
Synthesizing and Editing
Photo-realistic Visual Objects

Daniyar Turmukhambetov

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
of

University College London.

Department of Computer Science
University College London

October 20, 2016

2

I, Daniyar Turmukhambetov, confirm that the work presented in this thesis
is my own. Where information has been derived from other sources, I confirm
that this has been indicated in the work.

Abstract

The goal of this thesis is to investigate novel methods of synthesizing new
images of a deformable visual object using a collection of images of the object.
We investigate both parametric and non-parametric methods as well as a
combination of the two for the problem of image synthesis. Our main focus
is complex visual objects, specifically deformable visual objects and visual
objects with varying numbers of visible parts, which are challenging for existing
techniques.

We first introduce a system for interactive sketch-driven image synthesis
that allows the user to draw ellipses and outlines in order to sketch a rough shape
of animals as a constraint to the synthesized image. This system interactively
provides feedback in the form of ellipse and contour suggestions to the partial
sketch of the user, by leveraging a parametric representation of ellipse positions
and object outlines. The user’s sketch guides the non-parametric synthesis
algorithm that blends patches from two exemplar images in a coarse-to-fine
fashion to create a final image that satisfies the user’s constraints. We evaluate
the method and synthesized images through two user studies.

Instead of non-parametric blending of patches from just a few, weakly
aligned, images, a parametric model of the appearance is more desirable,
because it captures the appearance information that is shared between all
images of the dataset. Hence, we propose Context-Conditioned Component
Analysis (C-CCA), a probabilistic generative parametric model that describes
images with a linear combination of basis functions. The basis functions are
evaluated for each pixel, where the arguments of the functions are context
vectors computed from local shape information. This allows us to model the
appearance of deformable objects whilst also dealing with complex occlusions
and varying numbers of parts. We demonstrate C-CCA on appearance transfer
and structured inpainting tasks. We evaluate the quality of the appearance
reconstruction with numerical and perceptual metrics.

Abstract 4

C-CCA can be directly sampled to generate novel, globally-coherent images.
Unfortunately, these samples lack high-frequency details due to dimensionality
reduction and misalignment. Hence, we develop a non-parametric model
that enhances the samples of C-CCA with locally-coherent, high-frequency
details. Thus, we can synthesize highly-detailed photo-realistic images of
deformable visual objects by combining the global parameteric model and local
non-parametric model. The non-parametric model stitches patches that match
the sample drawn from C-CCA but also contain high-frequency details. The
patch correspondences are efficiently searched in all images of the dataset with
allowed rotation and scale variations. We show and analyze the results of the
combined method on the datasets of horse and elephant images.

Acknowledgements

I’m incredibly grateful to my supervisors Jan Kautz and Simon J.D. Prince and
my collaborator Neill D.F. Campbell for the guidance, support, encouragement
and wisdom.

I’m especially thankful to Gabriel Brostow, for supervising my masters
thesis, encouraging me to pursue a PhD degree and providing advice during
my research.

I’m filled with gratitude to Dan B Goldman and Adobe Systems Inc. for
the wonderful internship at Adobe and the long collaboration on my research.

Many thanks to everyone in the VECG group for making my time at UCL
memorable, enjoyable and productive.

I would like to thank the Engineering and Physical Sciences Research
Council (EPSRC) for funding the research grant(EP/I031170/1) and UCL
Faculty of Engineering for providing Postgraduate Research Scholarship.

Finally, I would like to thank my family for all their support and encour-
agement.

Contents

1 Introduction 14
1.1 Objectives . 21
1.2 Challenges . 22
1.3 Contributions . 24
1.4 Publications . 25
1.5 Outline . 26

2 Literature Review 27
2.1 Parametric Models . 27

2.1.1 Subspace Models . 28
2.1.2 Deformable Models . 32
2.1.3 Part-based Models . 37
2.1.4 3D Shape Modeling . 41
2.1.5 Parametric Texture Synthesis 42
2.1.6 Neural Networks . 43

2.2 Non-parametric Models . 47
2.2.1 Non-parametric texture synthesis 47
2.2.2 Appearance Image and Index Map 55
2.2.3 Retrieval and Compositing 55

2.3 Combining Parameteric and Non-parametric Methods 58
2.4 Summary of Related Work . 60

3 Interactive Sketch-Driven Image Synthesis 62
3.1 Introduction . 62
3.2 Related Work . 66
3.3 Sketch Interaction . 67

3.3.1 User Interaction . 69
3.4 Implementation . 72

Contents 7

3.4.1 Training Data . 73
3.4.2 Joint Manifold . 74
3.4.3 Sketching Masses and Contours 81
3.4.4 Appearance Constraints and Synthesis 82

3.5 Synthesis Results . 84
3.6 User Studies . 86

3.6.1 First User Study . 86
3.6.2 Second User Study . 89

3.7 Conclusion . 90
3.8 Limitations . 91
3.9 Discussion . 91

4 Context-Conditioned Component Analysis 93
4.1 Introduction . 93
4.2 Related Work . 95
4.3 Context-Conditioned Component Analysis 97

4.3.1 Motivating Example . 98
4.3.2 Model Description . 98

4.4 Learning . 99
4.4.1 Learning Approach . 100
4.4.2 Estimation of hidden variables 100
4.4.3 Estimation of noise . 101
4.4.4 Estimation of function parameters 101
4.4.5 Choosing the form of the functions φ[·, ·] 102

4.5 Modeling Color Images . 103
4.6 Experiments . 105

4.6.1 Datasets and Context Vectors 105
4.6.2 Quantitative Evaluation 107
4.6.3 Appearance Transfer . 114
4.6.4 Structured Inpainting . 115

4.7 Relation to Other Models . 117
4.7.1 Relation to Probabilistic PCA 117
4.7.2 Relation to Active Appearance Model 118
4.7.3 Multifactor Models . 121
4.7.4 Alignment with Components 122

4.8 Conclusion . 124
4.9 Discussion . 124

Contents 8

5 Synthesizing Images 126
5.1 Introduction . 127
5.2 Global Parametric Model . 129

5.2.1 Overview . 129
5.2.2 Sampling . 132

5.3 Local Non-parametric Model . 132
5.3.1 Patch Correspondence Problem 134
5.3.2 Detail Hallucination of C-CCA Sample 141

5.4 Results . 147
5.5 Conclusion . 171
5.6 Future Work . 171

6 Conclusions 173
6.1 Limitations and Future Work 175

Bibliography 178

A Dataset Examples 205

B Interactive Sketch-Driven Image Synthesis System User Inter-
face 210

C User Sketch Examples 214

D User Study Results 217
D.1 First User Study: User Responses 217
D.2 Second User Study: User Responses 222
D.3 Intermediate Results of Image Synthesis 223

List of Figures

1.1 Non-parametric texture synthesis. 16
1.2 Random samples of a face factor analysis model trained on

images of faces. 16
1.3 Rigid, Highly-deformable vs Structured and Non-structured Vi-

sual Objects. 17
1.4 PPCA trained on images of horses. 18
1.5 PPCA trained on images of elephants. 19
1.6 Structure preserving jitter of Risser et al 20
1.7 Images of elephants and corresponding structure maps. 20

2.1 Example of Active Shape Model iterating to fit a new image. . . 30
2.2 Random samples of a face factor analysis model trained on

images of faces. 31
2.3 Illustration of the pictorial structures model of a human head. . 37
2.4 Summary of the Model of Savarese and Fei-Fei. 40
2.5 Architecture of the Deep Convolutional Neural Network of

Krizhevsky et al . 43
2.6 Architecture of the De-Convolutional Neural Network of Doso-

vitskiy et al . 44
2.7 Sampling of the Shape Boltzmann Machine by Eslami et al . . . 45
2.8 Quiting texture. 48
2.9 Non-parametric texture synthesis. 49
2.10 Phases of PatchMatch algorithm by Barnes et al 49
2.11 Example of image analogy of Hertzmann et al 51
2.12 Example of texture by numbers of Hertzmann et al 52
2.13 Parallel texture synthesis of Lefebvre and Hoppe. 53
2.14 Structure preserving jitter of Risser et al 54
2.15 Example of structured image hybrids of Risser et al 54
2.16 Illustration of the Jigsaws model of Kannan et al 56

List of Figures 10

2.17 Example of scene completion of Hays and Efros. 56
2.18 Generating faces with local coherence and coordinate constraints. 59
2.19 Adding the high-frequency signal to the output of the global

parametric model. 59
2.20 Face hallucination framework by Liu et al 59

3.1 Overview of our interactive method. 63
3.2 Examples of sketching with masses. 68
3.3 A cross-section of a horse showing the bones. 69
3.4 Our system’s interace. 71
3.5 Example of training image segmentation. 73
3.6 A 2D joint manifold of ellipses and contours learnt for the

elephant dataset. 76
3.7 A 2D joint manifold of ellipses and contours learnt for the pigeon

dataset. 77
3.8 Partial ellipse query. 79
3.9 Partial silhouette query. 80
3.10 Example of synthesis result. 83
3.11 Synthesis results. 85

4.1 Unstructured dataset example. 94
4.2 Visualization of the filterbanks. 105
4.3 Visualization of the context vectors. 106
4.4 Reconstruction of the test set with PPCA. 108
4.5 Reconstruction of the test set with CCCA. 109
4.6 Average MSE Performance of models with different hyperparam-

eters. 110
4.7 Variance of MSE Performance of models with different hyperpa-

rameters. 111
4.8 SSIM Performance of models with different hyperparameters. . . 112
4.9 Variance of SSIM Performance of models with different hyperpa-

rameters. 113
4.10 Appearance Transfer Results (Horses). 115
4.11 Appearance Transfer Results (Cats). 116
4.12 Comparison with SIFT flow. 116
4.13 Image Inpainting Results for Horses. 117
4.14 Image Inpainting Results for Cats. 118

List of Figures 11

4.15 Image Inpainting Results for Elephants. 119
4.16 Image Inpainting Results for Facades. 120
4.17 Illustration of the difference between AAMs and C-CCA 123

5.1 Moving along components of C-CCA. 130
5.2 Moving along components of C-CCA. 131
5.3 Samples of C-CCA in Common Colorspace. 133
5.4 Samples of R? and t? colorspace parameters applied to the

samples of C-CCA. 134
5.5 Visualization of the image synthesis pipeline. 135
5.6 Revisiting Figure 2.10, PatchMatch algorithm by Barnes et al . . 138
5.7 Mean energy gain of using the graph of correspondences for PMBP.141
5.8 Patches found by PMBP algorithm. 143
5.9 Blending of Patches found by PMBP algorithm. 144
5.10 Blending of Patches found by PMBP algorithm. 145
5.11 Blending of Patches found by PMBP algorithm in the gradient

domain. 146
5.12 Detailed partial images generated with different patch sizes. . . 147
5.13 Blending of 3× 3 patches found by minimizing first and second

objective functions. 148
5.14 Test set images of the horses dataset. 150
5.15 Random Samples of CCCA. 151
5.16 Synthesized Horses. 152
5.17 Image Indices of Synthesized Horses. 153
5.18 Random Samples of CCCA. 154
5.19 Synthesized Horses. 155
5.20 Image Indices of Synthesized Horses. 156
5.21 Before and After Detail Hallucination. 157
5.22 Before and After Detail Hallucination. 158
5.23 Test Set of Elephants Dataset. 159
5.24 Random Samples of CCCA. 160
5.25 Synthesized Elephants. 161
5.26 Image Indices of Synthesized Elephants. 162
5.27 Random Samples of CCCA. 163
5.28 Synthesized Elephants. 164
5.29 Image Indices of Synthesized Elephants. 165
5.30 Random Samples of CCCA. 166

List of Figures 12

5.31 Synthesized Elephants. 167
5.32 Image Indices of Synthesized Elephants. 168
5.33 Before and After Detail Hallucination. 169
5.34 Before and After Detail Hallucination. 170

A.1 Examples from Horses dataset. 206
A.2 Examples from Elephants dataset. 207
A.3 Examples from Pigeons dataset. 208
A.4 Examples from Cats dataset. 209

B.1 Draw Ellipses Tool. 210
B.2 Draw Contour Tool. 211
B.3 Draw Contour Tool. 211
B.4 Edit Appearance Tool. 212
B.5 Draw Ellipse Tool. 212
B.6 Draw Contour Tool. 213
B.7 Edit Appearance Tool. 213

C.1 User Sketch Example . 214
C.2 User Sketch Example . 215
C.3 User Sketch Example . 216

D.1 Detailed Partial Images. 224
D.2 Synthesized Horses in Common Colorspace. 225

List of Tables

3.1 Visual Feedbacks corresponding to the Systems. 86
3.2 First user study: number of votes the visual feedback related

questions. 88
3.3 First user study: number of votes for the subjective assessment

of the synthesized image of the “Assignment 1”. 89
3.4 Second user study: number of votes the visual feedback related

questions. 90

4.1 Datasets Statistics. 107
4.2 Parameters for C-CCA and PPCA. 107
4.3 Performance of C-CCA and PPCA. 114

5.1 PMBP Parameters . 149

Chapter 1

Introduction

“I don’t know where the artificial stops and the real starts.”

—Andy Warhol

Қазақтың халық жұмбағы:
Терезенi өрнектеп,
Әдемi сурет салыпты.
Кiм екенiн табайық,
Көрiнбей кетiп қалыпты.

(Аяз)
In this thesis we investigate novel methods of synthesizing photo-realistic

images of deformable objects. Synthesis of novel photo-realistic images has
many current and potential applications such as: generating content for virtual
worlds and games, software for assisting in conceptual design of new products
for manufacturing, clip-art-like image generation with richer control over the
result, photo and video editing software, etc...

For creating realistic images, there are three main families of approaches:
Computer Graphics Rendering, Non-Parametric Image Synthesis (i.e., Image-
Based Rendering) and Generative Parametric Models.
Computer Graphics Rendering Computer Graphics Rendering is a mature
research area that can generate photo-realistic images with near-perfect results.
However, the current pipeline requires a lot of user input, such as specifying
object materials, 3D geometry, lighting, camera properties, volume properties,
etc. The currently available tools for 3D rendering and modeling are not easy to
use for novices and require substantial training. Achieving high-quality results
is often a time-consuming procedure, even for experienced and trained computer
graphics professionals. Moreover, after all the necessary properties have been
specified, modifying the result remains challenging and time-consuming, as it

15

is hard to edit the resulting digital images at anything other than the low level
of geometry and materials at which they are specified. Changes at such low
level may have unpredictable effects on the resulting image (e.g . changing the
glossiness of a single object in the scene may change overall brightness of the
rendered image). Finally, editing existing photographs with these rendering
techniques is even more difficult, as the geometry, appearance and the lighting
setup of the photograph have to be replicated in a virtual scene.
Non-parametric Image Synthesis There are other works which have a
principally different approach in generating photo-realistic images that work in
2D image space. The image synthesis is done non-parametrically by reusing
regions of images from a library of exemplars. For example, there are methods
that address the problem of texture synthesis, where a small image of a texture
is used as input for generating a larger image with the same texture (see
section 2.2.1). This is done by copying and pasting pixels or patches from
the input image into the output image while preserving local coherence. For
the input images of homogeneous textures with locally similar structure, such
methods produce high-quality results (e.g . Figure 1.1 (A)). Unfortunately,
these methods lack the notion of global coherence, thus, they are generally
not applicable for images with non-homogeneous (i.e. varying) textures, such
as faces, buildings, animals, etc. (an example is shown in Figure 1.1 (B)).
Nevertheless, these methods work well in tasks of image inpainting, image
blending, painting-with-numbers, etc. (see section 2.2). Another non-parametric
approach of generating photo-realistic images is to edit existing images by
blending in new visual objects (see section 2.2.3). However, these methods
cannot generate new instances of visual objects. For example, one can edit an
image of a street by copy-pasting (i.e. compositing) cars from other images,
but it is not possible to generate a novel car, or modify the attributes of a
certain car.
Generative Parametric Models Finally, the third principally different
way of generating novel images of visual objects is to sample a generative
probabilistic model of an object fitted to the dataset of images. So, one can
randomly sample the parameter space and use the model to reconstruct the
corresponding images in the image space, which produces globally-coherent
results (see Figure 1.2). Although typical images have the number of dimensions
in thousands or millions, depending on the resolution, the natural images have
structure [2, 3], which implies that natural images lie on a low-dimensional
manifold. So, dimensionality reduction techniques are applied to build a low-

16

Figure 1.1: (A) Texture synthesis from input exemplar. (B) Generating faces
with the texture synthesis algorithm. The synthesized image lacks global
coherence. [Source: [1]].

dimensional representation of the images, which preserves as much information
as possible. Because of the dimensionality reduction and the inherent properties
of the models (such as Gaussian noise assumption), the reconstructions lack
high-frequency details, thus, they are not photo-realistic. Alternatively, one
can avoid dimensionality reduction altogether, but this will produce a model
that generates blends or morphings of two or more exemplars from a dataset.
However, choosing the exemplars and ensuring global coherence is not trivial,
for example, blending a young female face with an elderly male face is unlikely
to produce a photo-realistic result.

Figure 1.2: Random samples of the factor analysis model trained on images of
faces. [Source: [1]].

Furthermore, these models require registration of the data (i.e. all images
of the object are warped to align with one-another). The alignment is well-
defined for visual objects with small deformations and fixed structure, e.g . faces
with neutral expression in a frontal pose, as in Figure 1.3 (a). However, highly-
deformable objects, such as animals, can be in poses with self-occlusions which

17

(a) Rigid and Fixed
structure

(b) Highly-Deformable
and Fixed structure

(c) Rigid and
Non-structured

(d) Highly-deformable
and Non-structured

Figure 1.3: Examples of datasets of rigid and highly-deformable visual objects
with fixed and varying structure. (a) Rigid and Fixed structure. [Source: [6]].
(b) Highly-Deformable and Fixed structure. [Source: [219]]. (c) Rigid and
Non-structured. [Source: [240]]. (d) Highly-deformable and Non-structured.
[Sources to unmodified, original images left to right, top to bottom: “Camel
aka Unta” by Phalinn Ooi / CC BY 2.0; “Camelus bactrianus - Camel ” by
Jerrold Bennett / CC BY-NC-ND 2.0; “Desert Camel ” by Nerissa Alford / CC
BY-NC-ND 2.0; “Bactrian Camel ” by Tim Ellis / CC BY-NC 2.0].

makes the problem of alignment very difficult. For example, it is unclear how can
one warp an image of a standing horse with only two legs visible to a galloping
horse with all four legs visible, as in Figure 1.3 (b). Consequent shortcoming
is inability to transfer appearance across different poses. In addition, current
parametric models require that the visual object has fixed structure, where

https://flic.kr/p/2sFRyT
https://flic.kr/p/2sFRyT
https://www.flickr.com/photos/phalinn/
https://creativecommons.org/licenses/by/2.0/
https://flic.kr/p/n4BJ1
https://www.flickr.com/photos/jerrold/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://flic.kr/p/9dvsWw
https://www.flickr.com/photos/kateveeme/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://flic.kr/p/fpGAAY
https://www.flickr.com/photos/tim_ellis/
https://creativecommons.org/licenses/by-nc/2.0/

18

elements of the visual object always appear in the same quantity (for example,
frontal images of faces always have two eyes that are always visible). On
the other hand, it is unclear how non-structured objects can be aligned in
image space. For instance, images of facades of buildings may have different
numbers of windows, therefore it is impossible to warp these images of facades
to a common template as exemplified in Figure 1.3 (c). Non-structured visual
objects can also be highly-deformable, e.g ., camels with one or two humps in
Figure 1.3 (d).

(a) Images of the training set

(b) Reconstructions of the images of the training set

(c) Ten random samples of the model

Figure 1.4: PPCA was trained on 200 images of horses [219] of size 75x75 with
20 components. The reconstructions of the training set in (b) and samples
in (c) demonstrate PPCA’s quality of modeling the appearance of the horses.

This thesis investigates non-parametric methods, parametric methods and
combinations of the two for generating images, with the focus on synthesis of
deformable objects. Although existing methods synthesize high-quality results

19

(a) Images of the training set

(b) Reconstructions of the images of the training set

(c) Ten random samples of the model

Figure 1.5: PPCA was trained on 200 images of elephants of size 68x68 with 20
components. The reconstructions of the training set in (b) and samples in (c)
demonstrate PPCA’s quality of modeling the appearance of the elephants.

for visual objects that are aligned and have fixed structure, these methods
are not applicable for more complex, deformable visual objects. For example,
Risser et al . [4] produce image hybrids by preserving the structure of input
exemplars (see Figure 1.6 (b)). Mohammed et al . [1] learn to synthesize
high-quality images of faces from a dataset of aligned face images, with a
combination of parametric and non-parametric methods. Mohammed et al .
use Probabilistic Principal Component Analysis [5] as the parametric model,
which performs poorly for unaligned images and produces samples that are not

20

Figure 1.6: Structure preserving jitter of Risser et al . [Source: [4]].

globally coherent (see Figure 1.4 and 1.5). We address the problem of image
synthesis of complex visual objects by exploiting a structure map. A structure
map is an image of discrete labels where each label indicates the part of the
object that is present at that position (see Figure 1.7).

Figure 1.7: Images of elephants and visualization of the corresponding structure
maps. The grey color in the structure map represents the pixels that belong
to the elephants. The overlaid colors encode the labelings of the trunk, head,
torso and 4 legs.

We show how non-parametric image synthesis can produce high-quality
results for deformable, non-aligned visual objects by guiding the synthesis

1.1. Objectives 21

process with the user’s sketch input. Furthermore, we demonstrate that the
combined method can generate images of highly-deformable, non-aligned visual
objects by formulating a new parametric, globally-coherent, probabilistic model
that allows structure and pose variation. Then, we can synthesize novel
images of that class of objects by drawing samples from this parametric model.
Moreover, this model can be fit to an existing image for initialization or to a
partial view of the image for inpainting.

1.1 Objectives
The aim of this thesis is to investigate synthesis and editing of photo-realistic
images of deformable visual objects using a collection of images of different
instances of the class of the visual object. This is a challening problem with a
number of different desired properties.

• Firstly, we would like a data-driven system that can extract information
from the data which later can assist a novice user to create new images.
This system has to be interactive, capable of providing helpful feedback
to the user, so that the final result suits the user’s constraints and looks
realistic. For example, the system can suggest to the user which of the
specified constraints are not realistic (e.g ., the head of the cat is too
big compared to the torso) and guide the user towards more realistic
constraints, which is helpful if the user is not artistically inclined.

• Secondly, we would like to learn a generative model from a dataset
of images of a highly-deformable, non-structured visual object. This
generative model should have following properties:

– The model has to be able to generate novel photo-realistic images
of the visual object. This could be completely automatic, or with
certain user constraints.

– The model should also be capable of initializing from an existing
image rather than synthesizing a new one. This is desirable for tasks
such as appearance transfer: where the user has an image of an
object with a suitable appearance, but in a different, or partially
occluded pose. By initializing the model on the existing image, the
representation of the appearance can be modified; transferred to
an object in a different pose; or used to inpaint an occluded region
of the image. As the model learns the subspace of appearances in

1.2. Challenges 22

an unsupervised fashion, the goal of the appearance transfer and
inpainting tasks is to generate a plausible result. This is different
from accuracy-driven appearance transfer methods that are provided
with images of the same object in different poses.

– The model has to allow control over the result such as specifying
constraints on image level or semantic level. For example, the user
could control the synthesis by drawing contours in some parts of the
image or by specifying color palette. Alternatively, the user could
adjust a few parameters such that the changes have intuitive and
consistent effect on the result.

1.2 Challenges
This work faces both practical and scientific challenges:
Data Collection While there are different corpora of face images ([6, 7])
captured in controlled environments with perfect fiducial point annotations,
different lighting conditions, segmentation masks, etc., there are very few
publicly available datasets for other visual objects with sufficient number of
images. A lot of datasets were compiled for image classification and object
detection problems, but, as a result, the images don’t have segmentation masks
and may have occlusions. Annotating correspondences, segmenting the visual
object from the background and labeling semantic parts to create a structure
map is necessary to learn a model that can condition the appearance on the pose
and the structure. However, compiling such a dataset by an individual would
still result in a relatively small size of the dataset, which may consequently
limit the types of learning algorithms that could be applied to the data.
User Interaction User interaction is another aspect of this work. Controlling
the synthesis process and editing the current result can be on semantic level
as well as on the image level. Synthesizing images on the semantic level, such
as specifying certain attributes like person’s age, expression, moustache style,
etc., necessitates additional annotation of the data. Some aspects, such as
illumination or camera angle, may be trained from synthetic data. On the
other hand, adding constraints on the image level intuitively requires addressing
the problem of human-computer interaction. For example, asking the user to
specify RGB color constraints on any pixels is not easy to novices (e.g . choosing
skin color is not trivial); or, drawing edges requires some artistic training, so
some sort of visual feedback will prove helpful to the user. Moreover, editing the

1.2. Challenges 23

structure map is another aspect of user interaction that has not been previously
addressed. One of the challenges is providing “proxies” of image representation
that are both intuitive to the user and tractable for the machine.
Modeling Appearance of Highly-Deformable, Non-structured Visual
Objects Another challenge is a parametric model of the object appearance
that can manage object pose variation explicitly. Overall, currently available
part-based or fragment-based models (see section 2.1.3) only provide sparse set
of pixels with descriptor information, which is not suitable for our purposes.
An Active Appearance Model [8] does model some deformations of the objects,
but allows only piecewise affine deformations as the images are subdivided into
mesh grid. Layered Active Appearance Model [9] considers data as layers and
can model missing segments and spatially separate labelings. However, this still
requires matching of segments between images. Furthermore, to our knowledge
there are no models that can address the structure variation.
Detail Hallucination It is expected that the statistical model would ap-
proximate images in the dataset either for tractability, for robust parameter
estimation or to avoid overfitting. So, synthesizing high-quality images may
require hallucination of high-frequency details on top of the blurry samples
generated by the model. This is done by finding patch correspondences between
the sample of the parametric model and the library of images. Naturally,
such operations would need fast patch search and state-of-the-art blending
of the patches (see section 2.2.1). Fast patch search is a challenging problem
as datasets consist of hundreds of images each of which contains thousands
or millions (taking into account multiple scales and rotations) of candidate
patches.
Evaluation Lastly, the evaluation of the synthesized images remains a chal-
lenge. The realism and quality of an image is inherently perceptual. So, directly
measuring the perceptual quality for a quantitative evaluation of the models
would require user surveys. For example, the survey participants could be
shown one image that is either a sample of the model or a real image of the
library, and queried if the image is real or fake. An ideal model would be able
to synthesize images that would trick a human to find them realistic. This
test is a visual analogy to Turing’s test [10]. Alternatively, the participants
could be shown two images: a synthesized image and an image from the library,
and asked which one is “more realistic”. Unfortunately, in both scenarios the
comparison of different models is sample dependant, both in the sampling of
the training set and the sampling of the model for evaluation. For evaluation,

1.3. Contributions 24

one needs to sample the model such that the samples cover the full space of
visual object appearances. Hence, the number of samples would be at least
in the hundreds, which limits the feasibility of such evaluations. There are
quantitative metrics of image quality that measure the quality of an image
given a “ground truth” reference image (e.g . structural similarity index mea-
sure [11]). These metrics could be used to measure how well does the model
capture the appearance of the visual object by measuring the quality of the
reconstruction of the image from the test set. Unfortunately, novel images that
were randomly synthesized with the model would not have such a reference
image for comparison. It is possible to approximate the quality of randomly
generated images by testing the quality of reconstructions of the test set, which
requires many more examples not used during training.

1.3 Contributions
First, we address the problem of synthesizing objects that have articulated
pose variation. We focus on animals that may have self-occlusions. We propose
a method for interactive image synthesis, which provides visual feedback to
the user’s drawing. The method computes a low-dimensional representation of
the shape distribution in the training data from the parts annotations. This
model can generate plausible shape suggestions to the user using an existing
incomplete sketch as a query. We use the user’s drawing of the shape of the
animal and the specifications of the appearance to select a few exemplar images
that are close to the input both in terms of shape and appearance. For image
synthesis, we use a non-parametric approach, which generates hybrids of the
selected unaligned exemplar images by exploiting part annotations. This data-
driven method was evaluated with a user study. We compiled four datasets with
hand-labeled segmentation masks and part labels. This method is described in
Chapter 3.

Next, we addressed the problem of capturing the appearance of highly-
deformable, non-structured visual objects by proposing Context-Conditioned
Component Analysis (C-CCA) model. The C-CCA is a probabilistic generative
parametric model, which is a generalization of Probabilistic Principal Compo-
nent Analysis [5] and Active Appearance Model [8]. C-CCA represents data
as a linear combinations of functions, rather than components. This allows
conditioning the component functions on any complementary label data, for
example, shape information such as semantic part labels. We derived an effi-
cient training algorithm for the model and tested it on four datasets of varying

1.4. Publications 25

complexity. The model outperforms PPCA on the image reconstruction task.
It successfully captures the appearance of the highly-deformable visual objects
that have varying structure. We also demonstrated the model on appearance
transfer and structured image inpainting tasks and obtained good results. The
model is described in Chapter 4.

Finally, we investigated combining the parametric method and non-
parametric method for image synthesis. We use C-CCA to build a low-
dimensional parametric model of the data. Since the samples of C-CCA lack
high-frequency details, we hallucinate high-frequency details by using patches
of the training data. We can find correspondences between the patches of
the C-CCA sample and the patches from the library, and stitch together the
library patches to synthesize a high-quality output. However, the target visual
objects are highly-deformable, so the patches extracted from the library can
have arbitrary rotations and small scale changes, which significantly increases
the complexity of the patch correspondences problem. To this end, we extend
state-of-the-art patch correspondence algorithms [12] to exploit semantic labels
in the training data and precompute correspondences between patches of dif-
ferent images in the training data. These correspondences can speed-up the
candidate patch search in finding the correspondences between the output of
the C-CCA model and the patches in the library. This approach is described in
Chapter 5. While C-CCA requires semantic part labels map to draw a sample,
designing a generative model of the shape of the visual objects is not in the
scope of this thesis. We assume that the semantic part labels mask is either
created with the help of the user, or it is generated by some shape model.

1.4 Publications
The interactive system for image synthesis described in Chapter 3 was published
in the “Computer Graphics Forum” journal in 2015 [13]. The article was
prepared in collaboration with Neill D.F. Campbell, Dan B Goldman and
Jan Kautz. Specifically, Neill D.F. Campbell implemented the joint manifold
discussed in section 3.4.2.

The Context-Conditioned Component Analysis model described in Chap-
ter 4 was presented at the “International Conference on Computer Vision
and Pattern Recognition 2015” [14]. The published article was prepared in
collaboration with Neill D.F. Campbell, Simon J.D. Prince and Jan Kautz.
Chapter 4 extends the published article with further quantitative evaluations in
section 4.6.2 and discusses the relation of C-CCA to other models in section 4.7.

1.5. Outline 26

We intend to submit the combined methods of synthesizing images de-
scribed in Chapter 5 to the “Eurographics” conference.

1.5 Outline
We first review relevant literature on image synthesis with parameteric, non-
parametric and combined approaches in Chapter 2.

In Chapter 3 we describe our interactive sketch-driven image synthesis
method. We synthesize images with a coarse-to-fine, locally-coherent, non-
parametric algorithm which was inspired by state-of-the-art techniques in image
inpainting and image hybrids.

In Chapter 4 we describe our globally-coherent parametric statisticial model
called Context-Conditioned Component Analysis that captures the appearance
of highly-deformable visual objects that have varying structure.

In Chapter 5 we describe how we synthesize images by sampling C-CCA
and hallucinating high-frequency details on top of the output of C-CCA. Our
approach finds patches from the training set that have similar appearance to
the sample of C-CCA, but contain high-frequency details and then stitches
them together.

Finally, we summarize the contributions of the thesis and outline future
work in Chapter 6.

Chapter 2

Literature Review

The aim of this chapter is to give an overview of the current related work in
image synthesis methods. As mentioned in Chapter 1, we categorize relevant
literature into two approaches: sampling of parametric models and image
synthesis with non-parametric models. Works that have elements of both the
parametric and non-parametric models are discussed in section 2.3.

2.1 Parametric Models
We will first review models that exploit the global covariance of the pixels of the
visual object and build a low-dimensional parametric representation of natural
images. This requires answering at least two questions: (i) how to model color
covariation of different pixels in an image; (ii) how to find the correspondence
between pixels that should co-vary.

The discussion of related work in this section starts with Subspace Models
that are only concerned with the first question by assuming that objects of
interest in each image are spatially aligned to each other. This assumption
is usually used for problems that model human faces. In such problems the
images of faces are pre-aligned such that fiducial points such as corners of eyes
have corresponding pixel coordinates in all images of the dataset.

The Deformable Models (section 2.1.2) and Part-based Models (sec-
tion 2.1.3) propose two different approaches to the second question. Deformable
Models assume that all pixels in each image must have some relationship to each
other. Part-based Models assume that some pixels and their neighborhoods
are more important than others, so the models should only be concerned with
modeling important pixels and their relationships. Unfortunately, most of these
models were built for object detection or object recognition problems; hence,
they describe a sparse set of interest points or edges and the spatial relationships

2.1. Parametric Models 28

between them. Consequently, most of the models are discriminative and not
suitable for synthesis purposes. Nevertheless, some insights used in developing
such models are applicable for image synthesis.

Next, we mention computer graphics approaches for synthesizing 3D shape
models and plant modeling from images.

The last subsection discusses Neural Network approaches which have
recently become very successful in image classification tasks [15]. Following
the popularity of Neural Networks for discriminative tasks, there are recent
works that use Neural Networks to build generative models that can synthesize
images. However, the number of parameters in Neural Networks requires the
training datasets to contain tens of thousands of images to avoid overfitting.
Furthermore, increasing the resolution of images increases the number of
parameters in the Neural Networks, so, typical generative Neural Networks
synthesize images of low resolution (32x32 or 64x64).

2.1.1 Subspace Models
Subspace models define a probabilistic model that describes the modes of
variation of all of the pixels in the image. For linear models such as PCA
where the images are vectorized, the images in the dataset must have the same
structure and have a good alignment. Thus, articulated objects may not be
captured by linear models that are based on pixel intensities. However, if the
object has the same structure and was captured in the same pose, such as a
frontal image of a face with a neutral expression, the linear models can learn a
good understanding of the global structure of the image.

Assume that we have N training images that were vectorized

{x1,x2, ...,xN} (2.1)

The linear model assumes that the data can be represented as

xi = µ + Fhi (2.2)

where each µ is the mean of the data, F is a factor matrix consisting of
columns as the factors, hi are the factor loadings or mixture weights. Turk
and Pentland proposed a method called Eigenfaces [16] for face detection and
identification, where the factor matrix consist of principal components derived
from the covariance matrix of the probability distribution over the vector
space of the face image pixel intensities. Similarly, one can model the shape

2.1. Parametric Models 29

or some point distribution of a visual object by stacking feature points into
a vector instead of pixel intensities. This approach has been introduced by
Cootes et al . for locating visual objects, and is known as Active Shape Models
(ASM) [17, 18, 19, 20]. For the model to capture the variations of the point
distribution, the keypoints of each image have to correspond to each other.
This is related to the part-based models since only a sparse set of keypoints is
considered, however, ASM captures the geometric relation of all pairs of points
(see Figure 2.1). Another shape model called Contour People was recently
proposed by Freifeld et al . [21]. Contour People is learned from a dataset of
2D contours of different people in various poses that was generated from a
parametric 3D SCAPE model [22] of the human body, which was learned from
a database of laser scanned human bodies in various poses. Since the 3D data
has body part segmentations, the generated 2D contours have ground truth
body part annotations. The model decomposes the deformations of the contour
into a product of three components: the shape variation, the part rotation
and the viewpoint change. All these components were trained independently,
since it is possible to fix each factor in the 3D model during the training data
synthesis. The model was tested on the problem of human body segmentation
and yielded good results. The key factor that enabled this model is the 3D
model of the human body with ground truth part labels. Unfortunately, the
dataset is not publicly accessible as it remains proprietary.

If we assume that the data is corruped with noise, each data point can be
described as

xi = µ + Fhi + εi . (2.3)

When the noise is assumed Gaussian with zero mean and diagonal covariance Σ,
and we have Gaussian prior on the mixture weights, the model can be treated
as fully probabilistic, where hi are latent variables. The factors and the factor
loadings can be learned using the Expectation Maximization algorithm [23].
Please see [24] for a unifying review of Linear Gaussian Models.

One has to choose the number of factors, which depends on the model
and application (e.g . for images of faces: 8 factors in Visio-lization [1], 7
in Eigenfaces [16], 80 in Active Appearance Models [8], 16 in Tied Factor
Analysis [25], etc.), so that the underlying subspace can be extrapolated by
varying the factor loadings. Furthermore, the number of parameters that
need estimating is directly related to the number of training samples. The
reduced number of dimensions yields factors that are weighted averages of the

2.1. Parametric Models 30

Figure 2.1: Example of a face ASM iterating to fit a new image. [Source: [17]].

datapoints. Hence, the reconstructions of datapoints are weighted averages of
factors, which are weighted averages of datapoints in the training set. As a
result, the datapoints are reconstructed as weighted averages of the datapoints
in the training set. This averaging can be viewed as a low-pass filter applied to
the datapoints, which attenuates high-frequency signals. Thus, the synthesized
images lack detail as show in Figure 2.2.

Many related approaches followed; for example, the Fisherfaces algo-
rithm [26] makes use of linear discriminant analysis (LDA). In this work, the
subspace aims to maximize the ratio of inter-individual to intra-individual vari-
ance. The null-space LDA approach [27] makes use of the directions without
intra-individual variance (these are ignored by Fisherfaces). The Dual-Space
LDA approach [28] combined both of these subspace directions.

Recently, Prince et al . have proposed probabilistic latent discriminant
analysis (PLDA) [29] to model intra-individual and between-individual variation

2.1. Parametric Models 31

Figure 2.2: Random samples of the factor analysis model trained on images of
faces. [Source: [1]].

of frontal face images for the face recognition problem. This was done in
probabilistic manner, where the training set consisted of images of I individuals
under J lighting conditions

{xi,j} (2.4)

The model assumes that each image xi,j can be expressed as a combination of
the between-class factors and within-class factors. So,

xi,j = µ + Fhi + Gwi,j + εi,j , (2.5)

where hi corresponds to the latent individual variable, which does not depend
on the within-class factors, whereas wi,j is the mixture weight that describes
the within-class factors needed to explain the image xi,j. Lastly, the noise εi,j
is modelled for each image separately. Under the assumption that hi, wi,j

have a prior of a Gaussian distribution with zero mean and identity covariance
and εi,j is modelled as a Gaussian with zero mean and diagonal covariance
Σ, the model can be learned with the EM algorithm. The model produced
the state-of-the-art results with the keypoint related descriptors, and showed
experimentally a good separation of within-class and between-class factors for
the pixel intensity values. However, the model still suffers from overly smooth
results. The same model was rediscovered by Gong et al . [30] to separate
identity and age appearance factors for the problem of face recognition.

In another work, Prince et al . introduced the tied factor analysis [25] for
the face recognition across large pose differences. The training set consists of I
individuals with J examples of K poses

{xi,j,k} . (2.6)

2.1. Parametric Models 32

The image of an individual i under the j illumination and the pose k is modelled
as

xi,j,k = µk + Fkhi + εi,j,k . (2.7)

Here, each pose has a separate set of factors Fk, and a mean face µk. Similarly
to PLDA, each individual is modelled with a same latent individual vector hi.
Again, under the assumption that the noise is Gaussian with zero mean and
diagonal covariance Σk, and latent variable is Gaussian with zero mean and
identity covariance, the model can be trained using the EM algorithm. Since
the latent variable hi is tied to an individual, it is possible to synthesize images
of the same person under different poses. However, the result is still quite
blurry and lacks details.
Manifolds Natural images do not necessarily lie on a linear subspace, but
often are distributed on a low-dimensional non-linear manifold. There is a
large body of work on manifold learning [31, 32, 33, 34, 35, 36], however, most
of them assume that either the data points in the local neighborhood of the
high-dimensional space should be nearby in the low-dimensional manifold or
reversely the data points in the local neighborhood of the low-dimensional
space should be nearby in the high-dimensional space. Other methods, such
as [37, 38, 39, 40], do not provide a mapping from the latent space to the original
space. Details of these assumptions are important for the construction of the
manifold, but they have the same implication for sampling of novel points from
the learned manifold: new data points are represented as a weighted average of
a set of the training data points.

Some recent works use more powerful dimensionality reduction techniques
to model images, especially for the problem of face recognition and identification,
such as [41, 42]. However, the images are typically modeled as a weighted
average of images in some local neighborhood, which results in artifacts similar
to linear models.

2.1.2 Deformable Models
In this subsection we discuss methods that use dense warpings of images. As it
was mentioned in section 2.1, finding corresponding pixels in different images is
important for building a good low-dimensional representation. In this section
we review methods that recognize that the camera angle, the pose or 3D
deformations of the visual object are important factors that control the image
of the visual object, and thus must be explicitly modelled. More specifically,
the methods in this section model deformations with a dense warping. Nearly

2.1. Parametric Models 33

all dense warping techniques assume a spatially smooth warping of the images.
This assumption is reasonable for pairs of images that have similar structure and
appearance, however, it corrupts warps for visual objects that have significant
appearance variation (e.g . cats), cropping, or significant deformations that
cause self-occlusions (e.g . legs of animals).
Active Appearance Model Active Appearance Model (AAM) is an ex-
tension of Active Shape Model that linearly models both the shape and the
appearance of the visual objects [8, 43, 44]. So, AAM assumes the image of
an object and a set of keypoints similarly to ASM as an input. The image is
subdivided into a triangle mesh, where the keypoints are the vertices of the
triangles, using DeLaunay triangulation [45] or some modification of it (for
example, adding a constraint of equilateral-like triangles in the final mesh).
Then, the images are warped to a mean template, and the pixel values are
resampled. Thus, AAM has a better one-to-one correspondence of the pixel
values than models that use the image coordinates.

While AAM is linear in both the shape and the appearance, it is not
linear in relation to the pixel coordinates. Consequently, fitting AAM to
an image is a non-linear optimisation problem. There is a large body of
work on algorithms that minimize the error between the input image and the
approximation provided by AAM [44, 46, 47, 48].

By modeling both the appearance and the shape of the visual objects,
AAM can track the articulated objects like talking faces, etc. However, the
allowed deformations are piecewise affine, which prohibits self-occlusions or
other significant deformations. Moreover, AAM still performs dimensionality
reduction, and the synthesized images still lack some detail. Lastly, AAM
assumes a constant structure of the visual object. To solve some of these
problems, a Layered Active Appearance Model (LAAM) was proposed by Jones
and Soatto [9]. In this approach, the image is subdivided into layers, where
each layer is associated with a set of landmarks points, a texture image and a
local coordinate system. Each layer can be missing in some of the images. By
computing the warps, the normalizations and the weights for each of the layers,
and the data can be learned using the weighted PCA algorithm. However, this
approach still requires correspondence of the landmark points and consistency
of the layers.

Similarly to AAM, an approach called Morphable Model has also been
applied for 3D face synthesis by Blanz and Vetter [49]. Here, the dataset
consists of 3D face models, which is difficult to obtain. While Morphable Model

2.1. Parametric Models 34

can synthesize the same individual under different viewing angles with better
quality, it still suffers from the similar drawbacks to AAM. Patel and Smith [50]
revisit 3D Morphable Models to improve the efficiency and general accuracy
of the previous models. An interesting application of Morphable Model was
demonstrated by Sucontphunt et al . [51, 52] who developed a method that
allows to create 3D models of faces from a user’s sketch. The method relies
on parametric models of the 3D geometry (Morphable Models) and texture
map (weighted average of texture maps of the dataset) of a face. While this
method is successful for synthesis of 3D geometry and texture map of a face,
the quality relies on the accurate alignment of geometries and texture maps in
the dataset using the keypoint annotations. Hence, the range of visual objects
that can be modeled with this approach is limited by the Morphable Models,
as building 3D Morphable Models of non-structured visua lobjects is difficult.
Alignment-based Models AAM solves the deformation problem by train-
ing with the fiducial keypoints which are usually annotated manually. The
natural extention that has generated attention is automatically solving for the
deformation from the training images, i.e. obtaining dense alignment of images
in the dataset to some common template or between pairs of images. Instead
of manually annotating all images, Walker et al . [53] proposed to use temporal
consistency in image sequences to automatically build appearance models by
tracking stable fiducial points. Furthermore, Ramnath et al . [54] showed that
iteratively increasing the density of the mesh of AAM makes fitting the new
instances more robust. Recently, Krüger et al . [55] proposed to model the
correspondences between landmarks of different images as probability distri-
butions. This allows learning of the correspondence model from the training
set of images, i.e. the probability distribution of the model correspondences
conditioned on the observations of the image is jointly estimated from the
training data. The advantage of modeling correspondences with probability dis-
tributions is that the images of the training set can have missing/unobservable
landmark points. Given the learned model and a new test image, the model can
be used to optimise the model-to-observation correspondences. Krüger et al .
demonstrate the model on segmentation and classification tasks. Unfortunately,
the model is conditioned on the appearance and cannot be sampled to generate
new appearances.

There are multiple techniques of constraining the deformation to be smooth,
for example, one approach is modeling deformations of images using a low-
dimensional deformation field. Or, one can define deformations as local non-

2.1. Parametric Models 35

overlapping transformations on a mesh similarly to AAM.
There is a large body of work on the problem of mesh deformation. These

methods are usually used for character animation, so the focus is on getting
deformations of characters in images or 3D shapes to look plausible. One of the
most popular mesh deformation methods [56] is achieved through optimization
of the mesh coordinates such that each triangle’s deformation is as-rigid-as-
possible. This method was used by Hornung et al . [57] to generate novel
poses of people in 2D images. However, the result image does not have new
appearance, only the new pose or shape.

To align images to each other, one must apply deformations to all images.
If the color variation between images is not significant or can be factored out
by image processing (for example, medical scans of organs, images of frontal
view faces without background, etc.), one can define a suitable global alignment
error metric such as per-pixel entropy across images. So, it is possible to reduce
this global alignment error metric with iterative refinement of individual mesh
vertices [58, 59, 60, 61, 62, 63, 64, 65, 66]. Liu et al . proposed SIFT flow [67]
that solves the alignment problem by using SIFT descriptors [68] instead of
pixel intensities in addition to smoothness constraints similar to optical flow.
The alignment procedure itself does not produce an appearance model, but it
is important for good alignment of the data when building appearance models.

Shape matching is a 3D formulation of estimating dense correspondences
between pairs of images. The scenario of global correspondence estimation
with non-rigid deformations in a collection of 3D shapes is an active area of
research (see [80] for overview). Recently, Ovsjanikov et al . [79] proposed
a novel representation for maps between pairs of shapes, which instead of
correspondings points on the two shapes, puts in correspondence real-valued
functions defined on the two shapes. This allows the mapping between the
shapes to be represented as linear transformations between the corresponding
function spaces. By choosing a suitable basis for the function space on each
shape (they use eigenfunctions of Laplace-Beltrami operator defined on the
shape) they yield representation of the map that is multi-scale, compact and
suitable for efficient global inference. They achieve state-of-the-art results on
isometric shape matching benchmarks using a standard set of point descriptors
as map constraints. Adapting such representation of a map may be beneficial
to the problem of 2D image alignment.

For objects with varying texture one must jointly learn the deformations
as well as build an appearance model. Transformed Component Analysis [69]

2.1. Parametric Models 36

estimates a global transformation for each image in the dataset to bring the
images into alignment as well as finding an appearance subspace. The set of
transformations they consider are rigid body motions, which are not suited
to highly-deformable objects with self-occlusions. Winn and Jojic introduced
LOCUS [70], an unsupervised generative model that learns segmentations of
visual objects. Most interestingly, they model visual objects with deformation
fields and achieve dense registration between different images of the same class
despite differences in appearance or pose.

Mobahi et al . [71] also learn a model of a visual object from a set of
images. They assume that images are generated as a nested composition of
color, appearance and shape transforms. By modeling each component as a low-
dimensional subspace, they can learn a regularized solution of the compositional
model from a set of images. Their shape (i.e. geometric) transform is jointly
learned for all images, and outperforms SIFT flow and robust optical flow for
any pair of images from the set.

Besides the appearance, the 3D consistency of the learned shape model
can be used to align images and and regularize the learned 3D shapes. In
particular, the 2D projections of the 3D shape has to match the observed
silhouettes and the 2D keypoints. Cashman et al . [72] showed how to build 3D
Morphable Models of not strongly articulated visual object from 2D images
with some user annotation. Among the results, the output 3D Morphable Model
has high quality geometry for dolphin and pigeon examples, but not as high
quality for bears. Vicente et al . [73] demonstrated that using ground truth class
labels, segmentations and keypoints of Pascal VOC [74] dataset it is possible
to compute dense, per-object 3D reconstructions. The method first estimates
the camera positions from the keypoints in each method using rigid structure
from motion algorithm [75]. Then, for each image, the algorithm finds most
likely “surrogate” silhouettes from the other views using silhouettes of other
images in the training set. Once, a triplet of silhouettes is estimated, the dense
3D shape can be computed by finding the visual hull of the shape [76]. Later,
Kar et al . [77] showed how to learn linear deformable 3D shape models from
a collection of images. The method adapts non-rigid structure from motion
algorithm by Torresani et al . [78], such that it account for silhouettes. The
method alternates between estimating (i) the camera extrinsics and the 3D
locations of the keypoints (estimated from 2D using non-rigid structure from
motion); (ii) the basis of the 3D shape fitted to the silhouettes of the training
set; and (ii) the coefficients of the estimated deformation basis for each of the

2.1. Parametric Models 37

images. Once the 3D shape model is learned, it can be used to reconstruct a 3D
shape and high-frequency depth map from a single image. Unfortunately, these
3D shape methods do not investigate the appearance space, thus, they can be
sampled to generate novel poses of the visual objects, but not the appearance.

2.1.3 Part-based Models
The part-based models capture the global appearance of a visual object by
reasoning about a collection of local templates that deform and articulate
with respect to one another, however, most of the part-based models are used
for object detection problems. There are two core aspects: the descriptor
representation used for the part templates and the model for expressing the
deformation constraints. If no geometry is encoded in the model, this becomes
equivalent to the “bag-of-words” models [81].
2D Relationship The original idea was introduced by Fischler and Elschlager
in pictorial structures [82], and since has evolved and extended for object
detection [83, 84, 85, 86].

Figure 2.3: Illustration of the pictorial structures model of a human head.
[Source: [82]].

A part could be described as a rigid template. Various descriptors are
used for representing the rigid part templates, from directly modeling the
pixel intensities to different histogram of gradients (HoG) features [87]. For
object detection purposes, the introduction of certain invariances is generally

2.1. Parametric Models 38

beneficial, because of the inherent complications such as cluttered background,
occlusion, illumination, camera viewpoint, etc. Consequently, recent works
tend to use HoG-like features that have some notion of the illumination and
clutter invariance. Unfortunately, descriptors that ignore those appearance
factors may not be suitable for image synthesis. Recently [88, 89], steerable part
representations, which allow parts to be represented as a linear combination
of a smaller set of basis parts, were shown to be fast to train, to require less
memory and often reduce overfitting to the data.

A natural extension of Pictorial Structures model is allowing certain
deformations of parts. Zuffi et al . [90] proposed such a Deformable Structures
model, where each part is represented by a low-dimensional shape deformation
space and the pairwise potentials between parts capture how the shape varies
with the pose and the shape of the neighboring parts.

The major consideration for the geometric relationships of the part-based
models is the availability of an efficient inference algorithm. Consequently,
the part-based models have a sparse set of N parts and model the geometric
relations between sparse pairs of the parts. One of the most popular forms is
the so-called constellation model [91].

A particularly common constellation approach is a “star” model, which
specifies the spatial location of the parts with respect to one root part, which
is equivalent to modeling N − 1 coordinates with respect to some common
coordinate frame. Since only N − 1 coordinates are kept, it is possible to have
a lot of parts, generally called as vocabulary of visual words. For the face
localization problem, Burl et al . [91] used a supervised (hand-picked) selection
of interest points as parts. Leibe et al . [92] proposed a method that is similar to
the “star” model, where the detected parts perform Hough voting on the object’s
center location for the object detection. Later, unsupervised ways of selecting
the parts and extracting the geometric relations were proposed [93, 94, 95].

A generalization of the star model is a tree model, where each part’s
location is independently defined with respect to its parent part’s location.
While this approach can model more complex geometric relations, it still has
efficient inference algorithms. The construction of the tree from the parts
needs careful consideration, as multiple parts can independently fit to the same
image region. One of the recent successful works was by Zhu et al . [96], where
they presented a unified model for the face detection, the pose estimation and
the landmark localization, while trained on hundreds of images, rather than
thousands or billions. The model is a mixture of trees for different viewpoints of

2.1. Parametric Models 39

the face. The trees share the pool of the parts; however, each viewpoint tree has
a separate linear mixture vector that is used to define the tree’s part templates
as a linear combination of the templates in the pool of the parts. The parts
were described using HoG features. Since the deformation model is captured
by a tree, loops of landmarks, such as the landmarks around the mouth, are
not explicitly constrained. It is still easier to optimize and it performs better
than Active Appearance Model. However, discriminative part representation
and the lack of the loopy constraint makes this approach unsuitable for the
synthesis purposes.

Wu et al . [97, 98] proposed “Active Basis” as a way of representing a de-
formable template. So, the template is approximated with a linear combination
of Gabor wavelet elements that are allowed to have spatial shifts and rotations.
The elements are shared between all templates of each object class, but the
deformations are individual for each image. Later, Si and Wu [99] extended
Active Basis to a sparser representation called Shape Script. Although these
models are generative, they were designed for effective object detection and
recognition, not for synthesis.
2.5D Relationship Recently, an alternative representation of parts called
“poselets” [100] was applied to the human detection, the segmentation and the
body pose estimation problems. Unlike other part-based models, the poselets
do not assume that parts have to correspond to the human anatomy, so the
poselets have broader definition of the parts, which may correspond to the
multiple parts or even the whole human body. The main motivation is that
poselets should be easy to find in an image and they should be easy to localize
the 3D configuration of the relevant keypoints, given the detected poselet.
This provides an intermediate representation of the possible 3D locations of
keypoints, which may be refined using the geometric constraints. A data-
driven approach was introduced to estimate the poselets and train poselet
detectors. The position of the keypoints are inferred by Hough voting [101] of
the detected poselets. The poselets model was extended [102] to the structured
hierarchical model, which is more sophisticated than simple Hough voting
scheme. Pishchulin et al . [103] proposed to condition tree-structured pictorial
structures model with higher-order geometric part dependencies of poselets for
the human pose estimation problem.
3D Relationship Most of the part-based models represent the data in 2D
by describing each part using 2D descriptors and modeling the geometry with
2D transformations. However, the data is generated from 3D objects, and

2.1. Parametric Models 40

the geometric relations should be 3D transformations. A novel representation
of the 3D object classes was proposed by Savarese et al . [104, 105, 106, 107].
The parts are modelled as large and discriminative regions consisting of local
invariant features, for example, regions with bag-of-words as histograms. The
geometric relations are modelled as homographic transformations between parts.
This representation allows synthesizing novel views and unseen poses of the
object classes. The synthesized views contain sparse set of features, which
is sufficient for recognition, detection and categorizations tasks (Figure 2.4).
Later, Su et al . [108] proposed a method based on this representation to learn a
dense multi-view representation for detection, viewpoint classification and novel
view synthesis. However, the dense representation is achieved by morphing
a triangular mesh of view-points, which assumes consistent structure of the
visual objects. Furthermore, the synthesized image has a novel viewpoint, but
the visual object does not have a novel appearance.

Figure 2.4: Summary of the Model of Savarese and Fei-Fei. (a): A car within
the viewing sphere. As the observer moves on the viewing sphere the same part
produces different appearances. The location on the viewing sphere, where
the part is viewed the most frontally, gives rise to a canonical part. The
appearance of such canonical part is highlighted in green. (b): Colored markers
indicate locations of other canonical parts. (c): Canonical parts are connected
together in a linkage structure. The linkage indicates the relative position
and change of the pose of a canonical part given the other (if they are both
visible at the same time). This change of location and pose is represented
by a translation vector and a homographic transformation respectively. The
homographic transformation between canonical parts is illustrated by showing
that some canonical parts are slanted with respect to others. A collection of
canonical parts that share the same view defines a canonical view (for instance,
see the canonical parts enclosed in the area highlighted in yellow. [Source: [104]].

Mid-level Patches An important problem of part-based models is finding

2.1. Parametric Models 41

the set of patches that correspond to a part from the training data in an
unsupervised fashion. These patches have to be detectable (an algorithm
should be able to detect it from the image), discriminative (i.e. they look
differently from the patches of other objects) and representative (i.e. they occur
frequently in images of objects). These parts are often called mid-level patches
and there are a lot of methods that tackle this problem [109, 110, 111, 112].
These patches can be used to summarize architectural styles of cities [113],
keep track of changes in style through time [114, 115] and help to align images
in big image collections for exploration and visualization [116]. Moreover, such
mid-level patches are useful for object detection problems in general. However,
even if such patches are identified in a dataset, it is not clear how they can be
used to synthesize novel images.

2.1.4 3D Shape Modeling
In this subsection we review methods that generate 3D shape models. We
have already mentioned Morphable Models, which generates both the 3D shape
model and the appearance (i.e. texturing) of the visual object.

A solution to the problem of synthesizing novel 3D shapes was proposed by
Kalogerakis et al . [117]. The input data consisted of 3D shapes with consistently
segmented components. The model learns structural variability by relating
probabilistic relationships between geometric and semantic properties of shape
components. Due to the consistent segmentation and labeling of components,
complete 3D information and absence of sensor noise or occlusions, this model
performs exceptionally well on 3D shape datasets. However, this approach is
difficult to translate to 2D image synthesis.

Ovsjanikov et al . [118] built a navigation interface for exploration of a
collection of 3D shapes. Their technique assumes that it is possible to build a
low-dimensional manifold of 3D shapes in some descriptor space which does
not require correspondences between shapes. However, they do not interpolate
or synthesize novel shapes.

There is a large body of work on modeling and generating trees, either
from video sequences [119] or images with user annotations [120, 121, 122].
However, they use domain knowledge specific to trees, i.e. branching, skeletal
structure of the trees, etc. Quan et al . [123] designed an interactive system for
image-based plant modeling that allows leaf and branch structure editing. The
result is a textured 3D model which models the plant in the image rather than
a generative model of a plant.

2.1. Parametric Models 42

2.1.5 Parametric Texture Synthesis

In this subsection we review parametric models for the problem of texture
synthesis, where a small image of a texture is used as an input to generate a
larger image with the same texture. Early approaches [124] were focused on
modeling the statistics of the target texture’s pixel intensities. Rather than
matching statistics of pixel intesities, some works [125, 126, 127] improved the
quality of synthesized texture by optimizing the image with respect to statistics
of linear filter responses computed for the target texture.

In both cases the general framework of texture synthesis is as follows.
First, linear feature responses are computed for the target texture image. Next,
statistics on the feature responses are computed over the target image in some
spatial window. Finally, a new image is synthesized from a random white
noise image by performing gradient descent with respect to the target statistics.
These methods would perform well on the highly stochastic textures, but
would fail to generalize to all natural textures, and also were outperformed by
non-parametric texture synthesis approaches (see section 2.2.1) at the time.

Recently, Gatys et al . [128] used a similar framework for texture synthe-
sis, but instead of matching the statistics of the linear filter responses, they
match the statistics of non-linear responses of a Convolutional Neural Network
(see section 2.1.6). This approach has dramatically improved the quality of
synthesized textures.

Later, Gatys et al . [129] used different layers of the Convolutional Neural
Network to separate the style and content of an image (this is similar to texture-
by-numbers discussed in section 2.2.1). Two images are used as input to the
system: style image (e.g . a painting of a famous artist) and content image
(e.g . a photo taken by a user). The aim is to generate an image that has the
global layout of the content image, but the local style of the style image. The
method computes the statistics (Gram matrix of activations) of low-level layers
of the Convolutional Neural Network of the style image and activations of the
high-level layers of the content image. Then, the output image is optimized,
such that the low-level layer statistics match the statistics of the style image,
whilst the high-level layer activations match the content image. The motivation
is to preserve the global arrangement of the content-level constraint and match
the color and local statistics of the style image. Later, Li and Wand [130]
improve content-by-example synthesis of Gatys et al . by replacing the Gram
matrix term with a Markov Random Field term that minimizes the Euclidean

2.1. Parametric Models 43

distance between the high-level activations of the output image and the style
image. As both of these methods are input-driven, it is not clear how this
approach can be generalized to generate various contents or styles from a library
of examples.

2.1.6 Neural Networks

Figure 2.5: Architecture of the Deep Convolutional Neural Network of
Krizhevsky et al . [Source: [15]].

In this subsection we discuss Neural Network approaches. Recently pro-
posed, novel techniques for training and weight regularization allow to train
deep architectures [131]. There are multiple architectures of Neural Networks
that are designed for different tasks. Nearly all deep Neural Network archi-
tectures have the number of parameters in the millions, which results in the
requirement of a vast amount of training data.
Encoder Neural Networks One of the recent successful works,
Krizhevsky et al . [15] used Convolutional Neural Network architecture for a
discriminative problem of object detection that achieved the state-of-the-art
performance at the time. The CNNs architecture (see Figure 2.5) consist of
multiple convolutional layers, where each layer convolves the input with a set of
filters, passes the responses through non-linear function and max-pools multi-
channel layers of representation. The first layer starts with the raw RGB pixel
data. Max-pooling operation collapses a local region of the input into a single
node, thereby reducing the size of the input to the next layer and increasing the
“field of view” of the neurons in the next layer. The top layer (or top 2 layers)
is usually “fully connected”, meaning each neuron processes all of the nodes in
the previous layer. In object recognition task, the output of the top layer is a
vector of values with the size corresponding to the number of classes in the
object detection problem. While Neural Networks outperform other machine

2.1. Parametric Models 44

Figure 2.6: Architecture of the De-Convolutional Neural Network of Dosovit-
skiy et al . [Source: [132]].

learning techniques, the analysis of the trained networks proves to be difficult.
An interesting approach was proposed by Mahendran and Vedaldi [133] for
visualizing the behaviour of the Neural Networks. They propose to directly
optimize the image that is input the trained Neural Network, such that the
activations of the Neural Network match the target activations of the nodes in
the network. The realism of the generated image is improved by constraining
the target image with appropriate image priors. This approach is similar to
parametric texture synthesis (see section 2.1.5).

Decoder Neural Networks The CNN architecture can be reversed top-to-
bottom, where the goal is to “de-convolve” [134] a low-dimensional representation
of an object to the full resolution. For example, Dosovitskiy et al . [132] trained
Convolutional Neural Network to learn to generate images and segmentations
of chairs from a dataset [135] of renderings of 3D models of chairs. Figure 2.6
visualizes the architecture proposed by Dosovitskiy et al . The CNN was trained
using ground truth semantic parameters such as chair class, viewing angle, etc.
One interpretation of this method is that CNN learned to “render” chairs from its
semantic parameters, rather than CNN learned the appearance representation
from the images of chairs. Nevertheless, random semantic parameters can
generate images of size 128x128. The ability to interpolate between different
viewing angles or chair styles allows this network to be used for the state-
of-the-art correspondence estimation. The synthesized images have artifacts,
especially images of chairs of interpolated chair styles, which restricts novel

2.1. Parametric Models 45

image synthesis. Moreover, the dataset images were rendered under single
illumination which consequently is not modelled by the CNN.
Encoder-Decoder Neural Networks There are multiple architectures that
combine Encoder and Decoder networks. The goal is to have a model that com-
putes low-dimensional latent representation by running the high-demensional
input through Encoder network and ability to reconstruct the high-dimensional
input by running the low-dimensional latent representation through Decoder
network. This is similar to parametric models (section 2.1), but the Neural
Network allows to learn the non-linear kernels by minimizing difference between
original input to the encoder and the reconstructed output of the decoder.

One such model is called autoencoder. Hinton and Salakhutdinov [136]
showed how to train autoencoders using the Restricted Boltzmann Machine [137,
138] with the encoder and decoder networks sharing weights for the problem of
dimensionality reduction. The Deep Boltzmann Machine inference, or sampling,
is not straightforward as the top-most hidden layer’s values depend on the
previous layer. Hence, Markov Chain Monte Carlo sampling techniques are
required for generating posterior probability distribution.

Figure 2.7: Sampling of the Shape Boltzmann Machine by Eslami et al .
[Source: [139]].

Eslami et al . proposed Shape Boltzmann Machine [139] approach for
modeling the object shapes. The work is based on the Restricted Boltzmann
Machine and the Deep Boltzmann Machine [140] technique with the modification
of sparse connections for the tractability. The task is to model a binary shape
image. Figure 2.7 illustrates Block-Gibbs Markov Chain Monte Carlo sampling
of the new shapes from the Shape Boltzmann Machine. The results clearly
outperform alternative approaches for the subspace modeling, but still have

2.1. Parametric Models 46

artifacts. Moreover, the binary images have size of only 32x32 pixels for the
horses and other categories, and 64x64 for the motorbikes, which is far from
desired. Authors designed the model to be used as a shape prior for the object
segmentation tasks. This method was later extended from segmentation masks
to part masks [141, 142].

Recently, Nhan Duong et al . [143] trained a Deep Boltzmann Machine
using RGB images and fiducial keypoints similarly to Active Appearance Model
(see 2.1.2). Quite expectedly they outperform Active Appearance Model on
the task of face image reconstruction as their model is non-linear unlike AAM
that uses PCA for dimensionality reduction.
Generative Adversarial Networks Goodfellow et al . [144] proposed Gen-
erative Adversarial Networks architecture that also consists of two networks:
the generative network and discriminative network. The generative network’s
architecture is similar to decoder, and the discriminative network’s architecture
is similar to encoder. The generative network’s objective is to learn to generate
samples that are similar to the training set from a random input code. The
discriminative network’s objective is to learn to differentiate between images of
the training dataset and synthesized images of the generative network. The
Generative Adversarial Networks are effectively playing a minimax two-player
game. Radford et al . [145] investigate constraints on the architectural topology
of Convolutional Generative Adversarial Networks for robust and stable train-
ing. Denton et al . [146] trained a Laplacian pyramid of Generative Adversarial
Networks. The approach uses Laplacian pyramid where the first layer is a noise
sample and each layer upsamples the previous layer and adds correction to the
layer computed by the generative network. This procedure effectively creates a
super-resolution of the initial noise sample.

The adversarial framework of unsupervised representation learning not only
is difficult to train, but requires a lot of data due to the number of parameters
in the model. The methods train on datasets of rather small images, specifically
32x32 for CIFAR-10 dataset [147] and 64x64 for LSUN dataset [148].
Recurrent Network The DRAW (Deep Recurrent Attentive Writer) model
of Gregor et al . [149] use a Recurrent Neural Network and an attention mecha-
nism to generate images. Specifically, the spatial attention mechanism defines
a trajectory of a “brush” which sequentially applies patterns on top of a canvas
to generate an image. In effect, the model uses autoencoder network that uses
Recurrent Neural Network both for the encoder and decoder. Hence, the latent
representation of the autoencoder is in fact a sequence latent values. The model

2.2. Non-parametric Models 47

was evaluated on the datasets of images of size at most 32x32.

2.2 Non-parametric Models
In this section we will review works that consider non-parametric image syn-
thesis. The focus of such approaches tends to be on the local coherence of
the pixel intensities without explicitly modeling the global coherence. The
most basic approaches address the problem of texture synthesis, where a small
image of a texture is used as an input to generate a larger image with the same
texture. Unlike parametric texture synthesis 2.1.5, this section discusses works
that treat the problem of texture synthesis as a non-parametrical distribution
sampling. This approach was also used in such applications as image inpainting,
painting-with-numbers, image morphing, etc.

2.2.1 Non-parametric texture synthesis
The non-parametric texture synthesis was introduced by Efros and Leung [150]
and was inspired by the n-grams method for generating English-like text
proposed by Claude Shannon [151]. The principle was to model the texture as
a Markov Random Field, where each pixel has a square window around the
pixel as its neighborhood. Then, for synthesizing a new pixel, one has to find
a pixel in the source image that has similar neighborhood to the target pixel.
This method is somewhat sensitive to the window size and may suffer in the
regions where the intensities are uniform.

Texture synthesis methods can be used for the image inpainting problems.
Here, the aim is to estimate the pixel intensities in some region such that the
result is coherent with the rest of the image. The basic principle is to fill in the
holes inside the missing region using the boundary pixel values as the constraint.
This approach requires an efficient algorithm for finding the patches that have
good correspondence in the overlapping area.

Wei and Levoy [152] proposed an accelerated algorithm for texture synthesis
that uses multi-resolution synthesis and tree-structured vector quantization
for fast nearnest neighbor matching of patches. Ashikhmin [153] built on the
Wei and Levoy’s algorithm and proposed to exploit spatial relation between
matching pixels and copy chunks of pixels once a suitable pixel match was
found. This idea was later developed by Barnes et al . [154] (see below 2.2.1).

Efros and Freeman proposed “Image Quilting” [155] method that stitches
together small patches of the source image in a consistent way, which resulted
in a more robust and faster method for the texture synthesis and transfer

2.2. Non-parametric Models 48

Figure 2.8: Quilting texture. Square blocks from the input texture are patched
together to synthesize a new texture sample: (a) blocks are chosen randomly,
(b) the blocks overlap and each new block is chosen so as to “agree” with
its neighbors in the region of the overlap, (c) to reduce the blockiness, the
boundary between blocks is computed as a minimum cost path through the
error surface at the overlap. [Source: [155]].

problem. The method starts from the upper left corner and goes through
the target image from left to right in a raster scan order. The first block is
chosen randomly. The next step is to find a patch from the source image that
minimizes the overlap between the previous patches to the left and above. Once
such a patch is found, a minimal cost path through the overlapping area is
computed using dynamic programming. The new patch is copied with respect
to the computed path. Figure 2.8 illustrates the result. Unfortunately, this
approach lacks notion of global coherence, thus, it is not applicable for images
where different regions have different texture, such as faces, buildings, animals,
etc., see Figure 2.9 for an example.

Unlike image quilting that has a predefined window size, a more general ap-
proach was introduced by Kwatra et al . [156], where a graphcut technique [157]
is used to compute seams of the patch regions from the source image and opti-
mize for the new patch location. This framework also enables easier extension
to the higher dimensions and the addition of other constraints.

Recently, the PatchMatch [154] algorithm was proposed to solve this
correspondence problem efficiently. Each pixel in the missing region has a
corresponding index to some patch in the rest of the image. This index map is
initialized at random. First, the algorithm computes the score of how good is
the match by comparing the error across a small patch centered on the pixel

2.2. Non-parametric Models 49

Figure 2.9: (A) Texture synthesis from input exemplar. (B) Generating faces
with the texture synthesis algorithm. The synthesized image lacks global
coherence. [Source: [1]].

Figure 2.10: Phases of the randomized nearest neighbor algorithm of Barnes et
al .: (a) patches initially have random assignments; (b) the blue patch checks
above/green and left/red neighbors to see if they will improve the blue mapping,
propagating good matches; (c) the patch searches randomly for improvements
in concentric neighborhoods. [Source: [154]].

and the corresponding patch from the rest of the image. The next step is
the propagation, which refines the index map by looking at the neighbors of
the good matches in the missing region and the neighboring patches in the
indexed patches. The intuition is that the good matches are likely to have the
spatial neighbors that would also be good matches if indexed in the same region.
Finally, the patches are searched randomly for better matches. Figure 2.10
illustrates these stages.

2.2. Non-parametric Models 50

The PatchMatch was extended to consider rotations and mirroring the
patches in the Generalized PatchMatch algorithm [158]. A novel approach
in combining different textures was introduced in the Image Melding method
by Darabi et al . [159]. Multiple works have developed approximate nearest
neighbor patch search methods to cases of large image datasets [160, 161].

In virtual reality and computer graphics applications there is a problem of
texturing the virtual world. This has resulted in adapting texture synthesis
algorithms to be able to synthesize facades and architectural objects [162,
163, 164, 165]. One of the problems is that the source images have multiple
independent architectural elements such as doors and windows which need to be
reproduced in the synthesized result without stretches and croppings. Typically,
this requires horizontal and vertical coherence of elements. So, extracting valid
structure maps from images [166] or editing elements of the facades in coherence
with the structure [167] are important subproblems of building facade texture
synthesis approaches.

Ying et al . [168] showed how to synthesize texture on 3D surfaces, rather
than 2D planes, thus, dealing with artifacts of conventional texture mapping.
Fang and Hart [169] developed an editing tool called “Textureshop” that al-
lows clever texture transfer with realistic 3D deformations. First, the system
estimates 3D normals of the target image using shape-from-shading technique.
Next, it clusters the normals to create superpixels. The texture synthesis
method is applied to the superpixels with the constraint of consistent neighbor-
hoods. The final image is synthesized by applying patch distortions such as
patch orientation in 3D, displacement mapping from estimated local surfaces
and edge-like feature matching constraint of the texture synthesis.
Enriching Appearance Space One of the artifacts of the patch-based
texture synthesis is the inconsistency on the boundaries and edges which is
caused by insufficient number of matching patches in the source image. Wu and
Yu [170] proposed to use a precomputed feature map as an additional channel
that constrains texture synthesis process. The feature map encodes curvilinear
features and their deformations.

Another application that uses similar principals is so-called “Image analo-
gies” proposed by Hertzmann et al . [171] Here, the input to the algorithm
consists of 3 images: A, A’ and B, where image A’ is a “filtered” or “modified”
version of A. The goal is to synthesize image B’ that has the same relationship
to B as A’ has to A. Figure 2.11 illustrates the problem. The algorithm per-
forms a lookup of a patch in the image B that is the closest in some distance

2.2. Non-parametric Models 51

Figure 2.11: Example of image analogy of Hertzmann et al . The problem is to
compute a new “analogous” image B’ that relates to B in “the same way” as A
relates to A’. Here, A, A’, and B are the inputs to the algorithm, and B’ is the
output. [Source: [171]].

space to some patch in the image A. Given the index, the algorithm retrieves
corresponding pixel from the image A’ into the image B’. This formulation
of the problem allows various applications such as learning the image filters,
super-resolution, texture transfer and texture-by-numbers. Most interesting for
this literature review, is the texture-by-numbers application, best described by
the illustration in Figure 2.12. For texture-by-numbers, the input image A is
made of the sparse colors that describe the general layout of the image. This
enables modification of the layout in the image B. The algorithm produces the
image B’ that is textured similarly to the image A’, but with the layout guided
by the image B.

Diamanti et al . [172] proposed a system that combines texture-by-numbers
and image melding approaches. The system provides high-level image editing,
such as retexturing objects by using user annotations.

Recently, a GPU powered approach was proposed [173] to solve the texture
synthesis problem, where the texture is synthesized pixel by pixel. The approach
synthesizes texture in the coarse-to-fine fashion and works with the index maps
as proxies rather than directly with the pixel values. At each level, the index
map is upsampled from the previous level. Then, the index map is jittered, to
add randomness to the result. Finally, the jittered result is corrected, so that
the pixel’s neighborhoods in the output image are similar to those in the source
image. All these stages can be implemented on the GPU for efficiency, which is
desirable for the graphics applications. Figure 2.13 illustrates the stages of the
algorithm. Later, this approach was refined [174] by encoding the pixel values
in the non-local appearance space, rather than RGB space. This is motivated
by the patch-based texture synthesis methods. In the source image, each pixel
is encoded using RGB values. Then, a 5x5 patch around each pixel is encoded
into a new appearance-space E. This image E has 5x5x3 dimensions. For

2.2. Non-parametric Models 52

Figure 2.12: Example of texture by numbers of Hertzmann et al . The unfiltered
source image A was painted by hand to annotate A’. The unfiltered target
image B was created in a paint program and refined with an interactive editor;
the result is shown in B’. Ordinary texture synthesis cannot reproduce the
terrain in the photograph because it is not stationary: far elements are different
from near elements. The use of the gradient channel in A and B distinguishes
near from far, allowing the photograph to be used for texture-by-numbers.
[Source: [171]].

efficiency and desirable irregularity of the result, the 5x5x3 dimensional space
is projected on 8 dimensional appearance space E ′ using PCA. This new space
is used for the pixel-based texture synthesis. As a result, larger neighborhood
information is indirectly encoded into the local overlapping regions.

Using Aligned Exemplars The appearance space and the three-stage tex-
ture synthesis algorithm were reformulated by Risser et al . [4] for synthesizing
Structured Image Hybrids. Rather than generating a larger image with the
same texture, the image hybrids approach retains the structure of the image
while introducing diversity by mixing together multiple aligned exemplars of
the same visual class. The method works in a coarse-to-fine fashion, with
similar stages to the texture synthesis. The main difference is in the jitter stage,
where instead of introducing x, y coordinate jitter, the method jitters between
the different exemplars as shown in Figure 2.14. This was successfully applied

2.2. Non-parametric Models 53

Figure 2.13: Parallel texture synthesis framework of Lefebvre and Hoppe with
the three stages of the texture synthesis at each pyramid level. [Source: [173]].

on different examples such as jeans, faces, butterflies, etc. See Figure 2.15 for
examples. Notice that multi-scale approaches do have some notion of non-local
coherence, but do not explicitly model the global coherence.

In a similar fashion, Tappen and Liu [175] use SIFT flow to align images
of faces from a database to a target low-resolution image and use the aligned
images as source exemplars to perform hallucination of high-resolution image
details. Although the generated image has novel details, this approach requires
a valid, globally-coherent, low-resolution image as input.

These non-parametric models improve image synthesis through alignment,
however the global coherence of the images is preserved either through the
alignment of the exemplars (Risser et al . [4]) or by smoothly warping images

2.2. Non-parametric Models 54

Figure 2.14: Structure preserving jitter of Risser et al . [Source: [4]].

(a)

(b)

Figure 2.15: An example of synthesizing the structured image hybrids from
Risser et al . [Source: [4]].

2.2. Non-parametric Models 55

to the globally-coherent input image (Tappen and Liu [175]). Hence, these
methods do not explore the synthesis of highly-deformable or non-structured
visual objects, as the alignment of such visual objects is difficult.

2.2.2 Appearance Image and Index Map
In a way, the problem of texture synthesis could be inverted. Assume that the
target image was generated from a small appearance image and an index map
that has the same size as the target image. So, the problem is to estimate
the index map and the appearance image (palette) from the target image or
a collection of images, such that the reconstruction is as accurate as possible.
Jojic et al . proposed the Epitomes approach [176] and the Probabilistic Index
Maps approach [177] to solve this problem. Later, an alternative approach called
Jigsaws was proposed by Kannan et al . [178], with the principle illustrated
in Figure 2.16. These approaches are probabilistic unsupervised methods of
explaining away the target images with index maps and appearance images,
with different constraints on the index maps and appearance images. This
enables accurate estimation of the appearance and the position of image parts
in the image. However, the spatial relation between parts in different images is
not explicitly captured. Moreover, the parts in the appearance image may not
match each other after running the algorithms on multiple images. The long
run-time remains an issue for practical uses of the algorithm. The learned index
maps and the appearance image successfully approximate the data, however,
sampling this model for generating new instances of the visual object was not
explored.

This kind of representation was used for a novel video editing tool [179].
Similarly, the image formation process was modelled as a set of transformations
from the appearance image to the frames of the video. This representation
was termed “unwrap mosaic”. Hence, editing of the appearance image would
propagate the edits to all of the frames of the video. In this work, there is no
constraint on the compression of the appearance image; on the contrary, the
appearance image is usually greater than the size of a video frame. Furthermore,
the 2D transformations are smooth, except for the occlusions. This work relies
on good tracking (optical flow) and cannot be readily applied to a set of images
of different instances of some visual object.

2.2.3 Retrieval and Compositing
Numerous works proposed to expoloit very big image sets. A method that
leverages Big Data was applied to the image inpainting problem [180], where

2.2. Non-parametric Models 56

Figure 2.16: Illustration of the Jigsaws model of Kannan et al . Each image Ii
is generated by copying over pixels from the Jigsaw image J indexed by the
offset map Li. [Source: [178]].

Figure 2.17: Example of scene completion of Hays and Efros. [Source: [180]].

the problem was reposed as identifying images that are likely to have similar
pixel values in the regions that are missing in the input image. This approach
exploits the vast amount of images in the internet. Since the number of images
is in millions, a very basic method for matching images is used. Descriptors that
incorporate gradient and color information are used to find nearest neighbors
to the query image. The missing region is copied from the retrieved images
and blended using Poisson blending. See Figure 2.17 for an example.

The main idea of using big numbers of images has also been exploited
to enhance the look of the computer graphics generated scene [181], modify
objects in an image [182], add objects into a scene from other images [183]
or 3D models [184], create scene collages [185, 186], create photomontages
from the sketches and some text keywords [187, 188, 189], or with the sketches
only [190, 191, 192, 193], etc. Some of these methods use the search results
from Google Images or equivalent image search engines and use the saliency-

2.2. Non-parametric Models 57

based image cues for segmenting out the objects from the images [194]. Other
methods use the labels of polygonally segmented objects provided by databases
such as LabelMe [195]. Furthermore, it is possible to use 3D models to render
new objects into a scene [184, 196]. One of the key components of such systems
is the descriptor that transforms the user’s input into the appropriate query.
While the results look impressive, these methods work on the level of scenes
and cannot synthesize novel examples of the visual objects.

An interesting application of a big database of images was used by Lee et
al . [197] to provide a visual feedback to the user in an interactive fashion, so
that the user can freehand sketch a drawing with a guidance from the system.
The database was compiled by downloading images from Google Images related
to different query words. It is assumed that among retrieved results on average
there are a significant number of images that the user may want to draw,
and the false results are rare. The images were converted to edge maps, each
one subdivided into cells in a grid. Edge-based descriptor was used to match
strokes drawn by the user to the cells in the database. The visual feedback,
so-called “shadow”, is an aligned average of images that have cells corresponding
to the user’s input. Although, the sketches drawn with the help of this system
have more realistic proportions than unassisted drawings, the outputs are only
sketches (grayscale edge images), not realistic color images.

Even when the number of images is not big, it is still possible to query
the images for interactive systems that create photo-montages [198]. Another
approach is to use existing image as a query. For example, Kemelmacher-
Shlizerman et al . [199] use an image of a person A to query a collection of
images for an image of a person B with a similar face pose and expression.
This allows to control a face image of a person B using video input from a
camera. In another work, Kemelmacher-Shlizerman et al . [200] create face
animations that display images from a collection of images of some person by
cross-blending between images. Dale et al . [201] proposed a system of face
puppeteering, where a video sequences of a face talking is used as a target to
a face model; the system computes face pose and expression descriptors for
each frame; then queries source video of another person for frames that have
corresponding face poses; and replaces face region in the original video with the
face from the source video. Yang et al . [202] use collection of face images of the
same person to correct a target image’s expression. This is done by warping
target image so that the expression matches source image from the collection.

2.3. Combining Parameteric and Non-parametric Methods 58

2.3 Combining Parameteric and

Non-parametric Methods
Finally, we will review works that combine the global and the local methods.
These methods work in two steps. First, the global model is used to constrain
the result to have global coherence. To eliminate artifacts inherent to the global
model, such as absence of the high-frequency signal, the second stage searches
for the patches that are close to the global model’s output and are coherent
with the neighboring patches. Then, these patches are blended to produce the
final result.

Mohammed et al . [1] has combined the global and the local models in
“Visio-lization” method for the face synthesis problem. The factor analysis was
used to train a global parametric model for faces. Random samples from this
subspace produce globally-coherent face images, but lack detail (see Figure 2.2).
For the second stage, an approach similar to the image quilting was used
to hallucinate details. The library of images was searched to find patches
that matched low-resolution sample of the global model. Then, these patches
were blended using Poisson image editing approach [203] to produce the final
result. These steps can be seen in Figure 2.19. Results for both the profile and
the frontal face images were shown, although the identity was not preserved.
Mohammed et al . [1] demonstrate various applications of the combined model:
editing faces, changing expressions, changing hairstyle, inpainting, etc.

It is important to note that the global model is necessary to produce
results that have global coherence. Otherwise, the face may change gender,
hair color, etc., as can be seen in Figure 2.18.

Although, Mohammed et al . [1] demonstrate simultaneous synthesis of
frontal and profile views of the face, ensuring the agreement of details between
different views is not explored.

Similar approach was proposed for the face hallucination problem by
Liu et al . [204, 205]. Since the problem is already constrained by the input
low-resolution image, the global model is used to generate upsampled version
of the input. For global model PCA jointly models the low-resolution and
the high-resolution images. In order to reduce artifacts, this global model
preserves a lot of dimensions. To complement for the high-frequency signal,
a Markov Random Field is used to find optimal patches that minimize the
distance between low-frequency signal of the patches and the global model’s
output. The model is illustrated in Figure 2.20.

2.3. Combining Parameteric and Non-parametric Methods 59

Figure 2.18: Generating faces with the local coherence and coordinate con-
straints only. The algorithm blends patches from images of different individuals
which produces results without global coherence. [Source: [1]].

Figure 2.19: Adding the high-frequency signal to the output of the global
parametric model. [Source: [1]].

Figure 2.20: Face hallucination framework by Liu et al . [Source: [204]].

2.4. Summary of Related Work 60

Overall, Liu et al . [204, 205]’s method has similarity to “Visio-lization” [1],
but solves the hallucination problem, rather than synthesis problem. Conse-
quently, sampling of [204, 205] does not generate good face images as compared
to “Visio-lization” in [1].

Mortazavian et al . [206] also combine global and local models to solve face
hallucination problem. They use Morphable Model [49], a 3D global model, to
allow arbitrary rotations of the input image. However, their local model [207]
still operates in 2D space of the unwarped texture map. Their results are
comparable with Liu et al . [204, 205], but allow arbitrary views as input.

Recently, Dessein et al . [208] proposed to combine global and local models
that both operate in 3D space, rather than in 2D space to solve the problem
of super-resolution or detail hallucination of faces. So, Dessein et al . use
Morphable Model [49] as a global model to align the input image with the
library of images. This allows to model faces under arbitrary rotations and
views. Furthermore, the method uses texture patches on a 3D mesh, rather
than 2D image, which allows to use multiple images under different views as
input to the method. Moreover, the resultant 3D model can be rendered in
any pose or view. The generated results in the problem of super-resolution
and texture completion are impressive, especially for low-resolution images of
12 pixels wide (i.e. downsampling factors of 16). However, Dessein et al . use
the global model to align the input image and the library of images, so that
the result is conditioned on observed data, rather than sampling of the global
model to synthesize novel faces.

2.4 Summary of Related Work
We have shown relevant works in the area of synthesizing novel instances of
visual data. The related works were presented in three sections: parametric
models, non-parametric models and combined methods.

For non-parametric models, a wide range of methods was reviewed. Among
them, Image Hybrids formulate interesting approach. Since the number of
input exemplars is very small, the risk of “drifting away” (see Figure 2.18 (B)
and (C)) from plausible output is reduced, as long as the exemplars are close
semantically. In Chapter 3 we propose to specify exemplars of articulate objects
through interactive sketching and extend Image Hybrids synthesis approach to
highly-deformable visual objects through semantic part labelings. Furthermore,
the user interactions in the synthesis process are also consider in the design of
the system.

2.4. Summary of Related Work 61

The parametric approaches were broadly visited, with the analysis of
the advantages and the drawbacks. As previously mentioned, there is no
global parametric model that can reliably model structural changes, occlusions,
severe pose changes and articulations. In Chapter 4, we show that it is
possible to formulate more powerful global model that can cope with structure
inconsistencies by conditioning the pixel intensities on local structural contexts.

The combined methods cannot be readily applied to synthesize images from
datasets of highly-deformable and non-structured visual objects. Firstly, the
parametric models cannot model visual objects with significant deformations,
occlusions, croppings and varying structure as we discuss this issue in Chapter 4.
Secondly, lack of alignment of images implies that the search for a matching
patch cannot be done over a region in each of the images, but rather the
matching patch search has to consider all patches from all images of the dataset.
This is a challenging problem, which is investigated in Chapter 5.

Chapter 3

Interactive Sketch-Driven
Image Synthesis

“All you need to paint is a few tools, a little instruction,
and a vision in your mind.”

—Bob Ross

In this chapter we present an interactive method for composing realistic
images of an object under arbitrary pose and appearance specified by sketching.
Our method draws inspiration from a traditional illustration workflow: The
user first sketches rough “masses” of the object, as ellipses, to define an initial
abstract pose that can then be refined with more detailed contours as desired.
The method is made robust to partial or inaccurate sketches using a reduced-
dimensionality model of pose space learnt from a labelled collection of photos.
Throughout the composition process, interactive visual feedback is provided to
guide the user. Finally, the user’s partial or complete sketch, complemented
with appearance requirements, is used to constrain the automatic synthesis of
a novel, high-quality, realistic image. We evaluate our method with two user
studies.

3.1 Introduction
Suppose you would like to create a realistic image of an animal – a horse, for
example. You can imagine the horse’s pose and appearance in your mind’s
eye, but how can you translate that vision to an image? Painting realistic
images with correct proportion, pose and color requires training and talent that
most of us lack. Thanks to Google and other search providers, it has become
easier for novices to search the internet for images of a given object category
using keyword search. But finding examples in a particular pose or relationship

3.1. Introduction 63

User
Draws
Masses

Visual
Feedback

User
Draws
Contour

Visual
Feedback

User’s
Final
Sketch

User
Selects
Appearance

Preview
of the
Final Render

Final
Renderings

Figure 3.1: Our interactive method guides a user to specify pose and appearance
using sketching in order to synthesize novel images from a labeled collection of
training images. The user first sketches elliptical “masses” (top), then contours
(middle), mimicking a traditional sketching workflow. Once the pose is specified,
the artist can constrain the appearance and render a novel image (bottom). In
each section the top row are user sketch input and feedback guidelines; and the
bottom row are rendered previews.

3.1. Introduction 64

to the camera requires searching through pages and pages of search results.
Furthermore, it is possible that no single image matches what you originally
imagined: perhaps, one image almost has the correct pose, another has details
you like, and a third has the color you had in mind. Combining and modifying
these images to produce the one matching your goal is very involved, even with
state-of-the-art image editing software.

In this chapter we present an end-to-end method that enables users to
interactively sketch and synthesize novel images, given a database of labelled
images. When designing a method for controlling image synthesis, a critical
challenge is defining user interactions that are meaningful to a human, but also
express appropriate constraints on the synthesis. To address this challenge,
we draw inspiration from the strategies employed by figure drawing artists: it
is common for such artists to begin by sketching the rough body proportions
using overlapping ellipses or other simple abstract shapes, often called masses.
Once the masses are sketched as desired, the artist can go on to add contours,
shading and finer details of the figure. While this serves as a useful starting
point, it is not sufficient to serve non-expert artists: We cannot expect a
casual user to produce a sketch that resembles a realistic image as input to
a synthesis engine without assistance. Therefore, the method must guide the
user in an exploration of the synthesis space rather than simply optimizing a
set of pre-defined constraints.

More concretely, we propose that a sketch-driven image synthesis method
must meet four intertwined design principles: First, it must be responsive,
providing results rapidly enough for a user to iteratively refine her mental
concept. Second, it must be exploratory, guiding the user through the space
of possible syntheses with meaningful feedback. Third, it must be robust
to missing data, providing meaningful feedback in the face of incompletely
specified constraints. And fourth, the interactions should be as fluid as possible
– preferring sketch gestures over menu or label selections.

These principles have driven all of the design choices for our method: In
the initial “mass” phase we support freehand sketching of new masses. Our
method supports traditional “overdraw” to adjust these masses after their initial
placement, but we also provide direct manipulation of mass ellipses. A preview
is shown at all phases, which increases in specificity and concreteness as the
constraints are refined. The preview is updated after each sketch gesture, rather
than waiting until the sketch is complete. In early stages this takes the form of
blended images from the database, giving a visual representation of the local

3.1. Introduction 65

space that meets the constraints specified thus far.

We also provide feedback in the form of shadowed lines underneath the
user’s sketch. These shadows suggest, first, suitable ellipse locations and, second,
valid object contours. The recommendations are derived from a probabilistic
model of the labeled body-parts in the image database and help an untrained
user to draw masses and contours in appropriate layouts for each object. We
adapt existing techniques to synthesize a final image that is consistent with
the user’s sketch.

The masses in our method are used for two purposes: they serve as a proxy
for specifying pose and they are used to guide the final synthesis stage.

Artists use a variety of geometric primitives as masses: The human pelvis
is often represented with a cuboid, and arms with cylinders. Human faces
can be represented using ellipsoids sectioned at various ratios along their axes
(similarly to reference lines in [209]). Although our method could be augmented
to support numerous primitives, we focused our initial efforts on a single one –
the ellipsoid. Even though it is not commonly used in sketching humans, this
primitive is flexible enough to sketch a variety of walking and flying animals,
and thus our datasets span such animals. Incorporation of other common
parametric primitives such as rectangles, conics or generalized cylinders [210]
is left as future work.

To our knowledge, ours is the first image synthesis method that interleaves
sketched constraints and preview synthesis. We argue that this interaction
modality facilitates joint human-computer exploration of a space of synthesized
images, and is thus the foremost contribution of our work.

In addition, we apply machine learning techniques to learn a low-
dimensional manifold from the data that models the joint configuration of
masses and the contour shape of objects, a highly complex relationship that
could not be specified using a heuristic approach. We bring together appropri-
ate representations for the masses (Stokes parameters [211]) and the contours
(elliptical Fourier coefficients [212]) to ensure that the manifold interpolations
are plausible even when using relatively few input samples, unlike Shadow-
Draw [197] which requires a dense sampling of each sketch configuration space.
For the final synthesis stage, we adapt the Image Melding algorithm [159] by
using additional guiding layers corresponding to each distinct body part and
the silhouette.

3.2. Related Work 66

3.2 Related Work
Some existing systems, such as Sketch2Photo [188] and Johnson et al . [187],
have merged retrieval and synthesis into unified systems. Both allow a user to
sketch a query combining text, images, and/or outlines; retrieve matches from
the internet or a local database; and compose a new image using the retrieved
elements. Goldberg et al . [182] use the Sketch2Photo framework to allow
object-level manipulation in images using online images queried by the user’s
keywords and segmentations. They propose novel deformation and alignment
techniques to achieve high-quality results. However, neither method is targeted
for interactive use: Johnson et al . report 15 to 45 seconds per composition,
Tao et al . report 15 minutes for each object retrieval and another 5 minutes
for composition; and Goldberg et al . report 10 minites for object retrieval.
We posit that a more interactive system is critically important for creative
processes, allowing users to quickly explore the space of possible outcomes.

Photo clip-art [183] and Photosketcher [190] are two other systems that are
designed for interactivity. Photosketcher, in particular, uses sketches as input.
Similarly to Photosketcher, Sketch2Scene [184] uses user sketches to retrieve
and place 3D models to assist the user in the 3D scene modeling from a dataset
of 3D models. However, like the other methods, these systems compose the final
output using only one image or 3D model per object rather than synthesizing
new objects using combinations of retrieved images. Furthermore, none of these
previous approaches provide a mechanism for detailed pose specification.

Recently, the PoseShop [189] system proposed using online image search to
construct a segmented human image database with pose and semantic action
descriptions. PoseShop queries the database with a sketch or skeleton, allowing
a composition of personalized images and multi-frame comic strips by swapping
the head and clothes to the user’s specifications. This system does compose
novel images, but does not provide interpolation between poses and uses only
one database image for each output.

Other recent works blend elements from a collection of related images.
For example, Mohammed et al . [1] learn a global parameterized model of
frontal face images, and constrain a patch-based texture synthesis algorithm
using a sample from this model. Risser et al . [4] demonstrated a hierarchical
pixel-based texture synthesis algorithm that generates novel image hybrids
by jittering exemplar coordinates instead of spatial coordinates in order to
preserve structures. However, neither of these methods supports pose variation

3.3. Sketch Interaction 67

or provides direct user control of the synthesized result. The PatchNet method
combines multiple input images for each output, taking into consideration
contextual relations between parts [161]. However, it was only demonstrated
for scene composition rather than object posing, as it does not incorporate an
explicit model of pose. Recently, Darabi et al . [159] demonstrated a patch-based
method called “image melding” to smoothly interpolate textures and colors
across images. Our synthesis engine builds on the image melding framework
with additional control channels, as in image analogies [171].

In the domain of drawing assistance, Lee et al . recently proposed a system
that allows freeform drawing of objects [197]. As the user adds strokes, the
system interactively provides shadow-like hints of where the next stroke should
be. The system does not have any prior knowledge about the object that the
user is drawing, so the shadows are constructed by blending relevant edge-maps
from a large database queried using local edge patch descriptors. Sketch-Sketch
Revolution [213] allows novice users to learn to replicate strokes of an expert
artist by following guidance and feedback of the system in a step-by-step tutorial,
which was previously created by an expert artist. The iCanDraw? [209] system
assists users by generating corrective feedback extracted from a reference image.
Similarly, The Drawing Assistant [214] automatically extracts “block in” visual
guides from a single reference image and provides corrective feedback to the
user. Sketches produced with the help of these systems have more realistic
proportions than unassisted drawings, but the outputs are only contour sketches,
not realistic images. Inspired by these systems, we strive to utilize sketch inputs
to produce plausible realistic image outputs, restricting our attention to the
case in which the class of object is known in advance.

3.3 Sketch Interaction
One traditional sketching method is to first draw the outline of the subject
using primitive shapes likes ellipses, circles, squares, etc. [215, 216, 217, 218].
At this stage only the gross relationships of body parts are specified, and the
simplicity of the shapes makes it possible to adjust and iterate quickly. It is
important that these shapes are very basic, allowing the artist to define the
correct proportions between parts of the object without focusing attention
on small scale details. Once the rough outline of the object is set, the artist
can add finer details. Beyond this point, the masses act as an anchor for the
drawing so that the artist can focus on local details without breaking proportion
or symmetry. An example of this approach is given in Figure 3.2, showing an

3.3. Sketch Interaction 68

artist using masses to sketch a horse and a pigeon. Our goal is to mimic this
approach by providing visual feedback that can guide the user in adjusting
masses and defining strokes.

Figure 3.2: Sketching a pigeon and a horse by hand using masses. The artist
starts by drawing in the masses for the body parts in the correct proportions
before continuing to fill in the contours and then any final details, such as
shading.

We argue that the use of elliptical masses is a more effective tool for
specifying gross shape than either contours or “skeletons.” Contours contain
both small and large scale detail, and it is typically difficult for a novice user
to focus on both scales at the same time as they trace an outline. Skeletons or
“bones” are an appealing alternative due to their ubiquitous use in 3D computer
graphics. However, whereas a line can express only (2D) length and angle of a
body part, an ellipse can also express its apparent thickness.

3.3. Sketch Interaction 69

Perhaps more importantly, novice users are not necessarily good at evalu-
ating the proper location of “bones” within a figure. For example, in Figure 3.3,
where would you draw a straight line specifying the location of the neck (cervical
vertebrae)? Most people without veterinary training will be surprised to see
that when a horse’s head is raised, the neck vertebrae of a horse are closer to
the front of the neck at its base, but closer to the back of the neck at its apex.
In contrast, elliptical masses require no knowledge of internal anatomy, and
they form a visual guide for the subsequent stage of contour sketching, since
the contours often follow close to the mass edges.

Figure 3.3: A cross-section of a horse showing that the location of bones is
unintuitive: Many people are surprised that the neck vertebrae are closer to the
front of the neck when a horse’s head is raised. (By courtesy of Encyclopaedia
Britannica, Inc., copyright 1998; used with permission.)

3.3.1 User Interaction
Our system’s window shows two panels at all times: On the left, the sketch
panel shows the user’s sketched strokes, as well as semi-transparent guidelines
suggesting possible stroke locations. On the right, the preview panel visualizes
the space of possible output images, given the sketch progress thus far. Since
the outcomes are increasingly constrained throughout the sketching process,
the contents of both panes are constructed differently at various stages. The

3.3. Sketch Interaction 70

entire workflow is given in detail below, with descriptions of the panel contents
seen at each stage.
Initial State The user is first shown an abstract overview of the range of
pose and appearance of the target object. The sketch panel shows guidelines
for the elliptical masses, indicating this is the first step in the sketching process.
Since the range of masses can overlap a lot, the guidelines for each part are
shown using a different color to improve visibility and comprehension. They
are slightly blurry, to emphasize that they are only loose constraints: The user
can sketch anywhere, but results are best when the sketches are close to the
range of real object variation. The preview panel is empty, since the output is
totally unconstrained at this stage.
Drawing Ellipses The user paints strokes in the sketch panel (in grey). After
each stroke, the sketch panel shows ellipses (with the color of the estimated
part) fitted to the strokes. The guidelines are updated to show plausible
mass configurations similar to the user’s sketched masses. The preview panel
shows corresponding nearest-neighbor images, blended together using simple
averaging, giving a ghosted view of possible outcomes (we call this “Fast NN
Preview”).
Mass Adjustment The user can adjust existing masses in two ways: Those
familiar with traditional sketching may prefer “oversketching,” simply drawing
over the previous strokes to replace them. However, novice artists may prefer to
adjust the mass ellipses using an object-oriented approach. For these users we
provide an adjustment mode in which the ellipses can be directly manipulated:
Colored handles appear on the major and minor axes of each ellipse in the
sketch view. Dragging the center handle translates the corresponding ellipse,
and dragging the axis handles rotates and/or scales it about the center. The
preview panel is constructed in the same way as the previous paragraph.
Drawing Contours In this mode, the sketch panel shows faded contours
of real images similar to the user’s sketch, much like ShadowDraw [197], but
interpolated using our manifold model.
Editing Appearance The previews described in the previous paragraph
blend together multiple input exemplars, and can thus obscure specific appear-
ance details such as color and lighting. To address this, we also provide an
appearance selection mode in which the preview window switches to a grid of
color palettes computed from the database exemplars that are near-matches to
the current sketch. The user may click on one of these palettes to constrain the
output appearance, and then return to sketching. The preview panel now shows

3.3. Sketch Interaction 71

Figure 3.4: Our system’s interface. The left panel is the user’s drawing canvas,
where the shadow feedback is shown. The right panel shows the fast nearest-
neighbor preview.

a fast low-fidelity synthesis result aligning the images to match the sketched
contour.
Final Synthesis When the artist is satisfied with the constraints and preview
render, she can request a final rendering, which may take 3-4 minutes depending
on the resolution of the images in the dataset. We use the user specified contour
and the ellipses to guide the synthesis process, as this additional information
helps the system deform the images of the dataset before blending them
together.

Although we present the steps above in their logical sequence, the system
does not require a strict linear progression through these stages: The modes
can be revisited in any desired order. The artist may choose to constrain color
before pose, or return to mass adjustment after drawing part or all of the object
contour. Furthermore, the user can select appropriate visual feedback for each
of the interactions.

Reflecting back on the four design principles proposed in section 3.1: Our
system is responsive, as both panels are updated after every user stroke. It is
exploratory, because it attempts to illustrate at each stage the span of plausible
outcomes given the current sketch. It is robust, by virtue of providing this
feedback after a single user stroke, or hundreds. And it is fluid, utilizing
hand-drawn strokes wherever possible; discrete menu or tool selections are
required at only a few moments in a typical interaction. Figure 3.1 illustrates

3.4. Implementation 72

some stages from our workflow, and Figure 3.4 shows our system GUI running
on the pigeon dataset. Please see Appendix B for screenshots of our system
GUI with different visual feedbacks in Figures B.1 to B.7.

3.4 Implementation
In this section we describe details of the technical approach taken to provide
the interactive workflow of the previous section. The most significant challenge
is to provide a joint model of object pose, contour, and appearance space that
a user can explore continuously and freely, within the constraints of plausible
image synthesis. In addition, the system design is made more challenging by the
requirement that everything must run at interactive rates, with the exception
of the final image synthesis.

We propose an image melding [159] approach to synthesize novel images
of a particular object: Our method combines multiple images of similar objects
under similar poses to produce a final image in a specific pose. To allow for
a wide range of poses and appearances of a particular object, we require a
database of images containing differing poses and appearances. The prevalence
of online image search and image libraries renders such an image database
straightforward to obtain.

Once we have a collection of images to use for synthesis, we must consider
how to address the fundamental requirements of our interactive workflow:

1. How do we identify reasonable configurations of masses to guide the user
when specifying pose?

2. How do we identify feasible object contours given the pose of the object
that will allow for accurate synthesis?

3. How can we inform the user of the possible variation in appearances of
the object?

4. How do we select appropriate images to use to synthesize this specific
pose and appearance?

We adopt a single methodology to deal with all of these questions; we make use
of machine learning approaches to model the joint relationships of mass pose,
object contour, and the training images (which encode object appearance) in
a unified probabilistic framework. More specifically, we optimize, within the
high-dimensional joint space of mass poses and contours, a low-dimensional
manifold that contains all of the database images.

3.4. Implementation 73

Using appropriate parameterizations, we can move continuously within the
manifold, and smoothly interpolate the masses and contours between training
images in order to generate valid novel poses. A location on the manifold
identifies a specific pose, and the nearest neighboring database images in the
manifold are good candidates for image synthesis. In addition to answering the
above questions, the probabilistic nature of the model also allows us to handle
image synthesis in the presence of incomplete information, i.e. missing masses
or contours, affording our method a degree of robustness.

In order to train the model, we have to provide labeled data to associate
the poses of each mass and the contours with each image in our database.
This consists of segmenting each image into a set of body parts. From this
segmentation we may fit a set of ellipses (as the object masses) and find the
contour of the object.

Given this framework for feedback and synthesis, we must also consider
the user input. User scribbles are interpreted as editable masses, allocated
to specific body-parts, and the contour and appearance constraints must be
specified. We now visit each specific component in further detail.

3.4.1 Training Data

(a) (b) (c) (d)

Figure 3.5: Example of training image segmentation. (a) The input image
is segmented from the background then (b) split into its constituent parts to
allow (c) ellipse fitting to represent the masses. (d) The contour of the complete
silhouette and the alignment key points are then automatically extracted.

We require a collection of images (dataset), containing a single class of
objects, where the object of interest is segmented from the background. For
each object, we define a model describing how the object is divided into masses.
For example, a horse can consist of head, neck, torso, tail, left and right forelegs
and hind legs.

So, we have compiled four datasets:

• We have purchased a photomontage of cats captured on a white back-
ground by professional photographer. The photomontage has 392 images

3.4. Implementation 74

of Cats. The license does not allow sharing of the photomontage, so we
can only publicly show derived results. The images were segmented from
the white background and manually labeled. The labels are: head, torso,
tail and 4 legs.

• We downloaded 281 images of Elephants from internet, manually seg-
mented them, and labeled with following labels: head, torso, 4 legs,
trunk.

• We downloaded 270 images of Pigeons from internet, manually segmented
them, and labeled with following labels: head, neck, torso, wing, 2 legs,
tail.

• We have labeled 328 images of Weizmann horse database [219, 220, 221]
that already has segmentation masks. The labels are: head, neck, torso, 4
legs, tail. We removed duplicates and images with severe visual artifacts
to a reduced set of 295 images.

All images were flipped, so that the animal is looking in the front to left
direction. Examples are shown in the Appendix A. We labeled each image
by assigning each pixel to the relevant part of the object model. We then
extract masses by fitting ellipses to the boundaries of each of the labeled parts.
We chose ellipses to represent masses because they are popular among artists
[218, 215], it is possible to fit them to curves efficiently [222], and their shape
is general enough to approximate many body parts. We note that any other
shape with low-dimensional parameterization may be readily substituted in our
method.

3.4.2 Joint Manifold
This subsection on the Joint Manifold was implemented by Neill Campbell. It
is mentioned here as it is a critical part of the method.

To produce good synthesis results, we must ensure that the training images
and the user-specified ellipses and contours are compatible. For example, the
head of a horse cannot be placed on the far end of its tail. To achieve this, we
provide feedback to users during sketching. This requires a statistical model of
the joint space of ellipses and contours covered by our training data. Such a
model can estimate the likelihood of a particular arrangement of masses and
contours; this is then used as a measure of how readily such a configuration
may be reproduced from the training data.

3.4. Implementation 75

We require that the model be sufficiently powerful to represent the complex
interactions between the ellipses and the contour, a multi-modal distribution,
and also allow for fast inference queries to be performed at interactive rates.
We achieve both of these goals by representing the contours with elliptical
Fourier coefficients [212] and modeling the joint manifold of the ellipses and
contours using a Gaussian Process Latent Variable Model (GP-LVM) [36]. We
now discuss each of these components in further detail.

Representation In order to interpolate smoothly between contours in dif-
ferent training images, our method needs a continuous representation of the
contour. However, the silhouette contours obtained from the segmented training
images are not registered to one another with a dense correspondence. In any
case, silhouettes from different viewpoints cannot be placed in a meaningful
correspondence; for example, the front legs of a horse may appear separately or
on top of one another. Inspired by the work of Prisacariu and Reid [223], we
represent closed contours using elliptical Fourier coefficients [212], which can
smoothly interpolate between the silhouettes of objects such as people, cars,
and animals. Whereas Prisacariu and Reid used these silhouettes as a shape
prior for segmentation and tracking, we will use it as a shape prior for image
synthesis.

Fourier contour representations must be phase-aligned (i.e. a common
starting point and parameterization) to achieve good interpolation [223]. We
achieved high-quality interpolation by aligning a series of key points distributed
over the length of the contour. This corresponds to resampling the contour
such that there is a fixed number of samples between each key point. We
compute a sparse set of key points on the contour using the labeled parts in
an automatic fashion; for example, a point that lies on the leg and is farthest
from the torso, and a point on the torso that is closest to the tail. These key
points were chosen to be empirically consistent between different poses and
mass configurations. For the horse dataset, we use five key points as shown in
Figure 3.5(d).

The general parametric form of an ellipse is expressed by 5 values[
xc, yc, a, b, φ

]
: the x-axis and y-axis coordinates of the center of the ellipse,

the length of the major and minor axii and the angle between the x-axis and
the major axis, respectively. Here, φ is in the range [0, 2π]. However, we require
a smooth representation for the set of ellipses for each training image. We

3.4. Implementation 76

Lower Variance: More likely silhouette

Figure 3.6: A 2D joint manifold of ellipses and contours learnt for the elephant
dataset. Each point represents a configuration in pose space, and the color
indicates the variance of the embedding in the latent space. Regions with a low
variance are higher probability in the pose space. The location of the original
training images are shown as grey dots.

achieve this using Stokes parameters [211] that are defined as

[
xc, yc, a

2 + b2, (a2 − b2)cos(2φ), (a2 − b2)sin(2φ)
]
. (3.1)

Manifold Given the continuous representation, it is possible to interpolate
between similar training images to generate new pose configurations of ellipses
and contours. However, we cannot, in general, interpolate linearly in the space
of Stokes and Fourier coefficients. Instead, we find a low-dimensional manifold
in the joint space of ellipses and contours that contains the training image
configurations, using a Gaussian process latent variable model [36]. We use

3.4. Implementation 77

Lower&Variance:&More&likely&silhoue4e&

Figure 3.7: A 2D joint manifold of ellipses and contours learnt for the pigeon
dataset. Each point represents a configuration in pose space, and the color
indicates the variance of the embedding in the latent space. Regions with a low
variance are higher probability in the pose space. The location of the original
training images are shown as grey dots.

radial basis function to compute distances between data points in the latent
space. In cases where body parts are occluded we will be missing some ellipses;
hence, we employ the method of Navaratnam et al . [224] to train a GP-LVM
joint manifold model with missing data.

The probabilistic nature of the GP-LVM model allows us to interpret the
variance of the embedding in the low-dimensional latent space as the likelihood
of a pose given the training data. Figures 3.6 and 3.7 show an example of the
manifold learnt for a set of images of elephants and pigeons, respectively. The
coloring of the manifold shows the variance of the ellipses and contours that
would be estimated at that point. Hence, areas with a low variance (shown

3.4. Implementation 78

as blue in Figures 3.6 and 3.7) are more likely to produce good results under
image melding from the local neighboring training images (shown as grey dots
on the manifold). The best dimensionality of the manifold depends on the
training data. We experimented with different dimensionalities of the manifold
and found that 2 and 3 dimensional manifolds generate best interpolations for
our datasets, for simplicity we used 2D manifolds.

3.4.2.1 Ellipse and Silhouette Queries
We now provide details of how to provide the shadowed ellipses and contours
used during the interactive sketching process. We first consider how to identify
plausible locations for the remaining ellipses, given that the user has already
drawn one or more of the masses. We then consider how to identify reasonable
object contours given a set of masses and partially sketched contour fragments.
Whilst both these approaches are used to provide visual guidance to the user
sketching process, they can also be used to fill in incomplete data for the final
synthesis (e.g . if the user has missed some of the masses or drawn an incomplete
contour).

Ellipse Manifold Queries We define a cost function based on the difference
between the query ellipses – which may be partially specified – and a sampled set
of ellipses from the latent space; we use the L-1 norm in the Stokes parameter
space. Since we cannot evaluate analytic gradients, we must perform this
optimization using point estimates from the latent space (in a similar fashion
to Navaratnam et al . [224]). The joint cost is multi-modal, so we start from a
set of initialization points that span the latent space. This optimization can be
performed rapidly, since the dimensionality of the latent space is so low and
the ellipse cost function is very cheap to compute. We run the query, starting
with around 60 initialization points (found by clustering the latent space points
corresponding to the training images using k-means), in less than half a second
with a two-dimensional latent space. Hence, the response to each query involves
local optimizations with multiple starting points.

Figure 3.8 shows an example set of query ellipses and the six most probable
modes, both as points on the manifold and in the form of the ellipses and
contours. We also demonstrate that the training images with locations in the
manifold closest to the mode have similar ellipse and contour layouts and are
thus suitable to be used as source images in the synthesis stage.

In addition to the cost of each mode, which encodes how well the ellipses
of the mode match the query, the manifold also returns a variance. This

3.4. Implementation 79

Query	
 Ellipses	
 Modes	
 on	
 Manifold	
 Modes	
 as	
 Ellipses	
 and	
 Contours	

Example	
 Mode	
 Nearest	
 Neighbor	
 Training	
 Images	
 on	
 Manifold	

Figure 3.8: Upper left: a set of user-specified ellipses (shown in blue) is used
for a search over pose space (heat map, upper middle). Upper right: the
modes of the distribution are shown in red over the original user specification
in blue. Bottom: we show the three training images that are closest in the
latent manifold space to the mode marked as a purple dot.

specifies how likely the configuration is under the training data and may be
used to threshold the results to prevent unlikely ellipse configurations being
presented to the user. In addition to the variance threshold, we constrain the
returned ellipse parameters configurations such that ellipses that correspond to
the existing ellipses sketched by the user are within a certain threshold. More
information on the cost and variance is provided for the silhouette query in the
following paragraph and in Figure 3.9, but the discussion is equally valid for
the ellipse queries.

Contour Manifold Queries Figure 3.8 demonstrates the multi-modal nature
of the distribution of the contours with respect to the ellipses. In order to
specify a particular silhouette, we allow the user to sketch parts of the contour.
Just as we did above for an ellipse query, we define a distance function between
the contour of a point on the manifold and user sketches: we use the chamfer
distance [225] between the user sketch and the contour under a truncated-
quadratic cost function. Since the cost function is truncated, the query results

3.4. Implementation 80

Lower	
 Cost:	
 Be,er	
 match	
 to	
 user	
 sketch	

Lo
w
er
	
 V
ar
ia
nc
e:
	
 M

or
e	

lik
el
y	

sil
ho

ue
,
e	

Modes	
 under	
 joint	
 	

probability	
 manifold	

Es?mated	
 silhoue,e	

Input	

User	
 sketch	

Figure 3.9: The result of a user drawn contour fragment query on the joint
manifold for the horse images. The user has drawn three sketches, shown in
blue that are used to define the query. The query returns the modes of the
likelihood distribution over the joint manifold conditioned on the user query.
Each result has a cost and variance associated with it, the two axes used to plot
the modes in the figure. The modes with lower costs correspond to silhouette
that match the user sketch more closely and the modes with lower variance
represent silhouettes that are more representative of the training data and thus
should produce better results from image melding. Examples of the estimated
silhouettes and ellipses associated with some of the modes are provided.

should be robust against incomplete and outlier sketches that the user may
draw.

This defines the similarity between the user sketches and a point on the
manifold. We then perform a set of optimizations (as described above for
ellipses) to find the modes in the manifold. Since the contour function is more
expensive to compute, we accelerate the search by using the modes of the ellipse
query as the initializations. These queries typically take around half a second.

3.4. Implementation 81

3.4.3 Sketching Masses and Contours

In the first stage of sketch interaction, we ask the user to scribble some or
all of the masses. The ellipses that represent masses can be manipulated by
dragging control points, but in order to make the user interface more intuitive,
we also allow freeform drawing of masses, and fit the freeform strokes to a set
of parameterized ellipses.

The user can sketch ellipses using one or many strokes, specifying ellipses
either partially or completely. To solve this problem, the system assigns each
stroke to one ellipse, and each ellipse is fitted to all of its assigned strokes. As
the user inputs a new stroke, the system computes the cost for each of the
ellipses of the current set of ellipses

cost(i) =
1

||{S? ∪ Sεi}||
∑

Sk∈{S?∪Sεi}

∑

p∈Sk

dist (p, ε?i) , (3.2)

where S? is the new stroke, Sk is the k-th stroke of the user, Sεi is the set
of strokes assigned to ellipse i, p is a point of the stroke Sk, ε?i is the ellipse
that was fitted to {S? ∪ Sεi} and dist (p, ε?i) is the distance from point p to the
ellipse ε?i .

This cost computes the average of the distances between the strokes that
were assigned to the ellipse and the corresponding fitted ellipse. If the new
ellipse stroke does not fit any of the previous fitted ellipses (the average distance
is more than 40 pixels for each of the ellipses of the current set of fitted ellipses),
the system creates a new ellipse. Otherwise, the new stroke is assigned to the
best matching ellipse from the current set of fitted ellipses. This approach also
allows the user to erase incorrect strokes and change ellipses by drawing over
the top of existing ellipses. As long as the “overdrawn” strokes are nearby, the
ellipse will fit all of the assigned strokes.

Having obtained a set of ellipses, we need to identify the corresponding
body part label for each ellipse. This is performed automatically in two steps.
First, we find the set of ellipses from the images of the dataset that are closest
to the user’s ellipses, by minimizing

i∗ = arg min
i

∑

k

min
j∈P

∑

p∈εk

dist (p, εi,j) , (3.3)

where εi,j is the ellipse fitted into the body part j of the labeled image i, and
P is the set of body-parts, p is a point of ellipse εk, εk is the k-th ellipse fitted

3.4. Implementation 82

to the user’s scribbles, and dist (p, εi,j) is the distance from point p to the
ellipse εi,j. As the number of parts in P is low (∼ 10) we can find the solution
with an exhaustive search.

We then obtain the part label for each of the user’s ellipses

j∗ = arg min
j

∑

p∈εk

dist (p, εi∗,j) . (3.4)

Once we assign a label j∗ to ellipse εk, we remove j∗ from the set of possible
labels to ensure a unique assignment. We allow the user to override the
assigned labels if desired. The operations above can be computed efficiently by
precomputing chamfer distances [225] for the training images in the dataset
and reducing the resolution of the query ellipses.

The proposed ellipse and label assignment proved to be robust and efficient,
allowing us to fit ellipses to the user strokes and to infer their labels as the user
adds new strokes to further define the pose of the object.

When the user is satisfied with the gross arrangement of masses, she can
switch to contour mode. In this mode, successive pen strokes specify the
boundary of the final synthesized object. Similarly to drawing the ellipses,
multiple partial strokes are supported and previous strokes may be erased.

3.4.4 Appearance Constraints and Synthesis
Using the user’s fully or partially specified pose, we can retrieve multiple
training images that have similar poses. We do this by finding modes on the
manifold that match the ellipses and contours with a low cost and low variance
and by taking the nearest neighboring training images, see Figure 3.8. Within
this set of neighboring images, we can identify the range of possible appearances
available in our dataset, for this specific pose, to use for image synthesis. We
present color palettes computed from exemplars of the possible appearances
to the user and allow them to select the most appropriate (see right side of
Figure 3.1).

The data-driven nature of our algorithm means that we rely on the ap-
pearance variation in the training images to produce the appropriate variation
during image synthesis.
Features The specified masses, contour strokes and appearance constraints,
together with the inferred masses and contours, can be converted into features
that guide the synthesis process. In addition to CIE Lab color channels, we
have a feature channel per ellipse and another computed from the contour. The

3.4. Implementation 83

User	
 contour	
 User	
 ellipses	

Ellipse	
 features	
 Contour	
 feature	

Source	
 images	

(a)	

 (b)	

 (c)	

Blending	
 weights	

(d)	

Synthesized	
 result	

(e)	

Figure 3.10: Example synthesis result. (a) The ellipse configuration is used to
produce a set of features (one channel per ellipse) that are combined with (b) the
feature channel from the contour and (c) the CIE Lab channels of the nearest
neighbor source images as an input to synthesis. (d) The blending weights for
each image are computed from blurred distances between the source image
feature channels and the target feature channels. (e) The synthesized result.

additional channels allow semantically meaningful synthesis.

Each ellipse feature channel is a truncated signed distance to the nearest
point of the boundary of the ellipse, and the contour feature channel is a
truncated signed distance to the nearest point of the contour. If the contour
provided by the user is not closed, we estimate the most likely contour using
the GP-LVM manifold. The feature channels are also computed for the nearest
neighbor source images of the dataset and for the target image under the
appearance constraints. Figure 3.10(a-b) provides examples of these feature

3.5. Synthesis Results 84

channels.
Synthesis Synthesis of the target image is done using the image melding
framework [159], using the feature channels as guiding layers, as in Image
Analogies [171]. For efficiency we use, but are not limited to, the two nearest
neighbor images that are closest to the user’s specifications on the GP-LVM
manifold. To ensure high contrast along the contour, we double the weight of
the contour feature with respect to the other features. At the coarsest scale of
the image pyramid, we initialize the target image by computing the nearest
neighbor patch correspondences using only the feature channels. Subsequent
iterations use both feature channels and color channels.

At each successive scale, we compute a correspondence map from each of the
source images to the target image. The target image is reconstructed using the
patches of the source images according to this map and using the reconstruction
costs for each source to compute blend weights; see Figure 3.10(d).

Figure 3.10(e) shows an example synthesis result from two source images.
Given the large number of feature channels, the synthesis step takes around 4
minutes to perform at all scales. Thus, during the user interaction, we do not
perform the synthesis up to full resolution. Instead, we produce an approximate
synthesis at low-resolution, and upsample the resulting nearest neighbor field
to full resolution. This enables our method to efficiently synthesize a full
resolution “preview” image using high-resolution patches at interactive rates
(about 3 seconds for an image). Although this produces some artifacts due to
upsampling, the resulting preview is a reasonable proxy for the appearance of
the final synthesis.

3.5 Synthesis Results
We have compiled 4 datasets: horses, pigeons, elephants and cats. The horse
dataset was compiled using 295 images and segmentations of the Weizmann
horse dataset [219, 220, 221]. We also collected images of pigeons (270 images)
and elephants (275 images) from the internet and manually segmented the
images. We have acquired a single photocollage of 390 cats on the white
background captured by professional photographer. All the datasets were
hand-labelled into corresponding parts. Since the labeling does not have to be
perfect, each image can be labelled in about 4 minutes. Each of the images in
the dataset was rescaled, cropped and segmented from the background. The
scaling was chosen such that the area of the torso matches in each image.

Figure 3.11 shows some results created with our method along with the

3.5. Synthesis Results 85

Figure 3.11: Synthesis results for the horses, elephants, cats and pigeons
datasets, with sketched masses and contours. Each image is a combination
of training images, not simply the most similar image from a database. Note
the quality of the results and their agreement with the specified masses and
contours, in spite of the relatively small database sizes. At top right, the
user ignored the shadow suggestions and drew a contour for the horse that
is inconsistent with the masses for the front legs: This results in a synthesis
failure due to incompatible constraints. See Appendix C for high-resolution
images of the results and images of the nearest neighbor images used for the
image synthesis.

user-drawn masses and contours that produced them. Each sketch took only
about 2 minutes to draw. The synthesized images appear realistic and follow the
user’s constraints closely. Notice that the method allows results to be produced
over a wide range of poses. Please see the Appendix C for an expanded version
of Figure 3.11 containing details of the nearest neighbor images used for the
image synthesis.

Our system is not computationally expensive. The preprocess of fitting
ellipses and fitting contours to the horses in the database takes 20s and 30s,
respectively. Training the GP-LVM takes about 2 minutes on the same dataset.
Querying the closest ellipses at run-time is interactive at 0.4s. Querying partial
silhouettes takes about 0.5s. Synthesizing a preview result takes 3-4 seconds.
The final, high-quality synthesis is more expensive, and usually takes around 3
minutes to compute depending on the resolution of the images.

3.6. User Studies 86

Visual Feedback System 1 System 2 System 3
Draw Ellipses x
Silhouette Shadow x x x
Fast NN Preview x x
Coarse Preview x x

Table 3.1: Visual Feedbacks corresponding to the Systems.

3.6 User Studies
3.6.1 First User Study
Our method was designed to help users generate images.To assist the user in
accomplishing this task, the method displays previews and shadows that work
as a guide for the user’s input. The shadow is generated both when working
with ellipses and contours. Therefore, to evaluate the usefulness of our method
we conduct a user study in which participants are asked to generate an image
as close as possible to a target image. We evaluate the usefulness of each of
the feedback visualizations: the participants perform three assignments by
using three variations of our system that each employ a different set of visual
feedback. For a subjective assessment of the generated image, we also assign a
Manual Search assignment that asks the participant to select an image from the
dataset that is closest both in terms of pose and color to the target image. We
provide the target image to evaluate the subjective quality of the synthesized
result. After completing the assignments, the participants are surveyed with
the standard System Usability Scale questionnaire [226] to provide a subjective
assessment of general usability, as well as system-specific questions to evaluate
each of the visual feedbacks’ usefulness, and results of interaction with the
system. We chose the horses dataset for the first user study.

3.6.1.1 Assignments
The Manual Search assignment requires the participant to browse through
295 images of horses to find the closest match to a target horse both in terms
of pose and appearance. Each of the 295 images was rescaled, cropped and
segmented from the background.

In Assignment 1, the participant uses our complete system to generate
an image that is as close as possible to the target image (same target image
as in the Manual Search assignment). The “System 1”, used in Assignment 1,
provides all visual feedbacks. Assignment 2 uses “System 2,” a limited version of
“System 1;” the user is not allowed to use ellipse interactions and starts with the

3.6. User Studies 87

“Draw Contour” tool. Finally, Assignment 3 uses “System 3,” a further restricted
system. The user is not allowed to use ellipse interactions and starts with
the “Draw Contour” tool. “System 3” does not generate any kind of preview.
“System 3” is similar to the Shadow Draw [197] system, but with the addition
of interpolated contours and an image synthesis post-process. Our hypothesis
is that additional visual feedback aids in the interactive image synthesis task.
Table 3.1 shows the supported visual feedbacks for the Assignments.

3.6.1.2 Data Collection and Participant Selection

18 participants from the student population of our department performed the
user study. Each participant was randomly assigned 3 different target images
for the four assignments (Manual Search and Assignment 1 share the target
image) from a set of 6 images. We did not filter the study population for
handedness. Only 2 of the participants were familiar with the concept of
“masses”. To minimize the influence of learning effects, the assignments are
conducted consecutively starting with “System 1” featuring the full set of visual
feedbacks. The goal of the study was not mentioned to the participants. All
participants were familiar with image editing in general and were given training
using a Wacom tablet.

3.6.1.3 Procedure

First, we allow the user to familiarize themselves with the Wacom tablet. We
allow using the mouse for the experiment, but all of the participants preferred
the Wacom tablet. Before starting the tasks, the participants were asked to
answer two questions regarding their artistic skills and artistic training. Then,
the participants were asked to perform the Manual Search assignment using a
randomly assigned target image. Next, the participants were shown a video
tutorial describing the system. To clarify the part subdivision and the relation-
ship between ellipses and parts, an example image was given to the participants.
All assignments were performed without time limit. Synthesizing the final
result was done on a separate machine in the background. After finishing the
assignments, the participants answered the SUS questionnaire. Before conduct-
ing the system related questionnaire, we recapitulate the differences between
systems and show the final rendered results. Finally, we ask the participants
to rate the usefulness of each of the visual feedbacks on a Likert scale (see
Table 3.2). The questions of the survey and the user responses are listed in the
Appendix D.

3.6. User Studies 88

Number of Votes
System related questions SD D NN A SA

Ellipse position feedback was useful? 0 5 1 11 1
Silhouette feedback was useful? 0 1 1 7 9
Fast “NN” preview was useful? 0 0 3 9 6
Coarse preview of the generated image with the
color choices was useful?

0 0 2 9 7

Table 3.2: First user study: number of votes the visual feedback related
questions. The Likert response scale answers are “Strongly Disagree” (SD),
“Disagree” (D), “Neither Agree Nor Disagree” (NN), “Agree” (A), “Strongly
Agree” (SA).

3.6.1.4 Expectations
We expect the system to score above average on the SUS scale (corresponds
to a SUS score above a 68). [227] The system was designed to assist the user
through visual feedbacks, hence, we expect that the participants would evaluate
all visual feedbacks as “useful”. We assume that “System 1” with the full set of
visual feedbacks, including the ellipse interactions, would be evaluated as the
easiest and the most efficient in accomplishing the assignment, given that it
provides the most visual feedback.

3.6.1.5 Results
The average score of the system on the SUS scale was 68.75, which corresponds
to “above average” [227]. Unexpectedly, both “System 1” and “System 2”
received same amount of votes (9 votes each) as the easiest and the most
efficient. One explanation of this result may be in the inherent preference of
users to sketch without the use of masses, as we do not teach the users to draw
using masses, and users inexperienced at drawing may not be familiar with the
concept. We only show examples in the tutorial video and before Assignment
1. Moreover, the first and only trial of drawing with the masses in Assignment
1 may not be enough to fully grasp the concept. Some of the participants said
that they believed they would’ve performed better in Assignment 1 if they were
to reuse “System 1” after completing the survey. We hypothesize that the data
in Table 3.2 supports this point as the utility of the ellipse position feedback
appears to be bi-modal with two thirds of the study participants finding the
ellipse position feedback useful.

We also asked the users to compare the generated image of “Assignment 1”
with their own choice from the dataset and the nearest neighbor found by the

3.6. User Studies 89

Number of Votes
Image comparison questions Generated

Image
Manual
Search

System’s
Choice

Which one is the closest to the
target image in terms of pose?

5 10 3

Which one is the closest to the
target image in terms of color?

5 12 1

Which one resembles the target
image the most?

7 11 0

Table 3.3: First user study: number of votes for the subjective assessment of
the synthesized image of the “Assignment 1”.

system based on the user’s sketch (this ignores the appearance choice). The
results can be viewed in Table 3.3. The generated image quality depends on
the complexity and uniqueness of the target pose, the quality of the sketch
and specifications, the size of the dataset etc. Nonetheless, about third of the
participants found the generated image more closely resembled the target image
than the manually selected image.

3.6.2 Second User Study

In our second user study, participants were asked to create novel images of
elephants, using our elephants database containing 275 images. Whereas the
horses dataset has only profile views, the elephants dataset has more diverse
pose variations in 3D, including both frontal and profile views.

In the first study we provided participants with a target image in order
to allow post hoc comparative evaluation of the results, but in practice, real
users of our method would not have such a target image. Thus, in second study
we do not provide participants with a target image, instead, asking users to
draw a sketch of an elephant pictured solely in their mind’s eye. As in the
first user study, the users interact with System 1 and System 2; and afterwards
are surveyed with the questionaire. In this user study, we omitted the image
comparison questions which are not relevant without a target image, instead,
focusing on the usefulness of different components of the method. Furthermore,
we omit the SUS questionnaire as the usability of the system has already been
evaluated in the first user study.

Table 3.4 shows the votes on the feedback-related questions. All partici-
pants preferred System 1, and all participants found ellipses useful for specifying
pose.

3.7. Conclusion 90

Number of Votes
System related questions SD D NN A SA

Ellipse position feedback was useful? 0 0 1 3 2
Silhouette feedback was useful? 0 1 0 3 2
Fast “NN” preview was useful? 1 0 2 2 1
Coarse preview of the generated image with the
color choices was useful?

0 0 0 3 3

When specifying pose, ellipses were useful? 0 0 0 4 2

Table 3.4: Second user study: number of votes the visual feedback related
questions. The Likert response scale answers are “Strongly Disagree” (SD),
“Disagree” (D), “Neither Agree Nor Disagree” (NN), “Agree” (A), “Strongly
Agree” (SA).

3.7 Conclusion

We have presented an interactive method for synthesizing realistic objects based
on user input, given a database of training images. Our method supports a
traditional illustrator’s workflow, whereby the user first sketches the important
masses and then refines them using contours. The advantages of this approach
are the same as in traditional illustration: The gross pose of the figure can be
specified loosely and iteratively, without requiring precise or complete contours.
Interactive feedback is provided by indicating likely mass locations and contours
to the user, as well as quickly synthesizing a preview of the object. This feedback
aids novice users in understanding the pose space as they construct their sketch,
and visually indicates likely outcomes for the synthesis phase. Although in
this chapter we demonstrate the drawing of only a few classes of objects, our
general approach can be extended to other classes of objects. Positive feedback
from the users indicates a promising pathway to advance interactive tools for
creative illustration workflow.

Our system is both straightforward to use and computationally efficient. It
produces high-quality results that generalize the training images by analysis of
the joint manifold model, and is capable of interpolating a wide range of poses
from the sometimes sparse training poses. The user’s input also constrains
the non-parametric image synthesis algorithm to generate results that are in
the manifold of valid and realistic images. The capabilities of image synthesis
algorithms are presently outstripping the interactions used to control them. We
hope our method inspires further research in interactive control of structured
image synthesis.

3.8. Limitations 91

3.8 Limitations
Our present method is not without its limitations. Firstly, it is tuned for
sketching animal figures. We rely on the fact that the structure of animal
figures is fixed (the head is attached to the neck, and so forth), which is not
true for general objects or scenes.

We also assume that ellipses are a good representation of the shape of
the body parts. Although our method gracefully handles cases where this
assumption does not hold (see the horses’ legs), it would be straightforward to
support additional primitives to better represent a wider range of figures.

In order to synthesize realistic figures, we require the user to provide
constraints (masses and contours) that are reasonably similar to some poses in
the training images. If the user veers too far from the database poses, synthesis
results may be unsatisfactory. An example can be seen in the top right of
Figure 3.11, in which the pose of the foreleg masses is inconsistent with the
specified contour. However, if the user allows themselves to be guided by the
visual feedback, the final sketch should reside in a valid location on the manifold
with sufficient training images for synthesis. In this work we err on the side of
giving the user more creative control at the cost of potentially less plausible
results, but it is straightforward to automatically override a user’s constraints
towards higher-probability locations in the manifold. This tradeoff between
flexibility and plausibility warrants further exploration.

We currently require annotated images as input, which is labor-intensive
and limits us to a sparse collection of images (on the order of a few hundred).
Databases of images with semantic part labelings [228, 100, 229] are becoming
more widely available for addressing computer vision tasks, but in the long run,
we hope to take advantage of current and future advances in computer vision
to automate this part of our method [230, 231].

In our current method, we have not added local texture constraints, as the
limited database sizes makes them hard to use.

3.9 Discussion
As it was mentioned, we made a number of assumptions that have caused some
of the limitations above. Here we discuss some of the extensions we would
desire for our method that would alleviate the assumptions and consequently
generalize our method for a wider set of objects or richer ways of interaction.

In the current implementation, our synthesis process creates a hybrid or a

3.9. Discussion 92

blend of two images that have similar, but not necessarily identical pose. Our
motivation for using only a few images is as follows. First, we believe that the
chance of the high-frequency signal of the source images being blurred away is
reduced, as the lesser the number of images being averaged, the sharper the
image would be. Second, choosing a low number of images for synthesis is
convenient for the blending of the colors, as an average of multiple colors may
be unrealistic (think of an average of a spotted horse and a brown horse). So,
ideally we would like to explore integrating the color and texture constraints
more directly into the continuous exploration mode of the pose specification.
For example, we could have a few continuous parameters that would control
the appearance of the object, i.e. a few dials, where one changes the horse
from black to white and another changes the horse from uniform color to a
spotted pattern. This would require a parametric model of the appearance.
However, the change of appearance should not change the sketch that was
already specified by the user. Furthermore, the space of appearances should
not depend on the pose sketched by the user. Hence, the desired parametric
model should be independent of the pose.

Another important assumption is the fixed structure of the visual objects.
This may be inconvenient to the user, if she is only interested in a partial
view of the horse. Ideally, the system should be able to recognize this and use
corresponding partial views from the training set. Moreover, there are classes
of objects that do not have a fixed structure, but have important correlations
in the appearance: flowers with a different number of petals, chairs with a
different number of legs, facades with a different number of windows, etc.

So, we have identified two major extensions: modeling appearance of an
object with a few parameters while the pose is fixed and modeling appearance
of an object with a varying structure. In the next chapter we present a model
that directly tackles these two extensions.
Acknowledgements The authors would like to thank Eli Shechtman for
valuable discussions and Leah Anton for the sketches of horses in Figure 3.2.

Chapter 4

Context-Conditioned
Component Analysis

Subspace models have been very successful at modeling the appearance of
structured image datasets when the visual objects have been aligned in the
images (e.g ., faces). Even with extensions that allow for global transformations
or dense warps of the image, the set of visual objects whose appearance may
be modeled by such methods is limited. They are unable to account for
visual objects where occlusion leads to changing visibility of different object
parts (without a strict layered structure) and where a one-to-one mapping
between parts is not preserved. For example, bunches of bananas contain
different numbers of bananas, but each individual banana shares an appearance
subspace.

In this chapter we remove the image space alignment limitations of existing
subspace models by conditioning the models on a shape dependent context that
allows for the complex, non-linear structure of the appearance of the visual
object to be captured and shared. This allows us to exploit the advantages of
subspace appearance models with highly-deformable objects whilst also dealing
with complex occlusions and varying numbers of parts. We demonstrate the
effectiveness of our new model with examples of structured inpainting and
appearance transfer.

4.1 Introduction
Subspace models are commonly used to learn a parametric model of a visual
object appearance from a large dataset of images. The parametric model
captures low-dimensional representation of the appearance of the visual object
as a linear combination of “components”. Such representations have been

4.1. Introduction 94

Figure 4.1: An example of an unstructured dataset: due to the multiple
instances and occlusions there is no clear way of aligning the images via a global
transformation, or indeed estimating a dense warping (one-to-one mapping)
between them. However, additional information, such as part labeling or
segmentation of the bananas, can be used to align the data in the context space
(right hand side of the figure) and allow us to learn a subspace model of the
appearance of the bananas. In this example, the red and blue dots denote
corresponding locations in the context space.

successfully used to model the appearance of the visual object in a range of
computer vision and graphics applications, such as face detection, identification,
image hallucination, image synthesis, etc.

These parametric models yield good results when images are preprocessed
so that features of the visual objects are aligned throughout the dataset. This is
applicable to visual objects that have fixed structure and do not have significant
deformations or occlusions, for example frontal images of faces, medical scans of
organs, etc. Some works address a more challenging case of visual objects that
exhibit deformations by jointly learning spatial transformations and appearance
representations (e.g ., unaligned images of faces, images of mushrooms, medical
scans of hands). The models rely on estimating dense mappings between the
images of the dataset, usually to a common template.

However, visual objects with varying structure (Figure 4.1) cannot be
readily expressed using previous methods. By fixed structure, we mean that
images consist of a fixed set of regions that have certain associated textures.
For example, side views of cars, in general, have two regions corresponding to
two wheels and these regions are always present in the image. On the other
hand, an example of a visual object with a varying structure would be a facade
of a building with a varying number of windows. In this scenario, the texture
of window regions can be shared across images, but each image may have a
different number of regions corresponding to windows. Furthermore, datasets of
visual objects that have occlusions or significant deformations which can cause
self-occlusions or 2D topology changes also remain a challenging input, e.g .,
animals under different poses. We note that, due to the diverse structure of such
images, methods that estimate a warping or dense mapping between images,

4.2. Related Work 95

such as SIFT flow [67], are unlikely to succeed as some of their assumptions
about the images are not met; e.g ., smoothness of the deformation field and
the presence of occlusions.

Recently, image datasets of various objects have been provided with high-
quality segmentation maps and per-pixel semantic and part labels; such labeled
datasets are becoming more prevalent [74] and are being used to tackle a variety
of visual challenges. We exploit such additional information by formulating
a generative parametric statistical model that explains a visual object’s ap-
pearance conditioned on the additional information, such as the segmentation
map, but in a more complex way than just warping. So, we assume that the
additional information of each image is known during training, as well as during
sampling.

Existing methods for statistical shape modeling, for example the recent
ShapeBM model [139], produce generative models of shape that could be
adapted to include part labels. Alternatively, discriminative approaches that
learn part labels, for example [232], can be used to produce part segmentations
to train our generative model of appearance.

Our proposed subspace model allows us to model the appearance of ob-
jects with varying structure, such as animals and facades of buildings. We
demonstrate the performance of the proposed subspace model on the task of
structured inpainting of unobserved test images, and by transferring of the
appearance of one instance (e.g ., in a specific pose) to others (e.g ., different
poses).

4.2 Related Work
Aligned Subspace Appearance Models One of the earliest works in
learning a statistical model of a visual object from a dataset of images was
Eigenfaces [16], by Turk and Pentland, that was used to address the problem of
face detection and identification. Their approach expressed each image of a face
as a feature vector of pixel intensities. These feature vectors are approximated
as a linear combination of a subset of principal components derived from the
covariance matrix of the probability distribution over the vector space of the
face image pixel intensities.

Many related approaches followed; for example, the Fisherfaces algo-
rithm [26] makes use of linear discriminant analysis (LDA). In this work, the
subspace aims to maximize the ratio of inter-individual to intra-individual vari-
ance. The null-space LDA approach [27] makes use of the directions without

4.2. Related Work 96

intra-individual variance (these are ignored by Fisherfaces). The Dual-Space
LDA approach [28] combined both of these subspace directions. All of these
approaches rely on the image datasets to be aligned.
Active Appearance Models The Active Appearance Model (AAM) [8] by
Cootes et al . is a more sophisticated statistical model that models both the
shape and the appearance of a visual object from a dataset that consists of
images and corresponding coordinates of a set of landmark points on each
image. AAM extends subspace models by incorporating parameterized affine
warps of all images to a common template. Edwards et al . [43] used AAM to
address the problem of face detection and identification. The AAM can be
applied to image alignment problems that estimate transformations of images
to a common coordinate system or a common template [233].

Jones and Soatto [9] proposed a Layered Active Appearance Model which
allows for missing features, occlusion, substantial spatial rearrangement of
features, and that provides a more general representation that extends the
applicability of the traditional AAM. In LAAM the images are subdivided
into “layers” (a set of compact regions determined by a pre-defined group
of the landmark points with pixel’s local coordinates, pixel intensities and
landmark point coordinates) which are modeled with weighted PCA. Jones and
Soatto demonstrated the model on a dataset of cars. The dataset consisted
of frontal images of cars with and without certain features (such as foglights)
and overlapping features (such as license plates). However, LAAM requires
the ordering of layers to be fixed, i.e., foglights always occlude bumpers and
bumpers never occlude foglights. Such an ordering assumption is not always
applicable (e.g ., consider the legs of animals). Also, the number of instances of
each part must be known beforehand (a fixed number of layers), which is not
required for our context-based approach. The Morphable Model [49] extended
the AAM into 3D for modeling faces which also helps with occlusions; however,
it still cannot handle varying numbers of parts and requires alignment to a
template.
Combining Parametric and Non-Parametric Models for Appearance
Synthesis Liu et al . combined a parametric subspace model and a local
non-parameteric model in a two-step procedure to solve the problem of face
hallucination [205, 204]. At the first step, principal components are learned
from the dataset to express the relationship between the high-resolution face
images and the corresponding blurred and downsampled lower resolution images.
At the second step, the residue between an original high-resolution image and

4.3. Context-Conditioned Component Analysis 97

the image reconstructed by using the learned subspace model is modeled by a
patch-based non-parametric Markov network to hallucinate the high-frequency
details of the image.

Visio-lization [1] by Mohammed et al . used a similar framework to address
the problem of synthesizing frontal face images. First, a parametric subspace
model is sampled to generate a low-resolution novel image which lacks high-
frequency details. The second step upsamples the low-resolution image by
performing image quilting [155] on overlapping image regions. Image quilting
uses patches extracted from the images of the dataset that were conditioned
on the low-resolution image.
Jointly Estimating Deformation and Appearance Transformed Com-
ponent Analysis [69] estimates a global transformation for each image in the
dataset to bring the images into alignment as well as finding an appearance
subspace. The set of transformations they consider are rigid body motions and
thus not suited to highly-deformable objects or occlusions.

Winn and Jojic introduced LOCUS [70], an unsupervised generative model
that learns segmentations of visual objects. Most interestingly, they model
visual objects with deformation fields and achieve dense registration between
different images of the same class despite differences in appearance or pose.

Mobahi et al . [71] also learn a model of a visual object from a set of
images. They assume that images are generated as a nested composition
of color, appearance and shape transforms. By modeling each component
as a low-dimensional subspace they can learn a regularized solution of such
compositional model from a set of images. Their shape(geometric) transform is
jointly learned for all images, and outperforms SIFT flow and robust optical
flow for any pair of images from the set.

Both the LOCUS model and the work of Mobahi et al . make use of a
deformation (or flow) field for dense warping. Such a field cannot encompass
the range of transformations that we address with our approach (complex
occlusions and varying numbers of instances).

4.3 Context-Conditioned Component Analysis
We begin by providing an illustrative example that reveals the limitations of
existing approaches; we use this example to motivate the use of our method for
modeling the appearance of complex visual objects. We then provide a high-
level description of our new model that we call Context-Conditioned Component
Analysis (C-CCA). We show a general formulation and demonstrate that our

4.3. Context-Conditioned Component Analysis 98

model encompasses Probabilistic Principal Component Analysis [5] (PPCA) as
a special case of the proposed model in section 4.7.1.

For simplicity, we will begin by assuming that the images are greyscale,
but we relax this to include the case of color images in section 4.5.

4.3.1 Motivating Example
Consider images of bunches of bananas as shown in Figure 4.1. This example
dataset does not display fixed structure, as every image has a different number
of bananas that may occlude one another with no consistent ordering (c.f .
the layer structure limitation of LAAM). Clearly, aligning these images, or
estimating a dense warping between them, is not possible; i.e., deforming 3
bananas to 1 or vice versa. However, the appearance of the bananas in each
image is correlated. We argue that additional information, such as part labeling
or segmentation of the bananas, can be used to align the data in the context
space and allow us to learn the subspace model of the appearance of the bananas.
In this example, the red and blue dots denote corresponding locations in the
context space (not fiducial points as used for AAM).

4.3.2 Model Description
Consider a set of greyscale images {xi}Ii=1 of a given visual class (e.g. horses,
facades, cats). Each image is represented as a vector xi = [xi1, xi2, . . . xiJ]T ,
where the element xij represents the jth foreground pixel from the ith image.
(For simplicity of exposition we assume that all pixels in each image are
foreground, however, in practice each image may contain different number of
foreground pixels.) Associated with each pixel in each image is a context vector
cij. This vector provides some information about the state of the object at
that pixel. For example, it might encode the part of the object at that pixel
(door, wall of a house), the local shape of the silhouette of the object, or the
distance from some pre-determined keypoint in that image. The context vector
constrains the intensity values that might be present at a given pixel, but does
not entirely determine it.

The model for the jth pixel of the ith image is

xij = µ [cij,θµ] +
F∑

f=1

φ [cij,θf]hif + εij , (4.1)

where the first term gives the mean value µij at the pixel and is a function of the
context cij at that pixel and a parameter vector θµ. The second term consists

4.4. Learning 99

of a weighted sum of F function terms φ[·, ·], where the weights {hif}Ff=1 are
constant for the whole image and can be considered hidden variables. Each
of the function terms maps the pixel context cij to a scalar value, where the
F mappings in the weighted sum are determined by associated parameter
variables {θf}Ff=1. Finally, each term εij is an independent stochastic noise
variable distributed as Normεij [0, σ

2].
For now, we remain agnostic about the exact form of the functions µ [cij,θµ]

and φ [cij,θf] (and the corresponding function parameters θµ and θf), except
to say that they map from the context vector cij to a scalar value, and so, take
the form of regression functions. We discuss the form of the functions later in
section 4.4.5 and the corresponding function parameters in section 4.6.2

We can equivalently write equation 4.1 in vector form as

xi = µi + Φihi + εi , (4.2)

where the jth row of the J × 1 vector µi is given by µ [cij,θµ] and the jth row
and f th column of the J ×F basis matrix Φi is given by the function φ [cij,θf].
We have similarly vectorized the hidden variables so that hi = [hi1, hi2, . . . hiF]T

and εi = [εi1, εi2 . . . εiJ]T .
Equation 4.2 can be written in probabilistic form as

Pr(xi|hi,θ•, σ2) = Normxi

[
µi + Φihi, σ

2I
]
, (4.3)

where the notation θ• is shorthand1 for all of the unknown function parameters
θµ and {θf}Ff=1 and I is the identity matrix. To complete the model, we also
define an independent standard Gaussian prior over this hidden variable vector
hi, so,

Pr(hi) = Normhi [0, I] . (4.4)

Next, we will derive an algorithm for fitting the parameters of the model
to the training data.

4.4 Learning
In this section we will discuss how we fit our new appearance model to the
training image data. We start by outlining the general learning procedure
before discussing the specific approach that we choose. The adopted approach

1Throughout we use the symbol • to denote the unravel and concatenate operation similar
to the Matlab colon operator ‘:’, e.g ., Vector = Matrix(:);.

4.4. Learning 100

requires estimating three unknown variables that we discuss in turn in sections
4.4.2 to 4.4.4. For tractability, we choose a special form of the functions φ[·, ·]
in section 4.4.5.

4.4.1 Learning Approach
We now outline a general learning procedure. We aim to take a set of im-
ages {xi}Ii=1 with known context vectors {cij}I,Ji,j=1 and estimate the unknown
parameters θ• and the noise term σ2 using a maximum likelihood formulation

θ̂•, σ̂
2 = argmax

θ•,σ2

log
[
Pr(xi|θ•, σ2)

]
, (4.5)

where the log likelihood in this equation is obtained by marginalising out the
hidden variables so that

Pr(xi|θ•, σ2) =

∫
Pr(xi|hi,θ•, σ2)Pr(hi)dhi . (4.6)

Alternative approaches to learning these parameters include:

1. Integrating out the hidden variables hi in closed form and maximize the
criteria in equation 4.5.

2. Using the EM algorithm to alternately (i) estimate a probability distri-
bution over the hidden variables to determine a bound on the likelihood
(E-Step) and then (ii) optimize this bound with respect to the parameters
(M-Step).

3. We could replace the integration in equation 4.6 with a maximization
over the hidden variables and alternately estimate the hidden variables
and the unknown parameters. This can be shown to be a special case of
the generalized EM algorithm.

In this chapter we adopt the third of these three options for simplicity.

4.4.2 Estimation of hidden variables
For the fixed parameters θ•, σ2 we estimate each of the I hidden variables hi as

ĥi = argmax
hi

log
[
Pr(xi|hi,θ•, σ2)Pr(hi)

]
. (4.7)

This maximization has a known closed form solution, which can be found by
noting that the likelihood term Pr(xi|hi,θ•, σ2)is a normal distribution with a

4.4. Learning 101

mean that is a linear function of hi (see equation 4.3) and can be re-written as
a constant with respect to hi times a normal distribution in hi. What remains
is a product of two Gaussians both in hi. The product of two Gaussians is
also Gaussian and the optimal parameter value will be at the mean of this new
distribution. So,

ĥi = (ΦT
i Φi + σ2I)−1ΦT

i (xi − µi) . (4.8)

More details can be found in section 7.6.2 of [234].

4.4.3 Estimation of noise

The noise parameter can also be estimated in closed form and is determined by
the difference between the model predictions and the observed data

σ̂2 = argmax
σ2

I∑

i=1

log
[
Pr(xi|hi,θ•, σ2)Pr(hi)

]

=
1

IJ

I∑

i=1

(xi − µi −Φihi)
T (xi − µi −Φihi) . (4.9)

4.4.4 Estimation of function parameters

For fixed hidden variables hi and noise σ2 we estimate the function parameters
using maximum likelihood

θ̂• = argmax
θ•

I∑

i=1

log
[
Pr(xi|hi,θ•, σ2)Pr(hi)

]
(4.10)

= argmax
θ•

I∑

i=1

log
[
Pr(xi|hi,θ•, σ2)

]
, (4.11)

where we have dropped the prior term which does not depend on the unknowns.
From equations 4.1 and 4.3, we can write the likelihood from equation 4.10 as

Pr(xi|hi,θ•, σ2) =
J∏

j=1

Normxij

[
µ [cij,θµ] +

F∑

f=1

φ [cij,θf]hif , σ
2

]
.

We can simplify this expression if we assume that the function µ [·, ·] takes

4.4. Learning 102

the same form as φ [·, ·] and then define θ0 = θµ and hi0 = 1 so that

Pr(xi|hi,θ•, σ2) =
J∏

j=1

Normxij

[
F∑

f=0

φ [cij,θf]hif , σ
2

]
. (4.12)

When we substitute equation 4.12 into equation 4.10, we see that we
are optimising the logarithm of normal distributions and it follows that the
parameter estimation takes the form of a non-linear least squares problem

θ̂• = argmin
θ•

∑

ij

(
xij −

F∑

f=0

φ [cij,θf]hif

)2

. (4.13)

Solving for a general form of the function φ [·, ·] is not easy, and we would
have to apply an iterative method, such as Gauss-Newton, to find a local
minimum. Furthermore, a non-linear choice of φ [·, ·] may have multiple local
minima solutions.

4.4.5 Choosing the form of the functions φ[·, ·]
Fortunately, there is an important class of functions φ[·, ·] for which we can
compute a closed-form solution for equation 4.13. In particular, we assume
that the functions take the form of a pre-determined non-linear vector function
a [cij] of the context vectors; this is then linearly projected onto the parameter
vector θf , such that

φ [cij,θf] = a [cij]
T θθθf . (4.14)

This assumption still allows us to approximate complex functions, since
many regression approaches (including Gaussian processes [235], K-Nearest
Neighbors [236] and relevance vector machines [237]) can be written in this form.
When we substitute equation 4.14 into the least squares criterion (equation
4.13), we see that the solution for the parameters θ• now becomes the linear
least squares problem

θ̂• = argmin
θ•

∑

ij

(
xij −

F∑

f=0

a [cij]
T θθθfhif

)2

, (4.15)

that can be solved in a closed form.
Unfortunately, even this might be difficult to compute in practice. Let M

be the dimensionality of the non-linear projection vector a[cij]. Then, we are
solving a system of (IJ) equations (where I is the image number and J is the

4.5. Modeling Color Images 103

number of pixels per image) and (FM) unknowns, and this may be very slow
and memory intensive.

To make this system practical, we use non-linear projections which are
sparse (i.e., most of the elements of a[cij] are zero). A simple example of this is
K-Nearest Neighbors regression [236]. In this case, we compare the context cij

toM prototype context vectors {zm}Mm=1 and a becomes anM×1 vector which
is zeros except for the K indices corresponding to the K nearest neighbors.
These K indices are set to the inverse of the euclidean distance in the context
vector space and a is normalized so that elements sum to 1. We normalize the
context vectors to zero mean and unit variance.

4.5 Modeling Color Images

In this section we explain how we extend our model to the case of multichannel
color images. The algorithm listing 1 describes how we initialize the variables
and summarizes the learning procedure that we use to fit our model to a
collection of training images.

To model the appearance, we use our C-CCA on 3 color channels

{x(r)
i ,x

(g)
i ,x

(b)
i }Ii=1 , (4.16)

by using a separate function parameter θ(r)
• ,θ

(g)
• ,θ

(b)
• for each of the color

channels. We process the colorspace of each image in the training set
{x̃(r)

i , x̃
(g)
i , x̃

(b)
i }Ii=1 with the photometric transformation technique introduced

in [71]. This photometric transformation allows us to match colorspaces of
different images by modeling the variations of the color of the illumination.
Furthermore, the main color of the objects is also modeled by this transforma-
tion, which allows the functions φ[·, ·] to learn correlations that are common to
visual objects with different colors. For example, the shading of a brown horse
is similar to the shading of a white horse, so, this shading variation can be
captured by the components and the main color of the horse can be captured
by the photometric transformation.

Thus, we estimate a rotation matrix Ri and translation vector ti for each
image, that transforms the “common” colorspace modeled by the C-CCA to
each of the individual image colorspaces, such that

x̃?ij = Rix
?
ij + ti , (4.17)

4.5. Modeling Color Images 104

Algorithm 1 C-CCA Learning Procedure
Require: RGB values {x̃?i }, Context vectors {cij}
∀i : hi ← Random sample of Normhi [0, I]
∀i : Ri ← I; ti ← ~0
σ2 ← 1
∀i, j : cij ← (cij − mean[c]) / std[c]
{zm}Mm=1 ← M random samples of {cij}
∀i, j : a[cij]← kNN [cij, {zm}]
for number of iterations do
∀i, j : x?ij ← R−1i (x̃?ij − ti)
θ ← Solution of equation 4.15
σ2 ← Solution of equation 4.9
∀i : hi ← Solution of equation 4.8
∀i : Ri, ti ← Solution of equation 4.19

end for
return {zm},θ, {hi}, σ2, {Ri}, {ti}

where x̃?ij =
(
x̃
(r)
ij , x̃

(g)
ij , x̃

(b)
ij

)T and the notation (·?) is used to denote variables
that represent values over 3 color channels.

Since Ri is a rotation matrix, its inverse can be applied to the images
before each iteration of the generalized EM as

x?ij = R−1i
(
x̃?ij − ti

)
. (4.18)

The rotation and translation matrices are estimated at the end of each of the
iterations by solving

{Ri, ti}Ii=1 = argmin
Ri,ti

∑

j

(
x̃?ij −Riy

?
ij − ti

)2
, (4.19)

where Ri is constrained to be a rotation matrix and y?ij =
(
y
(r)
ij , y

(g)
ij , y

(b)
ij

)T is
the reconstruction before the color transform with

y
(κ)
ij =

F∑

f=0

φ
[
cij , θ

(κ)
f

]
hif , (4.20)

for κ ∈ {r, g, b}. Equation 4.19 has a known closed form solution [238, 71].

4.6. Experiments 105

4.6 Experiments
4.6.1 Datasets and Context Vectors
Horses We use the Weizmann Horse Dataset [219] that consists of images of
horses and corresponding segmentation masks. Additionally, we labeled images
with 7 semantic parts (head, neck, torso, each of the 4 legs). The images were
rescaled such that the area of the torso matches in each image and translated
such that the center of the torso matches in each image. Each pixel’s context
vector consists of spatial coordinates of the pixel (2 values), and filter responses
of the segmentation mask and the 7 part masks. The filterbank consists of 15
filters (a subset of Leung-Malik Filter Bank [239]), namely, the first and second
derivatives of Gaussians in 6 orientations, Laplacian of Gaussian at 2 scales
and 1 Gaussian filter.

(a)

(b)

Figure 4.2: Visualization of the filterbanks. The blue color indicates the border
of the filters, the black indicates negative numbers and the white indicates
positive numbres. (a) The filterbank consists of 15 filters (a subset of Leung-
Malik Filter Bank [239]), namely, the first and second derivatives of Gaussians
in 6 orientations, Laplacian of Gaussian at 2 scales and 1 Gaussian filter. This
filterbank is used on horses, cats and elephants datasets. (b) The filterbank
consists of 8 Haar-like features at 2 different scales. This filterbank is used on
facades dataset.

4.6. Experiments 106

(a) (b) (c)

Figure 4.3: Visualization of the context vectors. (a) Structure map of semantic
part labels. (b) RGB Image. (c) Projections onto the first five principal
components of the context vectors (the true dimensionality of the context
vectors is 122 and 271 for horses and cats respectively).

Cats We use images with cats from Pascal VOC2010 dataset [74] with
segmentation masks and semantic labels (17 body parts of the cat), provided
by [228]. We discarded images that had low-resolution and rescaled images
such that the distance between eyes is consistent. Each pixel’s context vector
consists of the distance to the middle of the eyes and filter responses of the
segmentation mask and the 17 part masks. The filterbank is same as for the
horses example.

Elephants We compiled a dataset of web images of elephants with corre-
sponding segmentation masks and body part labels (head, torso, trunk and 4
legs). The images were rescaled such that the area of the torso matches in each
image and translated such that the center of the torso matches in each image.
Each pixel’s context vector consists of the spatial coordinates of the pixel (2
values), and filter responses of the segmentation mask and the 7 part masks.
The filterbank is same as for the horses example.

Facades We use facades of buildings of Paris from the Ecole Centrale Paris
Facades Database [240]. We use pixels that were labeled as wall, window, door,
roof or balcony. The images were rescaled such that the average area of the

4.6. Experiments 107

Dataset # Images # Parts Length of
cij

Average #
pixels

Resolution

Horses 295 7 122 3068 150x150
Cats 567 17 271 5069 246x249

Elephants 275 7 122 3672 136x136
Facades 104 5 42 10004 187x174

Table 4.1: Datasets Statistics.

C-CCA PPCA
Dataset I Test I F K M K M
Horses 200 95 24 16 2000 1 11459
Cats 450 117 16 16 4500 1 44015

Elephants 200 75 20 16 3000 1 11803
Facades 80 24 20 16 2000 1 23629

Table 4.2: Parameters for C-CCA and PPCA.

windows matches in each image. Each pixel’s context vector consists of the
spatial coordinates and filter responses semantic labeling masks. The filterbank
consists of 8 Haar-like features at 2 different scales.

Table 4.1 summarizes the relevant statistics of each of the datasets. Fig-
ure 4.2 visualizes the filters used to create context vectors. Figure 4.3 visualizes
the context vectors for the horses and the cats datasets.

4.6.2 Quantitative Evaluation

Table 4.2 shows the parameters that were empirically chosen for fitting each
of the datasets. Only foreground pixels are used for training and testing. We
used the fitted models to compute the reconstruction images of the training
and test sets. Table 4.3 shows the per-pixel error of both training and test sets.

We can compare our model to PPCA, as it is a special case of our model (see
section 4.7.1). We change the context vectors to only include pixel coordinates,
set K of the k-NN regression learner to 1; and use all of the unique pixel
coordinates in our training data as the prototype context vectors {zm}Mm=1. We
use the same number of components (F) as used for C-CCA for each dataset.
The reconstruction error is reported in Table 4.3. C-CCA outperforms PPCA
across all datasets while using a significantly smaller number of parameters
(M). Examples of reconstructions with PPCA are shown in Figure 4.4.

To analyze sensitivity of the model to the hyperparameters, we fitted

4.6. Experiments 108

(a) Reconstructions of Horses with PPCA

(b) Reconstructions of Cats with PPCA

(c) Reconstructions of Elephants with PPCA

(d) Reconstructions of Facades with PPCA

Figure 4.4: Reconstruction of the test set of (a) horses, (b) cats, (c) elephants
and (d) facades with PPCA. The parameters of PPCA are shown in Table 4.2.
CCCA reconstructions of the same set of images are shown in Figure 4.5.

several models to the horses dataset using different sets of hyperparameters:

F = 1, 4, 8, 12, 16, 20

K = 1, 8, 16, 24

M = 1500, 2000, 2500, 3000, 3500, 4000.

4.6. Experiments 109

(a) Reconstructions of Horses with CCCA

(b) Reconstructions of Cats with CCCA

(c) Reconstructions of Elephants with CCCA

(d) Reconstructions of Facades with CCCA

Figure 4.5: Reconstruction of the test set of (a) horses, (b) cats, (c) elephants
and (d) facades with CCCA. The parameters of CCCA are shown in Table 4.2.

Figure 4.6 shows the average and Figure 4.7 shows the variance of the mean
per-pixel error of the reconstructions of the training and test sets of the horses
dataset computed by the models.

As it can be seen in Figure 4.6, increasing the number of components
reduces the error for both the training and test sets. As expected, when K = 1,
i.e. the function φ[·, ·] assigns a single value to each cluster of context vectors,

4.6. Experiments 110

Figure 4.6: The average per-pixel error of the reconstruction of the training
and test sets of the horses dataset computed by models with the different
hyperparameters. Each subplot shows performance of 24 models with the same
number of components and varying values of K and M .

4.6. Experiments 111

Figure 4.7: The variance of the per-pixel error of the reconstruction of the
training and test sets of the horses dataset computed by models with the
different hyperparameters. Each subplot shows the variance of the mean
per-pixel error of the reconstructions of 24 models with the same number of
components and varying values of K and M .

4.6. Experiments 112

Figure 4.8: Structured similarity index measure (SSIM) [11] of the reconstruc-
tion of the training and test sets of the horses dataset computed by models
with the different hyperparameters. Each subplot shows performance of 24
models with the same number of components and varying values of K and M .
The SSIM’ index is a value between -1 and 1, where value 1 is achieved when
reconstructions are perfect.

4.6. Experiments 113

Figure 4.9: The variance of the SSIM score of the the reconstruction of the
training and test sets of the horses dataset computed by models with the
different hyperparameters. Each subplot shows the variance of the SSIM score
of 24 models with the same number of components and varying values of K
and M .

4.6. Experiments 114

C-CCA PPCA
Dataset Training Set

Mean Error
Test Set

Mean Error
Training Set
Mean Error

Test Set
Mean Error

Horses 0.0258±0.0079 0.0547±0.0432 0.0268±0.0092 0.0886±0.0661
Cats 0.0280±0.0119 0.0511±0.0351 0.0315±0.0131 0.0548±0.0371

Elephants 0.0120±0.0031 0.0346±0.0163 0.0169±0.0048 0.0470±0.0220
Facades 0.0333±0.0094 0.0593±0.0264 0.0350±0.0198 0.0889±0.0330

Table 4.3: Mean Per-pixel Reconstruction Error (in RGB colorspace) for C-CCA
and PPCA reported as mean± standard deviation.

the model generalizes the least (the error on the test set is high), while larger
values of K perform comparably. Interestingly, increasing M slowly increases
the margin between reconstruction error on the training and test sets. Finally,
increasing the number of components F reduces the error, which is similar to
PCA.

Similarly, we evaluate the perceived image quality of reconstructions
by comparing the original images with the reconstructions using Structural
Similarity Index Measure [11]. Figure 4.8 shows mean SSIM with respect to
the different hyperparameters of the model and Figure 4.9 shows the variance
of SSIM of the different models. Notice, that SSIM is 1 when the images are
identical, and −1 when they are completely different.

4.6.3 Appearance Transfer
The estimated function weights hi and the colorspace rotation Ri and trans-
lation vector ti of the image i of the dataset define the appearance of the
visual object. So, for appearance transfer, we select another image j from the
dataset, and reconstruct it by weighing the basis matrix Φj with hi, and apply
the colorspace transformation using Ri and ti. Figures 4.10 and 4.11 show
examples.

Notice that computing a dense correspondence between some of these
images is challenging. One of techniques for solving image alignment is SIFT
flow [67]; Figure 4.12 illustrates how SIFT flow fails to compute a correspon-
dence, as the pairs of images have animals in very different poses with multiple
occlusions. On the other hand, C-CCA successfully transfers appearance from
and to instances of horses that have different numbers of legs visible. The
transforms are also consistent in terms of left-right axis, for example, the
rightmost cat in Figure 4.11 has right leg black and left leg white, which is
consistently transfered to different poses.

4.6. Experiments 115

(a)

(b)

(c)

(a)

(b)

(c)

Figure 4.10: Appearance Transfer Results (Horses). (a) A subset of images of
the training set. (b) Reconstruction of the images using the fitted subspace
model with the estimated weights hg. (c) Reconstruction of the images using
the fitted subspace model with the fixed function weights hg, rotation matrix
R and translation vector t of the first (leftmost) image.

4.6.4 Structured Inpainting

We use the test set to do image inpainting. Half of the image’s intensities are
used to estimate regression function weights hg and colorspace rotation matrix
Ri and translation vector ti. We use the context vectors of all the pixels to
reconstruct the whole image. Figures 4.13, 4.14 and 4.15 show the results.

Notice the difference between the reconstructed and the inpainted images.
For example, in Figure 4.13, the horses in the first and fourth row of the left
column have interesting change of the color from left to right. This color change
is captured in the reconstruction of the full model. However, for inpainting,
the observed left half of the image shows only brown color. Since there is no
visible color variation, the model assumes that the whole horse is brown, as
shown in the inpainted result. The same effect can be seen in the images of
the fifth and seventh row of the left column in Figure 4.14.

4.6. Experiments 116

Figure 4.11: Appearance Transfer Results (Cats): For each column, rows top
to bottom: (1) An image of the training set. (2-4) Reconstruction of the image
of another cat in a different pose by fixed function weights hg, rotation matrix
R and translation vector t of the top row image.

Figure 4.12: Left to Right: Source image. Target image. The warping of the
source image onto the target image using the correspondence computed by
SIFT flow [67]. The appearance transfer using C-CCA.

The inpainting results in Figure 4.16 of the Facades dataset demonstrate
the importance of context vectors in our model. Due to the provided labeling,
all windows in each of the facades have same context vectors. This results in
the function φ[·, ·] returning equivalent values for all pixels that were labeled as
window. Hence, all windows in our reconstruction and inpainted images look
the same.

4.7. Relation to Other Models 117

Figure 4.13: Image Inpainting Results for Horses (Test Set). In each column
left to right: Image from the test set. Reconstruction of the image using the
fitted model. Input for inpainting (context vectors of all pixels are known).
Inpainted result.

4.7 Relation to Other Models
In this section we show how C-CCA is a generalization of the two models that
are arguably most widely used in the Computer Vision field: Probabilistic PCA
and Active Appearance Model.

4.7.1 Relation to Probabilistic PCA
Probabilistic Principal Component Analysis (PPCA) is a special case of the
proposed model; for the case of a set of images where the context vectors match
at each pixel so that c1j = c2j . . . = cIj, the mean vectors µi and the basis
matrices Φi will be the same for every image i, and equation 4.2 becomes the
generative model for PPCA:

xi = µ + Φhi + εi . (4.21)

It follows that the proposed model is a generalisation of PPCA where the
mean vector µ and the principal components Φ depend on the context vectors
for the given image {cij}Jj=1. Hence, C-CCA creates a different but related
PPCA model for each image in the set.

4.7. Relation to Other Models 118

Figure 4.14: Image Inpainting Results for Cats (Test Set). In each column left
to right: Image from the test set. Reconstruction of the image using the fitted
model. Input for inpainting (context vectors of all pixels are known). Inpainted
result.

4.7.2 Relation to Active Appearance Model
In this subsection we show that Active Appearance Model [8] is another special
case of C-CCA when a specific form of φ[·, ·] is adopted. We start by describing
AAM.

AAM The AAM assumes that the input consists of a set of images {xij}I,Ji=1,j=1

and a corresponding set of x-axis and y-axis coordinates of the fiducial points
{uiq}I,Qi=1,q=1. (For example, for faces, the fiducial points are points such as
corners of the eyes, the tip of the nose, chin, etc.)

Next, the mean coordinate of each of the fiducial points is computed:
{ūq}Qq=1. It is assumed that these coordinates define the mean shape of the
object, which serve as a “common template” for the images of the dataset.

The mean coordinates {ūq}Qq=1 are used as vertices of a mesh with triangular

4.7. Relation to Other Models 119

Figure 4.15: Image Inpainting Results for Elephants (Test Set). In each column
left to right: Image from the test set. Reconstruction of the image using the
fitted model. Input for inpainting (context vectors of all pixels are known).
Inpainted result.

faces computed by Delaunay triangulation [241] or some other variation of it.
Thus, each pixel of the common template has corresponding spatial coordinates,
the triangle of the mesh and barycentric coordinates to the vertices of the
corresponding triangle.

All images are warped to this common template. This is done with a
piecewise affine warp that maps each triangle of the mesh from image i to the
common template. So, for each image i and its triangle τ , AAM computes
the affine transformation that maps coordinates of the vertices of the triangle
τ to the coordinates of the corresponding vertices in the common template.
Hence, the coordinates of the pixel and the fiducial points {uiq}I,Qi=1,q=1 are used
to deterministically compute the pixel coordinates in the common template.

Once all images are warped to the same template, the vectorized represen-

4.7. Relation to Other Models 120

Figure 4.16: Image Inpainting Results for Facades (Test Set). In each column
left to right: Image from the test set. Reconstruction of the image using the
fitted model. Input for inpainting (context vectors of all pixels are known).
Inpainted result.

tation of the warped images can be used as input to a subspace model such as
PCA. The subspace models the appearance of the object. To fit the learned
model to a new image and its set of fiducial points, one must compute the
transformation from the common template to the new image.

C-CCA Next, we show that AAM is equivalent ot C-CCA when a specific
φ[·, ·] is adopted. As it was mentioned, we define the form of φ[·, ·] as in
equation 4.14.

So, image i has fiducial coordinates {uiq}I,Qi=1,q=1. Furthermore, the j-th
pixel of image i has a pixel intensity of xij and it’s x-axis and y-axis coordinates
vij. We define its context vector as

cij = [vTij

uTi1 . . .u
T
iQ√

|vij − ui1|2 . . .
√
|vij − uiQ|2]T , (4.22)

which is a concatenation of pixel’s coordinates vij (2 values), the coordinates of
the fiducial points (2×Q values) and Euclidean distances to all of the fiducial

4.7. Relation to Other Models 121

points (Q values).

Let θf be a vector of size J × 1, where J is the number of pixels in the
“common template”. First, assume that a [cij] returns a vector of size J × 1

that consists of zeros and a single 1.

It follows that by using the mean coordinates {ūq}Qq=1 and the Delaunay
triangulation, one can define such a [cij] that deterministically defines which
index of the returned vector has value of 1. This effectively maps every pixel
of the input image to the common template similarly to AAM.

Indeed, the first 2 + 2×Q values of cij (the pixel’s coordinates and the
coordinates of the fiducial points) can be used to determine the triangle of the
mesh’s triangulation that the pixel belongs to. Furthermore, the last Q values
of cij (Euclidean distances to all of the fiducial points) can be used to compute
the barycentric coordinates of the pixel. The barycentric coordinates can be
used to deterministically define which of the pixels in the common template
xij corresponds to, which in turn defines which index of the returned vector
have value of 1.

Hence, such a [cij] maps images to the common template similarly to AAM.
Thus, θf are equivalent to the components of PPCA.

By a similar line of reasoning one can show that Layered AAM [9] is also
a special case of C-CCA.

4.7.3 Multifactor Models

In this subsection we analyze the differences between C-CCA and Multifactor
Models.

Bilinear [242, 25] and multilinear [243, 244] methods model the data as
a product of multiple factors, such as style, identity, motion phase, etc. The
Multifactor Gaussian Process Model [245] is a non-linear generalization of the
multilinear models which uses non-linear basis functions. For example, let us
consider a case, where the data has two modes of variation: the appearance
and the style, so the captured data is modeled as a function of the appearance
represented with vector ĥ and the style ĉ. Here, we choose the model to be
linearly dependent on the appearance and non-linearly dependent on the style

xij = fj[ĥi; ĉi] =
F∑

f=0

φ̂fj[ĉi]ĥif + εi , (4.23)

where εi is the Gaussian noise and φ̂fj [ĉi] is a non-linear function of style. The

4.7. Relation to Other Models 122

linear and non-linear dependencies of different factors in Multifactor Gaussian
Process Models are chosen a priori with appropriate kernels and are motivated
by the knowledge of the intrinsic factors of the data.

The Multifactor Gaussian Process Models are similar to C-CCA, which also
models data with non-linear basis functions. However, there is an important
distinction. The components in Multifactor Gaussian Process Models are
dependent on the style factor ĉi, which is global to all dimensions of each of
the data points. Or,

ĉi1 = ĉi2 = . . . = ĉiJ . (4.24)

On the other hand, in C-CCA the context vector of the pixel cij can encode
both local and global information

xij =
F∑

f=0

φf [cij, ·]hif + εi . (4.25)

This distinction has a major consequence: C-CCA can use local context
information for implicit alignment, which allows it to model data that is not
aligned, or even structured.

4.7.4 Alignment with Components
In C-CCA, the form of the components depends on the form φ[·, ·]. If we choose
the representation discussed in section 4.4.5, one can show that

θf =
I∑

i=1

λfiT [ci]xi , (4.26)

where T [·] transforms the training data point xi using the corresponding context
vector ci.

This perspective provides an interesting interpretation of the model, which
we discuss in this subsection.

In the traditional pipeline of fitting an appearance model to the image
set, the first stage is the preprocessing of the data with the registration or
alignment methods, and the second stage is the fitting of parameters of the
parametric model. For example, AAMs use the keypoint annotations to warp
the images to a common shape template. In general, the original data x̂i is
transformed with some deformation T [·], which is chosen for each image x̂i

using some annotation data ĉi. So, the images are transformed to align with
each other so that the data can be fitted with a parametric model. For example,

4.7. Relation to Other Models 123

{x̂i} T [ĉi] {xi} θ̂f

=

F∑

f=0

ĥif

=

F∑

f=0

ĥif

(a) Illustration of Alignment in AAMs.

{xi} φ[ci,θf] a[cij] θf

=

F∑

f=0

hif

=

F∑

f=0

hif

(b) Illustration of Alignment in C-CCA.

Figure 4.17: Illustration of the difference between AAMs and C-CCA from the
perspective of alignment in image space and component space.

in AAMs the transformed data is modeled with PCA as

T [ĉi]x̂i =
F∑

f=0

θ̂f ĥif , (4.27)

where ĥif are the component weights and θ̂f are the principal components. See
Figure 4.17(a) for an illustration of equation 4.27.

In contrast, C-CCA aligns and registers the data with the functions φ[·, ·]

xi =
F∑

f=0

φ[cij,θf]hif =
F∑

f=0

a[cij]θfhif , (4.28)

4.8. Conclusion 124

which can be interpreted as transforming the components to align with the input
image using transformation a[cij]. See Figure 4.17(b) for an illustration of
equation 4.28. Hence, there is no common shape template in C-CCA, because
the representation is transformed to align with each of the input images.
The difference between AAMs and C-CCA from the discussed perspective is
illustrated in Figure 4.17.

This alignment in components assumes that pixels from different images
which have similar context vectors should also have similar values for each
component function φ[·, ·]. The appearance variation is modeled by the weights
of the components hi.

4.8 Conclusion
We have proposed a novel generative subspace model that exploits additional in-
formation, such as segmentation or semantic labeling, to model the appearance
of visual objects. The “component functions” learned by our model are condi-
tioned on the per-pixel context vectors that were computed using additional
information. This enables sharing of appearance information in a complex, non-
linear way. We derive an efficient iterative learning algorithm by restricting the
class of component functions. We demonstrated that C-CCA can successfully
model challenging datasets that have complex occlusions highly-deformable
visual objects and varying numbers of parts. We reported both qualitative
and quantitative results of our model with examples of structured inpainting
and appearance transfer. Unsurprisingly, C-CCA outperforms PPCA in the
structured inpainting task at a fraction of learned parameters. We discuss the
relation of C-CCA to other popular models, and show that C-CCA is a gener-
alization of PPCA and Active Appearance Models with an implicit alignment
mechanism. Finally, C-CCA demonstrates that there are viable methods of
appearance modeling besides the traditional pipeline with explicit alignment
step.

4.9 Discussion
In this work we naively normalize the context vectors for the k-NN regression
learner; however, a better approach would be to learn the weights for the
dimensions of the context vector using the training data or apply distance
learning techniques.

Furthermore, our model is agnostic to the nature of the context vectors,
so it may be possible to learn the context from the data directly, without the

4.9. Discussion 125

manual labeling; i.e. learn a set of filters that maximize the reconstruction
quality or use the probability distribution of labels learned by a part classifier.
Unsupervised methods that learn a set of discriminative patches could be
directly used to learn a set of good filters.

Finally, one could explore other classes of functions that could be used for
φ[·, ·]. For example, the full model (equations 4.5 and 4.5) could be optimized
with a gradient descent. Hence, the function φ[·, ·] can be modeled with a
Neural Network.

Chapter 5

Synthesizing Images

“And between the art of creating and the art of repeating
there is a great difference. To create means to live, forever
creating newer and newer things.”

—Kazimir Malevich

“Между искусством творить и искусством
повторить — большая разница. Творить — значит
жить, вечно создавая новое и новое.”

Казимир Малевич

In this chapter we investigate automatic synthesis of a novel image given
a set of semantic part masks. Our pipeline has two stages: (i) drawing a
sample from a globally-coherent parametric model conditioned on the semantic
part masks; (ii) post-processing of the drawn sample with a locally-coherent
non-parametric model.

In the first stage, we use Context-Conditioned Component Analysis de-
scribed in Chapter 4 as the parametric model that is learned from a library of
images with respective object masks and semantic part labels. We show how
to sample the component weights hi of C-CCA and the colorspace parameters
Ri and ti.

Since the learned model is low-dimensional, the sampled images lack high-
frequency details. We address this problem by the second stage: hallucinating
high-frequency details by stitching together patches extracted from the training
image set (also used for training C-CCA) that match the target C-CCA sample.
The patch correspondence problem is formulated as a Conditional Random
Field minimization, where the unary term incorporates the appearance of
the patch and its semantic part label. To solve the optimization problem
efficiently, we extend the PatchMatch Belief Propagation algorithm [12] to

5.1. Introduction 127

search over a collection of images by precomputing a graph of inter-image
correspondences [230].

We demonstrate synthesis results of our method on datasets of horses and
elephants.

5.1 Introduction
Synthesizing images is the main research problem of the Computer Graphics
field. The rendering approach relies on simulating interactions of physical
elements of the scene, such as reflectance properties of the materials, geometry
of surfaces, lighting, camera parameters, etc. These properties must be specified
by trained artists, which is a tedious and time-consuming process.

Besides rendering techniques, there are methods that try to learn the
appearance of the visual object by analyzing a library of example images. In
this chapter we address the problem of synthesizing images of highly-deformable,
non-structured visual objects.

As discussed previously, there are two, principally different, data-driven
approaches to the problem of image synthesis: generative parametric models
and non-parametric models.

The generative parametric models build a parametric low-dimensional
representation of a visual object from a library of images. The generative models
can infer the appearance parameters from an image, as well as reconstruct
an image from the appearance parameters. This allows one to generate novel
images by drawing samples of the parametric model with random appearance
parameters. The intrinsic property of parametric models is the dimensionality
reduction, which results in the sampled images to lack high-frequency details
as shown in Figure 5.4.

The non-parametric models copy patches from the library of images, such
that the overlaps of the copied patches have local coherence. This method has
been successfully used for texture synthesis [150]. Blending adjacent patches
in the gradient domain [203] was shown to further improve the realism of the
result. Later, Darabi et al . [159] extended the patch-based synthesis method
to combine inconsistent textures in a realistic way. However, these methods
lack the notion of global coherence. Hence, inputs of tens or hundreds of
images may produce combinations of patches that are a locally-coherent, but
globally-incoherent. Examples of such combination are “Frankenstein” images,
see Figure 2.18.

We further discuss “Visio-lization” [1] method that combined parametric

5.1. Introduction 128

and non-parametric models, however, we refer the reader to Chapter 2 for a
thorough review of other related work.

Mohammed et al . [1] combined parametric and non-parametric models
for the problem of generating images of faces. The images are generated in
two stages. First, the parametric model is sampled for a new image. Then,
the sampled image is divided into a grid and the non-parametric model copies
patches of the library to each cell of the grid. The patches are chosen such that
they have local coherence with each other and they are close to the color values
of the sampled image. This pipeline complements the two models. Indeed,
constraining the non-parametric model to be close to the samples of the para-
metric model adds global coherence to the results of the non-parametric model.
Furthermore, applying non-parametric model hallucinates high-frequency de-
tails on the blurry sample of the parametric model. Mohammed et al . [1] use a
Probabilistic Principal Component Analysis as the global parametric model
to samples images of faces. PPCA works well for visual objects such as faces;
as they have fixed structure, they are already aligned to each other, and they
do not have significant deformations. However, it cannot be readily applied to
non-structured highly-deformable visual objects, such as horses and elephants,
as shown in Figure 1.4, 1.5 or 4.4 (a) and (c). Since the faces are prealigned, the
patch correspondence problem of the non-parametric model is straightforward:
for any cell of the grid, suitable patches are searched in the corresponding cell
location, without significant rotations. However, this assumption does not hold
for deformable objects. For example, consider the patch corresponding to the
head of a horse, it can be located close to the bottom of an image, if the horse
is eating grass, or, it can be located close to the top of an image, if the horse is
galloping.

Similarly to “Visio-lization”, we adopt the approach of combining paramet-
ric and non-parametric models by first generating a globally-coherent image T
by sampling the parametric model and then improving the visual fidelity of T
with a non-parametric model.

We utilize Context-Conditioned Component Analysis as the parametric
model. In Chapter 4 we formulated C-CCA as a generative parametric model
of the appearance of the visual object conditioned on the shape information.
We demonstrated that it can successfully model the appearance of the visual
object in such tasks as structured inpainting and appearance transfer. In this
chapter we randomly sample the learned C-CCA model to generate images of
the visual object that have novel appearance using semantic part labels and

5.2. Global Parametric Model 129

segmentation masks of the test set images. To this end, we learn the probability
distribution of the appearance parameters to generate realistic samples. We
describe the sampling in section 5.2.

In the second stage of our pipeline, the non-parametric model hallucinates
high-frequency details of the C-CCA sample. This is done by stitching high-
quality patches extracted from the training set images (also used for training
C-CCA) that match the target C-CCA sample. The patch correspondence
problem is formulated as a minimization of a Conditional Random Field. Fast
search of patches is a challenging problem when a dataset consists of hundreds
of images, each of which contains thousands or millions (taking into account
multiple scales and rotations) of candidate patches. Hence, we extend the state-
of-the-art patch correspondence method, PatchMatch Belief Propagation [12],
to find suitable patches over a collection of images. To perform the patch search
efficiently, we precompute a graph of inter-image correspondences over all pairs
of images in the dataset. This non-parametric model is described in section 5.3.

In section 5.4 we show results of the full model on two challenging datasets.

5.2 Global Parametric Model
In this section we describe how we sample the learned Context-Conditioned
Component Analysis model for novel appearances. The learning is described in
Chapter 4.

5.2.1 Overview
We fit Context-Conditioned Component Analysis to the images of the dataset
as described in sections 4.4 and 4.5. So, the appearance of the object in each
image is described by F × 1 vector hi, which represents component weights,
and 3× 3 colorspace rotation matrix Ri and 3× 1 colorspace translation vector
ti. The component weights have an independent standard Gaussian prior

Pr(hi) = Normhi [0, I] . (5.1)

Figures 5.1 and 5.2 visualizes the appearances in the common colorspace learned
by C-CCA with F = 8 components. Notice, how the appearance changes for
a component are consistent between the two horses that are in very different
poses. For example, the component φ[·,θ1] controls the brightness of the head
relative to the body of the horse in both examples.

Unfortunately, the colorspace parameters R? and t? do not have a prior

5.2. Global Parametric Model 130

(a) Common
Colorspace Image

(b) Mean Image

µi + 2φ[·,θ1]

µi − 2φ[·,θ1]

µi + 2φ[·,θ2]

µi − 2φ[·,θ2]

µi + 2φ[·,θ3]

µi − 2φ[·,θ3]

µi + 2φ[·,θ4]

µi + 2φ[·,θ4]

(c) (d) (e) (f)

µi + 2φ[·,θ5]

µi − 2φ[·,θ5]

µi + 2φ[·,θ6]

µi − 2φ[·,θ6]

µi + 2φ[·,θ7]

µi − 2φ[·,θ7]

µi + 2φ[·,θ8]

µi + 2φ[·,θ8]

(g) (h) (i) (j)

Figure 5.1: Illustration of the appearance manifold learned by C-CCA with
F = 8 components. (a) A testset image with the colorspace rotated and
translated to the common colorspace. (b) Mean image. (c)-(j) Moving along
the component from the mean by two standard deviations in positive and
negative directions.

that we can use to sample. So, we model colorspace parameters with a Gaussian
Process Latent Variable Model [36]. The colorspace parameters for each image
are 12× 1 vectors that are concatenations of vectorized forms of the colorspace

5.2. Global Parametric Model 131

(a) Common
Colorspace Image

(b) Mean Image

µi + 2φ[·,θ1]

µi − 2φ[·,θ1]

µi + 2φ[·,θ2]

µi − 2φ[·,θ2]

µi + 2φ[·,θ3]

µi − 2φ[·,θ3]

µi + 2φ[·,θ4]

µi + 2φ[·,θ4]

(c) (d) (e) (f)

µi + 2φ[·,θ5]

µi − 2φ[·,θ5]

µi + 2φ[·,θ6]

µi − 2φ[·,θ6]

µi + 2φ[·,θ7]

µi − 2φ[·,θ7]

µi + 2φ[·,θ8]

µi + 2φ[·,θ8]

(g) (h) (i) (j)

Figure 5.2: Illustration of the appearance manifold learned by C-CCA with
F = 8 components for a horse in a different pose (see Figure 5.1). (a) A testset
image with the colorspace rotated and translated to the common colorspace.
(b) Mean image. (c)-(j) Moving along the component from the mean by two
standard deviations in positive and negative directions.

rotation matrix Ri and colorspace translation vector ti. We fit a 2-dimensional
latent representation of the colorspace parameters. We acknowledge that linear
interpolation of rotation matrices may not produce an orthogonal rotation

5.3. Local Non-parametric Model 132

matrix, so, a different representation of the rotation matrix, such as quarternion
representation in Shoemake [246], is left as future work.

5.2.2 Sampling
We assume that we have a semantic part label map, which is used to compute
context map c?, either from a test set data or from some generative shape model.
While samples of the generative model of contours introduced in Chapter 3
(section 3.4.2) are sufficiently detailed to serve as a guide to the user, they,
unfortunately, lack high frequency details and cannot be readily applied in
this method. Hence, in this chapter we use context maps from the test set
of the data. The context map is used to evaluate component functions φ[·, ·].
Next, we draw random samples of the component weights h? from a standard
Gaussian distribution. The component functions φ[c?, ·] are weighted by the
random component weights h? and linearly combined to generate a novel image
T in the “common” colorspace. Examples of the generated samples are shown
in Figure 5.3.

We also sample the GPLVM latent space from a uniform distribution,
such that the variance of the drawn sample is within a threshold. The random
sample can be decomposed into colorspace parameters R? and t?. We normalize
the sample such that R? is an orthogonal rotation matrix. These colorspace
parameteres are applied to the output of the local model to generate the
final result. For illustration, we show the changes in color by applying the
color transformation to samples of C-CCA in Figure 5.4. Notice the difference
between the original image of the test set and the random appearance generated
by the Global Model using the context of the original image.

5.3 Local Non-parametric Model
In this section we describe how we hallucinate high-frequency details on top of
the image T . This method has two important procedures: (i) finding suitable
patches from multiple images of the training set and (ii) blending the patches
together.

The first procedure, the search of the patches, is known as patch corre-
spondence problem in computer vision and graphics. To achieve high visual
fidelity, we find patches that minimize an objective function that has global
constraint terms associated with image T and local constraint terms that ensure
local visual coherence. In subsection 5.3.1 we discuss the patch correspondence
problem and the state-of-the-art approaches in the field.

5.3. Local Non-parametric Model 133

Figure 5.3: Samples of C-CCA in the common colorspace. Left: Image from
the test set. Right: 5 random samples of C-CCA in Common Colorspace, i.e.
h? is random, R? is identity matrix and t? is zero vector. C-CCA components
are conditioned on the context of the image on the left.

The key idea of detail hallucination is that patches of the training images
that are close to the patches of the blurry image T contain high-frequency details.
The way of combining found patches also affects the generated high-frequency
details. We discuss alternatives of blending in subsection 5.3.2.

Naturally, we transform images of the training set to the common colorspace
and work with patches in this colorspace. Hence, after the high-frequency details
are hallucinated, we transform the colors with random samples of R? and t?.
Figure 5.5 visualizes the pipeline.

5.3. Local Non-parametric Model 134

Figure 5.4: Samples of R? and t? colorspace parameters applied to the samples
of C-CCA. Left: Image from the test set. Right: 5 random samples of R?

and t? colorspace parameters drawn from GP-LVM. In each row, different R?

and t? colorspace parameters are applied to one random draw of h? of C-CCA.
C-CCA components are conditioned on the context of the image on the left.

5.3.1 Patch Correspondence Problem

The patch correspondence problem is identifying for each patch of the target
image a corresponding patch from one or more source images according to a cost
function. Unfortunately, finding suitable patches from a collection of images
is a challenging problem. Indeed, if the patches can have rotation and scale
variations, then the number of patches that can be extracted from a few hundred
images is in the millions, even when the source images have low resolution.
An exhaustive patch-to-patch comparison is infeasible, so, randomized and

5.3. Local Non-parametric Model 135

GivenC-CCA

Local Model

φ[c?,θ•] T

h?

c?

θ•

Labels

R?, t?

pj

pj′

pj′

pj′

pj′

Result

Random samples

Figure 5.5: Visualization of the image synthesis pipeline. Circles represent
variables, and rectangles represent images. We assume that the label map
is given, either from the test set or a shape model. The label map produces
context vectors c? for C-CCA. The C-CCA generates image T by drawing a
random sample of h?. The local model is defined over a grid of pixels and
finds patches that are globally coherent (i.e. the patches corresponding to
pj agree with image T and the label map) and locally coherent (i.e. patch
correspondences pj agree with 4-neighbors pj′). The result is generated by
stitched patches together and transforming the colorspace with random samples
of R? and t?.

approximate algorithms are used [12, 154, 158, 230]. So, we start by explaining
the state-of-the-art PatchMatch and PatchMatch Belief Propagation algorithms.
Then we show how we can speed up the search over multiple source images by
precomputing the graph of inter-image correspondences.

First, we define some of the terms in the patch correspondence problem.
We parameterize a patch coordinate (i.e. pointer) by a vector

p = [x, y, α, s, i] , (5.2)

where x and y are spatial coordinates of the center of the patch, α is the

5.3. Local Non-parametric Model 136

rotation of the patch around its center, s is the scale of the patch (i.e. scale
factor of the coordinate grid of the patch) and i = 1 . . . I is the index of an
image from the source image set.

Let the vectorized form of the values of the pixels extracted from an np×np
patch with parameters p be represented by a function

ρcolor[p] = ρcolor([x, y, α, s, i]) ∈ R3np2 . (5.3)

The patches have a corresponding mask of size np × np, which is 0 for
pixels that are not defined, and 1 otherwise. The undefined pixels are pixels
that correspond to the background of images.

ρmask[p] = ρmask([x, y, α, s, i]) ∈ {0, 1}np
2

. (5.4)

The mask is important for patches on the boundaries of objects, so that the
comparison of patches can ignore undefined pixels.

In a similar fashion, we can define the vector representation of the semantic
part labels of the pixel centered at p as

ρlabel[p] = ρlabel [[x, y, i]] ∈ Rnumber of parts, (5.5)

where ρlabel[p] returns a vector of size number of parts× 1 with values 1 and
0 at corresponding dimensions associated with the semantic part labels.

PatchMatch The objective of the PatchMatch algorithm is to find a matching
patch ρcolor[p] from the i-th source image for every patch of the target image τ .
Formally, the objective is to minimize some unary cost. For example, let the
unary cost be

ψcolor
[
τ,pj

]
= ||ρmask ([xτ,j, yτ,j, 0, 1, τ])�

(
ρcolor ([xτ,j, yτ,j, 0, 1, τ])− ρcolor

[
pj
])
||2 , (5.6)

over all axis-aligned, standard scale patches of the target image τ , so ∀j = 1 . . . J

is indexed over all pixels of image τ , such that ∀xτ,j = 0 . . . width − 1 and
yτ,j = 0 . . . height− 1. Here, � is a Hadamard product, i.e. a component-wise
multiplication. Thus, pixels for which ρmask = 0 do not affect the cost. Hence,

5.3. Local Non-parametric Model 137

PatchMatch finds a solution to

argmin
{p}Jj=1

J∑

j=1

ψcolor[τ,pj] . (5.7)

Obviously, the minimum can be found by an exhaustive search over all possible
pj. This, clearly, is too slow for practical applications. For a fixed source
image index ij = ifixed, α = 0 and s = 1, and discrete values of x and y in
pj, an approximate solution can be efficiently found with PatchMatch, which
was proposed by Barnes et al . [154]. The search is done over a grid of nodes,
which, in our case, correspond to the centers of the patches in the image τ .
The PatchMatch algorithm iterates between two steps:

Search: at each node pj, do a randomized search over the valid patches,
i.e.

pj ←




draw xj from Uniform[0 . . . width− 1]

draw yj from Uniform[0 . . . height− 1]

0

1

ij




T

, (5.8)

where ij = ifixed. Alternatively, one can search in some vicinity of the current
estimate of pj.

Propagation: each node proposes matches to the neighboring patches of
the image τ , i.e.

pj ← pj′ +




xτ,j′ − xτ,j
yτ,j′ − yτ,j

0

0

0




T

, (5.9)

where j′ is a set of the 4-connected neighbors of the patch centered at
[xτ,j, yτ,j, 0, 1, 0]. This exploits the spatial smoothness of the correspondences.

Search and propagation steps are illustrated in Figure 5.6.

With a similar reasoning, generalized PatchMatch [158] extends Patch-
Match to the general case of valid patches that allows sub-pixel patch coordi-
nates, rotations and scaling (i.e. also searching over α and s).

PatchMatch Belief Propagation Although PatchMatch exploits the
smoothness of correspondences to increase the search rate, it does not en-

5.3. Local Non-parametric Model 138

Figure 5.6: Revisiting Figure 2.10. The phases of PatchMatch algorithm:
(a) patches initially have random assignments; (b) the blue patch checks
above/green and left/red neighbors to see if they will improve the blue mapping,
propagating good matches; (c) the patch searches randomly for improvements
in concentric neighborhoods. [Source: [154]].

courage piecewise smoothness in the estimated solution. So, it does not take
into account any pairwise costs of the objective energy function, e.g . the cost
associated with pj and pj′ being dissimilar. For our purposes it is important to
incorporate pairwise costs, as we want the pixels to be copied in local regions
from the souce images, as the gradients of the regions contain the high-frequency
details. Indeed, using PatchMatch to minimize a unary-only objective function
may produce matches that are desirable in terms of the cost function, but
come from difference source images. Hence, using patches that are locally and
globally coherent with the blurry image, will not result in detail hallucination,
but will result in reconstruction of the target image using patches of the source
images.

Hence, we require a minimization of a Conditional Random Field, which
consists of unary and pairwise cost terms. Belief Propagation [247, 248] is a
method for finding a minimum of a Conditional Random Fields. Besse et al . [12]
proposed to combine Particle Belief Propagation [249, 250] with PatchMatch
to efficiently minimize the unary costs by sampling the state space with Patch-
Match strategy. Besse et al . demonstrated that PatchMatch Belief Propagation
is not only faster than Belief Propagation, but more accurate than PatchMatch,

5.3. Local Non-parametric Model 139

due to the pairwise costs, for the problems of stereo correspondence and optical
flow estimation. Next, we define some of the pairwise cost terms between a
node j and its 4-neighbor j′.

Pairwise spatial smoothness cost

ψdisp
[
pj,pj′

]
=

(xj − xj′)2 + (yj − yj′)2√
width2 + height2

. (5.10)

Pairwise rotation smoothness cost

ψrot
[
pj,pj′

]
= (sin[αj]− sin[αj′])

2 + (cos[αj]− cos[αj′])
2 . (5.11)

Pairwise scale smoothness cost

ψscale
[
pj,pj′

]
= (sj − sj′)2 . (5.12)

Furthermore, we define a pairwise equality penalty

ψeq
[
pj,pj′

]
= δ[(xj − xj′)2 + (yj − yj′)2 ≤ βeq] , (5.13)

where δ[·] is Kronecker’s delta function which takes value 1 when the logical
expression in the argument is true, and 0 otherwise. The pairwise equality
penalty increases energy in the cases where the neighboring pixels of the target
image are explained by patches that are too similar (almost equal), where βeq
controls the radius of “equality”. This penalty counters the visual artifact of
repeating patches.

Finally, we define a unary cost for the semantic label mismatch

ψlabel(τ,pj) = ||ρlabel [[xτ,j, yτ,j, τ]]− ρlabel
[
pj
]
||2 . (5.14)

We notice that the label mismatch cost compares only a single pair of pixels,
i.e. the pixel of the target image and the central pixel of the patch.
Building Graph of Correspondences In order to allow us to search for
patches across multiple source images, we build a directed graph of correspon-
dences G. Each patch of each image of the library corresponds to one vertex
of G. Edges of G only connect patches that belong to different images. For
practicality, for each vertex of the graph we store a fixed number of edges that
have the most similar appearance, i.e. the connected patches have the lowest
associated costs.

5.3. Local Non-parametric Model 140

The graph of correspondences G is used at the propagation stage of Patch-
Match. So, in addition to suggesting spatial neighbors of good matches, we can
suggest a sample from the connected patches in G from the vertex associated
with the current correspondence

pj ← pj† +




0

0

αj

sj − sj†
0




T

, (5.15)

where pj† is randomly chosen correspondence that is connected to pj in G.

To build the graph, we first estimate the best correspondences for all
patches between all pairs of images. So, for each pair of images τ = 1 . . . I and
i = 1 . . . I, i 6= τ , we precompute the approximate minumum of the objective
function

Lgraph[τ, i] =
J∑

j=1

(
ψcolor

[
τ,pj

]
+ λlabelψlabel

[
τ,pj

])

+
1

2

∑

j′

(
λdispψdisp

[
pj,pj′

]
+ λrotψrot

[
pj,pj′

])
, (5.16)

where τ is the target image i is the source image and λ· are scalar weights
of respective terms. We restrict the patch coordinates pj to have αj ∈
{0, 45, 90, 135, 180, 225, 270, 315}◦, sj = 1 and ij = i.

Next, for every patch pj of every image τ = 1 . . . I, we store the best
NG matches among all solutions of Lgraph[τ, i], where i = 1 . . . I, i 6= τ . These
best NG matches are used as edges in G, and they are uniformly sampled as
suggestions at the propagation stage, as shown in equation 5.15.

The use of G significantly improves the convergence of PatchMatch Belief
Propagation. To demonstrate this, we run PatchMatch Belief Propagation
algorithm with and without the correspondence suggestions from the graph of
correspondences G. For fairness, we propagate an additional random correspon-
dence as a candidate when running without the use of G. As the objective, we
use

L[τ, i] =
J∑

j=1

(
ψcolor

[
τ,pj

]
+ λlabelψlabel

[
τ,pj

])
. (5.17)

5.3. Local Non-parametric Model 141

We measure the energy for each image of the test set as τ . Figure 5.7 shows
the mean energy gain (Lwithout G/Lwith G) of using the graph of correspondences
G per iteration of PMBP. Hence, before any iterations of PMBP, the ratio of
energies is at 1.0. However, after only 5 iterations of PMBP with the graph of
correspondences, the energy is significantly lower than without the use of the
graph of correspondences.

Figure 5.7: The mean energy gain (Lwithout G/Lwith G , see equation 5.17) of using
the graph of correspondences G per iteration of PatchMatch Belief Propagation.
(Higher is better.)

5.3.2 Detail Hallucination of C-CCA Sample

In this subsection, we focus on detail hallucination of image T . First, we search
for suitable patches of the image T by minimizing an objective function

L[T] =
J∑

j=1

(
ψcolor

[
T,pj

]
+ λlabelψlabel

[
T,pj

])

+
1

2

∑

j′

(
δ[ij 6= ij′]λi

+δ[ij = ij′]
(
λdispψdisp

[
pj,pj′

]
+ λrotψrot

[
pj,pj′

]

+ λscaleψscale
[
pj,pj′

]
+ λeqψeq

[
pj,pj′

]))
, (5.18)

5.3. Local Non-parametric Model 142

where λi is the penalty cost for copying patches from different source images.
So, the solution either pays the penalty λi for copying from different sources,
or ensures that the pixels from the same source are adjacent to each other. We
restrict the patch coordinates pj to have αj ∈ {0, 45, 90, 135, 180, 225, 270, 315}◦,
and sj ∈ (0.85, 1.15).

After a number of iterations of the PatchMatch Belief Propagation algo-
rithm, for every pixel of image T we have a patch correspondence pj. Fig-
ures 5.8 (a) and 5.8 (b) visualize the patches found.

One approach of combining the found patches to generate a new image is to
average the RGB values of overlapping pixels of the found patches. Figure 5.9
shows results of the blending (averaging) of the found patches. As it can be
seen, some patches are not locally coherent due to color mismatch, this produces
color bleeding in blending of small patches. The color mismatch effect can be
reduced by preprocessing the patches to match the colors of the target image
T . Figure 5.10 shows similar blending, but each patch is preprocessed before
the blending, such that the mean color value of the patch is matched to the
mean color value of the target patch in image T . As it is shown in Figures 5.9
and 5.10 the averaging operation reduces the high-frequency details. Although
blending of smaller patches produces sharper images, it also introduces noise.
Furthermore, small patches do not contain large, relevant, features of the visual
object, for example the eyes of the horse.

Another approach is to blend the patches in the gradient domain, i.e.
Poisson Blending [203], as shown in Figure 5.11. However, for small patch
sizes this results in color bleeding. For larger patches, the small detailes are
“averaged away” as the gradient at each pixel is an average of 49 or more (the
size of the used patch, e.g ., 7x7) values. Notice, that mean color matching
operation doesn’t effect the blending in the gradient domain. Nevertheless, the
quality of the blending is similar to pixel averaging.
Detailed Partial Image Our approach of including details contained in the
patches found by PMBP algorithm (as can be seen in Figure 5.9) is to generate
an interim, detailed, but incomplete, image Tpartial that is used as an additional
term in another iteration of PMBP patch search.

Hence, we generate the detailed partial image by choosing non-overlapping,
circular patches that have a high variance of color values. The patches are
chosen sequentially, from the highest variance to the lowest variance, such that
each patch is locally coherent (at least 7 of the 8-connected neighbour nodes
point to the same image index) and it is not too close to the previously chosen

5.3. Local Non-parametric Model 143

(a) Target image T .

(b) Patches corresponding to patches centered at each pixel in the red
window of (a)

(c) Similar to (b), but for each patches the mean value is matched to the
mean value of the target patch in T .

Figure 5.8: Patches found by PMBP algorithm.

5.3. Local Non-parametric Model 144

(a)
3× 3

patches

(b)
5× 5

patches

(c)
7× 7

patches

(d)
9× 9

patches

(e)
11× 11
patches

(f)
13× 13
patches

Figure 5.9: Blending of patches found by PMBP algorithm for the target images
in Figure 5.3 (the first random draw). The patches have sizes from 3× 3 to
13 × 13 as shown in (a) to (f), respectively. The patches are averaged with
the Gaussian weighting, where the standard deviation of the Gaussian is the
quarter of the size of the patch.

patches (there is a gap of at least 2 pixels between any two chosen patches).
Figure 5.12 show examples of the detailed partial image generated with different
patch sizes. The generated images are incomplete when patches from some
region do not pass the local coherence constraint. As it can be seen, a lot of
patches contain details that are desirable in the final result.

The detailed partial image Tpartial is used in the additional unary term for

5.3. Local Non-parametric Model 145

(a)
3× 3

patches

(b)
5× 5

patches

(c)
7× 7

patches

(d)
9× 9

patches

(e)
11× 11
patches

(f)
13× 13
patches

Figure 5.10: Blending of patches found by PMBP algorithm for the target
images in Figure 5.3 (the first random draw). The patches have sizes from 3× 3
to 13× 13 as shown in (a) to (f), respectively. The mean of each corresponding
patch is matched to the mean of the patch in the target image. The patches
are averaged with the Gaussian weighting, where the standard deviation of the
Gaussian is the quarter of the size of the patch.

the objective function

ψpartial[Tpartial,pj] = ||ρmask ([xτ,j, yτ,j, 0, 1, Tpartial])�
(
ρcolor ([xτ,j, yτ,j, 0, 1, Tpartial])− ρcolor

[
pj
])
||2 . (5.19)

5.3. Local Non-parametric Model 146

(a)
3× 3

patches

(b)
5× 5

patches

(c)
7× 7

patches

(d)
9× 9

patches

(e)
11× 11
patches

(f)
13× 13
patches

Figure 5.11: Poisson blending of patches found by PMBP algorithm for the
target images in Figure 5.3 (the first random draw). The patches have sizes
from 3 × 3 to 13 × 13 as shown in (a) to (f), respectively. The horizontal
and vertical gradients of patches are averaged with the Gaussian weighting,
where the standard deviation of the Gaussian is the quarter of the size of the
patch. The computed horizontal and vertical gradient fields are used in the
Poisson equation [203], with the boundary gradient constrained to equal to the
boundary gradient of the target image T .

Hence, similarly to equation 5.18, we define a second objective function

L[T, Tpartial] =
J∑

j=1

(
ψcolor

[
T,pj

]
+ λlabelψlabel

[
T,pj

]
+ λpartialψpartial[Tpartial,pj]

)

+
1

2

∑

j′

(
λiδ[ij 6= ij′] + δ[ij = ij′]

(
λdispψdisp

[
pj,pj′

]
+ λrotψrot

[
pj,pj′

]

+λscaleψscale
[
pj,pj′

]
+ λeqψeq

[
pj,pj′

]))
, (5.20)

5.4. Results 147

(a)
3× 3

patches

(b)
5× 5

patches

(c)
7× 7

patches

(d)
9× 9

patches

(e)
11× 11
patches

(f)
13× 13
patches

Figure 5.12: Detailed partial images generated with different patch sizes.

which is minimized with PMBP.

Figure 5.13 shows the blendings of the patches found by minimizing L[T]

and L[T, Tpartial]. Notice, the change in image indices of the found patch
correspondences: image indices in Figure 5.13(d) have “smoother” image index
regions.

Colorspace Transformation Finally, we transform the colorspace of Tdetailed
with random draws of R? and t? colorspace parameters with the sampling
method discussed in section 5.2.2.

5.4 Results
The hyperparameters of PatchMatch Belief Propagation are chosen empirically
and are shown in Table 5.1.

Figures 5.16 and 5.19 show results of our model applied to Horses dataset.
The C-CCA model was trained on 250 images. The segmentations and part
labels of 45 images of the test set (see Figure 5.14) were used to draw samples of
C-CCA (see Figures 5.15 and 5.18). Patches of size 9× 9 were used to generate
the detailed partial images Tpartial (see Figure D.1). For the final result in
Figure 5.16, patches of size 3× 3 were averaged for all patch correspondences.

Figures 5.17 and 5.20 visualizes image indices of the estimated patch
correspondences. This illustrates that the each of the generated images consist

5.4. Results 148

(a) (b) (c) (d)

Figure 5.13: (a) Blending of 3 × 3 patches found by minimizing L[T]. (b)
Visualization of image indices of patches used to generate results in (a). (c)
Blending of 3× 3 patches found by minimizing L[T, Tpartial]. (d) Visualization
of image indices of patches used to generate results in (c).

of fragments of other images and the results is not a warped version of only
one images of the training set.

Our local non-parametric model has improved the visual quality of the
samples of C-CCA (see Figures 5.21, 5.22, 5.33 and 5.34 for side-by-side

5.4. Results 149

Parameters Lgraph[τ, i] L[T] L[T, Tpartial]

np 13 13 13
λlabel 3 2 3
λdisp 0.3 0.2 0.2
λrot 0.3 0.02 0.02
λscale n/a 0.02 0.02
λi n/a 1.5 1.5
λeq n/a 1 1

λpartial n/a n/a 6

Table 5.1: PMBP parameters used in our experiments.

comparison); image features such as eyes, muscles and mane were introduced
to some of the samples of C-CCA.

The training set for Elephants dataset consists of 250 images and test set
consists of 25 images (see Figure 5.23). Similarly, Figures 5.25, 5.28 and 5.31
shows results for Elephants dataset and Figures 5.26, 5.29 and 5.32 visualize
image indices of the estimated patch correspondences, respectively.

Unlike the horses dataset, the images of elephants have in-plane rotation of
the elephants with respect to the camera. Hence, learning a parametric model
for the elephants is more difficult. Consequently, samples of elephants are of
poor quality compared to horses, which, leads to poor quaity of our final results.
Nevertheless, our local model has improved the quality of C-CCA samples:
image features such as wrinkles on the trunk and eyes were introduced to some
of the target images.

5.4. Results 150

Figure 5.14: Test set images of the horses dataset.

5.4. Results 151

Figure 5.15: Images of horses in the common colorspace synthesized with a
random sample of component weights h? and blurred with a Gaussian kernel.
Each image corresponds to image T used to generate results in Figure 5.16.

5.4. Results 152

Figure 5.16: Final synthesis results for the horses dataset with a random sample
of parameters h?, R? and t?.

5.4. Results 153

Figure 5.17: Visualization of image indices of the patches used to generate
results in Figure 5.16.

5.4. Results 154

Figure 5.18: Images of horses in the common colorspace synthesized with a
random sample of component weights h? and blurred with a Gaussian kernel.
Each image corresponds to image T used to generate results in Figure 5.19.

5.4. Results 155

Figure 5.19: Final synthesis results for the horses dataset with another sample
of parameters h?, R? and t?.

5.4. Results 156

Figure 5.20: Visualization of image indices of the patches used to generate
results in Figure 5.19.

5.4. Results 157

Figure 5.21: Each odd row is an image of a horse synthesized with C-CCA from
Figure 5.16. Each even row is an image of a horse after detail hallucination.

5.4. Results 158

Figure 5.22: Continued from Figure 5.21: Each odd row is an image of a horse
synthesized with C-CCA from Figure 5.16. Each even row is an image of a
horse after detail hallucination.

5.4. Results 159

Figure 5.23: Test set images of the elephants dataset.

5.4. Results 160

Figure 5.24: Images of elephants in the common colorspace synthesized with a
random sample of component weights h? and blurred with a Gaussian kernel.
Each image corresponds to image T used to generate results in Figure 5.25.

5.4. Results 161

Figure 5.25: Final synthesis results for the elephants dataset with a random
sample of parameters h?, R? and t?.

5.4. Results 162

Figure 5.26: Visualization of image indices of the patches used to generate
results in Figure 5.25.

5.4. Results 163

Figure 5.27: Images of elephants in the common colorspace synthesized with
another random sample of component weights h? and blurred with a Gaus-
sian kernel. Each image corresponds to image T used to generate results in
Figure 5.28.

5.4. Results 164

Figure 5.28: Final synthesis results for the elephants dataset with another
sample of parameters h?, R? and t?.

5.4. Results 165

Figure 5.29: Visualization of image indices of the patches used to generate
results in Figure 5.28.

5.4. Results 166

Figure 5.30: Images of elephants in the common colorspace synthesized with
another random sample of component weights h? and blurred with a Gaus-
sian kernel. Each image corresponds to image T used to generate results in
Figure 5.31.

5.4. Results 167

Figure 5.31: Final synthesis results for the elephants dataset with another
sample of parameters h?, R? and t?.

5.4. Results 168

Figure 5.32: Visualization of image indices of the patches used to generate
results in Figure 5.31.

5.4. Results 169

Figure 5.33: Each odd row is an image of an elephant synthesized with C-
CCA from Figure 5.24. Each even row is an image of an elephant after detail
hallucination.

5.4. Results 170

Figure 5.34: Continued from Figure 5.33. Each odd row is an image of an
elephant synthesized with C-CCA from Figure 5.24. Each even row is an image
of an elephant after detail hallucination.

5.5. Conclusion 171

5.5 Conclusion
In this chapter we investigated the challenging problem of automatic image syn-
thesis of highly-deformable visual objects, specifically horses and elephants, from
a dataset of images. Our approach combines the globally-coherent parametric
model and locally-coherent non-parametric model in a two-stage pipeline.

We demonstrate how to draw a sample from Context-Conditioned Compo-
nent Analysis, trained on a dataset of images with corresponding segmentations
and part-labels, to generate a globally-coherent novel image T . We explore
the latent space of appearances learned with C-CCA and demonstrate that
the appearance variations along different dimensions of the latent space are
consistent, even under different poses of the visual objects.

The lack of high-frequency details in the generate image T is addressed
with the second stage. We developed a non-parametric model that works on a
local patch level. The non-parametric model finds patches in the dataset that
correspond to patches in the image T . The state-of-the-art PatchMatch Belief
Propagation algorithm [12] was used to efficiently solve the patch correspondence
problem. We precomputed a graph of inter-image correspondences [230] to
increase search speed. The found patches were blended to generate an image
with hallucinated details. Finally, colorspace transformations were applied to
synthesize a final result.

We demonstrated synthesis results of our method on datasets of horses
and elephants.

5.6 Future Work
In this work, after the non-parametric model, the resolution of generated images
remains the same. However, for future work, higher-resolution patches from the
dataset could be used to both hallucinate high-frequency details and increase
the spatial resolution of the synthesized images.

The patches are compared in the “common” RGB colorspace, but com-
parison in other colorspaces, such as Lab, may improve the results. For any
colorspace representations, the patches of the dataset and image T could be
normalized before comparison to introduce invariance to the global intensity of
the object and increase the pool of suitable patches. Another alternative is to
compare patches in some feature space, rather than color space. The feature
space could be filter responses to Gabor-like filterbank [1], SIFT desciptors [175],
Neural Network feature activations [231], etc. So, the investigation of other

5.6. Future Work 172

cost functions for the patch correspondence problem is required.
Finally, our local model uses C-CCA output as input, hence, the quality of

the final result depends on the quality of the samples of C-CCA. As C-CCA was
not trained to generate good samples, but rather trained to reconstruct training
images, there is no guarantee that all random samples of C-CCA are realistic.
Optimizing another loss function that explicitly models the realism of random
samples, such as adversarial loss [144], is left as future work. Furthermore, a
richer set of part labels should improve the samples of C-CCA, which in turn
would increase the quality of the synthesized images.

Chapter 6

Conclusions

In this thesis we investigated the problem of image synthesis. In particular
we explored non-parametric methods, parametric methods and combinations
of the two for generating images, with the focus on synthesis of deformable
visual objects. Our approach exploits a structure map: an image of discrete
labels where each label indicates the part of the object that is present at that
position.

We first reviewed literature on the problem of image synthesis in Chapter 2
and concluded that existing methods synthesize high-quality results for visual
objects that are aligned and have fixed structure, but they are not readily
applicable for more complex, deformable visual objects.

In Chapter 3 we investigated the problem of interactive image synthesis
of deformable visual objects. We collected datasets of various animals with
corresponding segmentations and semantic label maps. Based on traditional
illustrator’s workflow, we represented the animal’s pose using a set of ellipses
as a proxy to allow the users an easy and intuitive way of specifying the pose of
the animal. We modeled the joint representation of the pose and contour in a
GP-LVM, which allowed the system to synthesize continuous suggestions to the
user’s input. The system allowed the user to select a few exemplar images from
the dataset based on the pose and color similarity. Features extracted from
the user’s sketch were used to successfully guide the non-parametric model
that synthesized novel images of non-aligned, deformable visual objects from
the selected exemplars. The global consistency was enforced by sparseness of
the selected exemplars. The resulting images were generated in a coarse-to-
fine fashion with a non-parametric method from the selected exemplars. We
evaluated the method and the synthesized images through two user studies.
The results indicated that non-parametric approaches can be used to synthesize

174

novel images of highly deformable visual objects with the guidance of a structure
map. Furthermore, the traditional illustrator’s approach of specifying the gross
pose of an object with masses proved to be especially useful for specifying the
3D pose.

Synthesizing novel images from a sparse set of weakly-aligned exemplars is
suboptimal, as the appearances in the sparse set may be incompatible. This
motivated the approach of a generative parametric model that can capture
the appearance of highly-deformable or non-structured visual objects from a
few hundred images and corresponding structure maps. Hence, we introduced
a new generative parametric model in Chapter 4 called Context-Conditioned
Component Analysis. C-CCA represents images as a linear combination of
appearance functions, which in turn are conditioned on the non-appearance
information such as keypoint distances, segmentation masks, etc. Instead of
conditioning the component value at each pixel with its (x, y) image coordinate,
as in PPCA, we can condition the component value on the local structural
context. We showed that C-CCA is a generalization of PPCA and Active
Appearance Models, but more powerful, as the local context from the structure
maps can be described in several ways. We derived an efficient learning
procedure for C-CCA and learned appearance representations of deformable and
non-structured visual objects such as horses, elephants, cats and facades. We
showed how C-CCA can estimate the appearance parameters from a partial view
of the visual object in the structured image inpainting task. Furthermore, we
showed how the component functions share the respective appearance variations
across poses, which allowed succesful appearance transfer across different poses
of the visual object. Finally, we evaluated C-CCA with quantitative and
perceptual metrics for future comparisons.

For completely automatic synthesis of images, we can draw random samples
from C-CCA with random parameters. Although most of the images drawn
from C-CCA were globally coherent, they lacked high-frequency details. This is
due to coarseness and misalignment in the labeling of the training images and
dimensionality reduction applied to avoid overfitting. In Chapter 5 we showed
how a combination of the parametric and non-parametric methods can be used
to synthesize novel images with both global and local coherence. We used
C-CCA as the parametric model to generate globally-coherent, albeit blurry,
images. To improve the visual fidelity of the images, we applied non-parametric
model that finds and blends patches that are close to the sampled image. The
colorspace of the generated images was transformed with random samples of the

6.1. Limitations and Future Work 175

colorspace parameters to generate the final results. The non-parametric model
improved the quality of the results by hallucinating high-frequency details. We
showed how the synthesized image were novel, as they consisted of regions of
multiple different images of the training set.

6.1 Limitations and Future Work
Labels The presented methods of image synthesis exploit semantic labels
provided both at training and test times. Although the semantic labels could
be provided by the user, similarly to the system described in Chapter 3, an
automatic synthesis of novel, structurally-valid semantic label maps remains a
future work.

Currently the set of labels has to be consistent among the images (e.g .,
does the animal have a single left front leg label, or does it have 3 labels: an
upper left leg, lower left leg and left foot?). However, a hierarchy of part labels
(used for object detection) could be more intuitive to the user to constrain the
synthesized image. Hence, adapting models to the hierarchical label map is left
as future work.

An interesting line of research would be learning the semantic labels from
the data in a semi-supervised fashion, either by reconstructing and fitting a
template 3D mesh for structured visual objects (see section 2.1.2); or learning
the common elements of the object for non-structured visual objects (see
section 2.1.3). Morever, a greater set of part labels and keypoints should
improve our parametric model, described in Chapter 4, due to better alignment
of data in the context space, leading to a more accurate model.

In addition to the local semantic labels, global semantic labels could be
used to condition C-CCA. This could allow further semantic control of the
samples, for example, conditioning C-CCA to generate a facade of a building
using the city as the global constraint (e.g ., “I want a facade of a building in
Tokyo”).
Models One could explore more powerful function approximators that could
be used for φ[·, ·] in C-CCA. For example, a Convolutional Neural Network
that outputs the values of the basis functions given a semantic label map as
input. Neural Networks as function approximators would also benefit from a
larger training datasets.

Another line of research would be to extend C-CCA from the assump-
tion of standard Gaussian distribution of the latent representations to more
complicated, non-unimodal distributions of the latent representations.

6.1. Limitations and Future Work 176

Random samples of C-CCA do not necessarily produce realistic images as
the underlying distribution of visual objects may not be Gaussian, or unimodal.
Recently proposed loss functions and training methods (e.g ., Generative Ad-
versarial Networks et al . [144, 145]) could be used to improve the quality of
random samples of C-CCA.

Our non-parametric model in Chapter 5 could be extended to generate
images in a coarse-to-fine fashion. Thus, the higher-resolution patches from the
dataset could be used to both hallucinate high-frequency details and increase
the spatial resolution of the synthesized images.

The pipeline in Chapter 5 passes the global constraint from the parametric
model to non-parametric model in the form of an image in the “common” RGB
colorspace. However, instead of images, C-CCA could be trained with a multi-
channel feature representation of an image. This feature representation could
be used for faster and more accurate patch lookups (e.g ., every patch could
be represented with a code in the manifold of patches, similarly to semantic
hashing [136]).
Evaluation Quantitative evaluation of the novelty and perceptual realism
of the synthesized images remains an open problem. While we quantitatively
evaluated non-parametric image synthesis of Chapter 3 and C-CCA in Chapter 4,
quantitatively evaluating the realism of automatically synthesized images is
difficult. As the desired metric is inherently psychophysical, such evaluation
would require user studies, where a user could be queried to compare images
before and after detail hallucination to confirm the benefit of the model.
Moreover, the user could be asked to compare synthetic and real images and
asked to choose preferable image. Reliably and reproducibly measuring the
realism of the images through visual Turing tests is difficult due to the number
of comparisons required for users to evaluate.

One approach of obtaining large quantities of comparisons is to approximate
the human’s responses to the visual Turing with a classifier. This is similar
to Zhu et al . [251] who trained a discriminative classifier to differentiate
between realistic and non-realistic composite images from a dataset of real
and automatically composited images. However, our datasets have a very low
number of images (200 – 450), so it is easy for the classifier to overfit the
training data.

On the other hand, there are approaches, such as SSIM [11], that evaluate
the quality of an image in comparison to a ground-truth reference image.
However, they are not applicable for completely novel images, as the reference

6.1. Limitations and Future Work 177

images are not available. Although one can measure the quality of the generated
image by conditioning the synthesis to be as similar as possible to some test set
image and then use the test set image as reference, the performance, however,
would not measure the quality of the model. Indeed, a significant error score
implies that the images are dissimilar, but it does not necessarily imply that
the model has failed to produce a photo-realistic image. The absence of a
reference image is also a problem for scenarios when a user must generate an
image similar to the image in their “mind’s eye”. In such scenarios performance
of the model can only be measured by the author of the image. Moreover,
even if the user is provided by a target image, the user’s constraints may be
incompatible with the target image, since drawing an object by looking at a
photograph is not trivial. Hence, further research of quantitative measurement
of perceptual realism is required.

Bibliography

[1] Umar Mohammed, Simon J. D. Prince, and Jan Kautz. Visio-lization:
generating novel facial images. In ACM Transactions on Graphics (Proc.
SIGGRAPH), volume 28, pages 57:1–57:8, New York, NY, USA, July
2009. ACM.

[2] Bruno A. Olshausen and David J. Field. Emergence of simple-cell
receptive field properties by learning a sparse code for natural images.
Nature, 381(6583):607–609, 1996.

[3] Eero P. Simoncelli. Statistical models for images: Compression,
restoration and synthesis. In Signals, Systems & Computers, 1997.
Conference Record of the Thirty-First Asilomar Conference on, volume 1,
pages 673–678. IEEE, 1997.

[4] Eric Risser, Charles Han, Rozenn Dahyot, and Eitan Grinspun.
Synthesizing structured image hybrids. ACM Transactions on Graphics
(TOG), 29(4):85, 2010.

[5] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York, Inc.,
2006.

[6] Ralph Gross, Iain Matthews, Jeffrey Cohn, Takeo Kanade, and Simon
Baker. Multi-PIE. In Automatic Face & Gesture Recognition, 2008.
FG’08. 8th IEEE International Conference on, pages 1–8. IEEE, 2008.

[7] Kieron Messer, Josef Kittler, Mohammad Sadeghi, Sebastien Marcel,
Christine Marcel, Samy Bengio, Fabien Cardinaux, Conrad Sanderson,
Jacek Czyz, Luc Vandendorpe, et al. Face verification competition on
the XM2VTS database. In Audio-and Video-Based Biometric Person
Authentication, pages 964–974. Springer, 2003.

Bibliography 179

[8] Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor.
Active Appearance Models. In Computer Vision (ECCV), IEEE
European Conference on, pages 484–498. Springer, 1998.

[9] Eagle Jones and Stefano Soatto. Layered Active Appearance Models. In
Computer Vision (ICCV), IEEE International Conference on, volume 2,
pages 1097–1102. IEEE, 2005.

[10] Alan M. Turing. Computing machinery and intelligence. Mind,
59(236):433–460, 1950.

[11] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero P.
Simoncelli. Image quality assessment: from error visibility to structural
similarity. Image Processing, IEEE Transactions on, 13(4):600–612,
2004.

[12] Frederic Besse, Carsten Rother, Andrew Fitzgibbon, and Jan Kautz.
PMBP: PatchMatch belief propagation for correspondence field
estimation. International Journal of Computer Vision, 110(1):2–13,
2014.

[13] Daniyar Turmukhambetov, Neill D.F. Campbell, Dan B Goldman, and
Jan Kautz. Interactive sketch-driven image synthesis. Computer
Graphics Forum, pages n/a–n/a, 2015.

[14] Daniyar Turmukhambetov, Neill D.F. Campbell, Simon J.D. Prince, and
Jan Kautz. Modeling object appearance using Context-Conditioned
Component Analysis. In Computer Vision and Pattern Recognition
(CVPR), The IEEE International Conference on, June 2015.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems (NIPS), pages 1097–1105.
Curran Associates, Inc., 2012.

[16] Matthew A. Turk and Alex P. Pentland. Face recognition using
eigenfaces. In Computer Vision and Pattern Recognition (CVPR), The
IEEE International Conference on, pages 586–591. IEEE, 1991.

Bibliography 180

[17] Timothy F. Cootes, Christopher J. Taylor, and Andreas Lanitis. Active
Shape Models: Evaluation of a multi-resolution method for improving
image search. In Proceedings of the British Machine Vision Conference,
pages 32.1–32.10. BMVA Press, 1994. doi:10.5244/C.8.32.

[18] Timothy F. Cootes and Christopher J. Taylor. Active Shape Models -
‘smart snakes’. In Proceedings of the British Machine Vision Conference,
pages 266–275. Springer, 1992.

[19] Timothy F. Cootes, Christopher J. Taylor, David H. Cooper, and Jim
Graham. Active Shape Models-their training and application. Computer
vision and image understanding, 61(1):38–59, 1995.

[20] Timothy F. Cootes, Ed R. Baldock, and James Graham. An
introduction to Active Shape Models. Image processing and analysis,
pages 223–248, 2000.

[21] Oren Freifeld, Alexander Weiss, Silvia Zuffi, and Michael J. Black.
Contour people: A parameterized model of 2D articulated human shape.
In Computer Vision and Pattern Recognition (CVPR), The IEEE
International Conference on, pages 639–646. IEEE, 2010.

[22] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian
Thrun, Jim Rodgers, and James Davis. Scape: shape completion and
animation of people. In ACM Transactions on Graphics (TOG), volume
24:3, pages 408–416. ACM, 2005.

[23] Radford M. Neal and Geoffrey E. Hinton. A view of the EM algorithm
that justifies incremental, sparse, and other variants. In Learning in
graphical models, pages 355–368. Springer, 1998.

[24] Sam T. Roweis and Zoubin Ghahramani. A unifying review of linear
Gaussian models. Neural Computation, 11(2):305–345, 1999.

[25] Simon J.D. Prince, Jonathan Warrell, James H. Elder, and Fatima M
Felisberti. Tied factor analysis for face recognition across large pose
differences. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 30(6):970–984, 2008.

[26] Peter N. Belhumeur, João P. Hespanha, and David J. Kriegman.
Eigenfaces vs. Fisherfaces: Recognition using class specific linear

Bibliography 181

projection. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 19(7):711–720, 1997.

[27] Li-Fen Chen, Hong-Yuan Mark Liao, Ming-Tat Ko, Ja-Chen Lin, and
Gwo-Jong Yu. A new LDA-based face recognition system which can
solve the small sample size problem. Pattern Recognition,
33(10):1713–1726, 2000.

[28] Xiaogang Wang and Xiaoou Tang. Dual-space linear discriminant
analysis for face recognition. In Computer Vision and Pattern
Recognition (CVPR), The IEEE International Conference on, pages
564–569, 2004.

[29] Simon J.D. Prince and James H. Elder. Probabilistic linear discriminant
analysis for inferences about identity. In Computer Vision (ICCV),
IEEE International Conference on, pages 1–8. IEEE, 2007.

[30] Dihong Gong, Zhifeng Li, Dahua Lin, Jianzhuang Liu, and Xiaoou Tang.
Hidden factor analysis for age invariant face recognition. In Computer
Vision (ICCV), IEEE International Conference on, pages 2872–2879.
IEEE, 2013.

[31] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science, 290(5500):2323–2326,
2000.

[32] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global
geometric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000.

[33] Zoubin Ghahramani and Geoffrey E. Hinton. The EM algorithm for
mixtures of factor analyzers. Technical report, Technical Report
CRG-TR-96-1, University of Toronto, 1996.

[34] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation. Neural Computation,
15(6):1373–1396, 2003.

[35] Kilian Q. Weinberger and Lawrence K. Saul. Unsupervised learning of
image manifolds by semidefinite programming. International Journal of
Computer Vision, 70(1):77–90, 2006.

Bibliography 182

[36] Neil Lawrence. Probabilistic non-linear Principal Component Analysis
with Gaussian process latent variable models. The Journal of Machine
Learning Research, 6:1783–1816, 2005.

[37] Laurens Van der Maaten and Geoffrey E. Hinton. Visualizing data using
t-SNE. Journal of Machine Learning Research, 9(2579-2605):85, 2008.

[38] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller.
Nonlinear Component Analysis as a kernel eigenvalue problem. Neural
Computation, 10(5):1299–1319, 1998.

[39] Jacob Goldberger, Geoffrey E. Hinton, Sam T. Roweis, and Ruslan
Salakhutdinov. Neighbourhood Components Analysis. In Advances in
Neural Information Processing Systems (NIPS), pages 513–520. Curran
Associates, Inc., 2004.

[40] Ruslan Salakhutdinov and Geoffrey E. Hinton. Learning a nonlinear
embedding by preserving class neighbourhood structure. In International
Conference on Artificial Intelligence and Statistics, pages 412–419, 2007.

[41] Hongteng Xu and Hongyuan Zha. Manifold based face synthesis from
sparse samples. In Computer Vision (ICCV), IEEE International
Conference on, pages 2208–2215. IEEE, 2013.

[42] Xiaofei He, Shuicheng Yan, Yuxiao Hu, Partha Niyogi, and Hong-Jiang
Zhang. Face recognition using Laplacianfaces. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 27(3):328–340, 2005.

[43] Gareth J. Edwards, Christopher J. Taylor, and Timothy F. Cootes.
Interpreting face images using Active Appearance Models. In Automatic
Face and Gesture Recognition, 1998. Proceedings. Third IEEE
International Conference on, pages 300–305. IEEE, 1998.

[44] Iain Matthews and Simon Baker. Active Appearance Models revisited.
International Journal of Computer Vision, 60(2):135–164, 2004.

[45] Der-Tsai Lee and Bruce J. Schachter. Two algorithms for constructing a
Delaunay triangulation. International Journal of Computer &
Information Sciences, 9(3):219–242, 1980.

Bibliography 183

[46] Ian M. Scott, Timothy F. Cootes, and Christopher J. Taylor. Improving
Appearance Model matching using local image structure. In Information
Processing in Medical Imaging, pages 258–269. Springer, 2003.

[47] Timothy F. Cootes and Christopher J. Taylor. An algorithm for tuning
an Active Appearance Model to new data. In Proceedings of the British
Machine Vision Conference, pages 919–928, 2006.

[48] Patrick Sauer, Timothy F. Cootes, and Christopher J. Taylor. Accurate
regression procedures for Active Appearance Models. In Proceedings of
the British Machine Vision Conference, pages 1–11, 2011.

[49] Volker Blanz and Thomas Vetter. A morphable model for the synthesis
of 3D faces. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, pages 187–194. ACM
Press/Addison-Wesley Publishing Co., 1999.

[50] Ankur Patel and William A.P. Smith. 3D morphable face models
revisited. In Computer Vision and Pattern Recognition (CVPR), The
IEEE International Conference on, pages 1327–1334. IEEE, 2009.

[51] Tanasai Sucontphunt, Borom Tunwattanapong, Zhigang Deng, and
Ulrich Neumann. Crafting 3D faces using free form portrait sketching
and plausible texture inference. In Proceedings of Graphics Interface
2010, pages 209–216. Canadian Information Processing Society, 2010.

[52] Tanasai Sucontphunt and Ulrich Neumann. 3D facial surface and texture
synthesis using 2D landmarks from a single face sketch. In 2012 Second
International Conference on 3D Imaging, Modeling, Processing,
Visualization Transmission, pages 152–159, Oct 2012.

[53] Kevin N. Walker, Timothy F. Cootes, and Christopher J. Taylor.
Automatically building Appearance Models from image sequences using
salient features. Image and Vision Computing, 20(5):435–440, 2002.

[54] Krishnan Ramnath, Simon Baker, Iain Matthews, and Deva Ramanan.
Increasing the density of Active Appearance Models. In Computer
Vision and Pattern Recognition (CVPR), The IEEE International
Conference on, pages 1–8. IEEE, 2008.

Bibliography 184

[55] Julia Krüger, Jan Ehrhardt, and Heinz Handels. Probabilistic
appearance models for segmentation and classification. In Computer
Vision (ICCV), IEEE International Conference on, pages 1698–1706,
2015.

[56] Takeo Igarashi, Tomer Moscovich, and John F. Hughes.
As-rigid-as-possible shape manipulation. In ACM Transactions on
Graphics (TOG), volume 24:3, pages 1134–1141. ACM, 2005.

[57] Alexander Hornung, Ellen Dekkers, and Leif Kobbelt. Character
animation from 2D pictures and 3D motion data. ACM Transactions on
Graphics (TOG), 26(1):1, 2007.

[58] Pei Zhang and Timothy F. Cootes. Automatic construction of parts+
geometry models for initializing groupwise registration. Medical Imaging,
IEEE Transactions on, 31(2):341–358, 2012.

[59] Steve A. Adeshina and Timothy F. Cootes. Constructing part-based
models for groupwise registration. In Biomedical Imaging: From Nano to
Macro, 2010 IEEE International Symposium on, pages 1073–1076. IEEE,
2010.

[60] Erik G. Learned-Miller. Data driven image models through continuous
joint alignment. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(2):236–250, 2006.

[61] Timothy F. Cootes, Carole J. Twining, Vladimir S. Petrovic, Roy
Schestowitz, and Christopher J. Taylor. Groupwise construction of
appearance models using piece-wise affine deformations. In Proceedings
of the British Machine Vision Conference, volume 5, pages 879–888,
2005.

[62] Steve A. Adeshina and Timothy F. Cootes. Evaluation of performance of
part-based models for groupwise registration. In Medical Image
Understanding and Analysis, 2010.

[63] René Donner, Horst Wildenauer, Horst Bischof, and Georg Langs.
Weakly supervised group-wise model learning based on discrete
optimization. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2009, pages 860–868. Springer, 2009.

Bibliography 185

[64] Serdar K. Balci, Polina Golland, Martha Shenton, and William M. Wells.
Free-form B-spline deformation model for groupwise registration. In
Medical image computing and computer-assisted intervention: MICCAI...
International Conference on Medical Image Computing and
Computer-Assisted Intervention, volume 10, page 23. NIH Public Access,
2007.

[65] Timothy F. Cootes, Carole J. Twining, Vladimir S. Petrović, Kolawole O.
Babalola, and Christopher J. Taylor. Computing accurate
correspondences across groups of images. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 32(11):1994–2005, 2010.

[66] Min-Jeong Kim, Myoung-Hee Kim, and Dinggang Shen. Learning-based
deformation estimation for fast non-rigid registration. In Computer
Vision and Pattern Recognition Workshops (CVPRW), The IEEE
International Conference on, pages 1–6. IEEE, 2008.

[67] Ce Liu, Jenny Yuen, Antonio Torralba, Josef Sivic, and William T.
Freeman. SIFT flow: Dense correspondence across different scenes. In
Computer Vision (ECCV), IEEE European Conference on, pages 28–42.
Springer, 2008.

[68] David G. Lowe. Object recognition from local scale-invariant features. In
Computer vision, 1999. The proceedings of the seventh IEEE
international conference on, volume 2, pages 1150–1157. Ieee, 1999.

[69] Brendan J. Frey and Nebojsa Jojic. Transformed Component Analysis:
joint estimation of spatial transformations and image components. In
Computer Vision and Pattern Recognition (CVPR), The IEEE
International Conference on, pages 1190–1196, 1999.

[70] John Winn and Nebojsa Jojic. LOCUS: Learning object classes with
unsupervised segmentation. In Computer Vision, International
Conference on, volume 1, pages 756–763. IEEE, 2005.

[71] Hossein Mobahi, Ce Liu, and William T. Freeman. A compositional
model for low-dimensional image set representation. In Computer Vision
and Pattern Recognition (CVPR), The IEEE International Conference
on. IEEE Computer Society, 2014.

Bibliography 186

[72] Thomas J. Cashman and Andrew Fitzgibbon. What shape are dolphins?
building 3D morphable models from 2D images. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 35(1):232–244, 2013.

[73] Sara Vicente, João Carreira, Lourdes Agapito, and Jorge Batista.
Reconstructing Pascal VOC. In Computer Vision and Pattern
Recognition (CVPR), The IEEE International Conference on, pages
41–48. IEEE, 2014.

[74] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John
Winn, and Andrew Zisserman. The PASCAL Visual Object Classes
Challenge 2010 (VOC2010) Results.
http://host.robots.ox.ac.uk/pascal/VOC/voc2010/index.html. Accessed:
2015-07-17.

[75] Manuel Marques and João Costeira. Estimating 3d shape from
degenerate sequences with missing data. Computer Vision and Image
Understanding, 113(2):261–272, 2009.

[76] Aldo Laurentini. The visual hull concept for silhouette-based image
understanding. IEEE Transactions on pattern analysis and machine
intelligence, 16(2):150–162, 1994.

[77] Abhishek Kar, Shubham Tulsiani, João Carreira, and Jitendra Malik.
Category-specific object reconstruction from a single image. In
Computer Vision and Pattern Recognition (CVPR), The IEEE
International Conference on, pages 1966–1974. IEEE, 2015.

[78] Lorenzo Torresani, Aaron Hertzmann, and Chris Bregler. Nonrigid
structure-from-motion: Estimating shape and motion with hierarchical
priors. IEEE transactions on pattern analysis and machine intelligence,
30(5):878–892, 2008.

[79] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher,
and Leonidas Guibas. Functional maps: a flexible representation of maps
between shapes. ACM Transactions on Graphics (TOG), 31(4):30, 2012.

[80] Alexander Bronstein, Michael Bronstein, and Ron Kimmel. Numerical
Geometry of Non-Rigid Shapes. Springer Publishing Company,
Incorporated, 1 edition, 2008.

Bibliography 187

[81] Josef Sivic and Andrew Zisserman. Video Google: A text retrieval
approach to object matching in videos. In Computer Vision, 2003.
Proceedings. Ninth IEEE International Conference on, pages 1470–1477.
IEEE, 2003.

[82] Martin A. Fischler and Robert A. Elschlager. The representation and
matching of pictorial structures. Computers, IEEE Transactions on,
100(1):67–92, 1973.

[83] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Pictorial structures
for object recognition. International Journal of Computer Vision,
61(1):55–79, 2005.

[84] M. Pawan Kumar, Philip H.S. Torr, and Andrew Zisserman. Extending
pictorial structures for object recognition. In Proceedings of the British
Machine Vision Conference, pages 81–1, 2004.

[85] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient matching of
pictorial structures. In Computer Vision and Pattern Recognition
(CVPR), The IEEE International Conference on, volume 2, pages 66–73.
IEEE, 2000.

[86] M. Pawan Kumar, Philip H.S. Torr, and Andrew Zisserman. Learning
layered pictorial structures from video. In ICVGIP, pages 158–164, 2004.

[87] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recognition (CVPR),
The IEEE International Conference on, volume 1, pages 886–893. IEEE,
2005.

[88] Hamed Pirsiavash and Deva Ramanan. Steerable part models. In
Computer Vision and Pattern Recognition (CVPR), The IEEE
International Conference on, pages 3226–3233. IEEE, 2012.

[89] Yi Yang and Deva Ramanan. Articulated pose estimation with flexible
mixtures-of-parts. In Computer Vision and Pattern Recognition (CVPR),
The IEEE International Conference on, pages 1385–1392. IEEE, 2011.

[90] Silvia Zuffi, Oren Freifeld, and Michael J. Black. From pictorial
structures to deformable structures. In Computer Vision and Pattern

Bibliography 188

Recognition (CVPR), The IEEE International Conference on, pages
3546–3553. IEEE, 2012.

[91] Michael C. Burl, Thomas K. Leung, and Pietro Perona. Face localization
via shape statistics. In Proceedings of International Workshop on
Automatic Face and Gesture Recognition, pages 154–159, 1995.

[92] Bastian Leibe, Ales Leonardis, and Bernt Schiele. Combined object
categorization and segmentation with an implicit shape model. In
Workshop on Statistical Learning in Computer Vision (ECCVW), IEEE
European Conference on, pages 17–32, 2004.

[93] Markus Weber, Wolfgang Einhäuser, Max Welling, and Pietro Perona.
Viewpoint-invariant learning and detection of human heads. In
Automatic Face and Gesture Recognition, 2000. Proceedings. Fourth
IEEE International Conference on, pages 20–27. IEEE, 2000.

[94] Rob Fergus, Pietro Perona, and Andrew Zisserman. Object class
recognition by unsupervised scale-invariant learning. In Computer
Vision and Pattern Recognition (CVPR), The IEEE International
Conference on, volume 2, pages II–264. IEEE, 2003.

[95] Markus Weber, Max Welling, and Pietro Perona. Unsupervised learning
of models for recognition. In Computer Vision (ECCV), IEEE European
Conference on, pages 18–32, 2000.

[96] Xiangxin Zhu and Deva Ramanan. Face detection, pose estimation, and
landmark localization in the wild. In Computer Vision and Pattern
Recognition (CVPR), The IEEE International Conference on, pages
2879–2886. IEEE, 2012.

[97] Ying Nian Wu, Zhangzhang Si, Chuck Fleming, and Song-Chun Zhu.
Deformable template as active basis. In Computer Vision (ICCV), IEEE
International Conference on, pages 1–8. IEEE, 2007.

[98] Ying Nian Wu, Zhangzhang Si, Haifeng Gong, and Song-Chun Zhu.
Learning active basis model for object detection and recognition.
International journal of computer vision, 90(2):198–235, 2010.

[99] Zhangzhang Si and Ying Nian Wu. Wavelet, active basis, and shape
script: A tour in the sparse land. In Proceedings of the International

Bibliography 189

Conference on Multimedia Information Retrieval, MIR ’10, pages
201–210, New York, NY, USA, 2010. ACM.

[100] Lubomir Bourdev and Jitendra Malik. Poselets: Body part detectors
trained using 3D human pose annotations. In Computer Vision (ICCV),
IEEE International Conference on, pages 1365–1372. IEEE, 2009.

[101] Richard O. Duda and Peter E. Hart. Use of the Hough transformation
to detect lines and curves in pictures. Communications of the ACM,
15(1):11–15, 1972.

[102] Yang Wang, Duan Tran, and Zicheng Liao. Learning hierarchical
poselets for human parsing. In Computer Vision (ICCV), IEEE
International Conference on, pages 1705–1712. IEEE, 2011.

[103] Leonid Pishchulin, Mykhaylo Andriluka, Peter Gehler, and Bernt Schiele.
Poselet conditioned pictorial structures. In Computer Vision and
Pattern Recognition (CVPR), The IEEE International Conference on,
pages 588–595. IEEE, 2013.

[104] Silvio Savarese and Li Fei-Fei. View synthesis for recognizing unseen
poses of object classes. In Computer Vision (ECCV), IEEE European
Conference on, pages 602–615. Springer, 2008.

[105] Silvio Savarese and Fei-Fei Li. 3D generic object categorization,
localization and pose estimation. In Computer Vision (ICCV), IEEE
International Conference on, pages 1–8, 2007.

[106] Min Sun, Hao Su, Silvio Savarese, and Li Fei-Fei. A multi-view
probabilistic model for 3D object classes. In Computer Vision and
Pattern Recognition (CVPR), The IEEE International Conference on,
pages 1247–1254, June 2009.

[107] Silvio Savarese and Li Fei-Fei. Multi-view object categorization and pose
estimation. In Computer Vision, pages 205–231. Springer, 2010.

[108] Hao Su, Min Sun, Li Fei-Fei, and Silvio Savarese. Learning a dense
multi-view representation for detection, viewpoint classification and
synthesis of object categories. In Computer Vision, 2009 IEEE 12th
International Conference on, pages 213–220. IEEE, 2009.

Bibliography 190

[109] Saurabh Singh, Abhinav Gupta, and Alexei A. Efros. Unsupervised
discovery of mid-level discriminative patches. In Computer Vision
(ECCV), IEEE European Conference on, pages 73–86. Springer, 2012.

[110] Tinghui Zhou, Yong Jae Lee, Stella X Yu, and Alexei A. Efros. Flowweb:
Joint image set alignment by weaving consistent, pixel-wise
correspondences. In Computer Vision and Pattern Recognition (CVPR),
The IEEE International Conference on, pages 1191–1200, 2015.

[111] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Context as
supervisory signal: Discovering objects with predictable context. In
Computer Vision (ECCV), IEEE European Conference on, pages
362–377. Springer, 2014.

[112] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Mid-level visual
element discovery as discriminative mode seeking. In Advances in Neural
Information Processing Systems (NIPS), pages 494–502, 2013.

[113] Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic, and Alexei A.
Efros. What makes Paris look like Paris? ACM Transactions on
Graphics (TOG), 31(4):101:1–101:9, 2012.

[114] Yong Jae Lee, Alexei A. Efros, Martial Hebert, et al. Style-aware
mid-level representation for discovering visual connections in space and
time. In Computer Vision (ICCV), IEEE International Conference on,
pages 1857–1864. IEEE, 2013.

[115] Stefan Lee, Nicolas Maisonneuve, David Crandall, Alexei A. Efros, and
Josef Sivic. Linking past to present: Discovering style in two centuries of
architecture. In IEEE International Conference on Computational
Photography (ICCP), 2015.

[116] Jun-Yan Zhu, Yong Jae Lee, and Alexei A. Efros. AverageExplorer:
Interactive exploration and alignment of visual data collections. ACM
Transactions on Graphics (TOG), 33(4), 2014.

[117] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and
Vladlen Koltun. A probabilistic model for component-based shape
synthesis. ACM Transactions on Graphics (TOG), 31(4):55, 2012.

Bibliography 191

[118] Maks Ovsjanikov, Wilmot Li, Leonidas Guibas, and Niloy J. Mitra.
Exploration of continuous variability in collections of 3D shapes. ACM
Transactions on Graphics (TOG), 30(4):33:1–33:10, July 2011.

[119] Chuan Li, Oliver Deussen, Yi-Zhe Song, Phil Willis, and Peter Hall.
Modeling and generating moving trees from video. In ACM Transactions
on Graphics (Proc. SIGGRAPH Asia), pages 127:1–127:12, New York,
NY, USA, 2011. ACM.

[120] Ilya Shlyakhter, Max Rozenoer, Julie Dorsey, and Seth Teller.
Reconstructing 3D tree models from instrumented photographs.
Computer Graphics and Applications, IEEE, 21(3):53–61, May 2001.

[121] Boris Neubert, Thomas Franken, and Oliver Deussen. Approximate
image-based tree-modeling using particle flows. In ACM Transactions on
Graphics (Proc. SIGGRAPH), New York, NY, USA, 2007. ACM.

[122] Ping Tan, Gang Zeng, Jingdong Wang, Sing Bing Kang, and Long Quan.
Image-based tree modeling. In ACM Transactions on Graphics (Proc.
SIGGRAPH), New York, NY, USA, 2007. ACM.

[123] Long Quan, Ping Tan, Gang Zeng, Lu Yuan, Jingdong Wang, and
Sing Bing Kang. Image-based plant modeling. In ACM Transactions on
Graphics (TOG), volume 25, pages 599–604. ACM, 2006.

[124] Bela Julesz. Visual pattern discrimination. Information Theory, IRE
Transactions on, 8(2):84–92, 1962.

[125] Song Chun Zhu, Yingnian Wu, and David Mumford. Filters, random
fields and maximum entropy (FRAME): Towards a unified theory for
texture modeling. International Journal of Computer Vision,
27(2):107–126, 1998.

[126] David J. Heeger and James R. Bergen. Pyramid-based texture
analysis/synthesis. In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, pages 229–238. ACM,
1995.

[127] Javier Portilla and Eero P. Simoncelli. A parametric texture model
based on joint statistics of complex wavelet coefficients. International
Journal of Computer Vision, 40(1):49–70, 2000.

Bibliography 192

[128] Leon Gatys, Alexander S. Ecker, and Matthias Bethge. Texture
synthesis using convolutional neural networks. In Advances in Neural
Information Processing Systems (NIPS), pages 262–270. Curran
Associates, Inc., 2015.

[129] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A neural
algorithm of artistic style. arXiv preprint arXiv:1508.06576, 2015.

[130] Chuan Li and Michael Wand. Combining Markov random fields and
convolutional neural networks for image synthesis. In Computer Vision
and Pattern Recognition (CVPR), The IEEE International Conference
on, June 2016.

[131] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research,
15:1929–1958, 2014.

[132] Dosovitskiy Alexey, Jost Tobias Springenberg, and Thomas Brox.
Learning to generate chairs with convolutional neural networks. In
Computer Vision and Pattern Recognition (CVPR), The IEEE
International Conference on, 2015.

[133] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image
representations by inverting them. In Computer Vision and Pattern
Recognition (CVPR), The IEEE International Conference on, 2015.

[134] Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus. Adaptive
deconvolutional networks for mid and high level feature learning. In
Computer Vision (ICCV), IEEE International Conference on, pages
2018–2025. IEEE, 2011.

[135] Mathieu Aubry, Daniel Maturana, Alexei A. Efros, Bryan Russell, and
Josef Sivic. Seeing 3D chairs: exemplar part-based 2D-3D alignment
using a large dataset of CAD models. In Computer Vision and Pattern
Recognition (CVPR), The IEEE International Conference on, 2014.

[136] Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science, 313(5786):504–507,
2006.

Bibliography 193

[137] Yoav Freund and David Haussler. Unsupervised learning of distributions
on binary vectors using two layer networks. Technical report, University
of California at Santa Cruz, Santa Cruz, CA, USA, 1994.

[138] Geoffrey E. Hinton. Training products of experts by minimizing
contrastive divergence. Neural Computation, 14(8):1771–1800, August
2002.

[139] S.M. Ali Eslami, Nicolas Heess, and John Winn. The shape Boltzmann
machine: a strong model of object shape. In Computer Vision and
Pattern Recognition (CVPR), The IEEE International Conference on,
pages 406–413. IEEE, 2012.

[140] Ruslan R. Salakhutdinov and Geoffrey E. Hinton. Deep Boltzmann
machines. In Proceedings of the international conference on artificial
intelligence and statistics, volume 5:2, pages 448–455. MIT Press
Cambridge, MA, 2009.

[141] S.M. Ali Eslami and Christopher K.I. Williams. A generative model for
parts-based object segmentation. In F. Pereira, C.J.C. Burges,
L. Bottou, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems (NIPS), pages 100–107. Curran
Associates, Inc., 2012.

[142] S.M.Ali Eslami, Nicolas Heess, Christopher K.I. Williams, and John
Winn. The shape boltzmann machine: A strong model of object shape.
International Journal of Computer Vision, 107:155–176, 2014.

[143] Chi Nhan Duong, Khoa Luu, Kha Gia Quach, and Tien D. Bui. Beyond
Principal Components: Deep Boltzmann machines for face modeling. In
Computer Vision and Pattern Recognition (CVPR), The IEEE
International Conference on, June 2015.

[144] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative Adversarial Networks. ArXiv e-prints, June 2014.

[145] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised
representation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434, 2015.

Bibliography 194

[146] Emily L. Denton, Soumith Chintala, Arthur Szlam, and Robert Fergus.
Deep generative image models using a Laplacian pyramid of adversarial
networks. CoRR, abs/1506.05751, 2015.

[147] Alex Krizhevsky and Geoffrey E. Hinton. Learning multiple layers of
features from tiny images, 2009.

[148] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao.
Construction of a large-scale image dataset using deep learning with
humans in the loop. arXiv preprint arXiv:1506.03365, 2015.

[149] Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. DRAW:
A recurrent neural network for image generation. CoRR, abs/1502.04623,
2015.

[150] Alexei A. Efros and Thomas K. Leung. Texture synthesis by
non-parametric sampling. In Computer Vision (ICCV), IEEE
International Conference on, volume 2, pages 1033–1038. IEEE, 1999.

[151] Claude Elwood Shannon and Warren Weaver. A mathematical theory of
communication, 1948.

[152] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured
vector quantization. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, pages 479–488. ACM
Press/Addison-Wesley Publishing Co., 2000.

[153] Michael Ashikhmin. Synthesizing natural textures. In Proceedings of the
2001 symposium on Interactive 3D graphics, pages 217–226. ACM, 2001.

[154] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B
Goldman. PatchMatch: a randomized correspondence algorithm for
structural image editing. ACM Transactions on Graphics (TOG),
28(3):24, 2009.

[155] Alexei A. Efros and William T. Freeman. Image quilting for texture
synthesis and transfer. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 341–346. ACM,
2001.

Bibliography 195

[156] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick.
Graphcut textures: image and video synthesis using graph cuts. In ACM
Transactions on Graphics (TOG), volume 22:3, pages 277–286. ACM,
2003.

[157] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy
minimization via graph cuts. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 23(11):1222–1239, 2001.

[158] Connelly Barnes, Eli Shechtman, Dan B Goldman, and Adam
Finkelstein. The generalized PatchMatch correspondence algorithm. In
Computer Vision (ECCV), IEEE European Conference on, pages 29–43.
Springer, 2010.

[159] Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B Goldman, and
Pradeep Sen. Image melding: combining inconsistent images using
patch-based synthesis. ACM Transactions on Graphics (TOG), 31(4):82,
2012.

[160] Connelly Barnes, Fang-Lue Zhang, Liming Lou, Xian Wu, and Shi-Min
Hu. PatchTable: Efficient patch queries for large datasets and
applications. In ACM Transactions on Graphics (Proc. SIGGRAPH),
Aug 2015.

[161] Shi-Min Hu, Fang-Lue Zhang, Miao Wang, Ralph R. Martin, and Jue
Wang. PatchNet: A patch-based image representation for interactive
library-driven image editing. ACM Transactions on Graphics (TOG),
32:196:1–196:12, nov 2013.

[162] Lubin Fan, Przemyslaw Musialski, Ligang Liu, and Peter Wonka.
Structure completion for facade layouts. ACM Transactions on Graphics
(TOG), 33(6):210:1–210:11, November 2014.

[163] Dengxin Dai, Hayko Riemenschneider, Gilbert Schmitt, and Luc Van.
Example-based facade texture synthesis. In Computer Vision (ICCV),
IEEE International Conference on, pages 1065–1072. IEEE, 2013.

[164] Sylvain Lefebvre, Samuel Hornus, and Anass Lasram. By-example
synthesis of architectural textures. In ACM Transactions on Graphics
(Proc. SIGGRAPH), pages 84:1–84:8, New York, NY, USA, 2010. ACM.

Bibliography 196

[165] Sawsan AlHalawani, Yong-Liang Yang, Han Liu, and Niloy J Mitra.
Interactive facades analysis and synthesis of semi-regular facades. In
Computer Graphics Forum, volume 32, pages 215–224. Wiley Online
Library, 2013.

[166] Duygu Ceylan, Niloy J. Mitra, Youyi Zheng, and Mark Pauly. Coupled
structure-from-motion and 3D symmetry detection for urban facades.
ACM Transactions on Graphics (TOG), 33(1):2, 2014.

[167] Minh Dang, Duygu Ceylan, Boris Neubert, and Mark Pauly. SAFE:
Structure-aware facade editing. Computer Graphics Forum, 33(2):83–93,
2014.

[168] Lexing Ying, Aaron Hertzmann, Henning Biermann, and Denis Zorin.
Texture and shape synthesis on surfaces. In Proceedings of the 12th
Eurographics Conference on Rendering, EGWR’01, pages 301–312,
Aire-la-Ville, Switzerland, Switzerland, 2001. Eurographics Association.

[169] Hui Fang and John C. Hart. Textureshop: Texture synthesis as a
photograph editing tool. In ACM Transactions on Graphics (Proc.
SIGGRAPH), pages 354–359, New York, NY, USA, 2004. ACM.

[170] Qing Wu and Yizhou Yu. Feature matching and deformation for texture
synthesis. In ACM Transactions on Graphics (Proc. SIGGRAPH), pages
364–367, New York, NY, USA, 2004. ACM.

[171] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and
David H. Salesin. Image analogies. In ACM Transactions on Graphics
(Proc. SIGGRAPH), pages 327–340, 2001.

[172] Olga Diamanti, Connelly Barnes, Sylvain Paris, Eli Shechtman, and
Olga Sorkine-Hornung. Synthesis of complex image appearance from
limited exemplars. ACM Transactions on Graphics (TOG), 34(2), 2015.

[173] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable texture
synthesis. In ACM Transactions on Graphics (TOG), volume 24:3, pages
777–786. ACM, 2005.

[174] Sylvain Lefebvre and Hugues Hoppe. Appearance-space texture
synthesis. In ACM Transactions on Graphics (TOG), volume 25:3, pages
541–548. ACM, 2006.

Bibliography 197

[175] Marshall F. Tappen and Ce Liu. A Bayesian approach to
alignment-based image hallucination. In Computer Vision (ECCV),
IEEE European Conference on, pages 236–249. Springer, 2012.

[176] Nebojsa Jojic, Brendan J. Frey, and Anitha Kannan. Epitomic analysis
of appearance and shape. In Computer Vision (ICCV), IEEE
International Conference on, pages 34–41. IEEE, 2003.

[177] Nebojsa Jojic and Yaron Caspi. Capturing image structure with
probabilistic index maps. In Computer Vision and Pattern Recognition
(CVPR), The IEEE International Conference on, volume 1, pages I–212.
IEEE, 2004.

[178] Anitha Kannan, John Winn, and Carsten Rother. Clustering appearance
and shape by learning jigsaws. In Advances in Neural Information
Processing Systems (NIPS), volume 19, page 657. MIT; 1998, 2007.

[179] Alex Rav-Acha, Pushmeet Kohli, Carsten Rother, and Andrew
Fitzgibbon. Unwrap mosaics: a new representation for video editing. In
ACM Transactions on Graphics (TOG), volume 27:3, page 17. ACM,
2008.

[180] James Hays and Alexei A. Efros. Scene completion using millions of
photographs. In ACM Transactions on Graphics (TOG), volume 26:3,
page 4. ACM, 2007.

[181] Micah K. Johnson, Kevin Dale, Shai Avidan, Hanspeter Pfister,
William T. Freeman, and Wojciech Matusik. CG2Real: Improving the
realism of computer generated images using a large collection of
photographs. Visualization and Computer Graphics, IEEE Transactions
on, 17(9):1273–1285, 2011.

[182] Chen Goldberg, Tao Chen, Fang-Lue Zhang, Ariel Shamir, and Shi-Min
Hu. Data-driven object manipulation in images. In Computer Graphics
Forum, volume 31:2:1, pages 265–274. Wiley Online Library, 2012.

[183] Jean-François Lalonde, Derek Hoiem, Alexei A. Efros, Carsten Rother,
John Winn, and Antonio Criminisi. Photo clip art. In ACM
Transactions on Graphics (TOG), volume 26:3, page 3. ACM, 2007.

Bibliography 198

[184] Kun Xu, Kang Chen, Hongbo Fu, Wei-Lun Sun, and Shi-Min Hu.
Sketch2Scene: Sketch-based co-retrieval and co-placement of 3D models.
ACM Transactions on Graphics (TOG), 32(4):123:1–123:12, 2013.

[185] Biliana Kaneva, Josef Sivic, Antonio Torralba, Shai Avidan, and
William T. Freeman. Matching and predicting street level images. In
Workshop on Vision for Cognitive Tasks in Computer Vision (ECCVW),
IEEE European Conference on, 2010.

[186] Phillip Isola and Ce Liu. Scene collaging: Analysis and synthesis of
natural images with semantic layers. In Computer Vision (ICCV), IEEE
International Conference on, pages 3048–3055. IEEE, 2013.

[187] Matthew Johnson, Gabriel J. Brostow, Jamie Shotton, Ognjen
Arandjelovic, Vivek Kwatra, and Roberto Cipolla. Semantic photo
synthesis. Computer Graphics Forum, 25(3):407–413, 2006.

[188] Tao Chen, Ming-Ming Cheng, Ping Tan, Ariel Shamir, and Shi-Min Hu.
Sketch2Photo: internet image montage. In ACM Transactions on
Graphics (TOG), volume 28:5, page 124. ACM, 2009.

[189] Tao Chen, Ping Tan, Li-Qian Ma, Ming-Ming Cheng, Ariel Shamir, and
Shi-Min Hu. PoseShop: Human image database construction and
personalized content synthesis. IEEE Transactions on Visualization and
Computer Graphics, 19(5):824–837, May 2013.

[190] Mathias Eitz, Ronald Richter, Kristian Hildebrand, Tamy Boubekeur,
and Marc Alexa. Photosketcher: interactive sketch-based image
synthesis. Computer Graphics and Applications, IEEE, 31(6):56–66,
2011.

[191] Mathias Eitz, Kristian Hildebrand, Tamy Boubekeur, and Marc Alexa.
Sketch-based image retrieval: Benchmark and bag-of-features descriptors.
Visualization and Computer Graphics, IEEE Transactions on,
17(11):1624–1636, 2011.

[192] Yen-Liang Lin, Cheng-Yu Huang, Hao-Jeng Wang, and Wei-Chou Hsu.
3D sub-query expansion for improving sketch-based multi-view image
retrieval. In Computer Vision (ICCV), IEEE International Conference
on, pages 3495–3502. IEEE, 2013.

Bibliography 199

[193] Mathias Eitz, Kristian Hildebrand, Tamy Boubekeur, and Marc Alexa.
Sketch-based image retrieval: Benchmark and bag-of-features descriptors.
IEEE Transactions on Visualization and Computer Graphics,
17(11):1624–1636, 2011.

[194] Ming-Ming Cheng, Guo-Xin Zhang, Niloy J. Mitra, Xiaolei Huang, and
Shi-Min Hu. Global contrast based salient region detection. In
Computer Vision and Pattern Recognition (CVPR), The IEEE
International Conference on, pages 409–416. IEEE, 2011.

[195] Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, and William T.
Freeman. LabelMe: a database and web-based tool for image annotation.
International journal of computer vision, 77(1-3):157–173, 2008.

[196] Natasha Kholgade, Tomas Simon, Alexei A. Efros, and Yaser Sheikh. 3D
object manipulation in a single photograph using stock 3d models. ACM
Transactions on Graphics (TOG), 33(4), 2014.

[197] Yong Jae Lee, C. Lawrence Zitnick, and Michael F. Cohen.
ShadowDraw: real-time user guidance for freehand drawing. In ACM
Transactions on Graphics (Proc. SIGGRAPH), pages 27:1–27:10, New
York, NY, USA, 2011. ACM.

[198] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker,
Alex Colburn, Brian Curless, David Salesin, and Michael Cohen.
Interactive digital photomontage. ACM Transactions on Graphics
(TOG), 23(3):294–302, 2004.

[199] Ira Kemelmacher-Shlizerman, Aditya Sankar, Eli Shechtman, and
Steven M. Seitz. Being John Malkovich. In Computer Vision (ECCV),
IEEE European Conference on, pages 341–353. Springer, 2010.

[200] Ira Kemelmacher-Shlizerman, Eli Shechtman, Rahul Garg, and
Steven M. Seitz. Exploring photobios. In ACM Transactions on
Graphics (TOG), volume 30, page 61. ACM, 2011.

[201] Kevin Dale, Kalyan Sunkavalli, Micah K. Johnson, Daniel Vlasic,
Wojciech Matusik, and Hanspeter Pfister. Video face replacement. ACM
Transactions on Graphics (TOG), 30(6):130, 2011.

Bibliography 200

[202] Fei Yang, Jue Wang, Eli Shechtman, Lubomir Bourdev, and Dimitri
Metaxas. Expression flow for 3D-aware face component transfer. ACM
Transactions on Graphics (TOG), 30(4):60, 2011.

[203] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image
editing. ACM Transactions on Graphics (TOG), 22(3):313–318, 2003.

[204] Ce Liu, Heung-Yeung Shum, and Chang-Shui Zhang. A two-step
approach to hallucinating faces: global parametric model and local
nonparametric model. In Computer Vision and Pattern Recognition
(CVPR), The IEEE International Conference on, volume 1, pages I–192.
IEEE, 2001.

[205] Ce Liu, Heung-Yeung Shum, and William T. Freeman. Face
hallucination: Theory and practice. International Journal of Computer
Vision, 75(1):115–134, 2007.

[206] Pouria Mortazavian, Josef Kittler, William J. Christmas, and
Uk Guildford. 3D-assisted facial texture super-resolution. In Proceedings
of the British Machine Vision Conference, pages 1–11, 2009.

[207] Simon Baker and Tekeo Kanade. Limits on super-resolution and how to
break them. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 24(9):1167–1183, 2002.

[208] Arnaud Dessein, William A.P. Smith, Richard C. Wilson, and Edwin R.
Hancock. Example-based modeling of facial texture from deficient data.
In Computer Vision (ICCV), IEEE International Conference on, pages
3898–3906, 2015.

[209] Daniel Dixon, Manoj Prasad, and Tracy Hammond. iCanDraw: Using
sketch recognition and corrective feedback to assist a user in drawing
human faces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 897–906, 2010.

[210] Yotam Gingold, Takeo Igarashi, and Denis Zorin. Structured
annotations for 2d-to-3d modeling. In ACM Transactions on Graphics
(TOG), volume 28, page 148. ACM, 2009.

[211] William H. McMaster. Polarization and the Stokes parameters.
American Journal of Physics, 22:351–362, 1954.

Bibliography 201

[212] Frank P Kuhl and Charles R. Giardina. Elliptic Fourier features of a
closed contour. Computer Graphics and Image Processing, 18:236–258,
1982.

[213] Jennifer Fernquist, Tovi Grossman, and George Fitzmaurice.
Sketch-sketch revolution: An engaging tutorial system for guided
sketching and application learning. In Proceedings of the 24th annual
ACM symposium on User interface software and technology, pages
373–382. ACM, 2011.

[214] Emmanuel Iarussi, Adrien Bousseau, and Theophanis Tsandilas. The
drawing assistant: Automated drawing guidance and feedback from
photographs. In Proceedings of the 26th Annual ACM Symposium on
User Interface Software and Technology, pages 183–192, 2013.

[215] Preston Blair. Cartoon animation (the collector’s series). Collector’s
Series. Walter Foster Publishing, 1994.

[216] Koos Eissen and Roselien Steur. Sketching: Drawing techniques for
product designers. BIS Publishers, 2007.

[217] Grant Fuller. Start sketching and drawing now. North Light Books, 2011.

[218] DrawingNow website.

http://www.drawingnow.com/how-to-draw-animals.html.

[219] Eran Borenstein and Shimon Ullman. Class-specific, top-down
segmentation. In Computer Vision (ECCV), IEEE European Conference
on, pages 109–122. Springer, 2002.

[220] Eran Borenstein and Shimon Ullman. Learning to segment. In
Computer Vision (ECCV), IEEE European Conference on, pages
315–328. Springer, 2004.

[221] Eran Borenstein, Eitan Sharon, and Shimon Ullman. Combining
top-down and bottom-up segmentation. In In Proceedings IEEE
workshop on Perceptual Organization in Computer Vision, CVPR,
volume 4, page 46, 2004.

[222] Andrew Fitzgibbon, Maurizio Pilu, and Robert B Fisher. Direct least
square fitting of ellipses. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 21(5):476–480, 1999.

http://www.drawingnow.com/how-to-draw-animals.html

Bibliography 202

[223] Victor Adrian Prisacariu and Ian Reid. Nonlinear shape manifolds as
shape priors in level set segmentation and tracking. In Computer Vision
and Pattern Recognition (CVPR), The IEEE International Conference
on, 2011.

[224] Ramanan Navaratnam, Andrew Fitzgibbon, and Roberto Cipolla. The
joint manifold model for semi-supervised multi-valued regression. In
Computer Vision (ICCV), IEEE International Conference on, pages 1–8.
IEEE, 2007.

[225] Harry G. Barrow, Jay M. Tenenbaum, Robert C. Bolles, and Helen C.
Wolf. Parametric correspondence and chamfer matching: Two new
techniques for image matching. In Proc. of the International Joint
Conference of Artificial Intelligence, pages 659–663, 1977.

[226] John Brooke. SUS-a quick and dirty usability scale. Usability evaluation
in industry, 189:194, 1996.

[227] James R. Lewis and Jeff Sauro. The factor structure of the system
usability scale. In Human Centered Design, pages 94–103. Springer, 2009.

[228] Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel
Urtasun, and Alan L. Yuille. Detect what you can: Detecting and
representing objects using holistic models and body parts. CoRR,
abs/1406.2031, 2014.

[229] Andrea Vedaldi, Siddarth Mahendran, Stavros Tsogkas, Subhransu Maji,
Ross B. Girshick, Juho Kannala, Esa Rahtu, Iasonas Kokkinos,
Matthew B. Blaschko, David Weiss, Ben Taskar, Karen Simonyan,
Naomi Saphra, and Sammy Mohamed. Understanding objects in detail
with fine-grained attributes. In Computer Vision and Pattern
Recognition (CVPR), The IEEE International Conference on, 2014.

[230] Stephen Gould and Yuhang Zhang. PatchMatchGraph: Building a graph
of dense patch correspondences for label transfer. In Computer Vision
(ECCV), IEEE European Conference on, pages 439–452. Springer, 2012.

[231] Wei Yu, Kuiyuan Yang, Yalong Bai, Hongxun Yao, and Yong Rui. DNN
flow: DNN feature pyramid based image matching. In Proceedings of the
British Machine Vision Conference, 2014.

Bibliography 203

[232] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark
Finocchio, Richard Moore, Alex Kipman, and Andrew Blake. Real-time
human pose recognition in parts from a single depth image. In Computer
Vision and Pattern Recognition (CVPR), The IEEE International
Conference on, 2011.

[233] Timothy F. Cootes, Carole J. Twining, Vladimir S. Petrovic, Kolawole O.
Babalola, and Christopher J. Taylor. Computing accurate
correspondences across groups of images. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 32(11):1994–2005, Nov 2010.

[234] Simon J. D. Prince. Computer Vision: Models, Learning, and Inference.
Cambridge University Press, 2012.

[235] Carl E. Rasmussen and Christopher K.I. Williams. Gaussian Processes
for Machine Learning. MIT Press, 2006.

[236] Evelyn Fix and Joseph L. Hodges Jr. Discriminatory
analysis-nonparametric discrimination: consistency properties. Technical
report, DTIC Document, 1951.

[237] Michael E. Tipping. Sparse Bayesian learning and the relevance vector
machine. The journal of machine learning research, 1:211–244, 2001.

[238] Wolfgang Kabsch. A solution for the best rotation to relate two sets of
vectors. Acta Crystallographica Section A: Crystal Physics, Diffraction,
Theoretical and General Crystallography, 32(5):922–923, 1976.

[239] Thomas Leung and Jitendra Malik. Representing and recognizing the
visual appearance of materials using three-dimensional textons.
International Journal of Computer Vision, 43(1):29–44, 2001.

[240] Olivier Teboul. Ecole Centrale Paris Facades Database.
http://vision.mas.ecp.fr/Personnel/teboul/data.php. Accessed:
2014-07-01.

[241] Boris Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskii i Estestvennyka Nauk, 7(793-800):1–2, 1934.

[242] Joshua B. Tenenbaum and William T. Freeman. Separating style and
content with bilinear models. Neural Computation, 12(6):1247–1283,
2000.

Bibliography 204

[243] M. Alex O. Vasilescu and Demetri Terzopoulos. Multilinear analysis of
image ensembles: Tensorfaces. In Computer Vision (ECCV), IEEE
European Conference on, pages 447–460. Springer, 2002.

[244] M. Alex O. Vasilescu. Human motion signatures: Analysis, synthesis,
recognition. In Pattern Recognition, 2002. Proceedings. 16th
International Conference on, volume 3, pages 456–460. IEEE, 2002.

[245] Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Multifactor
Gaussian process models for style-content separation. In Proceedings of
the 24th international conference on Machine learning, pages 975–982.
ACM, 2007.

[246] Ken Shoemake. Animating rotation with quaternion curves. In ACM
Transactions on Graphics (Proc. SIGGRAPH), volume 19, pages
245–254. ACM, 1985.

[247] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann, 2014.

[248] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Constructing
free-energy approximations and generalized belief propagation
algorithms. Information Theory, IEEE Transactions on,
51(7):2282–2312, 2005.

[249] Alexander T. Ihler and David A. McAllester. Particle belief propagation.
In International Conference on Artificial Intelligence and Statistics,
pages 256–263, 2009.

[250] Rajkumar Kothapa, Jason Pacheco, and Erik B. Sudderth. Max-product
particle belief propagation. Master’s project report, Brown University
Dept. of Computer Science, 2011.

[251] Jun-Yan Zhu, Philipp Krahenbuhl, Eli Shechtman, and Alexei A. Efros.
Learning a Discriminative model for the Perception of Realism in
Composite Images. In Proceedings of the IEEE International Conference
on Computer Vision, pages 3943–3951, 2015.

Appendix A

Dataset Examples

We have compiled four datasets:

• We have labeled 328 images of Weizmann horse database [219, 220, 221]
that already has segmentation masks. The labels are: head, neck, torso, 4
legs, tail. We removed duplicates and images with severe visual artifacts
to a reduced set of 295 images. See Figure A.1.

• We downloaded 281 images of Elephants from internet, manually seg-
mented them, and labeled with following labels: head, torso, 4 legs, trunk.
See Figure A.2.

• We downloaded 270 images of Pigeons from internet, manually segmented
them, and labeled with following labels: head, neck, torso, wing, 2 legs,
tail. See Figure A.3.

• We have purchased a photomontage of cats captured on white background
by professional photographer. The photomontage has 392 images of Cats.
The license does not allow sharing of the photomontage, so we can only
publicly show derived results. The images were segmented from the white
background and manually labeled. The labels are: head, torso, tail and 4
legs. See Figure A.4.

All images were flipped, such that the animal is looking in the front to left
direction. Examples are shown in the Appendix A.

206

Figure A.1: Examples from Horses dataset. From left to right: Image, Segmen-
tation, Part Labeling.

207

Figure A.2: Examples from Elephants dataset. From left to right: Image,
Segmentation, Part Labeling.

208

Figure A.3: Examples from Pigeons dataset. From left to right: Image,
Segmentation, Part Labeling.

209

Figure A.4: Examples from Cats dataset. From left to right: Image, Segmenta-
tion, Part Labeling.

Appendix B

Interactive Sketch-Driven Image
Synthesis
System User Interface

Figures B.1 to B.7 show different tools of the Interactive Sketch-Driven Image
Synthesis system interface described in Chapter 3.

Figure B.1: Interactive Sketch-Driven Image Synthesis System User Interface.
The active tool is “Draw Ellipses”. The user has scribbled a few masses. The
panel on the left shows system’s suggestions for masses, i.e. possible places to
draw next ellipse. The panel on the right shows an averaged image of pigeons
that have similar mass configuration.

211

Figure B.2: Interactive Sketch-Driven Image Synthesis System User Interface.
The active tool is “Draw Contour”. The user has specified some ellipses but
hasn’t started drawing the contour. The panel on the left shows system’s
suggestions for the contour, i.e. possible contours of the pigeon given the
previous ellipse configuration. The panel on the right shows an averaged image
of pigeons that have similar mass configuration.

Figure B.3: Interactive Sketch-Driven Image Synthesis System User Interface.
The active tool is “Draw Contour”. The user has specified some ellipses and
drawn parts of the contour. The panel on the left shows system’s suggestions
for the contour, i.e. possible contours of the pigeon given the previous ellipse
configuration and the sketched contour. The panel on the right shows an
averaged image of pigeons that have similar mass configuration and partial
contour.

212

Figure B.4: Interactive Sketch-Driven Image Synthesis System User Interface.
The active tool is “Edit Appearance”. The user has specified some ellipses and
has drawn parts of the contour. The panel on the left shows preview of the
system’s output given the mass configuration, partial contour and selected
appearance palettes on the right. The panel on the right shows appearance
palettes of pigeons that have similar mass configuration and contour.

Figure B.5: Interactive Sketch-Driven Image Synthesis System User Interface.
The active tool is “Draw Ellipse”. The user has previously specified some ellipses
and has drawn parts of the contour and now wants the refine the specifications
by scribbling more ellipses. The panels show similar content to Figure B.1.

213

Figure B.6: Interactive Sketch-Driven Image Synthesis System User Interface.
The active tool is “Draw Contour”. The user has previously specified some
ellipses and has drawn parts of the contour and now wants the refine the
contour. The panels show similar content to Figure B.3.

Figure B.7: Interactive Sketch-Driven Image Synthesis System User Interface.
The active tool is “Edit Appearance”. The user has previously specified some
ellipses and has drawn parts of the contour. The panels show similar content
to Figure B.4. Since the specifications of the user have changed, the selection
of appearance palettes is now different.

Appendix C

User Sketch Examples

Figures C.1 to C.3 show examples of the sketches and synthesized results
created using the Interactive Sketch-Driven Image Synthesis system described
in Chapter 3.

Figure C.1: From left to right: User’s sketch; nearest neighbor from dataset;
second nearest neighbor from dataset; synthesized result.

215

Figure C.2: From left to right: User’s sketch; nearest neighbor from dataset;
second nearest neighbor from dataset; synthesized result.

216

Figure C.3: From left to right: User’s sketch; nearest neighbor from dataset;
second nearest neighbor from dataset; synthesized result.

Appendix D

User Study Results

Sections D.1 and D.1 report user responses in the two user studies designed
to analyze the Interactive Sketch-Driven Image Synthesis system described in
Chapter 3. The analysis of the user responses is summarized in tables 3.2, 3.3
and 3.4.

D.1 First User Study: User Responses

User
#

I can draw
well.

I’ve been
trained to
draw with
masses.

I think that
I would like
to use this
system

frequently.

I found the
system un-
necessarily
complex.

I thought
the system
was easy to

use.

I think that
I would
need the

support of a
technical

person to be
able to use
this system.

1
Strongly
agree

Agree
Neither
agree nor
disagree

Disagree
Neither
agree nor
disagree

Disagree

2

Neither
agree nor
disagree

Strongly
disagree

Neither
agree nor
disagree

Disagree Disagree
Strongly
disagree

3

Neither
agree nor
disagree

Disagree Agree Disagree
Neither
agree nor
disagree

Disagree

4 Agree
Strongly
disagree

Agree Disagree Agree
Strongly
disagree

5

Neither
agree nor
disagree

Neither
agree nor
disagree

Neither
agree nor
disagree

Neither
agree nor
disagree

Neither
agree nor
disagree

Disagree

6 Disagree Disagree
Neither
agree nor
disagree

Neither
agree nor
disagree

Agree
Strongly
disagree

7 Disagree
Strongly
disagree

Disagree
Strongly
disagree

Neither
agree nor
disagree

Strongly
disagree

8
Strongly
disagree

Strongly
disagree

Agree
Strongly
disagree

Strongly
agree

Disagree

9

Neither
agree nor
disagree

Strongly
disagree

Agree Disagree
Strongly
agree

Disagree

10

Neither
agree nor
disagree

Disagree Disagree
Neither
agree nor
disagree

Strongly
agree

Agree

11
Strongly
disagree

Strongly
disagree

Disagree Agree
Neither
agree nor
disagree

Disagree

12

Neither
agree nor
disagree

Strongly
disagree

Agree
Neither
agree nor
disagree

Neither
agree nor
disagree

Neither
agree nor
disagree

13 Disagree
Strongly
disagree

Agree Disagree
Neither
agree nor
disagree

Neither
agree nor
disagree

14

Neither
agree nor
disagree

Agree
Neither
agree nor
disagree

Disagree Agree Disagree

15 Agree
Strongly
disagree

Neither
agree nor
disagree

Neither
agree nor
disagree

Agree Disagree

16 Disagree
Strongly
disagree

Agree Disagree Agree
Strongly
disagree

17

Neither
agree nor
disagree

Strongly
disagree

Agree
Strongly
disagree

Strongly
agree

Strongly
disagree

18 Agree
Strongly
disagree

Neither
agree nor
disagree

Disagree Agree
Strongly
disagree

User
#

I found the
various

functions in
this system
were well

integrated.

I thought
there was
too much
inconsis-

tency in this
system.

I would
imagine

that most
people

would learn
to use this

system very
quickly.

I found the
system very
cumbersome

to use.

I felt very
confident
using the
system.

I needed to
learn a lot
of things
before I

could get
going with

this system.

1 Disagree Agree Agree Disagree
Neither

agree nor
disagree

Disagree

2 Agree Disagree Disagree
Neither

agree nor
disagree

Disagree Disagree

3 Agree Agree Agree Disagree Disagree
Strongly
disagree

4 Agree Agree
Strongly

agree
Strongly
disagree

Agree
Strongly
disagree

5

Neither
agree nor
disagree

Neither
agree nor
disagree

Agree
Neither

agree nor
disagree

Neither
agree nor
disagree

Disagree

6

Neither
agree nor
disagree

Disagree Agree Disagree
Neither

agree nor
disagree

Disagree

7
Strongly

agree
Strongly
disagree

Strongly
agree

Agree Agree
Strongly
disagree

8
Strongly

agree
Disagree

Strongly
agree

Strongly
disagree

Disagree
Neither

agree nor
disagree

9
Strongly

agree
Disagree Agree Disagree Agree

Strongly
disagree

10 Agree Disagree
Neither

agree nor
disagree

Neither
agree nor
disagree

Neither
agree nor
disagree

Neither
agree nor
disagree

11
Strongly

agree
Agree

Neither
agree nor
disagree

Agree Agree
Strongly
disagree

12
Strongly

agree
Disagree Agree

Neither
agree nor
disagree

Disagree Disagree

13 Agree Disagree Agree
Neither

agree nor
disagree

Disagree
Strongly
disagree

14 Agree Agree Agree Disagree Disagree Disagree

15

Neither
agree nor
disagree

Neither
agree nor
disagree

Agree Disagree
Neither

agree nor
disagree

Neither
agree nor
disagree

16
Strongly

agree
Disagree Agree Disagree

Neither
agree nor
disagree

Disagree

17
Strongly

agree
Strongly
disagree

Strongly
agree

Strongly
disagree

Strongly
agree

Strongly
disagree

18 Agree
Strongly
disagree

Agree Disagree Agree Disagree

User
#

I found the
tools of the

system
worked well

together.

The ellipse
position
feedback

was useful.

The
silhouette
feedback

was useful.

The fast
“NN”

preview
image was

useful.

The coarse
preview of

the
generated

image with
the color

choices was
useful.

I was able
to draw the
specifica-
tions as I
desired.

1

Neither
agree nor
disagree

Disagree Agree
Neither

agree nor
disagree

Agree
Neither

agree nor
disagree

2 Agree Agree Disagree Agree Agree Disagree

3 Agree Agree
Strongly

agree
Strongly

agree
Agree

Neither
agree nor
disagree

4 Agree Agree
Strongly

agree
Agree

Strongly
agree

Agree

5

Neither
agree nor
disagree

Disagree Agree Agree
Neither

agree nor
disagree

Neither
agree nor
disagree

6 Agree Agree Agree
Strongly

agree

Neither
agree nor
disagree

Agree

7 Agree Agree
Strongly

agree
Agree

Strongly
agree

Agree

8 Agree Agree
Strongly

agree

Neither
agree nor
disagree

Agree Agree

9
Strongly

agree
Agree

Strongly
agree

Agree
Strongly

agree
Agree

10 Agree Disagree Agree
Strongly

agree
Strongly

agree
Agree

11
Strongly

agree
Disagree Agree Agree Agree

Neither
agree nor
disagree

12
Strongly

agree
Disagree

Strongly
agree

Strongly
agree

Agree Disagree

13 Agree Agree Agree
Neither

agree nor
disagree

Agree Agree

14

Neither
agree nor
disagree

Agree Agree Agree
Strongly

agree

Neither
agree nor
disagree

15

Neither
agree nor
disagree

Agree
Neither

agree nor
disagree

Strongly
agree

Agree
Strongly

agree

16
Strongly

agree
Agree

Strongly
agree

Agree Agree Agree

17
Strongly

agree
Strongly

agree
Strongly

agree
Strongly

agree
Strongly

agree
Agree

18 Agree
Neither

agree nor
disagree

Strongly
agree

Agree
Strongly

agree
Agree

User
#

The
generated

image from
Assignment

1 closely
matches my

specifica-
tions.

Which of
the systems

was the
easiest to

use?

“Given 3 images
(ask surveyor to

view them),
which one is

closest in terms
of pose?”

“Given 3 images
(ask surveyor to

view them),
which one is

closest in terms
of color?”

“Given 3 images
(ask surveyor to

view them),
which one

resembles the
target image the

most?”

1 Agree System 2
The nearest

neighbour found
by the user

The nearest
neighbour found
by the system

The nearest
neighbour found

by the user

2 Agree System 1
The nearest

neighbour found
by the user

The generated
image

The generated
image

3 Agree System 2
The generated

image

The nearest
neighbour found

by the user

The generated
image

4 Agree System 1
The nearest

neighbour found
by the user

The nearest
neighbour found

by the user

The nearest
neighbour found

by the user

5 Disagree System 2
The nearest

neighbour found
by the user

The generated
image

The nearest
neighbour found

by the user

6 Agree System 1
The nearest

neighbour found
by the system

The nearest
neighbour found

by the user

The nearest
neighbour found

by the user

7 Disagree System 2
The nearest

neighbour found
by the system

The nearest
neighbour found

by the user

The generated
image

8 Agree System 1
The nearest

neighbour found
by the user

The nearest
neighbour found

by the user

The nearest
neighbour found

by the user

9 Agree System 2
The generated

image

The nearest
neighbour found

by the user

The generated
image

10
Strongly

agree
System 2

The generated
image

The nearest
neighbour found

by the user

The generated
image

11 Agree System 2
The nearest

neighbour found
by the user

The nearest
neighbour found

by the user

The nearest
neighbour found

by the user

12

Neither
agree nor
disagree

System 2
The nearest

neighbour found
by the system

The nearest
neighbour found

by the user

The nearest
neighbour found

by the user

13
Strongly

agree
System 1

The generated
image

The nearest
neighbour found

by the user

The nearest
neighbour found

by the user

14
Strongly

agree
System 1

The nearest
neighbour found

by the user

The generated
image

The nearest
neighbour found

by the user

15 Agree System 1
The nearest

neighbour found
by the user

The nearest
neighbour found

by the user

The nearest
neighbour found

by the user

16 Agree System 1
The nearest

neighbour found
by the user

The generated
image

The generated
image

17
Strongly

agree
System 1

The nearest
neighbour found

by the user

The nearest
neighbour found

by the user

The nearest
neighbour found

by the user

18
Strongly

agree
System 2

The generated
image

The generated
image

The generated
image

User
#

The
ellipse

position
feedback

was
useful.

The
silhouette
feedback

was
useful.

The fast
“NN”

preview
image
was

useful.

The coarse
preview of

the
generated

image with
the color

choices was
useful.

I was
able to

draw the
specifica-
tions as I
desired.

The
generated

image
from Task
1 closely
matches

my speci-
fications.

Which of
the tasks
was the

easiest to
perform?

When
specify-
ing pose,
ellipses
were

useful.

1
Strongly

agree
Strongly

agree
Agree

Strongly
agree

Strongly
agree

Agree System 1
Strongly

agree

2 Agree Agree Agree Agree
Strongly

agree
Strongly

agree
System 2 Agree

3 Agree Disagree
Neither

agree nor
disagree

Agree
Neither

agree nor
disagree

Neither
agree nor
disagree

System 3 Agree

4
Strongly

agree
Strongly

agree
Strongly

agree
Strongly

agree
Agree

Neither
agree nor
disagree

System 4
Strongly

agree

5

Neither
agree nor
disagree

Agree
Strongly
disagree

Agree Disagree Disagree System 5 Agree

6 Agree Agree
Neither

agree nor
disagree

Strongly
agree

Agree Agree System 6 Agree

D.2. Second User Study: User Responses 222

D.2 Second User Study: User Responses

D.3. Intermediate Results of Image Synthesis 223

D.3 Intermediate Results of Image Synthesis

D.3. Intermediate Results of Image Synthesis 224

Figure D.1: Detailed partial images of the horses generated with 9× 9 patches.
Each image corresponds to image Tpartial used to generate results in Figure 5.16.

D.3. Intermediate Results of Image Synthesis 225

Figure D.2: Blending of 3× 3 patches found by minimizing L[T, Tpartial] for the
random samples of horses in Figure 5.15.

	Introduction
	Objectives
	Challenges
	Contributions
	Publications
	Outline

	Literature Review
	Parametric Models
	Subspace Models
	Deformable Models
	Part-based Models
	3D Shape Modeling
	Parametric Texture Synthesis
	Neural Networks

	Non-parametric Models
	Non-parametric texture synthesis
	Appearance Image and Index Map
	Retrieval and Compositing

	Combining Parameteric and Non-parametric Methods
	Summary of Related Work

	Interactive Sketch-Driven Image Synthesis
	Introduction
	Related Work
	Sketch Interaction
	User Interaction

	Implementation
	Training Data
	Joint Manifold
	Sketching Masses and Contours
	Appearance Constraints and Synthesis

	Synthesis Results
	User Studies
	First User Study
	Second User Study

	Conclusion
	Limitations
	Discussion

	Context-Conditioned Component Analysis
	Introduction
	Related Work
	Context-Conditioned Component Analysis
	Motivating Example
	Model Description

	Learning
	Learning Approach
	Estimation of hidden variables
	Estimation of noise
	Estimation of function parameters
	Choosing the form of the functions phi

	Modeling Color Images
	Experiments
	Datasets and Context Vectors
	Quantitative Evaluation
	Appearance Transfer
	Structured Inpainting

	Relation to Other Models
	Relation to Probabilistic PCA
	Relation to Active Appearance Model
	Multifactor Models
	Alignment with Components

	Conclusion
	Discussion

	Synthesizing Images
	Introduction
	Global Parametric Model
	Overview
	Sampling

	Local Non-parametric Model
	Patch Correspondence Problem
	Detail Hallucination of C-CCA Sample

	Results
	Conclusion
	Future Work

	Conclusions
	Limitations and Future Work

	Bibliography
	Dataset Examples
	Interactive Sketch-Driven Image Synthesis System User Interface
	User Sketch Examples
	User Study Results
	First User Study: User Responses
	Second User Study: User Responses
	Intermediate Results of Image Synthesis

