed baseline measures,
drug histories, problematic use questionnaires, task training and physio-
logical measurements.
Participants then completed two test sessions separated by at least

7 days. Participants first provided baseline subjective ratings, and BP and
heart rate were measured (Time 1; T1). Active or placebo cannabis was
then administered and participants again completed subjective ratings, BP
and heart rate measures (Time 2; T2). Tasks and state questionnaires were
then completed in the following order; prose recall (immediate), PSI,
subjective ratings (Time 3; T3), spatial N-back, stop signal, prose recall
(delayed), subjective ratings (Time 4; T4), BP and heart rate (T4). Test
sessions finished 80 min after drug inhalation.

Power calculation
To detect a medium effect size (f= 0.25) for the key interaction of interest
(group×drug), with 80% power at an alpha of 5%, we required a sample
size of 34. To account for drop-out and task adherence issues, we tested 40
in total.

Statistical analysis
All analyses were conducted with SPSS 21.0. Syntax and data are available
from CM. Outliers and normality were assessed via diagnostic plots for all
analyses. Extreme outliers (43 times interquartile range) were winsorized
within-group. Greenhouse–Geisser corrections were applied for violations
of sphericity. Independent t-test, chi-squared or Mann–Whitney analyses
were conducted as appropriate to compare groups (adolescent, adult) on
demographic and baseline measures.
Mixed analysis of variance was conducted for all test outcomes, with the

between-subjects factor of group (adolescent, adult; coded as 1, 2,
respectively) and within-subjects factor of drug (placebo, cannabis; coded
as 1, 2, respectively). Additional within-subjects factors were included for
relevant analyses: time (T1, T2, T4; coded as 1, 2, 3, respectively) for
physiological data; time (T1–T4; coded as 1, 2, 3, 4, respectively) for
subjective ratings (only T2–T4 (coded as 1, 2, 3, respectively) were analyzed
for stoned (due to floor effects), feel drug effect and like drug effect (as
these were not collected at T1)); PSI subscale (thought distortion,
perceptual distortion, cognitive disorganisation, anhedonia, manic experi-
ence; coded as 1, 2, 3, 4, 5, respectively; paranoia subscale was not
included in analyses due to floor effects); N-back memory load (low, high;
coded as 1, 2, respectively); prose recall delay (immediate, delayed; coded
as 1, 2, respectively). Main effects and interactions with time were tested
and explored via Helmert contrasts (comparing 'Pre-drug' (T1) with 'Post-
drug' (mean of T2–T4)), to reduce the number of comparisons. Other
interactions were explored via pairwise comparisons with local Bonferroni
correction. Drug order was added as an additional between-subjects
factor (placebo-first, cannabis-first; coded as 1, 2, respectively) and results

were compared with reported primary analyses; unless otherwise noted
results were unaffected by drug order. All statistical tests were two-tailed.
Supplementary Table S2 contains descriptive data for memory and
inhibition tasks.

RESULTS
Demographics
Adolescents were younger, and had lower body weight. Groups
did not differ on verbal IQ, Beck Anxiety Inventory, Beck
Depression Inventory, SUPPS-P or Schizotypal Personality Ques-
tionnaire (Table 1). Adolescents currently used cannabis for more
days per month than the adults, and the age of first cannabis use
was younger for the adolescents compared with the adults, but
overall the adults had used for longer. Groups did not differ on
Cannabis Abuse Screening Test score, time since last cannabis use,
or likelihood of a positive THC urine screen at baseline.

Physiological data
Heart rate. An interaction of drug × time (F1,38 = 82.879,
Po0.001, η2p= 0.69) was found, with heart rate increasing from
Pre-drug to Post-drug for cannabis (Po0.001, η2p= 0.65) but not
placebo (P= 0.449, η2p= 0.01; Figure 1). Main effects of drug
(F1,38 = 89.327, Po0.001, η2p= 0.70) and time (F1,38 = 44.141,
Po0.001, η2p= 0.54) also emerged.

Systolic BP. No main effects or interactions were found.

Diastolic BP. Interactions of drug × group× time (F1,38 = 4.393,
P= 0.043, η2p= 0.10), drug × group (F1,38 = 4.744, P= 0.036,
η2p= 0.11) and drug× time (F1,38 = 4.977, P= 0.032, η2p= 0.12)
emerged. For adolescents, there was no drug × time interaction
(P= 0.919, η2po0.01); while for adults a drug × time interaction
(P= 0.010, η2p= 0.30) revealed an increase in diastolic BP from Pre-
drug to Post-drug for cannabis (P= 0.016, η2p= 0.27), but no
change over time for placebo (P= 0.060, η2p= 0.17). Main effects
of drug (F1,38 = 7.390, P= 0.010, η2p= 0.16) and group (F1,38 = 7.998,
P= 0.007, η2p= 0.17) also emerged.

Subjective ratings
Stoned. There was an interaction of drug × group (F1,38 = 4.893,
P= 0.033, η2p= 0.11; Figure 2). Ratings of both adolescents
(Po0.001, η2p= 0.65) and adults (Po0.001, η2p= 0.78) were
higher after cannabis compared with placebo; however, the
increase was larger in adults. Main effects of drug (F1,38 = 200.055,
Po0.001, η2p= 0.84) and time (F2,63 = 8.271, P= 0.001, η2p= 0.18)
also emerged.

Feel drug effect. There was an interaction of drug × group
(F1,38 = 8.877, P= 0.005, η2p= 0.19), with adolescents feeling the
drug effect less than adults after cannabis (P= 0.017, η2p= 0.14),
but not after placebo (P= 0.565, η2p= 0.01). Main effects of drug
(F1,38 = 297.629, Po0.001, η2p= 0.89) and time (F2,65 = 9.629,
Po0.001, η2p= 0.20) also emerged.

Alert. There was an interaction of drug × group (F1,38 = 9.123,
P= 0.004, η2p= 0.19), with adolescents rating no difference in
alertness on cannabis compared with placebo (P= 0.955,
η2po0.01), whereas adults rated lower alertness on cannabis
compared with placebo (Po0.001, η2p= 0.33). There was also an
interaction of drug × time (F1,38 = 42.844, Po0.001, η2p= 0.53);
with alertness decreasing from Pre-drug to Post-drug in both
sessions, though the decrease was larger for cannabis (Po0.001,
η2p= 0.65) than for placebo (P= 0.005, η2p= 0.19). Main effects of
drug (F1,38 = 9.613, P= 0.004, η2p= 0.20) and time (F1,38 = 60.071,
Po0.001, η2p= 0.61) also emerged.
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Anxious. There was an interaction of drug × group (F1,38 = 4.272,
P= 0.046, η2p= 0.10), with adolescents reporting no difference in
anxiety between drugs (P= 0.516, η2p= 0.01), but adults reporting
more anxiety on cannabis compared with placebo (P= 0.001,
η2p= 0.25). There was also an interaction of drug × time
(F1,38 = 9.914, P= 0.003, η2p= 0.21); with no change over time in
anxiety for cannabis (P= 0.275, η2p= 0.03) and a decrease in
anxiety from Pre-drug to Post-drug for placebo (Po0.001,
η2p= 0.39). A main effect of drug (F1,38 = 8.969, P= 0.005,
η2p= 0.19) also emerged.

Dry mouth. There were interactions of drug × group× time
(F1,38 = 9.417, P= 0.004, η2p= 0.20), drug × group (F1,38 = 6.436,
P= 0.015, η2p= 0.15) and drug× time (F1,38 = 72.572, Po0.001,
η2p= 0.66). Both adolescents (Po0.001, η2p= 0.52) and adults
(Po0.001, η2p= 0.72) reported an increase in dry mouth from Pre-
drug to Post-drug on cannabis, though the increase was greater
for adults. On placebo there was no change in dry mouth over
time for adolescents (P= 0.495, η2p= 0.03) or adults (P= 0.244,
η2p= 0.07). Main effects of drug (F1,38 = 44.682, Po0.001,
η2p= 0.54) and time (F1,38 = 46.168, Po0.001, η2p= 0.55) also
emerged.

Want to have cannabis. There was an interaction of group × time
(F1,38 = 9.661, P= 0.004, η2p= 0.20). From Pre-drug to Post-drug,
wanting of cannabis increased in the adolescents (P= 0.048,
η2p= 0.19) and decreased in the adults (P= 0.031, η2p= 0.22).
There was also an interaction of drug × time (F1,38 = 5.933,
P= 0.020, η2p= 0.14); wanting of cannabis increased after taking
placebo (P= 0.037, η2p= 0.11), but did not change after taking
cannabis (P= 0.177, η2p= 0.05).

Other subjective ratings. Comparable analyses revealed that
compared with placebo, cannabis increased subjective ratings
for ‘paranoid’, ‘mentally impaired’, ‘high’, ‘like drug effect’, ‘want to
have food’, ‘enhanced color perception’ and ‘enhanced sound
perception’ (all P’s o0.05). However, there were no group-related
differences or interactions for any of these ratings (all p’s 40.05).

Psychotomimetic effects
PSI. There were interactions of drug × subscale × group
(F4,152 = 6.241, Po0.001, η2p= 0.14), subscale × group (F4,152 =
5.111, P= 0.001, η2p= 0.12), drug × subscale (F3,116 = 32.032,
Po0.001, η2p= 0.46), and drug× group (F1,38 = 4.281, P= 0.045,
η2p= 0.10; Figure 3). Neither group had increased thought

Table 1. Demographic and baseline variables for adolescents and adults

Adolescents (n = 20) Adults (n = 20) Test statistic P-value

Mean (s.d.) Mean (s.d.)

Demographics
Age (years) 17.08 (0.44) 25.49 (1.07) U= 400.000 o0.001*

Body weight (kg) 66.40 (10.30) 74.96 (10.12) U= 296.000 0.009*

Cannabis weight (mg) 58.90 (7.65) 65.44 (6.56) U= 299.500 0.006*
Verbal IQ (n= 39) 110.20 (11.29) 115.11 (8.70) U= 245.000 0.127

Baseline questionnaires
Beck Anxiety Inventory 4.55 (4.62) 6.45 (7.09) U= 234.500 0.355
Beck Depression Inventory 6.35 (4.66) 4.55 (4.38) U= 152.000 0.201
SUPPS-P Impulsive Behaviour Scale 45.55 (8.00) 45.40 (5.94) t38= 0.067 0.947
Schizotypal Personality Questionnaire 20.90 (10.90) 15.21 (11.24) U= 145.000 0.142

Cannabis use
Age first tried cannabis (years) 14.73 (1.25) 17.71 (3.00) U= 338.000 o0.001*

Last used cannabis (days) 3.35 (2.52) 4.75 (3.78) U= 259.500 0.108
Duration of cannabis use (years) 2.35 (1.24) 7.78 (2.85) U= 378.500 o0.001*

Cannabis use frequency (days per month) 10.58 (4.33) 7.94 (5.27) U= 121.000 0.033*
Positive THC urine at baseline (n= 37); %(n) 83.33 (15) 63.16 (12) χ21= 1.908 0.167
Cannabis Abuse Screening Test 6.45 (2.72) 5.60 (3.56) t38= 0.848 0.402

Cigarette use
Ever used cigarettes; %(n) 95.00 (19) 75.00 (15) χ21= 3.137 0.077
Age first tried cigarettes (years)b 15.06 (1.49) 17.21 (2.61) U= 279.000 0.003*

Duration of cigarette use (years) 1.91 (1.41) 7.60 (3.44) U= 356.500 o0.001*

Cigarette use frequency (days per month) 19.28 (12.36) 10.37 (11.62) U= 120.500 0.030*

Cigarettes per day 3.74 (2.83) 1.84 (2.06) U= 107.500 0.011*

Fagerström Test for Nicotine Dependence 1.30 (1.03) 0.20 (0.70) U= 81.000 o0.001*

Carbon monoxide at baseline (p.p.m.; n= 38) 6.00 (4.55) 5.68 (3.96) U= 163.000 0.624

Alcohol use
Ever used alcohol; %(n) 100.00 (20) 100.00 (20) NA NA
Age first tried alcohol (years) 14.07 (14.07) 14.56 (3.22) t28= -0.611 a 0.546
Duration of alcohol use (years) 3.01 (1.63) 10.93 (3.71) U= 399.000 o0.001*

Alcohol use frequency (days per month) 5.80 (4.83) 9.78 (6.00) U= 283.500 0.023*

Alcohol units per typical drinking sessionc 9.81 (6.92) 8.43 (2.82) U= 190.000 0.799
Alcohol Use Disorders Identification Test 8.95 (5.53) 8.95 (4.82) U= 214.000 0.718

Abbreviations: NA, not applicable; THC, tetrahydrocannabinol. aLevene’s test for homogeneity of variance violated. bCalculated only on those who had ever
used cigarettes (n= 34). cUnits used are standard UK units of alcohol; equivalent to 8 g of pure alcohol or ~ 3/5ths of a NIAAA standardized drink. *Po0.05.
Values reflect mean (s.d.) unless otherwise stated; P-values reflect independent t-test comparing mean, Mann–Whitney U-test comparing median or
chi-squared comparing frequency (as appropriate), by age group.
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distortion following cannabis compared to placebo (all P's⩾ 0.076,
all η2p⩽ 0.08). Both groups had higher perceptual distortion,
manic experience and cognitive disorganization ratings on
cannabis compared with placebo (all P’s⩽ 0.001, all η2p⩾ 0.27).
On cannabis adults reported higher cognitive disorganization than
adolescents (P= 0.009, η2p= 0.17). Lastly, cannabis increased
anhedonia in adults (P= 0.001, η2p= 0.25) but not adolescents
(P= 0.925, η2po 0.01). Main effects of drug (F1,38 = 66.453,
Po0.001, η2p= 0.64) and subscale (F3,102 = 43.544, Po .001,
η2p= 0.53) also emerged.

Cognitive tasks
Spatial N-back. Five participants were excluded (three adults,
two adolescents) due to o50% accuracy.
Discriminability: Main effects of drug (F1,33 = 30.495, Po0.001,
η2p= 0.48) and load (F1,33 = 26.054, Po0.001, η2p= 0.44) were
found. Discriminability was poorer on cannabis (M= 2.47, s.
e. = 0.12) than placebo (M= 3.09, s.e. = 0.10) and on high load
(M= 2.49, SE = 0.13) than low load (M=3.07, s.e. = 0.09).
Reaction time (correct trials): Initial analyses demonstrated main
effects of drug (F1,33 = 12.221, P= 0.001, η2p= 0.27) and load
(F1,33 = 44.430, Po0.001, η2p= 0.57), with no interactions. Reaction
times were longer on cannabis than placebo and on high load
(M= 706.77, s.e. = 25.58) than low load (M=566.95, s.e. = 16.87).
However, after adding drug order to the model, an interaction of
drug × group (F1,31 = 4.447, P= 0.043, η2p= 0.13) also emerged. For
adolescents there was no difference in reaction times between
cannabis (M= 632.63, s.e. = 30.74) and placebo (M=589.75, s.
e. = 23.83; P= 0.076, η2p= 0.10), while for adults reaction times
were longer after cannabis (M= 720.40, s.e. = 32.14) than placebo
(M= 606.31, s.e. = 24.92; Po0.001, η2p= 0.41).

Prose recall. There was an interaction of drug ×delay × group
(F1,38 = 5.518, P= 0.024, η2p= 0.13), with adolescents recalling
fewer items after cannabis than placebo, both immediately
(P= 0.002, η2p= 0.22) and after the delay (P= 0.038, η2p= 0.11;
Figure 4a). Adults also recalled fewer items after cannabis than
placebo, both immediately (Po0.001, η2p= 0.28) and after the
delay (Po0.001, η2p= 0.35); however, the reduction in items
recalled after cannabis compared with placebo for delayed recall
was twice as large in adults than adolescents. A main effect of
drug (F1,38 = 25.869, Po0.001, η2p= 0.41) also emerged.

Stop-signal. Two participants (one adult, one adolescent) had
missing data due to technical issues; one adult was excluded due
to an improbable stop-signal reaction time (o50 ms[ref. 76]).
Stop-signal reaction time: No main effects or interactions
were found.
Accuracy on no-signal trials: There was an interaction of drug ×
group (F1,35 = 4.906, P= 0.033, η2p= 0.12), with adolescents being
less accurate on cannabis compared with placebo (P= 0.001,
η2p= 0.28), whereas drug did not affect adults’ accuracy (P= 0.644,
η2p= 0.01; Figure 4b). A main effect of drug (F1,35 = 8.306,
P= 0.007, η2p= 0.19) also emerged.

Correlations
Within-group correlations were conducted between all cannabis
session outcomes in which we found group main effects or
interactions, and variables showing baseline group differences (at
Po0.10; Table 1), including administered cannabis weight.
Cannabis weight was not found to correlate with any outcome
in either group. None were found to correlate (at Po0.10) with
any outcome measure in both the adolescent and adult groups,
and so were not entered into models.

DISCUSSION
In what we believe is the first study to examine the causal effects
of acute cannabis administration in human adolescence and
adulthood, we found two differing profiles of effects. Compared
with adults, adolescents experienced blunted subjective, physio-
logical and psychotomimetic effects of cannabis, while cannabis
impaired inhibitory processes in adolescents but not adults.
Specifically, on cannabis adolescents reported feeling less stoned,
feeling less effect of the drug, less dry mouth and less cognitive
disorganization than adults. The adults were also markedly more
anxious and less alert during the cannabis session than the
placebo session, while no session difference was found for the
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adolescents (however, since these group differences did not differ
over time, these may be session effects rather than effects of
cannabis). Indeed, there was no subjective rating on which
adolescents reported greater drug effect than adults. Further,
adults’ but not adolescents’ diastolic BP rose after cannabis.
Intriguingly, we found opposing effects between age groups on

wanting of cannabis following drug administration. The adoles-
cents did not show a typical satiety effect, wanting more cannabis
post drug regardless of whether they had taken cannabis or
placebo. Meanwhile the adults wanted less cannabis post drug, an

effect that appears to be driven by a decrease in wanting
following cannabis but not after placebo (although this putative
interpretation remains tentative in the absence of a group×
drug× time interaction).
In terms of cognitive effects, when intoxicated with cannabis

adults showed greater impaired recall of prose following a delay
than adolescents. After adjusting for drug order, the adults also
had longer response times on the spatial working memory task
following cannabis, while the adolescents were not affected.
Although neither group was impaired at inhibiting a pre-potent
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response following cannabis, the adolescents but not adults were
less accurate on the inhibition task after cannabis.
These results are in line with our first hypothesis that

adolescents would be less sensitive to physiological, intoxication
and anxiogenic effects compared with adults. These findings
accord with the preclinical evidence that shows reduced
anxiogenic, aversive and locomotor effects in adolescent
rodents.35,42–44 Further, while our second hypothesis predicted a
greater degree of psychotomimetic effects following cannabis in
the adolescents compared with the adults, we instead found the
opposite: cognitive disorganization was especially elevated in
adults compared with adolescents after cannabis. This unexpected
finding is however in agreement with our first hypothesis of lesser
intoxication effects in adolescents, perhaps suggesting a common
mechanism by which adolescents are resilient to the acute
negative effects of cannabis. It may also reflect an awareness in
adults of the greater cognitive impairments they were experien-
cing, rather than amplified psychotic-like effects of cannabis
per se. We also found that cannabis increased anhedonia
symptoms in adults but not in adolescents; interestingly however,
on placebo the adolescents had (non-significantly) higher levels of
anhedonia than the adults.
Lastly, partial support for our third hypothesis, that we would

see greater cognitive impairment following cannabis in adoles-
cents than adults, was seen in greater impairment of response
inhibition accuracy following cannabis in the adolescents com-
pared with adults. However, contrary to expectations we did not
see greater cannabis-related memory impairment in the adoles-
cents, instead finding evidence of greater impairment in adults.
Preclinical evidence for greater adolescent sensitivity to acute
memory-impairing effects of cannabis is however inconsistent.77

In adult humans cannabis appears to selectively impair episodic
and working memory domains,78 leaving other memory domains
intact, while rodents typically become impaired on a wide range
of memory tasks across domains including object recognition and
spatial learning, implying that preclinical findings for cannabis and
memory may be somewhat limited in translation.

These findings have important implications for public health,
especially given the current changes in legislation that are making
cannabis more available and may influence adolescent use in
several parts of the globe. If adolescents do not feel satiated after
an acute dose of the drug while also experiencing fewer negative
effects, they may well use more cannabis in a smoking session
than adults,44 potentially contributing to the increased risk of
long-term harms associated with younger age of use, including
addiction.16 In turn, adults’ experience of more negative effects of
cannabis may limit their use and reduce their risk of harms, which
would concur with the declining prevalence of cannabis use seen
from early adulthood.4 A clear next step from these findings is
therefore replication (importantly with females as well as males)
and then assessment of naturalistic use of cannabis in different
age groups, using measures that clearly record weight and
potency of cannabis smoked,79 topography of inhalation,56

alongside ratings of subjective negative and positive intoxication
effects. Tracking these participants longitudinally would be
important in determining how these age-related sensitivities
may impact in the long term on cannabis use patterns and mental
and physical health outcomes.
Our study has several critical strengths. Importantly our groups

were well matched on baseline measures including premorbid IQ
and levels of anxiety, depression, impulsivity and schizotypy. This
increases our confidence that participants in the two age groups
were drawn from similar populations, and maximizes compar-
ability between groups. Further the use of cannabis plant material,
rather than extracted or synthetic cannabinoids, via an ecologi-
cally valid administration procedure (that is, inhalation) enhances
the relevance of our findings to the real world use of this drug.
Administering a known THC dosage that closely corresponds to
that contained in about a third of a typical joint,56 which was
weight adjusted to allow for weight differences in adolescents and
adults, are both strengths of this controlled study.
The study is not without limitations. First, we cannot speak to

mechanism of the reported age-related sensitivities. Although the
findings may represent age-related neural sensitivities to
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cannabis, there are a number of alternative explanations.
Adolescents have a higher basal metabolism than adults,80,81

alongside lower percentage body fat,82,83 potentially affecting the
speed of THC metabolism between the groups. Should THC and its
by-products be metabolized more quickly in adolescents than
adults, this could potentially result in the reduced subjective and
episodic memory effects seen in adolescents; however, if drug
metabolism in the adolescents was faster, a quicker decline of
drug effects would be expected, which does not appear to be the
case. Further, this would not explain the adolescent’s impaired
inhibition accuracy when the adults were unaffected. Group
differences in the effect of cannabis on diastolic BP are also
intriguing, though adolescents’ diastolic BP was lower on both
sessions at baseline, consistent with normative data.84 This finding
should also be viewed alongside a lack of a group difference in the
more robust effect of cannabis increasing heart rate. Relatedly,
participants were given a weight-adjusted dose, meaning that
because adolescents typically weigh less than adults,85 on average
they received a lower dose. We cannot therefore rule out the
possibility that the blunted effects seen in the adolescents are due

to the reduced dose; however, again this would not explain the
overall pattern of results including the adolescents’ (but not
adults’) impaired response inhibition accuracy. Moreover, critically
the weight of cannabis administered did not correlate with any
outcome in either group. Groups could potentially be matched for
body weight in future research, however this would result in
biased samples that do not reflect the population as a whole. An
important goal now is to investigate the mechanisms by which
these apparent group differences occur, for instance, a first step
would be to repeat key components of our protocol using an fMRI
paradigm.
Second, all our participants were necessarily regular cannabis

users, raising the possibility that our findings may be affected by
group differences in past cannabis use. Although the groups were
matched for cannabis abuse symptomology and days since last
use, the adolescents did report more days of cannabis use per
month than the adults (11 days versus 8 days); further while the
adults had been using for more years, they had started using from
an older age. Tolerance to some cannabis effects following
frequent use has been reported (including for spatial working
memory and episodic memory78), however findings are
inconsistent86 and little is known about the development of
cannabis tolerance and how different usage patterns affect this. As
such it is possible that differing cannabis use histories and
patterns may explain group differences in outcomes. Importantly
however, none of our measures of cannabis use correlated with
outcomes in both the adolescent and adult groups. Relatedly, the
adolescents were more frequent and heavier cigarette smokers,
with higher nicotine-dependence scores, and they had started
tobacco smoking from a younger age than the adults. The groups
were well matched for age of first alcohol use, but the adolescents
were less frequent alcohol drinkers. It is possible that cross-
tolerance to cannabis from previous alcohol or tobacco use may
occur, though we are not aware of evidence demonstrating such
an effect. A recent ecological momentary assessment study
suggested that acutely tobacco use may offset acute impairment
of working memory from cannabis,87 though this has yet to be
replicated in a controlled study. It is possible therefore that the
age group differences in alcohol and cigarette use may be
contributing to our findings.
Third, we recruited only males, due to differing age of puberty

onset and potentially differing brain development trajectories
between sexes, thus precluding generalization of findings to
teenage girls. Samples in cannabis research are often predominantly
male and gender effects have rarely been assessed, with
inconsistent findings.78 Some have shown heightened subjective88

and working memory89 effects in women compared with men,
though others found no differences.90 Recently it was found that
younger age of cannabis use onset predicted poorer episodic
memory in women but not men,91 suggesting that there may be
age-dependent sex differences in the cognitive effects of cannabis.
Given such findings, there is a clear evidence gap regarding the
effects of cannabis in young women and girls and future research
should assess whether our findings generalize to females.
Finally, since this was a novel study, with multiple statistical

comparisons and limited or mixed evidence on which to base our
prior hypotheses, it is important to treat these findings with
caution. Replications with larger sample sizes (which can now be
determined according to effect sizes reported in this paper) are
required before strong conclusions can be drawn.
In conclusion, compared with adults, adolescent cannabis users

experienced blunted subjective, physiological and memory
impairing effects of cannabis. Further, adolescents were not
satiated by cannabis and the drug impaired their inhibitory
processes while leaving those of adults intact. To our knowledge,
this is the first study to administer cannabis in a controlled setting
to humans under 18, and it therefore represents a significant
step forward in the translation of preclinical developmental
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psychopharmacology. In agreement with preclinical cannabinoid
administration studies, we found evidence to suggest that human
adolescents and adults are differentially sensitive to the acute
effects of cannabis. Longitudinal research is now needed to
determine the degree to which age-related sensitivities are indeed
contributing to escalated use and increased risk of cannabis-
related harms in adolescent cannabis users.
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