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Abstract

Central power systems predominantly consist of large generators that provide electricity

to a broad consumer base through extensive networks. This conventional top-down sup-

ply is, however, being challenged by peak demand, energy losses, ageing infrastructure

and climate change. Localised distributed energy systems (DES), consisting of clusters

of small-scale technologies and various energy services and interactions at the consumer

level, are increasingly presented as solutions to these challenges. However, for DES to

become viable, a novel cross-disciplinary design approach is still required that encom-

passes multiple stakeholder interests. This thesis aims to address this need through de-

veloping a flexible multi-objective decision-making framework for DES design, from an

engineering and regulatory perspective, using mathematical programming techniques.

A superstructure mixed-integer linear programming approach is hereto developed to

optimise residential energy system designs framed by location-specific parameters and

required electricity, heating and cooling demands.

Engineering design is optimised in terms of selection, siting and sizing of energy supply

alternatives and interactions from a considered pool of options. Multiple stakeholder-

driven minimisation objectives are included through Pareto trade-offs, ensuring a system

design that is not only competitive (total annualised energy cost) but also introduces

security of supply (electrical system unavailability) and environmental benefits (annual

CO2 emissions) to the neighbourhood as compared with conventional configurations.

DES, furthermore, require an adequate regulatory framework to fit in with conventional

systems. Nevertheless, regulation is still lagging behind their technological development.

The developed design approach is therefore extended to enable analysis of DES regu-

latory framework aspects by identifying quantifiable relations, such as type, scale and

ownership, between engineering design, organisation and regulation.

The framework is applied to a small South Australian neighbourhood to illustrate its

capability for DES design analyses and decision-making within conventional power sys-

tems generally. The developed approach ensures DES applicability within conventional

power systems and their relevance to governing energy regulation.
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Nomenclature

Abbreviations

3P Third party

AC Absorption chiller / Alternating current

Airco Air-conditioning unit

B Condensing boiler

CHP Combined heat and power unit

CL Capacity level

Cpipe Cold thermal pipeline

CST Cold thermal storage

CT Carbon tax

DC Direct current

DER Distributed energy resource(s)

DES Distributed energy system(s)

DG Distributed generation

DNO Distribution network operator

DOC Depth of charge of batteries

Dump Dump load

ESCO Energy service company

EST Electrical battery storage

FIT Feed-in tariff

G Gas heater

GR Grid connection

Hpipe Hot thermal pipeline

HST Hot thermal storage

IP Integer programming

LDC Load Duration Curve

LP Linear programming

MG Microgrid

MGCC Microgrid central control unit
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MILP Mixed-integer linear programming

MINLP Mixed-integer non-linear programming

MIP Mixed-integer programming

NEM National Electricity Market of Australia

NLP Non-linear programming

OM Operation and maintenance

PIPE Pipeline

PPA Power purchase agreement

PV Photovoltaic units

SA South Australia

SAIDI System average interruption duration index

WT Wind turbine

Symbols

A(t) Time dependent component availability

∆t Time interval

λc Constant component failure rate

µc Constant component repair rate

Ps Probability of the system being in state s

t Time step

U(t) Time dependent component unavailability

Sets

con Electrical system configurations

energy Types of energy: electrical (elec) and thermal (therm)

h Hours in a day

i, j Houses in the energy system

infDG Infrastructure related to MG and DES: MGCC, dump loads, pipes

k Types of CHP units and number of microgrid-available CHP units

l Daily solar irradiation levels

m Months in a year

t Piecewise linearisation sample points

tech Technologies considered for the energy system, i.e AC, airco, B, CHP,

CST, dump, EST, G, HST, MG, pipe, PV, WT

techC Conventional cooling technologies considered for the energy system,

i.e. airco

techct Central DG technologies considered for the energy system, i.e. AC

and CHP

techCV Conventional technologies considered for the energy system, i.e.

airco, B, G, grid



Nomenclature 21

techDCT Distributed generation units considered for the energy system, i.e.

CHP (both central and decentral), PV, WT

techDG Distributed generation units considered for the energy system, i.e.

CHP (decentral), PV, WT

techH Conventional heating technologies considered for the energy system,

i.e. B and G

techST Storage technologies considered for the energy system, i.e. CST, EST,

HST

techTH Conventional thermal technologies considered for the energy system,

i.e. airco, B and G

Parameters

ac Component total availability [%]

Acomtech Component availability of technology tech [%]

Arestech Resource availability of technology tech [%]

Asuptech Power supply availability of technology tech [%]

Atottech Total availability of technology tech [%]

CCtech Unit capacity investment cost [AUD kW−1inst]

CLOADELEC,i,s,h Average electricity demand of house i in season s in hour h [kW]

CLOADHEAT,i,s,h Average heat demand of house i in season s in hour h [kW]

CLOADCOOL,i,s,h Average cooling demand of house i in season s in hour h [kW]

Comftech Unit fixed OM cost of technology tech [AUD kW−1inst]

Comvtech Unit variable OM cost of technology tech [AUD kWh−1]

CIelec Carbon intensity central electricity grid supply [kgCO2 kWh−1]

CIgas Carbon intensity natural gas supply [kgCO2 kWh−1]

COP Cooling coefficient of performance [kWcool kW−1elec]

CRF Capital recovery factor for cost annualisation

ds Number of days in each season s

dl,s Number of days of each solar irradation level l in each season s

DGUPtechDG Capacity bound for maximum installed residential DG units [kW]

ECR Electricity to cooling ratio of AC units [kWelec kWcool
−1]

hr Duration of time period, here one hour

HER Heat to electricity ratio of CHP units [kWheat kWelec
−1]

Itl,s,h Average solar irradiation on a tilted surface for radiation level l in

hour h in season s [kW m−2]

Its,h Average solar irradiation on a tilted surface in hour h in season s

[kW m−2]

li,j Distance between each house pair i, j [m]

Ltech Lower technology capacity bound [kW or kWh]
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n Component life time

nchp,i Total number of microgrid-available CHP units available to house i

nh Number of houses in the neighbourhood

nelectech Electrical efficiency of technology tech [% ]

nthtech Thermal efficiency of technology tech [% ]

pSAL Percentage of equivalent installed DG capacity that can be exported

PESALUPtechDG Capacity bound on export levels of residential DG units [kWh day−1]

r Interest rate [%]

T avtech,i Threshold capacity of technology tech installed in house i in order to

be considered available [kW or kWh]

TBUYMGint,energy Internal microgrid purchase price for energy [AUD kWh−1]

TBUYtechct,energy Internal microgrid purchase price for energy from central units

[AUD kWh−1]

TCT Carbon tax tariff [AUD kgCO−12 ]

T elc Central electricity tariff [AUD kWh−1]

T gas Central natural gas tariff [AUD kWh−1]

TSALMG Microgrid DG export feed-in tariff [AUD kWh−1]

TSALMGint,energy Internal microgrid selling price for energy [AUD kWh−1]

TSALtechDG Feed-in tariff for residential DG electricity export [AUD kWh−1]

Urec Upper bound on power received from pipelines, MG or grid [kW]

Usnd Upper bound on power send to pipeline, MG or grid [kW]

Utech Upper technology capacity bound [kW or kWh]

uac Component total unavailability [%]

uacon Steady-state unavailability of electrical system configuration con

UAcomtech Component unavailability of technology tech [%]

UArestech Resource unavailability of technology tech [%]

UAsuptech Power supply unavailability of technology tech [%]

UAtottech Total unavailability of technology tech [%]

Vs,h Average wind speed in hour h in season s [m s−1]

β Pipeline transfer losses [% ]

δχ Electrical storage unit discharging losses [% ]

ε Electricity transfer losses [%]

ζ Static thermal storage unit losses [% ]

ζt Piecewise linearisation x-axis sample point values [kW]

f(ζt) Piecewise linearisation y-axis sample point values [AUD]

η Static electrical storage unit losses [% ]

λa Weighted-sum weighting factor for unavailability objective ∈ [0; 1]

λc Weighted-sum weighting factor for cost objective ∈ [0; 1]
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λe Weighted-sum weighting factor for emissions objective ∈ [0; 1]

χ Electrical storage unit charging losses [% ]

ω Ownership weighting factor ∈ [0; 1]

Variables

APVi Installed PV capacity in house i [m2]

at Economies-of-scale relation sample points for piecewise linearisation,

SOS-2 variables

Bcon,i Binary variable that decides on the installation of electrical system

configuration con in house i

Btech,i Binary variable that decides on the installation of technology tech in

house i

Bav
tech,i Binary variable that decides on the installation of an available tech-

nology tech in house i

BCT Binary variable that determines if only central units are installed in

the neighbourhood

BDC Binary variable that determines if only decentral DG and storage

units are installed in the neighbourhood

BDCtech Binary variable that decides if decentral DG and storage units are

installed in the neighbourhood

CBUYtechct,energy Total annualised cost of houses to purchase energy from central units

[AUD y−1]

CCT Annual carbon tax imposed on the neighbourhood [AUD y−1]

CFUEL Annual fuel costs of technologies in the neighbourhood [AUD y−1]

CGRIDBUY Annual grid electricity import cost of the neighbourhood [AUD y−1]

CGRIDSAL Annual electricity export income of the neighbourhood [AUD y−1]

CINV Annualised investment cost of technologies and infrastructure in the

neighbourhood [AUD y−1]

CMG
BUY,energy Total annualised cost of houses that purchase energy from other

houses in the neighbourhood [AUD y−1]

CMG
SAL,energy Total annualised income of houses that sell energy to other houses in

the neighbourhood [AUD y−1]

COM Annual OM cost of neighbourhood technologies and infrastructure

[AUD y−1]

CTOT Total annualised energy cost of the neighbourhood [AUD y−1]

CTOT,S Scaled total annualised energy cost of the neighbourhood [kAUD y−1]

CHP
A/B/C
i Binary variables that decide on the installed capacity category of the

CHP unit in house i

DGMAX
tech,i Total installed capacity of technology tech in house i [kW or kWh]
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EM Annual CO2 emissions of the neighbourhood [kgCO2 y−1]

EMS Scaled annual CO2 emissions of the neighbourhood [tonCO2 y−1]

ESSTOi,s,h Energy stored in the battery of house i in hour h in season s [kWh]

GCi Binary variable that decides if house i has an available grid connection

MGAi,k Binary variable that decides if house i has an available microgrid

connection with k microgrid available CHP units in houses j

MGCi,j,s,h Binary microgrid connection variable that decides if house i sends

electricity to house j in hour h in season s

OHi Positive integer variable that indicates for each house i the visiting

order in a pipeline network

PCLoadtech,i,s,h Cooling power for self use generated by technology tech in house i in

hour h in season s [kW]

PCPipetech,i,s,h Cooling power for pipeline transfer generated by a DG unit tech in

house i in hour h in season s [kW]

PCSTOtech,i,s,h Cooling power for storage unit charging generated by a DG unit tech

in house i in hour h in season s [kW]

PCTOTtech,i,s,h Total cooling power generated by a DG unit tech in house i in hour

h in season s [kW]

PEACchpct,s,h Electrical power generated by central CHP unit to fuel the central

AC unit in hour h in season s [kW]

PECIRCtech,i,s,h Electrical power circulated in the MG generated by a DG unit tech

in house i in hour h in season s [kW]

PEGRIDi,s,h Electrical power received from the central grid by house i in hour h

in season s [kW]

PELOSSchpct,i,s,h Electrical power MG transfer losses between the central CHP and

house i in hour h of season s [kW]

PELOSSi,j,s,h Electrical power MG transfer losses between houses i and j in hour

h of season s [kW]

PErecchpct,i,s,h Electrical power received by house i from the central CHP through

the MG in hour h in season s [kW]

PEreci,j,s,h Electrical power received by house i from house j through the MG in

hour h in season s [kW]

PErecMG,i,s,h Electrical power received from the MG by house i in hour h in season

s [kW]

PESALchpct,s,h Electrical power exported to the grid generated by the central CHP

in hour h in season s [kW]

PESALtech,i,s,h Electrical power exported to the grid generated by a DG unit tech in

house i in hour h in season s [kW]
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PESELFtech,i,s,h Electrical power for self use generated by a DG unit tech in house i

in hour h in season s [kW]

PEsndchpct,i,s,h Electrical power send to house i by the central CHP in hour h in

season s [kW]

PEsndi,j,s,h Electrical power send from house i to house j through the MG in

hour h in season s [kW]

PESTOtech,i,s,h Electrical power for battery charging generated by a DG unit tech in

house i in hour h in season s [kW]

PETOTtech,i,s,h Total electrical power generated by technology tech in house i in hour

h in season s [kW]

PHCOOL
tech,i,s,h Heating power used for cooling purposes generated by a DG unit tech

in house i in hour h in season s [kW]

PHDIS
chpct,s,h Heating power generated by central CHP unit chpct and dissipated

in hour h in season s [kW]

PHHEAT
tech,i,s,h Heating power used for heating purposes generated by a DG unit tech

in house i in hour h in season s [kW]

PHLoad
tech,i,s,h Heating power for self use generated by a DG unit tech in house i in

hour h in season s [kW]

PHPipe
CHP,i,s,h Heating power for pipeline transfer generated by CHP unit in house

i in hour h in season s [kW]

PHPipe
tech,i,s,h Heating power for pipeline transfer generated by a DG unit tech in

house i in hour h in season s [kW]

PHSTO
tech,i,s,h Heating power for storage unit charging generated by a DG unit tech

in house i in hour h in season s [kW]

PHTOT
tech,i,s,h Total heating power generated by technology tech in house i in hour

h in season s [kW]

PSINi,s,h Power inflow in the storage tank of house i in hour h in season s [kW]

PSINEST,i,s,h Power inflow in the battery of house i in hour h in season s [kW]

PSOUTi,s,h Power outflow of the storage tank in house i in hour h in season s

[kW]

PSOUTEST,i,s,h Power outflow of the battery in house i in hour h in season s [kW]

PSSTOi,s,h Power stored in the storage tank of house i in hour h in season s [kW]

QCacct,i,s,h Cooling power transfer from central AC unit acct to house i in hour

h in season s [kW]

QCi,j,s,h Cooling power transfer from house i to house j in hour h in season s

[kW]

QCSTOi,s,h Cooling power for storage in the CST of house i in hour h in season

s [kW]
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QHchpct,i,s,h Heating power transfer from central CHP unit chpct to house i in

hour h in season s [kW]

QHi,j,s,h Heating power transfer from house i to house j in hour h in season s

[kW]

QHLOAD
i,s,h Heating power received by house i from pipeline transfer of houses j

in hour h in season s [kW]

QHLOSS
chpct,i,s,h Heating power losses from transfer from central CHP unit chpct to

house i in hour h in season s [kW]

QHLOSS
i,s,h Heating power losses from transfer from houses j to house i in hour

h in season s [kW]

QHSTO
i,s,h Heating power for storage in the HST of house i in hour h in season

s [kW]

UAi Electrical system unavailability of house i

UATOT,S Scaled average house electrical system unavailability [log10]

Xrec
i,s,h Binary variable that decides if house i receives electricity from the

central grid in hour h of season s

Xsnd
chpct,s,h Binary variable that decides if the central CHP exports electricity to

the central grid in hour h of season s

Xsnd
i,s,h Binary variable that decides if house i exports electricity to the cen-

tral grid in hour h of season s

Y chp
i,k Binary variable that decides whether a number of CHP units (k) in

the neighbourhood is microgrid-available to house i

Y Creci,s,h Binary variable that decides if house i receives cooling from a pipeline

in hour h of season s

Y Csndi,s,h Binary variable that decides if house i sends cooling to a pipeline in

hour h of season s

Y Hrec
i,s,h Binary variable that decides if house i receives heat from a pipeline

in hour h of season s

Y Hsnd
i,s,h Binary variable that decides if house i sends heat to a pipeline in

hour h of season s

Y Ptechct,i Binary variable that decides on the installation of a uni-directional

pipeline from central unit techct to house i

Y Pi,j Binary variable that decides on the installation of a uni-directional

pipeline from house i to house j

Z Binary variable that decides on the installation of microgrid electrical

sharing infrastructure in the neighbourhood



Chapter 1

Introduction and background

Central power systems still predominantly consist of large generators that provide elec-

tricity to a broad consumer base through extensive networks. This conventional top-

down supply is being challenged by peak demand, energy losses, ageing infrastructure

and climate change. Localised distributed energy systems (DES), consisting of vari-

ous small-scale technologies, energy services and interactions at the consumer level, are

increasingly presented as solutions to these challenges. However, for DES to become

viable, a novel cross-disciplinary design approach is still required that encompasses mul-

tiple stakeholder interests. This thesis aims to address this need through developing a

flexible multi-objective decision-making framework for DES design, from an engineer-

ing and regulatory perspective, using mathematical programming techniques. This first

Chapter frames the modern DES concept and demonstrates the need for a new design ap-

proach by looking at the evolution of power systems over time (Section 1.1). Section 1.2

defines the current research and development status of DES. The researched problem,

aims, solution approach and scope are detailed in Sections 1.3 to 1.5. Section 1.6, finally,

presents an overview of the thesis.

1.1 Setting the stage for distributed energy systems

The development of electric power systems and their conventional structure, policy

framework and challenges are detailed below. A new power system paradigm is sub-

sequently introduced to alleviate conventional power system challenges.

27
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1.1.1 Historical development of power systems

Electricity is an indispensable good for the industrial development of a country [1]. Nev-

ertheless, the development of regional and national electricity systems in industrialised

countries only dates back to the turn of the 20th century. Electricity (power) systems

have here developed from small direct current (DC) grids, serving a local consumer base,

to large centralised alternating current (AC) networks serving a wide region [1, 2].

Thomas Edison developed the first small lighting DC networks around 1900, where a

small steam turbine generator served a limited local consumer base [1, 3]. About 500

of these isolated ‘micro-grids’ were installed, predominantly in the United States, Chile

and Australia [1, 2]. Electricity subsequently gained increasing interest and applicability

aiding industrialisation [1, 2]. The invention of the transformer in the late 19th century

allowed to increase voltages, enabling long-distance AC electricity transport at reduced

losses [1, 4, 5]. Growing demands of cities facilitated the upscaling of small isolated

‘micro-grids’. Additionally, system centralisation occurred, based on large central fossil

fuel based power plants that moved away from cities [1, 5]. Locally managed ‘micro-grids’

were no longer applicable in these centralised – often national or regional – networks. The

first central electricity systems where typically vertically integrated. One central party,

often government, owned, operated and managed all four system activities of generation,

transmission, distribution and retail [1, 2, 5], see Figure 1.1. The 20th century thus

marked the transition from privately owned and operated ‘micro-grids’, established by

competitive utilities1, to large government controlled monopolies [1, 5]. This change in

ownership and control accelerated the trend towards network centralisation, upscaling

and the use of fossil fuels, such as oil, coal and gas, for electricity generation.

The fossil fuel crisis of the 1970s resulted in rising fuel prices and the realisation of

the finiteness of fossil fuels. As a result, new energy generation technologies based

on alternative energy resources, such as sun, wind and electricity-heat co-generation,

started to appear to increase self-sufficiency and security of supply [1–3]. These new

technologies were, however, still integrated within conventional network topologies (see

1A utility is a company that provides a service, such as electricity, water or gas, to consumers. A
utility can be publicly (government) or privately (commercial company) owned and can be set up as a
monopoly or a competitive service. A monopoly service is a service, which is provided by a single utility
without direct competitors that provide a similar service to consumers. A competitive utility is a service,
which is provided by a utility with direct competitors that provide similar services to consumers. See
for more information [1, 6].
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Generation Transmission & Distribution Retail 

Figure 1.1: Schematic of conventional power system activities.

Section 1.1.2). Small independent power producers emerged throughout the United

States and Europe, providing alternative energy supply at a smaller localised scale [1].

In the early 1980s, Chile initiated a global wave of liberalisation of vertically integrated

monopoly power systems, based on a strong belief in market mechanisms to address the

energy crisis [1, 7–9]. Markets namely allow many competitors to provide similar services

to reduce prices of goods, increase system efficiency and attract new investment [1,

7–9]. Power system activities were here no longer vertically integrated but became

structurally and legally unbundled separate entities governed by regulatory oversight

and/or competition.2 Energy policy in the first liberalised power systems was therefore

mainly based around competition, security of supply and affordability (see Section 1.1.3).

In 1987, ‘Our common future’ – known as the Brundtland Report – was published by the

World Commission on Environment and Development to address growing concerns about

the climate and availability of fossil fuel based resources [10]. This report initiated the

concept of sustainable development with regard to the environment, the economy and so-

ciety. Sustainable development was herein defined as ‘a development that meets the needs

of the present without compromising the ability of future generations to meet their own

needs’ [10]. The international Kyoto agreements of 1997 introduced an environmentally

measured sustainability aspect to energy policy through binding emission reduction tar-

gets [11]. The most recent Paris climate conference (December 2015) bound its adopters

to a global agreement to limit global warming to ‘well below 2◦C’ [12]. Conventional lib-

eralised power system energy policy therefore started to include environmental focusses,

complementing competition and security of supply aspects.

2Liberalisation refers to the introduction of competition in power system activities. Unbundling is an
aspect of liberalisation and refers to the legal and structural separation of the four power system activities
that were previously vertically integrated. Privatisation refers to the transition from governmental to
privately owned and operated system activities. See for further information [1, 7–9].
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1.1.2 Conventional power systems

Conventional centralised electric power systems refer to top-down uni-directional elec-

tricity supply from large central generators down to a broad consumer base, see Fig-

ure 1.1. Electricity generation is herein still primarily based on fossil fuels, such as coal,

gas and oil. Alternative energy resources, such as nuclear and renewables, are, however,

increasingly being adopted [1, 13, 14]. Conventional fossil fuel based generators attain

maximal primary energy conversion efficiencies of about 40% [1, 15]. Generated electric-

ity is transformed to high voltages and transported over a central meshed long-distance

high voltage (e.g. in the order of 500-220 kV and 132-66 kV) AC transmission network

and local radial middle (e.g. 22-11 kV) and low (e.g. 230-240 V) voltage AC distri-

bution networks to passive consumers who are served under retail contracts [13, 15].

Competition is typically introduced at the generation and retail level, while networks

are established as natural monopolies since their duplication is not economically vi-

able [1]. Thermal heating and cooling, in contrast, is conventionally generated at con-

sumer premises through, for example, gas heaters, air-conditioning systems or central

heating fuelled by, amongst others, natural gas, oil or electricity [16].

1.1.3 Energy system objectives

Power systems are governed by an energy policy. Energy policy is a strategy adopted

by a governing body to develop its energy system [17, 18]. The adopted policy can

be translated into, for example, national laws, international agreements, incentives and

guidelines. Within liberalised power systems, currently, three interrelated objectives

must be balanced to integrate and address the challenges these systems experience:

competition, security of supply and sustainability [1, 18], see Figure 1.2. These three

objectives are also defined by the World Energy Council ‘Energy Trilemma’ as energy

equity, energy security and environmental sustainability, respectively [19]. Energy poli-

cies should simultaneously take into account these aspects in addressing power system

challenges [19]. The three objectives are thus interconnected [19, 20]. Environmental

targets and new technological developments can, for example, only be implemented if

they are competitive with conventional supply. Competition is here key to opening up

the market to new entrants and driving down prices. Furthermore, more market players,
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affordable energy supply and resource diversification – resulting from environmental and

competitive focusses – could also increase security of supply [20]. The European Union

energy policy, for example, explicitly addresses these three aspects [17, 21, 22]. The

three ‘policy pillars’ or energy system objectives can each be measured through indices.

Energy 
Policy 

Competition 

Sustainability 
Security of 

Supply 

Figure 1.2: Energy policy pillars in liberalised power systems.

Competition refers to the strong belief that market mechanisms facilitate more innova-

tive and attractive products and services to consumers, often leading to reduced prices

(affordable), improved product quality and a levelled playing field for emerging tech-

nologies. Competition with respect to power systems refers to economic efficiency and

affordability [1, 17–19]. Competitiveness can thus be measured through, amongst others,

price signals, energy costs to consumers and economic viability of technologies.

Security of energy supply refers, amongst others, to dependability [1]. A dependable

system allows trusting the services it is supposed to deliver without disruptions now and

in the future [23, 24]. Security of power system supply can hence be determined through

probabilistic or deterministic indices related to system up and down times [24, 25].

Additionally, security of supply can be measured through diversification of generation

and primary energy resources portfolios, component redundancy and self-sufficiency.

Sustainability applies to the environmental impact of power systems. The European

Union internal energy market initiated an explicit sustainability objective within its

power system development with the 2020 targets [11, 26]. Sustainability relates here

to and can be measured through, for example, a reduction in greenhouse gas emissions,

an increase in renewable energy resources, an increase in primary energy efficiency or a

reduction in fossil fuel dependency [10, 11, 17]. The 2020 targets established percentage

reductions in each of these areas [11, 26].
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1.1.4 New power system paradigm

Currently, power systems are designed to meet the demand of their designated con-

sumer base. Residential consumers are here typically still passive receivers of electricity.

Conventional systems, however, face multiple challenges related to cost effectiveness,

sustainability and security of supply [27, 28];

First, central power system infrastructure is dimensioned based on peak consumer de-

mand. Total system infrastructure cost contributes to retail electricity tariffs. In the

National Electricity Market (NEM) of Australia, for example, about 20 to 30 % of the

network capacity is used less than 90 hours per year [13, 29].3 Residential households

in the NEM, furthermore, are responsible for about one third of the total yearly elec-

tricity consumption but for about two thirds of the peak demand, due to increased

air-conditioning use on extreme hot days [13]. The need for generation capacity and

network upgrades to facilitate peak demand events, combined with a stagnating average

demand, is leading to increasing electricity tariffs and costs to consumers [13].

Second, central network infrastructure is ageing, requiring expensive upgrades to keep

up with the increasing peak demand strain on the system [1, 13]. Additionally, low

voltage distribution networks are currently responsible for over 90 % of end-consumer

interruptions [30]. These both introduce security of supply issues to consumers.

Last, although continuing efforts are being made to reduce emissions in conventional

systems through, amongst others, large scale wind power plants, generation is still pre-

dominantly fossil fuel based (need for dispatchable sources) resulting in greenhouse gas

emissions [1, 15, 29]. Additionally, electricity transmission and distribution network

losses amount to about 8% of transmitted energy [15]. Emissions and reduced energy

efficiency are thus compromising environmental sustainability of power systems.

Residential consumers in the system are globally responsible for 30-40% of energy

consumption in developed countries and contribute significantly to system peak de-

mand [13, 27]. Furthermore, as passive agents, residential consumers are largely insensi-

tive to price or demand signals [13, 29]. Incorporating new technologies into residential

areas is thus often seen as a way to address the governing system challenges [28, 31, 32].

3Furthermore, in the State New South Wales, peak demand events occur less than 40 hours per year
but are responsible for about 25 % of retail electricity bills [13, 29].
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This, however, requires a redesign of conventional power system infrastructure and regu-

lation [15]. Small-scale technologies located close to or at the premises of end-consumers

in the grid (so called distributed energy resources (DER)) are one example of develop-

ments in the residential sector. DER comprise small-scale electrical and thermal energy

generation and storage technologies (so-called distributed generation (DG) and storage

units), local energy sharing, electric vehicles as well as novel demand side practices4,

located at the consumer-side of meters rather than at a central level. Additionally, DER

are able to exploit locally available renewable energy resources and increase energy sys-

tem efficiency [31–36]. DER consequently enable active consumers that can engage in

energy generation and sharing, becoming so-called ‘prosumers’ [28, 36–39]. DER are

ideally combined into highly efficient energy integrated microgrid – or, more generally

– distributed energy system (DES) environments that are tailored to location specific

needs and local requirements. Adequate DES design is therefore required.

1.2 Distributed energy systems (DES)

Distributed energy systems (DES) and their key components (DER) are defined in Sec-

tion 1.2.1. Additionally, an overview of current DES research and development is pro-

vided in Section 1.2.2 to shape the research problem.

1.2.1 DES as key concepts of future energy supply

The modern DES concept is not new in that it consists of local balancing of energy

supply and demand, relating back to the initial ‘micro-grid’ development stage of con-

ventional power systems (see Section 1.1.1) [2, 5]. Modern DES are, however, not always

solely local providers of electricity, i.e. electrical DES/microgrids, but are also smart

and flexible systems that provide additional services, such as heating, cooling and local

energy sharing, to their consumers [28, 40–42]. No single definition exists, but modern

microgrids, i.e. purely electrical DES, can be defined based on characteristics of the Con-

sortium of Electric and Reliability Technology Solutions (CERTS) in 1998 as ‘a cluster

of micro-generators and storage with the ability to separate and isolate itself from the

4Australian Government - Productivity Commission [13]: ‘Demand side management involves us-
ing price and non-price measures to curtail customers’ use of electricity during peak demand periods,
including shifting electricity usage to non-peak times.’
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utility seamlessly with little or no disruption of loads’ [40, 43]. Based on this definition,

a microgrid is typically considered to be installed within a localised cluster of consumers

with (i) locally controlled sources (generators), sinks (demands) and possibly storage,

and (ii) either has a bi-directional connection with the central grid or is disconnected

(i.e. in island) [5, 16, 28, 40–42, 44]. Other services are also increasingly integrated,

introducing the broader concept of DES [15, 28, 40, 41]. In this work, the term ‘DES’

is used to refer to small-scale localised energy systems of a cluster of consumers that

include various central and decentral DER, multiple energy services, local energy shar-

ing and local balancing of demands through a control unit, see Figure 1.3 [15, 45]. The

term ‘microgrid’ is sparingly used when referring to purely electricity based DES. DES

are typically installed at the conventional distribution level, close to or at premises of

consumers, and present themselves as single entities to the central grid through a point

of common coupling [15, 28, 40, 41].

MGCC 

CHP 

PCC 

Figure 1.3: Schematic of a distributed energy system architecture. Several consumers
with DER, a centralised wind farm and co-generation (CHP) unit are interconnected.
The microgrid central control unit (MGCC) manages the local balancing and sharing of
electricity (black arrows and dashed line), heating and cooling (grey arrows and dotted

line). A grid connection occurs through a single point of common coupling (PCC).

Local energy generation in DES is provided through distributed generation units (DG) [5].

DG are small, modular and on-site dispatchable (based on a controllable primary en-

ergy resource) or intermittent (based on an uncontrollable primary energy resource)

units [15, 31, 33, 35, 46]. They are generally limited in size, ranging from several kW

to about 50 MW in installed capacity. Several DG capacity classifications exist that

determine their registration requirement as central electricity market participants. The
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NEM of Australia, for example, classifies DG units as in Table 1.1 [47]. In a residential

setting, DG units typically range from 1 to 10 kW (micro/mini) [15, 28, 31].

Table 1.1: Classification of DG units in the National Electricity Market of Australia,
adapted from the Australian Energy Market Operator [47]. φ=power phases.

Classification Technical definition Typical installation

Micro ≤ 2 kW and connect to LV network Roof top solar PV
Mini 2 - 10 kW (1φ) or 30 kW (3φ) Fuel cells; combined heat and power systems
Small 10 kW (1φ) or 30 kW (3φ) to 1 MW Biomass, small hydro
Medium 1 - 5 MW Biomass, hydro, local wind generating units
Large ≥ 5 MW Co-generation, hydro, solar thermal, wind

DES are designed to exploit full distributed energy resource (DER) potential [45]. DES

are, however, highly location specific in terms of design and operational characteristics

since they are framed by climate, economical conditions and governing regulatory envi-

ronment [48]. Integrating DES in conventional distribution networks therefore leads to

potential advantages and disadvantages [5, 31–33, 35, 49, 50].

Technical benefits mostly relate to security of energy supply. DES can be highly depend-

able through energy resource diversification, active redundancy, parallel grid operation,

and through providing uninterrupted power supply and various reliability level services

to consumers [16, 40–42, 45].5 Furthermore, if authorised to do so, DES can operate

in electrical island mode, i.e. disconnected from the central network in case of central

system outages [45]. Additionally, DES could provide electrical ancillary services6 to

the central system, such as black start capability [5, 15, 31–33, 35, 37, 50].

Economic benefits relate to the competitiveness of DES with respect to conventional

power systems. DES can decrease electrical network losses due to smaller scales and the

absence of long-distance transmission networks [5, 15, 31–33, 35, 50]. Furthermore, fuel

costs can be reduced due to increased energy generation efficiency through, for example,

electricity-heat co-generation [5, 15, 31–33, 35, 50]. Additionally, DES are tailored to

local requirements. This reduces the need for peak power plants in the central system

5Diversification refers to increasing the variety of primary energy resources used for energy generation
rather than relying on a single source like, for example, natural gas. Redundancy refers to implementing
components that are on stand-by to supplement units that fail in order to maintain energy supply to
consumers. Components can be in hot (active) or cold redundancy. The latter need a start-up period
once required to step in to maintain generation. The former are ready to operate when required. See
for more information [23, 25, 51–56].

6Ancillary services are defined by, for example, the US Federal Energy Regulatory Commission
as: ‘services necessary to support the transmission of electric power from seller to purchaser given the
obligations of control areas and transmitting utilities within those control areas to maintain reliable
operations of the interconnected transmission system’ [57]. Black start capability helps restarting the
central power system after an outage.
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and allows for appropriate selection, sizing and siting of DER to balance and coordinate

local demand and supply [44, 58]. Moreover, central electricity network upgrades can

be deferred through smaller infrastructural scale DES installations to accommodate for

increasing demand [5, 15, 32, 39, 45, 59]. Especially in end-of-line (remote) communities

this could lead to significant cost savings.

Environmental benefits relate to sustainability. DES are tailored to location specific

requirements and can thus exploit locally available renewable energy resources, such as

sun and wind, reducing greenhouse gas emissions [5, 32, 59]. Co-generation DES have

an energy integrated design where local electricity generation is complemented by the

use of waste heat from the electricity generation process for local heating and cooling

purposes [5, 16, 34, 40–42, 45, 49, 60]. This increases overall generation efficiency from

about 40 % for large central generators to about 90 % for co-generation [5, 34, 49].

Social benefits to consumers arise from increased choice of energy supply alternatives and

increased self-sufficiency through reducing dependency on the central system [5, 32, 59].

Additionally, DES provide more flexibility in terms of generation portfolio and fuel

mix, balancing of energy demands, introducing new technologies, adapting to changing

consumer needs and optimising the local balance of supply and demand [5, 31–33, 35].

Introducing DER within distribution networks is, however, not what conventional top-

down networks are designed for [15, 45]. DER introduce bi-directional power flows by

not only importing from but, additionally, exporting to the central grid. This may lead

to operational safety challenges, power quality issues and local energy sharing problems,

requiring appropriate connection and operational standards [15, 45]. Additionally, DER

move generation from central to urban levels, which might increase local pollution and

noise levels in urban areas. This could require changing operational, emission and design

standards for DER as well as hinder the willingness to adopt DER by consumers.

1.2.2 DES research and development

DES are starting to become technically and economically feasible but research on several

levels is still required to enable their widespread implementation as detailed below.
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1.2.2.1 DES globally

In contrast with DER, such as solar photovoltaic (PV) units, DES have not yet emerged

on a large scale [61]. Their global uptake is, however, expected to follow a similar upward

trend [62]. Currently, established DES are mainly electricity based (i.e. microgrids) and

used as off-grid systems, rural electrification programs, high reliability systems, military

or university campus systems, or, trial-systems [48, 61, 63–65]. On-grid electrical DES

with seamless islanding capabilities still experience challenges regarding protection sys-

tems, islanding procedures, authorisation and regulation [61]. Most conventional power

systems, namely, restrict bi-directional interactions and do not authorise islanding but

require disconnection in case of central system outages.

In 2012, the total global installed electrical DES capacity was estimated to 3.2 MW,

of which the majority (66%) was located in the United States, followed by Europe

(12%) and Asia Pacific (8%) [62, 63]. Major developments have been made within

North America, Asia, the European Union and Australia [48, 63–65]. The IMAGINE

Consortium of the Lawrence Berkeley National Laboratory produces regular reports

regarding global DES development [16, 48].

Electrical DES development in the European Union was initiated in 1998 with the ‘More

Microgrid’ project led by the National University of Athens in Greece with a pilot project

on Kythnos Island [66]. Japan, furthermore, shows a great interest in co-generation to

increase energy supply dependability due to earth quake risk and to increase energy

efficiency [67].7 North America has various military and campus based electrical DES,

as well as the CERTS microgrid test facility [16, 48]. In Australia, remote communities

necessitate the need for (end-of-line) electrical DES to complement or substitute central

network connections [13]. Moreover, interest in seasonal tri-generation DES is increasing

to employ waste heat for both heating and cooling requirements in community energy

projects [47, 69]. DES are thus increasingly being considered but still require research

on various levels.

7The Sendai microgrid, for example, has a power supply with different levels of reliability for on-site
consumers and proved its islanding capability in the wake of the Fukushima Daiichi nuclear disaster in
March 2011 [68].
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1.2.2.2 DES research

DES have been researched since the 1980s but specifically within the last five to ten

years, as shown in Figure 1.4.8 The work of Lasseter, published in 2002, forms the basis

of electrical DES research with the formulation of the CERTS microgrid concept [40].

DES research is predominantly being conducted in three (partially overlapping) research

areas: technology, economics and regulation, see Figure 1.5, with a main technological

and economic focus [5, 34, 38, 49, 65].
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Figure 1.4: Number of publications∗ per year in the Scopus search engine with the
search term combination as in Appendix A on 14 July 2016 (left). Number of publica-
tions per country (top 10) (right). ∗Note that publications refer to English publications.

Technological research looks at the development, adequacy and feasibility of DER tech-

nologies and their integration within DES or central power systems [5, 34, 38, 40, 49, 65].

DES design on various levels is here an important topic;

(i) Detailed electrical DES design encompasses the interactions that arise from installing

DER within conventional networks, such as bi-directional active and reactive power

flows, protection systems, optimal component placement, losses, power quality, islanding

procedures, and voltage and frequency control [70–73]. This has led to the development

8Number of publications per year in the Scopus search engine with the search term combination as in
Appendix A on 14 July 2016. Note that publications refer to peer-reviewed English journal/conference
articles/reviews (in press).
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Figure 1.5: Distributed energy systems research areas.

of standardised test systems, and implementation and operational schemes.9 Electrical

design also involves smart grid design, including communication technologies for energy

management and operational optimisation [15, 75, 76].

(ii) When waste heat is employed for heating and cooling purposes, detailed thermody-

namic design of district thermal networks is required, including pipeline transfers, mass

balances, losses, temperatures, pressure drops and pumping requirements [77–79].

(iii) Superstructure DES design, in contrast, looks at components as black boxes, charac-

terised by parameters [34, 80–82]. Components can here interact with each other through

power or energy flows rather than detailed electrical and thermodynamic interactions.

Real-time energy management and control schemes that ensure safe system operation

(both on- and off-grid) are also important aspects of technological research [83–85]. Here

adequate communication, controller and metering technologies are researched. Opera-

tional decisions and local energy management schemes relate to economic research as-

pects [34, 38, 44, 49, 50, 86–88]. Internal DES interactions and operation, as well as

interactions with the central infrastructure, can be analysed based on game-theoretic

models and bidding strategies. Cost effective DES design is another area of research

based on the selection, siting, sizing and interactions of DER. Cost-benefit analyses

have also been conducted to determine the cost and benefits to utilities and consumers

from the integration of DER into the central system. Economic research, in summary,

aims to level the playing field for DES within conventional power systems.

9The Roy Billinton Test System is such a standardised test system. The fundamental microgrid
standard is IEEE Std P1547.4 Guide for Design, Operation, and Integration of Distributed Resource
Island Systems with Electric Power Systems [64, 65, 74]. In contrast with earlier distributed energy
resource standards (eg. 1547.1), 1547.4 accommodates islanding of microgrids and distributed generation
units. IEEE also formulates standards regarding inter alia smart metering.
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Regulatory research regards the development of a regulatory framework for DES [15, 39,

40, 42, 44, 48, 49, 65, 89]. A regulatory framework refers to a set of principles, rules and

incentives to sustain and establish adequate operational structures [15]. Operational

structures can refer to technology and DES development standards, grid-connection

requirements, islanding procedures, metering and protection schemes.

The three above research areas are all framed by environmental and social aspects.

Environmental aspects relate to efficiency of technologies (technical), tax and support

schemes for DER (economics), and emission targets and governmental policies (regula-

tion) [59]. Social aspects, lastly, refer to consumer benefits and participation [61].

DES are increasingly becoming technologically and economically viable. Required regu-

lation and social research aspects, however, still lag behind [2, 16, 28, 45, 49]. To exploit

DES benefits to the fullest, they require a multi-faceted system design that balances

location-specific needs and stakeholder interests [45]. DES design refers here to appro-

priate DER selection and siting (synthesis), DER sizing combined with local energy

sharing infrastructure planning (design) as well as component interactions [15, 90, 91].

Frameworks for DES design are thus important decision-making tools [82].

1.3 Problem statement: the need for a new design method

DES design is a complex decision-making problem [15, 91]. The specific energy system

requirements, design objectives, disciplines, technologies, interactions and constraints

will impact the problem and the decision-making process [91]. DES design projects

must therefore, on the one hand, be economically attractive, and on the other hand,

take into account the needs of the various involved multi-disciplinary stakeholders, such

as regulators, engineers, economists, designers, consumers and local government [91, 92].

Adequate DES design frameworks consequently comprise multiple readily quantifiable

and less quantifiable aspects [15, 58, 82, 93, 94], see Figure 1.6.

The researched consumer area characterises energy demand behaviour and required

energy services, such as electricity, heat and/or cooling. The researched location deter-

mines system boundaries through, amongst others, available renewable resources (e.g.
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Figure 1.6: Energy system design aspects. DER=distributed energy resources.

sun and wind), demand profiles, restrictions on installed DG capacity and potential gov-

ernmental support schemes in the market. Furthermore, various DER can be considered

throughout the design process. The selected pool of DER must be matched with the

selected consumer area and location. Locally available renewable energy resources, for

example, will determine the attractiveness of certain DG units. Optimal balancing of

local generation and demand through local energy sharing (energy integration), further-

more, facilitates DG size reduction compared with conventional systems. In conventional

power systems units, such as boilers, are namely often oversized due to inappropriate

balancing of household heat demands [58]. Dimensioning for a cluster of houses rather

than for individual houses, in contrast, could allow for more efficient DER operation.

Energy integrated DES, additionally, allow for both multiple energy services (electricity,

heating and/or cooling) to be met through a single system to the consumer area, and

for the integration of differentiated DER. Hence, siting of DER at appropriate locations

in the system as well as the level and type of considered energy interactions are impor-

tant DES design decisions. The depth of DES design refers either to detailed electrical

and/or thermodynamic aspects that enable project development and implementation.

Superstructure design, in contrast, enables analysing the integration of multi-disciplinary

design aspects and facilitates decision-making. DES decision-making processes therefore

enable balancing multiple stakeholder interests that can be translated into multiple de-

sign objectives [82]. Although energy integrated DES design provides added benefits

to neighbourhoods as a whole, individual houses might prefer self-control and not opt

into a DES arrangement. Property ownership, high upfront investment costs of infras-

tructure and individual versus collective benefits, give rise to issues regarding, amongst

others, infrastructure ownership and contractual agreements between DES consumers
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or between a DES and a third party. DES thus also require appropriately designed and

standardised regulatory and organisational frameworks.

DES design research has to date mostly looked into isolated design aspects [94]. Reg-

ulatory framework aspects – important for policy relevance of design – are especially

lagging behind [2, 16, 28, 45, 49]. Strategic DES design is therefore required to attain

their benefits; both in terms of readily quantifiable engineering techno-economic and en-

vironmental aspects as well as less quantifiable regulatory aspects. A novel DES design

method is thus required for bi-directional design and regulatory decision-making.

1.4 Aim and research questions

To alleviate conventional power system challenges through DES and to enable widespread

DES implementation, a comprehensive DES design approach is required that encom-

passes engineering, economic, environmental as well as regulatory aspects. Driven by

this need for a new DES design approach, this thesis aims to develop a flexible multi-

objective decision-making framework for residential DES design, from an engineering and

regulatory perspective, using mathematical programming techniques. A superstructure

optimisation approach is adopted that is aligned with the three central energy system

objectives (see Section 1.1.3). The developed method provides a framework for design

engineers and decision-makers to assess policy relevant design aspects while incorporat-

ing consumer preferences. The following research questions are addressed in this thesis:

1. What is the current status of DES design optimisation? A review of mod-

elling approaches is conducted to both identify DES design model charac-

teristics as well as the research gap addressed in this thesis.

2. How can DES be techno-economically designed with cost as driving objec-

tive? A superstructure mixed-integer linear (MILP) optimisation approach

is developed for the design of an energy integrated residential DES while

minimising total annualised energy cost (competition), building further on

the work of Mehleri et al. [95, 96] (see Section 4.2.4). This approach fa-

cilitates levelling the playing field for DES as competitive energy supply

alternatives within conventional power systems.
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3. How can DES be techno-economically designed whilst balancing multiple

stakeholder interests? The developed MILP model is extended to a multi-

objective framework, which enables trading off three objectives in the design

process. The three central energy system objectives of competition, security

of supply and sustainability are translated into DES design objectives. This

design framework ensures DES applicability within the conventional system

and its relevance to governing energy policy.

4. How can DES regulatory and organisational aspects be integrated and as-

sessed within design optimisation frameworks? The developed MILP op-

timisation model is employed to analyse DES regulatory aspects through

identifying quantifiable relations between design, organisation and regula-

tion of DES, enabling regulatory decision-making.

1.5 Scope

The developed framework is first and foremost a design decision-making tool for res-

idential DES and is not intended to provide practical implementation or operational

strategies. DES design is analysed as a system of black-box components (technologies)

with interactions on a superstructure scale with respect to several objectives. Mathemat-

ical programming techniques are here employed as a tool to facilitate decision-making.

An energy integrated residential neighbourhood is under research, in terms of electricity,

heating and cooling, with a particular focus on the electrical system. Design aspects

that fall beyond the scope of research are detailed below.

1.5.1 Design detail

Practical implementation and operation of DES requires detailed analysis of both ther-

modynamic [77–79] and electrical [70–73] behaviour as detailed in Section 1.2.2.2. This

thesis does not consider the above detailed design aspects. Detailed aspects are either

simplified and integrated into the developed superstructure optimisation model, or, be-

yond the scope of analysis. A black-box approach is used for all considered technologies
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and interactions. This implies that a certain power or energy input is transformed in an

output through constant efficiency, conversion and loss parameters.

Additionally, the presented methodology does not provide a business model for the

deployment and cost effectiveness of DES. Although a techno-economic modelling ap-

proach is presented, detailed economic analysis, including payback times of investment,

is beyond the scope of this work. Furthermore, other economic issues, such as game-

theory, real-time agent based internal DES market operation, trading, unit commit-

ment problems or DES participation in central electricity markets, are not considered

(see [86, 97, 98]). Economic viability of DER aggregator schemes is also not addressed.

No environmental impact life cycle analysis of DES is conducted. Water usage, upstream

sectors (e.g. the natural gas market) and carbon footprints related to the manufacturing

of DER fall beyond the scope of research. Environmental aspects are, however, included

in the form of, amongst others, carbon intensities and related emissions of central grid

electricity and natural gas usage.

Implementation of DES requires a regulatory framework. Although aspects of regulatory

frameworks for DES are analysed, detailed regulatory framework and tariff design, total

benefit sharing between stakeholders and remuneration schemes are not addressed [39,

99]. Furthermore, social acceptance of DER is not explicitly considered. Neither are

activities, such as demand side management, time of use tariffs, payback schemes and

smart metering [97, 99, 100]. These activities are only mentioned where relevant.

The system boundaries are determined by the neighbourhood, which receives inputs

from other sectors (gas, water and electricity) and exports outputs to the central power

system. Gas and electricity supply are considered available but detailed analysis of

their supply chain is beyond the scope of this work. The developed framework focusses

on DES design, not operational optimisation. Operational interactions and technology

dispatch are, however, optimised under given demand profiles.

1.5.2 Technologies

Considered technologies and energy interactions are selected based on a rational choice

of potential, cost-effectiveness, suitability to DES design and their ability to generate
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energy with low carbon emissions. As such, less developed technologies, such as tidal,

geothermal, and carbon capture and storage, are not considered. Electricity storage

is only researched where relevant but the potential of its widespread adoption is not

researched. Furthermore, electrical vehicles and other means of transportation are not

touched upon since moveable DER are not included in the initial design approach.

1.5.3 Definitions and terminology

Several terms are used throughout literature to describe DER systems [81, 82, 94, 101–

105]. Poly-generation units, for example, refer to small-scale energy generation units

based on several (poly) energy resources. A ‘distributed energy system’ (DES) or ‘multi-

energy system’ refers to a system that combines several DER and multiple energy services

(electricity, heating and/or cooling) into one whole. A ‘microgrid’, in contrast, refers to

a DES that predominantly provides electrical services. ‘Microgrid operation’, lastly, is

used in this thesis as the local sharing of electricity between DES participants.

1.6 Outline

The remainder of the thesis is divided into six Chapters. Chapter 2 addresses the first

research question in providing an overview of methods, tools and techniques for DES

design optimisation. Several categories to classify previous methods are discussed and

the research gap addressed is detailed.

Chapter 3 details the employed methodology and its conceptual framework. The re-

quired inputs, considered technologies, design aspects and model outputs are described.

Additionally, an overview of the neighbourhood design and interaction alternatives is

presented together with the system boundaries. The employed optimisation tool and

technique are detailed with respect to three objectives (financial, technical and envi-

ronmental), aligned with the central energy system objectives (competition, security of

supply and sustainability), and regulatory framework aspects.

The second research question is addressed in Chapter 4. A framework for DES design of

a small residential neighbourhood is developed as single-objective MILP model. Total
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annualised energy cost of a neighbourhood as a whole is minimised while meeting its

yearly electricity, space heating and space cooling demands.

Chapter 5 addresses the third research question in extending the developed model in

Chapter 4 to a multi-objective framework. Total annualised cost is traded off with

two other objectives; electrical system unavailability minimisation (technical/security

of supply) and annual CO2 emission minimisation (environmental/sustainability). This

allows for a design that fits in with central energy system objectives.

The fourth research question is addressed in Chapter 6. Regulation relevant to residential

DES is introduced. The developed framework in Chapter 4 is extended to include

interactions between engineering and regulatory aspects, facilitating decision-making

discussions and policy relevance of ‘optimal’ residential DES designs.

Chapter 7, finally, summarises the main contributions of the thesis and provides sugges-

tions for future work.



Chapter 2

Planning and design of

distributed energy systems

Modelling distributed energy systems (DES) helps to understand their behaviour and

facilitates forecasting, development and design decision-making [82, 106]. Mathemati-

cal programming techniques have proven to be suitable tools to assess ‘best’ DES de-

signs constrained by location-specific parameters. This Chapter provides background on

mathematical modelling and optimisation and its application to DES design. Previous

DES design research is analysed and categorised to identify research gaps and shape the

research questions addressed. Section 2.1 introduces system modelling and optimisation

as tools to analyse DES design. Optimisation tools and techniques are subsequently

reviewed in Section 2.2. An overview of key DES design optimisation research aspects

is then presented in Section 2.3. Section 2.4 identifies important research gaps in the

field. Section 2.5, finally, concludes this Chapter.

2.1 Mathematical modelling

Model building involves looking at a system and its components by analysing it through

an abstract representation [82, 107]. Abstract representations employ mathematical

relationships, such as (in)equalities and logical dependencies, to represent the internal

relations and structure of a system [107, 108]. To make models applicable to multiple

similar systems, they are focussed on system components, relations and structure rather

47
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than inputs [82, 106–108]. Assumptions and simplifications of reality are hence required

to (i) reduce the amount of detailed information and cost required to ‘exactly’ model a

real system, and (ii) to increase the general applicability of the model [82].

DES design problems are inherently complex and large combinatorial problems. They

not only involve multiple alternative configurations and design constraints but also un-

certainties related to model design, model analysis and interpretation of results [91].

Modelling DES hence requires balancing complexity, accuracy and model robustness [92].

DES design is an integrated interdisciplinary problem, involving temporal and spatial

scales, large numbers of input data, multiple energy resources, technologies and energy

interactions, and the consideration of multiple (often conflicting) design objectives [82,

91, 105, 106, 109]. Mathematical programming provides here an appropriate tool to

incorporate all the above aspects in identifying ‘optimal’ DES design [91, 105, 110]. Op-

timisation refers to a group of mathematical techniques that try to obtain the ‘optimal’

or ‘best’ available decision(s)/solution(s) towards a stated minimisation or maximisation

objective within a feasible domain determined by constraints [107, 108, 110]. Optimisa-

tion requires identifying objectives, decision variables (unknowns), parameters (knowns)

and constraints that apply to the system [91, 110]. This is in contrast with simulation

approaches where actual behaviour of a system is analysed through a descriptive output

by imitating the real system [82].

2.2 Background on mathematical optimisation

Optimisation has received increasing attention for design problems due to developments

in computational power and solution tools [82]. The choice of model and optimisation

approach depends on the nature of the problem [91]. The following Sections review

optimisation models (Section 2.2.1) and solution methods (Section 2.2.2).

2.2.1 Model classification

Optimisation models can be classified based on their type of variables, (non)linearity,

convexity or objectives, as detailed below [107, 108, 111, 112].
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2.2.1.1 Model classification based on variable type and (non)linearity

Variables can be defined as continuous, i.e. able to take on any real value within a

specified continuous interval. Discrete variables, in contrast, can take on a value from

a finite set of specified values, often integers. Discrete variables that can only take on

either the value 0 or 1, are binary variables. Models with only continuous variables are

continuous problems and models with only discrete variables are discrete problems [107,

108, 111, 112]. Models that have both variable types are mixed-integer problems. The

combination of both discrete and continuous variables allows for both selection (binary)

and operational (continous) decisions [107, 108, 111, 112].

Non-linear relations (y) between variables (x, z) lead to non-linear models (e.g. y =

x · z). A problem with only linear relations between variables is a linear model (e.g.

y = x + z) [107, 111]. The most commonly employed problem types1 are (i) problems

with only continuous variables that can either be linear programming (LP) or non-

linear programming (NLP) problems, (ii) problems with both continuous and discrete

variables (mixed-integer programming (MIP)) that can be either linear (MILP) or non-

linear (MINLP), and (iii) problems with only integer variables, i.e. integer programming

(IP) [107, 108, 111, 112]. A general MIP model is represented by Equation 2.1 [111]. The

objective Z, function of variables x and y (f(x, y)), is minimised subject to either linear

(MILP) or non-linear (MINLP) equality (h(x, y)) and inequality (g(x, y)) constraints

with x continuous and y binary variables:

min
x,y

Z = f(x, y) s.t.


h(x, y) = 0

g(x, y) ≤ 0

x ∈ X, y ∈ 0, 1

(2.1)

2.2.1.2 Model classification based on convexity

A second model classification can be based on convexity. The function f(x) is convex

over x ∈ X, see Figure 2.1b, for any pair of solutions x1 and x2, if any point between the

solution pair based on a weighting factor λ ∈ [0, 1] (λ·x1+(1−λ)·x2) has a function value

1Other model sub-types can also be classified within, for example LP and NLP, as complementary
programming (LCP) and quadratic programming (QP), respectively [111].
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(f(λ·x1+(1−λ)·x2)) smaller or equal to the equivalent point between the function values

of the solution pair based on the same weighting factor (λ·f(x1)+(1−λ)·f(x2)) [108, 113]:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (2.2)

A convex problem has a convex feasible region [108]. Linear models are inherently

convex. For strictly convex models, a single optimum solution, i.e. global optimality,

exists and is attainable [107, 108, 111]. Non-linear models, in contrast, can have convex

or non-convex relaxations [108]. Non-convex problems present the risk of reaching a local

optimum/solution and not attaining the global [107, 108, 111], see Figure 2.1a. Non-

convex problems thus require more elaborate solution procedures to potentially attain

global optimality.

f(x) 

x 

Non-convex objective function f(x) 

Convex objective function f(x) 

Global optimum 

Local  

optimum 

Local  

optimum 

Global  

optimum 

(a) Global and local optima

f(x) 

x x1 x2 

f(x1) 

f(x2) 

λx1 + (1-λ)x2 

f(λx1 + (1-λ)x2) 

λf(x1) + (1-λ)f(x2) 

(b) Convex function

Figure 2.1: Illustration of a convex and non-convex objective function with respective
global and local optima (left), and convexity of a function (right), adapted from Deb

[113] and Floudas [108].

2.2.1.3 Model classification based on type of input data

The type of input data determines whether the problem is deterministic or stochas-

tic [107, 108, 111, 112]. Deterministic problems assume that input parameters are ac-

curately known. Uncertainty surrounding these fixed-value inputs, however, can impact

results. Uncertainty arises due to the prediction or choice of a single value from a chang-

ing interval. Stochastic optimisation, also termed ‘optimisation under uncertainty’, takes

into account this parameter uncertainty. Here random generated values or probability

density functions can be employed, leading to a solution that satisfies a range of inputs.
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2.2.1.4 Model classification based on number of objectives

Most design problems are inherently multi-objective. Determining the ‘optimal’ solution

then requires a trade-off between multiple (often conflicting) objectives fi with i ∈

[1;n] [92, 107, 108, 111]:

min
x,y

Z = [f1(x, y); f2(x, y); ..fn(x, y)] s.t.


h(x, y) = 0

g(x, y) ≤ 0

x ∈ X, y ∈ 0, 1

(2.3)

In contrast with single-objective problems, multi-objective problems do not lead to a

single optimal solution but rather to a set of optimal solutions [92, 113]. Multi-objective

problems aim at constructing a so-called Pareto trade-off curve of non-dominated solu-

tions between objectives, or, a discrete set of solutions on the curve, a Pareto set. A

solution is non-dominated and belongs to the Pareto set of a problem if it cannot be ame-

liorated with respect to one objective without worsening in another objective [92, 113].

Pareto solutions should be selected based on accuracy (non-dominated solutions), diver-

sity (diversely across the front) and spread (capture points on the whole curve, including

extremes) [92, 113]. The ‘best’ trade-off between multiple objectives is a subjective de-

cision [92, 113]. The ‘best’ point will often be at a ‘knee-point’ where a bigger return

on an objective is achieved before the ‘knee’ than after [114]. The Pareto concepts are

illustrated in Figure 2.2. A Pareto set is constructed between extreme solutions that are

obtained through the optimisation of only one objective at a time.

f1(x) 
Pareto Front 

Knee point 

Dominated solutions 

Pareto Set – non-dominated solutions 

Optimal solution f1 

Optimal solution f2 

f2(x) 

Figure 2.2: Pareto trade-off between two objectives (f1(x), f2(x)) including a Pareto
front and set of non-dominated solutions, adapted from Alarcon-Rodriguez et al. [92].
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2.2.2 Solution tools and techniques

After model development, an appropriate optimisation tool and software has to be se-

lected. Optimisation software, such as GAMS [115] or AMPL [116], is used to sym-

bolically formulate the problem and analyse solutions based on a set of inputs. Most

software have access to various solvers that each use a certain solution method [117].

Solution methods are generally subdivided based on deterministic versus stochastic ap-

proaches as detailed in the following Sections [82, 108, 111, 118]. Table 2.1 presents

their strengths and weaknesses. Solution approaches for multi-objective problems, in

particular, also follow this division with appropriate methods, see Section 2.2.2.3.

Table 2.1: Strengths (+) and weaknesses (-) of solution methods to optimisation
problems, based on [82, 108, 111, 118].

Solution method Strengths (+) and weaknesses (-)

Deterministic Linear + can handle complex problems with large number of variables and
constraints
+ efficient optimisation of large problems through exploitation of
binary structure (branch and bound) to global optimality if all nodes
are searched (see Section 3.2.1 and Appendix C)
- uncertainty of parameters is not accounted for, can be through
sensitivity analysis
- linearisation and simplification of system behaviour required that
can lead to loss of model accuracy
- computational time can increase exponentially with number of
binary variables (MILP); problem reformulation or cutting plane
methods (LP relaxation) can here help to obtain solutions

Non-linear + efficient optimisation through exploitation of binary structure
(branch and bound)
+ larger flexibility to deal with different problems and their non-
linear behaviour
- uncertainty of parameters is not accounted for, can be through
sensitivity analysis
- no guarantee of attaining global optimality and the obtained so-
lution (local/global) can depend on choice of starting point
- not appropriate (time and money) for problems with large number
of variables and constraints

Stochastic + uncertainty of key input parameters taken into account through
probability density functions
+ readily implementable methods
+ produce good quality sub-optimal/approximate solutions and
may avoid getting stuck in inferior local optima
- system modelling not always translatable to recurring moves, re-
quired for stochastic solution methods
- difficulty handling complex constrained problems
- not always rigorous in obtaining global optimal solutions, which
is only guaranteed at infinite time. Parallel computing can be used
to obtain good solutions within reduced times.
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2.2.2.1 Deterministic solution methods

Deterministic approaches are traditionally based on direct search approaches, gradients

and differentiable functions [82, 91, 108, 111, 118]. Multiple well-developed solutions

methods for linear programs exists that can deal with complex problems with millions

of variables and constraints [111]. One of the more common and powerful determin-

istic approaches to solve linear problems (LP) in a finite number of steps is the Sim-

plex method [119]. Other methods include the interior point method [111]. MILP

solution methods mostly use a branch and bound based tree-search method (see Ap-

pendix C) [120]. The branch and bound method constructs a tree based on binary

variables, which systematically branches the problem out in sub-problems with a so-

lution based on a combination of binary variable values [108]. Other methods are the

Cutting Plane and Decomposition methods [108, 111]. The Cutting Plane method in-

troduces new constraints (cuts), rather than sub-problems, to reduce the feasible region

until optimality is reached [108]. Decomposition methods utilise partitioning of the

feasible region into subdivisions, duality concepts and relaxation to exploit the inherent

mathematical structure of the problem [108]. CPLEX and GUROBI are common solvers

for MILP problems [112].

Deterministic methods for non-linear models include algorithms based on Newton steps

requiring multiple iterations, including active set and barrier/interior point methods,

second-order information exploitation through automatic differentiation tools, and linear

versus trust region methods to enhance convergence depending on starting points [111].

Solution methods for MINLP include the Generalised Benders Decomposition [121] and

the Outer Approximation method [122] [108]. Both methods exploit the model structure

through an iterative process and a branch and bound based approach. Popular (MI)NLP

solvers are ALPHAECP, ANTIGONE, BARON, DICOPT and SBB [112].

Other developments in deterministic approaches also employ non-gradient techniques

(‘derivative free’ optimisation) that included steps to reflect, expand and contract the

solution space (see, for example, Kelley [123]). The termination criteria of derivative

free optimisation do no longer rely on gradient information or stationary points.
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2.2.2.2 Stochastic solution methods

Stochastic approaches focus on random generation and are inspired by physical processes

that generate points to converge to an equilibrium [118]. Stochastic solution methods

approximate global solutions (approximation algorithms). An example of stochastic

approaches include ‘classic direct search methods’, often based on heuristics, and a

generalisation of heuristic methods, i.e. ‘meta-heuristic methods’.

Heuristic solution methods are simple procedures that aim to find a satisfactory solution

from a large set of feasible solutions of often complex problems, but do not necessar-

ily obtain the optimal solution [91, 124]. These approximation methods require less

computational effort than deterministic methods [91]. Meta-heuristic methods aim to

find a solution within a discrete search-space and combine therefore multiple heuristic

methods. Meta-heuristic methods are inspired by natural processes and started their

development in the 1980s-1990s [109]. They can be classified based on various aspects:

trajectory- versus population-based, memory-based versus memory-less, nature-inspired

versus non nature-inspired, etc. [91, 109, 124].

Trajectory-based solution methods, for example, obtain a single solution throughout

the search process [124]. The majority of trajectory-based methods follow procedures

based on iteratively improving movements together with techniques to move away from

local optima [124]. Some examples of trajectory-based solution methods are Simulated

Annealing, Hill Climbing and Tabu Search [124–127]. Population-based solution meth-

ods employ a population of solutions, which evolves with each iteration following the

principles of mutation, genetics, evolution theory or natural selection [124] [128]. Some

examples of population-based solution methods are Ant Colony Optimisation, Artificial

Bee Colony Optimisation, Evolutionary Algorithms, Genetic Algorithms and Particle

Swarm Optimisation [124, 125].

2.2.2.3 Multi-objective solution methods

A Pareto set of multi-objective problems can be obtained through either so-called ‘clas-

sical approaches’, such as the weighted-sum and the ε-constraint method, or, approaches

based on evolutionary algorithms [92, 113]. Classical approaches, or deterministic ap-

proaches, typically convert multiple objectives into a single objective problem, either
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by combining the objectives into a weighted sum, or, by solving a single objective opti-

misation with additional inequality constraints for the other objective(s) (ε−constraint

method) [92, 113]. With the weighted-sum approach, the weights of the objectives are

iteratively changed to obtain a Pareto set. The ε−constraint method constructs a Pareto

set based on iterative changes (ε) of the constrained objective. Classical approaches are

straightforward in application. However, the weighted-sum approach is only reliable for

convex problems as changes in non-convex Pareto fronts might not be captured. Fur-

thermore, the weighted-sum approach becomes complex for a large number of objectives

(> 3). The ε-constraint method, additionally, requires careful selection of ε (constraint

variation) to obtain feasible solutions.

Stochastic approaches generate several Pareto solutions simultaneously and do not re-

quire iterations of weights or constraints [92, 113]. These methods can also be classified

based on trajectory- versus population-based [124]. Currently, the most popular algo-

rithms are the Non Sorting Genetic Algorithm II (NSGA-II) and the Strength Pareto

Evolutionary Algorithm 2 (SPEA2) [92, 113, 124]. Stochastic approaches are especially

useful for problems with a large number of objectives (>3).

2.3 Optimisation of distributed energy system design

The previous Section provided background on optimisation models and methods. Op-

timisation is often employed as tool to design distributed energy systems (DES). This

Section applies this knowledge to assess and review DES design optimisation models in

literature to identify research gaps and shape the research questions addressed. DES can

come in various forms, typically tailored to location specific factors and stakeholder inter-

ests, taking into account various disciplines, consumer areas, sectors, energy resources,

generation and storage technologies, and energy services and integration [101, 102].

Both internal system design and interactions as well as interactions with central energy

services require optimisation tools that enable decision-making [101, 102]. Design and

planning optimisation of DES thus involves finding a set of energy resources, technolo-

gies and interactions to optimally meet the energy requirements of a certain consumer

area [103]. DES design optimisation is a field of extensive research [81, 109, 125, 129].

The field has, especially, received increasing interest over the last 15 years [105] since it
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allows to analyse supply and demand systems and provide insight into climate-, security-

and financial-related challenges of conventional energy systems [104].

2.3.1 Categories

The focus of this thesis is DES design optimisation in terms of selection, siting and sizing

of considered distributed energy resources (DER) and their interactions within an urban

area. This includes the service of a combination of electricity and thermal energy to a

consumer base, potentially employing local energy sharing networks. DES design opti-

misation models throughout literature can be categorised [81, 82, 94, 101, 103, 105]. A

category selection based on four main areas is made here, as illustrated in Figure 2.3: (i)

system-related aspects [81, 82, 105], including the choice and implementation of energy

integration, considered technologies and the model temporal, spatial and implementation

detail scales; (ii) model aspects [82, 105], including model type, optimisation method and

considered objectives; (iii) the case-study location, i.e. inputs; and (iv) the considered

disciplines. A comprehensive literature review has been conducted (see Appendix A) to

identify the characteristics of each category.

Spatial/Temporal/Detail 

Scale 

Model type 

Optimisation method 

Energy integration 

Objectives Technologies 

Data/ 

location 

DES design  

optimisation models 

System Model 

Disciplines 

Figure 2.3: Categories to classify DES design optimisation models based on system
aspects, model aspects, inputs and disciplines.

2.3.2 System aspects

Below system aspects of energy integration, technologies and scales are analysed.
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2.3.2.1 Energy integration

Energy integration refers, on the one hand, to multi-generation. This is the combination

and integration of various energy services within a certain consumer area, e.g. electricity

and/or thermal energy supply [34, 130]. These energy services can be achieved by central

grid supply or local generation units [131]. Energy integration can, on the other hand,

refer to the sharing of locally generated energy (electrical or thermal) through local

networks within a cluster of participating consumers [130].2 The focus in this work

is on the provision of electricity combined with space heating and/or space cooling

to a cluster of consumers. Electricity integration can be achieved through microgrid

sharing infrastructure. Thermal heating and cooling integration can be achieved through

pipeline networks or larger district systems [131, 132]. Local energy sharing allows for

reduced transportation distances for electricity compared to large conventional power

systems, making it an ideal service for DES [101, 129]. Additionally, power-heat co-

generation systems can increase energy conversion efficiency compared to conventional

generation through waste heat utilisation [105, 129, 131]. Most research to date, however,

has been focussing on a single energy service, i.e. electricity or district heating [34].

Summer peak demand challenges are increasing the research focus on thermally driven

cooling equipment. This equipment can be coupled with co-generation to enable full

yearly use of waste heat through seasonal tri-generation, i.e. combined heat, cooling and

power systems, increasing their economic viability and overall efficiency [34, 104, 105].

DES design research is thus increasingly focussing on the provision of more than one

energy service to a consumer area, employing more and more local optimised energy

networks and energy sharing interactions. An extensive body of research looks at the

provision of electricity, heating and cooling to single buildings [133–144] or generic co-

generation systems [145–147] without energy sharing between consumers (e.g. through

pipelines or networks). Various consumer profiles were here considered, including office

buildings [135, 148, 149], hospitals [150–160], hotels [135, 148, 155, 161–167], apart-

ment buildings [168, 169], schools [170] or single residential dwellings [150, 171–174].

Additionally, the provision of energy services to a cluster of consumers, which is consid-

ered as a whole without explicit energy sharing, has also been researched. The latter

has been looked at for, for example, electricity, heating and cooling provision to an

2Note that energy integration is also increasingly referring to the integration of other services, such
as chemicals production and transport services [34, 101, 130].



Chapter 2. Planning and design of distributed energy systems 58

eco-campus [175] or building complexes and urban areas [60, 176–181], and electricity

and heating provision to a cluster of residential consumers [182–187]. Electricity and

heating provision without energy sharing options has been researched for generic com-

mercial buildings [188–190], pools [191], hotels [192, 193], residential apartments [194]

and typical residential dwellings [195]. The provision of electricity combined with space

cooling [196] or the combination of heating and cooling provision [197] without energy

sharing options to buildings has only limitedly been researched.

Research that includes explicit energy sharing, through pipelines or networks, is more

limited. The combination of electricity and heating provision has been researched by,

for example, Holjevac et al. [198], Wakui and Yokoyama [199] and Zhang et al. [86] for a

cluster of residential consumers that each foresee in their own heating requirement but

can share electricity. Bracco et al. [200], Casisi et al. [201], Falke et al. [202], Karschin

and Geldermann [203] and Orehounig et al. [204] have researched electricity and heating

provision combined with heat sharing networks for (residential) clusters of consumers.

Urban districts, seen as a whole for electricity delivery but with district heating networks

between regions, have been considered by Fazlollahi et al. [205, 206]. Both electricity

and heat sharing options have been researched for a cluster of industrial consumers

by Casisi et al. [207], for a town/city of clustered consumers by Haikarainen et al. [208]

and Keirstead et al. [93], for a cluster of commercial consumers by Hawkes and Leach

[209], and for a small cluster of residential consumers by Mehleri et al. [95, 96], Obara

et al. [210], Obara and El-Sayed [211], Omu et al. [212] and Söderman and Pettersson

[213]. Additional consideration of space cooling and sharing is still under-represented.

Only heat sharing options were considered together with the provision of electricity,

heating and cooling to a cluster of apartments by Panone and Anatone [214], for a

set of buildings by Bracco et al. [215] and Sugihara et al. [216], and for a community

by Wu et al. [217]. Harada and Mori [218] employed an optimised heating network for

a city/town level that also transported heating to sites for local transformation into

cooling. A combination of both electricity and heat sharing options have here been

presented for a cluster of residential consumers by Kopanos et al. [219] and Wu et al.

[220], for a cluster of buildings by Piacentino et al. [221], Piacentino and Barbaro [222]

and Stojiljković et al. [223], and for a cluster of energy hubs by Salimi et al. [224]. The

combination of both heating and cooling sharing without electricity sharing has been
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researched by Ameri and Besharati [225] for a residential district, and by Buoro et al.

[226] and Chinese [227] for a cluster of residential and commercial consumers.

Full energy integration of the provision and sharing of electricity, space heating and

cooling to a consumer area is an upcoming area of research and has been analysed, for

example, by Voll et al. [90, 228] with implicit site electricity balancing, by Weber and

Shah [229] for an ‘eco-town’ with various consumers and by Yang et al. [230, 231] for an

urban area. Full energy integration within a neighbourhood setting has, however, not

received the same level of attention, but has been tackled by recent work from Li et al.

[232] for a cluster of various consumers.

2.3.2.2 Technologies

DES designers can select various DER with each specific operational and design char-

acteristics [34, 101, 233]. Tabel 2.2 summarises technologies that have been analysed in

previous DES design optimisation models. Small-scale DER, located close to consumers

in the network, come in various forms and can be distinguished by their operational na-

ture: intermittent, dispatchable or storage [101, 105, 109, 130]. Intermittent DG units

are based on renewable energy, such as sun, wind, hydro power or biomass [92, 124].

Dispatchable units are mostly fossil fuel combustion based, such as diesel generators and

co-generation units, i.e. micro-turbines, fuel cells and gas engines [80, 92, 105].

Locally generated energy can be stored in either hot or cold thermal storage tanks or

electrical storage units [80, 92, 131]. Electrical storage can be provided by chemical

processes based on, amongst others, lead-acid and lithium-ion, or, by physical processes,

such as hydroelectrics, flywheels and compressed air [131]. Renewable energy genera-

tion reduces operational cost due to ‘free’ fuel and facilitates greenhouse gas emission

reduction. However, renewable energy generation levels depend on weather and cli-

mate [124]. This requires balancing through complementing dispatchable units or stor-

age [101, 132, 234]. Systems that combine two or more dispatchable and intermittent

units in a complementing system are so-called hybrid systems or multi-fuel/energy sys-

tems [91, 101, 124, 132, 234]. To facilitate DES, additional technologies are also required,

including system control and communication devices, such as a central control unit that

balances local energy generation and supply [101]. Furthermore, conventional thermal
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Table 2.2: Technologies in DES design optimisation models that include local energy
sharing. CHP=combined heat and power unit, Cogen=co-generation, CST=cold ther-
mal storage, Elec=electrically driven, EST=electrical storage, FC=fuel cell, HST=hot
thermal storage, ICE=internal combustion engine, NG=natural gas, RES=renewable
energy technology, ST=solar thermal, Therm=thermally driven, PV=photovoltaic unit,

WHrec=waste heat recovery, WT=wind turbine.

Technologies Research

Cogen FC Obara et al. [210], Obara and El-Sayed [211]
ICE+WHrec Panone and Anatone [214]
NG CHP Ameri and Besharati [225], Bracco et al. [200, 215], Buoro et al. [226], Ca-

sisi et al. [201, 207], Chinese [227], Falke et al. [202], Fazlollahi et al.
[205, 206], Harada and Mori [218], Hawkes and Leach [209], Holjevac et al.
[198], Keirstead et al. [93], Kopanos et al. [219], Li et al. [232], Mehleri
et al. [95], Omu et al. [212], Piacentino et al. [221], Piacentino and Barbaro
[222], Salimi et al. [224], Söderman and Pettersson [213], Stojiljković et al.
[223], Sugihara et al. [216], Wakui and Yokoyama [199], Weber and Shah
[229], Wu et al. [217, 220], Yang et al. [230, 231], Zhang et al. [86]

RES PV Ameri and Besharati [225], Bracco et al. [215], Falke et al. [202], Li et al.
[232], Mehleri et al. [95, 96], Obara et al. [210], Obara and El-Sayed
[211], Orehounig et al. [204], Sugihara et al. [216], Wu et al. [220]

PV +WT Hawkes and Leach [209], Holjevac et al. [198], Omu et al. [212], Söderman
and Pettersson [213], Weber and Shah [229], Yang et al. [231]

ST Bracco et al. [215], Casisi et al. [207], Fazlollahi et al. [205, 206], Omu et al.
[212], Orehounig et al. [204], Panone and Anatone [214], Weber and Shah
[229], Wu et al. [217]

Cooling Elec Bracco et al. [215], Kopanos et al. [219], Panone and Anatone [214]
Therm Buoro et al. [226], Sugihara et al. [216], Voll et al. [228], Weber and Shah

[229]
Elec + Therm Chinese [227], Harada and Mori [218], Panone and Anatone [214], Pia-

centino et al. [221], Piacentino and Barbaro [222], Salimi et al. [224], Sto-
jiljković et al. [223], Yang et al. [230, 231], Wu et al. [217, 220]

Storage HST Bracco et al. [200], Fazlollahi et al. [205], Haikarainen et al. [208], Kopanos
et al. [219], Mehleri et al. [95, 96], Obara et al. [210], Panone and Anatone
[214], Piacentino et al. [221], Piacentino and Barbaro [222], Söderman and
Pettersson [213], Sugihara et al. [216], Wakui and Yokoyama [199], Weber
and Shah [229], Wu et al. [217, 220], Zhang et al. [86]

HST+CST Casisi et al. [207], Li et al. [232], Stojiljković et al. [223], Yang et al. [231]
HST+EST Bracco et al. [215], Falke et al. [202], Hawkes and Leach [209], Holjevac

et al. [198], Obara and El-Sayed [211], Orehounig et al. [204], Salimi et al.
[224]

generation units can be considered in consumer premises, e.g. natural gas condens-

ing boilers, gas heaters and electrical air-conditioning systems [92, 101]. Additionally,

conventional grid and natural gas service connections can be adopted [101].

Research into the provision of electricity combined with heating and/or cooling and

energy sharing to a cluster of consumers almost always considers one or multiple, cen-

tral or decentral, co-generation units with a predominant focus on natural gas fuelled

CHP units (see Table 2.2). A selection of a combination of the above units has also be

considered, for example by Mehleri et al. [96]. Heat pumps are also increasingly being
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adopted [202, 204–206, 216]. The work of Haikarainen et al. [208], for example, em-

ployed heat pumps and a biomass co-generation unit. Karschin and Geldermann [203]

employed biomass co-generation. PV units are the most prevailing electrical renewable

DG unit (see Table 2.2). The combination of PV and wind turbines, and the consid-

eration of solar thermal are, however, gaining interest. Other renewable units are only

limitedly considered, for example, hydro in the works of Söderman and Pettersson [213]

and Orehounig et al. [204]. Most co-generation research includes condensing boilers as

complementary or supplementary thermal heating units. Gas heaters have only limit-

edly been researched, for example, by Kopanos et al. [219]. Storage is predominantly

adopted in the form of hot thermal storage, either alone, or, in a combination with

cold thermal or electrical storage. The combination of electrical, hot thermal and cold

thermal storage is touched upon by, for example, Ashouri et al. [140], Guo et al. [154]

and Zhou et al. [163] in the context of energy services to a large building without energy

sharing, but is not widely addressed. Research that combines co-generation with ther-

mally driven cooling technologies, conventional thermal technologies, electrical storage,

hot thermal storage, cold thermal storage, renewable energy resources and a potential

grid connection has been touched upon by, for example, Yang et al. [231] for an urban

area. These full hybrid system approaches are, however, lagging behind compared to

co-generation, district thermal or renewable energy system studies [105].

2.3.2.3 Scale

Multiple scales can be distinguished in DES design models [81, 94, 101]; spatial, time and

model detail. The larger the spatial area, the more detailed the time scale and the more

model detail, the more degrees of freedom the modelled system has, increasing model

and optimisational complexity [130]. Spatial scale refers to the considered consumer

area [81, 82, 94, 101, 103]. DES can encompass a region/district, city/town, community,

(≤ 1 km2) neighbourhood or building level. The smallest geographically aggregated

unity (in contrast with an apartment or commercial building) that can exhibit DES

planning, is a neighbourhood [103]. Previous research considering both multiple energy

services and energy sharing predominantly focussed on either residential areas of various

scales or urban areas with various types of consumers, see Table 2.3.
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Table 2.3: Spatial scale of DES design optimisation models with energy sharing.

Scale References

Large residential (> 100 houses) Ameri and Besharati [225], Fazlollahi et al. [205, 206], Holjevac et al.
[198]

Medium residential (100−20
houses)

Falke et al. [202], Karschin and Geldermann [203], Kopanos et al.
[219], Orehounig et al. [204]

Small residential (≤ 20 houses) Bracco et al. [215], Buoro et al. [226], Mehleri et al. [95, 96], Obara
et al. [210], Obara and El-Sayed [211], Piacentino et al. [221], Pia-
centino and Barbaro [222], Söderman and Pettersson [213], Wakui
and Yokoyama [199]

Clusters of apartments Panone and Anatone [214]
Cluster of industrial consumers Casisi et al. [207]
Cluster of commercial con-
sumers

Casisi et al. [201], Harada and Mori [218], Hawkes and Leach [209]

Cluster of various types of con-
sumers in an urban area

Bracco et al. [200], Chinese [227], Li et al. [232], Haikarainen et al.
[208], Keirstead et al. [93], Omu et al. [212], Salimi et al. [224], Sto-
jiljković et al. [223], Sugihara et al. [216], Weber and Shah [229], Wu
et al. [217, 220], Yang et al. [230, 231], Zhang et al. [86]

Time scale refers to both the planning horizon of the project as well as the time steps

employed in the model [81, 82, 94, 104, 130]. This can be a yearly planning horizon or

project life time with annual, seasonal, monthly, daily, hourly or minute/second time

steps. Seasonal daily profiles with single or multi-hour time-steps are especially useful

coarse time-scales with regard to the integration of seasonal tri-generation, day and

night demand differences, capturing off-peak demand times and the integration of both

renewable energy generation units and storage [104, 130].

Model detail refers to the scope of simplifications and assumptions. The model can

encompass detailed thermodynamic or electrical behaviour (see Section 1.2.2.2). Alter-

natively, a superstructure design can be adopted where different components interact

with power or energy flows that might include a transport distance related loss [34, 101].

Integrating various energy services and resources in a complex system with many com-

ponent interactions and relations can benefit from representing each component and

interaction as simply as possible [104]. Coarse scales hence rely on system assumptions

and model simplifications, but allow for reasonable computational times and effort [104].

2.3.3 Model aspects

Optimisation concepts were reviewed in Section 2.2. The DES model types and solution

methods, employed throughout literature, are presented below.
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2.3.3.1 Model types and solution tools used

DES design consists of various optimisation problems at different scales [91]. The se-

lected system aspects (Section 2.3.2) determine the system boundaries, constraints and

uncertainties and hence the appropriate modelling and solution methods [91]. DES de-

sign is inherently a complex, multi-objective, stochastic and a large combinatorial prob-

lem that is most realistically formulated as a non-linear problem to capture real system

behaviour [91]. To increase optimisation efficiency and reduce computational efforts and

complexity, system behaviour is, nevertheless, often linearised and simplified to obtain

(MI)LP problems [91, 104]. Mixed-integer models are here appropriate as they can cope

with both selection (on-off/binary variables) as well as siting and sizing (continuous vari-

ables) of units [80]. Based on a systematic review of literature regarding tri-generation

optimisation work, Unal et al. [105] identified linear and meta-heuristic optimisation

methods as most common optimisation methods. MILP models are most popular for

DES design optimisation, in terms of both energy integrated services and sharing, mostly

employing superstructure or thermodynamic design, see Table 2.4. Genetic Algorithms

are also increasingly being adopted by, for example, Falke et al. [202], Harada and Mori

[218], Obara et al. [210], and Obara and El-Sayed [211]. If no technology selection is

considered, LP (for example, Hawkes and Leach [209] and Orehounig et al. [204]) and

NLP (for example, Salimi et al. [224]) models have been used.

Table 2.4: Classification of DES design MILP models including energy sharing.

MILP Research

Superstructure Ameri and Besharati [225], Bracco et al. [200, 215], Casisi et al. [201, 207], Chi-
nese [227], Kopanos et al. [219], Li et al. [232], Mehleri et al. [95, 96], Omu et al.
[212], Söderman and Pettersson [213], Sugihara et al. [216], Wakui and Yokoyama
[199], Wu et al. [217, 220], Yang et al. [231]

Thermodynamic Buoro et al. [226], Haikarainen et al. [208], Piacentino et al. [221, 221], Stojiljković
et al. [223], Weber and Shah [229], Yang et al. [230]

2.3.3.2 Types and numbers of objectives

DES can be designed based on several objectives that balance and trade off interests

of involved stakeholders [91, 92, 102, 132]. DES design objectives throughout liter-

ature are mostly easily quantifiable economic/financial, environmental or technical in

nature [80, 91, 92, 101]. System design and implementation is primarily based on the
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economic viability of the project and therefore traditionally heavily determined by eco-

nomic or financial minimisation objectives [91, 101, 102, 109, 233], see Table 2.5. Other

objectives have only limitedly been touched upon within studies that include energy

sharing. Single-objective models, for example, employed technical objectives related

to minimisation of primary energy consumption [199, 211] and minimisation of energy

storage differences between time periods [210]. Bi-objective optimisation models are still

under-represented and mostly employ a combination of economic and environmental ob-

jectives [91, 109, 125, 129, 202, 217, 232], including minimisation of total annual costs

and annual CO2 emissions [200, 214], or, a combination of an economic and technical

objective, such as minimisation of total annual cost and minimisation of primary energy

consumption [223]. More than two design objectives have only been researched very

limitedly, for example, through a weighted-sum approach of economic, technical and

environmental performance metrics by Keirstead et al. [93] and through an evolutionary

approach by Fazlollahi et al. [205, 206].

Table 2.5: Economic objectives in DES design optimisation research with energy
sharing. OM=operation and maintenance, NPV=net present value.

Objective Research

Investment and OM cost
minimisation

Ameri and Besharati [225], Haikarainen et al. [208], Omu et al. [212]

Total annual (equivalent)
costs minimisation

Bracco et al. [215], Buoro et al. [226], Casisi et al. [201, 207], Chinese
[227], Falke et al. [202], Fazlollahi et al. [205, 206], Hawkes and Leach
[209], Li et al. [232], Mehleri et al. [95, 96], Weber and Shah [229], Wu
et al. [217, 220], Yang et al. [230, 231], Zhang et al. [86]

Energy supply cost minimi-
sation

Harada and Mori [218]

Annual operating costs min-
imisation

Holjevac et al. [198]

NPV maximisation Karschin and Geldermann [203], Piacentino et al. [221], Piacentino and
Barbaro [222], Salimi et al. [224]

Total cost minimisation Kopanos et al. [219], Söderman and Pettersson [213]

For energy integrated systems without energy sharing, multi-objective optimisation is

more established with a greater focus on life cycle aspects. Considered economic objec-

tives are, for example, minimisation of life cycle costs [136, 137, 197]. Environmental

objectives regard, for example, minimisation of life cycle emissions [154, 170, 197], min-

imisation of life cycle environmental impact [137], maximisation of renewable energy

penetration levels [170], minimisation of fossil fuel consumption [138] and minimisation

of global warming potential [185]. Technical objectives are increasingly analysed in the

form of, for example, maximisation of exergetic efficiency [168], maximisation of overall

system efficiency [179], minimisation of a grid interaction index [143, 196], maximisation
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of reliability factor [133], maximisation of primary energy savings [179], maximisation

of demand satisfaction [159] and minimisation of life cycle primary energy consump-

tion [197]. Note that environmental and technical objectives are often reduced to cost

related functions and therefore not inherently different.

2.3.4 Case-study locations

Developed optimisation frameworks are typically demonstrated through location-specific

case-studies, see Table 2.6. Previous research on energy integrated areas with multiple

energy services but no energy sharing has been heavily focussing on Asian and European

Table 2.6: Case-study locations in DES design optimisation research.

Area Country Research without energy sharing Research with energy sharing

Asia Japan Aki et al. [177], Bando and Asano
[176], Bando et al. [178], Gamou et al.
[148], Ooka and Komamura [160], Ren
et al. [174], Ren and Gao [175], Weber
et al. [149], Yokoyama et al. [145, 146]

Harada and Mori [218], Obara
et al. [210], Obara and El-Sayed
[211], Sugihara et al. [216], Wakui
and Yokoyama [199], Wu et al. [220]

Greater
China

Guo et al. [154], Li et al. [172], Lu
et al. [196], Wang et al. [138, 139, 162,
164, 165, 166], Zhou et al. [167]

Li et al. [232], Yang et al. [230,
231], Wu et al. [217]

South
Korea

Ko et al. [170], Oh et al. [134,
135], Seo et al. [194]

Europe Italy Brandoni and Renzi [150], Fabrizio
et al. [169], Gimelli and Muccillo
[153], Morini et al. [173], Piacentino
et al. [161], Stoppato et al. [193]

Bracco et al. [200, 215], Casisi et al.
[201, 207], Chinese [227], Panone and
Anatone [214], Piacentino et al. [221],
Piacentino and Barbaro [222]

Portugal Monteiro et al. [191], Safaei et al. [136,
137]

Spain Carvalho et al. [151, 152, 156,
157], Lozano et al. [60]

UK Shaneb et al. [195], Zhang et al. [185] Hawkes and Leach [209], Keirstead
et al. [93], Kopanos et al. [219], Omu
et al. [212], Weber and Shah [229]

Finland Haikarainen et al. [208], Söderman
and Pettersson [213]

Others Ashouri et al. [140] (Switzer-
land), Falke and Schnettler [141]
(Germany), Kavvadias and Maroulis
[158] (Greece), Mavrotas et al. [159]
(Greece)

Falke et al. [202] (Germany), Holje-
vac et al. [198] (Croatia), Karschin
and Geldermann [203] (Ger-
many), Mehleri et al. [95, 96]
(Greece), Stojiljković et al. [223]
(Serbia), Orehounig et al. [204]
(Switzerland)

Americas USA Best et al. [179], Mallikarjun and
Lewis [133], Pruitt et al. [188,
192], Xu et al. [197], Zachar and
Daoutidis [189], Zachar et al. [190]

Middle East Iran Abdollahi and Sayyaadi [168], Ak-
bari et al. [235], Karami and Sayyaadi
[171]

Ameri and Besharati [225], Salimi
et al. [224]
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areas. Research that additionally included energy sharing has been mostly concentrated

in Europe with increasing interest in Asian and Middle Eastern locations. The Americas,

Africa and Oceania are under-represented locations.

2.3.5 Integrated disciplines

DES design encompasses multiple disciplines and stakeholders [102, 102, 132]. The

design problem is seen as an optimisation problem, hence mathematical programming

techniques form the basis for DES design research. Knowledge of technical behaviour

and engineering of the thermal and electrical system components and interactions is

required to model the researched system. Economics determine the viability of projects

and knowledge of environmental science is required to analyse environmental impacts.

These main disciplines readily translate into quantifiable objectives and constraints and

have therefore been the major focus of previous research [34, 80, 101, 102, 104, 132].

Social aspects, such as politics, social acceptance and regulation, however, also impact

design [102, 104, 132]. These disciplines can form barriers at the project implementation

stage leading to uncertainty [94, 104]. Social aspects are, however, not easily quantifi-

able and are therefore lagging behind with respect to implementation and integration

in mathematical models [94, 104, 236]. If integrated within design optimisation, they

have mostly been considered in the form of regulatory constraints, such as DG capacity

bounds, residential energy export or operational restrictions, or, in the form of input

parameters through feed-in tariffs and carbon taxes. An important factor in techno-

economic-environmental DES design optimisation is its policy relevance, i.e. the link

between novel technologies and systems, and regulation [94]. DES design thus inher-

ently involves a cross-disciplinary and multi-objective decision-making process [94, 132].

2.3.6 Software tools

Designing DES is a popular research topic. Hence various application-specific commer-

cial software tools exist to aid decision-makers, researchers or developers [91, 101, 109,

130]. Several accounting and simulation tools are available, e.g. RETscreen, TrnSys, En-

ergyPlus and EnergyPLAN [80, 101, 132]. Other tools focus on long-term and national

system design levels, e.g. MARKAL/TIMES [81, 102, 104, 130, 234, 237], or specific
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technologies, e.g. BALMORAL (CHP and electricity sector) [109, 237] or MODEST

(main focus on utility energy service and district heating). Note that this list is not

exhaustive and various other developed tools exist (for more information, see for ex-

ample [80, 130, 234, 237]). The most relevant tools that can be applied to residential

energy integrated DES are HOMER and DER-CAM, which are detailed below. Their

model characteristics are summarised in Table 2.7.

Table 2.7: Characteristics of HOMER and DER-CAM software tools for DES design
optimisation [238, 239]. C=cooling, CHP=combined heat and power, CST=cold stor-
age, DH=district heating, E=electricity, EC=electric chiller, EI=energy integration,
EST=electric storage, EV=electric vehicles, FIT=feed-in tariff, H=heating, HST=hot

storage, MG=microgrid, PV=photovoltaic unit, ST=solar thermal.

Category HOMER DER−CAM

EI Sectors E/H E/H/C
Sharing E and limited DH E and DH

Technologies Dispatchable hydro/biomass/engines/CHP CHP/AC/EC/heat pump
Renewable PV/Wind PV/ST/Wind
Storage EST EST/CST/HST
Others Grid grid/building efficiency/EV/load shift-

ing
Scale Spatial consumer area buildings and MG

Temporal 1 year horizon/up to minute
based time steps

typical (single or multi-) year horizon/-
time step (1h, 15min, 5min) of daily
profiles

Detail detailed E high-level/power flow

Model semi-optimisation MILP, mostly deterministic, stochastic
efforts

Tool alternatives ranking GAMS
Objectives (1) net present cost (1) total annual energy cost and (2)

CO2 emissions

Data costs, tariffs, load profiles,
technology characteristics

costs, tariffs, load profiles, technology
characteristics

Disciplines engineering-
economic/emissions

engineering-economic constraints, regu-
latory aspects (FIT, incentives,...)

The commercial Windows based Hybrid Optimization Model for Electric Renewables

(HOMER) has been developed since 1992 by the National Renewable Energy Laboratory

in the United States [109, 237, 238]. HOMER can be used for simulation, optimisation

and analysis of hybrid systems mainly focussing on detailed electrical design through

microgrid operation with various DG units, converters and loads [81, 132, 237]. Despite

its classification as optimisation tool, HOMER is a simulation tool that analyses the

dynamic behaviour (dispatch optimisation) of user-defined systems in terms of possible

sets of sized technologies [132, 237]. Alternative design configurations are ranked based

on Net Present Cost through a techno-economic feasibility evaluation including energy,

economic and environmental constraints [91, 132, 234, 237, 237]. It is a popular commer-

cial and academic tool, with a main research application of rural and off-grid electrical
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DES. The main disadvantages are: only a single cost objective can be considered, and

depth of discharge of batteries, intra-hour variability and bus voltages are not consid-

ered [234]. The commercial package interface, furthermore, does not allow for flexible

or additional implementation of objectives, technologies or other features.

Distributed Energy Resources Customer Adoption Model (DER-CAM) is an integrated

community energy system planning tool developed by the Berkeley Lab since 2000 [81,

91, 132, 239]. DER-CAM is an MILP based software tool that designs DES in terms

of technology selection, sizing and optimal technology dispatch schedules subject to de-

mands [101, 132]. DER-CAM is developed in GAMS and is available in a free academic

web-based version with limited features [239]. System configuration is optimised at min-

imal annual energy cost and minimal annual CO2 emissions with a primarily economic

angle of reducing consumer costs [101, 132]. The model can handle buildings or aggre-

gated consumer sites [132]. It focusses on both electricity and thermal energy provision

both through dispatchable and renewable energy generation. The Berkeley laboratory

regularly publishes papers introducing new DER-CAM features and case-studies. The

package, however, only limitedly allows for flexible or additional features.

2.4 Discussion

The previous Sections provided an overview of both optimisation models and methods

as well as previous DES design optimisation research. This Section discusses the gaps

in research to date and challenges involved with modelling DES systems.

2.4.1 Identification of research gaps

An important DES design need is the development of generic decision-making optimi-

sation tools that are not limited to certain locations but flexible to tailor system design

to various locations, demand profiles and environments of a wide range of case-studies.

Moreover, multiple techno-economic and regulatory aspects need to be included to take

into account stakeholder interests and ensure multi-faceted decision-making. Table 2.8

summarises various research gaps that still require addressing. This list is not exhaustive

as, for example, different energy services and pools of technologies could be considered.
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Electrical transport, for example, is not touched upon in the context of this thesis as it

considers a form of moveable storage DER. Furthermore, available software tools do not

provide the sought after flexibility in model features, applicability and analysis.

Table 2.8: Summary of research gaps in DES design optimisation research.

Category Research gap

Energy integration fully energy integrated system considering at least electricity, space heating
and space cooling to a consumer area combined with local electricity, heating
and cooling sharing options

Technologies fully energy integrated system (electricity, heating and cooling) with full en-
ergy sharing combined with a pools of co-generation, renewable, thermally
driven chillers, electrical and thermal storage, and conventional options

Objectives economic, environmental, technical and social (≥ 2 objectives)
Disciplines explicit consideration of social aspects, amongst others regulation [105]
Application/Location consideration of South American, African or Oceanian case-study

The delivery of electrical energy services sometimes combined with space heating and/or

cooling without energy sharing has been addressed in previous work. Explicit energy

sharing is increasingly touched upon. Hot thermal sharing, for example, is adopted in

colder climates with a significant space heating requirement, making co-generation worth

exploring, e.g. in Japan [210, 211], North Italy [200, 207, 214], Scandinavia [208, 213]

and the United Kingdom [93, 209, 212, 219, 229]. Consideration of cooling integration is

needed in environments where seasonal tri-generation might be viable due to considerable

winter heating demands and summer cooling demands, like in areas in China [230, 230],

Italy [227], Iran [225] and Japan [218]. Fully energy integrated systems considering the

service and sharing of electricity, heating and cooling are very limited but are necessary

to increase model applicability to various locations.

Additionally, a wide range of DER can be adopted in DES. The focus in previous

research was predominantly centred around co-generation combined with thermally or

electrically driven chillers [105]. The integration of renewable technologies and storage

is, however, gaining increasing interest due to the growing focus on the environment

complementing purely economic aspects, and their increased affordability. Furthermore,

renewables can contribute to reduce the environmental impact of and dependency on

conventional services, making them attractive in an urban setting. Especially fitting out

residential areas as DES could more directly help to address conventional energy system

challenges (see Section 1.1.4). A full hybrid-storage range of technologies is therefore

required to ensure general applicability of the model.
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DES design, furthermore, is complex in terms of number of constraints and variables as

well as involved disciplines and stakeholders. Its optimisation has, however, largely been

focussed on single economic objective problems, since cost is the predominant driver of

new investment [105, 221]. Multi-objective, fully energy integrated DES design problems

are gaining more research interest, mostly combining an economic with an environmental

objective [105]. Technical objectives are still under-represented and mainly relate to

efficiency and operational behaviour. Social aspects are – if included – mainly indirectly

addressed as capacity and operational constraints. There is thus a need for a multi-

faceted DES design framework that includes economic as well as environmental and

technical objectives to fit in with central system objectives and regulation. Furthermore,

Africa, Latin America and Oceania are still under-represented case-studies despite their

potential for DES in rural and remote communities [48, 61, 63–65]. Considering any of

the above locations, would increase global applicability of DES design models.

2.4.2 Challenges

Optimisation of DES design involves challenges that can affect the accuracy of implemen-

tation and results [82, 92, 94, 104]. Awareness of these challenges is needed to critically

assess developed optimisation frameworks. First, DES design models are inherently com-

plex, requiring a trade-off between model accuracy and complexity [82, 92, 104, 240].

Less complexity mostly implies more simplifying assumptions [94]. Over-simplified mod-

els, however, solved with global optimisation methods are only able to find sub-optimal

solutions for real problems, i.e. ‘a real solution for a non-problem’ [92, 240]. Detailed

models combined with less powerful solution techniques, in contrast, potentially only re-

sult in local optima, providing ‘a non-solution to a real problem’ [92, 240]. For decision-

making and predictions, simplified models are often adequate enough, compared to more

detailed complex models. Simplified models namely allow for shorter computational

times and extensive parameter sensitivity analysis to understand the different relations

within and impacts on the system [91, 104]. DES optimisation models are therefore not

necessarily developed for real project implementation but rather for decision-makers to

assess the impact of various aspects on design [82].

Second, the availability, uncertainty, prediction and quality of data, both in terms of

inputs and results, needs to be balanced with the level of model detail [82, 91, 94].
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Solutions of complex models with low quality inputs will lead to low quality results [91,

94]. Renewable energy resources, especially, can exhibit significant uncertainty, which

can be taken into account either through thorough parameter sensitivity analysis in

deterministic models or through stochastic modelling [104].

Last, DES optimisation has been strongly focussed on specific techno-economic systems.

DES integration into the wider conventional energy system and the inclusion of social

aspects are under-represented but are important to ensure DES design model relevance

for decision-makers to inform policy making [82, 104].

2.4.3 Contributions of the thesis

This thesis focusses on addressing the research gaps presented in Table 2.8. A decision-

making framework will be developed for residential DES design, including the energy

service and sharing of electricity, space heating and space cooling, through an optimisa-

tion approach. Neighbourhood energy demands can be met through the consideration of

hybrid, storage and conventional energy supply as well as energy sharing. An economic

objective is considered along with environmental and technical objectives, aligned with

the three central energy system objectives (see Section 1.1.3). Additionally, social as-

pects are included in the form of DES regulatory framework aspects. The approach is

applied to a South Australian neighbourhood. South Australia has namely potential for

DES in remote load centres and a high availability of renewable energy resources (see

Section 3.4). Contributions to DES modelling challenges are made through the inclusion

of a measure for renewable resource availability (Section 4.5.2.3) and the analysis and

integration of regulatory aspects within an optimisation environment (Chapter 6).

2.5 Summary and conclusion

An overview of optimisation models and methods has been presented in this Chapter

as well as a review of DES design optimisation research. Several system and model

categories were identified to assess previous work in the field. The identified research gap

addressed in this thesis is the development of a generic decision-making framework for

fully energy integrated DES design of a small residential area, considering various energy
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supply options as well as energy sharing. Furthermore, three objectives and regulatory

framework aspects are included, increasing model relevance to various stakeholders and

opening up a techno-economic approach to inform policy makers.



Chapter 3

Methodology

The problem addressed is how the energy system of small residential neighbourhoods,

framed by location specific parameters, can be most suitably designed to meet its total

electricity, heating and cooling demands. This is first and foremost a design problem

and does not involve operational optimisation. The optimal dispatch and interaction

of units can nevertheless be analysed based on the given demand profiles. ‘Optimal’

distributed energy system (DES) design is obtained through the selection and sizing of

distributed energy resources (DER), from a considered pool of technologies, and siting

them across neighbourhood houses. Technologies are considered together with potential

electrical and thermal energy sharing, and interactions with conventional central energy

services. Since system design depends on both techno-economic engineering design prin-

ciples and organisational-regulatory aspects, the developed framework aims to bridge

these disciplines through multi-objective optimisation approaches [241]. The following

Sections detail the specific system and model aspects of the developed method.

3.1 System aspects

The energy demands of each house, and the neighbourhood as a whole, are met through

the consideration and combined use of a pool of energy supply alternatives, including:

(i) DER, (ii) local energy sharing through microgrid and pipeline infrastructure, and (iii)

central energy services. This determines the boundaries of the system, see Figure 3.1.

Note that not all units need to be installed but an optimal selection is made.

73
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House 1 
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Figure 3.1: Boundaries of the energy system of a neighbourhood with nh houses, in-
cluding technologies (tech) and energy integration (grey dashed arrows). E=electricity,

NG=natural gas, RES=renewable energy resource (e.g. sun, wind).

3.1.1 A hybrid small-scale poly-generation approach

Residential energy demands require small-scale, mini and micro units < 30 kW (see

Table 1.1 and [242]). A generic pool of technologies is selected for consideration in the

optimisation process. The chosen technologies are established, commercially available

and able to exploit locally available resources. As new technologies become available,

they can be added to the database. The considered technologies are presented below.

Appendix B summarises their technology operational behaviour.

Distributed generation (DG) units encompass small-scale electrical or thermal genera-

tion units that can interact with energy sharing infrastructure and the central energy

system. The considered intermittent units – based on renewable energy resources –

are wall-mounted small-scale wind turbines (wind) and rooftop photovoltaic (PV) units

(sun). The considered dispatchable DG unit is a small-scale combined heat and power

unit (CHP). CHP units can come in various forms based on operational procedures and

fuel [105, 131]. A natural gas fuelled CHP unit is selected due to its appropriate op-

erational parameters and micro-range capacity [105]. By coupling a thermally driven

refrigeration unit to the CHP unit, waste heat can also be used for cooling purposes [105].

Absorption chillers – requiring both waste heat and limited electricity for refrigeration –

are the most established, suitable small-scale thermally driven cooling technology [105].

Several co-generation operational modes can be considered; electricity demand follow-

ing or heat (indirect cooling) demand following [105, 129, 131]. Since thermal demands

mostly exceed electricity demands in residential applications, electricity-following modes



Chapter 3. Methodology 75

would require auxiliary condensing boilers for supplementary space heat generation [129].

Heat-following modes, in contrast, require additional electricity supply alternatives in

order to meet varying electricity loads [129]. To fully use the installed CHP unit in com-

bination with renewable electrical DG units, heat-following operation is implemented.

Additionally, conventional thermal generation units are considered that are only able

to supply energy to their accommodating house, i.e. natural gas fired gas heaters or

condensing boilers for space heating, electricity fuelled air-conditioning units for space

cooling and a potential connection with the conventional distribution network (see Sec-

tion 1.1.2). Furthermore, both electrical as well as hot and cold thermal storage are

considered. Design choices determine whether storage can interact with external infras-

tructure or can only be employed in the accommodating house. Figure 3.2 details the

energy supply and interaction options of each individual house.

Eload grid 
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CHP PV WT NG 

dump 
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(a) Electricity supply

Hload 

Hpipe 
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CHP NG 
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NG 

NG 

Cload 

airco 

Cpipe 

CST 

Cpipe grid 

grid 

AC 

(b) Heating and cooling supply

Figure 3.2: Black-box diagram of the considered energy supply alternatives for
each house in the neighbourhood. Note that the CHP unit forms the link be-
tween the electrical and thermal supply systems. AC=absorption chiller, airco=air-
conditioning unit, B=boiler, CHP=combined heat and power unit, Cload=space
cooling load, Cpipe=cold pipeline network, CST=cold storage, dump=dump load,
Eload=electricity load, EST=electrical storage, G=gas heater, Hload=space heating
load, Hpipe=hot pipeline network, HST=hot storage, MG=microgrid electricity shar-
ing, NG=natural gas supply, PV=photovoltaic unit, WT=small-scale wind turbine.
black lines=electricity, double lines=heat, dashed lines=cooling, diamonds=DG units,

circles=conventional thermal technologies.

3.1.2 An energy integrated approach

Energy efficiency improvements and cost savings can be achieved through energy in-

tegrating a neighbourhood in terms of energy services and sharing [105]. Microgrid
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infrastructure can be installed, allowing for sharing of locally generated electricity be-

tween neighbourhood houses facilitated through a central control unit. Residential tri-

generation, furthermore, allows for fully integrated thermal supply through optimised

thermal pipeline networks with water as working fluid. A schematic of the energy in-

tegrated approach is presented in Figure 3.3. Although an energy integrated model is

adopted, the main focus is on the electrical system.

CCHP 

Eload 

Cload 

Hload 

EDG 

EST 

Grid 

H/CT 

H/CST 

MG 

Hpipe 

Cpipe 

Figure 3.3: Energy integrated system design with energy sectors electricity (black-
/Eload), space heating (dark grey/Hload) and space cooling (light grey/Cload).
Energy integration through microgrid (MG) for electricity and optimised heat-
ing (Hpipe) or cooling (Cpipe) pipeline networks. CCHP=combined cooling heat-
ing power, EDG=electricity distributed generation units, EST=electrical storage,

H/CT=conventional heating or cooling technologies, H/CST=hot or cold storage

3.1.3 A superstructure black-box approach

DES design can be analysed through a systems thinking approach [80]. This facilitates

flexible model building with building block components and interactions. Each com-

ponent is represented as a black-box characterised by a set of operational and design

parameters, which transform component power/energy inputs to component power/en-

ergy outputs [34]. The interactions and relations of implemented component building

blocks are hence analysed on a superstructure level with loss-dependent component in-

teractions rather than detailed thermodynamic or electrical analyses [34]. Black-box

system building blocks can be aggregated into a superstructure model, which allows for

less variables and degrees of freedom for complex energy systems [34]. Superstructure
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models allow for high-level design of complex systems with large numbers of components

and interactions to aid decision-making. Figure 3.4 presents an example superstructure

black-box approach of a section of the considered DES system, namely a single house

with an installed CHP unit as main component. The optimisation approach (see Sec-

tion 3.2.1) selects the implemented components and interactions for each neighbourhood

house based on a pool of potential components and interactions, eliminating or adopting

features of each neighbourhood house system (illustrated in Figure 3.2).

CHP 
ηel, ηth,  HER 

Component I Input Output 
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AC 
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electricity 

HST 
loss 
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Figure 3.4: Superstructure black-box design of a section of the considered DES system
with a CHP unit as main component. ηel=electrical efficiency, ηth=thermal efficiency,
AC=absorption chiller, COP=coefficient of performance, ECR=electricity to cooling
ratio, Eload=electricity load, HER=heat to electricity ratio, Hload=space heating load,

Hpipe=heating pipeline, HST=heat storage unit.

3.2 Model aspects

3.2.1 A mixed-integer linear programming approach

The mathematical structure of DES design problems exhibits discrete/continuous as well

as linear and non-linear behaviour. Table 3.1 gives an overview of DES model require-

ments based on its design aspects. A combination of integer and continuous variables

is required, i.e. a constrained mixed-integer optimisation approach. Additionally, DES

exhibit inherent non-linear behaviour, such as:

Technology operation: Generation technologies, in reality, often show non-linear re-

lations between input and output. The electrical efficiency of CHP units, for

example, is non-linearly dependent on its loading [243]. The closer the CHP can
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operate to its rated capacity, the better its efficiency. Furthermore, starting up or

shutting down units requires non-linear ramping up and ramping down times.

Technology cost: Technology unit investment cost in reality depends on installed ca-

pacity through a non-linear economies–of–scale relation with decreasing unit costs

for increased installed capacities [244, 245] (see Section 6.4.1.3).

Energy sharing: Pipeline thermal energy and mass transfer is governed by non-linear

thermodynamic relations through pressure and temperature drops, heat exchanges

and specific heat loss behaviour [58]. Electricity transfer, furthermore, demon-

strates temperature sensitivity as well as voltage and frequency drops.

Table 3.1: DES model requirements based on design aspects.

Design aspect Model requirements

Sizing continuous capacity range or discrete capacity values
Selection/siting binary selection variables
Energy relations continuous positive variables
Pipeline network integer variables for network house order

binary variables for connection of nodes
Costs continuous or discrete positive variables

This inherent system behaviour renders the problem large and complex. Hence simplifi-

cations and linearisation are employed to obtain linear models, which increase efficiency

of solution processes for large problems [82, 106] (see Section 2.2). Additionally, selection

(switching ‘on’ and ‘off’) of technologies requires binary variables. Hence, a deterministic

mixed-integer linear programming (MILP) approach is employed. Uncertainty regard-

ing deterministic input data that employ simplified or linearised input assumptions can,

however, impact the obtained solutions. Parameter sensitivity analysis and model ro-

bustness is therefore an important aspect throughout the thesis to analyse the effect of

selected input parameters on the obtained results. Unless otherwise stated, the devel-

oped model is solved with GAMS 23.9.3 [115] using the CPLEX 12.4.0.1 solver [246].1

CPLEX is suitable for large, complex problems and allows for the flexible consideration

of integer, continuous, semi-continuous and Special-Ordered-Set variables [117, 246].

The CPLEX solver employs a branch and bound approach for problems with integer

variables [246], see Appendix C.

1Main computer specifications: Dell Optiplex 990, Intel(R) Core(TM), i5-2500CPU@3.30GHz, Ram
4.00GB, 32-bit operating system.
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3.2.2 A multi-objective decision-making tool

Three stakeholder interests are selected to analyse DES design, fitting in with the three

central energy system objectives (see Section 1.1.3) as an economic, technical and en-

vironmental objective. Since the problem is linear (convex) and a limited number of

objectives (≤ 3) is analysed, the multi-objective MILP problem is solved through the

weighted-sum approach. The three objectives (fi) are hereto converted into a unity

weighted single objective where the sum of the three weights (λi) equals one, with

h(x, y) equality and g(x, y) inequality constraints:

min
x,y

Z = λ1·f1(x, y)+λ2·f2(x, y)+λ3·f3(x, y) s.t.


h(x, y) = 0 and g(x, y) ≤ 0

x ∈ X, y ∈ 0, 1∑
i λi = 1 and λi ∈ [0; 1]

(3.1)

3.3 Relying on other disciplines

DES design depends on both engineering and regulatory aspects [241]. The thesis there-

fore departs from an energy systems engineering viewpoint where the interactions be-

tween bodies are studied through the use of mathematical optimisation. The analysed

design is framed by technical requirements of its components, system-related costs and

environmental impacts. Additionally, social aspects are considered in the form of regu-

lation to analyse the impact of regulatory and organisational framework aspects on DES

design. The energy policy as well as climatic, economic and energy-related aspects of the

researched location are all external factors that are included in the optimisation process.

The presented method and analysis therefore lies at the interface between engineering

design, through multi-objective optimisation, and energy regulation.

3.4 An Adelaide (South Australia) based neighbourhood

The developed model is subsequently applied to a small fictive residential neighbourhood

consisting of five typical detached houses. Adelaide, located in South Australia (SA), is
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selected as the researched location based on several factors; (i) SA is part of the liber-

alised National Electricity Market (NEM) of Australia, (ii) Adelaide has peak summer

cooling demand days and reasonable winter heating demands [13] making it suitable for

seasonal tri-generation, (iii) SA has a high availability of renewable energy resources

(sun and wind), (iv) SA has high retail electricity tariffs, and (v) SA has ageing con-

ventional power system infrastructure and remote end-of-line load centres [13], making

DES attractive to defer significant network upgrades and investments. The case-study

serves as an example to illustrate the developed framework and its capabilities.

3.5 Conceptual framework and approach

The conceptual framework is illustrated in Figure 3.5. DES design is determined by

technical component and system behaviour, which translates into an MILP DES model.

Location-specific parameters regarding technology characteristics, costs, climate, hourly

average daily household electrical and thermal energy demands as well as regulatory

constraints serve as input parameters to the model. Selected model outputs are the ob-

jective values, ‘optimal’ neighbourhood energy system design as well as ‘optimal’ hourly
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Figure 3.5: Conceptual framework of methodology.
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average component energy interactions and technology dispatch schedules. Engineering

design is determined through three objectives aligned with the three central energy sys-

tem objectives (see Section 1.1.3). Regulatory aspects are analysed through quantified

framework factors. This allows for bi-directional engineering-regulation analysis.

The base model is developed in Chapter 4, analysing optimal neighbourhood energy

system design under total annualised energy cost minimisation. Chapter 5 analyses

multi-objective engineering system design, building further on the developed base model.

The multi-objective framework additionally includes minimisation of electrical system

unavailability (technical) and annual CO2 emissions (environmental) as objectives. DES

regulatory framework factors, i.e. type, scale, ownership, choice, tariffs and objectives,

are defined and analysed in Chapter 6 through adaptations of the developed model.

3.6 Conclusion

This Chapter developed and detailed the employed methodology to analyse both multi-

objective engineering DES design as well as DES regulatory framework aspects for a

small residential neighbourhood. The model is formulated as an MILP and solved with

GAMS using the CPLEX solver. Three selected design objectives are defined based on

the three central system objectives as (i) minimisation of total annualised energy cost,

(ii) minimisation of electrical system unavailability, and (iii) minimisation of annual CO2

emissions. The developed model is applied to a small Adelaide neighbourhood.





Chapter 4

Cost-optimal design of residential

distributed energy systems

A framework for residential distributed energy system (DES) design with competitive-

ness as driving objective is presented (second research question, see Section 1.4). A

superstructure mixed-integer linear optimisation approach is hereto developed to select,

size and site components and interactions to meet the yearly energy demands (electric-

ity, heating and cooling) of a small neighbourhood at minimum total annualised energy

cost. The remaining Chapters will build further on this single-objective base model. The

work in this Chapter has been disseminated into the following publications [247–250].

4.1 Introduction

4.1.1 Cost as driving objective for new investment

‘Competitiveness’, when applied to power systems, refers to economic efficiency and af-

fordability of energy services to consumers [1, 17, 18] (see Section 1.1.3). Since implemen-

tation of distributed energy systems (DES) is only considered in residential areas if their

investment and operation are attractive economic alternatives to conventional supply,

their competitiveness is typically measured through economic aspects [221]. Therefore,

total annual energy costs for a neighbourhood as a whole to meet its energy demands

83
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is selected as primary driving objective for new investment. This competition inspired

objective levels the playing field for DES within conventional power systems.

4.1.2 Chapter overview

The aim of this Chapter is to develop a single-objective competition based model for

residential DES design optimisation. A detailed description of the problem and opti-

misation framework is presented in Section 4.2. The model structure, objective and

constraints are detailed in Section 4.3 and applied to a case-study through various sce-

narios and analyses in Section 4.4. Results are illustrated in Section 4.5 to end with a

general discussion (Section 4.6) and conclusion (Section 4.7) of the developed approach.

4.2 Method

4.2.1 Problem description

A generic optimisation strategy is developed to identify the ‘best’ energy system de-

sign for a small cluster of houses at a neighbourhood level through the consideration

and combined use of a pool of decentral (household-level) distributed energy resources

(DER), conventional energy supply options and energy integration. Design and oper-

ational behaviour are obtained whilst minimising total annualised energy related costs

of a neighbourhood as a whole to meet its yearly energy demands in terms of electric-

ity, space heating and space cooling. Neighbourhood design is optimised through the

selection, siting and sizing of energy supply options. Figure 4.1 illustrates the different

energy service pools of supply alternatives for each neighbourhood house. Each pool can

contain various technologies. The black-box diagrams of the considered energy system

components and interactions for each individual house were presented in Figure 3.2,

Section 3.1.1. Note that a potential CHP unit forms the connection between electricity

and thermal supply through waste heat utilisation. Furthermore, not all technologies or

interactions need to be adopted, and combinations of technologies and interactions can

be pre-restricted for system analysis (see Section 4.4.4).

The energy demand of each house can be met through potential DG units, i.e. mi-

cro CHP units, photovoltaic units (PV) and small-scale wind turbines (WT), natural
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Figure 4.1: Generic schematic of pools of energy supply alternatives for each house in
the neighbourhood. Cpipe=cold pipeline network, CST=cold storage, EST=electrical
storage, Hpipe=hot pipeline network, HST=hot storage, MG=microgrid electric-
ity sharing, techDGC= cooling generating DG units, techDGE= electrical DG
units, techDGH= heat generating DG units, techC=conventional cooling technologies,

techH= conventional heating technologies.

gas fuelled heating technologies, electrical and (hot and cold) thermal energy storage

units as well as electrically and thermally driven cooling technologies with an optional

bi-directional interconnection with the central grid. Additionally, dump loads can be in-

stalled in case of microgrid operation, required to dump excess local electricity generation

to prevent local network overloading and to maintain safe operation. The neighbourhood

can furthermore be heat and cooling integrated through optimised pipeline networks that

allow for thermal transfer between houses. Furthermore, a microgrid central control unit

(MGCC) can be installed, enabling local energy sharing. This energy supply flexibility

makes the model useful across a wide range of scenarios and case-studies.

4.2.2 Optimisation framework and model requirements

The system is translated into a mixed-integer linear programming (MILP) model and

implemented in GAMS. Figure 4.2 illustrates the optimisation flow chart.
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Figure 4.2: Flow chart of optimisation problem. Optcr=relative optimality gap.

A yearly planning horizon is adopted with a typical day (24 hours) in each season for

the input parameters and variables of the problem. Various case-study-specific input

data are required, presented below and detailed in Table 4.1:

Given: (i) neighbourhood layout, (ii) location specific climatological data, (iii) techni-

cal specifications of the pool of considered energy supply options, (iv) investment and

operation and maintenance (OM) costs, (v) energy tariffs, (vi) state specific regulation,

and (vii) spatial distributions of hourly average household energy demands.

Determine: (i) total annualised energy cost of the neighbourhood as a whole to meet

its total yearly energy demands, (ii) optimal design of the neighbourhood energy system

in terms of selection, siting and sizing of energy supply options, (iii) optimal dispatch

schedule of adopted units in hourly average intervals under given demand profiles, and

(iv) optimal values of operational and emission related variables.

The objective is to minimise the total annualised energy cost of a neighbourhood as

a whole to meet its yearly electricity, space heating and space cooling demands under

various operational, technical, economic, environmental and regulatory constraints.

The model is solved to a specified optimality level. Optimality can be defined in prob-

lems with discrete variables through relative (optcr) or absolute (optca) termination

criteria [115]. Optcr refers to the relative gap between the best possible (current bound

on solution, BP) and best found (objective function value of best integer solution found

thus far, BF) solutions to an optimisation problem and determines the quality of the

solution. The solver terminates its process at the first obtained solution with an objec-

tive value within 100 · optcr of the best solution possible. If the relative gap is set to

zero in a linear model, global optimality is obtained [115]. Optca refers to the absolute
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Table 4.1: Generic input parameters of the model. Note that capacity bounds are
technology dependent. AUD=Australian Dollar, OM=operation and maintenance cost.

Input Symbol Unit Explanation

Neighbourhood layout li,j m distance between each house pair i, j

Climatological data Its,h kW m−2 average solar irradiation on a tilted sur-
face in hour h in season s

Vs,h m s−1 average wind speed at a defined height
above ground level in hour h in season s

Technology specifications Ltech kW or kWh lower capacity bound
Utech kW or kWh upper capacity bound
ntech % thermal or electrical efficiency measure
ε % electricity network transfer losses
β % pipeline network transfer losses
ζ % static energy storage loss
χ % storage (dis)charging rates
DOC % storage depth of charge

Costs CCtech AUD kW−1
inst unit capacity investment cost

Comvtech AUD kWh−1 unit variable OM cost

Comftech AUD kW−1
inst unit fixed OM cost

Energy tariffs T elc AUD kWh−1 retail electricity tariff
T gas AUD kWh−1 retail natural gas tariff
TCT AUD kgCO−1

2 carbon tax

Regulation TSALtechDG AUD kWh−1 feed-in tariff for DG electricity export
DGUPtechDG kW capacity bound on maximum installed

residential DG units
PESALUPtechDG kWh day−1 capacity bound on export levels of resi-

dential DG units

Energy demands CLOADELEC,i,s,h kW average electricity demand of house i in
season s in hour h

CLOADHEAT,i,s,h kW average heat demand of house i in season
s in hour h

CLOADCOOL,i,s,h kW average cooling demand of house i in sea-
son s in hour h

gap between the best estimate and the integer value of the solution to an optimisation

problem (|BP−BF |). The solver will terminate its process at the first obtained solution

with an objective value within optca of the best solution possible.

4.2.3 Model assumptions and decisions

Modelling complex systems, such as the presented, requires implementation decisions

and assumptions [82, 106, 107]. The following adopted simplifying assumptions are

commonly used within superstructure DES design optimisation models in literature,

such as [95, 174, 175, 209, 229]:

• Only the provision of electricity, thermal space heating and cooling are considered.

Water requirements, for example, for cooking and showering, are assumed sepa-

rate services that do not fall under the considered design aspects. The electricity
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demand consists of lighting and appliances requirements only. Space cooling and

heating demands are separated out from electricity demands. Electrically driven

thermal units will therefore lead to a supplementary electricity demand.

• Central services of gas and electricity are considered available to the neighbour-

hood. Their supply chains are, however, not take into account. Central energy

services might, however, be bound by interaction limitations (see Section 4.5.2.4).

• Energy interaction bounds are set sufficiently high, based on the maximum in-

stalled capacity of units, as to not pre-restrict any interactions but to allow for

‘optimal’, ideal energy transfer. Section 4.5.2.4 gives an example of how energy

interaction restrictions can influence the obtained results.

• Constant energy conversion efficiencies are employed for technologies. In reality

efficiencies often depend on operational aspects (see Section 3.2.1). Variable ef-

ficiencies are especially relevant in operational optimisation, in contrast with the

here developed superstructure design decision-making approach.

• Constant proportional unit investment costs are adopted. In reality unit invest-

ment costs of generation units and pipeline infrastructure experience an economies–

of–scale relation (see Section 3.2.1). This is elaborated on in Section 6.4.1.3.

• Ramp-up and ramp-down times of units are not considered based on the same rea-

soning as the efficiency point. Units are hence assumed to be optimally dispatched

to ensure full functionality when required.

• Dependability is not explicitly addressed; the combined use of the selected units

is assumed to be 100 % available to meet the local demand at all times, excluding

scheduled and unscheduled outages and spare units (see Chapter 5).

• No inherent OM cost is assumed to be associated with pipelines as this cost would

arise from pumps in the network. Since pipes are short in residential areas (≤

100 m), no pumps are assumed to be installed. Energy transfer losses are, however,

considered based on energy transfer distances (see Section 4.3.2.3).

• Microgrid operation is assumed to be installed in a neighbourhood with an existing

electrical infrastructure. The protection systems are thus already in place and the

investment cost is limited to the central control unit.

Additionally, different time scales can be considered. In order to compare the cost of the

installed system with conventional neighbourhood energy supply, annualised operation

and a yearly planning horizon are employed. To consider seasonal variations, a typical
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day (24 hours) for three seasonal brackets is included, i.e. summer, winter and mid-

season. Seasonal daily profiles with single or multi-hour time-steps are namely useful

coarse time-scales with regard to the integration of seasonal tri-generation, day-night

demand differences and the integration of renewable generation and storage [104, 130].

Furthermore, various choices have to be made regarding technology and interaction

implementations, where alternatives exist. Section 4.3 details the adopted design choices.

4.2.4 Contributions

The developed model builds further on the work of Mehleri et al. [95, 96] by adding the

following new functionalities to increase model generalisation and applicability:

• a full energy integrated approach is employed focussing not only on electricity and

heat integration but also cooling through residential tri-generation,

• additional DG options are introduced for different technology pools in the form of

small-scale wind turbines, absorption chillers and electrical storage,

• an approach is adopted for heating and cooling networks through the addition of

a binary selection variable that only allows each house to either receive or send

from or to a pipeline in each hour, or not interact,

• a similar approach is adopted for microgrid operation, i.e. the sharing of locally

generated electricity, through a binary variable that decides on the existence and

direction of electricity transfer between each house pair,

• an approach for renewable resource variability within MILP models is presented,

• and an Australian case-study, a country with high DES potential, is researched.

4.3 Model implementation and design decisions

The model continues the efforts of Mehleri et al. [95, 96], as detailed in Section 4.2.4,

and consists of an objective function bound by design and operational constraints of the

considered energy supply options and energy balances. Selected equations are detailed

below. Appendix D details the full model.
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4.3.1 Objective function

The design objective is to minimise total annualised energy cost, CTOT [AUD y−1],

of a neighbourhood as a whole to meet its yearly electricity, space heating and space

cooling demands. Cost terms, Equations D.1-D.6 (Appendix D), are selected based on

their direct relation to the implementation and operation of the system as; (i) annualised

investment cost of technologies and infrastructure (tech) installed in the neighbourhood,

CINV , (ii) yearly fixed and variable operation and maintenance cost of technologies and

infrastructure, COM , (iii) yearly fuel cost related to the consumption of natural gas by

installed technologies in neighbourhood houses (i), CFUEL, (iv) yearly cost of purchasing

electricity from the central grid, CGRIDBUY , and (v) the carbon tax imposed on houses due

to on-site consumption of natural gas and grid electricity, CCT . Furthermore, houses can

create an income by exporting electricity to the central grid, CGRIDSAL , through potential

financial support schemes in the market, such as feed-in tariffs:

minCTOT = CINV + COM + CFUEL + CGRIDBUY + CCT − CGRIDSAL (4.1)

The objective function is bound by (i) technology design and operational constraints of

the thermal technologies (Eqs. 4.2, D.7-D.10), DG units (Eqs. D.11-D.23), storage units

(Eqs. 4.3-4.4, D.24-D.39) and pipelines (Eqs. 4.5-4.10, D.40, D.41), (ii) energy balances

(Eqs. D.42-D.44), (iii) grid interaction constraints (Eqs. D.45-D.47), and (iv) microgrid

operation constraints (Eqs. 4.11-4.17, D.48-D.53).

4.3.2 Technology design and operational constraints

Several pools of technologies are implemented, all bound by design and operational

constraints. The following Sections illustrate the conventional and DG units, storage

technologies, pipeline design and operation, and design choices.

4.3.2.1 Generation units

The pool of conventional thermal technologies (techTH) consists of condensing boilers,

gas heaters and air-conditioning units, which have upper (UtechTH) and lower (LtechTH)

bounds on their continuous capacity variable, DGMAX
techTH,i, as well as a binary selection
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variable, BtechTH,i, which decides on technology installation in a house:

LtechTH ·BtechTH,i ≤ DGMAX
techTH,i ≤ UtechTH ·BtechTH,i ∀ techTH, i (4.2)

Natural gas fuelled CHP units, PV units and small-scale wind turbines are the consid-

ered DG units (techDG). Generated DG electricity can be used to feed the load of the

accommodating house, to export to the grid, to circulate through the microgrid to other

houses and to charge the battery, see Figures 4.1a and 4.3a. PV and wind turbine out-

put is bound by available average solar irradiation on a tilted surface and wind speed in

each hour, respectively. Wind turbines are modelled based on the Weibull distribution

with characterising shape parameter and wind speed levels (see Appendix D) [251, 252].

Country specific regulation, furthermore, can place upper bounds on installed DG ca-

pacity and daily export to the central grid. CHP units and absorption chillers largely

follow the behaviour of the conventional thermal technologies. Waste heat generated by

CHP units can be used for space heating purposes or can be fed into the absorption

chillers for cooling purposes, see Figure 4.3b. The former can be used to meet the heat
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Figure 4.3: Schematic of electrical and thermal behaviour of DG units in
house i. AC=absorption chiller, CIRC=pipe=power for local sharing, Cpipe=cold
pipe, CST=cold storage, EST=electrical storage, Hpipe=hot pipe, HST=hot stor-
age, LoadC=cooling load, LoadE=electric load, LoadH=heat load, PC=cooling
power, PE=electrical power, PH=heating power, SAL=electricity for export,
SELF=load=power for local load, STO=power stored, techDG=DG technologies,

TOT=total generated power.
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load of the accommodating house, to store in the storage tank or the transfer to other

houses through a pipeline, see Figure 4.1b. Generated absorption chiller cooling can

meet similar purposes, see Figures 4.1c and 4.3c.

4.3.2.2 Storage units

Storage can be implemented in various ways. The model assumes a daily roll-over of

the stored energy within each season, taking into account seasonal independence by not

rolling over between days of different seasons [101]. Roll-over between days allows to

analyse the operational behaviour of storage units over a more continuous period [101].

Additionally, various residential storage design choices have to be made, where alterna-

tives exist. Since the main focus of the model is self-generation combined with potential

interactions with central services and no time of use tariffs are available in the South

Australian market that allow for cheap night time grid-battery charging, it is assumed to

only allow the potential battery in each house to be charged through self-generation by

its DG units, not through external feeds (microgrid or central grid). Similarly, thermal

storage units are assumed to only be charged by self-generation by their accommodating

house, not through pipeline transfer (this is expanded upon in Section 6.4.3). Addition-

ally, storage output can only be used to contribute to the demand of its accommodating

house and cannot be exported or shared with other houses. Storage capacity is addi-

tionally bound and characterised by a binary variable, similar to Equation 4.2.

Thermal heating or cooling stored in respective storage tanks (PSSTOi,s,h ) is a function of

power stored in the previous hour (PSSTOi,s,h−1) minus a static loss percentage (ζ) plus

an inflow (PSINi,s,h), minus an outflow (PSOUTi,s,h ), see Figure 4.4 and Equation 4.3. Hot

storage inflow can be supplied by a CHP unit or boiler in the accommodating house.

Cold storage inflow can be supplied by an absorption chiller installed in the same house.

PSSTOi,s,h = (1− ζ) · PSSTOi,s,h−1 + PSINi,s,h − PSOUTi,s,h ∀i, s, h (4.3)

Batteries are modelled similarly to thermal storage units with additional charge (χ [%])

and discharge rates (δχ [%]), maximum charge and discharge rates, upper and lower

limits on the state of charge, and a depth of charge. A battery can be charged through
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contributions of DG units in the same house, see Figure 4.5:

ESSTOi,s,h = (1− η) · ESSTOi,s,h−1 + hr · (1− χ) · PSINEST,i,s,h − hr ·
PSOUTEST,i,s,h

(1− δχ)

∀i, s, h (4.4)
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Figure 4.4: Schematic of thermal storage operation in house i. ζ=static loss,
AC=absorption chiller, B=boiler, CST=cold storage, HST=hot storage, IN=power in-
flow, LoadC=cooling load, LoadH=heat load, OUT=power outflow, PC=cooling power,

PH=heating power, PS=power stored, STO=power stored.
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Figure 4.5: Schematic of battery operation in house i. δχ=discharge rate,
η=static loss, χ=charge rate, CHP=combined heat and power, DOC=depth of charge,
ES=energy stored, EST=electrical storage, IN=power inflow, LoadE=electricity load,
OUT=power outflow, PE=electrical power, PV=photovoltaic, STO=power stored,

WT=wind turbine.

4.3.2.3 Pipeline constraints

Hot thermal pipeline network operation and optimisation is detailed below. Cold thermal

networks are modelled similarly. A binary decision variable, Y Pi,j , decides whether a

pipeline is installed from house i to house j. Since thermal fluid behaves with more

inertia compared to ‘instantaneous’ electrical fluxes, thermal pipelines are assumed uni-

directional at all times (Equation 4.5), in contrast with electricity exchanges that can
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change direction in each hour:

Y Pi,j + Y Pj,i ≤ 1 ∀i, j and i > j (4.5)

Furthermore, heat transferred between each pair of houses (i, j) in each hour h of each

season s, QHi,j,s,h, is bound by the existence of the pipe, Y Pi,j , and an appropriate

upper bound, UPIPE . The transfer bound is set sufficiently large as to not pre-restrict

the model but allow for ideal optimal pipeline transfer. Optimally transferred heat

values can indirectly determine the required pipe dimensions.1

Multiple pipeline networks can be installed in the neighbourhood and not each house

needs to be connected to a network. OHi is a positive integer variable, which indicates

for each house the visiting order in a pipeline network [95, 96]. Closed network loops

are not allowed as they can lead to false results where, for example, thermal energy is

generated and circulated during times where no thermal demand exist [96]. Since no

closed loops are allowed and the system is uni-directional, the order of houses connected

to one network is strictly increasing from the source house(s) to the house(s) at the end

of the network. This constraint, Equation 4.6, ensures breaking up of internal loops (see

Appendix F) [253]. nh indicates the total number of houses in the neighbourhood:

OHj ≥ OHi + 1− nh · (1− Y Pi,j) ∀i, j and i 6= j (4.6)

Only CHP units are assumed to be able to send hot water to the network, PHPIPE
CHP,i,s,h.

This heat can then be transferred between a pair of houses, QHi,j,s,h, to meet part of

the heat load of other houses, QHLOAD
i,s,h , or can be passed on to more houses in the

network, see Figure 4.6. The thermal balances are given:

PHPIPE
CHP,i,s,h +

∑
j

QHj,i,s,h−QHLOSS
i,s,h = QHLOAD

i,s,h +
∑
j

QHi,j,s,h ∀i, s, h with i 6= j

(4.7)∑
i

PHPIPE
CHP,i,s,h −

∑
i

QHLOSS
i,s,h =

∑
i

QHLOAD
i,s,h ∀s, h (4.8)

1Pipe dimensions could be retrieved from obtained maximum optimal transferred capacity as fol-

lows [227]: maxQHi,j,s,h = ρπ·(ddc)
2

4
· c · vmax ·∆Tcd, with QHi,j,s,h the maximum transferred capacity

between houses i and j [kW], ρ the water density [kg m−3], ddc diameter class of a commercially avail-
able pipe [m], vmax the maximum acceptable water velocity in pipes [m s−1], and ∆Tcd the temperature
difference between pipe in- and outlet.
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Figure 4.6: Schematic of pipeline operation of house i. Grey=Binary variable.

The model is constructed based on interactions between components through power and

energy flows with transfer distance related percentage losses. Hence, no temperature

differences or mass transfers are taken into account in the pipeline modelling, consistent

with the level of detail in the electrical system, which excludes active and reactive power

flows as well as voltage drops. Thermal losses, QHLOSS
i,s,h , are evaluated as the sum over

houses i of the heat transfer between houses j and i multiplied with a fixed percentage

heat loss (β) in function of distance between the pair (li,j):

QHLOSS
i,s,h =

∑
j

β · li,j ·QHj,i,s,h ∀i, s, h with i 6= j (4.9)

When connected to a pipeline network, each house can, in each hour, either receive or

send hot water, determined by binary variables Y Hrec
i,s,h and Y Hsnd

i,s,h respectively:

Y Hrec
i,s,h + Y Hsnd

i,s,h ≤ 1 ∀i, s, h (4.10)

Heat send to (PHPIPE
CHP,i,s,h) and from the network to a house (QHLOAD

i,s,h ) is bound by

maximum pipe utilisation rates (Usnd) and sending capability (Y Hsnd
i,s,h), or, the total

heat load of the house (CLOADHEAT,i,s,h) and receiving capability (Y Hrec
i,s,h), respectively.

4.3.3 Energy interaction constraints

Several energy interactions occur to meet the different energy balances (Appendix D), to

interact with the central grid and to share local electricity through microgrid operation.

Thermal pipeline energy interactions have already been detailed in Section 4.3.2.3.
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4.3.3.1 Energy balances and grid interactions

The electricity load of each house together with potential dump loads - only available

in case of microgrid operation - and electricity for the operation of electrically driven

cooling technologies is satisfied through a combination of self-generation by DG units,

microgrid electricity sharing, grid import and batteries. Thermal balances comprise

both heating and cooling and are met by a combination of self-generation by thermal

technologies, pipeline transfer and thermal storage.

4.3.3.2 Microgrid operation

Microgrid operation - decided through binary variable Z - requires the neighbourhood

to interact as a whole with the central grid, rather than each house individually, see

Figure 4.7. Binary variables Xsnd
i,s,h and Xrec

i,s,h indicate whether house i sends or receives

electricity to or from the central grid in each hour h, respectively, ∀i, s, h and i > 1:

Xsnd
i,s,h −Xsnd

i−1,s,h ≤ 1− Z and Xsnd
i−1,s,h −Xsnd

i,s,h ≤ 1− Z (4.11)

Xrec
i,s,h −Xrec

i−1,s,h ≤ 1− Z and Xrec
i−1,s,h −Xrec

i,s,h ≤ 1− Z (4.12)

A binary selection variable, MGCi,j,s,h, is adopted to indicate if electricity is shared

from house i to house j in each hour h:

MGCi,j,s,h +MGCj,i,s,h ≤ Z ∀i, j, s, h with i 6= j (4.13)
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Figure 4.7: Grid interaction behaviour of neighbourhood houses without (left)
and with (right) installed microgrid Z. Black arrows=potential interactions, black

dot=point of common coupling.
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Electricity send to, PECIRCtechDG,i,s,h, or received from, PErecMG,i,s,h, the microgrid by a house

can be divided into house pair interactions, PEsndi,j,s,h and PEreci,j,s,h respectively:

∑
techDG

PECIRCtechDG,i,s,h =
∑
j

PEsndi,j,s,h ∀i, s, h with i 6= j (4.14)

PErecMG,i,s,h =
∑
j

PEreci,j,s,h ∀i, s, h with i 6= j (4.15)

The electricity interactions are posted (positive) variables that can take on any value

∈ [0;UMGC ] ∀i, j, s, h and i 6= j:

PEsndi,j,s,h ≤ UMGC ·MGCi,j,s,h and PEreci,j,s,h ≤ UMGC ·MGCj,i,s,h (4.16)

The electricity interaction implementation has as goals to ensure (i) that if no microgrid

is installed (Z = 0), there is no electricity exchange (PECIRCtechDG,i,s,h = PErecMG,i,s,h = 0),

and (ii) that the exchange in each hour can only be uni-directional. Both requirements

are ensured through Equation 4.13. Note that if there is no electricity exchange between

a pair of houses in a certain hour in a season, there could still be a connection enabled

(MGCi,j,s,h = 1), since these connections are ‘free’ once the microgrid is installed. This

behaviour is acceptable since the value of binary variable MGCi,j,s,h is not used for

energy system design purposes in the scope of the thesis.

Microgrid balances should be respected in each hour for each house and for the neigh-

bourhood as a whole. Additionally, total DG electricity for microgrid sharing is bound

by an upper level UMG and by infrastructure existence (Z). Electricity transfer losses are

evaluated by multiplying the transferred electricity with a constant distance dependent

loss percentage (ε) and the distance between the house pair li,j [m] (see Table 4.1).

PELOSSi,j,s,h =
ε

1000
· li,j · PEsndi,j,s,h ∀i, j, s, h and i 6= j (4.17)

4.4 Case-study: a small Adelaide based neighbourhood

The researched neighbourhood and case-study scenarios are detailed below (and in Ap-

pendix E) through specific inputs regarding environment, technologies and costs.
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4.4.1 Neighbourhood characteristics

A fictive small residential South Australian neighbourhood is researched, consisting of

five average, typical Adelaide houses in one geographically clustered area. The lay-

out of the neighbourhood is given in Figure 4.8 and Appendix E. Adelaide houses are

considered with an average floor area of about 200 m2 [254] and the current minimum

6-star new building energy efficiency requirements [255, 256]. Australia is based in the

Southern hemisphere. The applicable seasonal months and the number of days in each

selected season for a non-leap year are detailed in Table 4.2. Three seasonal days of

hourly average demands are implemented to illustrate model capability. The model,

however, allows for more refined or coarser seasonal and daily intervals.
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Figure 4.8: Layout of a fictive neighbourhood consisting of 5 residential houses with
the distance [m] between each pair of houses, adapted from [95].

Table 4.2: Details of the selected months and days in each season for Adelaide, South
Australia, based in the Southern hemisphere for a non-leap year.

Season Months Number of days

Summer January-February-November-December 120
Winter May-June-July-August 123
Mid-season March-April-September-October 122

Each house has daily profiles of hourly average demands of which the derivation is

detailed in Appendix E. Electricity demands for an average day in each season are pre-

sented in Figure 4.9a for one neighbourhood house (h3) and are obtained from aggregated

measurement data received from the South Australian distribution system operator, SA

Power Networks (SAPN) [257]. Heating and cooling demands are derived using the

Degree Day method [258, 259] (see Appendix E) and compared with the received ag-

gregated demand data from SAPN, see Figure 4.9b. Note that in winter and summer

no space cooling and heating is assumed, respectively. The energy demands of each
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Figure 4.9: Daily profiles of hourly average electricity (left) and thermal (right)
demands [kW] of a representative house (h3) in the neighbourhood [kW]. Note that
the electricity demands do not include electricity used for space cooling purposes, but

only electricity for appliances. C=space cooling, H=space heating.

house are summarised in Appendix E, Table E.10 to E.13. Neighbourhood houses are

assumed to have varying demands with a similar profile to mimic demand variations of

consumers with similar behaviour. Houses are thus considered to have in percentage

varying demands (plus and minus 10 and 20 %) compared to a representative house

(h3), with h5 the highest and h1 the lowest (see Appendix E).

Adelaide has a high level of daily solar irradiation, 4 - 5 kWh day−1 m−2 [260]. The

hourly profiles of solar irradiation on a tilted surface are given in Figure 4.10a for a typical

day in each season. The 2010 solar irradiation data are retrieved from [260, 261], which

are used to derive the global solar irradiance on a tilted surface [262] (see Appendix E).

The wind data are obtained from [260] and are transformed to an appropriate hub height

using the power law wind speed conversion [263], see Figure 4.10b and Appendix E.

South Australia has State-based regulation, energy tariffs and central energy service

characteristics. The model allows for hourly varying electricity and gas tariffs. In this

case-study, however, average flat residential tariffs are employed as 0.344 AUD kWh−1

(electricity) and 0.128 AUD kWh−1 (natural gas) [264, 265]. Australian feed-in tariffs

vary for each State. In South Australia there is only a tariff for residential PV electricity

export. The new tariff, since the second half of 2014, is a minimum retailer payment

of 0.06 AUD kWh−1 [266]. Additionally, Australia had a carbon tax in place of 24

AUD tonCO−12 in the financial year 2013 to 2014 with the plan of joining the European

trading scheme in 2014. This tax has, however, been abolished as of the 1st of July



Chapter 4. Cost-optimal design of residential distributed energy systems 100

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21

T
il

te
d

 g
lo

b
a

l 
s

o
la

r 
ir

ra
d

ia
ti

o
n

 [
k

W
 m

-2
] 

Hour in the day 

Summer

Winter

Mid-season

(a) Hourly profiles of average solar irradiation
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Figure 4.10: Daily profiles of hourly average tilted global solar irradiation [kW m−2]
(left) and wind speed [m s−1] (right) for a typical day in each season in Adelaide, South

Australia. Horizontal line=cut-in wind speed.

2014 [267]. No carbon tax is thus currently in place. The carbon characteristics of

central electricity and natural gas services are a carbon intensity of 0.650 kgCO2 kWh−1

and 0.216 kgCO2 kWh−1, respectively [268].

4.4.2 Technology and interaction characteristics

Thermal technology bounds and efficiencies are presented in Table 4.3.

Table 4.3: Characteristics of the thermal technologies: efficiency (nthtech or COP ),
upper (Utech) and lower (Ltech) capacity limit. AC=absorption chiller, airco=air-

conditioning unit, B=boiler, CST=cold storage, G=gas heater, HST=hot storage.

AC airco B CST/HST G
[60, 269] [270] [93, 96, 271, 272] [77, 229] [96, 271]

nthtech - - 85% - 75%
COP 0.7 3 - - -
Utech [kW] 35 30 35 50 35
Ltech [kW] 1.5 1.5 5 0.150 5

Small-scale wind turbines are characterised by a rated capacity (1.5 kW) as well as

a cut-in (3 m s−1), a cut-out (25 m s−1) and a rated wind speed (11 m s−1) (see Ap-

pendix E) [209, 273]. PV units are characterised by a rated capacity of 0.15 kWpeak m−2

and an electrical efficiency of 12 % [96, 274]. South Australian regulation, furthermore,

places an upper bound on installed capacity and daily export of residential PV units. In

Adelaide these are bound to 10 kW and 45 kWh day−1, respectively [275]. This upper

PV capacity level translates to a 67 m2 surface area [275]. Each house can have a single

CHP unit in the range ∈ [1; 20] kWelec with an electrical efficiency of 25 % and a heat to

electricity ratio of 2.6 kWtherm kW−1elec. Batteries are characterised by a depth of charge
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of 70 % and an installed capacity ∈ [1; 100] kWh [273, 276]. A charge controller com-

plements each installed battery. The system losses as well as the charge and discharge

battery characteristics are presented in Table 4.4.

Table 4.4: Loss terms in the system [229, 273, 276, 277].

Term β δχ ε ζ η χ
pipeline ther-
mal transfer
loss

battery
discharge
rate

microgrid
electrical
transfer loss

thermal stor-
age static
loss

battery stor-
age static
loss

battery
charge rate

Loss 0.1 25 0.03 10 0.1 25
Unit [% m−1] [%] [% km−1] [%] [%] [%]

4.4.3 Cost data

Investment costs of technologies are annualised using a capital recovery factor, expressed

through: CRF = (r · (1 + r)n)/((1 + r)n− 1) [95], with n the component life time, set to

20 years for all technologies. Batteries are set to have a life time of 5 years [96, 209, 229].

The interest rate, r, is set to 7.5 % [96, 229]. The costs of the different units are given in

Table 4.5. PV units, 15 [AUD kW−1peak y−1], wind turbines, 72 [AUD kW−1peak y−1], and

batteries, 2.5 [AUD kWh−1peak y−1], are the only technologies considered to have a fixed

OM cost due to yearly maintenance requirements, e.g. panel cleaning [95, 251].

Table 4.5: Technology (Tech) investment (CC
tech [AUD kW−1

installed]) [60, 77, 93, 95,
96, 209, 229, 270, 278, 279] and variable OM (Comv

tech [AUD kWh−1]) [95, 96, 209] costs,
unless otherwise stated. AC=absorption chiller, airco=air-conditioning, B=boiler,
Cont=battery controller, CST=cold storage, dump=dump load, EST=battery, G=gas

heater, HST=hot storage, WT=wind turbine, MGCC=microgrid controller.

Tech AC airco B CHP Cont CST dump

CCtech 540 300 150 3100 350 60 150
Comvtech 0.015 0.01 0.01 0.015 − 0.0015 −
Tech EST G HST WT MGCC Pipes PV

CCtech 300 100 30 3500 1860 60 2000
[AUD kWh−1] [AUD unit−1] [AUD m−1]

Comvtech 0.01 0.01 0.0015 0.01 − − 0.01

4.4.4 Technology combination constraints

Several assumptions have been made based on business practices and differences in

working fluid, where alternatives exist, to determine mutually exclusive combinations

of installed technologies and interactions for each house. These combinations introduce

flexible inequality constraints that can be enabled or disabled to assess and implement
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various design choices. Table 4.6 presents the constraints that are adopted in this case-

study. Since CHP units are assumed to operate in heat-following mode, they are di-

mensioned to meet the full heat demand of their accommodating house, plus potential

storage and pipeline transfer requirements. Hence a house with a CHP unit is assumed

to either send or pass through heat to or from the pipeline network, not receive. Simi-

larly, a house can either have a CHP unit or a gas heater or a boiler to meet its heating

demands. Furthermore, when a house has a gas heater installed it cannot be connected

to a hot pipeline network or have a hot storage tank. Similarly, cooling technologies are

dimensioned to meet the full cooling load of the accommodating house plus potential

other services. A house can thus either have an absorption chiller with potential cold

storage and pipe sending capacity, or, an electrically driven air-conditioning unit with-

out storage or pipeline connection. A case-study that investigates the relaxation of the

boiler-CHP constraint is presented in Section 4.5.2.4.

Table 4.6: Assumptions of mutual exclusive technology combinations.

Technology Binary OR Technology Binary Constraint ∀i, s, h
CHP BCHP,i OR boiler/gas heater BtechH,i BCHP,i +BtechH,i ≤ 1

OR pipeline receive Y Hrec
i,s,h BCHP,i + Y Hrec

i,s,h ≤ 1

Boiler BB,i OR pipeline send Y Hsnd
i,s,h BB,i + Y Hsnd

i,s,h ≤ 1
Gas heater BG,i OR boiler BB,i BG,i +BB,i ≤ 1

OR hot storage BHST,i BG,i +BHST,i ≤ 1

OR pipeline connection Y H
rec/snd
i,s,h BG,i + Y H

rec/snd
i,s,h ≤ 1

Absorption chiller BAC,i OR air-conditioning Bairco,i BAC,i +Bairco,i ≤ 1
OR pipe receive Y Creci,s,h BAC,i + Y Creci,s,h ≤ 1

Air-conditioning Bairco,i OR pipeline connection Y C
rec/snd
i,s,h Bairco,i + Y C

rec/snd
i,s,h ≤ 1

OR cold storage BCST,i Bairco,i +BCST,i ≤ 1

4.4.5 Analysis and selected energy system scenarios

The model is solved to global optimality (this is expanded upon in Section 4.6) for

selected system scenarios to illustrate the flexibility and capability of the model to

assess different implementation aspects and operational combinations, and to assess

results that can be obtained for a researched case-study location:

I Conventional : each house receives electricity from the grid, heat from a gas heater

and cooling through an air-conditioning unit.

II Optimal design on-grid : no restrictions on presented model.

III Optimal design off-grid : grid import and export interactions are prohibited.
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IV Optimal design on-grid without conventional thermal technologies: gas heaters and

air-conditioning units cannot be installed in the neighbourhood.

V Optimal design off-grid without conventional thermal technologies: idem to Sce-

nario IV but with additional prohibition of grid import and export interactions.

On- and off-grid configuration comparison allows to assess redundancy requirements to

enable islanding operation. The energy system scenarios are implemented through fixing

binary variables and restricting interactions. Conventional operation is included as ref-

erence. Since a deterministic modelling approach is employed, uncertainty of input data

can affect the results obtained. Various analyses can be conducted using the developed

framework, such as assessing the impact on design from energy interaction restrictions

and technology parameter choices. Selected analyses are therefore performed to assess

the robustness of the model and show its capability, with respect to:

• upscaling of the neighbourhood,

• sensitivity analysis performed on key uncertain input data, i.e. energy tariffs,

• variability analysis of available renewable energy resources, i.e. solar irradiation,

• and implementation aspects analyses with respect to electricity interaction restric-

tions, efficiency characteristics of CHP units and the impact of flexible technology

combinations on design.

4.5 Results and analysis

Section 4.5.1 illustrates selected scenario results. Section 4.5.2 subsequently analyses

model robustness. Table 4.7 presents the model statistics of Scenario II (base model).

Table 4.7: Model statistics of Scenario II.

CPU time 64 s

Blocks of equations 116 Single equations 31 421
Blocks of variables 81 Single variables 23 553
Non zero elements 110 626 Discrete variables 3686

4.5.1 Energy system design scenarios

Figure 4.11 presents the cost breakdown of the neighbourhood for each scenario. A
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summary of other results is given in Table 4.8. Total cost and emissions are the highest

for the conventional Scenario (I) due to (i) the yearly electricity import requirement

with high carbon intensity at high electricity tariffs in the South Australian market, and

(ii) the unavailability of DG units to generate income through export to offset costs.

Total cost is in all scenarios dominated by natural gas fuel costs for heat generation.

Natural gas use also majority contributes to emissions. Houses with the largest cost

and emission contributions are the houses with more installed dispatchable DG units,

such as CHPs and absorption chillers. Introducing absorption chillers (Scenarios IV

and V) as only cooling technology leads to fuel cost (and hence emission) increase due

to CHP deployment around the year for seasonal tri-generation instead of only during

times with heating demands. Additionally, the installation of absorption chillers reduces

dependency on the central grid (Scenario IV) due to yearly CHP operation. Energy

integration decreases yearly cost (Scenarios II to V). Furthermore, off-grid configurations

are more expensive but lead to less emissions with respect to their equivalent on-grid

configuration. This is due to non-existent grid electricity import of the former.
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Figure 4.11: Neighbourhood annual cost distribution [AUD y−1] for Scenarios I to
V. EXPORT=electricity export, FUEL=fuel cost, IMPORT=grid electricity import,

INV=investment cost, OM=operation and maintenance cost.

Table 4.8: Summary of results of selected energy system design scenarios: yearly CO2

emissions [tonCO2 y−1], yearly import (PErec
GRID), export (PESAL

GRID), microgrid (MG)
electricity (PErec

MG,i,s,h) [kWh y−1] and the installation of a MG.

Scenario I II III IV V

CO2 42.77 30.19 28.01 35.58 35.30

PErecGRID 26644 9496 − 2119 −
PESALGRID − 5953 − 6566 −
PErecMG,i,s,h − 5183 14128 10182 18793

MG no yes yes yes yes
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Neighbourhood designs are optimised in terms of unit selection, sizing (Figure 4.12) and

siting (Figure 4.13) and can be represented in various ways. Table 4.9 summarises the

total installed capacity of each unit type in each neighbourhood scenario. Apart from

Scenario I, microgrid operation is adopted in all scenarios. No batteries are installed

across scenarios due to the combination of (i) their relatively high investment cost,

and (ii) the installation of dispatchable and balancing electricity interactions through

CHP units and microgrid operation, respectively. Electrical dump loads are installed

in selected houses in the off-grid scenarios (III and V) since no balancing bi-directional
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Figure 4.12: Installed capacity of units [kW] in the different houses (h1 - h5) in
the neighbourhood for Scenarios I to V; on-grid scenarios (left) and off-grid scenarios
(right). AC=absorption chiller, airco=air-conditioning unit, B=boiler, CHP=combined
heat and power unit, CST=cold storage, Dmp=dump load, G=gas heater, HST=hot

storage, PV=photovoltaic unit, WT=wind turbine.
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Figure 4.13: [colour] Neighbourhood layout for each scenario. Note that no batteries
are installed. sun=PV unit, black dot=WT, H=hot storage, C=cold storage, D=dump
load, dark grey diamond (blue)=CHP and air-conditioning, white diamond=boiler and
air-conditioning, grey (blue) hatched diamond=CHP and absorption chiller, light grey
diamond (orange)=boiler without cooling generation unit, black arrow=annual pipeline

heat transfer, black dashed arrow=annual pipeline cooling transfer.
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Table 4.9: Total installed unit capacity in neighbourhood per scenario [kW].
AC=absorption chiller, airco=air-conditioning, B=boiler, CHP=combined heat and
power, CST=cold storage, dump=dumpload, G=gas heater, HST=hot storage,

PV=photovoltaic, WT=wind turbine.

tech G B airco PV WT CHP AC HST CST dump
Scenario

I 33.9 − 11.2 − − − − − − −
II − 26.0 11.2 10.5 − 2.1 − 5.4 − −
III − 24.3 8.7 3.7 7.5 4.3 2.1 19.5 6.1 2.2
IV − 19.6 − 2.0 − 4.8 8.7 7.3 13.7 −
V − 20.5 − 2.0 − 4.8 8.7 32.7 15.1 3.3

grid connection is available. Additionally, absorption chillers are feasible in the off-grid

scenarios since they reduce electricity demand requirements for cooling compared to

air-conditioning units. Energy integration is adopted in Scenarios II to V in terms of

electricity and limited heating and cooling. Note that the same capacity of CHP and

absorption chiller is installed in Scenarios IV and V, but different storage units. The

latter is due to different pipeline and siting configurations (see Figure 4.13).

Neighbourhood energy interactions and unit dispatch schedules are also indirectly op-

timised under the given demand profiles and can hence be analysed on various levels.

Figure 4.14, for example, illustrates the share of seasonal electricity generated by dif-

ferent neighbourhood DG units for either self-use by accommodating houses, export,

sharing through microgrid or pipelines, or, storage. Electricity generated by CHP units

is the predominant source of electricity for microgrid sharing. PV electricity, in contrast,

is predominantly used for export due to the potential to generate an income through a
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Figure 4.14: Yearly DG electricity interactions in the neighbourhood per season
(s) [kWh s−1] for Scenarios I to V for the total neighbourhood distribution of DG
electricity. CHP=CHP, CIRC=energy transferred to other houses, PV=photovoltaic,
SAL=exported electricity, SELF=energy for self use by accommodating houses,

STO=energy stored, WT=wind turbine.
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feed-in tariff in the market. Resulting energy balances, furthermore, can be analysed on

several scales, for example, a detailed scale with balances for each house for a typical day

in each season, or, a coarse scale with the yearly energy balance of the neighbourhood

as a whole. An intermediate detail level is presented in Figure 4.15 for Scenario IV for

a typical day in each season for the neighbourhood as a whole. This is an example of

dispatch and operational variable values that can be obtained through the model. En-

ergy integration, cooling sharing and seasonal tri-generation are important features in
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Figure 4.15: Yearly neighbourhood energy (electricity, space heating, space cooling)
balances to meet demand [kWh h−1] for a typical day in each season for Scenario IV.
Example of dispatch and operational variable values. AC=absorption chiller, B=boiler,
CHP=combined heat and power, CST=cold storage, grid=grid import, HST=hot stor-
age, mg=microgrid operation, pipe=pipe transfer, PV=photovoltaic, self=self use by

accommodating house.
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the optimal design. Furthermore, energy integration mainly occurs through the use of

CHP units (and absorption chillers). Hence, if heating or cooling demands in the neigh-

bourhood are not met by CHP waste heat, no electricity is generated by CHP units and

no electricity sharing is adopted.

4.5.2 Impact of decisions: model robustness

Robustness of results with respect to model inputs is illustrated below through upscaling,

sensitivity and variability analysis, and examples of implementation decisions.

4.5.2.1 Neighbourhood upscaling

The base model (Scenario II) is scaled up to fictive neighbourhoods with 10 and 20 houses

to assess the applicability of the model on general neighbourhoods. Appendix E details

the household energy demands of the respective upscaled neighbourhoods. The model

statistics are given in Table 4.10 and the optimised neighbourhood designs are illustrated

in Figure 4.16. Note that a relaxed optcr of 1% is used. Both cases have PV units (1.7

- 2.5 kW) and air-conditioning units (1.8 - 2.7 kW) in each house, CHP unit(s) (2.4 -

3.3 kW) and an operational microgrid. A similar trend can be seen as in the optimal

design of the five-house neighbourhood; heat integration does not comprise all houses,

all houses have air-conditioning units as well as PV units, and cooling integration, wind

turbines and batteries are not adopted.

Table 4.10: Model statistics of upscaled neighbourhoods.

Number of houses 5 10 20 5 10 20

CPU time [s] 64 453 5069 optcr 0 % 1 % 1 %

Blocks of equations 116 116 116 Single equations 31 421 84 656 256 376
Blocks of variables 81 81 81 Single variables 23 553 65 198 202 788
Non zero elements 110 626 301 801 923 251 Discrete variables 3686 11 071 36 941

4.5.2.2 Sensitivity analysis

Uncertainty of deterministic input data can affect results. Hence sensitivity analysis is

performed to gain insight in the influence of key parameters on design and operation.

Among the numerous input parameters of the model, future energy prices show a high

level of uncertainty. Both retail electricity and gas tariffs are consequently analysed



Chapter 4. Cost-optimal design of residential distributed energy systems 109

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

D
is

ta
n

c
e

 [
m

] 

Distance [m] 

1 

2 

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

D
is

ta
n

ce
 [

m
] 

Distance [m] 

1 

2 

7 

1

0 

5 

6 

4 
9 

3 

8 

8 

7 
5 

10 

3 

4 

6 

9 

H 

H 
H 

H 

H 

H 

H 

H 

(a) 10-house neighbourhood
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Figure 4.16: [colour] Layout of upscaled neighbourhoods with 10 (left) and 20 (right)
houses for the base model of Scenario II. All houses have air-conditioning and PV
units installed. Diamonds=houses, grey (blue) diamond=CHP and airco, white dia-

mond=boiler (B) and airco, arrows=heating pipeline connection.

for incremental increases of 20% until a doubling of current tariffs, see Figure 4.17,

for Scenario II. Figure 4.18 illustrates the equivalent cost of energy generation for each

technology, i.e. its annual technology cost (investment, OM and fuel) divided by its

total yearly generated energy, for percentage increases of energy tariffs for Scenario II.

Adoption of technologies is strongly related to their equivalent cost of energy generation

under the governing energy tariffs. An increasing gas tariff leads to the same design as in

Scenario II until an increase above 40 % from which a constant neighbourhood design is

obtained without CHP unit, pipelines or microgrid operation. The 40 % increase reflects

the point where generating heating through CHP units becomes too expensive compared

to boilers, see Figure 4.18b. Since the gas tariff is relative low in the Adelaide market

compared to electricity, design shifts to more installed boilers with increasing gas tariffs

as boilers have an overall higher heat generation efficiency than CHP units (see also

Section 5.6.1). Total annualised costs are dominated by fuel costs. Hence an increasing
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Figure 4.17: Total annualised cost [AUD y−1] versus percentage increase of retail
energy tariffs of electricity and gas.
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Figure 4.18: Technology costs of yearly generated energy in the neighbourhood [AUD
kWh−1]: electricity (left) and heat (right). Note that when the technology is not
installed, its cost is zero. The costs of electricity generated by renewable energy units
is independent of retail energy tariffs since their fuel (i.e. renewable energy resource)
is free. B=boiler, CHP=combined heat and power, CE=cost of electricity, CH=cost of
heating, gas=gas tariff, grid=electricity tariff, PV=photovoltaic, WT=wind turbine.

gas tariff leads to a stronger increase of total cost than an increasing electricity tariff.

Increasing gas tariffs thus result in decreased local energy sharing and DER installation

but more individual house conventional thermal units combined with a grid connection.

An increasing electricity tariff, in contrast, leads to more significant design changes. One

CHP unit is installed in all cases in house 2, together with a pipeline to house 4 and

microgrid operation. Since the cost of generating electricity with DG units becomes more

affordable with increasing electricity tariff due to their ‘free fuel’ in the form of renewables

or electricity generated by the heat-following CHP (Figure 4.18a), the following design

changes occur: (i) CHP unit capacity increases gradually from 2.1 to 3 kW; (ii) total

neighbourhood PV capacity increases gradually from 6.3 to 11 kW until an increase

above 40 %, from which it gradually decreases to 6.4 kW due to the appearance of wind

turbines combined with a relatively fixed level of CHP electricity generation coupled

with its heat-following mode; (iii) from an increase above 20 %, wind turbines become

cost effective; and (iv) an absorption chiller and accompanying cold storage unit are

additionally installed in house 2 from a tariff increase above 40 % due to the ‘free waste

heat’ fuel from CHP electricity generation. CHP electricity generation will namely be

preferred to balance renewable generation due to the cheap gas tariff as compared with

grid electricity tariffs. Increasing electricity tariffs hence lead to increased self-sufficiency

of the neighbourhood through more DG units.



Chapter 4. Cost-optimal design of residential distributed energy systems 111

4.5.2.3 Variability analysis

Deterministic models employ average input data. Especially the unpredictability of

renewable energy sources is not accounted for through this approach. A measure of

solar irradiation variability is presented here through the use of real time PV output

data from Adelaide. The collected data for 2010 are combined into daily PV output

levels [kWh per m2 per day] [260]. Figure 4.19 indicates the number of days throughout

the year (dl,s) that each daily PV output level (l) occurs in each season (s). An average

hourly daily profile is then obtained per output level per season by averaging the daily

output profiles of the days that fall within each output level for each season, Itl,s,h

(see Appendix E). The output for each PV panel for an average day (24 hours) in each

season is then determined through a weighted average based on days of occurrence in

each season of the PV output levels per installed square meter, with PETOTPV,i,s,h the total

electricity generated by a PV unit in house i, hour h of season s, ds the days in each

season, APVi the PV surface area and nelecPV the PV electrical efficiency:

PETOTPV,i,s,h =
∑
l

dl,s · Itl,s,h
ds

·APVi · nelecPV ∀i, s, h (4.18)
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Figure 4.19: Occurrence rate of different daily PV output levels in each season [kWh
m−2 day−1].

Optimal design reduces costs by 2.3% compared to the previous approach (Scenario II).

Design and operational characteristics are presented in Figure 4.20 for the model with

and without variability for Scenario II. Overall design is not significantly affected by
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the introduction of variability. The same heating pipeline as well as microgrid opera-

tion maintain installed. Without variability, however, the model leads to slight over-

dimensioning of PV units of which the output is mainly exported to the central grid.

The yearly PV electricity generation decreases by 16.5 % with variability and focusses

more on self supply. The incorporation of variability thus limitedly affects the objective

and design but does influence the interaction with the central grid.
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Figure 4.20: Characteristics of neighbourhood with and without solar variability.
h=house, var=with variability, II=Scenario II, distributed generation (PV, CHP) elec-
tricity, total (TOT), for self use by its house (SELF), for export (SAL), for MG circu-
lation (CIRC), yearly neighbourhood electricity import (Imp), export (Exp), microgrid

(MG) sending (MGsnd), MG receiving (MGrec).

4.5.2.4 Implementation aspects

The model can also be used to analyse various implementation aspects. This Section

presents examples of the impact of electricity interaction restrictions, technology param-

eter selection and technology combination constraints on the results of Scenario II.
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Electricity export restrictions An important aspect to assess DES economic via-

bility for a certain case-study is its ability to export electricity to the central grid. This

interaction allows local excess generation to be exported in order to avoid safety issues

due to local generation being higher than local demand. Furthermore, export allows

houses to create an income through feed-in tariffs in the market. Energy interaction al-

lowances of DES are therefore determining economic and safety factors for local system

design. Residential electricity export, however, requires distribution system upgrades to

allow for bi-directional power flows. Distribution system operators are thus inclined to

bound and decrease export allowances of each house, either through an energy equivalent

of a percentage (pSAL) of the installed DG capacity (DGMAX
techDG,i) that can be exported

at each time, or, a daily export bound (Udaysnd ):

∑
techDG

PESALtechDG,i,s,h ≤ pSAL ·
∑

techDG

DGMAX
techDG,i ∀i, s, h (4.19)

∑
techDG,h

hr · PESALtechDG,i,s,h ≤ U
day
snd ∀i, s (4.20)

The impact of export allowances on optimal design of Scenario II is researched through

a percentage decrease of the upper limit of total DG electricity export, pSAL. The daily

export limit in South Australia is included as reference point (45 kWh day−1). Fig-

ure 4.21 presents the results of total DG electricity (PV, CHP, wind turbines) export

restrictions. Neighbourhood design remains fairly constant with increasing export al-

lowance in that it has PV units and heat storage tanks in each house, one CHP unit

of 2.1 kW in house 2, one pipeline connection from the house with CHP unit to house

4, as well as microgrid operation. No batteries, absorption chillers or wind turbines are

installed. Neighbourhood PV capacity gradually increases from 6.3 kW at zero export

allowance to 10.5 kW from an export allowance above 40 %. The CHP unit and corre-

sponding uni-directional pipeline remain the same as in Scenario II for all export levels.

Additionally, from an export allowance above 40 %, dump loads are no longer required.

Neighbourhood design and interaction behaviour becomes constant from a total DG

export allowance above 50 % of the total installed DG capacity in the neighbourhood.

This analysis allows to assess the best export level to make DG units viable.
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Figure 4.21: Share of total yearly PV and CHP electricity generation for either self
use by the accommodating houses, for grid export and for MG circulation [kWh y−1]
(see left vertical axis and bar charts) as well as the yearly electricity export and im-
port of the neighbourhood as a whole [kWh y−1] (see right vertical axis and points)
in terms of percentage export allowance as function of total installed DG capacity.
CHP=combined heat and power, CIRC=microgrid circulation, day=daily export al-
lowance, PV=photovoltaic, SAL=export, SELF=self use. No wind turbines are in-

stalled.

Impact of technology parameters To allow for efficient optimisation of complex

non-linear models, simplifying constant technology assumptions are often adopted to

obtain linear and MILP problems. Uncertainty in the selection of these parameters

might, however, affect the obtained design. Since CHP units are able to exploit waste

heat from the electricity generation process for heating and cooling purposes, they are

often analysed and put forward in DES design environments as key components [280].

Hence analysing design robustness with respect to input CHP efficiency parameters, for

example, is an important factor to determine DES economic and operational viability.

Total constant CHP efficiency (ηtotCHP ) in Scenario II is hereto varied together with a

varying constant electrical (ηelCHP ) and thermal (ηthCHP ) efficiency. The reference case is:

ηtotCHP = 90 % with ηelCHP = 25 % and HER = 2.6 (Scenario II). Total efficiencies of

99, 95, 90, 85 and 80 % are analysed in combination with an ηelCHP of 25, 35 and 45 %.

Note the relations: ηtotCHP = ηelCHP + ηthCHP and HER = ηthCHP · (ηelCHP )−1.

CHP efficiency determines CHP and absorption chiller installation (Figure 4.22), and

CHP operational behaviour (Figure 4.23). An installed CHP facilitates DES economic

viability. A microgrid (CIRC) is viable together with an installed CHP. For high electri-

cal efficiency (> 25 %), the relative CHP efficiency values become a determining factor
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for microgrid viability; a high ηthCHP (> 55%) is required to ensure enough electricity

and heating is generated to facilitate sharing. Additionally, absorption chillers become

economic viable for ηtotCHP > 90% with ηelCHP > 25%. This is because from this point

onward, more waste heat is generated than locally used for space heating. This ‘free’ fuel

leads to absorption chillers becoming economically viable for cooling compared to air-

conditioning units that are fuelled by expensive grid electricity. Heat transfer pipelines

appear for ηtotCHP > 80% combined with an ηelCHP < 45% and a ηthCHP > 55%.
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Figure 4.22: Total installed CHP and absorption chiller (AC) capacity in the neigh-
bourhood [kW] for varying CHP efficiencies. 80 % to 99 % = total efficiency, 25 % to

45 % = electrical efficiency.
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Figure 4.23: Yearly energy distribution of neighbourhood CHPs [kWh y−1].
CIRC=CHP electricity for MG sharing, COOL=CHP heat for cooling, LOAD=CHP
heat to feed load, PIPE=CHP heat to pipes, SAL=CHP electricity for export,

SELF=CHP electricity for self use by its house(s), STO=CHP heat for storage.

Impact of flexible technology combination constraints Several technology com-

bination constraints were adopted in this case-study (see Section 4.4.4). The model

thus allows for flexible inclusion or removal of technology combination constraints to
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explore various design preferences or business practices. To demonstrate the flexibility

of the model, the results of the base model (Scenario II) are compared with and with-

out the mutually exclusive ‘boiler or CHP unit’ constraint. The model with relaxed

constraint (IIrel) solves in about half the time as the model with constraint (II). The

neighbourhood designs and total unit capacities in the neighbourhood are given in Fig-

ure 4.24 and Table 4.11, respectively. Although the same technologies are installed in

the neighbourhood and the total unit capacities in the neighbourhood are comparable,

it is the number of units and their location in the neighbourhood that change. Rather

than a single CHP unit of 2.1 kW in house 2 that provides heating to house 4 through

a single pipeline, the relaxed model (IIrel) now results in a design whereby each house

has an installed boiler combined with two smaller CHP units (1 kW) in houses 4 and 5.

Pipelines are not adopted in the design without constraint.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

D
is

ta
n

c
e

 [
m

] 

Distance [m] 

1 

2 

3 

4 

5 

3124 kWh y-1 

H 

H 

H 

H 

H 

(a) Scenario II

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

D
is

ta
n

c
e
 [

m
] 

Distance [m] 

1 

2 

3 

4 

5 
H 

H 

H 

H 

H 

(b) Scenario IIrel

Figure 4.24: [colour] Neighbourhood layout for Scenario II with and without (IIrel)
B-CHP restriction constraint. Note that no batteries, WTs, ACs, G and CST are
installed. sun=PV unit, H=hot storage, dark grey diamond (blue)=CHP and airco,
dark-light grey hatched diamond (blue)=CHP, B and airco, white diamond=boiler and

airco, black arrow=annual pipeline heat transfer.

Table 4.11: Total installed unit capacity in neighbourhood for Scenario II with and
without (IIrel) B-CHP restriction constraint [kW]. airco=air-conditioning, B=boiler,

CHP=combined heat and power, HST=hot storage, PV=photovoltaic.

Scenario B airco PV CHP HST

II 26.0 11.2 10.5 2.1 5.4
IIrel 27.5 11.2 10.5 2.0 6.5

Table 4.12 summarises cost, design and operational results of both cases. The seasonal

electricity distribution of the neighbourhood DG units is presented in Figure 4.25. With

the exception of pipelines, the energy interaction behaviour and results of the two cases

largely follow trends of the same order of magnitude. PV electricity is, however, more
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Table 4.12: Summary of results of Scenario II with and without (IIrel) B-CHP re-
striction constraint: annual cost CTOT [AUD y−1], yearly CO2 emissions [tonCO2 y−1],
yearly import (PErec

GRID), export (PESAL
GRID), microgrid (MG) electricity (PErec

MG,i,s,h)

[kWh y−1] and the installation of a MG and pipelines.

Scenario CTOT CO2 PErecGRID PESALGRID PErecMG,i,s,h MG Pipe

II 22264 30.19 9496 5953 5183 yes (h2 to h4)
IIrel 22027 29.88 9451 4648 3297 yes no
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Figure 4.25: Yearly DG electricity interactions in the neighbourhood per season (s)
[kWh s−1] for Scenario II, with and without B-CHP constraint for the total neighbour-
hood distribution of DG electricity. CHP=CHP, CIRC=energy transferred to other
houses, PV=photovoltaic, SAL=exported electricity, SELF=energy for self use by ac-

commodating houses, STO=energy stored.

used for microgrid circulation, whereas total CHP electricity generation is reduced by

about 40 % compared to Scenario II. CHP electricity is still the driving source for

microgrid operation. In this case-study, total neighbourhood design and behaviour is

thus not much affected by relaxing the ‘boiler or CHP unit’ constraint. Significant design

and operational changes, however, occur when looking at house and technology level.

Analysing various technology combinations, allows to identify different energy system

designs that are worth exploring by the neighbourhood.

4.6 Discussion and generalisation of approach

Several decisions, where alternatives exist, have been made throughout the model defi-

nition, implementation, case-study, scenarios, optimisation process and presentation of

results. The presented aspects in this Chapter have been employed to highlight the

capability of the developed framework. The model is, however, general and flexible to

be adapted to different requirements. Table 4.13 summarises examples of adaptations



Chapter 4. Cost-optimal design of residential distributed energy systems 118

Table 4.13: Adaptability and flexibility of the developed framework.

Stage Adaptations & flexibility

Implementation - more and different considered types and numbers of technologies (plug-and-play)
- different considered technology capacities (discrete/continuous)
- different technology combination restrictions (see Table 4.6)
- different technology implementation (e.g. battery also charged by external feeds)
- non-linear technology behaviour

Case-study - different neighbourhood locations, layouts and number of houses
- different sets of demands, not always electricity and space heating and cooling
- additional typical days for more seasons and months
- hourly changing parameters, such as tariffs
- different time horizon and time steps (few hours, half hourly, ...)
- specific peak event demand analysis

Optimisation - optcr
- different applicable feasible solutions
- analysis of different energy system scenarios through pre-setting different binaries

Results - role of technologies in case-study location
- impact of technology and interaction bounds on results
- impact of regulation on results (CT, FIT, rebates, restrictions)
- minimum technology requirements to become feasible (cost/efficiency)
- different levels of detail in result presentation

that can be made at different modelling stages to illustrate the model applicability and

flexibility to be tailored to different sets of requirements.

Different technologies, such as solar thermal, could be readily considered within each

pool (e.g. renewable, DG, storage) and be implemented in a plug-and-play approach

similar to other technologies in the same pool. Different capacity implementations can

also be considered, either discrete possible capacities that are available in the market,

or, a continuous range. Continuous capacity intervals were adopted in the base model to

allow for decision-making with unrestricted optimal levels.2 Additionally, different or no

mutually exclusive technology combinations can be adopted to increase system degrees

of freedom. A boiler can, for example, be seen as complementary to CHP units rather

than mutually exclusive through removing the applicable constraint (see Table 4.6 and

Section 4.5.2.4). Furthermore, the current pipeline implementation does not restrict the

configuration whereby a single sink house can receive thermal energy from two source

houses. In practice this is however not an ideal design since bringing two flows of water

together requires complex (temperature, pressure, flow) controlling infrastructure.

Implementation decisions, where alternatives are available, can thus restrict system be-

haviour. Implementation assumptions and decisions are, nevertheless, always an approx-

imation of reality. The adopted decisions and assumptions in this Chapter were in the

2An example of discrete capacity implementation of CHP units is given in Appendix F.
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first instance used to demonstrate the model capability. Other implementations might,

however, increase system flexibility in terms of technologies and interactions. Electrical

storage, for example, could be implemented to allow charging from and discharging to

the central grid and other DES participants. Allowing these interactions could increase

DES economic viability and model applicability.

Inherent non-linear technology behaviour, such as introduced in Section 3.2.1, could be

integrated either within the developed MILP approach through piecewise linearisation

of non-linear technology characteristic trends (see Section 6.4.1.3) or as a non-linear

relation within an MINLP environment (see Section 6.6.2.2). The consideration of these

trends could affect the results obtained.

The framework can be applied to both retrofitted and greenfield neighbourhoods, as long

as its layout, the number of consumers and demands are known. Additionally, different

combinations of case-study demands can be employed from electricity, space heating and

space cooling. Parameter time scales can also be refined, such as hourly changing tariffs

(T elch ). More typical demand days, different time horizons and refined time steps can be

considered and readily implemented by changing or adding input parameters. Moreover,

design requirements for extreme demand years could be analysed, such as peak cooling

demand days in South Australia (up to four times the average [257]).

Due to assumptions and uncertainty, global optimality leads to an ‘optimal’ solution for

an approximate system [82, 92, 94, 104]. Hence, relative optimality gaps are satisfactory

to find solutions for approximate systems. The presented case-study, however, results in

very different feasible designs for small optcr changes below 10 % (see Appendix F). To

enable comparison of solutions across scenarios and analyses, and because of reasonable

CPU times, global optimality has been mostly employed throughout the analysis.

A wide range of results can be analysed based on different time and consumer levels, such

as hourly or yearly, and house or neighbourhood level. Examples of the impact of inputs

and bounds have been presented in Section 4.5.2 but numerous more parameter analyses

could be conducted. Additionally, the impact of location-specific regulation, such as

support schemes, can be assessed by comparing results with or without regulatory change

(see Section 4.5.2.4). Furthermore, minimum required performance levels to enable

technology adoption can be researched, such as minimum CHP efficiency levels to make

microgrid adoption economically viable (Section 4.5.2.4). The presented analysis in this



Chapter 4. Cost-optimal design of residential distributed energy systems 120

Chapter thus provided examples of how the developed generic framework can be analysed

and adapted to accommodate for various case-study requirements and scenarios.

4.7 Summary and conclusion

A generic deterministic MILP model for residential energy system design has been de-

veloped with cost as driving objective. The framework has been applied to an Adelaide

neighbourhood to illustrate its capability. Model robustness, flexibility and applicability

were analysed and highlighted through neighbourhood case-studies, upscaling, sensitiv-

ity and variability analyses as well as through analyses of the impact of implementa-

tion decisions on results. Cost is, however, not the only objective involved in project

decision-making, as various stakeholder interests need to be considered (see Chapter 1).

Chapter 5 builds further on the developed framework in this Chapter, extending it to a

multi-objective approach enabling the trade-off of three design objectives.



Chapter 5

Multi-objective design of

residential distributed energy

systems

A framework for optimal multi-objective residential distributed energy system (DES)

design is developed (third research question, see Section 1.4). The model presented in

Chapter 4 is hereto extended to enable trading off three objectives in the design process.

The included minimisation objectives are aligned with the central energy system objec-

tives of competition, security of supply and sustainability to ensure DES applicability

within conventional power systems; i.e. total annualised energy cost, electrical system

unavailability and annual CO2 emissions, respectively. Part of the work in this Chapter

has been disseminated into the following publication [281].

5.1 Introduction

5.1.1 Driving stakeholder interests

Apart from a competitive design (see Chapter 4), other design requirements also play

an important role in distributed energy system (DES) development [82, 91]. DES design

optimisation has therefore increasingly been focussing on multi-objective approaches (see

Section 2.3.3.2) [91, 92]. Not all stakeholder interests are, however, readily quantifiable

121
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into design objectives. Additionally, design objectives are often conflicting in nature.

Hence a decision-making trade-off approach is required to determine ‘optimal’ energy

system design, which can be facilitated through multi-objective optimisation tools.

5.1.2 Chapter overview

This Chapter aims to develop a multi-objective framework for residential DES design

shaped by energy system objectives. Section 5.2 provides background on the selected

objectives. A detailed problem description is subsequently presented in Section 5.3. Sec-

tion 5.4 details the model, building further on Chapter 4. A case-study in Section 5.5

serves to apply the framework through various scenarios and analyses. Results are illus-

trated in Section 5.6 to end with a discussion (Section 5.7) and conclusion (Section 5.8).

5.2 Objectives in distributed energy system optimisation

To address conventional system challenges through meeting energy system objectives

(see Section 1.1.3), DES ideally fulfil a tri-faceted role to consumers; being a com-

petitive energy supply alternative, providing sustainable energy supply and enhancing

energy security. Multi-objective optimisation enables translating these roles into an eco-

nomic, environmental and technical objective, respectively [92]. The following Sections

detail the chosen environmental (5.2.1) and technical (5.4.3) objective as minimisation

of annual CO2 emissions and minimisation electrical system unavailability, respectively.

5.2.1 Emissions as environmental objective

5.2.1.1 Emissions as attribute of sustainability

Sustainability mostly refers to the environmental impact of energy systems (see Sec-

tion 1.1.3) [1, 18]. In power systems, and more particularly in DES, this relates to and

can be measured through (i) greenhouse gas emissions, (ii) renewable energy generation,

or, (iii) energy efficiency [10, 11, 17]. Environmental aspects are receiving growing inter-

est in energy integrated DES design optimisation but have only limitedly been researched
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as explicit design objectives (see Section 2.3.3.2). Here the minimisation of yearly car-

bon emissions has been the predominant implemented objective [200, 214]. Care must,

however, be taken when defining carbon emissions. Emissions can be direct and localised

through on-site consumption of natural gas and grid electricity. Renewable energy tech-

nologies, in contrast, might not lead to direct on-site emissions, but their technology

life cycle from development to recycling does lead to emissions [137, 154, 170, 185, 197].

With regard to shares of specific energy resources for energy generation, maximisation

of renewable energy penetration levels [170] or minimisation of fossil fuel consump-

tion [138] have been introduced as measures. Efficiency measures, furthermore, have

been defined as either environmental or technical objectives throughout literature (see

Section 2.3.3.2). Additionally, environmental impact has often been internalised (indi-

rectly taken into account) through economic measures, such as a carbon tax.

The aim of this thesis is not to analyse full life cycle impacts. Additionally, double count-

ing of environmental impact, through both a tax within a cost minimisation objective

(indirectly) and minimisation of yearly emissions (directly), is typically avoided. For the

current case-study, the carbon tax (currently not in place in the Australian market, see

Section 4.4.1) is thus removed from the cost objective (see Equation 4.1). Note, however,

that both a carbon tax as well as emission reduction targets could be in place in certain

circumstances. CO2 emissions are already commonly monitored and measured within

current energy systems. Technology emission data is thus readily available. The environ-

mental objective is therefore quantified as minimisation of total annual neighbourhood

CO2 emissions. CO2 emissions are here defined through on-site fossil fuel consumption,

or, through central grid electricity import.

5.2.1.2 Determining annual CO2 emissions

CO2 emissions are selected as environmental minimisation objective as this reflects the

choice of resources, indirectly provides a measure for the maximisation of renewable

energy resources, and encompasses the different neighbourhood energy services. Installed

CO2 emitting technologies generate electrical or thermal energy through direct on-site

fossil fuel consumption. CHP units only generate electricity directly related to fossil

fuel consumption. Their waste heat is seen as a by-product. Electricity imported from

the central grid is also partly generated by fossil fuel consumption, leading to a carbon
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intensity. Total annual CO2 emissions of the neighbourhood thus relate to the yearly

electricity generated by the installed CHP units, the yearly grid electricity import, and

the yearly heating generated by the installed boilers and gas heaters, see Figure 5.1.

Boilers 

Gas 

heaters 

CHPs 

grid T&D NG 

Cload 

Eload 

Hload 

neighbourhood 

Central 

generation 

portfolio 

HER 

AC 

Figure 5.1: Energy generation technologies directly based on fossil fuels.
AC=absorption chiller, C=cooling, E=electricity, H=heating, HER=heat to electricity

ratio, load=energy demand, NG=natural gas, T&D=transmission and distribution.

5.2.2 Unavailability as technical objective

5.2.2.1 Unavailability as attribute of security of supply

Security of supply in energy systems refers to energy security and system dependability.

System dependability refers to trusting the services it is supposed to deliver [1, 23, 24]

(see Section 1.1.3). Dependability relates to quality of energy supply standards, oper-

ational safety and outages [1]. DES introduce various potential benefits to consumers

of which increased electrical system dependability is often highlighted [28, 35, 48]. Es-

pecially within distribution networks, responsible for over 90 % of consumer interrup-

tions [30], they can provide added security of supply through local energy generation

and sharing. Security of supply can hence be determined through several probabilistic

or deterministic indices related to system up and down times [24, 25]. Alternatively,

security of supply could be measured through generation and primary energy resource

portfolio diversification, component redundancy or self-sufficiency [53, 282].1

1Diversification refers to increasing the variety of primary energy resources used for energy generation
rather than relying on a single source. Redundancy refers to implementing components that are on stand-
by in case of unit failure in order to maintain energy supply to consumers. Components can be in hot
or cold redundancy. The latter need a start-up period once required to step in to maintain generation.
The former are ready to operate when required. Self-sufficiency refers to having own generation and
resources rather than relying on external sources. See for more information [23, 25, 51–56].
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5.2.2.2 Unavailability as attribute of dependability

‘Fault-tolerance’ related aspects relate to system dependability. A system is ‘fault-

tolerant’ if it works correctly despite one or more component (or software) failure [23]. In

small-scale DES this refers in particular to the correct service (providing energy supply)

at a certain time. System dependability is measured through attributes, caused by

threats and controlled by means as illustrated in Figure 5.2 by a so called ‘dependability

tree’ [23, 24, 51–53, 283–286]. The two most employed attributes to measure system

dependability are availability and reliability, which serve different purposes highlighted

by their definitions [23, 51–53, 283, 284]:

Availability is the probability that a system can be correctly operated and employed

at a certain time t, i.e the readiness for correct service. Availability measures the

dependability of repairable systems. Unavailability is its complement.

Reliability is the probability that a system correctly operates during a certain time

interval ∆t, provided it worked correctly at the start of this interval. Reliability

is most often employed for irreparable or continuously operating systems. The

complement of reliability is unreliability.
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Figure 5.2: Dependability tree, adapted from [24, 287, 288].

Reliability is important in critical systems to ensure safety and continuous operation.

Residential DES, in contrast, are generally not operationally critical. Availability is

therefore chosen as measure since residential DES are: (i) non-critical in operation in

contrast with, e.g. continuous chemical processes [288], (ii) readily maintainable and
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repairable within reasonable time frames [289], and (iii) expected to work at a certain

time t, i.e. consumers expect the light to go on when flicking a switch. Availability

refers here to the probability of providing (full) power to the load at any time t [289].

5.2.2.3 Determining availability

Availability can be quantified based on several definitions of which an overview is given

in Appendix G. This Section summarises DES-relevant definitions. Electrical system

availability is typically expressed through so-called ‘nines’ [290]. Central grid supply,

for example, can range from 3-nines availability, i.e. 99.9 %, to 6-nines, 99.9999 %.

This percentage indicates the hours throughout a year a component or system is avail-

able. Availability is thus directly related to system up and down times, determined by

component failures and outages [53]. A combination of outages of system components

determines the state of the system at a certain time [282].

Components fail based on time dependent failure rates, characterised through a failure

rate function. This function determines the expected outages of a certain component

type over a certain time period. A component failure rate function is typically repre-

sented through a so-called ‘bathtub’ curve with three failure periods over a component’s

life: early, useful and end of life [51–53, 290], see Figure 5.3. The early failure period

occurs when a new component is installed due to so-called ‘infant mortality’. The fail-

ure rate decreases rapidly over time. Useful life occurs when component failures are

stabilised. Failures occur randomly and at an approximate uniform rate, i.e. constant

failure rates. The end of life period is characterised by component wear-out. The fail-

ure rate increases again until component replacement. In this work, components are
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Figure 5.3: Bath tub component failure rate curve, adapted from [51–53, 290].
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assumed to be in their useful life since steady-state aspects are analysed. This implies

that component failure, λc [%], and repair rates, µc [%], are constant with time (see

Equation 5.1 and Appendix G) [53, 291].

Availability of a system that consists of components used to be assessed through de-

terministic criteria [30, 292]. Deterministic approaches, however, are not able to grasp

stochastic failure behaviour. Therefore, probabilistic techniques have gained increasing

interest. Herein two major groups can be distinguished;

Analytical approaches are based on statistical data of component failures and repairs

that define several probabilities and indices of system states through mathematical rela-

tions [30, 293, 294]. Hence a specific set of indices can be found from a specific data set.

However, simplifying assumptions have to be made in this process. Blanchard [51], Ville-

meur [53], Billinton et al. [55] and Karki et al. [54] provided overviews of analytical

probabilistic techniques to assess system dependability. The most common techniques

are the Series-Parallel Reduction/Block Diagram Method, the Event Tree Analysis, the

State Space Diagram/Markov methods and the Tie/Cut Set methods (see Appendix G).

In terms of specific probabilistic system indices, the System Average Interruption Dura-

tion Index (SAIDI) is most commonly used for electrical system availability. SAIDI is a

measure for the percentage duration of an outage and is often employed as measure for

conventional network availability [30, 54, 283, 292–295].

Simulation based techniques, in contrast, determine expected values of indices by aver-

aging the results obtained through simulations [51, 54, 55]. Each simulation generates

random numbers, i.e. probability of occurrence of system states. The most commonly

known simulation techniques are Monte Carlo simulations. Based on a defined domain

of possible values, inputs are randomly generated in each simulation from a probability

distribution over the domain. The results of hundreds of simulations are then aggregated

to obtain index values. The obtained results depend here on the number of simulations.

In theory, an infinite amount of simulations is required to obtain exact index values.

Simulation techniques are especially appropriate for large and complex systems.

DES systems are small and their components are quantifiable through probabilistic data.

Hence an analytical approach is taken. Since the neighbourhood system is not reducible

to series and parallel component connections due to energy sharing and multiple simul-

taneous applications for local energy generation, the Series-Parallel method is ruled out
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(see Appendix G). Furthermore, DES consist of multiple redundant energy supply op-

tions. Not only total system failure probability thus needs to be obtained, but also the

probability of the system to be fully or partially available, which is obtainable through

both the Event Tree Analysis or Markov models. Both methods are readily adaptable

to include additional components and system states. The Markov model, however, ad-

ditionally allows for the inclusion of component repair. Hence a Markov State Space

Diagram is selected to obtain DES availability.

The Markov model mathematically describes a time related random process of a system

that moves between defined states through step-wise transitions [23, 55, 285]. System

states are based on the status of the system components. State transitions therefore

occur due to component failures and repairs, see Figure 5.4. Since system availability

is here analysed based on a steady-state analysis of a system with a finite number of

components and system states, a finite Markov chain is constructed [23, 55, 285]. The

state of a system is fully defined at each time t. The probability that a system finds itself

in a certain state at time t+∆t namely only depends on the probability of being in that

state at time t and the probability of transitioning to or from other states [282, 296].

At each time, the system can thus be in one of the defined states with each having a

probability of occurrence [282], i.e. the sum of the state probabilities is equal to 1 at

all times. The time dependent availability of a repairable system with one component,

illustrated in Figure 5.4, with exponential failure and repair rates is [53, 55]:

A(t) =
µc

λc + µc
− λc
λc + µc

e−(λc+µc)t (5.1)

1 0 

State 1 State 2 
λcΔt 

μcΔt 

1-μcΔt+λcΔt 1+μcΔt-λcΔt 

Figure 5.4: State Space Diagram of a one-component system with two states.
∆t=time step, λc=constant component failure rate, µc=constant component repair

rate, state 1=component works, state 2=component failed.

The system moves between its defined states with each time step ∆t, determining the

state probabilities at each time t. After a certain number of time steps, state probabilities

do not change any longer, i.e. the steady-state probabilities are obtained. The related

asymptotic availability and unavailability of a component (c), which are used in this
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thesis, are then respectively [53, 289]:

lim
t→∞

A(t) = A(∞) = ac =
µc

λc + µc
U(∞) = 1−A(∞) = uac =

λc
λc + µc

(5.2)

The steady-state availability of a system with more components can be found as follows.

Figure 5.5 illustrates the State Space Diagram of a two-component system. Each of the

states represents a combination of up or down conditions of the system components.

The probability of the system being in state s, Ps, can be obtained by multiplying the

asymptotic total (un)availabilities of the different components in the state as indicated

in Equation 5.3. System availability, axc, and unavailability, uaxc, can then be found

as the OR-gate (sum) of the probability of being in available and unavailable system

states respectively (see Appendix H). If both components are individually able to meet

the operational requirement of the system, states 1, 2 and 3 are considered available.
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Grid √ 

λgrid 
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Grid √ 
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Grid X 
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Grid X 

λgrid 

λCHP 

λCHP 

μgrid μCHP 
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Figure 5.5: State Space Diagram of a two-component system with a CHP unit and
grid connection as available energy supply options, adapted from Haghifam and Man-
bachi [295]. State transitions occur through constant failure, λ, and repair, µ, rates.

P1 = aCHP · agrid P2 = aCHP · uagrid (5.3)

P3 = uaCHP · agrid P4 = uaCHP · uagrid

axc = P1 + P2 + P3 = 1− P4 = 1− uaxc

5.2.2.4 Availability in DES optimisation

Dependability evaluation of DES has not received as much attention as other potential

DES benefits [131, 289, 292]. Research regarding dependability as a technical criterion

can be divided in three major categories: a posteriori assessment, as indirect design
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objective/constraint, or, as direct design objective. Most research regards a posteriori

determination of availability or reliability of a known system without optimising this.

Several alternative system topologies are selected and compared regarding cost, reliabil-

ity or availability when an ‘optimal design’ has to be selected. A model for electrical and

thermal reliabilities of a known CHP system, for example, was introduced by Haghifam

and Manbachi [295], employing a State Space Markov process. A similar analysis was

conducted for a building cooling, heating and power system by Wang et al. [297].

Within DES optimisation, availability or reliability have been mostly indirectly adopted

as design constraints. Ren et al. [298], for example, presented a multi-objective linear

model for the optimal operational strategy of a DES, minimising energy cost and CO2

emissions. Equipment availability was here integrated through a constant availability

factor placing an upper bound on DG energy generation. A planning strategy for DG

units within electrical power systems was presented by Zangeneh et al. [299], employing

a multi-objective normal boundary intersection algorithm with four cost-related objec-

tives. The cost of energy not supplied was the reliability measure whereas availability

was included through availability factors.

Availability and reliability are technical objectives but have not been used explicitly,

including system and component states, within superstructure DES design optimisa-

tion. They have, in contrast, been used as objectives in the context of selecting the

optimal number of redundant identical components in generic networks. Fiori de Cas-

tro and Lucchesi Cavalca [291], for example, suggested a genetic algorithm to maximise

availability of a series engineering system configuration. An evolutionary optimisation

approach to maximise redundancy availability in a generic parallel/series system was,

additionally, suggested by Ratle et al. [300]. Within the application of DES, research

is limited. Frangopoulos and Dimopoulos [301] analysed reliability for optimal design

and operation in the selection of a number of generic co-generation units through a

genetic algorithm. Each system state probability, obtained through a Markov State

Space approach, served to analyse expected cost and energy values. A planning tool

with financial and technical objectives was developed by Yassami et al. [302]. Relia-

bility was, however, integrated as a cost through customer damage functions. Singh

and Goswami [303], in their turn, proposed a genetic algorithm for optimal planning

of DG units in terms of siting and sizing. The overall objective was formulated as a
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multi-objective performance index employing weighted indices for reliability of service,

efficiency and power quality. Only overall system reliability indices were used, such as

SAIDI. A strategic technology-policy framework for DER allocation under technical, fi-

nancial and environmental objectives was presented by Mallikarjun and Lewis [133] for

a commercial building. A reliability factor effiency was employed as technical objective

within an unoriented data envelopment analysis (DEA) for factor efficiency comparison.

Goal Programming was subsequently used to optimally match energy resources with

energy end-uses. Lastly, a recent body of research looked at component sizing for elec-

trical DES design while minimising both cost and an energy supply reliability measure,

such as loss of power supply probability or expected energy not served, through genetic

algorithms or particle swarm optimisation [304–308].

5.2.2.5 Availability quantification

Since a steady-state MILP modelling approach is employed, steady-state system avail-

ability is chosen as optimisation objective. Several objective formulations can here be

employed. Each neighbourhood house has an individual energy system, which can in-

teract with other house systems within a neighbourhood system. This leads to closed

loops and complexity. Hence system availability of individual houses should be consid-

ered within the objective function. This system availability will be determined based on

its installed energy supply options. Additionally, since energy integration combines the

different houses within a whole, the objective should also include a measure for overall

neighbourhood system availability. Hence average house energy system availability in

the neighbourhood is optimised, i.e. minimisation of unavailability, as this reflects both

individual houses and the neighbourhood as a whole. Furthermore, to illustrated the

methodology, and since availability is most relevant to and established in the electricity

sector, the focus is in the first instance on the electrical system (un)availability.

5.2.3 Summary and research gaps

Multi-objective DES design optimisation employing an economic, environmental and

technical objective is still a developing area of research. Cost and emissions have been

touched upon within energy integrated DES. An explicit technical measure for system
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dependability based on its components, and a tri-objective approach that fits in with

central energy system objectives, have not been addressed and are therefore developed

in this Chapter through a multi-objective DES design trade-off framework.

5.3 Method

5.3.1 Problem description

A generic multi-objective strategy is developed, building further on the developed base

model (see Chapter 4). Three conflicting objectives are now traded off in the DES design

process: minimising (i) annualised energy costs (economic), (ii) annual CO2 emissions

(environmental), and (iii) electrical system unavailability (technical).

5.3.2 Optimisation framework and model requirements

The new objectives and constraints are integrated into the developed MILP model. In

addition to the model requirements of Chapter 4 (Section 4.2.2), technology availability

input data is required. The objective is to trade off minimising (i) total annualised cost

of the neighbourhood as a whole to meet its yearly demands, (ii) average house electrical

system unavailability, and (iii) total yearly neighbourhood CO2 emissions under various

operational, technical, economic, environmental and regulatory constraints. The three

objectives (fi) are combined into a single objective function through a weighted-sum:

min
x,y

Z = λ1 · f1(x, y) + λ2 · f2(x, y) + λ3 · f3(x, y) s.t.



∑
i λi = 1 and λi ∈ [0; 1]

h(x, y) = 0 and g(x, y) ≤ 0

x ∈ X, y ∈ 0, 1

bound by equality (h(x, y)) and inequality (g(x, y)) constraints (see Section 3.2.2). Trad-

ing off the objectives by varying weights λi of functions i, where the sum of the three

weights equals one, enables creating a Pareto set of optimal solutions.

Figure 5.6 illustrates the steps in implementing unavailability. First, total unavailability

values of the electrical components are obtained (see Section 5.5.1). Second, potential

component combinations, available to supply the electrical load of individual houses, are
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determined, i.e. potential house electrical system configurations. A Markov State Space

Diagram is subsequently constructed for each system configuration to obtain its steady-

state unavailability (see Section 5.5.3). These system unavailabilities are model inputs.

System configurations are then implemented through the use of logic-gate operations

and binary integer programming. The model optimises average house electrical system

unavailability as a combination of implemented house system configurations. Optimised

neighbourhood design thus implements one of the considered system configurations in

each house. Additionally, for a technology to be considered available, it might require a

minimum installed capacity, introducing capacity constraints.

Input Implementation 

1. Obtain constant 
total unavailability 
values of electrical 

components 

2. Determine 
potential house 

electrical system 
configurations 

3. Determine 
unavailability of 
electrical system 

configurations 
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Space Diagram 

4. Implement 
alternative system 

configurations 
 

Logic-gate 
operation 

Integer 
programming 

5. Constraints on 
DG capacity to be 

considered 
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Figure 5.6: Conceptual diagram of unavailability implementation.

5.3.3 Model assumptions and decisions

Modelling complex systems requires implementation decisions and assumptions to set

boundaries on the system [82, 106, 107]. The developed model follows the same assump-

tions as the base model of Chapter 4, Section 4.2.3. Electrical components are, however,

no longer considered 100 % available. The specific assumptions are:

• Only the electrical system is under availability optimisation.

• No carbon tax is considered.

• All components are in their useful lifetime [309].

• Steady-state availability assessment is made, no dynamic processes, such as relay

switching, are considered. Instead, different system configurations are determined.

• No fault occurs within repair intervals [309].

• No common-mode2 failures are considered [309].

2Common-mode failures are failures where multiple components fail due to a single event.
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• Neither cold standby nor switched redundancy3 are included [53, 282].

• Components are independent in terms of failure and repair [309].

• Variability of renewable energy resources introduces challenges. Hence a single

electricity generation source (PV units) is in the first instance considered. Wind

turbines are thus not taken into account but could be implemented similarly.

• Authorised islanding is assumed. Without authorised islanding, installed DG units

have to be switched off in case of central system outages, limiting DES redundancy

and dependability advantages compared to conventional operation.

Similarly to Chapter 4, annualised operation and a yearly planning horizon are employed

for an average day (24 hours) in three seasons. Furthermore, various implementation

choices have to be made, where alternatives exist (see Section 5.4).

5.3.4 Contributions

The developed framework of Chapter 4 is extended with two objectives, adding the

following new features and functionalities to the model:

• implementing unavailability as an explicit technical objective through system con-

figurations and the state of their components,

• combining logic-gate operation and State Space Diagrams with integer program-

ming within a superstructure MILP framework to model availability,

• and a tri-objective economic-environmental-technical framework for DES design.

5.4 Model implementation and design decisions

The model consists of a tri-objective function (Eqs. 5.4-5.7) bound by the design and

operational constraints presented in Chapter 4. Additional constraints regard (i) capac-

ity threshold constraints (Eqs. 5.9-5.18, and Eqs. I.19-I.24 (Appendix I)) and (ii) house

electrical system constraints (Table 5.1, Eqs. 5.19-5.22).

3Cold standby is equal to cold redundancy. Switched redundancy defines a component that is redun-
dant but needs a switching action to become available to supply the load, introducing lag times.
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5.4.1 Objective function

Design is optimised by minimising the scaled total annualised cost of the neighbourhood,

CTOT,S [kAUD y−1], the scaled yearly neighbourhood CO2 emissions, EMS [tonCO2

y−1], and the scaled average house electrical system unavailability, UATOT,S :

min
x,y,z


CTOT,S

EMS

UATOT,S

(5.4)

with x technology options, y capacity ranges and z neighbourhood locations. The objec-

tive function is constructed as a weighted sum of the scaled objectives, with λi ∈ [0, 1]:

min
x,y,z

[λc · CTOT,S + λe · EMS + λa · UATOT,S ] and
∑
i

λi = 1 (5.5)

The cost model was detailed in Chapter 4. Note that the total cost, CTOT , has been

scaled to kAUD y−1 (CTOT,S). The additional objectives and constraints of the tri-

objective model are detailed in Sections 5.4.2 and 5.4.3.

5.4.2 Environmental objective

Total yearly neighbourhood CO2 emissions, EM [kgCO2 y−1] come from natural gas

fuelled thermal technologies, gas heaters (PHTOT
G,i,s,h) and boilers (PHTOT

B,i,s,h), from elec-

tricity generated by natural gas fuelled CHP units (PETOTCHP,i,s,h) and from central grid

electricity import (PEGRIDi,s,h ) (see also Equation D.5, Appendix D):

EM =
∑
i,s,h

hr·ds·CIelec·PEGRIDi,s,h +
∑
i,s,h

hr·ds·CIgas·(
PHTOT

B,i,s,h

nthB
+
PHTOT

G,i,s,h

nthG
+
PETOTCHP,i,s,h

nelecCHP

)

(5.6)

Note that the objective is scaled to tonCO2 per year: EM = EMS

1000 .

5.4.3 Technical objective and constraints

Average house electrical system unavailability, UATOT,S , in a neighbourhood is deter-

mined by the sum of the system unavailability of each house i, UAi, divided by the total
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number of houses in the neighbourhood, nh:

UATOT,S =

∑
i UAi

nh
(5.7)

Individual house electrical system unavailability is determined through a parallel con-

nection of unavailability values of its mutually exclusive potential system configurations,

represented by an OR-gate (see Appendix H). The output to an OR-gate can be found as

the sum of mutually exclusive binary inputs [51–53]. Each considered house (i) electrical

system configuration, con, is represented by a binary variable, Bcon,i, and a constant

system unavailability, uacon. The latter is obtained through a Markov chain (see Sec-

tion 5.5.3). Note that the potential configurations are mutually exclusive since only

one configuration can be adopted in each individual house (i.e.
∑

conBcon,i = 1 ∀i).

Mutual exclusivity has been ensured through AND-NOT configuration modelling, see

Section 5.4.3.2, as only one technology combination will in this way be enabled in each

house. Neighbourhood average system unavailability hence optimises the combination

of house system configurations. A logarithmic transformation of obtained unavailability

inputs is employed to bring objectives within similar range and to indirectly measure

unavailability as availability through a number of ‘nines’ (see Section 5.2.2.3):

UAi =
∑
con

Bcon,i · log10(uacon) ∀i (5.8)

5.4.3.1 Capacity constraints

Potential house electrical system configurations are each a combination of available elec-

tricity generating technologies to a house, i.e. a CHP unit, a PV unit, a battery, a

microgrid connection fed by CHP units in other houses, and a potential grid connection.

In practice, the electrical supply availability of a component (part of its total availabil-

ity) is a function of its installed capacity. A first analysis is conducted in this thesis

with one availability–capacity step rather than a gradual relationship between both (see

Section 5.7). Installed units consequently require a minimum installed capacity to be

considered available to supply the load of their accommodating house. A lower capacity

is allowed but the corresponding unit is then considered unavailable. In the first instance,

two discrete electrical component capacity levels are thus allowed, unavailable and 100

% available. The latter is a capacity, able to fully meet the load of the accommodating
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house in each hour. The former combines all unavailable and reduced available capacity

values into one unavailable level. For an installed PV unit or battery to supply their

accommodating house, their installed capacity (DGMAX
tech,i ) should be greater or equal

than a threshold capacity, T avtech,i [m2 or kWh]. Their capacity can thus fall within one

of two categories, characterised by binary variables Btech,i (installed and unavailable)

and Bav
tech,i (installed and 100% available), respectively as illustrated in Figure 5.7. Total

installed technology capacity should additionally fall within bounds [Ltech;Utech]. With

tech, PV units or batteries:

Ltech ·Btech,i + T avtech,i ·Bav
tech,i ≤ DGMAX

tech,i ≤ T avtech,i ·Btech,i + Utech ·Bav
tech,i ∀i (5.9)

Btech,i +Bav
tech,i ≤ 1 ∀i (5.10)

0 
DG

MAX

itech,

B
av

itech,B itech,

Ltech Utech T
av

itech,

Figure 5.7: Schematic of PV and battery capacity intervals.

Note that PV units are only considered available to supply the load of their accommo-

dating house, not to supply the whole neighbourhood through microgrid sharing. CHP

units, in contrast, can perform the different tasks of (i) meeting the electricity load

of their accommodating house, and (ii) meeting the electricity demand of the whole

neighbourhood through microgrid sharing. Their installed electrical capacity, DGMAX
CHP,i

[kW], should fall within bounds [LCHP , UCHP ]. Depending on the task of the CHP unit,

its capacity should be at least equal to threshold capacities T avCHP,i [kW] (available for

its accommodating house) or T avCHPmg,i [kW] (available for the microgrid), respectively.

This characterises three CHP capacity categories, unavailable (BCHP,i), 100 % available

for house i (Bav
CHP,i) and 100 % available for microgrid operation (Bav

MG,i), see Equa-

tions 5.11-5.12 and Figure 5.8. These three availability levels are represented by three

binary variables CHPAi , CHPBi and CHPCi that impose alternative upper and lower

bounds on installed CHP capacity:

LCHP · CHPAi + T avCHP,i · CHPBi + T avCHPmg,i · CHPCi ≤ DGMAX
CHP,i ∀i (5.11)

DGMAX
CHP,i ≤ T avCHP,i · CHPAi + T avCHPmg,i · CHPBi + UCHP · CHPCi ∀i (5.12)
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Figure 5.8: Schematic of CHP capacity intervals.

These three mutually exclusive binary variables each represent a combination of the

three CHP capacity categories (AND (∧) - NOT (B) gate, see Appendix H):

CHPAi = BCHP,i ∧Bav
CHP,i ∧Bav

MG,i ∀i (5.13)

CHPBi = BCHP,i ∧Bav
CHP,i ∧Bav

MG,i ∀i (5.14)

CHPCi = BCHP,i ∧Bav
CHP,i ∧Bav

MG,i ∀i (5.15)

An AND-gate represents a product of binary variables and has been linearised using

the procedure presented in [107, 310] (see Appendix H). A NOT-gate inverts its binary

input. Equation 5.13 has, for example, been linearised as, ∀i:

CHPAi ≥ BCHP,i + (1−Bav
CHP,i) + (1−BMG

CHP,i)− 2

CHPAi ≤ BCHP,i and CHPAi ≤ (1−Bav
CHP,i) and CHPAi ≤ (1−BMG

CHP,i) (5.16)

Additionally, the three binary variables are constrained by CHP existence:

CHPAi + CHPBi + CHPCi ≤ BCHP,i ∀i (5.17)

Furthermore, the hierarchical relation between the binary variables that characterise

CHP existence, 100 % availability and 100 % microgrid availability is:

BMG
CHP,i ≤ Bav

CHP,i ≤ BCHP,i ∀i (5.18)

5.4.3.2 Potential house electrical system configurations

Potential house electrical system configurations are each characterised by a binary vari-

able (Bcon,i), see Table 5.1, of which its value is determined through an AND–NOT re-

lation (see Appendix H) between all the binary variables (enabled, or, disabled (NOT))
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of the individually considered available electrical technologies to each house. Different

component combinations can in this way be represented by a series of ones and zeros,

which enables (‘switching on’) and disables (‘switching off’) the implementation of com-

ponents to represent different house system configurations. System configurations are

thus feasible combinations of the five individually available components to each house,

i.e. a grid connection, a CHP unit, a PV unit, a battery and an operational microgrid

with a number of microgrid-available CHP units in houses j (with i 6= j) ∈ [0, nh − 1],

see Figure 5.9. Each house can thus have one of 25 possible component combinations,

i.e. system configurations, including the option of no installed components. Only certain

combinations are, however, feasible, see Table 5.1. An appropriately sized battery, for

example, is only considered available together with an appropriately sized (available)

PV unit or CHP unit in the same house. Binary variables of some of the considered

components are clarified below. A house has an available grid connection, GCi, if it

imports electricity from the grid, Xrec
i,s,h, in at least one hour, h, throughout the year:

Xrec
i,s,h ≤ GCi ≤

∑
s,h

Xrec
i,s,h ∀i, s, h (5.19)

The number of microgrid-available CHP units available to house i (k = 0 · · ·nchp,i),

adopted in houses j in the neighbourhood (Bav
MG,j), can vary from zero to nchp,i (nchp,i =

nh − 1). Y chp
i,k is a binary variable that decides whether a number of CHP units (k) in

the neighbourhood is available to house i through microgrid operation:

∑
j 6=i

Bav
MG,j =

nchp,i∑
k=0

k · Y chp
i,k and

∑
k

Y chp
i,k ≤ 1 ∀i (5.20)

For a CHP unit to be available for microgrid operation, both a CHP unit of available

capacity and a microgrid central control unit (binary variable Z) must be available

House i PV 

CHP 

EST 

MG 

CHP1 

CHPj 

CHPnchp 

House i 

Figure 5.9: Potential electrical supply options for each house i.
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Table 5.1: AND-NOT expressions of electrical system configurations for house
i. CHP=combined heat and power, EST=battery, GR=grid, MG=microgrid,

PV=photovoltaic.

Binary (Bcon,i) Technology combination AND-NOT expression ∀i, k
GCi GR GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧

∑
k
MGAi,k

Ci CHP GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧
∑
k
MGAi,k

Pi PV GCi ∧BavCHP,i ∧B
av
PV,i ∧BavEST,i ∧

∑
k
MGAi,k

MGi,k MG GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧MGAi,k
XCi GR and CHP GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧

∑
k
MGAi,k

XPi GR and PV GCi ∧BavCHP,i ∧B
av
PV,i ∧BavEST,i ∧

∑
k
MGAi,k

XMGCi,k GR and MG GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧MGAi,k
CPi CHP and PV GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧

∑
k
MGAi,k

CEi CHP and EST GCi ∧BavCHP,i ∧BavPV,i ∧B
av
EST,i ∧

∑
k
MGAi,k

CMGCi,k CHP and MG GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧MGAi,k
PEi PV and EST GCi ∧BavCHP,i ∧B

av
PV,i ∧BavEST,i ∧

∑
k
MGAi,k

PMGCi,k PV and MG GCi ∧BavCHP,i ∧B
av
PV,i ∧BavEST,i ∧MGAi,k

XCPi GR, CHP and PV GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧
∑
k
MGAi,k

XCEi GR, CHP and EST GCi ∧BavCHP,i ∧BavPV,i ∧B
av
EST,i ∧

∑
k
MGAi,k

XCMGCi,k GR, CHP and MG GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧MGAi,k
XPEi GR, PV and EST GCi ∧BavCHP,i ∧B

av
PV,i ∧BavEST,i ∧

∑
k
MGAi,k

XPMGCi,k GR, PV and MG GCi ∧BavCHP,i ∧B
av
PV,i ∧BavEST,i ∧MGAi,k

CPEi CHP, PV and EST GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧
∑
k
MGAi,k

CPMGCi,k CHP, PV and MG Xi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧MGAi,k
CEMGCi,k CHP, EST and MG GCi ∧BavCHP,i ∧BavPV,i ∧B

av
EST,i ∧MGAi,k

PEMGCi,k PV, EST and MG GCi ∧BavCHP,i ∧B
av
PV,i ∧BavEST,i ∧MGAi,k

CPEXi CHP, PV, EST and GR GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧
∑
k
MGAi,k

XCPMGCi,k GR, CHP, PV and MG GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧MGAi,k
XCEMGCi,k GR, CHP, EST and MG GCi ∧BavCHP,i ∧BavPV,i ∧B

av
EST,i ∧MGAi,k

XPEMGCi,k GR, PV, EST and MG GCi ∧BavCHP,i ∧B
av
PV,i ∧BavEST,i ∧MGAi,k

CPEMGCi,k CHP, PV, EST and MG GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧MGAi,k
CPEXMGCi,k CHP, PV, EST, GR and MG GCi ∧BavCHP,i ∧BavPV,i ∧BavEST,i ∧MGAi,k
Nonfeasible technology combinations:
EST, (GR and EST), (MG and EST), (GR, MG and EST), and no installed technologies.

(binary variable MGAi,k). This leads to the following AND-relation:

MGAi,k = Z ∧ Y chp
i,k ∀i, k (5.21)

and resulting linearisation [107, 310] (see Appendix H), ∀i, k:

MGAi,k ≥ Z + Y chp
i,k − 1 and MGAi,k ≤ Z and MGAi,k ≤ Y chp

i,k

Each house (i) system configuration can thus be modelled as an AND-NOT gate (Ap-

pendix H) of combinations of considered individual components, see Table 5.1. The

house configuration with an available CHP and grid connection, for example, is then:

XCi = GCi ∧Bav
CHP,i ∧Bav

PV,i ∧Bav
EST,i ∧

∑
k

MGAi,k ∀i (5.22)
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5.5 Case-study: a small Adelaide based neighbourhood

Section 4.4 presented the researched case-study. Additional aspects are detailed below.

5.5.1 Component availability data

Each component – i.e. the CHP, PV and battery – has a total electrical unavailability

(UAtottech), obtained as a series relation (see Appendix G) of its resource availability

(Arestech), its component availability (Acomtech) and its supply availability (Asuptech) [295]:

UAtottech = 1− (Arestech ·Acomtech ·A
sup
tech) = 1− (1− UArestech) · (1− UAcomtech) · (1− UAsuptech)

(5.23)

Resource availability of CHP units relates to natural gas supply availability. PV unit

resource availability relates to the hourly average probability of available solar irradiation

in each hour to meet the load in that hour (see Appendix I). Battery resource availability

is based on its state of charge [311]. The latter is determined by the availability of a

PV and/or CHP unit in the same house that can charge an available battery in hour h

in order to sustain battery discharge during autonomy time (see Appendix I). Battery

autonomy time refers to the hours or days it can fully meet the load if fully charged [311].

For a PV or CHP unit to be able to charge the battery for full autonomy discharge, an

installed capacity is assumed that not only allows them to meet their house peak load in

hour h but also charge the battery in that hour (worst case). Battery resource availability

in house i is thus either the probability of an appropriately sized available CHP unit

in house i, an appropriately sized available PV unit in house i, or, both appropriately

sized available CHP and PV units in house i (see Appendix I). Component unavailability

refers to the unavailability of the component to perform, based on the state of its internal

mechanical and electrical parts. Component supply availability relates to the probability

that the component can supply the load in each hour throughout the year, dependent on

its installed capacity or state of charge [311]. In this work, discrete supply availability

steps are employed (see Section 5.7), i.e. 100 % available or unavailable, based on

capacity thresholds. Total component availability values are presented in Table 5.2.

Apart from technologies, each house can also have available electrical supply through

a grid connection or a connection with a microgrid fed by a certain number of CHP
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Table 5.2: Component availabilities [%]. CHP=combined heat and power unit,
EST=battery, MGCC=microgrid central control unit, PV=photovoltaic unit. Solar
availability is determined by the average probability that the hourly available sun can

meet the load in that hour, detailed in Appendix I.

Components
Availability [%] CHP PV EST

Technical 96.0000 % [295] 99.9990 % [312] 99.9967 [312]
Supply 100 % 100 % 100 %
Resource 99.9975% [289] 22.2489 % (Ap-

pendix I)
95.9976 % (CHP) or 22.2487 % (PV) or
96.8881 % (PV and CHP) (Appendix I)

Total atech 95.9976 % 22.2487 % 95.9944 % (CHP) or 22.2479 % (PV) or
96.8849 % (PV and CHP)

units. Central grid unavailability in South Australia is 0.060 %, i.e. availability of 3

nines (SAIDI) [313, 314]. (UAtotCHP )k is the total unavailability of k CHPs available for

microgrid operation to a house. A microgrid is, however, only available together with an

available control unit with 0.0200 % component unavailability (UAtotMGCC) [289]. Total

microgrid unavailability (UAtotMG,k) then becomes:

UAtotMG,k = 1− (1− UAtotMGCC) · (1− (UAtotCHP )k) ∀k (5.24)

5.5.2 Threshold capacities

Component threshold capacities are detailed in Appendix I. To be available to supply a

house electrical load, component threshold capacities are set to the peak hourly accom-

modating house electricity load for available PV and CHP units, and to the peak hourly

neighbourhood electricity load for microgrid-available CHP units. Battery threshold

capacities are based on being able to supply the average hourly electricity demand of

their accommodating houses for a certain autonomy time (on-grid: 3 hours, off-grid: 2

days [315, 316]). Note that electrical threshold demands include electricity demand for

both appliances and cooling through air-conditioning units (maximum possible electric-

ity demand of each house).

5.5.3 House electrical system configurations

For each potential house electrical system configuration, a State Space Diagram can be

constructed to determine its system (un)availability [295]. The State Space Diagram

and system (un)availability of the configuration with a CHP unit and a grid connection
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was illustrated in Figure 5.5, Section 5.2.2.3. Availability determination of the other

configurations is detailed in Appendix I.

5.5.4 Analysis and selected energy system scenarios

Trade-offs and key design changes are researched to illustrate the framework capability:

I Minimisation of total annualised energy cost and average house electrical system

unavailability trade-off; the environmental weighting factor (λe) is set to zero.

II Minimisation of total annualised energy cost and CO2 emissions trade-off; the

availability weighting factor (λa) is set to zero.

III Minimisation of average house electrical system unavailability and CO2 emissions

trade-off; the economic weighting factor (λc) is set to zero.

IV Minimisation of total annualised energy cost, average house electrical system un-

availability and annual CO2 emissions trade-off. The three weighting factors are

varied to enable the relative trading off of three objectives in the design process.

The developed framework allows assessing the robustness of results with respect to:

• upscaling of the neighbourhood,

• sensitivity analysis performed on key uncertain component unavailability inputs,

• and implementation aspects to asses component redundancy requirements to allow

for islanding by comparing on- and off-grid unavailability-cost trade-offs.

5.6 Results and analysis

Selected results of the presented scenarios are illustrated in Section 5.6.1. Model robust-

ness is subsequently analysed based on upscaling, sensitivity analysis and redundancy

analysis. The model statistics and ‘knee-point’ CPU times are given in Table 5.3.

5.6.1 Energy system design trade-offs

Figure 5.10 illustrates the Pareto sets of the first three defined scenarios. Total neigh-

bourhood installed unit capacities of selected lambda values (λ) for the three trade-offs



Chapter 5. Multi-objective design of residential distributed energy systems 144

Table 5.3: Model statistics of multi-objective model and ‘knee-point’ CPU times [s].

Blocks of equations 326 Single equations 34 306
Blocks of variables 130 Single variables 24 373
Non zero elements 122 065 Discrete variables 4131

‘knee-point’ CPU unavailability-cost 2420 s
‘knee-point’ CPU emissions-cost 183 s
‘knee-point’ CPU emissions-unavailability 232 s

are summarised in Table 5.4. Note that the end points on each set in Figure 5.10 dom-

inate all smaller or larger λ values. Smaller values could, for example, occur due to

unit capacity maximisation for the same unavailability or emissions objective when cost

has a small weighting. In case of the unavailability-emissions trade-off this is true for

λe = 0.995, which dominates any point with a greater λe. Greater λe values will max-

imise PV capacity under full emission minimisation, for the same unavailability level.

Additionally, discrete Pareto sets are obtained rather than smooth curves. This is due

to discrete threshold capacity intervals and design choices (see Section 5.7).
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Figure 5.10: Pareto trade-offs between objectives. weigths λa (availability), λc (cost),
λe (emissions).
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Table 5.4: Total neighbourhood installed unit capacities [kW or kWh], micro-
grid existence (MG) and objective values (CTOT,S [kAUD y−1], EMS [tonCO2 y−1],
UATOT,S [log10]) for selected λ values for each trade-off. B=boiler, CHP=combined
heat and power, EST=battery, HST=heat storage, MG=microgrid installation,

PV=photovoltaic. A total airco capacity of 11.2 kW is installed in all cases.

PV CHP B EST HST MG CTOT,S EMS UATOT,S

unavailability-cost (λe = 0)

λc = 1.000 10.5 2.1 26.0 0 5.4 X 22.264 30.194 -3.611
λc = 0.410 10.5 8.0 25.0 0 4.9 X 23.866 29.754 -4.729
λc = 0.230 10.0 34.1 7.6 2.1 20.4 X 33.473 32.729 -8.829
λc = 0.159 13.5 45.4 0 13.5 11.1 X 39.753 33.017 -10.248
λc = 0.060 25.0 52.2 0 13.5 5.5 X 43.000 31.935 -10.684

emissions-cost (λa = 0)

λc = 1.0000 10.5 2.1 26.0 0 5.4 X 22.264 30.194 -3.611
λc = 0.9000 10.7 2.1 27.4 0 2.1 X 22.266 30.145 -3.589
λc = 0.3190 22.7 1.9 28.3 19.9 3.0 X 26.325 26.051 -3.698
λc = 0.3180 25.0 0 33.6 57.4 0.6 − 32.944 22.957 -3.440
λc = 0.1954 25.0 0 33.9 68.4 0 − 35.000 22.454 -0.219

unavailability-emissions (λc = 0)

λe = 0.995 46.5 0 175 61.9 250 X 42.422 22.454 -3.440
λe = 0.600 50.3 20 140 77.1 250 X 49.986 23.560 -5.117
λe = 0.300 47.7 100 0 69.6 250 X 73.474 29.363 -10.684

Average house system availability increases from 3 to 10 nines when traded off with

cost (see Figure 5.10a). Figure 5.11 illustrates selected design changes. In between

the illustrated designs, the transition is more gradual with an increasing number of

microgrid-available CHP units and batteries. Available PV units are installed in all

houses until λc = 0.230. From this point, batteries start to appear. The combination

of PV and CHP charging sources for batteries, combined with an increasing number of

batteries in the neighbourhood, leads here to a more gradual trade-off. Discrete jumps

between Pareto points occur due to the discrete relationship between unavailability and

unit capacity (see Section 5.7). A 31 % drop in unavailability, i.e. availability increase
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Figure 5.11: [colour] Major design changes for unavailability-cost trade-off for several
values of λc. white diamonds=boiler and airco, grey diamond (green)=available CHP
for house and airco, dark grey diamond (purple)=available CHP for MG and airco,
sun=PV, triangle=battery, black arrow=heating pipe, H=heat storage unit. Note that

all houses have a grid connection.
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of 1 nine, combined with a relative small cost increase of 7.2 % occurs between the first

(λc = 1.000) and second point (λc = 0.410). The only installed neighbourhood CHP unit

capacity increases here from available for its accommodating house to available for mi-

crogrid operation. The latter design is most favourable in the trade-off decision-making,

i.e. the sought-after ‘knee-point’, since it leads to the highest availability increase for

the lowest additional cost (largest gradient).

Yearly CO2 emissions decrease from 30 to 22 ton when traded off with cost (see Fig-

ure 5.10b). Figure 5.12 illustrates selected design changes. In between the illustrated

designs, there is a more gradual trend towards increased individual house self-sufficiency.

The single neighbourhood CHP unit capacity reduces and is eventually eliminated in

λc = 0.3180. The number of PV-battery systems increases with decreasing λc. House-

hold grid import, furthermore, reduces and neighbourhood energy sharing is eliminated

with decreasing λc. The major gap in the otherwise smoother transitions occurs between

λc = 0.3190 and 0.3180. At λc = 0.3190, the smallest possible CHP unit is installed in

the neighbourhood. Since house 1 has the lowest demand and houses are not allowed

to have a CHP unit together with a boiler due to design implementation choices (see

Section 4.4.4), this unit is installed in house 1. At λc = 0.3180, this CHP is eliminated

due to the more efficient heat generation by boilers. This elimination requires a signifi-

cant increase in both PV and battery capacity in all houses, leading to a significant cost

increase and emission drop. The smallest overall cost increase (0.01 %) for the relatively

highest drop in emissions (0.16 %) occurs from the first (λc=1.000) to the second point

(λc = 0.900). The installed PV in house 1 reduces here in size (becomes unavailable).

Electricity import is limitedly reduced and electricity sharing and export increases little.
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Figure 5.12: [colour] Major design changes for emissions-cost trade-off for several
values of λc. white diamonds=boiler and airco, grey diamond (green)=available CHP
for house and airco, sun=PV, triangle=battery, black arrow=heating pipe, H=heat
storage unit, small symbols=unavailable. Note that all houses have a grid connection.
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Average house system availability increases from 3 to 10 nines when traded off with

emissions (see Figure 5.10c). Figure 5.13 illustrates selected design changes. Similar

discrete behaviour as in the unavailability-cost trade-off occurs. Since cost is excluded

from the objective function, installed units will often be maximised. Available PV units

and batteries are installed in all houses across the front. Additionally, increased uptake

of microgrid-available CHP units occurs across the front. A 49 % drop in unavailability,

i.e. availability increase of almost 2 nines, with relative small emission increase of 4.9 %

occurs between the first (λe = 0.995) and second point (λe = 0.600). A single microgrid-

available CHP unit is adopted in this latter ‘knee-point’ design.
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(b) λe = 0.600
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(c) λe = 0.300

Figure 5.13: [colour] Major design changes for unavailability-emissions trade-off for
several values of λe. white diamonds=boiler and airco, dark grey diamond (pur-
ple)=available CHP for MG and airco, sun=PV, triangle=battery, H=heat storage

unit, D=dumpload. Note that all houses have a grid connection.

Figure 5.14 illustrates the trade-off of the three objectives in terms of number of nines

in availability (bubble size) for different combinations of cost and emissions, leading to

discrete solutions. A reasonable availability level would be about 4 to 6 nines (dashed

area). The change in slope between iso-availability fronts increases here most and leads

to the highest availability increase for the lowest additional emissions and cost. Note

that cost-optimal design (Scenario II of Chapter 4) is reflected by the three-nine avail-

ability with the highest emissions (far-right three-nine point). The ‘knee-point(s)’ would

be in the area of the far-right points of the four- to six-nine availability levels. The ‘best’

four-nine design leads to an availability improvement of one nine with a cost increase

of 9 % compared to cost-optimal. Emissions are here reduced by 5 %. The only de-

sign change, compared to cost-optimal design, is here an increase of the installed CHP

capacity in house 2 to microgrid-available. The far-right five-nine availability point im-

proves availability with two nines compared to cost-optimal, by increasing cost by 22

% combined with an emission reduction of 11 %. The ‘best’ five-nine design has one
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Figure 5.14: [colour] Bubble chart of three objective trade-off. Cost and emissions
are indicated on axes and the size of the bubbles indicates the number of nines of the

average house electrical system availability. Dotted lines=iso-availability curves.

microgrid-available CHP in house 1, two hot pipelines (1 to 4 and 4 to 5) and batteries

implemented in 4 houses. The five-nine point is, however, relatively more expensive to

increase system availability than the six-nine right-most point. In this six-nine point,

availability is increased by 2 nines compared to cost-optimal, for a cost increase of only

20 %. Emissions are here, however, only reduced by 1 %. This cheapest six-nine design

has two microgrid-available CHP units in houses 1 and 2 and no batteries or pipelines

installed. Electricity sharing and an available PV unit in each house are adopted in each

design. A trade-off between three objectives thus does not determine a single straight-

forward ‘knee-point’ design. The relative importance of objectives/stakeholder interests

determines here the most suitable neighbourhood system design.

5.6.2 Impact of decisions: model robustness

Model robustness is illustrated in this Section through neighbourhood upscaling, sun

availability sensitivity and islanding design implementation requirements.

5.6.2.1 Neighbourhood upscaling

The unavailability-cost trade-off (λe = 0) is scaled up to a 10-house neighbourhood (nh),

see Figure 5.15. Note that a relaxed optcr of 5% is used.4 Table 5.5 illustrates the model

4The results have been obtained using UCL research computing services (socrates.ucl.ac.uk).



Chapter 5. Multi-objective design of residential distributed energy systems 149

-12

-10

-8

-6

-4

-2

0

40 50 60 70 80 90 100

A
v
e
ra

g
e

 h
o

u
s

e
 u

n
a

v
a
il
a
b

il
it

y
 

[l
o

g
1
0
] 

Total annualised cost [kAUD y-1] 

λc=1.0000 

λc=0.2500 

λc=0.0800 

λc=0.0001 

λc=0.2000 
λc=0.1550 

λc=0.1500 

λc=0.2200 

Figure 5.15: Pareto set of unavailability-cost trade-off (λe = 0) for the 10-house
neighbourhood.

Table 5.5: Model statistics for upscaled unavailability-cost trade-off (λe = 0).

Number of houses 5 10 5 10

‘knee-point’ CPU time [s] 2420 663160

Blocks of equations 326 325 Single equations 34 306 95 411
Blocks of variables 130 130 Single variables 24 373 67633
Non zero elements 122 065 338 290 Discrete variables 4131 12 761

statistics. A similar design trend occurs as in the 5-house neighbourhood (Figure 5.10a)

with an increasing number of house-available CHP units, microgrid-available CHP units

and batteries with increasing importance of unavailability as design objective. Note

that the most available point on the Pareto set (λc = 0.0001) has only nine microgrid-

available CHP units in contrast with the expected 10 in each neighbourhood house (i.e.

most available design). At λc = 0 this is, however, not reflected in the average system

availability value. This availability value namely only considers 7 microgrid-available

CHP units as this value dominates any value thereafter due to resolution limits in GAMS.

A house that has a connection with a microgrid with nchp ∈ [0;nh−1] microgrid-available

CHP units has a configuration unavailability.5 GAMS can only differentiate between

values to 10−8-10−9, hence no differentiation can be made between configurations with

more than 7 microgrid-available CHP units. This resolution problem does, however, not

affect design decision-making since an availability of ten nines (reached from λc = 0.0800)

does not make practical sense from a cost perspective within a residential setting.6 Points

beyond λc = 0.0800 only marginally improve system availability for the same number of

nines but require a relative large cost increase. The latter points thus make no practical

5Configuration unavailabilities of 2.403341E-5 (1 CHP), 9.809206E-7 (2 CHP), 5.826789E-8 (3 CHP),
2.133964E-8 (4 CHP), 1.986162E-8 (5 CHP), 1.980247E-8 (6 CHP), 1.980010E-8 (7 CHP), 1.980000E-8
(8 CHP), 1.980000E-8 (9 CHP).

6This might however be required in high reliability uninterrupted power supply facilities.
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implementation sense. The ‘knee-point’ optimal configuration is namely around 4 nines

and represents a design with one microgrid-available CHP unit in the neighbourhood

(λc = 0.2500). Additionally, multiple designs are obtained, especially before λc = 0.2500

where cost still dominates outcomes, that only slightly differ in cost and unavailability

(≤ 3%) but have significant design differences. These differences include one or two

house-available CHP units in the neighbourhood, different locations of CHP units and

pipes, and existence of pipes. This is partly due to the adopted discrete capacity-

availability intervals, and the non-existent relation between location and availability

(see Section 5.7). Note also that CPU times vary drastically between model solutions

with different weighting factors, from 679 s (λc = 1.0000) to 1306890 s (λc = 0.2100).

Upscaling thus incurs some solution challenges (see Section 5.7).

5.6.2.2 Sensitivity analysis

Among the numerous input parameters of the model, deterministic renewable energy re-

source availability, here the sun, shows a high level of uncertainty. Sun (un)availability,

part of the total PV (un)availability, is consequently analysed through percentage in-

creases and decreases from about zero (unavsun-25 %) to about 100 % (unavsun+95 %)

from the current level (unavsun, ref). Average house electrical system unavailability is

then optimised with cost (λe = 0) at λc = 0.2000 for each sun availability level, see Fig-

ure 5.16. Table 5.6 summarises total installed DG unit capacities in the neighbourhood.

Despite a reduction in sun availability, limited PV panels are still installed, comple-

mented by 5 CHP units (4 microgrid-available). Neighbourhood design is thus rela-

tively stable for the reference value (see Figure 5.10a) of sun availability plus and minus

25 %. The number of installed PV units increases with increasing sun availability. Each

house has an available PV unit from (unavsun+30 %) but only 4 microgrid-available

CHP units. Pipelines are never installed and microgrid sharing is always adopted.

Table 5.6: Total neighbourhood unit capacity [kW or kWh] for sun unavailability
levels at λc = 0.2000 (λe = 0). CHP=combined heat and power unit, EST=battery,

PV=photovoltaic unit, ref=reference value of Figure 5.10a.

-25% -20% -10% ref +10% +20% +30% +40% +50% +60% +70%

PV 7.7 8.5 10.5 12.7 12.7 12.7 15.2 15.2 15.2 18.1 18.1
CHP 37.5 37.5 37.5 37.5 37.5 37.5 36.2 36.2 36.2 38.6 38.6
EST 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 7.0 7.0
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Figure 5.16: Unavailability-cost for in percentage varying solar resource availability.

5.6.2.3 Implementation aspects

Since switching to islanding, i.e. disconnecting from the grid, is not taken into account,

comparing both on- and off-grid design unavailability-cost trade-offs (λe = 0) provides

an illustration of the need for component redundancy in the transition from on-grid

to islanding. To ensure supply availability in off-grid mode, the capacity thresholds

for PV units and batteries are adapted (see Appendix I). Figure 5.17 compares both

trade-offs. The dashed lines highlight the availability levels of the first two on-grid

designs points. On-grid solutions dominate off-grid ones. The off-grid ‘knee-point’ is

the second (λc = 0.500) point. This is a design change from two small CHP units

available for accommodating houses (λc = 1.000) to a single larger microgrid-available

CHP unit. To obtain a similar availability level in the off-grid model to the ‘best’
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Figure 5.17: Pareto set of the trade-off between the average house electrical unavail-
ability in the neighbourhood [log10] (nines) with total annualised cost [kAUD y−1] for

on- and off-grid modes of the neighbourhood (λe = 0).
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0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

D
is

ta
n

c
e

 [
m

] 

Distance [m] 

1 

2 

3 

4 

5 

H 

H 

H 

H 

C 

C 

D 

D 

D 

(c) λc = 0.350
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Figure 5.18: [colour] Major design changes for off-grid unavailability-cost trade-off
(λe = 0). white diamonds=boiler and airco, grey hatched diamond (green)=available
CHP for house and AC, dark grey hatched diamond (purple)=available CHP for
MG and AC, sun=PV, triangle=battery, AC=absorption chiller, C=cold storage,

CHP=combined heat and power, D=dumpload, H=heat storage, PV=photovoltaic.

on-grid configuration, i.e. an availability level around 4 nines (between the dashed

lines in Figure 5.17), three microgrid-available CHP units would be required in the

neighbourhood (off-grid: λc = 0.315), compared to one in the on-grid configuration.

These additional units require a cost increase of about 30 % compared to on-grid to

ensure component redundancy and system availability when allowing the system to

island. Figure 5.18 illustrates the discussed off-grid designs and Table 5.7 summarises

total installed neighbourhood capacities. Note that in the discussed points, cost still

dominates, which makes it cheaper to dump excess electricity rather than invest in

batteries. Additionally, there is a focus on dispatchable generation through CHP units.

This leads to a heat generation surplus, which is mostly used for cooling generation with

absorption chillers and limited heat transfer to other houses.

Table 5.7: Total neighbourhood unit capacity [kW] for off-grid designs at various λc
levels for unavailability-cost trade-off (λe = 0). B=boiler, CHP=combined heat and
power unit, D=dump load, HST=heat storage, PV=photovoltaic unit. No batteries

are adopted and microgrid operation is always adopted.

PV CHP AC B airco HST CST D

λc = 1.000 6.6 5.2 3.6 20.5 7.4 31.3 8.4 4.1
λc = 0.500 7.8 8.0 2.3 24.3 8.1 32.0 4.9 4.3
λc = 0.350 6.4 16.1 3.5 20.5 7.4 31.6 7.8 3.9
λc = 0.315 5.4 24.1 5.6 14.6 5.1 30.2 16.9 5.2

5.7 Discussion and generalisation of approach

Several decisions, where alternatives exist, have been made throughout the optimisation

process to highlight the framework capability. The model is, however, general and
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flexible to be adapted to different requirements as detailed in Section 4.6. Table 5.8

summarises examples of specific adaptations that can be made at various modelling

stages for the multi-objective approach, in particular the unavailability aspects.

Table 5.8: Adaptability and flexibility of the developed framework.

Stage Adaptations & flexibility

Implementation - capacity-availability and location-availability relation
- different and more threshold capacity steps
- boiler and CHP together allowed (smoother emissions-cost curve)
- different objective quantification
- thermal energy supply system availability
- inclusion of small-scale wind turbines
- different available technology combinations

Case-study - availability data sensitivity analyses
- threshold capacities sensitivity analyses
- storage implementation

Optimisation - stochastic optimisation including stochastic sun resource availability
- dynamic Markov chain

Results - role of technologies in trade-offs
- impact of availability inputs on results
- different levels of detail in result presentation

Different capacity-supply availability implementations can be considered, either a sin-

gle discrete step as adopted in this Chapter (single step in Figure 5.20), more refined

steps, or, a continuous relation. The current approach led to discrete jumps in solutions

throughout the Pareto sets. In practice, the probability that an installed component

with certain capacity cannot supply the load in each hour throughout the year (supply

availability) comprises a more gradual relation with installed capacity. The shape of

this curve can be determined by a load model for each house (house-level technologies)

and for the neighbourhood (microgrid-available technologies), such as a load duration

curve (LDC) of hourly demand profiles. A LDC represents each hour by its peak de-

mand [kW] [55, 56, 282]. These hourly peak demands are then rearranged in descending

order. Combining this load relation with a certain installed generation capacity enables

to assess the number of hours throughout the year a certain demand level will exceed a

generation capacity level, i.e. loss of load indices. Figure 5.19 illustrates both a more

realistic and a simplified linearised LDC, adapted from [55, 56, 282]. For a certain in-

stalled generation unit capacity level (CL), the hourly load can exceed installed capacity

for a certain number of hours (t). Dividing this number of hours of load loss throughout

the year with the total number of hours in a year results in the probability that the unit

cannot supply the load (supply unavailability) [282]. From the point where the installed

capacity is able to meet the load at each time t (plus a potential reserve margin, RM),
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the supply availability becomes 100 %. Figure 5.20 translates the simplified linearised

LDC into a relation between supply availability and unit capacity level.
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Figure 5.19: Load duration curves to determine the probability that a generation
unit of capacity level (CL) cannot supply the load during a certain amount of hours

throughout the year (∆t), adapted from [55, 56, 282]. RM=reserve margin.
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Figure 5.20: Illustration of capacity steps of the relation between installed capacity
of technologies [kW] and electrical supply availability [%].

The adopted availability approach does not yet accommodate for fully optimised ca-

pacity values since each point (often through threshold capacities) on the Pareto set in

Figure 5.10 represents the dominant point of a range of designs where the capacity of

the installed units increases (more expensive) but has not reached the next capacity-

availability threshold. For example, the last point on Figure 5.10a represents the sit-

uation where the maximum availability level is achieved. For λc = 0, however, cost is

no longer an issue. The installed capacity of CHP units will therefore be maximised

without an improvement in availability level. The last illustrated points on each set

thus dominate any designs thereafter. Availability is currently also only related to the
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type and size of units and not yet to their location in the neighbourhood. This could be

included by incorporating energy network availability through cable length-dependent

failure rates and their contribution to system configuration availability.

The obtained results present relative ordering of designs. When varying capacity thresh-

olds (see Section 5.4.3.1), the obtained trends in Figure 5.10 remain the same. It is only

the relative spreading of the points that will either reduce (less additional cost for the

next availability step) or increase (more additional cost for the next availability step)

with decreasing or increasing capacity thresholds, respectively. The current capacity

thresholds are a first step towards the introduction of a more gradual relation between

capacity and availability (and consequently emissions), similar to that which already

exists between capacity and cost. A gradual relation is desired to obtain a continuous

Pareto curve or a solution set with smaller gaps. Other jumps in the obtained Pareto

sets in Figure 5.10 are due to design decisions and technology restrictions (see Table 4.6).

Allowing, for example, a boiler to complement CHP units could avoid discrete emission

and cost jumps where the smallest required CHP unit is replaced by a boiler.

Both security of supply and sustainability objectives could be quantified differently. For

example, total neighbourhood unavailability or maximum neighbourhood unavailability,

and primary resource utilisation or life cycle emissions, respectively, could be minimised.

Furthermore, additional technologies and services can be included. Unavailability of the

thermal energy supply system, for example, could be modelled similarly to the electrical

system approach with unavailability of technical components and interactions. Alter-

native technologies and more or different system configurations could also be included

through the consideration of, for example, wind turbines.

Currently, a limited number of electrical system configurations has been considered.

Increasing (i) the number of technologies, and thus configurations, (ii) the number of

neighbourhood houses, (iii) the number of potential technology combinations, and (iv)

the number of threshold capacity intervals, all increase the degrees of freedom of the

system. As already pointed out in Section 5.6.2.1, increasing complexity leads, however,

to resolution problems. Additionally, increased computational efforts are incurred. This

is due to (i) a binary-dominated logic-gate implementation, and (ii) the existence of

many system designs that are equal in availability (due to the threshold being equal for

each house) but only slightly vary in cost or location of units. Note that implementing
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a gradual relationship between supply (total) availability and cost implies implement-

ing supply (total) availability as a variable. This might introduce non-linearities in the

model through variable multiplications between configuration variables (Bcon,i) and con-

figuration availability value variables (uacon,i). These non-linear relations either need

to be linearised, or, alternative implementation and solution techniques need to be con-

sidered to ensure efficient optimisation processes. Each system configuration is based

on more than just a discrete combination of house technologies, i.e. neighbourhood

level interactions and coupling between batteries and their charging sources. These in-

ternal interactions limit implementation possibilities within MILP environments. The

binary logic-gate approach is able to handle this behaviour but at the cost of increased

complexity with increasing degrees of freedom.

Selected sensitivity analyses have already been conducted with respect to upscaling and

solar resource availability. Component availability data and threshold capacities can,

however, experience uncertainty. Renewable energy resource availability is especially

unpredictable. This could be incorporated through the inclusion of variability in the

form of probability density functions of hourly available sunshine. Ultimately stochastic

optimisation approaches could be employed to deal with this (see Section 2.2).

5.8 Summary and conclusion

A generic MILP approach for multi-objective residential energy system design has been

developed. The base model of Chapter 4 was hereto extended to enable trading off

three objectives in the design process. The included minimisation objectives are aligned

with the energy system objectives of competition, security of supply and sustainability

as total annualised cost, average house electrical system unavailability and annual CO2

emissions, respectively. The model has been applied to various case-studies and analy-

ses, highlighting its flexibility and capability. The tri-objective approach ensures DES

applicability within central power systems. Apart from a multi-faced engineering design

that ensures DES technical and economic viability within a wider policy framework,

DES still require an adequate regulatory framework to ensure their lawfulness and their

widespread adoption. Chapter 6 builds further on the developed base model, extending

it to an interdisciplinary approach that facilitates DES regulatory framework analysis.



Chapter 6

Regulatory issues in residential

distributed energy system design

A framework that considers regulatory aspects of distributed energy system (DES) de-

sign is developed (fourth research question). The Chapter 4 model is hereto extended

to facilitate regulatory framework analysis throughout the design process by identifying

quantifiable relations between design, organisation and regulation. Parts of the work in

this Chapter have been disseminated into the following publications [2, 36, 89].

6.1 Introduction

6.1.1 Regulation as driver for decision-making

Distributed energy systems (DES) have various unique technological and organisational

characteristics, which are not readily accommodated for in conventional power system

structures and regulation [15, 317]. Hence DES design projects do not only require

‘optimal’ engineering system design, but also ‘optimal’ regulatory design to fit in with

conventional power system topology and ensure their lawfulness [44, 49, 241]. Regulation

is, however, lagging behind DES technological and economical developments. Regulatory

framework aspects relate to system design but are not always readily quantifiable. The

question then arises what the ‘best’ design is whilst taking into account regulatory

aspects. This provides an opportunity to develop an optimisation based approach.

157
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6.1.2 Chapter overview

This Chapter aims to develop an approach to quantitatively assess the interaction be-

tween engineering and regulatory DES aspects through optimisation based techniques

as an important and determining driver for DES design decision-making. Section 6.2

summarises both conventional system regulation, and regulatory developments and bar-

riers for DES to shape the research question. The problem and framework are described

in Section 6.3. Section 6.4 details the model, building further on the base model of

Chapter 4, which is applied to a case-study in Section 6.5. Section 6.6 illustrates results

to end with a general discussion (Section 6.7) and conclusion (Section 6.8).

6.2 Background on regulatory frameworks

6.2.1 Regulatory frameworks of distributed energy systems

A regulatory framework encompasses laws, policies and rules to sustain and establish ad-

equate operational structures [15]. Since DER and DES typically connect to low voltage

distribution networks (see Section 1.1.2), their structure and interactions thus directly

interfere with conventional agents at various levels [15, 89]: (i) introducing generators

and bottom-up/bi-directional power flows at the low voltage distribution level (‘pro-

sumers’), (ii) connecting to the distribution network, and (iii) participating consumers

are served under retail agreements. DES thus fundamentally change the conventional

structure of power systems, including the concept of consumers as passive receivers of

energy services. An adequate DES regulatory framework and a restructuring of con-

ventional power system regulation are thus required to accommodate their unique char-

acteristics [39, 317]. Currently, only limited regulation exists applicable to distributed

generation units (DG), such as PV units. The regulatory environment of DES is even

less developed. The DES regulatory environment namely depends on various aspects

that fall under three main themes [45, 318], see Figure 6.1. Consumer-agent interactions

and lawfulness aspects are the focus of this work:

1. The lawfulness of its entity, i.e. who owns and operates the infrastructure and what

requirements does it need to meet in order to be able to connect to the central

network in terms of size (DG units and customer portfolio) and technologies?
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2. Interactions between DES, their consumers, and involved agents, i.e. are the con-

ventional service territories undermined and how do conventional power system

agents fit in? How will tariffs and revenues be set for fair distribution of costs and

benefits among agents? Who are the involved agents?

3. DES combine activities of multiple conventional power system agents. Some of

which require regulatory oversight (networks) and others are competitive services

(retail/generation). How does the regulator need to intervene herein? Does a DES

provider qualify as a licensed retailer that must adhere to requirements of billing,

supplier of last resort, dispute resolution and information transparency? What

about DES incentives and revenue regulation for involved agents?

Regulatory environment  
microgrids and DES 

Customer-agent 
interactions 

Service territories 
Interconnection procedures 

Technical connection requirements 
Tariffs/revenues 

Regulatory oversight 

Choice of oversight 
Method of oversight 

Interactions with agents 

Lawfulness 
Size  

Ownership 
Grid connection 

Figure 6.1: Schematic of regulatory environment of DES, adapted from King [45].

6.2.2 Regulatory environment of conventional power systems

To analyse DES regulatory frameworks, first current liberalised power system regulation

has to be presented as it applies on residential consumers and DES. Examples of the

National Electricity Market (NEM) in Australia serve to illustrate the framework of

liberalised systems generally. Note that power system regulation refers to the regulation

of the electrical supply system since thermal energy is generally adopted at the consumer

level, with the exception of district thermal networks (see Sections 1.1.2 and 6.2.3).

Liberalised power systems have structurally and legally separated their power system

activities (unbundling) (see Section 1.1.1), resulting in four independent power system

agents: generators, transmission networks, distribution networks and retailers [1]. Trans-

mission and distribution are natural monopoly services since network duplication is not
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economically viable [1]. Networks are thus independent regulated monopolies that are

prohibited from engaging in other activities and are subject to economic regulation.1

Distribution networks, in particular, generally operate and connect consumers in des-

ignated service areas. Generation and retail, in contrast, are mostly fully competitive

energy services [1]. Typically, full retail contestability is aimed for, i.e. the free choice for

consumers to select and switch their energy provider (retailer) [13]. Power systems are

governed by State-specific electricity acts and rules, often complemented by customer

protection requirements [1, 13]. Residential consumers are here conventionally passive

receivers of electricity through a top-down system.

Access and connection of generators to networks is conventionally regulated. Generally,

non-discriminatory third party grid access is strived towards to facilitate competition

and not instigate discrimination [1]. Additionally, all agents that make use of network

services, such as generators and consumers, pay ‘use of system’ and network connection

charges. Connections of generators to networks are subject to registration requirements

with central energy markets, depending on their installed capacity, location and use-

age [319, 320]. Small-scale generation units with a capacity below about 5 MW (micro

and mini in Table 1.1) are generally exempt from this requirement [47]. In the NEM, for

example, exempt small-scale units can go into contractual agreements with a retailer or

other consumer at the same connection point to sell their locally generated electricity at

an agreed price through, for example, a feed-in tariff [321]. This bottom-up power injec-

tion, however, requires network upgrades. Distribution networks are thus often inclined

to bound residential electricity export and charge for grid connections [1, 39].

Retailers are agents that engage in the business of purchasing electricity on the wholesale

market and selling this to consumers through financial contracts [1, 322]. A retailer is an

intermediary that operates through virtual/financial agreements, not through ‘physical’

energy exchanges. Under the National Energy Retail Law in the NEM, and within

most liberalised power systems, retailers must be either authorised (licensed), or, be

granted an exemption from the authorisation requirement to lawfully operate [1, 323].

An authorised retailer is obliged to comply with retail laws in terms of small consumer

1Economic regulation frames services that not involve reasonable conditions for competition, i.e.
networks. Regulation is required to restrict monopoly agents to maximise their profits in the short
term by raising prices and to limit their infrastructural investments to below the optimum required
(underinvestment). Economic regulation therefore imposes conditions on prices and revenues to align
the objectives of the monopoly with global social welfare maximisation [1].
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protection, dispute resolution, retailer of last resort and reporting obligations [1, 322,

323].2 Exemptions can be allowed in cases where the retailer provides complementary

services to consumers (i) that already purchase electricity from an authorised retailer,

(ii) that is part of a bundled service where energy supply is an insignificant part of the

contractual agreement, or, (iii) that are combined in a limited consumer group at, for

example, a specific site (see Section 6.2.3) [322, 323].

6.2.3 Barriers and novel regulatory developments

Liberalised power systems are based on aspects that warrant competition, sustainability

and security of supply. Several aspects, however, form a major barrier for the integration

of DES. Table 6.1 provides a brief overview of conventional power system aspects, their

barriers for DES and required regulatory developments. Increased consumer participa-

tion and awareness already initiated regulatory developments on several levels to enable

novel technologies, smart network behaviour and consumer emancipation;

Interconnection requirements and standards for small-scale DG within distribution net-

works are being developed and adopted to ensure safe operation, adequate power quality,

network stability, connection practices, protection schemes and metering [49, 64, 324].

The IEEE 1574.3 standard is the most established for DG and the IEEE 1574.4 for

island microgrid operation [49, 64, 324]. Installed DG capacity, registration and discon-

nection requirements, and bi-directional power flows also have to be regulated. In most

conventional power systems, any form of grid-connected DER is, namely, not allowed to

island and has to be shut off in case of central system outages [49, 64].

Furthermore, alternative energy seller models are being established, driven by increasing

energy prices, consumer awareness and the technological matureness of DER [325–328].

Alternative energy sellers are subject to case by case exemptions and do not necessarily

allow for full retail contestability nor provide consumer protection, in contrast with au-

thorised retailers. Two NEM models are onselling and power purchase agreements [322],

see Figure 6.2. Onsellers purchase bulk energy from an authorised retailer to sell it on

2Small consumers are defined in the NEM as having a yearly electricity consumption less than 100
MWh [322]. Retailer of last resort schemes ensure continuity of energy supply to consumers in the event
of retailer bankruptcy [323].
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Table 6.1: Main regulatory practices in conventional liberalised power systems and DES barriers [2, 5, 15, 39, 44, 49, 89, 241, 329–334].

Conventional liberalised power system Barrier for DES adoption Required regulatory aspects
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Competitive retail and generation service Not always (full) retail contestability or competitive supply service Organisational framework
Unbundling of power system agents DES is new power system agent that engages in generation, network and retail

activities, combined with consumers in a single entity. DES thus have no clear
separation of components and interactions, agents and ownership

Structural design

Non-discriminatory third party access Connection procedures to grid, lawfulness, structure, size and registration re-
quirements needed

Environmental standards No local emission and efficiency standards
Integration of renewables Small-scale unit requirements, capacity and export bounds, lack of govern-

mental support schemes and high upfront cost
Operational standards Specific operational characteristics that lead to safety, voltage, bi-directional

power and frequency challenges
Dependability standards Customisable dependability levels: how determined and who is responsible?
Integration of new technologies restricted Lawfulness in terms of size, ownership, organisation and registration require-

ments needed
Standardised responsibilities Unique characteristics and structure tailored to specific requirements hindering

standardisation
Consumer protection No competitive retail environment (?), often independent exempt businesses

O
p
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n
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n
d
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ra
ct

io
n
s Networks Potential interference with designated consumer areas and property rights of

regulated monopoly networks. How will networks generate revenue from a
connection with DES that has a large amount of self-generation and energy
sharing but not much energy import?

Remuneration and benefit schemes
for involved agents

Upgrades, bi-directional power flows, islanding authorisation needed Connection standards, operational
standards and protocols

Passive consumers Internal and external DES energy sharing schemes, consumer protection re-
quirements and consumers become active through engaging in other power
system activities

Tariff setting

Generation Inclusion of small-scale generation, often based on renewables, and storage
plus requiring a back-up grid connection

New power system agent ‘prosumer’

Retailers Retail protection, prosumer-based retail agreements, smart metering service
schemes required and data protection needed

Novel energy selling frameworks
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Figure 6.2: Alternative energy selling models in the NEM, adapted from [322].

to a defined cluster of consumers. Onselling is often adopted in multi-dwelling devel-

opments, such as apartments and commercial centres. Power purchase agreements, in

contrast, are an ownership-lease agreement between a consumer and an alternative en-

ergy seller in which the energy seller takes on the upfront investment, installation and

on-going operation and maintenance costs of a DG unit on the premise of the consumer.

Energy generated by these units is, however, owned by the energy seller. The participat-

ing consumer can purchase this energy back at reduced tariffs. PV units are the most

common DG unit under this model. Other practices include aggregator schemes, energy

service companies or various other ownership and business models (see Section 6.2.4).

Increased DER uptake is challenging traditional retail models [322]. Consumers with

DG units typically do not generate enough electricity to be fully self-sufficient, requiring

additional contracts with authorised retailers. Lower energy volumes purchased, how-

ever, could make these agreements less profitable for authorised retailers. Opening up

the retail market to alternative energy sellers increases consumer choice and variety but

must be balanced with adequate consumer protection and retail contestability [323].

Other recent developments are governmental incentives to encourage small-scale (re-

newable) energy generation units [29], for example, feed-in tariffs for residential DG

electricity export to the central grid, or, subsidies for DG investment. Some States have

additionally adopted frameworks for the sharing of thermal energy in district heating
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or cooling networks [241, 335]. Furthermore, residential cooperatives are being estab-

lished where residential consumers can participate in purchasing a share in a central

renewable energy generation unit, such as a wind farm, allowing them to virtually3 buy

back the energy it generates at advantageous tariffs [336]. Lastly, there is a growing

interest in sustainable communities that are powered through co- or tri-generation, sup-

plying both thermal and electrical energy to its participating consumers. These new

DES developments, however, still face major regulatory barriers [49, 89].

6.2.4 Regulation in distributed energy system design optimisation

DES regulatory design is a novel and emerging research area. The majority of the lim-

ited research is qualitatively focussed on electrical DES. Two main qualitative research

streams are (i) barrier-studies and (ii) framework and business model studies. Quanti-

tative research aspects are also limited.

6.2.4.1 Barrier-studies

Barrier studies assess conventional power systems to identify barriers and enablers for

the uptake of DES. Some of the most common regulatory barriers were summarised in

Table 6.1 [2, 5, 15, 49, 89, 241, 331–334]. The Berkeley Laboratory, for example, has con-

ducted successive studies regarding the assessment of electrical DES at an international

level under the IMAGINE reports [334]. The studies highlighted the underdeveloped

regulatory aspects of electrical DES. Policy recommendations to establish demonstra-

tion programs were made based on lessons learned from researched sites. A specific DES

barrier analysis of the Singaporean legislative framework was presented by Wouters [89].

Policy drivers for the integration of microgrids within regional electricity markets were

demonstrated by Van Hende and Wouters [2]. Soshinskaya et al. [331], moreover, pre-

sented a study of common barriers to and success factors for widespread microgrid

implementation based on the study of 13 microgrid case-studies.

3Virtual interactions refer to monetary interactions rather than real physical flows of electricity.
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6.2.4.2 Framework and business model studies

King [45, 337] performed the first major work to date regarding regulatory environments

for DES. He surveyed State regulatory officials across the United States regarding DES

regulatory requirements. The most important regulatory difference between electrical

DES and conventional power system practices was identified as ownership and business

models (money making) rather than technical installation and operational features [45,

337]. He presented hereto five ownership business models, see Table 6.2.

Table 6.2: DES ownership business practice models as presented by King [45, 337].

utility model the local consumer network is owned and operated by the local distribution utility
that enables consumer cost reduction and high reliability of supply

landlord model the local network is installed and managed by a single third party, which provides
consumers with electricity and/or heat through a contractual lease agreement

co-op model the local network is cooperatively owned and operated by various consumers or
third parties to meet their own local electricity and/or heating demands

customer-
generator model

the local network is owned and operated by a single consumer or third party to
meet the electricity and/or heating demands of itself and its neighbourhood

district heating
model

the local network is owned and operated by an independent third party, which sells
electricity and/or heat to consumers that can voluntarily join under a contractual
agreement.

The work of King [45, 337] was conducted within the same research group as earlier work

from Morgan and Zerriffi [338]. Morgan and Zerriffi [338] conducted an informal survey

of utility commissioners regarding the regulatory environment of non-utility microgrids.

A cooperative microgrid, established by consumers, was concluded to face less imple-

mentation barriers but the question remained as how to regulate these so-called ‘co-ops’.

Tongsopit and Haddad [339], in their turn, looked into interconnection issues between

microgrids and central infrastructure in the form of a property rights problem, i.e. con-

flicts in property and consumer allocation, and the need for institutional changes. Two

emerging property right frameworks were analysed to potentially overcome connection

issues: a community choice aggregation and public power cooperatives/municipalities.

Bunning [340], finally, looked into the governance of low carbon urban systems by pre-

senting barriers, enablers and business models to incorporate various governance models.

A particular research focus are ownership and business models for CHP systems with

potential district heating, either through researching countries that have already adopted

CHP systems, or, by developing theoretical models. Fuel-cell-based micro-CHP systems,

for example, were studied by Schroeder et al. [341] within a European energy policy

setting. The interdependency of European Union policy and CHP ownership structures
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was analysed through three case-studies by looking at support schemes, investment

risk and certain defined ownership arrangements. Pantaleo et al. [342], furthermore,

provided a thorough analysis of energy service company (ESCO) business models, related

ownership, investment models and service contracts, with a focus on biomass heating

and CHP generation in Italy. CHP with district heating was studied by Kelly and Pollitt

[241] focussing on the current United Kingdom framework and ESCO’s. They defined an

ESCO as ‘any company that offers expertise or service for the supply or use of energy ’.

ESCO’s mostly combine several stakeholders to spread financial risks of projects.

6.2.4.3 Quantitative studies

Quantitative studies have been conducted in several areas, mainly with regard to eco-

nomic viability and tariffs. Firestone et al. [99], for example, looked at electricity tariff

structures and their impact on the widespread adoption of DG. Additionally, aggregators

and virtual power plants have been researched, which are based on financial contracts.

These structures virtually combine and manage geographically dispersed DG units or

prosumers within a single entity through virtually purchasing energy they generate and

either selling this energy to other prosumers within the same scheme or trading the

aggregated energy in the central electricity market [330, 343, 344]. Studies regarding

the profitability of commercial aggregators have been conducted through optimisation

by, for example, Vatanparvar et al. [343]. The profitability of a rule-based commercial

aggregator subject to tariffs was researched in a residential microgrid setting whilst trad-

ing off several costs. Faruque and Abdullah [330], furthermore, looked at profitability

of residential aggregators as new market entities. Negotiating capabilities of aggrega-

tors were taken into account together with pricing rules. Operational optimisation of

aggregator schemes has additionally been analysed by Nguyen and Le [344].

Energy management and operational research that includes policy and regulation was

presented by, for example, Sáenz and Celik [345]. They researched multi-objective op-

erational optimisation of technologies within microgrids under different operational and

market policies: (i) the microgrid is solely used to serve local demand and it may only

import electricity from the grid, and (ii) the microgrid is allowed to actively participate

in the energy market by exporting electricity to the grid. Phillips [346], furthermore, pre-

sented an approach for microgrid control, operation and management. Several conditions
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were analysed to aid decision-making for microgrid operational policy setting. Multi-

agent control of microgrids, including market aspects, has been addressed by Dimeas

and Hatziargyriou [347] and Hatziargyriou et al. [348]. Bidding strategies in community

microgrid markets and aspects of community engagement models have additionally been

introduced by Jalia et al. [349]. Furthermore, an agent-based market model for the com-

mercialisation of small microgrids was proposed by Kim and Kinoshita [350]. Certain

defined ownership schemes were here analysed. Lastly, an operational MILP model for

fair cost distribution between participants in a smart building was presented by Zhang

et al. [87] using the lexicographic minimax method.

The previous models focussed on market based aspects, such as bidding and aggrega-

tors, and operational optimisation, including energy management schemes. Sometimes

certain established operational or ownership policies were analysed. No DES design

aspects were, however, included. DES design optimisation including regulatory aspects

is thus limited. Regulatory constraints have, however, been included in several forms

throughout literature, see for example [95, 247]. Regulation namely influences energy

tariffs, governmental support schemes (e.g. feed-in tariffs and subsidies), bounds on

maximum DG capacity in residential settings, export allowances and emission taxes.

Zachar et al. [190], for example, looked at the impact of policy decisions on optimal

microgrid design at minimal energy supply cost through an MILP approach. Policy

decisions regarding emission taxes, emission reduction targets and minimum system au-

tonomy were researched through sensitivity and scenario analyses for a grid-connected

heat-power system. Aki et al. [351], furthermore, focussed on fuel cells for domestic

purposes in the Japanese market. The design of a regional hydrogen energy interchange

network was optimised for a small cluster of 8 houses. Optimisation was employed to

analyse the design trade-off between CO2 emissions and costs. Several discrete owner-

ship and management structures were qualitatively proposed: (i) units are owned and

managed by accommodating houses, (ii) units are owned by accommodating houses and

managed by an organisation, (iii) equipment is owned by houses while networks are

owned and managed by an organisation, and (iv) units are owned and managed by an

organisation. An ‘organisation’ was defined as an energy service provider or a gas utility.

Lozano et al. [60], then, focussed on MILP cost-optimal design of a combined heating,

cooling and power system under legal constraints. The considered constraints focussed

on co-generation operational schemes in the Spanish market. The effect of established
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schemes on system design was analysed for a cluster of 500 buildings. Zhang et al. [86],

in their turn, researched the link between optimisation of microgrid design aspects (unit

selection, siting and sizing), optimal electricity transfer tariffs and equal cost sharing

between participants using Game Theory within an MI(N)LP model. Lastly, Hawkes

et al. [352] presented a mixed-integer framework for the design and unit commitment

of a CHP-based microgrid under various performance metrics, identified by commercial

deployment pathways. These pathways focussed on investment decisions by stakeholders

and where first introduced in qualitative studies by Watson [353] and Sauter and Watson

[354] as: (i) plug-and-play, i.e. owners of premises independently invest in microgenera-

tion, (ii) company control, i.e. consumers are more passive and will receive energy from

a site governed by an ESCO or supplier, and (iii) community, i.e. a group of different

stakeholders collectively owns and operates the units.

6.2.4.4 Research gaps

Regulatory DES research has been mostly qualitatively focussed, highlighting barriers

and business models. Quantitative models, in contrast, focussed mostly on operational

optimisation aspects under certain business models and policies, including aggregator

profitability, tariff setting and internal market operation. Design optimisation whilst

explicitly taking into account regulatory aspects is very limited and has been mainly

touched upon for isolated aspects, such as certain defined ownership schemes of energy

networks [351] or CHP systems [352]. Optimal design of DES including analysis of

regulatory framework aspects has not been developed and will be tackled in this Chapter.

6.2.5 Summary and discussion

DES regulatory frameworks entail various aspects related to lawfulness, energy, and

monetary interactions and oversight. Frameworks for DG units have already been de-

veloped within conventional power systems but major DES barriers remain due to their

unique structural and operational characteristics. This Chapter aims to bridge the gap

between engineering and regulatory aspects of residential DES design through a decision-

making approach based on mathematical optimisation. DES regulatory frameworks are

intertwined with and determined by their operational and structural organisation [241].
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Regulatory frameworks can therefore be analysed using organisational aspects within a

design optimisation model. Framework aspects are, however, not all readily quantifiable.

Several more readily quantifiable key organisational framework features have, neverthe-

less, been analysed and discussed throughout the literature reviewed in Section 6.2; e.g.,

ownership schemes, business models, tariffs and remuneration, involved stakeholders, en-

ergy sharing agreements, consumer integration as well as physical (microgrid) and virtual

(aggregator) interaction schemes. Based on the above features, six key organisational

framework factors have been identified for incorporation in the developed model. The

characteristics and barriers, presented in Figure 6.1 and Table 6.1, encompass structural,

interaction and operational aspects related to DES regulatory requirements and frame-

works: type (lawfulness), scale (connection and registration requirements, lawfulness),

ownership (lawfulness and interactions), tariffs (remuneration of agents and interac-

tions), choice (lawfulness and interactions) and objectives (stakeholder interests, central

system objectives). The identified factors are detailed and summarised in Table 6.3.

6.3 Method

6.3.1 Problem description

Depending on the DES organisational structure, each regulatory aspect (see Section 6.2.1)

will be defined differently, which in its turn determines the required DES regulatory

framework [241], see Figure 6.3. DES can thus be organised in various configurations

that are characterised by factors. The factors analysed in this work have been defined

Organisational structure 

Regulatory framework 

Lawfulness Interactions Oversight 

Type Scale Ownership Tariffs Choice Objective 

Figure 6.3: Factors and aspects that determine DES regulatory frameworks.
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Table 6.3: Identified regulatory framework factors.

Type DES can appear in two types based on the nature of energy interactions; (i) technical
physical or (ii) commercial virtual;
(i) A physical DES has infrastructure, such as a control unit, poles, wires and pipelines
that facilitate energy flows. Participating consumers within a geographically clustered
area can share generated energy and present themselves as a single entity to the central
system through a point of common coupling.
(ii) A virtual DES is based on contractual financial agreements. No physical infrastruc-
ture for local energy sharing is considered, but consumers can trade locally generated
energy with, for example, a virtual aggregator. Participating consumers do not need to
be geographically clustered in this arrangement.

Scale -
Degree of
centralisa-
tion

DER can be installed on several scales within DES; either individual houses can install
units or a larger DES-based unit can be installed. These are referred to as a decentral
household and central DES scale, respectively. Alternatively, combinations of both can
be installed, i.e. hybrid scale.

Ownership Ownership determines who bears the costs related to DES investment, operation and
maintenance as well as who owns the locally generated energy. Ownership can be imple-
mented based on discrete schemes or based on a share. Either consumers individually or
jointly own and operate the system or a third party does. In case of third party owner-
ship, consumers are served under contracts. Third party owners could be, for example,
an ESCO, a distribution system operator or a retailer. Alternatively, hybrid ownership
arrangements could also be installed between consumers and (a) third part(y)ies.

Choice
and flexi-
bility

Since liberalised power systems mostly require full retail contestability, DES could be
assessed based on the flexibility and choice of individual consumers to opt in or out
agreement without affecting its operation and design. Consumers may, namely, indi-
vidually bear more cost to attain the cheapest overall DES design. This relates to less
flexibility, choice or equal cost sharing of the latter consumers since their participation
is key for DES viability. Furthermore the question arises whether and when households
have the opportunity to opt in or out; at the end of a contractual agreement or with a
change of inhabitants? What about the ownership of the house, i.e. rental or owned? In-
dividual choice of consumers – although not readily quantifiable – presents an important
assessment of optimal organisational structures.

Tariffs Any form of DES energy interactions – between individual consumers or individual con-
sumers and a third party, physical or virtual – has a related tariff. These can be central
energy tariffs, local energy sharing tariffs or third party tariffs. DES internal sharing tar-
iffs might lead to additional costs for individual consumers, or, potential incomes. Several
tariff structures can be adopted from flat usage tariffs ($/kWh) to capacity payments
($/kWp) or even time of use tariffs [99].

Objectives,
i.e. stake-
holder
interests

Participating stakeholders will affect the choice of implemented framework. Multiple –
often conflicting – stakeholder interests will need to be balanced. Stakeholder interests
might be financial, technical or environmental in nature and ideally ensure conventional
power system objectives are met (see Section 1.1.3). A financial objective can be the
DES design that leads to the lowest overall cost for participating consumers. Consumers
might, however, be willing to pay more to ensure dependable energy supply or energy
supply with reduced greenhouse gas emissions. Alternatively, network operators might
favour DES development in a neighbourhood to ensure dependability standards instead
of upgrading network infrastructure, to complement its system.
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based on the literature analysis, the ease of quantification and their potential to impact

DES design as: (i) type, (ii) scale, (iii) ownership, (iv) choice and flexibility, (v) tariffs,

and (vi) objectives, see Figure 6.4. The six identified factors can take on several identi-

ties/configurations and can be measured differently within the model as summarised in

Table 6.4.

Organisational 
structure DES Type 

Scale 

Ownership 
Choice / 

flexibility 

Tariffs 

Objectives 

Figure 6.4: DES regulatory framework factors.

Table 6.4: Identities and model measures of regulatory framework factors.

Framework factors

Type Scale Ownership Choice Tariffs Objectives

Identities

Virtual Decentral Neighbourhood Equal cost sharing Internal trading Cost
Physical Central Third party Retail choice Central Emissions
Hybrid Hybrid Hybrid Flexibility Feed-in Availability

Model measure

Structure Structure Structure/Input Output/Objective Input/Structure Structure/Output

6.3.2 Optimisation framework and model requirements

The framework factors are integrated into the developed MILP model (see Chapter 4).

In addition to the model requirements of Chapter 4 (see Section 4.2.2), regulatory aspect

inputs are required that can help to determine regulatory outputs. In the first instance,

the initial single cost objective is analysed to illustrate the methodology, i.e. minimising

total annual energy cost of a neighbourhood to meet its yearly demands under various

constraints. Figure 6.5 illustrates the adopted methodology. Framework factors are

translated into quantified proxies4. These proxies can either provide new input parame-

ters and allow for parameter sensitivity analyses, change aspects of the model structure

by introducing new objectives or constraints, or, can use a model output to assess the

relative gain in a factor depending on the optimised configuration, see Table 6.4. The

4A proxy is a figure, which is used to represent the value of or serve as a measure for something.
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analysis of changing inputs and model structures on optimal residential DES design

can facilitate decision-making to identify the ‘best’ regulatory framework aspects for a

certain DES application.

Proxy 
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Figure 6.5: Regulatory framework factors implementation methodology.

6.3.3 Model assumptions and decisions

Modelling complex systems requires implementation decisions and assumptions to set

boundaries on the system [82, 106, 107]. The developed model follows the same assump-

tions as the base model, see Section 4.2.3, complemented by:

• Residential DES can take on various forms based on the nature of their con-

sumers [330]. Here a neighbourhood cluster is researched with consumers that

own their houses and consider investing in a DES. Individual houses, or the DES

as a whole, can engage in purchasing and selling energy, leading to costs or incomes

for individual houses and the neighbourhood as a whole.

• Rather than looking at discrete ownership schemes, a continuous household own-

ership share parameter is adopted. This allows flexible decision-making in deter-

mining overall and optimal ownership of DES units and infrastructure.

• In the first instance, only physical energy integrated DES structures with several

ownership and scale categories are analysed under cost minimisation.
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Annualised operation and a yearly planning horizon are adopted for an average day (24

hours) in three seasons, i.e. summer, winter and mid-season (see Chapter 4). Further-

more, various choices have to be made regarding regulatory framework factor implemen-

tation, where alternatives exist. The adopted design choices are detailed in Section 6.4

together with the model implementation.

6.3.4 Contributions

The developed model of Chapter 4 is extended with new features and functionalities

through the inclusion of regulatory framework analysis:

• implementing multiple regulatory framework factors explicitly in a DES design

optimisation framework, rather than looking solely at regulatory constraints on

operational schemes, emissions, discrete ownership shares or financial incentives,

• and researching the link between optimal engineering design and regulatory frame-

work aspects through a decision-making optimisation-based approach.

6.4 Model implementation and design decisions

The model of Chapter 4 is adapted to decentral (Section 6.4.1: Eqs. 6.1-6.6, Appendix J:

Eqs. J.1-J.2), central (Section 6.4.2: Eqs. 6.7-6.17, Appendix J: Eqs. J.3-J.16) and hybrid

(Section 6.4.3: Eqs. 6.18-6.22, Appendix J: Eqs. J.17-J.19) scales as well as ownership

variation (Section 6.4.4: Eq. 6.23). The model adaptations are summarised in the

following Sections and detailed in Appendix J.

6.4.1 Decentral scale

The model already accommodates decentral scales. Some adaptations, however, need to

be made to: (i) include overall neighbourhood electricity export at set tariffs, (ii) allow

for household energy ‘trading’5, and (iii) include upscaling economies-of-scale relations.

5Note that this is not game-theoretic energy trading in a market environment with variable prices
(see for example [86]) but rather the sharing of energy between houses at a set tariff.
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6.4.1.1 Residential DG export

Electricity export tariffs need to be streamlined in order to facilitate potential DES

participation in the central market. Hence, locally generated electricity by individ-

ual houses through PV units, small-scale wind turbines and CHP units is bundled,∑
techDG

PESALtechDG,i,s,h [kW], when a microgrid is installed. This bundled electricity can

then be exported at a single tariff, TSALMG [AUD kWh−1]. Furthermore, the daily PV

export limit is no longer applicable in this setting (see Section 4.4.1). Instead, this limit

now refers to the total daily individual household export level from all its DG units.

6.4.1.2 House energy sharing

The base model assumed cost to be carried by the neighbourhood as a whole. Hence,

no cost was associated with household energy sharing. Therefore, costs are now associ-

ated with ‘selling’ (CMG
SAL,energy) and ‘purchasing’ (CMG

BUY,energy) both electricity (elec)

and thermal (therm) energy to and from individual houses. Associated tariffs are

TBUYMGint,energy for purchasing and TSALMGint,energy for selling. This implementation allows

freedom to implement equal or different buy and sell tariffs, depending on the case-

study. Electrical and thermal energy bought or received from the microgrid by a house

(PErecMG,i,s,h, QHj,i,s,h, QCj,i,s,h) and sold or circulated to the microgrid by a house

(PECIRCtechDG,i,s,h, QHi,j,s,h, QCi,j,s,h) thus incur to respective internal trading costs:

CMG
BUY,elec =

∑
i,s,h

hr · ds · TBUYMGint,elec · PErecMG,i,s,h (6.1)

CMG
SAL,elec =

∑
i,s,h,DGtech

hr · ds · TSALMGint,elec · PECIRCtechDG,i,s,h (6.2)

CMG
BUY,therm =

∑
i,j,s,h

hr · ds · TBUYMGint,therm · (QHj,i,s,h +QCj,i,s,h) ∀i 6= j (6.3)

CMG
SAL,therm =

∑
i,j,s,h

hr · ds · TSALMGint,therm · (QHi,j,s,h +QCi,j,s,h) ∀i 6= j (6.4)

6.4.1.3 Economies-of-scale

To allow for benefits of unit upscaling, an economies-of-scale cost relation is introduced.

Initially, only CHP units are hereto considered since they are dispatchable, more readily
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scaled up than renewable technologies, and allow for thermal as well as electrical energy

integration. In the base model, CHP unit investment cost was a fixed incremental value

per installed unit of electrical capacity. This approach, however, introduces uncertainty

governing the adopted cost value and resulting designs. CHP units are namely important

for DES economic viability [280]. Especially in the micro-range, this incremental cost per

unit capacity decreases significantly with a small increase in capacity, i.e. a strong non-

linear relation between total investment cost and installed capacity of the unit [244, 245].

Hence, recent research has been looking at linearising non-linear relations within LP and

MILP environments [229, 244, 245, 352]. Non-linear economies-of-scale relations are

typically introduced in linear models through piecewise linearisation [355]. The concept

of piecewise linearising non-linear cost curves is not new [355], but the application to DES

has only limitedly been touched upon. Piecewise linearisation involves approximating a

non-convex continuous relation between two variables as a combination of consecutive

separable linear functions, i.e. reducing a non-convex relation to a set of functions that

each only depend on a single variable [107, 108, 355, 356]. Merkel et al. [244], for example,

introduced economies-of-scale for CHP and storage units through piecewise linearisation

in a small-scale heating network design MILP, minimising yearly CHP-related costs. A

multi-objective MILP was presented by Rieder et al. [245] for a small district heating

system considering CHPs and heating technologies. Linearised economies-of-scales were

employed for boilers, thermal storage units and pipelines. Furthermore, linearisation

of technology economies-of-scale in an MILP design optimisation of an ‘eco-town’ was

presented by Weber and Shah [229].

Piecewise linearisation can be implemented either through binary variables and inequal-

ity constraints or through the introduction of Special-Ordered-Sets (SOS) [107, 108, 356].

The principle of Special-Ordered-Sets of type 2 was first introduced by Beale and Tomlin

[357]. SOS are a type of positive variables that are ordered, where a specified number

of successive variables in the set (type 1 or 2) can be different from zero. The SOS-2

approach is generally preferred over binary variables since it can be employed in MILP

models, can be handled by most common solvers, such as CPLEX, and is more compact

in formulation and solution tree [355]. Hence this approach is employed here. A non-

linear economies-of-scale function f(x), see Figure 6.6, can thus be reduced to a sum of

linear functions through a set n of scaling points (SOS-2), a1 to an. Only two consecu-

tive scaling point variables can be non-zero [245]. An optimised cost (f(x)) - capacity
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f(x) 

x xLo= ζ1 xUp= ζ4 ζ2 ζ3 
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a4 

Figure 6.6: Piecewise linearisation of non-convex function, adapted from [108].

(x) relation is obtained through interpolation between two SOS-2 variables based on

n sample points (fn(ζn),ζn). Sample points are typically selected in concave functions

by taking more sample points in the steep incline and fewer sampling points the more

gradual the function becomes. Optimised total investment cost (CINVCHP,i) and installed

capacity (DGMAX
CHP,i) [kW] of a CHP unit in house i is then found as [229, 244, 245]:

CINVCHP,i =
n∑
t=1

f(ζt) · at and DGMAX
CHP,i =

n∑
t=1

ζt · at with
n∑
t=1

at = 1 ∀i (6.5)

6.4.1.4 Terms of the objective function

The objective function (see Equation 4.1) now additionally becomes a function of the

costs and incomes related to internal DES energy ‘trading’:

minCTOT = CINV + COM + CFUEL + CGRIDBUY + CCT − CGRIDSAL

+ CBUYMG,elec − CSALMG,elec + CBUYMG,therm − CSALMG,therm (6.6)

6.4.2 Central scale

CHP units are the only considered units for upscaling to central scales, potentially com-

bined with a central absorption chiller (see Section 6.4.1.3). In central DES, individual

houses are assumed to no longer be allowed to install DG and storage units. Houses can,

however, still install non-DG conventional thermal technolgies: boilers, gas heaters and
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air-conditioning units. These are design choices where alternatives exist. Furthermore,

thermal pipeline and electricity sharing can be adopted from a central unit to individual

houses, complementing energy sharing between houses.

6.4.2.1 Technology constraints

The potential central CHP unit (chpct) is modelled similar to the decentral units (see

Appendix D) through an installed capacity, upper and lower capacity bounds and a

binary variable, but now with an economies–of–scale cost relation (Equation 6.5). Elec-

tricity generated by the central CHP unit in each hour of each season can either be

used for circulation to neighbourhood houses (PECIRCchpct,s,h), for export to the central grid

(PESALchpct,s,h) or for central absorption chiller fuelling (PEACchpct,s,h). Absorption chillers

namely require electricity per kW generated cooling, determined through their electricity

to cooling ratio (ECR). Generated cooling is then transferred to houses i (QCacct,i,s,h).

Heat generated by the central CHP is determined by its total electricity generation

(PETOTchpct,s,h) and heat to electricity ratio (HER). This heat can be used for heating

(PHHEAT
chpct,s,h) or cooling purposes (PHCOOL

chpct,s,h) or can be dissipated (PHDIS
chpct,s,h). Heat

dissipation is allowed to balance excess heat and must be allowed due to the design

choice that no decentral DG thermal storage is installed in central scales. Heat for

heating purposes is distributed to individual houses i (QHchpct,i,s,h):

PHHEAT
chpct,s,h =

∑
i

QHchpct,i,s,h ∀s, h (6.7)

The central absorption chiller follows the behaviour of decentral absorption chillers, see

Appendix D. Generated cooling is determined by CHP waste heat for cooling purposes,

absorption chiller existence and the chiller cooling to heating coefficient, nthAC . Total

generated cooling is distributed among different houses i (QCacct,i,s,h):

PHCOOL
chpct,s,h · nthAC =

∑
i

QCacct,i,s,h ∀s, h (6.8)

A central absorption chiller can, furthermore, only be installed together with a central

CHP unit decided by binary variables Bacct and Bchpct, respectively:
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Bacct ≤ Bchpct (6.9)

6.4.2.2 Central pipeline constraints

In order for heating to be transferred from the central unit to an individual house

(QHchpct,i,s,h), a pipeline with maximum utilisation rate Usnd must exist, expressed

through binary variable Y Ptechct,i:

QHchpct,i,s,h ≤ Usnd · Y Ptechct,i ∀i, s, h (6.10)

Heating received by a house from the central CHP unit can contribute to the house heat

load in hour h, or, be transferred to other houses through an optimised pipeline network

(see Section 4.3.2.3). The pipeline balance (Equation 4.7) then becomes:

∑
j

QHj,i,s,h −QHLOSS
i,s,h +QHchpct,i,s,h −QHLOSS

chpct,i,s,h

= QHLOAD
i,s,h +

∑
j

QHi,j,s,h ∀i, s, h with i 6= j (6.11)

Central thermal transfer losses are obtained similarly to decentral transfer losses (see

Equation 4.9). Random x and y coordinates for the location of the central unit are once

generated, from which the transfer length to each house is determined. The location of

the central unit is thus once arbitrarily determined (Sections 6.5.2 and 6.7). The central

cooling pipeline network is modelled similarly to the heating network.

6.4.2.3 Grid interaction

The central CHP unit can only export electricity to the central grid (Xsnd
chpct,s,h) if the

neighbourhood as a whole exports, determined by a daily export level (Usnd) (similar

to Section 4.3.3.2). A central CHP unit can also only be installed when a microgrid is

installed in the neighbourhood (Z).

PESALchpct,s,h ≤ Usnd ·Xsnd
chpct,s,h ∀s, h (6.12)

Xsnd
chpct,s,h +Xrec

i,s,h ≤ 1 ∀i, s, h and Xsnd
chpct,s,h ≤ Z ∀s, h (6.13)
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6.4.2.4 Microgrid interactions

Central CHP electricity for microgrid circulation is modelled similarly to Section 4.3.3.2.

Total microgrid transfer by the central and decentral units is appropriately bound. Cen-

tral CHP electricity can be transferred to individual houses i (PEsndchpct,i,s,h). Electricity

send to each house from the central unit, minus transfer losses, equals the electricity

the house receives (PErecchpct,i,s,h). Electricity transfer losses are determined similarly to

Chapter 4, Equation 4.17. The central unit microgrid balance then becomes:

∑
i

PEsndchpct,i,s,h −
∑
i

PELOSSchpct,i,s,h =
∑
i

PErecchpct,i,s,h ∀s, h (6.14)

6.4.2.5 Energy balances

The pipeline balances incorporate contributions from the central technologies (see Equa-

tion 6.11) so that the thermal balances are not affected (see Appendix D). Electricity

balances, however, need to be adapted. Each house can now meet its electricity demand

through the combination and consideration of grid import (PEGRIDi,s,h ) and/or central

microgrid operation (PErecchpct,i,s,h):

CLOADELECtot,i,s,h = PEGRIDi,s,h + PErecchpct,i,s,h ∀i, s, h (6.15)

6.4.2.6 Terms of the objective function

The objective function now additionally includes household costs of purchasing both

electric (CBUYtechct,elec) and thermal (CBUYtechct,therm) energy from a potential central unit:

CBUYtechct,elec =
∑
i,s,h

hr · ds · TBUYtechct,elec · PErecchpct,i,s,h (6.16)

CBUYtechct,therm =
∑
i,s,h

hr · ds · TBUYtechct,therm · (QHchpct,i,s,h +QCacct,i,s,h) (6.17)

6.4.3 Hybrid scale and scale differentiation constraints

DES scale can be set up as either decentral, central or hybrid. To allow the model

to implement one of three scales, additional binary variables are introduced. BDCtech
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becomes 1 if the neighbourhood has installed decentral DG and storage units (WT, PV,

CHP, EST, HST or CST). BCT becomes 1 if the neighbourhood only has a central unit

(AND-NOT gate, see Section 5.4.3.2 and Appendix H):

BCT = Bchpct ∧BDC (6.18)

Binary BDC becomes 1 if the neighbourhood only has decentral units (AND-NOT):

BDC = Bchpct ∧BDCtech (6.19)

Binary variables BCT and BDC are thus mutually exclusive but allow for hybrid DES

scales through the following relations:

BCT +BDC ≤ 1 and Bchpct +BDCtech ≤ (1−BDC) + (1−BCT ) (6.20)

Hybrid scales allow both central units, and decentral DG and storage units. Thermal

storage units in each individual house within hybrid DES are assumed to also potentially

be filled through pipeline transfer:

PHPIPE
CHP,i,s,h +

∑
j

QHj,i,s,h −
∑
j

QHLOSS
j,i,s,h +QHchpct,i,s,h −QHLOSS

chpct,i,s,h

= QHLOAD
i,s,h +QHSTO

i,s,h +
∑
j

QHi,j,s,h ∀i 6= j (6.21)

Electricity balances need to be adapted. Each house can now meet its electricity

demand through the combination and consideration of grid import (PEGRIDi,s,h ), self-

generation (PESELFtechDG,i,s,h), battery discharge (ESOUTi,s,h ), decentral microgrid operation

(PErecMG,i,s,h), and/or central microgrid operation (PErecchpct,i,s,h), ∀ i, s, h:

CLOADELECtot,i,s,h = PEGRIDi,s,h + PErecMG,i,s,h + PErecchpct,i,s,h +
∑

techDG

PESELFtechDG,i,s,h + ESOUTi,s,h

(6.22)

6.4.4 Ownership

Either the neighbourhood houses, a third party or a combination between both, i.e.

hybrid, can own the DES (Equation 6.23). To formulate ownership Equation 6.23, first,
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a classification of costs has to be made in order to determine what terms – as part of

the total annualised cost – are related to and can change with ownership.

minCTOT =
∑
tech

[ω · (CINVtechDCT + CINVtechST + CINVinfDG) + CINVtechCV ]

+
∑
tech

[ω · (COMtechDCT + COMtechST + COMinfDG) + COMtechCV ]

+
∑
tech

[ω · (CFUELtechDCT + CFUELinfDG + CCTtechDCT + CCTinfDG) + CFUELtechCV + CCTtechCV ]

+
∑
i

CGRIDBUY,i − ω ·
∑
i

CGRIDSAL,i + CMG
BUY,elec + CMG

BUY,therm − ω · CMG
SAL,elec

− ω · CMG
SAL,therm + (1− ω) · (CBUYtechct,elec + CBUYtechct,therm)

+ (1− ω) ·
∑

tech,i,s,h

hr · ds · (QHSTO
i,s,h +QCSTOi,s,h )

+ (1− ω) ·
∑

tech,i,s,h

hr · ds · (PHLoad
techDG,i,s,h + PCLoadtechDG,i,s,h)

+ (1− ω) ·
∑

tech,i,s,h

hr · ds · TBUYMGint,elec · (PESELFtech,i,s,h + PESTOtech,i,s,h) (6.23)

Costs proportional with ownership share, i.e. their contribution to the neighbourhood

objective function decreases if ownership shifts from households to a third party, are:

• investment cost of decentral DG (techDG) and storage units (techST ),

• investment cost related to the central CHP and absorption chiller,

• investment cost associated with DES infrastructure (infDG), i.e. microgrid cen-

tral controller, dump loads, decentral and central pipelines,

• operation and maintenance, fuel and carbon tax costs of the first three points, and

• incomes from both grid export and household energy trading.

Additionally, some costs increase when ownership shifts from houses to a third party.

When the DES is (partially) owned by a third party, this third party also (partially)

owns the energy generated by its units. Houses are then served under contract. Hence,

when household relative ownership decreases, houses will have to increasingly pay for

self-generated and stored energy at set internal trading prices. This is valid for both

thermal and electrical energy generated by both decentral or central units. Costs related

to (techCV ) boilers, gas heaters, air-condition units, grid import and the purchase of

electricity, heating and cooling from decentral or central units remain at all times to
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be carried by the neighbourhood houses. Ownership is in the first instance analysed

by introducing a parameter weighting factor (ω) multiplied with each of the ownership-

sensitive terms. This factor can take on any value between 1 (100 % household owner-

ship) and 0 (100 % third party ownership).

6.5 Case-study: a small Adelaide based neighbourhood

Section 4.4 presented the researched case-study. Additional aspects are detailed below.

6.5.1 Energy tariffs and export limitations

DES environments require energy tariffs, which might be flat or varying with the time

of day [322]. Since no time of use tariffs are established in the case-study location and

the uncertainty of predicting them, flat set tariffs are adopted for all energy interactions.

Apart from central electricity and gas tariffs, internal energy sharing tariffs and DES

electricity export tariffs have to be set. Since a holistic neighbourhood view is taken in

the model, buying and selling prices of energy are set the same. This could be different

with a third party design view. Hence, internal DES energy sharing tariffs, between

houses or from the central unit, are set to one third of the central energy tariffs (see

Section 4.4.1) as illustration; 0.115 AUD kWh−1 for electricity and 0.043 AUD kWh−1

for thermal energy. This is a choice where other options are available. Furthermore,

the feed-in tariff for residential solar electricity is extended to electricity export from all

DG units. Each house in the neighbourhood, additionally, has a total electricity export

limit of 45 kWh per day [275]. This includes export from its installed DG units as well

as an equal share from the total electricity exported by the central CHP unit.

6.5.2 Economies-of-scale and central transfer distances

The employed economies-of-scale relation for small CHP units is adapted from Merkel

et al. [244], see Appendix K. The power relation between total cost and total installed

capacity is presented in Figure 6.7 together with the piecewise linearisation sample

points. The transfer distances [m] between the central CHP unit and each house are
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determined from the arbitrary central unit coordinates (58 m; 99 m) as lct,h1=101 m,

lct,h2=76 m, lct,h3=66 m, lct,h4=57 m and lct,h5=35 m.
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Figure 6.7: Economies-of-scale relation for small-scale CHP units, CINV
CHP = 5812.2 ·

(DGtot
CHP )0.75, adapted from Merkel et al. [244].

6.5.3 Analysis and selected energy system scenarios

The model is solved for several scenarios to analyse the relation between framework

aspects and design, and to demonstrate results and trade-offs that can be obtained

and discussed. Note that conventional supply (Scenario I in Chapter 4) is included as

reference. Table 6.5 indicates how each regulatory framework aspect is analysed.

Design of the three DES scales is optimised through fixing binary variables, for an own-

ership share ranging from 0 % (100 % third party ownership) to 100 % (100 % household

ownership) with steps of 25 %. Results are first analysed for trends between regulatory

Table 6.5: Analysis and proxies of regulatory framework aspects.

Framework
aspect

Analysis Proxy Model

Type Physical Optimal design Structure
Scale Decentral, central and hybrid de-

signs
Fixing binary variables (BDC ,
BDCtech, BCT , Bchpct) and ob-
taining optimal design

Structure/
output

Ownership Continuous ownership share Optimal design for parameter
variation ω ∈ [0%; 100%] with
steps of 25%

Structure/
input/
output

Choice Maximum cost difference between
households as measure for equal
cost sharing

∆Cmax Output

Tariff Sensitivity to set internal energy
sharing tariffs

Optimal design for percentage
variation of T int

Input/ out-
put

Objective Economic objective value, indirect
objective CO2 emissions

minCTOT Structure/
output
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framework measures of objective (total cost), indirect objective (total CO2 emissions),

ownership and cost sharing (∆Cmax) fo various scales. The maximum cost difference

between households, ∆Cmax, is employed as proxy for flexibility of consumers to opt

in or out an agreement. ∆Cmax is namely a measure of fair cost sharing/distribution

between houses and enables configuration comparison. Note that there is inherently a

cost difference between houses based on the difference in energy demands (h1 the lowest

and h5 the highest). Cost differences are complex outputs that arise through the in-

teraction between demand differences, costs associated with units in particular houses,

imports and energy sharing, and income differences due to export. Stakeholder interests,

then, can be measured in several ways but are here measured through the optimisation

objective, total annualised cost. The impact of other stakeholder interests or consumer

choices can indirectly be measured through output data, annual neighbourhood CO2

emissions and maximum household cost difference, for example. A comparison between

scenarios is presented for neighbourhood energy interactions and design in Section 6.6.1.

Uncertainty regarding deterministic input data can affect results, hence the sensitivity

of resulting designs with internal trading tariffs is analysed. Internal trading tariffs

are namely uncertain and depend on specific contractual agreements. To illustrate the

method, only hybrid scales are optimised for 100 % household ownership with in percent-

age varying internal trading tariffs, see Section 6.6.2.1. Additional features that increase

model applicability and flexibility can also be analysed. The model is hereto adapted to

a mixed-integer non-linear (MINLP) framework, including a non-linear economies–of–

scale relation. This analyses the impact of linearisation. As a case-study, a hybrid scale

is optimised for 100 % household ownership including the non-linear CHP cost-capacity

relation in Section 6.6.2.2.

6.6 Results and analysis

6.6.1 Energy system design scenarios

Figure 6.8 presents annual cost, maximum cost difference and annual emissions for vary-

ing ownership shares for optimal decentral, central and hybrid designs. DES decrease

total cost compared to conventional, due to low internal trading tariffs in a market
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Figure 6.8: Relation of total cost (6.8a), maximum cost difference ∆Cmax

(6.8b), annual emissions (6.8c) and ownership for DES scales. C=central scale,
conv=conventional operation results, DC=decentral scale, H=hybrid scale.

with high energy tariffs. Unit investment and fuel costs dominate annual neighbour-

hood cost, leading to total cost increase with increasing household ownership. 100 %

household ownership namely requires all costs to be borne by consumers. Total cost

flattens around 50-75 % ownership from where third party impact decreases. Decentral

units (hybrid and decentral) reduce costs slightly due to slightly better balancing of

demand and unit capacities. At 100 % third party ownership, scale costs are approx-

imately equal. A third party bears here all the DG-related costs. System designs will

thus focus on ‘free’ DG units from which houses can purchase energy at cheap internal

trading tariffs. Note that central scales and increased third party ownership lead to

unit over-dimensioning since costs are no longer carried by houses. In real projects, in

contrast with this case-study with a single neighbourhood point of view, a third party

will conduct a cost-benefit analysis to assess the ‘best’ system design (see Section 6.7).

Household ownership between 50 and 75 % increases ∆Cmax. Here, cost contributions
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from houses will start to dominate third party contributions. Decentral units (decentral

and hybrid) lead to higher cost differences since a single house invests in an expensive

unit that serves other houses at cheap internal trading tariffs. The decentral trend

peaks around 75 % household ownership where only a single house has a CHP unit that

shares energy with more than one house, compared to multiple house-CHP units at 50 %

household ownership. The hybrid trend peaks around 50 % household ownership, which

is the turning point from a large central CHP combined with larger decentral CHPs to a

smaller (better balanced) single decentral and central CHP at 75 % household ownership.

The central scale trend, lastly, peaks around 75 % ownership, which marks a drastic drop

in central CHP capacity combined with more individual household conventional units. A

larger central unit namely allows houses to purchase cheap energy at low internal tariffs

whereas a smaller central unit requires houses to individually invest in complementary

units, which increases ∆Cmax. Also, the more decentral units and household ownership,

the less emissions (decentral < hybrid < central) due to better balancing of demands,

which minimises excess thermal and electrical energy. DES also mostly reduce annual

emissions compared to conventional. A drop in emissions occurs between 25 and 75 %

household ownership for all scales. Drops are related to a reduction of CHP capacity or

of the number of decentral CHP units.

Figure 6.9 illustrates total installed neighbourhood units for different scales and owner-

ships. Neighbourhood designs are illustrated in Figures 6.10, 6.11 and 6.12 for decentral,

hybrid and central scales, respectively. Note that 0 % household ownership is not al-

ways depicted to keep the capacity scale readable. 0 % household ownership (100 %

third party) often leads to maximisation of unit capacities, either through operational

boundaries (e.g. air-conditionings, boilers, CHP, PV) or capacity bounds (storage and

absorption chillers), since costs are carried by a third party. Ownership impacts neigh-

bourhood design, which facilitates design trade-offs. More stable designs occur below

50 and above 75 % household ownership with a trade-off interval between 50 and 75

%. The more third party ownership, the more expensive DG units (CHPs and absorp-

tion chillers) and the more energy sharing are adopted. The upfront investment costs

are here namely majority born by the third party. The more household ownership, in

contrast, the more conventional units are installed (boilers and air-conditioning units),

at the expense of energy sharing. Large household thermal storage units are installed

in houses that have a (large) CHP and absorption chiller in decentral configurations.
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Figure 6.9: Total installed capacity of units in neighbourhood [kW] for different scales
and ownerships. AC=absorption chiller, ACct=central AC, airco=air-conditioning,
B=boiler, CHP=combined heat and power, CHPct=central CHP, CST=cold storage,

HST=heat storage, PV=photovoltaic. No batteries adopted.

In hybrid configurations, larger storage units are installed in houses that have a direct

pipeline connection with the central tri/co-generation unit. The received thermal energy

is either used or stored by the receiving house or transferred to other houses.
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Figure 6.10: [colour] Decentral neighbourhood layout for varying ownership.
sun=PV, H=HST, C=CST, dark grey diamond (blue)=CHP and airco, white dia-
mond=boiler and airco, grey (blue) hatched diamond=CHP and AC, light grey dia-

mond (pink)=only airco, black arrow=pipeline heat transfer [kWh y−1].



Chapter 6. Regulatory issues in residential distributed energy system design 188

0

20

40

60

80

100

0 20 40 60

D
is

ta
n

c
e
 [

m
] 

Distance [m] 

1 

3 

2 

4 

5 

Ct 

H 

C 

H 

C 

H 

C 

H 

C 

H 

C 

D 

D 

D 

D 

D 

3653 kWh y-1 

3038 

kWh y-1 

3326 

3981 

4248  

kWh y-1 

(a) Ownership 0 %

0

20

40

60

80

100

0 20 40 60

D
is

ta
n

c
e
 [

m
] 

Distance [m] 

1 

3 

2 

4 

5 

Ct 

H 

C 

H 

C 

H 

C 

H 

C 

2475 kWh y-1 

19204 kWh y-1 

(b) Ownership 25 %

0

20

40

60

80

100

0 20 40 60

D
is

ta
n

c
e
 [

m
] 

Distance [m] 

1 

3 

2 

4 

5 

Ct 

H 

C 

H 

C 

H 

C 

12597 kWh y-1 

12553 kWh y-1 

9286 kWh y-1 

(c) Ownership 50 %

0

20

40

60

80

100

0 20 40 60

D
is

ta
n

c
e
 [

m
] 

Distance [m] 

1 

3 

2 

4 

5 

Ct 

H 

H 

H 

7378 kWh y-1 

12102 kWh y-1 

H 

H 

(d) Ownership 75 %

0

20

40

60

80

100

0 20 40 60
D

is
ta

n
c
e
 [

m
] 

Distance [m] 

1 

3 

2 

4 

5 

Ct 

H 

H 

H 

 12825 

H 

H 

(e) Ownership 100 %

Figure 6.11: [colour] Hybrid neighbourhood layout for varying ownership. sun=PV,
H=HST, C=CST, CT=central units, dark grey diamond (blue)=CHP and airco, white
diamond=boiler and airco, grey (blue) hatched=CHP and AC, light grey diamond
(pink)=only airco, grey (green) hatched=CHP only, black arrow=pipeline heat transfer,

black dashed arrow=pipeline cooling transfer [kWh y−1].

Ownership levels thus significantly affect optimal design. Third party ownership relieves

responsibilities from individual houses, especially in case of central scales. Third party

ownership also facilitates energy integration in terms of not only electricity but also

heating and cooling but with the risk of over-dimensioning equipment, increasing yearly

emissions. Household ownership and decentral scales, in contrast, balance local supply

and demand better, reduce emissions most and allow for houses to opt into a cooperative

share of a central unit. Central units, in contrast, facilitate cost levelling. Hybrid scales

then, allow to combine small-scale DG renewables (PV) with a larger central heat,

cooling and electricity generation unit, facilitating resource diversification.

Figures 6.13, 6.14 and 6.15 illustrate optimised yearly neighbourhood electricity interac-

tions for different ownership levels at decentral, central and hybrid scales, respectively

[kWh y−1]. All axes are equally scaled with 45000 kWh y−1. Total yearly electricity

generated by the neighbourhood central CHP (ctCHP), decentral CHPs and PV units
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Figure 6.12: [colour] Central neighbourhood layout for varying ownership.
sun=PV, H=HST, C=CST, CT=central units, white diamond=boiler and airco, grey
(blue) hatched=CHP and AC, light grey diamond (pink)=only airco, grey (green)
hatched=CHP only, grey diamond=no thermal units, black arrow=pipeline heat trans-

fer (PH), black dashed arrow=pipeline cooling transfer (PC) [kWh y−1].

can be used for export (SAL), for microgrid sharing (CIRC) and for self-use by the ac-

commodating house of the decentral units. The zero level and the yearly neighbourhood

electricity demand, including air-conditioning cooling (26644 kWh y−1), scaled to about

40 % on the axes, are both included as references. Two trends can be distinguished in

all three cases; (i) 100-75 % household ownership where DG generation is more balanced

across total use, microgrid operation, import and export. Unit capacities are here also

balanced with demand and not oversized since houses bear their costs. And, (ii) 50-0 %

household ownership, which reduces cost contributions to the cost objective function and

leads more to unit over-dimensioning, both central and decentral, with more electricity

and heat generation as a result (see discussion in Section 6.7). Excess heat is either

stored or dissipated, and excess electricity is exported to the grid. The latter leads to

an income for houses or the third party, depending on ownership. Note that total elec-

tricity generated by CHPs relates to household heating demands due to heat-following

CHP operation. CHP units should thus individually be able to meet house heat loads
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Figure 6.13: [colour] Yearly decentral neighbourhood electricity interactions
[kWh y−1] for household ownership shares [%]. CHP=combined heat and power,
circ=microgrid sharing, Eload=yearly neighbourhood electricity load is reference, im-
port=grid import, self=self-use by accommodating house, PV=photovoltaic, zero=zero

values are expanded for clarity.
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Figure 6.14: [colour] Yearly central neighbourhood electricity interactions [kWh
y−1] for household ownership shares [%]. CHPct=central CHP, circ=microgrid shar-
ing, Eload=yearly neighbourhood electricity load is reference, import=grid import,

self=self-use by accommodating house, zero=zero values are expanded for clarity.

as alternative to boilers (see Section 4.4.4). A certain heat requirement therefore results

in a certain (excess) amount of electricity generated by the CHP (heat to electricity

ratio). More DG electricity is generated with increasing third party ownership, which is

partly used for microgrid operation at advantageous internal trading tariffs but is mostly

exported. As a result and due to the high central energy prices as compared with the
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Figure 6.15: [colour] Yearly hybrid neighbourhood electricity interactions [kWh y−1]
for household ownership shares [%]. CHP=combined heat and power, CHPct=central
CHP, circ=microgrid sharing, Eload=yearly neighbourhood electricity load is refer-
ence, import=grid import, self=self-use by accommodating house, PV=photovoltaic,

zero=the zero values are expanded for clarity.

cheap internal tariffs, grid electricity import reduces then to (close to) zero. Overall,

decentral units (decentral and hybrid) lead to better local energy balancing. Note that

currently some interactions are maximised for 100 % third party ownership due to no

neighbourhood cost restrictions (see Section 6.7).

6.6.2 Impact of decisions: model robustness

Model robustness is subsequently illustrated through sensitivity and linearity analysis.

6.6.2.1 Sensitivity with internal trading tariff

The set cheap internal trading tariffs favour internal energy sharing over import due

to the high central energy tariffs in the Adelaide market. To assess the impact of the

uncertain internal tariffs on design, neighbourhood design is optimised at constant 50 %

household ownership for in percentage varying internal electricity and thermal energy

trading tariffs from -50 % to +200 % of the set tariffs. The latter is equal to the central

energy tariffs. Total neighbourhood unit capacities [kW] are given in Figure 6.16 for

each tariff scenario. Table 6.6 illustrates the installed hot thermal pipeline connections.
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Cold thermal pipelines are not adopted. Decentral scale is adopted in each scenario, but

optimal design depends on tariff. Since PV electricity is mainly used for self-generation

or export, PV capacity is relatively not much affected by tariffs. Changing tariffs,

however, influence the relative importance of CHP units and absorption chillers. The

lower the tariffs, the more CHP units are installed, the more cooling is generated by

absorption chillers and the more thermal energy is stored. Higher internal trading tariffs

will increase total boiler capacity and heat integration. A tariff trade-off between two

design trends is thus required between 100 and 150 % tariff increases for this case study.
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Figure 6.16: [colour] Total installed capacity of units [kW] with chang-
ing internal trading tariff (Tint). AC=absorption chiller, airco=air-conditioning,
B=boiler, CHP=combined heat and power, CST=cold storage, HST=hot storage,

PV=photovoltaic.

Table 6.6: Installed hot thermal pipelines in the neighbourhood with changing internal
trading tariff (Tint).

Tariff Tint-50 % Tint Tint+50 % Tint+100 % Tin+150 % Tint+200 %

House pair (5,4) (5,4) (5,4) (4,2) and (4,5) (4,2) and (4,5) (5,4)

6.6.2.2 Non-linear economies-of-scale

In reality DES show non-linearities with respect to cost and operational behaviour (see

Section 3.2.1). An attempt to explicitly deal with and analyse the impact of non-linearity

is made through the explicit integration of a non-linear CHP economies-of-scale relation

(see Section 6.5.2). Table 6.7 summarises optimal design results for a decentral scale

DES with 100 % household ownership for various solvers. The MILP result (piecewise
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linearisation/CPLEX) is included as reference. Microgrid sharing and limited pipes are

adopted in all feasible results. The location and size of the CHP unit and pipeline,

however, changes. Due to the size of the model, some solvers are no longer able to

obtain solutions. Additionally, global optimality is not guaranteed with most MINLP

solvers. The non-linear model is thus currently intractable for decision-making.

Table 6.7: Results of non-linear economies-of-scale relation in MINLP model for
different solvers. ∗=result from MILP solver with linearised EOS. ∗∗=MILP result

evaluated on the non-linear EOS function.

Solution approach CHP [kW] Pipeline Total cost
[AUD y−1]

CPU [s]

CPLEX (MILP) Branch and bound 2.077 (h2) (2,4) 22577∗/22597∗∗ 433
ALPHAECP
(MINLP)

Extended cutting
plane method

2.498 (h4) (4,5) 22786 18730

CONOPT (MINLP) nlp=conopt,
mip=cplex,
rminlp=conopt,
minlp=dicopt

2.044 (h2) (2,4) 22599 4487

SBB (MINLP) Branch and bound Solver failure (node limit)
BARON (MINLP) Branch and bound Solver failure (insufficient memory)

6.7 Discussion and generalisation of approach

The developed framework allows for flexible structure implementation and analysis of

DES regulatory framework factors at various modelling stages, see Table 6.8. A physi-

cal DES scale was researched that included energy sharing between consumers. Other

Table 6.8: Adaptability and flexibility of the developed framework.

Stage Adaptations & flexibility

Implementation - more and different virtual and physical energy systems at different scales
- varying (time of use) tariffs
- different (discrete) ownership schemes
- multiple ownership shares for equipment and infrastructure
- multiple and different optimisation objectives
- ownership as optimisation variable in MINLP environment
- weighted objective function based on individual consumer preferences
- multi-microgrid operation
- 3P economic viability

Case-study - hourly changing parameters, such as tariffs
- different ownership and scale scenarios

Optimisation - analysis of different energy system scenarios through pre-setting binary variables
and ownership schemes

Results - role of technologies in organisational scenario
- impact of technology and interaction bounds on results
- impact of regulation on results (CT, FIT, rebates, restrictions)
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schemes could, however, be analysed through the same framework by, for example, elim-

inating physical energy flows (virtual) or by looking at houses with individual DER

without energy sharing (power purchase agreements). Virtual DES allow consumers to

connect with an authorised retailer, enabling retailer contestability. Virtual DES involve

(third party) financial contracts and currently only focus on electricity supply. Virtual

schemes could be implemented through: (i) no cost and installation of energy sharing in-

frastructure, and (ii) houses can individually install decentral units, co-invest in (a share

of) a central unit or a hybrid combination of both. Physical DES, in contrast, typically

only have a single on-site provider and combine aspects of distribution network infras-

tructure (poles, wires, protection schemes), generation, consumption and retailing. The

strict ownership/activity division in liberalised power systems might need adjustment

to facilitate physical DES. A new power system agent could be defined to get around

strict unbundling and competition requirements. DES infrastructure could potentially

fall under the responsibility of conventional distribution network operators.6 Alterna-

tively, residential ‘gentailers’ or independent power producers could be established or

privatisation of certain services might be adopted. Note that semi-physical types can

also be implemented with, e.g. a central CHP unit and physical thermal integration

through district networks but only contractual electricity sharing. The selected DES

type thus determine interconnection requirements, costs and standards.

In the current model formulation, the central unit location was set arbitrarily as illus-

tration. Since its location determines pipe lengths and energy transfers, this location

determines cost and operation, and therefore also the structure of the network. The

central unit location should thus ideally be optimised, constrained by pipeline network

cost, minimum distances from residences and other requirements.

Ownership is a determining regulatory factor. DES can be structured in various own-

ership schemes and scales with multiple involved parties. The adopted continuous own-

ership share allowed for ownership flexibility. Ownership shares could be representative

of the share that houses have within an Energy Service Company (ESCO), for exam-

ple [241]. Other explicitly identified ownership structures could, however, easily be

6Ownership by distribution network operators (DNO) is often highlighted as a way for cost effective
network expansion. Nevertheless, DNO-DG ownership is an area of extensive debate [358]. Distribu-
tion network operators (DNOs) within liberalised electricity markets, for example, cannot assume this
ownership due to unbundling requirements of generation and distribution [358]. An example is the Eu-
ropean Directive 2003/54/EC and the SA Electricity Law. Retailers, in contrast, can own and operate
generation units as well as engage in retail businesses under so-called competitive ‘gentailer’ structures.
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identified by adopting weighting factors to include or remove terms from the neigh-

bourhood cost objective function. Nevertheless, full household ownership might not be

practically feasible. DES could namely benefit from some third party or regulatory over-

sight in protecting consumers, legally framing the adopted scheme, taking on (part of)

the infrastructural and unit costs, and facilitating monetary transfers. In turn, these

third parties could gain ownership over the locally generated energy, which it can sell

back to consumers. Increased third party ownership, however, makes compliance with

competition requirements more difficult, since participating houses might have no choice

of energy supplier. Several different ownership shares could also be included for particu-

lar technologies or infrastructure. This enables designing and analysing various discrete

and more elaborate ownership schemes. Additionally, ownership could be included as

optimisation variable, modifying the model structure to an MINLP approach, through

multiplications of continuous ownership share variables with cost variables.

An important regulatory feature is the choice and flexibility of consumers to opt in or

out of a DES agreement. Opting for DG installation will be mostly a decision of the

home owner whereas the income generated through export is part of a retail contract

and hence will mostly benefit the home maker. Opting to step into a DES scheme would

require committing to the lifetime of the system for energy supply to counteract over-

dimensioning of equipment, and to achieve best balancing of local supply and demand.

Physical DES thus do not provide much consumer flexibility. Physical DES, however,

provide benefits in terms of exploiting and balancing locally available resources and co-

generation, leading to increased efficiency and cost savings. Central or hybrid physical

DES could provide more flexibility to consumers through a single central energy provision

unit that serves individual consumers under contract. Decentral scales, in contrast, could

require individual houses to install expensive units (CHPs, ACs) that provide energy for

the neighbourhood as a whole. This is a large commitment and reduces flexibility for

this house. Neighbourhood energy integration, moreover, requires infrastructure and

house connections, which reduces flexibility and ties houses to the system.

DES are often implemented in remote neighbourhoods, which are often exempt from

competition requirements. This makes the concept of ‘choice’ a philosophical one; is

electricity supply a basic requirement or does this apply to a grid connection? Is elec-

tricity supply a basic requirement or is it a choice? The presented MILP approach has
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not explicitly introduced factors to analyse choice and flexibility of consumers. This

could, however, be analysed through various model adaptations: (i) a multi-microgrid

option could be installed [247] where within one larger neighbourhood, houses could opt

in or out of one or multiple DES, (ii) equal cost sharing could be optimised through

minimisation of ∆Cmax or a Game Theory based optimisation of fair cost sharing (see

e.g. [86]), or, (iii) a weighted multi-objective function could be constructed where each

household can set different weights for each objective in the overall objective. The latter

could also balance interests of various stakeholders.

Design objectives are important factors in determining type and scale. In reality de-

signs have to balance various stakeholder interests/design objectives. The question then

arises as to how other objectives, such as the presented in Chapter 5, relate to regulatory

framework factors. With regard to electrical system unavailability, the following could be

proposed: physical electrical system availability is higher than from a virtual aggregator

since the latter might not have customer support or availability requirements as com-

pared with conventional power system agents. Alternatively, a larger, third party owned

unit might have a better unit availability due to contractual service requirements [241].

Tariffs relate to energy interactions, policies and design. Tariffs thus have to be carefully

designed. Low internal trading tariffs could be appropriate for majority household owned

DES where a third party might be given infrastructural responsibilities. Feed-in tariffs,

moreover, could help the integration of renewable and highly efficient generation units

but also enable larger DES to contribute to the central electricity market. The presented

framework allows for implementation and analysis of various tariffs (fixed and variable).

This can be easily achieved through hourly and/or seasonal dependence of tariffs, Ts,h.

Similarly, internal trading tariffs and feed-in tariffs can be adapted or optimised.

The developed approach takes the viewpoint of the neighbourhood in determining the

most cost effective design. This results in over-dimensioning and over-investment of

units close to their maximum bounds in case of predominant third party ownership,

since costs are then no longer carried by the consumers. Hence, there is currently no

bound on the investment borne by a third party. In reality, however, any third party that

will consider installing and operating such a system will first conduct a thorough cost-

benefit analysis [241, 330, 343, 344]. A third party ownership-dependent constraint could

bound this unrealistic design behaviour. The constraint could be: total annual costs of
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the third party ≤ total annual income of the third party, i.e the absolute upper limit of

investment where revenue is zero. A constraint of this type would increase accuracy of

the optimised designs at small household ownership levels. There are, however, some

issues with this constraint that limit its ready inclusion within the current model context;

First, the model solely takes on the viewpoint of the neighbourhood as system box. From

this viewpoint, designs for various ownership levels should ideally look as optimised.

Since third party costs are transferred outside the box, this leads to over-investment.

Adding a third party investment bound would, however, mix the two viewpoints (con-

sumers and third party) and could potentially impact other existing equations. Also,

the current case-study internal trading tariffs are quite low for a third party to recover

cost (see point below). Adding this constraint under the given inputs could thus lead

to no available or feasible DES design. These type of third party constraints, however,

show that the model could be expanded beyond the current system box.

Second, costs due to over-investment at increased third party ownership should in reality

be carried by the third party and recovered by its income [241, 330, 343, 344]. This

income is, however, uncertain. It not only depends on (i) internal trading tariffs it

receives from houses for energy delivery, but also on (ii) electricity export tariffs for

which a third party might get special rates or a premium in the market, (iii) potential

government subsidies for sustainable development, or even (iv) revenues from economic

regulation [1] if the third party involves a network operator. As an illustration, third

party incomes, costs and revenues are presented in Table 6.9 for the cases with varying

internal trading tariffs of Section 6.6.2.1. This illustrates the current third party cost-

income discrepancy and its reduction with increasing internal tariffs.

Table 6.9: Third party (3P) annual income, costs and resulting revenue with changing
internal trading tariff.

Tariff Tint-50 % Tint Tint+50 % Tint+100 % Tin+150 % Tint+200 %

3P income 3091 5365 7382 9246 8592 8521
3P cost 15334 15477 14921 14158 9838 8292

3P revenue -12243 -10112 -7539 -4913 -1246 228

In reality two things could thus happen in a DES development project to offset costs

of third party owners; (i) the cost of the ideally optimised configuration is taken into

account by the third party and the required tariffs (export, premiums, internal trading

tariffs, etc.) for cost recovery are determined taking into account a potential revenue
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margin, or, (ii) the tariffs are known, allowing for the constraint to be added on design.

Determining the economic viability of third parties, such as aggregators, is, however,

beyond the scope of this work (see Section 1.5).

The framework and results highlighted that various aspects impact both engineering and

regulatory design, leading to useful discussions for decision-makers. Results and iden-

tified trade-offs allow to assess the ‘best’ design that ensures lawfulness of DES within

conventional power systems and enables exploiting their potential. ‘Best’ design is here,

however, no longer a strict optimisation result but rather a trade-off of the relative im-

portance of structural and organisational factors within an energy system, the governing

central power system and the relative preferences and incentives of stakeholders. A single

framework that fits in with governing regulation facilitates a plug-and-play approach and

standardisation. The question arises here whether DES regulatory frameworks require

location-specific tailoring, similar to their engineering design.

6.8 Summary and conclusion

A mixed-integer programming approach was presented that enabled analysing regulatory

framework aspects of residential DES. DES regulatory frameworks are based on their

organisational structure, which in its turn is determined by various design factors, such

as type, scale, ownership, consumer choice and flexibility, tariffs and design objective(s).

The developed model provided examples of how DES regulatory factors can be analysed

and adapted to accommodate for various case-study requirements and scenarios. Addi-

tionally, the discussion and analysis illustrated how the developed framework could be

used for interdisciplinary decision-making.



Chapter 7

Conclusions and future work

Central power systems still predominantly consist of large generators that provide elec-

tricity to a broad consumer base through extensive networks. This conventional top-

down supply to consumers is, however, being challenged by growing urbanisation levels,

increasing demand, ageing infrastructure and climate change. Localised distributed en-

ergy systems (DES) are increasingly presented as solutions to these challenges. However,

for DES to become viable, a novel cross-disciplinary design approach is required that en-

compasses multiple stakeholder interests. This thesis aimed to address this need through

developing a flexible multi-objective decision-making framework for DES design, from an

engineering and regulatory perspective, using mixed-integer linear programming. Con-

tributions made through this thesis to the ongoing work in the field of DES design op-

timisation are summarised and discussed in Section 7.1. Suggestions for future research

areas are presented in Section 7.2. Section 7.3, finally, concludes the thesis.

7.1 Contributions of the thesis

A comprehensive and flexible DES design decision-making tool has been developed, en-

compassing engineering, economic, environmental as well as regulatory aspects. The

model was applied to a small South Australian neighbourhood to illustrate its capabil-

ity for design analyses and decision-making within conventional power systems generally.

199
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The framework is useful for decision-makers to (i) ensure DES applicability within con-

ventional power systems, (ii) to assess the design impact of various stakeholder interests,

and (iii) to ensure the relevance of design to governing energy regulation.

Chapter 1 framed the modern DES concept and demonstrated the need for a new design

approach by looking at the evolution of power systems over time. Motivated by the

current research and development status of DES, the research problem, aims, solution

approach and scope of the thesis were identified. The aim was to develop an approach

to design the energy system of a small residential neighbourhood through the selection,

siting and sizing of potential DER technologies and interactions to meet the yearly

neighbourhood energy demands in terms of electricity, space heating and space cooling.

The problem was broken down into four research questions (see Section 1.4):

1. What is the current status of DES design optimisation?

2. How can DES be techno-economically designed with cost as driving objective?

3. How can DES be designed whilst balancing multiple stakeholder interests?

4. How can DES regulatory aspects be integrated and assessed within design optimi-

sation frameworks?

DES design is a popular research topic as was highlighted throughout Chapter 2. A

general background on mathematical modelling and optimisation was herein presented

together with its application to DES (first research question). The current status of

DES design optimisation research was identified, analysed and categorised to identify

research gaps and shape the research questions addressed in the thesis.

Chapter 3 detailed the employed superstructure mixed-integer linear (MILP) optimisa-

tion methodology and the conceptual framework. The method was developed to enable

most suitable design of small residential neighbourhood energy systems, framed by loca-

tion specific parameters and subject to multiple objectives, whilst meeting total yearly

neighbourhood energy demands.

Chapter 4 addressed the second research question of developing a generic approach for

techno-economic DES design with cost as driving objective. An MILP approach was

developed for the design of energy integrated residential DES while minimising total

annualised energy cost (competition). ‘Optimal’ design was here obtained through the
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selection and sizing of distributed energy resources (DER) and energy interactions, from

a considered pool, and siting them across neighbourhood houses. Extensive analyses

were conducted to highlight model applicability and flexibility (see Section 4.5). The

case-study results showed that (i) optimal design can be obtained under various scenar-

ios, (ii) design is sensitive to energy tariffs, (iii) thresholds for technology and operational

characteristics can be found, (iv) design is fairly insensitivity to sun variability, and (v)

technology combination constraints can be adapted. The approach facilitates decision-

making to level the playing field for DES as competitive energy supply alternatives.

Chapter 5 answered the third research question of developing an approach to design

DES whilst balancing multiple stakeholder interests. The MILP model of Chapter 4

was extended to a multi-objective framework, which enabled trading off three objectives

in the design process. The three central energy system objectives of competition, secu-

rity of supply and sustainability were translated into design minimisation objectives of

total annualised cost, electrical system unavailability and annual CO2 emissions, respec-

tively. Design trade-offs between objectives could be obtained for a range of weighting

factors, leading to the identification of ‘knee-point’ designs. Additionally, component

redundancy for systems with islanding capabilities could be analysed through on- and

off-grid unavailability-cost trade-offs. This design framework ensured DES applicability

within the conventional system and their relevance to governing energy policy.

The model was extended in Chapter 6 to enable analysis of identified DES regulatory

framework factors, i.e. type, scale, ownership, choice, tariffs and design objectives, ad-

dressing the fourth research question. Framework factors were translated into proxies,

which either provided new input parameters and allowed for parameter sensitivity analy-

ses, changed aspects of the model structure by introducing new objectives or constraints,

or, used a model output to assess the relative gain in a factor depending on the opti-

mised configuration. The model and results highlighted that various factors impact both

engineering and regulatory aspects, leading to useful discussions for decision-makers to

identify ‘best’ DES designs. ‘Best’ design is here no longer a strict optimisation result

but rather a trade-off of the relative importance of structural and organisational factors

within a neighbourhood energy system, the governing central power system and the

relative preferences and incentives of stakeholders.
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7.2 Future work

The developed framework is flexible in its current formulation, serving as a starting

point for further research in the field of DES design optimisation as highlighted below.

7.2.1 System aspects

The current model formulation is set up in a flexible plug-and-play manner (modular

black-box) to readily include direct system changes or extensions, such as other imple-

mentation and design decisions, technologies, sectors and features. These extensions

would increase degrees of freedom for a neighbourhood energy system design. Also, gen-

eral model flexibility and suitability to a wide range of case-studies and neighbourhood-

specific characteristics is hereby increased. Design and implementation choices – where

alternatives exists – have, however, to be made at all times.

First, other technologies could be considered. These technologies can either belong to a

similar pool as already implemented technologies, e.g. electric boilers. Such technologies

could be readily interconnected with existing interactions and available resources (central

grid and gas supply, or, sun and wind). Alternatively, new technology approaches, such

as electric vehicles, could be included. Implementation of new technologies, however,

presents more thought. Electric vehicles would be coupled to the electrical system but,

depending on their state of charge, the time of day and their location in the neighbour-

hood, they would serve as either storage or generators (see e.g. [359]). Time dependence

of component availability is here an important feature. The concept of electrical vehicles,

i.e. ‘moveable storage’, would add dynamic degrees of freedom to DES design.

Second, technologies fuelled by resources other than the already considered, e.g. biomass,

could be considered to increase resource diversification and reduce the case-study design

bias towards cheap natural gas fuelled technologies in a system with high retail electricity

prices. These technologies might introduce additional neighbourhood interactions and

add new terms to the energy balance equations. Currently only the energy services of

electricity, space heating and space cooling were balanced. Different interactions between

energy services could be considered, for example, facilitated through an electric heat

pump that can convert electricity into heat [360, 361]. Other energy services, including
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hot water for cooking and showering, could also be included. These additional energy

services could be satisfied through the consideration of energy generated by existing units

or newly implemented technologies. All considered energy services systems could then

also be implemented within the minimisation of overall system unavailability, similar to

the electrical system approach developed in Chapter 5.

Third, a flexible design approach was employed whereby different technology combi-

nations, design decisions and interactions could easily be enabled or disabled through

relations between their relevant binary decision variables (see Table 4.6). For example,

individual houses could be allowed to install both a condensing boiler and CHP unit.

This could allow for smoother trade-off curves. Other implementation choices, such as

enabling storage units to be charged by and discharged to external feeds (microgrid and

central grid), could be included through additional variables and interactions.

Fourth, currently, continuous technology capacity intervals were employed as to not

pre-restrict ‘optimal’ behaviour. Such a continuous relation could also be applied to

capacity-availability to increase model accuracy (see Section 5.7). In reality only certain

discrete technology capacities are available in the market at set prices. Discrete capaci-

ties could therefore be implemented to reflect available technology models. Appendix F

included an example of how discrete CHP capacities with different total costs could be

included. Small-scale technologies, in particular, additionally experience strong non-

linear economies-of-scale. This behaviour was already analysed in Chapter 6 for CHP

units, but could be expanded to more technologies to assess its impact on design.

Last, DES design models are inherently complex. Hence, they require a trade-off between

model accuracy and complexity [82, 92, 104, 240] (see Section 2.4.2). This trade-off is

especially required in determining the spatial, temporal and detail scales of the model:

• The boundaries of the system, its layout and number and type of consumers, de-

termine its spatial scale. Considering a larger neighbourhood, upstream services

(e.g. natural gas networks) and larger central technologies of multiple types (e.g.

wind turbines) increases model degrees of freedom and applicability but at the

expense of increased complexity. The number of variables, namely, increases sig-

nificantly with each additional house, leading to increased computational efforts.

Additionally, the more degrees of freedom, the more neighbourhood energy system
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designs are available within a close objective range from each other, slowing down

the solution process. Section 5.6.2.1 already illustrated this behaviour for larger

neighbourhoods. Alternative model formulations or optimisation approaches might

here provide solutions (see Section 7.2.2).

• Currently, an hourly temporal scale was employed for a typical day in each sea-

son over a yearly planning horizon. Combining several hours into time periods

(coarser time scales) reduces model complexity but also accuracy. These coarse

scales could miss peak demand behaviour and renewable energy input or storage

behaviour [104]. More detailed time scales, in contrast, could capture operational

behaviour, but increase complexity with each smaller time interval. The choice

of time step for the specific modelling goal is therefore important. The impact

of varying time scales on results could here provide additional insight. Further-

more, time dependent parameters, such as tariffs, will increase model flexibility

and ability to start incorporating dynamic behaviour (see Section 7.2.2).

• A superstructure high-level approach was employed, which implied simplifying and

linearising detailed thermodynamic and electrical interactions and non-linear be-

haviour. More detail on each of these levels increases model accuracy but also com-

plexity. System reality thus presents various practical implementation issues [130].

7.2.2 Model aspects

DES design problems involve not only multiple alternative configurations and design

constraints but also uncertainties related to model design, analysis and interpretation of

results [91]. DES design is therefore inherently a complex integrated cross-disciplinary

and multi-objective problem. Optimising energy system designs involves determining

the meaning of ‘optimality’ within this context and what most suitable designs for a

researched consumer area would look like. As highlighted throughout the thesis and in

Appendix F, optimised designs depend on the chosen optimality level. In the presented

case-study there are a whole range of ‘acceptable designs’ that lie within 10 % of the

optimal objective value, but might be more preferred by involved stakeholders. Looking

for near-optimal solutions through cut-set based techniques, as already instigated by Voll

et al. [90, 228], provides opportunities to expand the developed framework with the

option of comparing multiple ‘equivalent’ designs.
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Deterministic optimisation approaches were employed throughout the thesis. DES expe-

rience in reality, however, non-linear behaviour (see Section 3.2.1), issues with data and

output availability, uncertainty and prediction, and have to take into account multiple

stakeholder interests, which introduces complexity;

First, the employed superstructure approach puts scale boundaries on the researched

system, requiring simplification and linearisation of real system behaviour. Explicitly

taking into account non-linear behaviour allows to analyse the impact of employed as-

sumptions on results but makes the model non-linear (e.g. MINLP, see Section 6.6.2.2),

requiring non-linear optimisation techniques.

Second, deterministic approaches do not account for unpredictability of input parame-

ters. Renewable energy resources, especially, can exhibit significant uncertainty. This

uncertainty can be analysed either through thorough parameter sensitivity analyses in

deterministic models or through stochastic modelling approaches [104]. Energy demands

also experience uncertainty with regard to peaks and volatility. Each household behaves

differently and, depending on the weather, extreme peak demand events can occur, which

are not accounted for through hourly average demands. Either more refined time scales

need to be employed – especially when looking more into the operational or control side

– or stochastic optimisation approaches.

Last, three different objectives have already been taken into account. Each of the already

employed objectives could be formulated differently (see Section 5.7). Additionally, other

social, technical and sustainable objectives could be added. More than three objectives

would, however, require a reconsideration of the employed optimisation tool, where

NSGA-II or SPEA2 could be more suitable. Moreover, DES encompass dynamic oper-

ational behaviour, such as demand side management and real-time control, that allows

data forecasting and enables implementing flexibility at generation and demand levels.

Integrating this behaviour would, however, require dynamic modelling approaches.

7.2.3 Future directions

DES optimisation has experienced a strong focus on specific techno-economic issues.

DES integration into the wider energy system and the inclusion of social aspects are

to date still under-represented. The latter are, however, important to ensure adequate
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DES design that fits into the broader energy system. In addition to cross-disciplinary

DES design decision-making approaches subject to several objectives (as presented in

this thesis), other research is still required to enable DES viability;

First, without social acceptance and willingness of consumers to adopt DES technologies

or take up agreements with their neighbours, DES will not be adopted. Additionally,

home ownership (rental or owned property), consumer flexibility, regulatory barriers and

local government play an important role to initiate this acceptance.

Second, DES interact with different sectors beyond the energy services they provide.

These include, transportation, resource supply chains and manufacturing of technolo-

gies. Uncertainty, underdevelopment and interruptions in these areas will influence DES

design and uptake. Note here that DES are put forward as energy entities with high

energy efficiency levels and low local emissions. Their components (e.g. PV units),

however, experience a whole life cycle with potential environmental impacts. Life cycle

assessment is therefore an important upcoming area of research (e.g. [185]).

Third, DES dynamic interactions are in reality not blindly followed by participating

consumers as each consumer has specific personal interests. To facilitate DES operation,

research is still required regarding internal DES energy markets, including game theory

and pricing (e.g. [86, 87]), interactions between DES and the central market (e.g. multi-

DES [70]), and cost-benefit analyses of investors and participating consumers.

Fourth, localised energy systems require communication technology in order to optimise

their behaviour [40, 41]. Apart from technological development challenges of complex

communication and data networks, large amounts of real-time consumer data needs

to be collected for control and forecasting. This data could be valuable for various

commercial purposes. Issues arise here with the collection, storage and protection of

data and consumer privacy, which could be alleviated through standardised protocols.

Last, national and regional energy systems require transitions to deal with the challenges

they experience (see Section 1.1.1). These transitions involve long-term planning and

forecasting. Two research streams are here being considered. Larger, more intercon-

nected electricity systems are being proposed that include large renewable energy units

interconnected and balanced across a broad (even continental) region through electricity

highways [362]. At the same time, more energy integrated localised systems are being
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proposed [363]. Also combining electricity with thermal energy provision within dis-

tributed or district energy systems is being investigated. The question then arises how

these two trends could be integrated, and who will pay for central system upgrades when

consumers will become more concentrated and self-sufficient in small localised systems.

The consensus is that an energy system transition will and has to happen. The direc-

tion of this transition and the required technological, economic, regulatory and social

developments still present exciting and topical fields of future research.

7.3 Conclusion

Localised distributed energy systems (DES) are increasingly presented as solutions to

conventional power system challenges. However, for DES to become viable, a novel cross-

disciplinary design approach is required that encompasses multiple stakeholder interests.

This thesis addressed this need through developing a flexible multi-objective decision-

making framework for DES design, from an engineering and regulatory perspective,

using mixed-integer linear programming techniques. The following main contributions

to the work in the field of DES design optimisation have been made:

• an MILP model for cost-optimal residential energy system design was developed;

• the developed MILP model was extended to a multi-objective approach reflecting

three central energy system objectives, and

• regulatory framework factors were included in the developed model, enabling anal-

yses of relations between engineering and regulatory DES design aspects.

The model has been applied to a small South Australian neighbourhood to illustrate

DES design decision-making within conventional power systems generally.
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Appendix A

Details of literature review

This Appendix details how the extensive literature review of previous DES design optimi-

sation research has been conducted in support of Figure 1.4, Chapter 1 and Section 2.3,

Chapter 2. In the first instance, a targeted literature search has been conducted in the

Scopus database search engine1 in support of Chapter 2. The search in Scopus was

conducted with the following search term logic condition code:

TITLE-ABS-KEY((”district energy system” OR ”multi*generation” OR ”multi*energy”

OR ”poly*generation” OR ”poly*energy” OR ”integrated energy system” OR ”distributed

energy system” OR ”distributed generation system” OR ”micro*grid” OR ”energy hub”

OR ”tri*generation” OR ”co*generation” OR ”distributed energy resource*” OR CHPC

OR CCHP OR CHCP OR CHP OR ”hybrid energy system” OR ”renewable energy sys-

tem” OR ”sustainable energy system” OR ”Distributed energy center” OR ”sustainable

energy planning” OR ”distributed*generation facilities” OR ”district energy planning”

OR ”distributed energy planning”) AND (”micro*grid” OR district OR community OR

city OR ”*town” OR residential OR urban OR neighbourhood OR area OR domestic OR

village OR building OR ”small*scale” OR ”house*” OR ”dwelling”) AND (planning OR

plan OR sizing OR siting OR design OR architecture OR topology OR selection OR al-

location OR mix OR retrofit OR configuration OR combination OR synthesis) AND

(”optim*” OR programming) AND NOT (”Voltage rise” OR ”Test bus” OR ”Reactive

power” OR ”Hierarchical control” OR ”Frequency control” OR ”Frequency manage-

ment” OR ”Feeder” OR ”Circuit” OR ”Power quality” OR Inverter OR converter OR

Enthalpy OR exergy OR propulsion OR simulation OR ”fluid dynam*” OR axis OR

convection OR ”steel*” OR furnace OR ”super*critical” OR polymer OR rankine OR

1http://scopus.com/
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ventilation OR mill OR laser OR ”*dish” OR desalination OR kinetic OR glazing OR

insulation OR insulator OR shading OR ”power cycle” OR ”superheat*” OR expander

OR vane OR piston OR ”heat flux” OR ”mass transfer” OR ”heat resistance” OR IEEE

OR invertor))

This keyword combination focussed on design optimisation whilst eliminating detailed

electrical or thermodynamic analysis not related to (superstructure) design optimisation.

On 14 July 2016 this search gave 1155 hits among which 1033 written in the English

language. This English-based set included: articles (570), conference papers (371),

review papers (29), articles in press (29), conference reviews (18), books (4) and book

chapters (9). The search for Chapter 2 was narrowed down to only include peer-reviewed

academic journal articles and articles in press (599). This latter set was then manually

and iteratively reviewed based on scope and categorised based on the themes set out in

Section 2.3, Chapter 2. The literature results of this search have been complemented

throughout the thesis with other found research works from more targeted searches in

the field of DES design optimisation.

Figure 1.4 in Chapter 1 was constructed based on the search term combination with-

out specifying optimisation aspects: TITLE-ABS-KEY((”district energy system” OR

”multi*generation” OR ”multi*energy” OR ”poly*generation” OR ”poly*energy” OR

”integrated energy system” OR ”distributed energy system” OR ”distributed generation

system” OR ”micro*grid” OR ”energy hub” OR ”tri*generation” OR ”co*generation”

OR ”distributed energy resource*” OR CHPC OR CCHP OR CHCP OR CHP OR ”hy-

brid energy system” OR ”renewable energy system” OR ”sustainable energy system” OR

”Distributed energy center”) AND (district OR community OR city OR ”*town” OR

residential OR urban OR neighbourhood OR area OR domestic OR village OR building

OR ”small*scale” OR ”house*” OR ”dwelling” Or ”industr*”) AND NOT (health OR

mirror OR ”immun*” OR ”community health plan*” OR ”charcoal hemoperfusion” OR

projection OR ”neuro*” OR ”anion” OR ”ion” OR ”electron” OR ”proton”))

On 14 July 2016 this search gave 14050 hits among which 12822 written in the English

language. This English-based set included: articles (5814), conference papers (5552),

review papers (440), articles in press (139), conference reviews (288), books (57) and

book chapters (175). For Figure 1.4 this was limited to peer-reviewed academic jour-

nal/conference articles/reviews and articles in press, i.e. 12233 hits.



Appendix B

Distributed energy technologies

This Appendix details and summarises the energy conversion behaviour of the technolo-

gies considered within the design model.

B.1 Absorption chiller

The general energy conversion principle of absorption chillers is similar to vapour com-

pression chillers, but the mechanical compressor (pump) is here replaced by a ‘thermo-

chemical compressor’, i.e. heat, to increase the pressure of the refrigerant [364, 365]. An

absorption chiller has a refrigerant (e.g. water) and an absorbent (e.g. lithium-bromide

solution) with a high affinity for each other. First, through boiling/evaporating the

refrigerant in a low pressure environment by taking away the heat of the circulating

working fluid for cooling (e.g. water at ambient temperature), the cooling effect is pro-

vided. This cooled working fluid (water) could be used in a pipeline network for space

cooling. Since the refrigerant is evaporated in a low pressure environment, its boiling

point is low. Second, the evaporated refrigerant (gaseous) will be mixed with an ab-

sorbent liquid. A pump will subsequently increase the pressure of the mixture and feed

it to a generator. Third, the refrigerant-saturated liquid is heated (by low grade waste

heat by CHPs), causing the refrigerant to evaporate out. This process separates out the

absorbent ready for the next cycle. The refrigerant is subsequently condensed to repeat

the cycle. The number of times heating is used within the cycle determines the type of

process; single-, double- or triple-effect. Single-effect is the most simple and therefore

most employed design [364].
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B.2 Air-conditioning unit

Air-conditioning units are electrical compression chillers, which use chemicals to convert

fluids between phases [364]. Three main components are installed as part of the system,

i.e. a compressor, a condenser and an evaporator [366]. An airco has an outside unit that

consist of a condenser and compressor, and an inside unit that is used for evaporation.

A chemical working fluid interacts with the in- and outside components to extract heat

from the inside air and release this to the outside air. The electrically driven compressor

increases the pressure and temperature of the gaseous chemical. The chemical is then

transferred to a condenser (radiator fins) leaving the condenser as a high pressure cooler

chemical. The liquid chemical is then fed into the evaporator through a tube with a

big drop in diameter, reducing the pressure of the chemical. The latter will instigate

evaporation of the chemical into a gaseous form. Evaporation requires heat, which is

extracted from the inside air, cooling the air inside. A fan circulates the cooled air in

the room that requires cooling. After the evaporation stage, the chemical has a cool

gaseous low pressure form and is returned to the compressor.

B.3 Cold thermal storage

Cold thermal storage systems are thermally insulated tanks that can come in various

forms, including based on chilled water or ice as working fluid [367]. These systems

receive a cold working fluid from a chiller (e.g. absorption chiller), which is stored in

a storage tank from where the fluid can be retrieved for cooling purposes. In chilled

water based systems, water is typically stored in vertically stratified layers at 4 to 6

degrees Celsius. The layers makes sure the coldest water is at the top of the tank and

the bottom has a slightly higher temperature. Discharging the tank will take out water

at the bottom of the tank for cooling use. The temperature difference across the tank

determines the cooling capacity of the system. Ice storage systems also employ water

as working fluid but take advantage of a phase change to ice to obtain higher storage

capacities. (i.e. latent heat is removed by transforming liquid water to ice).
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B.4 Combined heat and power unit

Various types of small-scale CHP units exist, e.g. micro-turbines, fuel cells or Stir-

ling engines [364, 365]. CHP units generate electricity and waste heat simultaneously.

Micro-(gas)turbines are smaller scale types of combustion engines, typically fuelled by

natural gas (Brayton cycle). Gas is compressed and heated up by going through a com-

pressor (isentropic compression). This compressed gas is then combusted in the com-

bustion chamber (isobaric combustion) and then expanded within a turbine (isentropic

expansion). The gas expansion will move the blades of a turbine leading to electric-

ity generation through rotation within a generator (changing magnetic field induces an

electric current). Waste heat (hot exhaust gas) from the process is recovered for heating

purposes. A Stirling engine can be fuelled by various energy resources, such as natural

gas, and is based on an piston engine where a medium (e.g. helium or hydrogen) is

cycled. A fixed amount of gas of which the pressure is changed through an ignition,

causes a piston to expand and contract which leads to a rotation of a shaft used for

electricity generation. Several types of Stirling engines exists based on the number of

pistons. Fuel cells, in contrast, have no moving parts but generate electricity and heat

through a chemical reaction of hydrogen and oxygen.

B.5 Condensing gas boiler

A boiler is fuelled by natural gas, received from a natural gas main [368]. Gas is burned

in the boiler. Hot gas will heat up water (flows through copper pipes) through a heat

exchanger. Hot water is then pumped around a house through radiators. Radiators

consist of multiple bended loops to maximise transfer heat from the hot water inside the

pipes to the outside air.

B.6 Electrical battery storage

Batteries have three main components, i.e. an anode, a cathode and an electrolyte, that

enable them to convert chemical energy into electrical energy [369]. The anode and

cathode are made from different metallic materials and are connected by a conducting

wire to form an electrical circuit that can drive appliances. The anode and cathode are

also interconnected by a chemical electrolyte that facilitates flows of electrons between
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cathode and anode. By discharging the battery, a chemical reaction occurs whereby the

anode releases electrons that are attracted by the cathode (oxidation reaction). This

introduces a charge difference between anode and cathode, causing a current in the

conducting wire between anode and cathode. Charging a battery will reverse the flow

of electrons, resetting the anode and cathode to enable another discharging process.

B.7 Gas heater

Gas heaters work similarly to gas condensing boilers but heat generated by combustion

of natural gas is now used to heat up air through a radiator/heat exchanger rather than

heating up a working fluid, such as water, in a central heating system [370].

B.8 Hot thermal storage

Hot thermal water storage tanks are similar to cold thermal water storage tanks. These

systems receive a hot working fluid from a heater (e.g. waste heat from co-generation

unit is used to heat up water), which is stored in a storage tank between 25 and 90

degrees Celsius (mostly around 60 degrees Celsius) from where the fluid can be retrieved

for heating purposes [371]. In heated water based systems, water is typically stored in

vertically stratified layers. The latter makes sure the hottest water is at the top of the

tank and the bottom has a slightly lower temperature. Discharging the tank will take

out water at the bottom. The temperature difference across the tank determines the

heating capacity of the system.

B.9 Microgrid central control unit

Within a microgrid, each electricity generation unit has a power electronic interface [40,

41]. Power electronics, such as found in converters and inverters, are electronic circuits

that consist of switches that can control the flow of electricity. Power electronics can

ensure local balancing of supply and demand through a system architecture that has

three main components (i) controllers of the DG units, (ii) a system optimiser, and (iii)

protection schemes. Each feeder, within the microgrid electrical networks, has circuit

breakers and power flow controllers for safety and balancing. A power flow controller
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can regulate the the flow of power through the various cables to a level specified by the

operator or manager of the system. Several types of DG controllers exist, e.g. basic

control of real and reactive power, voltage regulation through droop, and frequency

droop for power sharing. Controllers respond to requirements within milliseconds, using

information of current and required system states, to control generation units at all

times. Here, communication between generation units is required to exchange data to

enable control actions. Typical DG controller inputs in this case are steady-state power

output and local bus voltages. A local system manager ensures system optimisation

through information of local demands, power and voltage requirements, costs, etc. to

determine power flows between consumers and the amount of electricity imported or

exported from and to the distribution grid.

B.10 Photovoltaic panel

Photovoltaic panels (PV) convert sunlight to electricity [372]. PV panels are made up

of (semi-conductor) materials that have the photoelectric effect. The latter enables ma-

terials to release electrons by absorbing sunlight photons. Capturing of these electrons

enables an electric current. PV panels consist of solar cells that are made of semi-

conductor materials (e.g. silicon). These semi-conducting materials are made into very

thin wafers that are treated to be charged differently on either side. Conducting wires

attached to the semi-conductors will then enable a current when sunlight releases elec-

trons from the semiconductor atoms. The current thus directly depends on the solar

irradiation that reaches the cell. A PV module consists of a number of these solar cells

combined in a module. A solar array combines a certain number of PV modules. PV

units generate DC electricity, which can be converted into AC through an inverter.

B.11 Thermal pipelines

Pipeline networks receive hot or cold thermal energy in the form of water as work-

ing fluid [373]. Its system is similar to central heating for individual houses but on a

larger scale. Hot water is generated by, for example, co-generation units. This water is

transferred through a large network to individual consumer premises. Due to the large
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size, storage and pumps are required within the network to maintain pressure and tem-

perature. Hot water used for central heating in premises is then returned to the return

pipeline network, which is fed back to the heat generator for reheating and recirculation.

B.12 Wind turbine

Wind turbines convert the mechanical energy of the wind in electricity [374]. The blades

of a turbine will turn with the wind speed. Blades are connected to a shaft, which will

turn with the speed of the turbine blades. The shaft is connected to a generator, which

generates electricity based on the principles of electro-magnetism (a changing magnetic

field induces an electric current.)



Appendix C

CPLEX solver

This Appendix details and summarises the solution approach of the CPLEX solver.

The CPLEX solver employs a branch and bound approach for problems with integer

variables, as detailed by IBM [246]. The explanation by IBM [246] is summarised here.

The feasible solution space is divided into hierarchically, continually restricted, sub-

problems (branching) referred to as nodes of a search tree, see Figure C.1. Objective

bounds are obtained for each sub-model (bounding). Each search tree sub-problem

node is analysed through its obtained bounds, which are used to remove sub-problems

(nodes) from the solution space (fathoming). Bounds are obtained through relaxation

of the analysed sub-problem.
Tree/root node 

B1=0 

B2=1 B2=0 

Bi=1 Bi=0 

B1=1 

Figure C.1: Branch and bound search tree method, adapted from IBM [246].
Bi=binary variable.

The process starts at the top/root node of the tree. This top node has the relaxed

integer program as associated sub-problem. Its solution is either an optimal integer

solution, but more commonly, a solution with some fractional-valued integer variables.

The solution to the latter is obtained through additional constraints that tighten the
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feasible region, cutting planes or heuristic algorithms. One fractional-valued integer

variable is then chosen to form two new sub-problems through branching. A binary

branching variable will create a sub-problem for each of its values, 1 or 0, leading to

two new child nodes. The branching process continues if these sub-problems also lead

to fractional-valued integer variables, creating a solution tree. The branching process is

stopped if the sub-problem of a node either has:

• no fractional-valued integer variables, i.e. a feasible solution to the original prob-

lem. If the obtained optimal solution is superior to any previously obtained feasible

solution, it is used as new reference point for future solutions, or,

• no feasible solution or an optimal solution that is inferior to a certain reference

value. Child sub-problems of this node would be even more inferior than the

reference or also infeasible, resulting in fathoming of the node and its sub-problems.

Sub-problems become more constrained at each branching step, leading to increased

possibility of fathoming. The search tree will remain contained in size as long as the

branching process is not much faster than the fathoming process. The process finishes

if no active nodes are left, returning the proven optimal solution that results from the

reference objective values set throughout the process.



Appendix D

Additional model equations of

Chapter 4

This Appendix details and summarises model equations in support of the developed

cost-optimal DES design model of Chapter 4. The model consists of an objective func-

tion bound by design and operational constraints of the available technologies, energy

interaction constraints, and energy balances. First, the terms of the objective function

are detailed, followed by additional technology design and operational behaviour as well

as energy interactions. The developed cost minimisation model builds further on efforts

by Mehleri et al. [95, 96], as was detailed in Section 4.2.4. The work in this Appendix

has been included in publications [247–250, 281].

D.1 Terms of the objective function

The neighbourhood investment cost, CINV [AUD y−1], sums the annualised investment

costs of the selected and installed technologies. Technology (tech) investment cost con-

sists of a capital cost, CCtech, multiplied with either a pre-set installed capacity parameter

and a binary selection variable (Btech,i) for each house i (for units with discrete capac-

ity), or, an optimised capacity variable DGMAX
tech,i (for units with a capacity range). In

case of PV units, the optimised capacity is determined through an optimised surface area

APVi [m2] multiplied with a rated capacity PVrat [kWpeak m−2] . A unit-specific capital

recovery factor, CRFtech annualises costs. The considered technologies are CHP units

(CHP ), PV units (PV ), small-scale wind turbines (WT ), thermal and electrical stor-

age (techST ), thermal technologies (techTH), i.e. the condensing boilers, gas heaters,
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air-conditioning units and absorption chillers, hot and cold thermal pipelines (p), a

microgrid central control unit (MGCC) and potential electrical dump loads (dump):

CINV =
∑
i

CRFCHP · CCCHP ·DGMAX
CHP,i +

∑
i

CRFPV · CCPV ·APVi · PVrat

+
∑
i

CRFWT · CCWT ·BWT,i ·WTrat +
∑

techST

∑
i

CRFtechST · CCtechST ·DGMAX
techST,i

+
∑

techTH

∑
i

CRFtechTH · CCtechTH ·DGMAX
techTH,i +

∑
i 6=j

∑
j

CRFp · CCp · Y Pi,j · li,j

+ CRFMGCC · CCMGCC · Z + CRFdump · CCdump · PdlMAX
i (D.1)

The yearly operation and maintenance cost, COM [AUD y−1], includes fixed (Comftech )

and variable (Comvtech ) contributions of the selected and implemented technologies. The

fixed contribution is based on installed capacity and only applies to certain technologies,

for example, annual cleaning and maintenance of PV units. The variable contribution

relates to regular maintenance based on yearly usage. The variable cost of the operation

of all technologies is included as well as the fixed cost of the PV units, wind turbines,

batteries (EST ) and pipelines (p). ds represents the number of days in each season s.

Note that the capacity unit for batteries is kWh.

COM =
∑
tech

∑
i

∑
s

∑
h

hr · ds · Comvtech · PETOTtech,i,s,h +
∑
i

ComfPV · PVrat ·A
PV
i

+
∑
i

ComfWT ·WTrat ·BWT,i +
∑
i

ComfEST ·DG
MAX
EST,i +

∑
i 6=j

∑
j

li,j · Comfp · Y Pi,j

(D.2)

Natural gas fuels both the heat generating technologies (techH), i.e. boilers and gas

heaters, as well as CHP units. Operating these technologies thus attracts a yearly fuel

cost, CFUEL [AUD y−1], at the prevailing gas tariff (T gas). For thermal technologies, the

fuel cost is associated with heat generated throughout the year (PHTOT
techH,i,s,h) and their

thermal efficiency (nthtechH). For CHP units the fuel cost is associated with electricity

generated throughout the year (PETOTCHP,i,s,h) and their electrical efficiency (nelecCHP ).

CFUEL =
∑
techH

∑
i

∑
s

∑
h

hr · ds · [PHTOT
techH,i,s,h ·

T gas

nthtechH
+ PETOTCHP,i,s,h ·

T gas

nelecCHP

] (D.3)

Each house can purchase electricity from the central grid to complement local genera-

tion. The annual electricity import cost, CGRIDBUY [AUD y−1], depends on the prevailing
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electricity tariff (T elc) and the electricity purchased throughout the year (PEGRIDi,s,h ):

CGRIDBUY =
∑
i

∑
s

∑
h

hr · ds · T elc · PEGRIDi,s,h (D.4)

A carbon tax, CCT [AUD y−1], can be directly imposed on the neighbourhood on an

annual basis. The tax depends on the prevailing tariff (T ct), the imported electricity as

well as the natural gas consumed on-site by the boilers (B), gas heaters (G) and CHP

units. The carbon intensities of the grid (CIelc) and natural gas (CIgas) are included.

CCT =
∑
i

∑
s

∑
h

T ct · hr · ds · [CIelc · PEGRIDi,s,h

+ CIgas ·
∑
techH

PHTOT
techH,i,s,h

nthtechH
+ CIgas ·

PETOTCHP,i,s,h

nelecCHP

] (D.5)

In addition, locally generated DG (techDG) electricity can be exported (PESALtechDG,i,s,h)

at the prevailing feed-in tariffs in the market (TSALtechDG), leading to an annual income,

CGRIDSAL , for the neighbourhood:

CGRIDSAL =
∑

techDG

∑
i

∑
s

∑
h

hr · ds · TSALtechDG · PESALtechDG,i,s,h (D.6)

D.2 Technology design and operational constraints

Several pools of technologies are implemented as detailed below.

D.2.1 Thermal energy technologies

Thermal technology (techTH) capacities, i.e. boilers, gas heaters, air-conditioning units

and absorption chillers, are bound. Each technology also has a dedicated binary selec-

tion variable to decide on the installation of a unit in a house (BtechTH,i). Thermal

technologies generate either heat (H and techH), PHTOT
techH,i,s,h [kW], or cooling (C and

techC), PCTOTtechC,i,s,h [kW]. The generated thermal power is bound by upper (UtechTH)

and lower bounds (LtechTH) on the installed capacity (DGMAX
techTH,i) of the unit:

LtechTH ·BtechTH,i ≤ DGMAX
techTH,i ≤ UtechTH ·BtechTH,i ∀ techTH, i (D.7)

PH/CTOTtechTH,i,s,h ≤ DGMAX
techTH,i ∀ techTH, i, s, h (D.8)
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Heat generated by boilers, PHTOT
B,i,s,h, and cooling generated by absorption chillers,

PCTOTAC,i,s,h, can be divided in a part for self use (SELF/Load) by the accommodat-

ing house and a part for thermal storage (STO). The absorption chiller can also provide

cooling for cold thermal pipeline transfer to other houses (Pipe).

PHTOT
B,i,s,h = PHLoad

B,i,s,h + PHSTO
B,i,s,h ∀i, s, h (D.9)

PCTOTAC,i,s,h = PCLoadAC,i,s,h + PCSTOAC,i,s,h + PCPipeAC,i,s,h ∀i, s, h (D.10)

D.2.2 Distributed generation technologies

PV unit operation, PETOTPV,i,s,h, is bound by available average solar irradiation on a tilted

surface in each hour (Its,h [kW m−2]), a rated capacity (PVrat [kWpeak m−2]) and an

electrical efficiency (nelecPV ). Country specific regulation can place upper bounds on the

maximum allowed installed capacity (UPV ) as well as daily electricity export (PESALPV,i,s,h)

limits (U exportPV ) of residential PV units.

PETOTPV,i,s,h ≤ min(APVi · PVrat;APVi · Its,h · nelecPV ) ∀i, s, h (D.11)

APVi ≤ UPV and
∑
h

hr · PESALPV,i,s,h ≤ U
export
PV ∀i, s (D.12)

Wind turbine electricity, PETOTWT,i,s,h, is bound by the available wind speed in each hour

(Vs,h [m s−1]), a rated capacity (WTrat [kW]) and a binary variable (BWT,i). Tur-

bines are characterised by a cut-in (VCI), a rated (VR) and a cut-out (VCO) wind speed

[m s−1] [251, 375, 376]. Furthermore, their power output is modelled following a Weibull

distribution with a shape parameter, kw (see Appendix E) [251, 252]:

For VCI ≤ Vs,h < VR:

PETOTWT,i,s,h = WTrat ·BWT,i ·
V kw − V kw

CI

V kw
R − V kw

CI

∀i, s, h (D.13)

For VR ≤ Vs,h < VCO:

PETOTWT,i,s,h = WTrat ·BWT,i ∀i, s, h (D.14)
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For VCO ≤ Vs,h < VCI :

PETOTWT,i,s,h = 0 ∀i, s, h (D.15)

and

PETOTWT,i,s,h ≤WTrat ·BWT,i ∀i, s (D.16)

Electricity generated by CHP units, PETOTCHP,i,s,h [kW], is bound by upper (UCHP ) and

lower levels (LCHP ) on its capacity (DGMAX
CHP,i) and a binary variable (BCHP,i):

LCHP ·BCHP,i ≤ DGMAX
CHP,i ≤ UCHP ·BCHP,i ∀i (D.17)

PETOTCHP,i,s,h ≤ DGMAX
CHP,i ∀i, s, h (D.18)

Waste heat recovered from CHP electricity generation, based on a heat to electricity

ratio (HER), can be used for space heating purposes (PHHEAT
CHP,i,s,h) or fuel a heat driven

cooling generation unit for space cooling purposes (PHCOOL
CHP,i,s,h):

PETOTCHP,i,s,h ·HER = PHHEAT
CHP,i,s,h + PHCOOL

CHP,i,s,h ∀i, s, h (D.19)

The portion used for heating (PHHEAT
CHP,i,s,h) can meet the space heating load of the

accommodating house (Load), can be stored in a hot water tank of the accommodating

house (STO) or can be transferred through the hot thermal pipeline network to meet

the space heating demands of other houses (Pipe):

PHHEAT
CHP,i,s,h = PHLoad

CHP,i,s,h + PHSTO
CHP,i,s,h + PHPipe

CHP,i,s,h ∀i, s, h (D.20)

The heat generated for cooling purposes (PHCOOL
CHP,i,s,h) fuels the absorption chiller, which

generates cooling (PCTOTAC,i,s,h) related to its coefficient of performance (nthAC):

PHCOOL
CHP,i,s,h · nthAC = PCTOTAC,i,s,h ∀i, s, h (D.21)

Electricity generated by DG units, PETOTtechDG,i,s,h [kW], can be used to meet the electric-

ity load of their accommodating house (SELF ), to export to the grid (SAL), to circulate

through the microgrid to meet part of the electricity demand of other neighbourhood

houses (CIRC) or to store in the battery of their accommodating house (STO):
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PETOTtechDG,i,s,h = PESELFtechDG,i,s,h + PESALtechDG,i,s,h + PECIRCtechDG,i,s,h + PESTOtechDG,i,s,h

∀ techDG, i, s, h

(D.22)

Additionally, self-generated electricity by DG units can be dumped, Pdli,s,h, in a dump

load installed in a house, bound by an upper level (Udump [kW]):

Pdli,s,h ≤ Udump ∀i, s, h (D.23)

D.2.3 Storage units

Storage units are modelled based on a daily roll-over including seasonal independence.

Thermal heating or cooling power stored in respective storage tanks, PSSTOi,s,h [kW], is a

function of the power stored in the previous hour minus a static loss percentage (ζ) plus

an inflow (PSINi,s,h) minus an outflow (PSOUTi,s,h ), based on a daily roll-over:

PSSTOi,s,h = (1− ζ) · PSSTOi,s,h−1 + PSINi,s,h − PSOUTi,s,h ∀i, s, h and h > 1 (D.24)

PSSTOi,s,h1 = (1− ζ) · PSSTOi,s,h24 + PSINi,s,h1 − PS
OUT
i,s,h1 ∀i, s, h and h = 1 (D.25)

Power inflow can be supplied by either the CHP unit and boiler, or, absorption chiller

in the accommodating house for hot or cold storage inflow, respectively. Note that the

following equations are similar for the first hour of the day, based on daily roll-over:

PSINi,s,h = (PHSTO
B,i,s,h + PHSTO

CHP,i,s,h) or PCSTOAC,i,s,h ∀i, s, h (D.26)

The storage tank can additionally not be loaded over its maximum capacity, DGMAX
STO,i:

(1− ζ) · PSSTOi,s,h−1 + PSINi,s,h ≤ DGMAX
STO,i ∀i, s, h and h > 1 (D.27)

The hourly outflow cannot exceed the thermal power stored in the previous hour:

PSOUTi,s,h ≤ (1− ζ) · PSSTOi,s,h−1 ∀i, s, h and h > 1 (D.28)

Furthermore, the units are bound by upper (USTO) and lower (LSTO) capacity levels

through a binary decision variable (BSTO,i):
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LSTO ·BSTO,i ≤ DGMAX
STO,i ≤ USTO ·BSTO,i ∀i, s, h (D.29)

PSSTOi,s,h ≤ DGMAX
STO,i ∀i, s, h (D.30)

Batteries are modelled similarly to thermal storage units with additional charge (χ)

and discharge (δχ) rates, maximum charge (maxχ) and discharge rates (maxδχ), upper

(UEST ) and lower (LEST ) limits on the state of charge, a depth of charge (DOC) and a

binary decision variable, BEST,i:

ESSTOi,s,h = (1− η) · ESSTOi,s,h−1 + hr · (1− χ) · PSINEST,i,s,h − hr ·
PSOUTEST,i,s,h

(1− δχ)

∀i, s, h and h > 1 (D.31)

ESSTOi,s,h1 = (1− η) · ESSTOi,s,h24 + hr · (1− χ) · PSINEST,i,s,h1 − hr ·
PSOUTEST,i,s,h1

(1− δχ)

∀i, s, h and h = 1 (D.32)

The in- and output electrical energy of batteries can not exceed installed capacity

(DGMAX
EST,i) and stored energy in the previous hour, respectively. Note that the following

equations are similar for the first hour of the day, based on daily roll over.

(1− η) · ESSTOi,s,h−1 + hr · (1− χ) · PSINEST,i,s,h ≤ DGMAX
EST,i ∀i, s, h (D.33)

hr ·
PSOUTEST,i,s,h

(1− δχ)
≤ (1− η) · ESSTOi,s,h−1 ∀i, s, h (D.34)

The in- and output energy is restricted by maximum charge and discharge rates in

function of the installed capacity:

hr · (1− χ) · PSINEST,i,s,h ≤ maxχ ·DGMAX
EST,i ∀i, s, h (D.35)

hr ·
PSOUTEST,i,s,h

(1− δχ)
≤ maxδχ ·DGMAX

EST,i ∀i, s, h (D.36)

The battery can be charged through contributions of the DG units, i.e. PV units, CHP

units and small-scale wind turbines installed in the accommodating house:

PSINEST,i,s,h =
∑

techDG

PESTOtechDG,i,s,h ∀i, s, h (D.37)
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The stored energy (ESSTOi,s,h [kWh]) cannot go below a level specified through the depth

of charge of the battery (DOC) (see Figure D.1), and the installed capacity is bound by

upper (UEST ) and lower (LEST ) levels through binary variable BEST,i:

LEST ·BEST,i ≤ DGMAX
EST,i ≤ UEST ·BEST,i ∀i (D.38)

(1−DOC) ·DGMAX
EST,i ≤ ESSTOi,s,h ∀i, s, h (D.39)

0 kWh 

Battery 

DGMAX

iEST ,

i,s,h
STOES

0 kWh 

DOC 1-DOC 

DGMAX

iEST ,

Figure D.1: Schematic of the battery depth of charge. A battery can not be discharged
more than its depth of charge (DOC). In other words, there will always be a minimum

charge level equal to (1−DOC).

D.2.4 Pipelines

The additional pipeline constraints are as follows. Heat send to the pipeline network

(PHPipe
CHP,i,s,h) and from the network to a house (QHLoad

i,s,h ) is bound by a maximum pipe

utilisation rate, Usnd, and the total heat load of the house, CLOADHEAT,i,s,h, respectively.

PHPIPE
CHP,i,s,h ≤ Usnd · Y snd

i,s,h ∀i, s, h (D.40)

QHLOAD
i,s,h ≤ CLOADHEAT,i,s,h · Y rec

i,s,h ∀i, s, h (D.41)

D.3 Energy interaction constraints

Several energy interactions occur in the neighbourhood to (i) meet the energy balances,

(ii) interact with the central grid, and (iii) share local electricity through the microgrid.
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D.3.1 Energy balances

The electricity load of each house, CLOADELEC,i,s,h [kW], together with a potential dump load

(Pdli,s,h) and electricity for the operation of the absorption chillers and air-conditioning

units (characterised by respective electricity to cooling ratios, ECR and nthairco), should

be satisfied through the consideration and combined use of grid import (PEGRIDi,s,h ),

electricity received through microgrid sharing (PEMG
rec,i,s,h), self-generated electricity by

DG units in the house (PESELFtechDG,i,s,h) and battery out-flow (PSOUTEST,i,s,h):

CLOADELEC,i,s,h + Pdli,s,h + PCGENAC,i,s,h · ECR+
PCGENairco,i,s,h

nthairco

= PEGRIDi,s,h + PEMG
rec,i,s,h +

∑
techDG

PESELFtechDG,i,s,h + PSOUTEST,i,s,h ∀i, s, h (D.42)

Heating, CLOADHEAT,i,s,h, and cooling loads, CLOADCOOL,i,s,h, are met by gas heaters (PHTOT
G,i,s,h),

boilers (PHSELF
B,i,s,h) or CHP units (PHLoad

CHP,i,s,h), or, air-conditioning units (PCTOTairco,i,s,h)

or absorption chillers (PCLoadAC,i,s,h) installed in the house, combined with hot or cold ther-

mal pipeline transfer (QH/CLoadi,s,h ) and hot or cold thermal storage out-flow (PSOUTSTO,i,s,h),

∀ i, s, h:

CLOADHEAT,i,s,h = PHTOT
G,i,s,h + PHLoad

B,i,s,h + PHLoad
CHP,i,s,h +QHLoad

i,s,h + PSOUTHST,i,s,h (D.43)

CLOADCOOL,i,s,h = PCTOTairco,i,s,h + PCLoadAC,i,s,h +QCLoadi,s,h + PSOUTCST,i,s,h (D.44)

D.3.2 Grid interactions

Each house can in each hour either import, PEGRIDi,s,h , or export, PESALtechDG,i,s,h, electricity

from and to the central grid up to a maximum (Urec/snd). Alternatively, a house can

also not interact with the central grid in an hour. The binary decision variables Xrec
i,s,h

and Xsnd
i,s,h decide whether a house receives or sends, respectively.

∑
techDG

PESALtechDG,i,s,h ≤ Usnd ·Xsnd
i,s,h ∀i, s, h (D.45)

PEGRIDi,s,h ≤ Urec ·Xrec
i,s,h ∀i, s, h (D.46)

Xsnd
i,s,h +Xrec

i,s,h ≤ 1 ∀i, s, h (D.47)
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D.3.3 Microgrid operation

Electricity send to, PECIRCtechDG,i,s,h, or received from, PEMG
rec,i,s,h, the microgrid by a house

can be divided into house pair interactions, PEsndi,j,s,h and PEreci,j,s,h, that are bound by

an upper level UMGC :

∑
techDG

PECIRCtechDG,i,s,h =
∑
j

PEsndi,j,s,h ∀i, s, h and i 6= j (D.48)

PEMG
rec,i,s,h =

∑
j

PEreci,j,s,h ∀i, s, h and i 6= j (D.49)

PE
snd/rec
i,j,s,h ≤ UMGC ·MGCi,j,s,h ∀i, j, s, h and i 6= j (D.50)

The electricity balance of the microgrid should be respected in each hour for each house

as well as for the neighbourhood as a whole:

PEsndi,j,s,h − PELOSSi,j,s,h = PEreci,j,s,h ∀i, j, s, h and i 6= j (D.51)

∑
techDG

∑
i

PECIRCtechDG,i,s,h −
∑
i

∑
j

PELOSSi,j,s,h =
∑
i

PEMG
rec,i,s,h ∀s, h and i 6= j (D.52)

Lastly, the total generated electricity by DG units for microgrid sharing is bound by

both an upper level UMGC and the existence of microgrid infrastructure (Z):

∑
techDG

∑
i

∑
s

∑
h

PECIRCtechDG,i,s,h ≤ UMGC · Z (D.53)



Appendix E

Input parameters of Chapter 4

This Appendix details and summarises input parameters for the developed cost-optimal

DES design model of Chapter 4. Neighbourhood layout details are provided together

with the derivation of the household thermal demands through the Degree Day method,

up-scaled neighbourhood demands and the derivation of solar and wind data.

E.1 Neighbourhood layout

The distance between the different house pairs are explicitly included in Table E.1 for

the 5-house neighbourhood, together with the yearly energy demands of each house.

The distances between different house pairs for the 10- and 20-house neighbourhoods

are included in Tables E.2 and E.3, respectively.

Table E.1: Distance [m] between each pair of houses (adapted from [95, 96]) as well
as the yearly energy demands of each house in terms of electricity (E), heating (H) and
cooling (C) [kWh y−1]. Each row presents from one house the distance to the other

houses in the neighbourhood as well as its yearly energy demands.

Distances Yearly demands

house h1 h2 h3 h4 h5 E H C

h1 0 30 40 50 70 3353 14138 2731
h2 30 0 30 20 40 3772 15905 3073
h3 40 30 0 50 70 4191 17672 3414
h4 50 20 50 0 20 4610 19439 3756
h5 70 40 70 20 0 5029 21207 4097

231
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Table E.2: Distance [m] between each pair of houses for the 10-house neighbourhood,
adapted from [96]. Each row presents from one house the distance to the other houses.

house h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h1 0 55 30 20 60 30 60 70 20 45
h2 55 0 30 40 60 50 40 25 60 25
h3 30 30 0 30 65 40 50 55 45 30
h4 20 40 30 0 40 15 30 50 20 20
h5 60 60 65 40 0 30 15 45 45 30
h6 30 50 40 15 30 0 25 55 15 25
h7 60 40 50 30 15 25 0 35 40 20
h8 70 25 55 50 45 55 35 0 70 30
h9 20 60 45 20 45 15 40 70 0 35
h10 45 25 30 20 30 25 20 30 35 0

E.2 Thermal demand derivation (Degree-Day method)

The daily profiles of hourly average thermal energy demands for an average day in each

season of a representative house, h3, in the 5-house neighbourhood are obtained through

a combination of the Degree Day method [258, 259] and the received data from the

South Australian distribution system operator [257], as detailed below.

E.2.1 Thermal energy demand profiles for heating and cooling

Heating and cooling profiles of a house can be determined through a combination of

temperature profiles and climate, acceptable human comfort levels and the energy per-

formance of the house in the considered area [258, 259]. Heating and cooling demands

in each hour for a house can be calculated through Equation E.1 and Equation E.2,

respectively [258, 259]. CLOADHEAT,h and CLOADCOOL,h are here the space heating and space

cooling demands in each hour [kW], respectively, Utot is the total heat loss coefficient of

the house [W K−1], T base is the pre-set human comfort inside temperature level [K] and

T outh is the outside temperature during the hour [K]:

CLOADHEAT,h = Utot ·max (0, T base − T outh )/1000 (E.1)

CLOADCOOL,h = Utot ·max (0, T outh − T base)/1000 (E.2)

Utot is the total heat loss coefficient of the house [W K−1] and U−1tot = Rtot. The latter

is the total thermal resistance of the house [K W−1].
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Table E.3: Distance [m] between each pair of houses for the 20-house neighbourhood,
adapted from [96]. Each row presents from one house the distance to the other houses.

house h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

h1 0 60 40 25 30 60 50 110 65 55
h2 60 0 25 40 70 70 45 35 70 30
h3 40 25 0 20 50 65 40 55 105 30
h4 25 40 20 0 30 80 25 90 60 30
h5 30 70 50 30 0 35 30 70 35 50
h6 60 70 65 80 35 0 20 50 25 40
h7 50 45 40 25 30 20 0 40 45 20
h8 110 35 55 90 70 50 40 0 80 25
h9 65 70 105 60 35 25 45 80 0 65
h10 55 30 30 30 50 40 20 25 65 0
h11 100 40 70 80 105 90 75 40 120 55
h12 95 75 85 75 75 40 45 40 65 50
h13 120 75 90 95 110 65 75 40 105 65
h14 20 90 105 106 110 80 80 50 105 75
h15 80 25 50 60 80 70 50 20 90 35
h16 105 65 85 80 90 60 60 30 25 55
h17 45 95 90 75 65 30 50 65 35 65
h18 105 100 100 85 85 45 60 60 60 70
h19 220 95 105 95 100 65 75 55 85 75
h20 70 60 60 50 55 25 25 30 50 30

house h11 h12 h13 h14 h15 h16 h17 h18 h19 h20

h1 100 95 120 20 80 105 45 105 220 70
h2 40 75 75 90 25 65 95 100 95 60
h3 70 85 90 105 50 85 90 100 105 60
h4 80 75 95 106 60 80 75 85 95 50
h5 105 75 110 110 80 90 65 85 100 55
h6 90 40 65 80 70 60 30 45 65 25
h7 75 45 75 80 50 60 50 60 75 25
h8 40 40 40 50 20 30 65 60 55 30
h9 120 65 105 105 90 25 35 60 85 50
h10 55 50 65 75 35 55 65 70 75 30
h11 0 70 45 65 25 55 110 95 80 70
h12 70 0 40 40 55 20 35 20 25 25
h13 45 40 0 25 45 20 25 60 40 55
h14 65 40 25 0 65 25 75 50 25 60
h15 25 55 45 65 0 45 85 80 70 45
h16 55 20 20 25 45 0 60 45 25 40
h17 110 35 25 75 85 60 0 25 50 40
h18 95 20 60 50 80 45 25 0 30 40
h19 80 25 40 25 70 25 50 30 0 50
h20 70 25 55 60 45 40 40 40 50 0

E.2.2 Temperature profiles and human comfort levels

First, the temperature profiles for the considered area, Adelaide in South Australia,

need to be determined. Adelaide is located in Climate Zone 5 according to the Building

Code of Australia [377]. This implies a climate and weather type of warm temperature.

The mean high, low and average temperatures for each month in Adelaide for 2012

are presented in Figure E.1 [260, 378]. The trend line is approximated through a 6th

order polynomial. Note that since Adelaide is located in the Southern hemisphere, the
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Figure E.1: Mean high, low and average temperatures for each month throughout a
year in Adelaide, South Australia [260, 378].

summer months are set to January, February, November and December, and the winter

months to May, June, July and August. The Degree Hour method should be performed

on hourly temperature profiles for a day in each month. In order to determine the hours

in each day with heating or cooling requirements, human comfort temperature levels are

determined [258, 379]. These levels indicate temperatures where no heating or cooling

is required to maintain a comfortable set base temperature inside the house. The base

temperature is set at two different levels for heating and cooling respectively and for two

time intervals, day and night. Table E.4 summarises the base indoor temperature for

both heating and cooling within each time interval. Note that in winter (May through

to August) and summer (November through to February) no space cooling and heating

demand is assumed, respectively. Average hourly temperature profiles for an average day

in each month for Adelaide, based on 2012 data, are given in Figure E.2 for heating and

cooling months, respectively, together with the respective base comfort temperatures.

Table E.4: Human comfort temperature levels [◦C] for a standard home based in
Adelaide, South Australia [380–382].

Heating Cooling unit

Day-time [7am-22pm] 20 23 [◦C]
Night-time [23pm-6am] 18 21 [◦C]
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Figure E.2: Mean hourly temperature profiles for an average day in each month for
Adelaide, Australia, with base temperature levels indicated for night and day as well
as heating and cooling regions. Black vertical lines=day and night, black horizontal

line=day base temperature, black horizontal dashed line=night base temperature.

E.2.3 Degree Hour method

The Degree Hour method determines the number of degrees of heating or cooling nec-

essary in each hour by taking the positive difference between the set base temperature

and the outside temperature [258, 379]. Equation E.3 determines the heating degrees

for each hour and Equation E.4 determines the cooling degrees for each hour:

HDH = max(0, T base − T outh ) (E.3)

CDH = max(0, T outh − T base) (E.4)

E.2.4 Degree Hours of heating and cooling

With the aforementioned base-temperatures and average hourly outdoor temperatures

for an average day in each month, the total heating and cooling degree hours for each

month in Adelaide are found, see Figure E.3. Note that the overall heating requirement

is larger than the cooling requirement, but the former is more evenly spread out over the

winter and mid-season months whereas the cooling requirement is spiky with a sudden

peak in January. Sudden peak demand exerts most pressure on the central NEM system

due to volatile summer peaking behaviour through electrically driven cooling.
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Figure E.3: Total heating and cooling Degree Hours for each month throughout a
year in Adelaide, South Australia.

E.2.5 Thermal losses of residential houses

The thermal energy performance of a house can be determined through several methods:

analytical, computational and experimental [380, 383]. With the experimental method,

thermal heat losses, thermal isolation of the building materials and in- and outside tem-

peratures are experimentally measured through calibrated equipment to determine the

heat loss factor of a house. The computational method utilises fixed climatic conditions

and standard building material characteristics to simulate the thermal performance of

walls of houses. Some widely used commercial software packages are NatHERS, de-

veloped by CISRO in Australia, NABERS and AccuRate [380]. An analytical and

theoretical model is in this Section adopted to estimate the thermal losses of a stan-

dard residential house based in Adelaide. The results obtained are estimates based on

knowledge about thermal properties of the used building materials, and climate and

temperature conditions of the region [380]. The estimated results can differ from the

results determined through experiments. The reasons for the difference is mainly due

to the non-linearity of thermal behaviour of the building materials, the internal energy

generation in a house and consumption patterns of occupants [380].

The thermal heat loss coefficient of a house, Utot, is required. This coefficient is the

inverse of the total thermal resistance factor. The minimum acceptable value for the

thermal resistance factor of new South Australian houses is predetermined through oblig-

atory compliance with the South Australian building energy efficiency requirements that
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include minimum insulation levels for walls, floors and roofs of new houses [256]. Build-

ing energy efficiency is measured through an energy star rating. The higher the rating,

the lower the thermal losses of the building and the higher the insulation level and ther-

mal energy performance of the building. The house considered in this study is based in

Adelaide (34.9S; 138.6E [384]), South Australia. As per the Development Act 1993 of

September 2010, all new homes and extensions built in South Australia need to achieve

a 6-star level of energy efficiency through minimum insulation requirements [255]. The

minimum measures of resistance to heat transfer of building materials are given in Ta-

ble E.5. The house under investigation is a standard detached single story house with

brick veneer walls and single glazing. This choice is motivated by the percentage of

houses in Adelaide that have single or double glazing [385], i.e 95.1% and 4.9% respec-

tively. Furthermore, most Australian houses are built either with weatherboard wall

systems or with brick veneer. The latter is more widely used [380]. The house dimen-

sions are in accordance with average floor areas and standard roof dimensions in South

Australia [254, 380]:

• The floor area is set to 200 m2 [254] with a length and a width of respectively 20

and 10 m, made out of a H class concrete slab with a depth of 100 mm [380, 386].

• Total house height is set to 4.5 m [380] with walls of 2.5 m and a roof of 2 m high.

• Walls are made of brick veneer with five layers: brick, air gap, timber frame,

insulation foil and plaster (Gypsum) [380]. The wall to window ratio in Adelaide

is on average 18% and the wall area is less than 25% of the floor area [385, 387].

Furthermore, two solid wooden doors between in- and outside are adopted with a

width and height of 1.2 m and 1.5 m, respectively.

• The roof is 2 m high with a 20 degree tilt and made of timber with terracotta/

concrete tiles [380].

The total house thermal loss coefficient, Utot, consists of loss terms based on convec-

tion, conduction, radiation and ventilation [258, 259, 380]. Following the methodology

explained in Durmayaz et al. [258] and Agioutantis and Bekas [259], the total thermal

Table E.5: Recommended R-values [Km2 W−1] and U-values [W(Km2)−1] for new
houses in Adelaide, South Australia [380, 384].

R-value unit U-value unit

Ceiling/roof 3.2 [Km2 W−1] 0.31 [W(Km2)−1]
Walls 1.9 [Km2 W−1] 0.53 [W(Km2)−1]
Floor 3.2 [Km2 W−1] 0.31 [W(Km2)−1]
Openings 0.19 [Km2 W−1] 5.23 [W(Km2)−1]
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loss is calculated through the sum of the conduction and radiation losses, determined

through Equations E.5 and E.6, respectively:

Qcond = A · Utot · (T in − T out) (E.5)

Qrad = 0.8 · V · Cpair · ρair · (T in − T out) (E.6)

Qcond is the total house heat loss through conduction [W], A the surface of the house

[m2], Utot the total house thermal loss factor and T in the indoor temperature or base

temperature [K]. The difference between the in- and outdoor temperature is equal to

the Degree Cooling or Heating required in each hour. Qrad is the total house heat loss

through radiation [W], V the total volume of the house [m3], Cpair the specific heat

capacity of air [W (kg◦C)−1] and ρair the density of atmospheric air [kg m−3].

E.2.6 Thermal loss factor of a typical residential house

The total thermal loss through conduction (Equation E.5) requires surface areas, ma-

terial heat loss coefficients and the calculation of the total conductive house heat loss

coefficient as given in Table E.6. The total thermal loss through radiation (Equation E.6)

requires air parameters and the calculation of the total radiation house heat loss coef-

ficient as given in Table E.7. The total house heat loss is then found by multiplying

the total conduction and radiation coefficients with the temperature difference in each

hour and subsequently summing both resulting losses, leading to the heating and cooling

demands in each hour for the considered house.

Table E.6: Total conductive heat loss coefficient of an Adelaide house [W K−1].

Area [m2] U [W (K m2)−1] AU [W K−1]

Roof 212.80 0.31 66.50
Walls 88.80 0.53 46.73
Windows 27.75 0.65 18.04
Doors 33.45 0.16 5.35
Floor 200 0.31 62.50
Openings 47.80 5.23 250.190

AUtot [W K−1] 449.32

Table E.7: Total radiation heat loss coefficient of an Adelaide house [W/K].

Value Unit

V 700 [m3]
Cpair 0.24 [W(kg ◦C)−1]
ρair 1.2 [kg m−3]

Total 161.28 [W K−1]
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E.2.7 Thermal profiles

The heating and cooling demand profiles for an average day in each month are calculated

based on the information provided in the previous Section: (i) a model of a standard

house based in Adelaide, (ii) the prevailing climate and temperature profiles, and (iii)

the pre-set human comfort levels. Figure E.4 gives the heat demands for an average day

in each heating month and Figure E.5 gives the cooling demands for an average day in

each cooling month.

0

1

2

3

4

5

6

7

8

9

1 5 9 13 17 21

A
v
e

ra
g

e
 h

o
u

rl
y
 h

e
a

ti
n

g
 d

e
m

a
n

d
 [

k
W

] 

Hour in the day 

March April May

June July August

September October

Figure E.4: Hourly heating demand profiles for a typical day in each month through-
out a year in Adelaide, South Australia [kW].
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Figure E.5: Hourly cooling demand profiles for a typical day in each month through-
out a year in Adelaide, South Australia [kW].
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E.3 Neighbourhood energy demands

The demands of the 5-house neighbourhood are given in Tables E.10, E.11, E.12, and E.13

for winter, summer and mid-season, respectively. House h3 is the representative house.

Its electricity demands are obtained from averaged aggregated data received from the

South Australian Distribution Network Operator. The thermal demands of h3 are ob-

tained through averaging the different monthly profiles in each season, obtained in Fig-

ures E.4 and E.5. The other house demands are varied with a percentage increase or

decrease with respect to h3; h1 = h3 - 10 %, h2 = h3 - 20 %, h4 = h3 + 10 %, and h5

= h3 + 20 %. The energy demands of the houses in the up-scaled neighbourhoods are

related to the house demands in the 5-house neighbourhood as indicated in Tables E.8

and E.9 for the 10- and 20-house neighbourhoods, respectively.

Table E.8: Relation between the demands of the houses in the 10-house neighbour-
hood and the demands of the houses in the 5-house neighbourhood.

houses h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

demand 5-house
neighbourhood

h1 h2 h3 h4 h5 h1 h2 h3 h4 h5

Table E.9: Relation between the demands of the houses in the 20-house neighbour-
hood and the demands of the houses in the 5-house neighbourhood.

houses h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

demand 5-house
neighbourhood

h1 h2 h3 h4 h5 h1 h2 h3 h4 h5

houses h11 h12 h13 h14 h15 h16 h17 h18 h19 h20

demand 5-house
neighbourhood

h1 h2 h3 h4 h5 h1 h2 h3 h4 h5

E.4 Derivation of solar irradiation on a tilted surface

This Section summarises the derivation of the global solar irradiance on a tilted plane,

e.g. a PV panel. First, some terminology is clarified to then derive the three components

of the tilted global solar irradiance; direct tilted irradiance, tilted albedo and tilted

diffuse irradiance. Last, the resulting hourly average tilted global solar irradiance for a

typical day in each season for Adelaide, South Australia, is presented.
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Table E.10: The hourly average electricity and heating demands [kW] for each house
(hi) in the 5-house neighbourhood for winter.

electricity heating

hr h1 h2 h3 h4 h5 h1 h2 h3 h4 h5

h1 0.207 0.233 0.258 0.284 0.310 3.915 4.404 4.893 5.383 5.872
h2 0.207 0.233 0.258 0.284 0.310 4.047 4.553 5.059 5.564 6.070
h3 0.216 0.243 0.270 0.297 0.324 4.212 4.739 5.265 5.792 6.318
h4 0.233 0.262 0.291 0.321 0.350 4.328 4.869 5.410 5.951 6.492
h5 0.228 0.256 0.285 0.313 0.341 4.319 4.859 5.399 5.939 6.479
h6 0.239 0.268 0.298 0.328 0.358 5.426 6.104 6.783 7.461 8.139
h7 0.282 0.318 0.353 0.388 0.423 5.352 6.021 6.690 7.359 8.028
h8 0.369 0.416 0.462 0.508 0.554 4.807 5.408 6.008 6.609 7.210
h9 0.420 0.473 0.526 0.578 0.631 3.791 4.265 4.739 5.212 5.686
h10 0.425 0.478 0.531 0.584 0.637 3.122 3.512 3.902 4.293 4.683
h11 0.416 0.468 0.520 0.572 0.624 2.659 2.992 3.324 3.657 3.989
h12 0.404 0.454 0.505 0.555 0.606 2.379 2.676 2.973 3.271 3.568
h13 0.398 0.448 0.498 0.547 0.597 2.205 2.481 2.756 3.032 3.308
h14 0.384 0.432 0.479 0.527 0.575 2.189 2.462 2.736 3.009 3.283
h15 0.385 0.433 0.481 0.529 0.577 2.230 2.509 2.787 3.066 3.345
h16 0.376 0.423 0.470 0.517 0.564 2.354 2.648 2.942 3.236 3.531
h17 0.408 0.459 0.510 0.561 0.612 2.858 3.215 3.572 3.929 4.286
h18 0.508 0.572 0.636 0.699 0.763 3.378 3.800 4.222 4.645 5.067
h19 0.662 0.744 0.827 0.910 0.993 3.873 4.358 4.842 5.326 5.810
h20 0.692 0.779 0.866 0.952 1.039 4.163 4.683 5.203 5.723 6.244
h21 0.640 0.720 0.800 0.880 0.960 4.402 4.952 5.503 6.053 6.603
h22 0.530 0.597 0.663 0.729 0.796 4.600 5.175 5.750 6.325 6.900
h23 0.310 0.349 0.388 0.426 0.465 3.733 4.200 4.666 5.133 5.600
h24 0.207 0.233 0.258 0.284 0.310 3.832 4.311 4.790 5.269 5.748

Table E.11: The hourly average electricity and cooling demands [kW] for each house
(hi) in the 5-house neighbourhood for summer.

electricity cooling

hr h1 h2 h3 h4 h5 h1 h2 h3 h4 h5

h1 0.216 0.243 0.270 0.297 0.324 0.501 0.564 0.626 0.689 0.751
h2 0.268 0.302 0.335 0.369 0.402 0.397 0.447 0.496 0.546 0.596
h3 0.267 0.301 0.334 0.368 0.401 0.299 0.337 0.374 0.412 0.449
h4 0.261 0.294 0.327 0.359 0.392 0.269 0.302 0.336 0.370 0.403
h5 0.269 0.302 0.336 0.370 0.403 0.165 0.186 0.206 0.227 0.247
h6 0.333 0.374 0.416 0.457 0.499 0.000 0.000 0.000 0.000 0.000
h7 0.397 0.447 0.497 0.546 0.596 0.000 0.000 0.000 0.000 0.000
h8 0.394 0.444 0.493 0.542 0.592 0.195 0.220 0.244 0.269 0.293
h9 0.419 0.472 0.524 0.577 0.629 0.519 0.584 0.649 0.714 0.779
h10 0.422 0.475 0.528 0.581 0.633 0.831 0.935 1.038 1.142 1.246
h11 0.418 0.470 0.522 0.574 0.626 0.990 1.113 1.237 1.361 1.484
h12 0.444 0.500 0.555 0.611 0.666 1.185 1.333 1.481 1.629 1.778
h13 0.434 0.488 0.543 0.597 0.651 1.344 1.512 1.680 1.848 2.016
h14 0.441 0.496 0.551 0.606 0.661 1.594 1.794 1.993 2.192 2.391
h15 0.455 0.512 0.569 0.626 0.682 1.662 1.869 2.077 2.285 2.492
h16 0.496 0.558 0.620 0.682 0.744 1.784 2.007 2.230 2.453 2.676
h17 0.550 0.619 0.688 0.757 0.825 1.668 1.876 2.085 2.293 2.501
h18 0.555 0.624 0.693 0.763 0.832 1.490 1.677 1.863 2.049 2.236
h19 0.541 0.609 0.677 0.744 0.812 1.289 1.450 1.611 1.772 1.933
h20 0.523 0.588 0.654 0.719 0.785 0.867 0.976 1.084 1.193 1.301
h21 0.421 0.474 0.526 0.579 0.631 0.531 0.598 0.664 0.731 0.797
h22 0.268 0.302 0.335 0.369 0.402 0.531 0.598 0.664 0.731 0.797
h23 0.216 0.243 0.270 0.297 0.324 0.702 0.790 0.878 0.966 1.054
h24 0.216 0.243 0.270 0.297 0.324 0.660 0.742 0.825 0.907 0.990
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Table E.12: The hourly average heating and cooling demands [kW] for each house
(hi) in the 5-house neighbourhood for mid-season.

heating cooling

hr h1 h2 h3 h4 h5 h1 h2 h3 h4 h5

h1 1.890 2.126 2.363 2.599 2.835 0.000 0.000 0.000 0.000 0.000
h2 1.956 2.200 2.445 2.689 2.933 0.000 0.000 0.000 0.000 0.000
h3 2.161 2.431 2.701 2.972 3.242 0.000 0.000 0.000 0.000 0.000
h4 2.235 2.514 2.793 3.073 3.352 0.000 0.000 0.000 0.000 0.000
h5 2.392 2.691 2.990 3.289 3.588 0.000 0.000 0.000 0.000 0.000
h6 3.254 3.661 4.068 4.475 4.881 0.000 0.000 0.000 0.000 0.000
h7 3.284 3.694 4.105 4.515 4.926 0.000 0.000 0.000 0.000 0.000
h8 2.445 2.750 3.056 3.361 3.667 0.000 0.000 0.000 0.000 0.000
h9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
h10 0.000 0.000 0.000 0.000 0.000 0.073 0.082 0.092 0.101 0.110
h11 0.000 0.000 0.000 0.000 0.000 0.232 0.261 0.290 0.319 0.348
h12 0.000 0.000 0.000 0.000 0.000 0.342 0.385 0.428 0.470 0.513
h13 0.000 0.000 0.000 0.000 0.000 0.434 0.488 0.542 0.596 0.651
h14 0.000 0.000 0.000 0.000 0.000 0.415 0.467 0.519 0.571 0.623
h15 0.000 0.000 0.000 0.000 0.000 0.421 0.474 0.527 0.580 0.632
h16 0.000 0.000 0.000 0.000 0.000 0.489 0.550 0.611 0.672 0.733
h17 0.000 0.000 0.000 0.000 0.000 0.421 0.474 0.527 0.580 0.632
h18 0.000 0.000 0.000 0.000 0.000 0.250 0.282 0.313 0.344 0.376
h19 0.000 0.000 0.000 0.000 0.000 0.153 0.172 0.191 0.210 0.229
h20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
h21 2.123 2.388 2.653 2.919 3.184 0.000 0.000 0.000 0.000 0.000
h22 2.247 2.528 2.809 3.090 3.371 0.000 0.000 0.000 0.000 0.000
h23 1.480 1.665 1.850 2.036 2.221 0.000 0.000 0.000 0.000 0.000
h24 1.521 1.711 1.901 2.091 2.281 0.000 0.000 0.000 0.000 0.000

Table E.13: The hourly average electricity demands [kW] for each house (hi) in the
5-house neighbourhood for mid-season.

hr h1 h2 h3 h4 h5

h1 0.212 0.238 0.264 0.291 0.317
h2 0.238 0.268 0.298 0.327 0.357
h3 0.242 0.272 0.302 0.333 0.363
h4 0.247 0.278 0.309 0.340 0.371
h5 0.249 0.280 0.311 0.342 0.373
h6 0.286 0.322 0.358 0.394 0.429
h7 0.341 0.383 0.426 0.468 0.511
h8 0.382 0.430 0.478 0.525 0.573
h9 0.420 0.472 0.525 0.577 0.630
h10 0.423 0.476 0.529 0.582 0.635
h11 0.417 0.469 0.521 0.573 0.625
h12 0.424 0.477 0.531 0.584 0.637
h13 0.416 0.468 0.520 0.572 0.624
h14 0.413 0.464 0.516 0.568 0.619
h15 0.420 0.473 0.525 0.578 0.630
h16 0.437 0.491 0.546 0.601 0.655
h17 0.480 0.540 0.600 0.660 0.720
h18 0.532 0.598 0.665 0.731 0.798
h19 0.601 0.676 0.751 0.826 0.901
h20 0.606 0.682 0.758 0.834 0.910
h21 0.529 0.595 0.661 0.727 0.793
h22 0.397 0.447 0.496 0.546 0.596
h23 0.262 0.295 0.328 0.361 0.394
h24 0.212 0.238 0.264 0.291 0.317
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E.4.1 Definitions and rules of thumb

The radiation of the sun that reaches the ground is the global irradiance. Solar irra-

diation needed for PV output calculation is the global irradiance on a tilted surface

[kW m−2]. The global horizontal irradiance is the global irradiance measured on a hor-

izontal surface and the global tilted irradiance is the global irradiance measured on a

tilted surface. Global irradiance consists of three components; the beam or direct irradi-

ance, the diffuse irradiance and the ground reflected irradiance or ground albedo, which

can all be measured horizontally or tilted, see Figure E.6 [262, 388–391]. The beam

irradiance reaches the surface directly, Bt [kW m−2]. The diffuse irradiance reaches the

surface after being scattered by the atmosphere and the influence of other sky condi-

tions, Dt [kW m−2]. The ground albedo reaches the surface after being reflected from

the ground, At [kW m−2]. The global irradiance on a tilted surface, Gt [kW m−2], can

then be found as the sum of its three tilted components [262, 388, 389, 392–394]:

Gt = Bt +At +Dt (E.7)

The beam and ground reflected components are obtained through goniometric and

isotropic relations [262, 389, 392, 396] (see following Sections). The diffuse component,

in contrast, is not as easily determined. PV panels can be installed in different configu-

rations based on rules of thumb [262]. The fixed tilt panel is the cheapest configuration,

in contrast with panels that track the sun throughout the day [262]. The tilt angle of a

fixed panel should thus be optimised for annual sun harvest, which is, as a rule of thumb,

a tilt angle equal to the latitude of the location [262]. Additionally, the orientation of

the PV unit needs to be decided upon. The PV unit produces most power if directly

facing the sun un-shaded [397]. For the Southern hemisphere, this orientation should be

scatter 

Figure E.6: Components of global solar irradiance on a tilted surface, adapted
from [395].
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due north [397, 398]. The maximum PV output is obtained for a tilt angle between 30

and 40 degrees due north for Adelaide, South Australia (34.95◦ S) [397].

E.4.2 Calculation of direct tilted irradiance

The tilted beam irradiance, Bt, can be found as the product of the direct irradiance on a

horizontal surface (Bh) [kW m−2] and the incidence angle ratio (Rb) [262, 388, 389, 392–

394]:

Bt = Bh ·Rb (E.8)

The incidence angle ratio is the ratio of the cosines of the solar incidence angle on a

tilted plane, θi [degrees], and the solar zenith angle, θz [degrees] (see Figure E.7):

Rb =
cos θi
cos θz

(E.9)

The cosine of the incidence and zenith angles can be obtained through:

cos θi = sin δ · sinφ · cosβ − sin δ · cosφ · sinβ · cos γ (E.10)

+ cos δ · cosφ · cosβ · cosω + cos δ · sinφ · sinβ · cos γ · cosω

+ cos δ · sinβ · sin γ · sinω

cos θz = sinφ · sin δ + cosφ · cos δ · cosω (E.11)

• φ is the latitude of the location [degrees], positive for either hemisphere.

• δ is the solar declination: δ = 23.45 · sin(2π · (284 + n) · (365)−1), with n the day

of the year starting from the 1st of January and going from 1 to 365 for non-leap

years [399, 400]. The solar declination is the angle between the plane of the equator

and the plane of the orbit of the earth (see Figure E.7). The solar declination angle

changes with the movement of the earth along its orbit throughout the year [262].

The solar declination angle goes from 0 to +90 degrees [401].

• β is the tilt angle [degrees], measured from the horizontal from which the plane is

tilted (see Figure E.7).

• ω (ω = 15◦ · (12−LST )) is the solar hour angle. ω represents the angular [degrees]

displacement between the incidence location meridian and the meridian of the

plane containing the sun (see Figure E.7) [402]. The solar hour angle is zero at

solar noon and varies by 15 degrees per hour from noon [403]. At solar noon,

the sun is due north in the Southern hemisphere. 12 is here the hour at local
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noon and LST the Local Solar Time or apparent solar time [hours], which can be

found as LST = LT + TC · 60−1. LT is the Local Time at the location and TC

the Time Correlation factor. The TC is found as: TC = 4◦(λ − LSTM) + EoT .

The Local Standard Time Meridian (LSTM = 15◦ ·∆TGMT ), the longitude at the

exact location of the measurements (λ) and the hour difference with the Greenwich

meridian (∆TGMT ) are required. The factor of 4 is introduced because the earth

rotates 1◦ every four minutes [403]. The Equation of Time (EoT ) is found as:

EoT = 9.87 · sin(2B)− 7.53 · cosB − 1.5 · sinB [403] (see Figure E.7). B [degrees]

includes the number of days (d) since the start of the year: B = 360◦·365−1·(d−81).

• γ is the azimuth angle, defined as the local angle between the direction of the

surface (due north for Southern hemisphere) and the surface of the perpendicular

projection of the sun on the horizontal line, measured clockwise (see Figure E.7).

The solar azimuth angle is measured away from north in the Southern hemisphere:

cos γ = (sin δ · cosφ− cos δ · cosω · sinφ) · (cosα)−1. The equation is only valid in

the solar morning, in case of: (i) azimuth = γ for LST smaller than 12, which is

equivalent to a solar hour angle smaller than zero, and (ii) azimuth=360◦ − γ for

LST greater than 12, which is equivalent to a solar hour angle greater than zero.

• α is the solar angle [degrees], defined as: α = 90◦+(φ− δ) (Southern hemisphere).

For Adelaide, South Australia, based in the Southern Hemisphere, east of the meridian,

the above angles are:

• φ = β = 34.95◦,

• δ = −23.45 · sin(2π · (284 + n) · 365−1),

• α = 90 + (34.95◦ − δ),

• ω requires a longitude of 138.35◦, an LSTM of 138.52◦ and a ∆TGMT of +9.5

hours and +10.5 hours during daylight saving time,

E.4.3 Calculation of albedo tilted irradiance

The ground reflected tilted irradiance can be found through isotropic and anisotropic

relations. Research of comparison studies showed that using anisotropic methods does

not add to the accuracy of the simple isotropic relation, such as [388, 389, 404, 405]:

At = Gh · rg ·Rr (E.12)



Appendix E. Input parameters of Chapter 4 246

α 

θz 

surface 

(a) Zenith (θz) and solar
angle (α)

α 

δ 

N 

S 

(b) Solar angle (α) and
declination (δ)

α 

α 

β 

β 

(c) Solar angle (α) and tilt
angle (β)

N 0° 

E 90° 

S 180° 

W 270° 

γ 

(d) Azimuth angle (γ)

E 

N 

S 

Greenwich  

Meridian 

Φ 

λ 

(e) Latitude (φ) and longitude (λ) of a
point

-20

-15

-10

-5

0

5

10

15

20

0 50 100 150 200 250 300 350

E
q

u
a
ti

o
n

 o
f 

T
im

e
 (

E
o

T
) 

[m
in

] 

Number of days since the start of the year 

(f) Equation of Time

Figure E.7: Solar angles and Equation of Time.
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Gh is here the global horizontal irradiance [kW m−2], rg is the ground reflectivity (0.2

for standard lawn and outdoor surface [262, 406]), and Rr the incidence angle ratio for

the ground reflection, found as Rr = (1− cosβ) · 2−1.

E.4.4 Calculation of diffuse tilted irradiance

The diffuse tilted irradiance is not as straightforward to obtain compared to the previous

components due to its anisotropic behaviour under the sky dome [406]. Throughout

literature different isotropic and anisotropic methods have been proposed. The diffuse

tilted irradiance depends on the weather, sky conditions, soil and climate. Depending on

the researched location, certain models will provide the best fit. The general expression

to obtain the diffuse tilted irradiance is [388, 392, 404]:

Dt = Dh ·Rd (E.13)

Dh is here the diffuse horizontal irradiance [W m−2] and Rd the incidence angle ratio

for the diffuse solar irradiance. Rd can be determined based on isotropic or anisotropic

methods. The difference between isotropic and anisotropic methods lies in the incorpo-

ration of sky radiation [388, 404].

E.4.4.1 Isotropic methods

The intensity of diffuse sky radiation is taken to be uniform over the sky dome for

isotropic methods. This is a simplification of reality and will therefore sometimes lead

to an overestimation of the tilted diffuse solar irradiation [388, 404]. The most com-

mon isotropic relations are summarised in Table E.14 with β the surface tilt angle

[degrees] [388, 392, 404].

Table E.14: Most common isotropic methods to obtain the incidence angle ratio of
the diffuse solar irradiation on a tilted surface [388, 392, 404].

Rd Model Comment
1+cos β

2
Liu-Jordan model [407] Most commonly accepted method [262, 405]

(2+cos β)
3

Koronakis model [408] Adaptation of the Liu-Jordan model
(3+cos(2β))

4
Badescue model [409] Pseudo-anisotropic model

1− β
180

Tian model [410] Isotropic model
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E.4.4.2 Anisotropic methods

Anisotropic methods take into account both the isotropic diffuse tilted radiation as well

as a measure for the anisotropy of the diffuse radiation in the circumsolar region [388,

404]. The circumsolar region is the region of the sky near the solar disk. Anisotropic

methods refine the approach taken by isotropic methods with factors that incorporate

a circumsolar, a horizon brightening and a sky condition correction. Hence, they are

more accurate representations of reality [262]. A large variety of models exist, suitable

to various locations [389, 390, 392, 396]. Table E.15 summarises the most common

anisotropic methods found in literature with Bh the direct horizontal solar irradiance

[W m−2], Dh the diffuse horizontal solar irradiance [W m−2], Gh the global horizontal

solar irradiance [W m−2], and rb the beam radiation conversion factor. The tilted diffuse

solar irradiance can be split up in a uniform irradiance of the sky dome (isotropic diffuse

component), a circumsolar diffuse component and a horizon brightening component.

Depending on the model, only the circumsolar or both the circumsolar and the horizon

brightening corrections are added to the isotropic model.

E.4.4.3 Choice of method

The value of the tilted solar irradiance will be influenced by both the calculation method

and by the climatological conditions of the location. Depending on the sky conditions,

each method will potentially result in an over or under estimation of the diffused tilted

solar irradiance component. Sky conditions, cloud cover, tilt angle and facing of the panel

will all result in a different best-approach calculation method for the diffuse component.

To assess the quality of results, each method requires a fitting and comparison with

real data [388–390, 392, 405]. Generally, literature agrees that anisotropic methods

deliver the best quality results, but the best anisotropic method depends highly on

the conditions and location. Isotropic methods, in contrast, lead to acceptable results,

which closely approximate the best anisotropic results. Moreover, the range of over-

and under-estimation is small, if even existent. As the scope of this work is not to

comparatively assess the results of different models to obtain the ‘best’ fit, but rather

to get satisfactory approximate solar irradiation values to illustrate the capabilities of

the developed modelling framework, the simple Liu-Jordan isotropic model is employed

to obtain the diffuse tilted irradiance.
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Table E.15: Most common anisotropic methods to obtain the incidence angle ra-
tio of the diffuse solar irradiation on a tilted surface. CIRC=circumsolar correction,

HB=horizon brightening correction, ISO=isotropic.

Rd Symbols Model Comment Type

FHay · rb + (1− FHay) · 1+cos β
2

FHay = Bh ·G−1
ext, Gext is

the extraterrestrial solar
irradiance [W m−2]

Hay
model
[411]

Reduces to
the Liu-
Jordan model
for FHay = 0

ISO +
CIRC

FHay · rb + Z · cosβ − S(ω,Ωi)

+ (1− FHay − Z) · 1 + cosβ

2

Z =
max (0.3− 3 · FHay, 0),
S(ω,Ωi) takes into
account the effect of
obstacles obscuring the
horizon and blocking
a part of the diffuse
radiation incident on a
tilted plane

Skartveit-
Olseth
model
[395]

Reduces to
Hay model
if FHay ≥
0.15 then Z =
0 [392]

ISO +
CIRC

1 + cosβ

2
· [1 + fK · cos3(

β

2
)]

· [1 + fK · cos2 θi · cos3 θz]

fK = 1 − (Dh)2(Gh)−2

determines the degree
of cloud cover through
function

Klucher
model
[412]

Reduces to
Liu-Jordan
and Temps-
Coulson [413]
when
fK = 0 (i.e.
D/G = 1)
and
fK = 1 (i.e.
D/G = 0)

ISO +
CIRC
and
HB

F1 ·
a

b
+ (1− F1) · 1 + cosβ

2
+ F2 · sinβ

F1 = F11(ε) + F12(ε) ·
∆ + F13(ε) · θz is the
sky brightness coefficient
for the cirumsolar region,
F2 = F21(ε) + F22(ε) ·
∆ + F23(ε) · θz is the
sky brightness coefficient
for the region above the
horizon line with Fi,j the
Perez coefficients func-
tion of the sky clearness
parameter ε and the sky
brightness parameter ∆

Perez
model
[414]

Gives a more
detailed
analysis in
radians. Re-
duces to Liu-
Jordan with
F1 = F2 = 0.
Many sets of
Fi,j have been
determined
in different
studies [414]

ISO +
CIRC
and
HB

Fhay · rb + (1− FHay) · 1 + cosβ

2

· (1 + fR · sin3 β

2
)

fR =
√

Bh

Gh is the func-

tion that modulates the
intensity of the diffuse ir-
radiation from the region
near the horizon line

Reindl
model
[415]

Total overcast
(fR = 0).
Hay model
extended with
a component
for diffuse
radiation
coming from
the horizontal
line

ISO +
CIRC
and
HB

1+cos β
2
· P1 · P2 P1 = 1 + cos2θi · sin3 θz

is the diffuse radiation
coming from the vicinity
of the sun’s disk. P2 =
1 + sin3 β

2
is the sky ra-

diation from the region
close to the horizon

Temps-
Coulson
model
[413]

ISO +
CIRC
and
HB
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E.4.5 Data

Solar data for Adelaide are available from the Australian Bureau of Meteorology [260].

The most recent complete data set of 2010 is employed. 1-minute data are available in

terms of global, mean direct, mean diffuse, mean terrestrial, and mean direct horizontal

irradiation with their maximum, minimum, standard deviation and uncertainty. The

values are hourly averaged and the daily profiles (24h for 365 days) are averaged per

month for monthly profiles and then per season for daily seasonal profiles. The obtained

global tilted solar irradiation seasonal profiles are then checked with the average daily

and yearly solar levels in Adelaide. The obtained values are given in Table E.16.

Table E.16: Global solar irradiation on a tilted surface for seasonal daily profiles in
Adelaide, South Australia [kW m−2]. S=summer, W=winter, MS=mid-season.

hr h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

S 0.000 0.000 0.000 0.000 0.000 0.007 0.042 0.188 0.346 0.347 0.414 1.087
W 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.037 0.159 0.247 0.324 0.884
MS 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.150 0.308 0.332 0.404 1.070

hr h13 h14 h15 h16 h17 h18 h19 h20 h21 h22 h23 h24

S 1.098 0.715 0.657 0.371 0.389 0.203 0.025 0.000 0.000 0.000 0.000 0.000
W 0.901 0.579 0.504 0.245 0.130 0.006 0.000 0.000 0.000 0.000 0.000 0.000
MS 1.080 0.699 0.631 0.342 0.315 0.108 0.004 0.000 0.000 0.000 0.000 0.000

E.5 Derivation of wind speeds at defined hub height

The considered wind turbines are horizontal axis. Wind turbines are characterised by

a cut-in, a cut-out and a rated wind speed [m s−1], see Figure E.8 [251, 375, 376]. The

cut-in wind speed is the speed at hub height that is strong enough to start up the

turbine. Wind speeds starting from the cut-in allow the turbine to generate electricity.

The cut-out wind speed is the speed that is too high to allow safe operation of the

turbine. At wind speeds above the cut-out, the turbine will be shut down to prevent

damaging. The rated wind speed is the speed at which the turbine generates at the

level equal to its rated capacity. To model the design and operation of the small-scale

wind turbines is opted for the widely employed Weibull method for wind speeds below

the rated wind speed [252, 273, 416–418]. The Weibull method describes a power curve

model based on wind speeds characterised by a Weibull shape parameter k [252, 273],

see Equations in Section D.2.2, Appendix D. More specifically, a wind turbine generates

a certain amount of electricity averaged over each hour, depending on the average wind

speed during that hour. The Weibull shape parameter is determined by the wind speed
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Figure E.8: Power curve of a wind turbine. Prat=rated capacity, Vci=cut-in wind
speed, Vr=rated wind speed, Vco=cut-out wind speed.

distribution at a certain location during a certain day in the year and depends on the

variability of the wind [252]. k usually takes up a value between 1 and 3. A smaller k

indicates a more variable, gusty wind profile. If no information is given regarding the

wind speed distribution, k is typically set to 2 [252, 263]. The wind speeds for Adelaide

are obtained from the Australian Bureau of Meteorology [260]. Daily profiles of 24 hours

for a year (2010) are averaged for each month and then for each season. The available

values have been measured at an elevation of 8.3, above ground level. A hub height of

10 m above ground level is assumed for single story Adelaide houses. The wind speed

conversion to a different hub height is carried out as [252, 263, 416, 419]:

Vh2 = Vh1 · (
h2

h1
)α (E.14)

with h1 the height of the measurements and h2 the conversion height with respective

wind speeds Vh1 and Vh2. α is the power law exponent, which is typically empirically

determined based on the height of the measurements, the climatic and geographic con-

ditions, the season and time of day [263, 419]. Without specific site data, however, the

average value of α = 1/7 is widely accepted [252, 263, 416, 419]. Table E.17 presents

the obtained daily profiles in each season of wind speeds in Adelaide.

E.6 Solar irradiation variability

To analyse the impact on the results of Scenario II with respect to variability of solar

irradiation, average daily (24 hours) profiles for each irradiation level (≤ 1 to ≤ 9 kWh

m−2 day−1) are required. Real-time PV output data [kW] from Adelaide have been
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Table E.17: Wind speeds at house hub height for seasonal daily profiles in Adelaide,
Australia [m s−1]. S=summer, W=winter, MS=mid-season.

hr h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

S 5.47 5.98 5.73 5.55 5.49 5.55 5.28 4.84 5.36 6.08 6.03 6.46
W 3.30 3.34 3.57 2.82 2.87 3.49 3.00 3.35 2.72 3.63 4.01 4.35
MS 4.78 4.30 4.72 4.67 4.41 3.93 3.48 2.88 3.27 3.83 4.40 4.62

hr h13 h14 h15 h16 h17 h18 h19 h20 h21 h22 h23 h24

S 6.15 6.52 7.09 6.96 7.17 7.16 7.17 7.04 6.83 6.02 5.79 5.58
W 4.84 5.37 5.43 5.07 4.50 4.31 3.22 3.13 3.41 3.59 3.87 4.01
MS 5.44 6.15 6.34 6.91 6.86 6.04 5.20 5.37 4.72 4.09 4.09 4.18

obtained for 2012, which are divided by the total PV surface and panel efficiency to

obtain the solar irradiation on a tilted panel [kW m−2]. For each day in the year, the

hourly values are summed to obtain daily irradiation levels [kWh m−2 day−1]. Within

each season, the daily (24h) profiles of the days that fall within the same irradiation

level are averaged to obtain average daily profiles for each radiation level in each season,

for summer see Table E.18, for winter see Table E.19 and for mid-season see Table E.20.

The hourly output of the implemented PV units in each season then becomes:

PEGENPV,i,s,h ≤ min(APVi · PVrat;
∑
l

dl,s · Itl,s,h
ds

·APVi · nELECPV ) ∀i, s, h (E.15)

with ds the number of days in each season (see Table 4.2) and dl,s the number of days

in each season per radiation level, see Table E.21.

Table E.18: Solar irradation average summer daily profiles per radiation level, Itl,s,h
[kW m−2]. lx=radiation level, S=summer.

hr h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

Sl0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sl1 0.000 0.000 0.000 0.001 0.000 0.001 0.030 0.099 0.306 0.270 0.151 0.117
Sl2 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.098 0.196 0.196 0.371 0.390
Sl3 0.001 0.000 0.000 0.000 0.000 0.001 0.039 0.206 0.265 0.269 0.377 0.447
Sl4 0.000 0.000 0.001 0.000 0.000 0.002 0.037 0.182 0.249 0.350 0.505 0.681
Sl5 0.000 0.000 0.000 0.000 0.000 0.001 0.036 0.134 0.306 0.380 0.549 0.747
Sl6 0.000 0.000 0.000 0.000 0.000 0.002 0.041 0.168 0.357 0.527 0.656 0.805
Sl7 0.000 0.000 0.000 0.000 0.000 0.001 0.023 0.119 0.333 0.533 0.700 0.820
Sl8 0.000 0.000 0.000 0.000 0.000 0.001 0.036 0.173 0.430 0.650 0.828 0.967
Sl9 0.000 0.000 0.000 0.000 0.000 0.001 0.041 0.204 0.476 0.731 0.902 1.007

h13 h14 h15 h16 h17 h18 h19 h20 h21 h22 h23 h24

Sl0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sl1 0.107 0.209 0.234 0.075 0.052 0.080 0.028 0.001 0.000 0.000 0.000 0.000
Sl2 0.242 0.216 0.270 0.162 0.141 0.080 0.044 0.003 0.000 0.000 0.000 0.000
Sl3 0.413 0.339 0.350 0.327 0.264 0.154 0.059 0.004 0.000 0.000 0.000 0.000
Sl4 0.673 0.494 0.462 0.364 0.229 0.207 0.085 0.006 0.000 0.000 0.000 0.000
Sl5 0.809 0.762 0.657 0.507 0.420 0.275 0.100 0.011 0.000 0.000 0.000 0.000
Sl6 0.869 0.853 0.775 0.592 0.504 0.382 0.130 0.013 0.000 0.000 0.000 0.000
Sl7 0.932 0.941 0.914 0.826 0.678 0.438 0.186 0.018 0.000 0.000 0.000 0.000
Sl8 1.023 1.041 0.998 0.889 0.728 0.492 0.231 0.031 0.000 0.000 0.000 0.000
Sl9 1.058 1.089 1.039 0.937 0.775 0.554 0.275 0.048 0.000 0.000 0.000 0.000
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Table E.19: Solar irradation average winter daily profiles per radiation level, Itl,s,h
[kW m−2]. lx=radiation level, W=winter.

hr h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

Wl0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.062 0.092 0.126
Wl1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029 0.094 0.174 0.261
Wl2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.036 0.142 0.271 0.377
Wl3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.059 0.216 0.385 0.516
Wl4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.087 0.267 0.479 0.647
Wl5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.130 0.353 0.574 0.747
Wl6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Wl7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Wl8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Wl9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hr h13 h14 h15 h16 h17 h18 h19 h20 h21 h22 h23 h24

Wl0 0.132 0.153 0.113 0.090 0.049 0.005 0.000 0.000 0.000 0.000 0.000 0.000
Wl1 0.266 0.260 0.208 0.148 0.067 0.017 0.000 0.000 0.000 0.000 0.000 0.000
Wl2 0.426 0.444 0.349 0.259 0.136 0.027 0.000 0.000 0.000 0.000 0.000 0.000
Wl3 0.571 0.593 0.537 0.410 0.213 0.032 0.000 0.000 0.000 0.000 0.000 0.000
Wl4 0.715 0.711 0.627 0.499 0.319 0.059 0.000 0.000 0.000 0.000 0.000 0.000
Wl5 0.819 0.816 0.751 0.615 0.398 0.144 0.001 0.000 0.000 0.000 0.000 0.000
Wl6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Wl7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Wl8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Wl9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table E.20: Solar irradation average mid-season daily profiles per radiation level,
Itl,s,h [kW m−2]. lx=radiation level, MS=mid-season.

hr h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

MSl0 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.002 0.026 0.050 0.072 0.191
MSl1 0.001 0.001 0.000 0.000 0.000 0.000 0.009 0.039 0.093 0.148 0.167 0.206
MSl2 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.029 0.112 0.210 0.296 0.357
MSl3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.154 0.295 0.417 0.554
MSl4 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.035 0.126 0.259 0.423 0.506
MSl5 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.045 0.216 0.439 0.584 0.698
MSl6 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.074 0.266 0.501 0.697 0.835
MSl7 0.000 0.000 0.000 0.001 0.000 0.000 0.012 0.110 0.357 0.605 0.781 0.941
MSl8 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.157 0.376 0.655 0.885 0.996
MSl9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

hr h13 h14 h15 h16 h17 h18 h19 h20 h21 h22 h23 h24

MSl0 0.074 0.045 0.042 0.107 0.020 0.005 0.000 0.000 0.000 0.000 0.001 0.000
MSl1 0.197 0.182 0.144 0.064 0.061 0.043 0.005 0.000 0.000 0.000 0.000 0.000
MSl2 0.360 0.352 0.289 0.237 0.157 0.071 0.017 0.000 0.000 0.000 0.000 0.000
MSl3 0.613 0.551 0.473 0.316 0.176 0.074 0.015 0.000 0.000 0.000 0.000 0.000
MSl4 0.609 0.658 0.635 0.521 0.327 0.124 0.012 0.000 0.000 0.000 0.000 0.000
MSl5 0.788 0.787 0.714 0.573 0.391 0.157 0.019 0.000 0.000 0.000 0.000 0.000
MSl6 0.896 0.851 0.821 0.709 0.501 0.265 0.051 0.000 0.000 0.000 0.000 0.000
MSl7 1.001 1.000 0.941 0.796 0.600 0.322 0.069 0.001 0.000 0.000 0.000 0.000
MSl8 1.032 1.039 0.973 0.845 0.649 0.390 0.105 0.001 0.000 0.000 0.000 0.000
MSl9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table E.21: Number of days per radiation level (lx) per season (dl,s). W=winter,
S=summer, MS=mid-season.

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9
W 3 12 41 44 20 3 0 0 0 0
S 0 1 3 5 4 10 12 27 47 11
MS 2 4 13 9 17 31 27 14 5 0





Appendix F

Additional analysis of Chapter 4

This Appendix provides additional analysis with regard to the developed cost-optimal

DES design model of Chapter 4. The loop breaking constraint is detailed. Additionally,

optcr-analysis and discrete technology capacities are presented.

F.1 Background loop breaking constraint

The system in this thesis requires constraints to develop thermal pipeline networks.

These networks consists of pipelines from a house i to a house j. Multiple houses can

be connected into a single directed network and multiple networks can exist. Network

optimisation is thus an adaptation of a vehicle routing problem [420]. The routing

problem optimises the route of the transport service with respect to an objective. In

this work multiple pipelines can be installed that can send thermal power from source

houses with CHP units to transferring or sink houses for consumption. The problem is

formulated based on integer programming [253, 421]:

OHj ≥ OHi + 1− nh · (1− Y Pi,j) ∀i, j and i 6= j (F.1)

Here are i and j houses in the neighbourhood and OHi is a positive integer variable

that indicates for each house the visiting order in the network (strictly increasing from

source to sink houses). Y Pi,j is a binary variable that indicates the implementation and

existence of a pipeline between houses i and j, and nh is the total number of houses in

the neighbourhood [96]. Multiple sub-networks are here allowed but due to the strictly

255
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increasing order variable, no closed loops are allowed. Note that only directed closed

networks are excluded, with all pipes oriented in the same direction, see Figure F.1.

(a) Closed loop (b) Closed non-loop

Figure F.1: Schematic of closed (left, not allowed) and non-closed (right, allowed)
directed pipeline networks between nodes, adapted from Mehleri et al. [96].

Closed loops of directed pipelines are thus not allowed through Equation F.1. Proof of

this theorem has been presented in Liu et al. [253]. The Theorem on subtour elimination

is summarised below. Assume that a closed directed pipeline network consisting of n

houses i and n ≥ 2 is adopted in a solution. The binary pipeline connection variables

for the n houses are then all equal to 1 since a pipeline is installed between each house

pair i and j:

Y Pi1,i2 = Y Pi2,i3 = · · · = Y Pin−1,in = Y Pin,i1 = 1 (F.2)

This leads to the following constraints based on Equation F.1:

OHi2 −OHi1 ≥ 1 , OHi3 −OHi2 ≥ 1 , · · · (F.3)

OHin −OHin−1 ≥ 1 , OHin −OHi1 ≥ 1

Summing the above constraints leads to the contradiction:

OHi1 −OHi1(= 0) ≥ n (F.4)

which implies that there can be no closed loops in the system.

F.2 optcr

The developed model is applied to a neighbourhood in Adelaide. Global optimality was

employed in order to be able to compare the results of various case-studies and analyses.

The model in Scenario II namely leads to multiple discrete feasible designs for an optcr

smaller or equal than 10 %. These multiple designs only differ slightly, or not even, in

cost, but do differ in capacity, siting, sizing and existence of units. Even an optimality
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gap of 1 % or 1.5 % changes the structure of the pipeline network compared to global

optimality (see Table F.4). For an optimality gap greater than 1.58 %, pipelines and

microgrid infrastructure are even no longer installed. There is thus a range of designs

that neighbourhoods can take into account if they consider an increase in cost of less

than 10 %. The following Tables summarise key results for discrete feasible designs:

distribution of cost (F.1), installed capacity and location of boilers and CHP units (F.2),

PV units (F.3), heat storage units as well as pipeline and microgrid existence (F.4).

Table F.1: Cost distribution [AUD y−1] of feasible designs for optcr ≤ 10%.

Ctot Cinv Com Cfuel Cgridbuy Cgridsell

0% 22264.091 3797.676 1294.285 14234.890 3266.663 329.424
0.01% 22264.109 3797.676 1294.298 14234.896 3266.663 329.424
0.05% 22264.109 3797.676 1294.298 14234.896 3266.663 329.424
0.09% 22264.109 3797.676 1294.298 14234.896 3266.663 329.424
0.11% 22264.109 3797.676 1294.298 14234.896 3266.663 329.424
0.12% 22264.109 3797.676 1294.298 14234.896 3266.663 329.424
0.14% 22265.892 3798.105 1294.344 14235.209 3267.046 328.813
0.15% 22265.892 3798.105 1294.344 14235.209 3267.046 328.813
0.17% 22268.335 3798.105 1294.181 14229.789 3275.072 328.813
0.18% 22269.928 3801.603 1294.452 14236.230 3267.046 329.403
0.35% 22308.564 3808.961 1300.440 14155.375 3364.909 321.122
0.38% 22308.564 3808.961 1300.440 14155.375 3364.909 321.122
0.43% 22308.564 3808.961 1300.440 14155.375 3364.909 321.122
0.44% 22308.564 3808.961 1300.440 14155.375 3364.909 321.122
0.45% 22309.618 3809.097 1300.433 14155.312 3364.909 320.133
0.47% 22313.479 3811.784 1300.453 14154.109 3367.266 320.133
0.49% 22313.479 3811.784 1300.453 14154.109 3367.266 320.133
0.50% 22313.479 3811.784 1300.453 14154.109 3367.266 320.133
0.73% 22365.502 3869.015 1300.652 14169.203 3347.753 321.122
0.78% 22375.318 3869.772 1301.009 14165.288 3359.384 320.134
0.81% 22375.318 3869.772 1301.009 14165.288 3359.384 320.134
1.35% 22375.318 3869.772 1301.009 14165.288 3359.384 320.134

1.58% 22375.318 3869.772 1301.009 14165.288 3359.384 320.134
3.06% 22717.462 3055.961 1389.063 13318.404 5262.118 308.084
3.19% 22717.462 3055.961 1389.063 13318.404 5262.118 308.084
6.35% 23482.818 4870.104 1651.977 13318.404 4481.931 839.599

F.3 Discrete technology capacities

Instead of continuous capacity ranges for technologies, bound by upper and lower lev-

els, a discrete number of fixed capacities can be adopted that could be available in the

market. Below an implementation example of CHP units with k different discrete elec-

trical capacities, DGMAX
CHP,k [kW], is presented, adapted from Mehleri et al. [95, 96]. Each

house (i) can only install a single CHP unit of type k, decided through binary variable
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Table F.2: House (hi) B and CHP capacity [kW] of feasible designs for optcr ≤ 10%.

Boiler (B) CHP

h1 h2 h3 h4 h5 h1 h2

0% 5.068 6.335 6.968 7.602 2.080
0.01% 5.068 6.335 6.968 7.602 2.080
0.05% 5.068 6.335 6.968 7.602 2.080
0.09% 5.068 6.335 6.968 7.602 2.080
0.11% 5.068 6.335 6.968 7.602 2.080
0.12% 5.068 6.335 6.968 7.602 2.080
0.14% 5.068 6.335 6.968 7.602 2.077
0.15% 5.068 6.335 6.968 7.602 2.077
0.17% 5.068 6.335 6.968 7.602 2.077
0.18% 5.068 6.335 6.968 7.602 2.077
0.35% 5.701 6.335 6.968 7.602 1.889
0.38% 5.701 6.335 6.968 7.602 1.889
0.43% 5.701 6.335 6.968 7.602 1.889
0.44% 5.701 6.335 6.968 7.602 1.889
0.45% 5.701 6.335 6.968 7.602 1.889
0.47% 5.701 6.335 6.968 7.602 1.882
0.49% 5.701 6.335 6.968 7.602 1.882
0.50% 5.701 6.335 6.968 7.602 1.882
0.73% 5.701 6.335 6.968 7.602 1.889
0.78% 5.701 6.335 6.968 7.602 1.875
0.81% 5.701 6.335 6.968 7.602 1.875
1.35% 5.701 6.335 6.968 7.602 1.875

1.58% 5.701 6.335 6.968 7.602 1.875
3.06% 5.068 5.701 6.335 6.968 7.602
3.19% 5.068 5.701 6.335 6.968 7.602
6.35% 5.068 5.701 6.335 6.968 7.602

Table F.3: House (hi) PV capacity [kW] of feasible designs for optcr ≤ 10%.

PV tot

h1 h2 h3 h4 h5 total

0% 1.684 1.895 2.107 2.318 2.529 10.533
0.01% 1.684 1.895 2.107 2.318 2.529 10.533
0.05% 1.684 1.895 2.107 2.318 2.529 10.533
0.09% 1.684 1.895 2.107 2.318 2.529 10.533
0.11% 1.684 1.895 2.107 2.318 2.529 10.533
0.12% 1.684 1.895 2.107 2.318 2.529 10.533
0.14% 1.684 1.895 2.107 2.318 2.529 10.533
0.15% 1.684 1.895 2.107 2.318 2.529 10.533
0.17% 1.684 1.895 2.107 2.318 2.529 10.533
0.18% 1.684 1.895 2.107 2.318 2.529 10.533
0.35% 1.684 1.856 2.107 2.337 2.529 10.513
0.38% 1.684 1.856 2.107 2.337 2.529 10.513
0.43% 1.684 1.856 2.107 2.337 2.529 10.513
0.44% 1.684 1.856 2.107 2.337 2.529 10.513
0.45% 1.684 1.895 2.107 2.318 2.529 10.533
0.47% 1.684 1.895 2.107 2.318 2.529 10.533
0.49% 1.684 1.895 2.107 2.318 2.529 10.533
0.50% 1.684 1.895 2.107 2.318 2.529 10.533
0.73% 1.684 1.856 2.107 2.337 2.529 10.513
0.78% 0.601 2.465 2.400 2.511 2.557 10.534
0.81% 0.601 2.465 2.400 2.511 2.557 10.534
1.35% 0.601 2.465 2.400 2.511 2.557 10.534

1.58% 0.601 2.465 2.400 2.511 2.557 10.534
3.06% 2.193 1.913 2.125 2.337 2.549 11.117
3.19% 2.193 1.913 2.125 2.337 2.549 11.117
6.35% 3.183 3.583 3.983 4.375 4.775 19.899
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Table F.4: House (hi) HST capacity [kW], pipeline and microgrid existence of feasible
designs for optcr ≤ 10%.

HST Pipe MG

h1 h2 h3 h4 h5

0% 0.749 1.530 0.936 1.029 1.123 2 to 4 X
0.01% 0.749 1.530 0.936 1.029 1.123 2 to 4 X
0.05% 0.749 1.530 0.936 1.029 1.123 2 to 4 X
0.09% 0.749 1.530 0.936 1.029 1.123 2 to 4 X
0.11% 0.749 1.530 0.936 1.029 1.123 2 to 4 X
0.12% 0.749 1.530 0.936 1.029 1.123 2 to 4 X
0.14% 0.749 1.557 0.936 1.029 1.123 2 to 4 X
0.15% 0.749 1.557 0.936 1.029 1.123 2 to 4 X
0.17% 0.749 1.557 0.936 1.029 1.123 2 to 4 X
0.18% 0.749 1.557 0.936 1.029 1.123 2 to 4 X
0.35% 1.160 0.842 0.936 1.029 1.123 1 to 2 X
0.38% 1.160 0.842 0.936 1.029 1.123 1 to 2 X
0.43% 1.160 0.842 0.936 1.029 1.123 1 to 2 X
0.44% 1.160 0.842 0.936 1.029 1.123 1 to 2 X
0.45% 1.160 0.842 0.936 1.029 1.123 1 to 2 X
0.47% 1.160 0.842 0.936 1.029 1.123 1 to 2 X
0.49% 1.160 0.842 0.936 1.029 1.123 1 to 2 X
0.50% 1.160 0.842 0.936 1.029 1.123 1 to 2 X
0.73% 1.178 0.842 0.936 1.029 1.123 1 to 3 X
0.78% 1.200 0.842 0.936 1.029 1.123 1 to 3 X
0.81% 1.200 0.842 0.936 1.029 1.123 1 to 3 X
1.35% 1.200 0.842 0.936 1.029 1.123 1 to 3 X
1.58% 1.200 0.842 0.936 1.029 1.123 1 to 3 X
3.06% 0.749 0.842 0.936 1.029 1.123 − −
3.19% 0.749 0.842 0.936 1.029 1.123 − −
6.35% 0.749 0.842 0.936 1.029 1.123 − −

BCHP,k,i: ∑
k

BCHP,k,i ≤ 1 ∀i (F.5)

Electricity generated by the CHP unit in each hour h is limited by its installed capacity:

PETOTCHP,i,s,h ≤
∑
k

BCHP,k,i ·DGMAX
CHP,k ∀i, s, h (F.6)

Similarly, the different discrete CHP units could have different efficiencies nelcCHP,k or

heat to electricity ratios HERCHP,k, this was presented by, e.g. Wouters et al. [248].





Appendix G

Background on availability

This Appendix provides some additional concepts regarding availability in support of

Chapter 5. Component and system availability is elaborated on together with additional

detail on analytical system availability methods.

G.1 Component availability

A component failure rate function z(t) determines the expected outages of a certain

component type over time [23]:

z(t) =
1

No(t)

dNf (t)

dt
(G.1)

N represents here the number of identical components of which No components still

work and Nf components definitely failed at a certain time t.
dNf (t)
dt is the instantaneous

component failure rate.

The assumption of constant component failure (λ) and repair (µ) rates over a certain

time follows an exponential probability distribution [53, 291]. When looking at the

availability of a component, a distinction has to be made between repairable and non-

repairable components. With non-repairable components, the availability, A(t), is equal

to the reliability, R(t) [53]. For repairable components, probability theory can be used

and exponential repair rates are included (see [53]). The availability of a component

assumed available at time zero then becomes:

A(t) =
µ

λ+ µ
− λ

λ+ µ
e−(λ+µ)t (G.2)
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The asymptotic component availability and unavailability are then, respectively:

lim
t→∞

A(t) = A(∞) =
µ

λ+ µ
and U(∞) = 1−A(∞) =

λ

λ+ µ
(G.3)

G.2 System availability

Regarding the appropriate technique to assess reliability and availability of electric-

ity systems, no general consensus exists [293, 294]. There are probabilistic criteria,

commonly accepted indices and analytical as well as simulation based evaluation tech-

niques [293, 294]. Different evaluation techniques are given below.

G.3 Analytical availability methods

Billinton et al. [55, 282], Chowdhury et al. [422], Villemeur et al. [53], Wouters [296] and

Logacio [285] detail various probabilistic techniques to assess system availability. The

most common analytical techniques are summarised in the following Sections.

G.3.1 Success Diagram Method (SDM)

This technique reduces component sequences in the system to series or parallel sub-

systems to enable employing reliability and availability mathematical techniques using

failure and repair rates of components and the sequence between them [53, 55, 282].

These subsystems are then recombined in order to determine overall system depend-

ability. Additionally, stand-by equipment and switching actions can be integrated. The

SDM – or Reliability Block Diagram – was historically the first method employed for

system reliability assessment (established in the early 1960s) [53]. This technique is still

widely employed in various industrial applications of non-repairable systems. Under

specific conditions, also repairable systems can be evaluated to determine dependability

attributes, such as reliability and maintainability [53].

The aim is to reduce the system as much as possible into combinations of serial and

parallel sequences of blocks that are connected through in- and outputs [53]. A serial

sequence of components has to work all together in order for the (sub)system to work

as intended [30, 423]. In a parallel sequence of components only one of the components
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needs to function in order for the (sub)system to work as intended [30, 423]. Series and

parallel systems can represent a redundant system between in- and output [30, 286, 291].

The main advantage of this technique is that system availability and reliability can

be obtained in a straightforward manner. Furthermore, mostly simple non-repairable

systems can be analysed without looking in detail at causes and effects of component

failures. The main disadvantages of this technique are that the system must be reducible

to series and parallel connections of components. Hence, this technique is only applicable

to non-complex systems. Furthermore, only overall system reliability or availability can

be assessed, not the probability of partial operating states or subsystems. Additionally,

components and events must be independent of each other; hence no component can

appear more than once in the block diagram and only active redundancy is allowed [53].

This technique is only applicable for repairable systems under the condition that events

in the block diagram occur independently from each other [53]. If this method is appli-

cable to a system, the calculation of the dependability attributes is straightforward. A

series system of components with availability ai is given in Figure G.1. With constant

component failure (λi) and repair (µi) rates, and assuming that each component was

available at time zero, series system (un)availability is [53]:

A(t) =
n∏
i=1

ai(t) =
n∏
i=1

[
µi

λi + µi
+

λi
λi + µi

e−(λi+µi)t] (G.4)

U(t) = 1−
n∏
i=1

ai(t) (G.5)

The asymptotic (un)availability becomes then equal to [53]:

A(∞) = lim
t→∞

A(t) =
n∏
i=1

µi
λi + µi

=
n∏
i=1

ai (G.6)

UA(∞) = 1−A(∞) = 1−
n∏
i=1

µi
λi + µi

= 1−
n∏
i=1

ai = 1−
n∏
i=1

(1− uai) (G.7)

Component 1 Component i Component n 

in out 

Figure G.1: Series connection of components, adapted from Villemeur [53].

A parallel system is illustrated in Figure G.2. The availability of a repairable parallel

system is found by taking the complement of the product of the unavailabilities of its
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components [53]. The unavailability of a repairable system equals the product of the

unavailability of its components [53]. Using the assumption of constant failure and repair

rates and the availability of the components at time zero, the availability of the parallel

system is [53]:

A(t) = 1−
n∏
i=1

[
λi

λi + µi
(1− e−(λi+µi)t)] (G.8)

The asymptotic availability then becomes [53]:

A(∞) = lim
t→∞

A(t) =
n∑
i=1

µi
λi + µi

=
n∑
i=1

ai (G.9)

= 1−
n∏
i=1

λi
λi + µi

= 1−
n∏
i=1

uai

UA(∞) = 1−A(∞) = 1−
n∑
i=1

ai =

n∏
i=1

uai(t) (G.10)

Component 1 

Component i 

Component n 

in out 

Figure G.2: Parallel connection of components, adapted from Villemeur [53].

G.3.2 Cut and Tie Set methods

The Cut Set method looks to visually identify the system ‘cut sets’. System cut sets are a

combination of system components that result in total system failure if they all fail. Cut

sets can hence not identify the probability of partly available states. This visual method

is thus only applicable to small non-complex systems. The Tie Set method employs a

similar technique to the Cut Set method, resulting in similar limitations. System tie

sets are a combination of system components that result in total system failure if one of

them fails. The Tie Set method is less frequently employed in practice.
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G.3.3 Fault Tree Analysis

The fault tree analysis identifies all individual causes of system failure. All component

faults that lead to system failures are then implemented in a logic tree-like structure.

Partial and fully failed system states as well as their causes can hereby be identified. As

each individual system failure requires a separate tree diagram of its causes, the fault

tree can become complex.

G.3.4 Event Tree Analysis

This visual technique involves identifying all events that can occur in a system, enabling

identification of partially and fully failed system states. System state probabilities can

be obtained as the product (series relation) of the probability of the different causes

that lead to the state. The main disadvantage of this technique is that component

repair cannot be included.

G.3.5 State Space Diagram (SSD) or Markov method

This technique involves determining a visual representation of identified system states

and transitions between them. System state transitions relate to the failure or repair of

system components. This technique is thus flexible to include and extend to different

states, and failure and repair events. Each state transition is time related. The proba-

bility of occurrence of identified states is thus determined at each time. At any point in

time the state probabilities will sum up to 1 as the system can only be in a single state.

The State Space method can analyse repairable and non-repairable systems [53]. A state

diagram is constructed containing all the different states of the system, i.e. operating,

partial-operating and failed states [53, 55, 282]. The initial state is the state where the

system is fully operational. Additionally, a time aspect can be integrated in determining

the probability of each state after a certain time interval.

The diagram is constructed as in Chapter 5, Section 5.2.2.3. First, system states and

components that make up the system are identified. Each component is either failed or

operational. A system with n components can thus have at most 2n system states [53].

Second, transition possibilities between the defined system states have to be identified

as well as their cause, which is either a failure or a repair action [53]. Last, transition
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probabilities between states are calculated from indices. The probability of occurrence of

system states are obtained through, for example, the transition matrix method [53, 56].

The main requirements to employ this technique are that the system can only be in

one of the determined states and it can transition between states [292]. The transition

between and the occurrence of states is independent and homogeneous (Markov). This

implies that the long term state transition rates are time independent [292]. The main

advantages of this method are that algorithms can be readily implemented [292], the

method is versatile in that it can include system changes and repairs [292], it is one

of the most used dependability evaluation techniques [292], it can incorporate failure,

repair and any type of failure state, and the State Space Diagram Markov method can

be dynamic with time. The main disadvantages are that the technique can become very

complex for large systems with a lot of components, i.e. a lot of system states and

transitions [292], failure and repair rates of the different components have to be known

in order to be able to find the final state probabilities, and detailed knowledge of the

system operation and its components has to be known.



Appendix H

Logic-gate operations

This Appendix provides some additional concepts regarding logic-gate operation of mu-

tually exclusive binary variables in support of Chapter 5. Logic-gate operation is a way

to perform integer programming. Different combinations of technologies can in this way

be represented by a series of ones and zeros, which enables ‘switching on’ and ‘switching

off’ of technologies to represent the system configurations. Figure H.1a represents a

simple AND–gate with two binary inputs. An AND–gate represents a series connection

of binary inputs of which the binary output value can be found as [51–53]:

C = A AND B = A ∧B = A ·B (H.1)

This relation can be linearised as follows, using the procedure presented in [107, 310]:

C ≥
∑

(inputs)− ( number of inputs − 1)

≤ each input (H.2)

C ≥ A+B − 1

C ≤ A and C ≤ B (H.3)

A NOT-gate inverts its input [51–53]. With A a binary variable this becomes:

NOT A = A = 1−A (H.4)

A simple OR-gate is presented in Figure H.1b and represents a parallel configuration

of binary inputs. Binary output (E) of an OR-gate with binary inputs (F , G) can be
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implemented as:

E = F OR G (H.5)

E ≤ F +G and E ≥ F and E ≥ G (H.6)

If the inputs are mutually exclusive, the output E can be found as [51–53]:

E = F OR G = F ∨G = F +G (H.7)

A combination AND-NOT gate is presented in Figure H.1c. The output is found as:

P = K AND L AND M (H.8)

Which is linearised using the procedure presented in [107, 310]:

P ≥ K + (1− L) +M − 2

P ≤ K and P ≤ 1− L and P ≤M (H.9)

Inputs  Gate 

A 

B 

AND C 

Output 

(a) AND-gate example

Inputs  Gate 

F 

G 

OR E 

Output 

(b) OR-gate example

Inputs  Gate 

K 

L AND P 

Output 

M 

(c) AND-NOT gate
example

Figure H.1: Logic-gate operations.

Table H.1: Logic-gates truth tables.

AND-gate

Value of binary input 1 Value of binary input 2 output

0 0 0
1 0 0
0 1 0
1 1 1

OR-gate

Value of binary input 1 Value of binary input 2 output

0 0 0
1 0 1
0 1 1
1 1 1

NOT-gate

Value of binary input output

0 1
1 0



Appendix I

Additional equations and input

parameters of Chapter 5

This Appendix provides some additional input parameters and linearisation procedures

in support of Chapter 5. Component availability data is detailed together with threshold

capacity dimensioning of batteries and PV units as well as system configurations.

I.1 PV threshold capacity and resource availability

I.1.1 PV threshold capacity

A PV unit available to a house, needs its output to be able to meet its house peak load:

PETOTPV,max,i = CPLOADELEC,i = max
s,h

(CLOADELEC,i,s,h +
CLOADCOOL,i,s,h

COPairco
) ∀i (I.1)

From Equation D.11, the worst case threshold capacity [m2] can be found as:

T avPV,i =
CPLOADELEC,i

nELECPV

∀i (I.2)

I.1.2 Solar irradiation availability

PV unit resource availability relates to the availability of solar irradiation in an hour h

to generate enough power to meet the load of the accommodating house in that hour.

House 3 is taken as reference to assess the availability level based on an installed PV
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unit of available capacity in its house. The other houses follow a similar approach.

First average seasonal hourly irradiation profiles, adopted from real PV output (see

Appendix E, Section E.6), are required. These irradiation values are transformed in

an hourly PV output employing the threshold capacity and a rated efficiency. These

power outputs are then compared with the household electrical demand for electricity

and cooling in the same hour, see Table I.1. The number of hours per day that the PV

generation is able to cover the load is: 5 of 24 (winter 20.8333 %), 4 of 24 (summer

16.6667 %), pr 7 of 24 (midseason 29.1667 %). Weighted with the number of days in

each season, this leads to an average hourly solar resource availability of 22.2489 %.

Table I.1: PV output and household demand comparison [kW]. Wh3=winter elec-
tricity demands house 3, MSh3=mid-season electricity demands house 3, Sh3=summer

electricity house 3, PV=PV output level.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

Wh3 0.258 0.258 0.270 0.291 0.285 0.298 0.353 0.462 0.526 0.531 0.520 0.505
PV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.074 0.259 0.469 0.639
Sh3 0.479 0.500 0.459 0.439 0.405 0.416 0.497 0.574 0.740 0.874 0.934 1.049
PV 0.000 0.000 0.000 0.000 0.000 0.002 0.047 0.220 0.519 0.769 0.994 1.176
MSh3 0.264 0.298 0.302 0.309 0.311 0.358 0.426 0.478 0.525 0.560 0.618 0.674
PV 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.080 0.297 0.560 0.770 0.927

h13 h14 h15 h16 h17 h18 h19 h20 h21 h22 h23 h24

Wh3 0.498 0.479 0.481 0.470 0.510 0.636 0.827 0.866 0.800 0.663 0.388 0.258
PV 0.708 0.726 0.625 0.478 0.264 0.049 0.000 0.000 0.000 0.000 0.000 0.000
Sh3 1.103 1.215 1.261 1.363 1.383 1.314 1.214 1.015 0.747 0.556 0.563 0.545
PV 1.256 1.253 1.193 1.040 0.853 0.580 0.257 0.032 0.000 0.000 0.000 0.000
MSh3 0.701 0.689 0.701 0.750 0.776 0.769 0.815 0.758 0.661 0.496 0.328 0.264
PV 1.012 0.999 0.927 0.765 0.530 0.253 0.046 0.000 0.000 0.000 0.000 0.000

I.2 Battery dimensioning

I.2.1 Battery resource availability

The resource availability of batteries is either the probability of an appropriately sized

available CHP unit, an appropriately sized available PV unit, or, both an appropriately

sized available CHP and PV unit. PV-CHP-charged battery availability is determined

by a State Space Diagram of its charging options, see Figure I.1. Charging is unavailable

without DG unit (state 4, Ps4 = UAresEST = uapv ·uachp). Charging is available otherwise

(AresEST = Ps1 + Ps2 + Ps3 = apv · achp + apv · uachp + uapv · achp).
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State 1 

PV         √ 

CHP       √ 

State 2 

PV         √ 

CHP       X 

State 3 

PV         X 

CHP       √ 

State 4 

PV         X 

CHP       X 

λPV 

μPV 

λCHP 

μCHP 

λPV 

μPV 

μCHP 

λCHP 

Figure I.1: PV-CHP battery charging State Space Diagram.

I.2.2 Battery capacity thresholds

Battery threshold capacity is determined based on an installation rule of thumb [424, 425]

and the requirement that the battery should be able to provide the average hourly load

of the house during the determined autonomy time (AT ). This requires the battery

maximum state of charge to be, with η the static loss and DOC the depth of charge:

ESmaxi = AT ·
hr · CLOADELECav,i

(1− δχ)
+ (1−DOC) · ESmaxi (I.3)

Reworking this, the battery threshold capacity can be found as:

ESmaxi = T avEST,i =
CLOADELECav,i

(1− δχ) ·DOC
·AT (I.4)

Autonomy time is defined as the time the fully charged battery can supply the load of

the house where it is installed in, typically expressed in number of hours (on-grid) or

days (off-grid). The average hourly electricity demand for each house is found as:

CLOADELECav,i =
∑
s,h

hr · ds · (CLOADELEC,i,s,h +
CLOADCOOL,i,s,h

COPairco
) · 8760−1 (I.5)

For the five houses these demands then become, h1 = 0.487kW, h2 = 0.548kW, h3 =

0.608kW, h4 = 0.669kW, and h5 = 0.730kW. The respective threshold capacities

are then for on-grid configurations (AT=3 hours): h1 = 2.088kWh, h2 = 2.349kWh,

h3 = 2.610kWh, h4 = 2.871kWh, and h5 = 3.131kWh, and for off-grid configura-

tions (AT=2 days=48 hours): h1 = 33.402kWh, h2 = 37.581kWh, h3 = 41.756kWh,

h4 = 45.930kWh, and h5 = 50.102kWh.
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I.2.3 Charging resource availability for battery availability

Battery operation occurs through a daily roll-over, see Section D.2.3. Assume that for

three consecutive hours (h1, h2, h3), the battery needs to meet the average load of its

accommodating house Celecav,i,h [kW]. The worst case scenario requires the battery to be

fully charged in a single hour preceding these three discharging hours (h0). In h0, the

battery is then at its lowest charge (1 −DOC) and in hours 1 to 3 the battery is fully

discharged to meet the load. The following relations then hold (∀i, s, h):

ESSTOi,s,h0 = (1−DOC) · ESmaxi + hr · (1− χ) · PSINEST,i,s,h0 (I.6)

ESSTOi,s,h1 = (1− η) · ESSTOi,s,h0 − hr ·
PSOUTEST,i,s,h1

(1− δχ)
(I.7)

ESSTOi,s,h2 = (1− η) · ESSTOi,s,h1 − hr ·
PSOUTEST,i,s,h2

(1− δχ)
(I.8)

ESSTOi,s,h3 = (1− η) · ESSTOi,s,h2 − hr ·
PSOUTEST,i,s,h3

(1− δχ)
(I.9)

whilst respecting the minimum charge requirement:

ESSTOi,s,h3 = (1−DOC) · ESmaxi (I.10)

The above relations are then reworked to find the required value of inflow in hour zero.

From Equations I.9 and I.10:

(1−DOC) · ESmaxi = (1− η) · ESSTOi,s,h2 − hr ·
PSOUTEST,i,s,h3

(1− δχ)
(I.11)

Equation I.11 can be reworked to:

ESSTOi,s,h2 =
1

(1− η)
· [(1−DOC) · ESmaxi + hr ·

PSOUTEST,i,s,h3

(1− δχ)
] (I.12)
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Combining Equation I.12 with Equation I.8:

1

(1− η)
·[(1−DOC) · ESmaxi + hr ·

PSOUTEST,i,s,h3

(1− δχ)
] =

(1− η) · ESSTOi,s,h1 − hr ·
PSOUTEST,i,s,h2

(1− δχ)
(I.13)

and reworked to:

ESSTOi,s,h1 =
1

(1− η)
· [ 1

(1− η)
· [(1−DOC) · ESmaxi + hr ·

PSOUTEST,i,s,h3

(1− δχ)
]

+ hr ·
PSOUTEST,i,s,h2

(1− δχ)
] (I.14)

Combining Equation I.14 with Equation I.7:

1

(1− η)
·[ 1

(1− η)
· [(1−DOC) · ESmaxi + hr ·

PSOUTEST,i,s,h3

(1− δχ)
] + hr ·

PSOUTEST,i,s,h2

(1− δχ)
]

= (1− η) · ESSTOi,s,h0 − hr ·
PSOUTEST,i,s,h1

(1− δχ)
(I.15)

and reworking it to:

ESSTOi,s,h0 =
1

(1− η)
· [ 1

(1− η)
· [ 1

(1− η)
· [(1−DOC) · ESmaxi

+ hr ·
PSOUTEST,i,s,h3

(1− δχ)
] + hr ·

PSOUTEST,i,s,h2

(1− δχ)
] + hr ·

PSOUTEST,i,s,h1

(1− δχ)
] (I.16)

And then combining Equation I.16 with Equation I.6:

1

(1− η)
·[ 1

(1− η)
· [ 1

(1− η)
· [(1−DOC) · ESmaxi

+ hr ·
PSOUTEST,i,s,h3

(1− δχ)
] + hr ·

PSOUTEST,i,s,h2

(1− δχ)
] + hr ·

PSOUTEST,i,s,h1

(1− δχ)
]

= (1−DOC) · ESmaxi + hr · (1− χ) · PSINEST,i,s,h0 (I.17)

The required battery charge inflow in a certain hour h0 can then be found as:

PSINEST,i,s,h0 =
1

hr · (1− χ)
· [ 1

(1− η)
· [ 1

(1− η)
· [ 1

(1− η)
· [(1−DOC) · ESmaxi

+ hr ·
PSOUTEST,i,s,h3

(1− δχ)
] + hr ·

PSOUTEST,i,s,h2

(1− δχ)
]

+ hr ·
PSOUTEST,i,s,h1

(1− δχ)
]− (1−DOC) · ESmaxi ] (I.18)
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With known inputs of χ = 10%, η = 0.1%, DOC = 70%, ESmaxi = T avEST,i and h1 =

2.088kWh, h2 = 2.349kWh, h3 = 2.610kWh, h4 = 2.871kWh, and h5 = 3.131kWh,

PSOUTEST,i,s,h1−3
= CLOADELECav,i, and δχ = 15%, the input charging required in one hour can

then be found for each hour. The installed PV unit or CHP unit that accompanies the

installed battery must thus be able to provide this inflow together with the maximum

demand in the house, in the worst case scenario. This requires an additional PV and

CHP capacities of h1 = 1.914, h2 = 2.154, h3 = 2.393, h4 = 2.632, and, h5 = 2.871 [kW].

The following constraints take this into account. If a PV unit is available to a battery

(binary variable Y b
PV,i) this additional capacity requirement CEXTRAi [kW] is required:

DGMAX
PV,i ≥

T avPV,i + CEXTRAi

PVrat
· Y b

PV,i ∀i (I.19)

with: Y b
PV,i +BPV,i ≤ 1 and Bav

PV,i ≤ Y b
PV,i ∀i (I.20)

Similarly, the CHP capacity is adapted:

DGMAX
CHP,i ≥ (T avCHP,i + CEXTRAi ) · ZbCHP,i + (T avMG,i + CEXTRAi ) · ZbMG,i ∀i (I.21)

with the following (AND-NOT, Appendix H) relations between CHP binaries:

ZbCHP,i = Y b
CHP,i ∧Bav

MG,i and ZbMG,i = Y b
CHP,i ∧Bav

MG,i ∀i (I.22)

Y b
CHP,i = Bav

CHP,i ∨BCHP,i ∀i (I.23)

The battery is thus only available with available DG generation capacity:

Bav
EST,i ≤ Y b

PV,i + Y b
CHP,i and Bav

EST,i ≥ max(Y b
PV,i, Y

b
CHP,i) ∀i (I.24)

I.3 Potential electrical system configurations

A Markov Chain, similar to Figure I.1, determines the (un)availability of each system

configuration. If appropriately sized, each technology is assumed able to meet the load

of its accommodating house. Hence, system configurations are unavailable if all their

components (techc) are unavailable:

uacon =
n∏

techc=1

uatechc (I.25)



Appendix J

Additional model equations of

Chapter 6

This Appendix provides more detail on model equations in support of Chapter 6.

J.1 Decentral scale

J.1.1 Residential DG export

Locally generated DG electricity by individual houses,
∑

tech
PESALtechDG,i,s,h [kW], can be

exported at a single tariff, TSALMG [AUD kWh−1]. Total yearly neighbourhood income,

CGRIDSAL [AUD y−1], from electricity export is then obtained as:

CGRIDSAL =
∑

techDG,i,s,h

hr · ds · TSALMG · PESALtechDG,i,s,h (J.1)

With hr the duration of each hourly h time interval, ds the number of days in each

season s and i the number of neighbourhood houses.

J.1.2 Economies-of-scale

Total CHP costs and capacities are obtained for each house i, with
n∑
t=1

at,i = 1 (∀i):

CTOTCHP,i =

n∑
t=1

f(ζt) · at,i and DGMAX
CHP,i =

n∑
t=1

ζt · at,i ∀i (J.2)
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J.2 Central scale

CHP units are the only considered units for upscaling to central scales, potentially

combined with a central absorption chiller.

J.2.1 Technology constraints

The potential single central CHP unit (chpct) is modelled similar to the decentral units

(see Section D.2.2 and Equation 6.5). With
n∑
t=1

at,chpct = 1, the installed capacity and

total investment cost of the central CHP (chpct) is determined as:

CTOTchpct =
n∑
t=1

f(ζt) · at,chpct and DGMAX
chpct =

n∑
t=1

ζt · at,chpct (J.3)

Furthermore, similar capacity constraints as with the decentral CHP units are in place.

Total installed CHP capacity must be within ∈ [LCHP ;UCHP ] characterised by a binary

selection variable Bchpct:

Bchpct · LCHP ≤ DGMAX
chpct ≤ Bchpct · UCHP (J.4)

Electricity generated by the central CHP unit in each hour of each season can either

be used for circulation to neighbourhood houses (PECIRCchpct,s,h), for export to the central

grid (PESALchpct,s,h) or for central absorption chiller fuelling. Absorption chillers namely

require electricity per kW generated cooling, determined through their electricity to

cooling ratio, ECR, and transfer cooling to houses i (QCacct,i,s,h):

PECIRCchpct,s,h + PESALchpct,s,h +
∑
i

QCacct,i,s,h · ECR ≤ DGMAX
chpct ∀s, h (J.5)

Heat generated by the central CHP unit is determined by its total electricity generation

(PETOTchpct,s,h) and heat to electricity ratio (HER). The heat can be used for heating

(PHHEAT
chpct,s,h) or cooling purposes (PHCOOL

chpct,s,h) or can be dissipated (PHDIS
chpct,s,h):

PETOTchpct,s,h ·HER = PHHEAT
chpct,s,h + PHCOOL

chpct,s,h + PHDIS
chpct,s,h ∀s, h (J.6)

Heat generated for both heating and cooling purposes can individually not exceed the

maximum heat generated by the CHP unit, ∀s, h:

PHHEAT
chpct,s,h ≤ DGMAX

chpct ·HER and PHCOOL
chpct,s,h ≤ DGMAX

chpct ·HER (J.7)
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Additionally, heat for cooling purposes can only be generated if a central absorption

chiller is installed (binary variable Bacct):

PHCOOL
chpct,s,h ≤ Bacct · UCHP ·HER ∀s, h (J.8)

The central absorption chiller follows the behaviour of decentral absorption chillers, with

similar capacity bounds. Its installed capacity should be within upper and lower bounds

∈ [LAC , UAC ] determined by a binary variable Bacct.

∑
i

QCacct,i,s,h ≤ DGMAX
acct ∀s, h (J.9)

Bacct · LAC ≤ DGMAX
acct ≤ Bacct · UAC (J.10)

J.2.2 Central pipeline constraints

Heating received by a house from the central CHP unit, can contribute to the house

heat load in hour h, or, be transfer to other neighbourhood houses through a non-loop

optimised pipeline network (see Section 4.3.2.3). Pipeline balances for an individual

house and for the neighbourhood as a whole then become, respectively:

PHPIPE
i,s,h +

∑
j

QHj,i,s,h −
∑
j

QHLOSS
j,i,s,h +QHchpct,i,s,h −QHLOSS

chpct,i,s,h

= QHLOAD
i,s,h +

∑
j

QHi,j,s,h ∀i, s, h and i 6= j (J.11)

∑
i

PHPIPE
i,s,h +

∑
i

QHchpct,i,s,h −
∑
i

QHLOSS
chpct,i,s,h −

∑
i,j

QHLOSS
j,i,s,h −

∑
i

QHLOAD
i,s,h = 0

∀s, h and i 6= j

(J.12)

J.2.3 Microgrid interaction

Central CHP electricity for microgrid circulation supplies houses i, PEsndchpct,i,s,h:

PECIRCchpct,s,h =
∑
i

PEsndchpct,i,s,h ∀s, h (J.13)
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Electricity send to each house is equal to what each house receives (PErecchpct,i,s,h) from

the central CHP unit, minus transfer losses:

PEsndchpct,i,s,h − PELOSSchpct,i,s,h = PErecchpct,i,s,h ∀i, s, h (J.14)

The central electricity transfer losses are determined similarly to the decentral electricity

losses (see Equation 4.17). The microgrid interaction balance is enforced through:

∑
i

PEsndchpct,i,s,h −
∑
i

PELOSSchpct,i,s,h =
∑
i

PErecchpct,i,s,h ∀s, h (J.15)

Total microgrid transfers are bound by an appropriate upper bound P :

∑
i,s,h

(
∑
tech

PECIRCtech,i,s,h + PEsndchpct,i,s,h) ≤ Z · P (J.16)

J.2.4 Hybrid scale and scale differentiation constraints

DES can be set up as either decentral, central or hybrid. To allow the model to imple-

ment one of three scales, additional binary variables are introduced. BDCtech becomes

1 if the neighbourhood has installed decentral DG and storage units, BCT becomes 1 if

the neighbourhood only has a central unit:

BDCtech ≥ BtechDG,i and BDCtech ≥ BtechST,i ∀i (J.17)

BDCtech ≤
∑
i

BtechDG,i +BtechST,i

Binary BCT becomes 1 if the neighbourhood only has a central unit, obtained through

an AND-NOT relation (see Appendix H):

BCT = Bchpct ∧BDCtech (J.18)

Binary BDC becomes 1 if the neighbourhood only has decentral units, obtained through

an AND-NOT relation (see Appendix H):

BDC = Bchpct ∧BDCtech (J.19)



Appendix K

Economies-of-scale

This Appendix details the derivation of the employed economies-of-scale relation of to-

tal investment cost of small-scale CHP units in support of Chapter 6. The employed

economies-of-scale relation for small-scale CHP units is adapted from Merkel et al. [244].

They focussed on small-scale CHP in the range of 1 to 27 kW based on CHP inventory

studies in Germany. The obtained trend is taken from [426], which conducted a survey

of available CHP technologies and capacities in the German market in 2011. The de-

rived economies-of-scale power relation between installed CHP capacity [kW] and unit

investment cost [e2011 kW−1] was found as:

Unit investment cost = 3976.1 · (Installed capacity)−0.2497 (K.1)

Unit investment cost of the sample points, see Table K.1, were transformed from e2011

to AUD2011 using the average 2011 exchange rate of 1.348 between Euros and AUD [427].

Next, the total investment cost of the sample points, see Table K.1, was adjusted for

Australian dollar inflation between 2011 and 2015 with an inflation rate of 8.46 % [428].

From these points, the final relation between total investment cost and installed capacity

of CHP units could be determined as the power function:

CINVCHP = 5812.2 · (DGtotCHP )0.75 (K.2)

Note that relation K.1 is between unit investment cost and installed capacity, and rela-

tion K.2 between total investment cost and unit capacity. Total CHP investment cost is

obtained by multiplying the unit investment cost with the installed capacity of the unit.
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Table K.1: Economies-of-scale sample points after monetary transformations.

Cost transformation
Capacity
[kW]

[e2011
kW−1] [426]

[e2011] [AUD2011 kW−1] [AUD2011] [AUD2015 kW−1] [AUD2015]

0 0 0 0 0 0 0
1 3976 3976 5359 5359 5812 5812
2 3344 6688 4507 9014 4888 9777
3 3022 9067 4073 12220 4418 13253
5 2660 13301 3585 17927 3889 19444
8 2366 18925 3188 25507 3458 27665
11 2185 24033 2945 32391 3194 35131
15 2022 30330 2725 40878 2956 44336
20 1882 37637 2536 50726 2751 55018
27 1746 47142 2353 63536 2552 68912
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of a hybrid solar–wind-battery system using the minimization of the annualized

cost system and the minimization of the loss of power supply probability (LPSP).

Renewable Energy, 35(10):2388–2390, 2010.

[309] R. Billinton and S. Jonnavithula. Calculation of frequency, duration, and avail-

ability indexes in complex networks. Reliability, IEEE Transactions on, 48(1):

25–30, 1999.

[310] L.C. Coelho. Linearization of the product of two variables, January

2013. Available online: http://www.leandro-coelho.com/linearization-product-

variables/ (last consulted on 9 May 2016).

[311] E. Ofry and A. Braunstein. The loss of power supply probability as a technique

for designing stand-alone solar electrical (photovoltaic) systems. Power Apparatus

and Systems, IEEE Transactions on, 0(5):1171–1175, 1983.

[312] J. Song, M.C. Bozchalui, A. Kwasinski, and R. Sharma. Microgrids availability

evaluation using a markov chain energy storage model: a comparison study in

system architectures. In Transmission and Distribution Conference and Exposition

(T&D), 2012 IEEE PES, pages 1–6. IEEE, 2012.

[313] Spark infrastructure. SA Power Networks, 2014.

http://sparkinfrastructure.com/assets/sa-power-networks (last consulted on

9 May 2016).

[314] JACOBS. Independent Audit Report − Reliability Performance Reporting, 2014.

http://www.aer.gov.au/sites/default/files/SAPN(last consulted on 9 May 2016).

[315] Affordable Solar. Off grid system sizing, 2016. Available online:

http://www.affordable-solar.com/learning-center/solar-basics/off-grid-system-

sizing/ (last consulted on 24 May 2016).

[316] Leonics. How to Design Solar PV System, 2013. Available online:

http://www.leonics.com/support/article2 12j/articles2 12j en.php (last consulted

on 24 May 2016).

[317] G.E. Asimakopoulou, A.G. Vlachos, and N.D. Hatziargyriou. Hierarchical deci-

sion making for aggregated energy management of distributed resources. Power

Systems, IEEE Transactions on, 30(6):3255–3264, 2015.



Bibliography 306

[318] M.I.A. Sajjad, R. Napoli, and G. Chicco. Future business model for cellular micro-

grids. In 4th International Symposium on Business Modeling and Software Design

(BMSD), pages 209–216, 2014.

[319] Australian Energy Market Commission (AEMC). National Electricity

Rules, 2015. Available online: http://www.aemc.gov.au/energy-rules/national-

electricity-rules/current-rules (last consulted on 9 May 2016).

[320] Australian Energy Market Operator (AEMO). NEM generator registra-

tion guide, 2013. Available online: http://www.aemo.com.au/About-the-

Industry/Registration/How-to-Register/Application-Forms-and-Supporting-

Documentation/NEM-Generator (last consulted on 9 May 2016).

[321] Australian Energy Market Commission (AEMC). Small Generation Aggre-

gator Framework, 2013. Available online: http://www.aemc.gov.au/Rule-

Changes/Small-Generation-Aggregator-Framework (last consulted on 9 May

2016).

[322] Australian Energy Regulator (AER). State of the energy market 2015,

2015. Available online: https://www.aer.gov.au/publications/state-of-the-energy-

market-reports/state-of-the-energy-market-2015 (last consulted on 9 May 2016).

[323] Australian Energy Regulator (AER). Issues paper: regulating innovative energy

selling business models under the National Energy Retail Law, November 2014.

Available online: http://www.aer.gov.au/node/28403 (last consulted on 9 May

2016).

[324] COAG Energy Council. Demand management and embedded gen-

eration connection incentive scheme, August 2013. Available online:

https://scer.govspace.gov.au/workstreams/energy-market-reform/demand-side-

participation/dmegcis/ (last consulted on 9 May 2016).

[325] Australian Energy Market Comission (AEMC). Energy retail markets, 2015.

Available online: http://www.aemc.gov.au/Australias-Energy-Market/Markets-

Overview/Retail-energy-market (last consulted on 9 May 2016).

[326] Australian Energy Regulator (AER). Regulation of alternative energy sellers

review - October 2013, 2013. Available online: https://www.aer.gov.au/retail-

markets/retail-guidelines/regulation-of-alternative-energy-sellers-review-october-

2013 (last consulted on 9 May 2016).

[327] Australian Energy Market Comission (AEMC). Meter replacement pro-

cesses, 2015. Available online: http://www.aemc.gov.au/Rule-Changes/Meter-

Replacement-Processes (last consulted on 9 May 2016).

[328] Australian Energy Regulator (AER). Regulation of alternative energy

sellers under national energy retail law, June 2014. Available online:

https://www.aer.gov.au/retail-markets/retail-guidelines/regulating-innovative-

energy-selling-business-models-under-the-national-energy-retail-law (last con-

sulted on 9 May 2016).



Bibliography 307

[329] D. Palit and K.R. Bandyopadhyay. Regulating off-grid electricity delivery. Eco-

nomic & Political Weekly, 50(10):47, 2015.

[330] A. Faruque and M. Abdullah. Ramp: Impact of rule based aggregator busi-

ness model for residential microgrid of prosumers including distributed energy

resources. In Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE

PES, pages 1–6. IEEE, 2014.

[331] M. Soshinskaya, W.H.J. Crijns-Graus, J.M. Guerrero, and J.C. Vasquez. Micro-

grids: Experiences, barriers and success factors. Renewable and Sustainable Energy

Reviews, 40:659–672, 2014. doi: 10.1016/j.rser.2014.07.198.

[332] J. Giraldez and D. Heap. Overview of microgrids in a market environment. In

IEEE Green Technologies Conference, volume 2015-July, pages 36–43, 2015.

[333] T.E. Del Carpio Huayllas, D.S. Ramos, and R.L. Vasquez-Arnez. Microgrid sys-

tems: Current status and challenges. In 2010 IEEE/PES Transmission and Dis-

tribution Conference and Exposition: Latin America, T and D-LA 2010, pages

7–12, 2011.

[334] J. Romankiewicz, M. Qu, C. Marnay, and N. Zhou. International microgrid assess-

ment: Governance, incentives, and experience (imagine). In the European Council

for an Energy-Efficient Economy’s 2013 Summer Study on Energy Efficiency, Hy-

eres, France, 03/2013 2013. European Council for an Energy-Efficient Economy.
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[341] S.T. Schroeder, A. Costa, and E. Obé. Support schemes and ownership structures

– the policy context for fuel cell based micro-combined heat and power. Journal of

Power Sources, 196(21):9051 – 9057, 2011. Fuel Cells Science & amp; Technology

2010.

[342] A. Pantaleo, C. Candelise, A. Bauen, and N. Shah. ESCO business models for

biomass heating and CHP: Profitability of ESCO operations in italy and key fac-

tors assessment. Renewable and Sustainable Energy Reviews, 30:237 – 253, 2014.

[343] K. Vatanparvar, A. Faruque, and M. Abdullah. Design space exploration for

the profitability of a rule-based aggregator business model within a residential

microgrid. Smart Grid, IEEE Transactions on, 6(3):1167–1175, 2015.

[344] D.T. Nguyen and L.B. Le. Risk-constrained profit maximization for microgrid

aggregators with demand response. Smart Grid, IEEE Transactions on, 6(1):

135–146, 2015.
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