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Abstract

Background

Classification of medical sciences into its sub-branches is crucial for optimum administration

of healthcare and specialty training. Due to the rapid and continuous evolution of medical

sciences, development of unbiased tools for monitoring the evolution of medical disciplines

is required.

Methodology/Principal Findings

Network analysis was used to explore how the medical sciences have evolved between

1980 and 2015 based on the shared words contained in more than 9 million PubMed

abstracts. The k-clique percolation method was used to extract local research communities

within the network. Analysis of the shared vocabulary in research papers reflects the trends

of collaboration and splintering among different disciplines in medicine. Our model identifies

distinct communities within each discipline that preferentially collaborate with other commu-

nities within other domains of specialty, and overturns some common perceptions.

Conclusions/Significance

Our analysis provides a tool to assess growth, merging, splitting and contraction of research

communities and can thereby serve as a guide to inform policymakers about funding and

training in healthcare.

Introduction

The medical sciences, like any other branch of science, exhibit a complex emergent behavior

that continuously shapes the structure of medicine. New concepts inspire new subject areas,
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which eventually merge with other disciplines to create a bigger branch, or splinter into sub-

communities to form new smaller branches. A good historical example is the rise of biochem-

istry, which spawned from the merger between biology and organic chemistry in the early

1900s. Biochemistry as a discipline further evolved into a variety of more specialized commu-

nities such chemical pathology, enzymology and metabolism. The selection pressure for

change can be social as well as scientific: one of these new offshoots, molecular biology,

resulted from a fusion of post-WWII-era physics with the more biological end of biochemistry,

fueled by disillusioned physicists fleeing their field and seeking more positive subject matter in

the aftermath of the Manhattan Project [1].

Although understanding the emergent behavior of the medical science is interesting within

the context of the evolution of complex systems, it is also crucial for its optimum administra-

tion. Efficient medical education, budget allocation and healthcare management are strongly

influenced by how medical science is formally classified into its sub-branches. If policymakers

are working with out-of-date information, they will be unable to allocate their research budgets

to maximum effect, or to devise effective training and educational strategies. Therefore, prag-

matic, responsive tools for reliably tracking the evolution of medical disciplines are crucial.

Medical research papers are a valuable source of information that can reflect the trends of

collaboration and overlap between different disciplines. The symbolic structure of research

papers, especially the agreed formal vocabulary that their authors tend to use, has the potential

to serve as a reliable source of information for classification of research into its sub-categories.

Unlike the traditional arbitrary classification of medical lexicons, recent advances in network

analysis enable us to dissect the dynamics of mutual relationships between medical words at

different time intervals. Such analyses can generate a dynamic network which consists of

meaningful mutual connections between symbols (medical words) and their surrounding

communities.

To investigate the evolution of medical research and the formation of communities within

this network, we used a text-mining approach to study ~9,000,000 abstracts that appeared in

PubMed from 1980 to 2015; from this, we created a network of shared medical lexicons. The

resulting entity, which we call the Medical Words Network, consists of nodes that represent

medical worlds (e.g. ‘liver’, ‘cholesterol’, ‘platelet’, ‘cortisol’) and weighted links (edges) that

correspond to the mutual appearance of two words in the same abstract. To calculate the

weight of edges, we used the concept of “pointwise mutual information”, which indicates how

much the appearance of one word tells us about another word in a given abstract [2]. The

mutual information between A and B is zero if they are independent. This means that the fre-

quency of A among abstracts also containing B is the same as the overall frequency of A. At the

other extreme, if word A and B always appear together in abstracts, then all information con-

veyed by A is shared with B. Therefore the mutual information is the same as the information

contained in word A or B alone. There is, of course, a quantifiable spectrum of shared informa-

tion between these two extremes. One advantage of the mutual information approach is that it

depends on the frequency and joint probability of the words rather than on the absolute num-

ber of appearances–which may vary dramatically at different timepoints as topics go in and

out of fashion.

Results and Discussion

Fig 1 represents the evolution of the Medical Words Network between 1980 and 2015 inclusive

in terms of connectivity through time. We used the graph embedding (GEM) algorithm for

network visualization [3] and set two thresholds to reveal the most important nodes/links in

this network (see S1 Fig for a version with the nodes labeled). Initially, in the 1980s, the
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network is comprised of segregated islands of small communities. Through time, these islands

tend to integrate and form a more complex network. The number of satellite islands appears

smaller as the central network becomes more connected and sophisticated (S2 Fig). Such evo-

lution may reflect the influence of medical specialism in the last half of 20th century, which was

followed by the emergence of interdisciplinary research in recent decades [4,5]. The impor-

tance of such an interdisciplinary approach was predicted by scholars such as Wilson in the

last decades of the 20th century when he stated that only fluency across the boundaries will pro-

vide a clear view of the world as it really is [4].

As shown in Fig 1, from year 2000 onwards, a complex inter-connected core emerges in the

heart of the network which can be the subject of detailed analysis. To analyze this core further,

we employed the k-clique percolation method to identify local communities within the net-

work [6]. Originally developed by Derényi et al., this method provides a tool to extract the

local organization from within a complex network. It has been used to analyze of a variety of

networks (e.g. co-authorship, phone calls and protein-protein interactions) and is based on

finding communities within a network [6–8]. The advantage of this method is that the

extracted communities can share nodes (as expected in real communities within a complex

network)[6]. This method views a community as the union of overlapping cliques (within a

graph, a clique of size k is called a k-clique). Two k-cliques are considered adjacent if they

share k-1 nodes and a k-clique community is the largest connected subgraph obtained by the

Fig 1. The evolution of the Medical Words Network in 1980–2015. Each node represents a medical term that has been used more than 2000 time

in PubMed in each time-interval and the links indicate significant pointwise mutual information between two separate words. To consider the most

important edges, a threshold for the mutual information was selected. The measuring unit of information is the bit and in this figure the pointwise mutual

information more than 4 bits indicate a link between two nodes.

doi:10.1371/journal.pone.0167546.g001
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union of all adjacent cliques [7]. To find communities within a network a critical value for k

can be optimized to avoid having a giant component that would merge many small communi-

ties and smear out the details of the community structure [7]. Guided be analogy with percola-

tion phenomena, a giant component appears when k is below a critical point. Thus, we

selected the smallest value of k for which no giant community appears as described by Palla

et al. [7].

In the next step of the study we focused on the core of the Medical Words Network and

extracted its modular structure using an optimized k value. Fig 2 demonstrates evolution of

the core network from 1980–2015 in terms of the communities that form. In this figure, the

diameter of each node is directly proportional to the number of abstracts for each word. The

frequencies of the words that were used more than 2000 times in each time interval is pre-

sented in S1 Table. The thickness of the links in Fig 2 is proportional to the weight (pointwise

mutual information) of the links.

After using k-clique extraction, a variety of clusters (communities) are visible in the net-

work which are differentiated by color (see S3 Fig for a higher resolution version of the figure).

These communities share nodes and are located in close proximity to their most relevant

neighbors. Between 1980 and 2015 the communities show great plasticity, and collectively

Fig 2. Identification of communities within the Medical Words Network based on k-clique percolation method. Each extracted community is

shown with a distinct color. The k-value was set as 4 (k = 4) in order to identify the communities. The diameter of each node and the thickness of the

links are proportional to the number of abstracts (for each node) and the weight (mutual information) of the link respectively.

doi:10.1371/journal.pone.0167546.g002
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exhibit the most common events that can occur in the lifetime a community (namely growth,

contraction, merging, splitting, appearance and disappearance) [8]. For example, from 1990

up to 2010, two distinct clusters (metabolic [yellow] and cardiac [red]) share/exchange nodes

at different time intervals. These communities eventually merge to form a bigger community

in 2010–2015 (shown in red). What’s more, this new large community (2010–2015) also

includes the liver (hepatology) network. From 1990–2010, the hepatology (green) and cardiac

(red) clusters had minimal shared links but, during last five years, these two communities

began publishing papers that significantly shared information about both disciplines. This is

not surprising given the high incidence of metabolic disease in the last decade. It seems, there-

fore, that a public health imperative has brought together two separate communities because

of their need to deal with related co-morbidities (fatty liver disease and cardiovascular

disease).

As another example, hepatology is traditionally regarded as a sub-branch of gastroenterol-

ogy. Indeed, according to our model, in 1990–1995, hepatology (green) and luminal gastroen-

terology (brown) manifest as two separate but close communities with some shared nodes

(‡ and † in Fig 2). Strikingly however, in more recent years they have lost almost all shared

nodes so that, by 2005–2015, the two disciplines are no longer even in the same neighborhood

(‡‡ and †† in Fig 2). Despite this clear separation of communities, the two disciplines are often

still lumped together; for example, in the Population and Systems Medicine Board of the UK

Medical Research Council, they are regarded as one entity called ‘gastroenterology’. A related

phenomenon can be observed with the hematology (pink, �� in Fig 2) and oncology (indigo,
� in Fig 2) clusters. While practitioners in many countries consider these two disciplines as one

specialty, the Medical Words Network almost always distinguishes these two communities as

two separate clusters that overlap with only a few nodes (e.g. anaemia).

Our model indicates that, despite specialty training in most fields of medicine still being

based on anatomy and physiology of organs, distinct communities within each specialty exten-

sively collaborate with other communities within other domains of specialty, sometimes pref-

erentially. Our analysis suggests that some medical specialty training fields today may not

reflect the real research communities underpinning them, and by extension, may not provide

the most efficient system to challenge current health care problems. The emphasis of modern

medicine on specialism may lead to astounding developments, but equally could result in a

confined point of view. Today’s multidisciplinary teams working on a variety of diseases dem-

onstrate a practical, retrospective way to solve the drawbacks of the traditional categorization

of medicine–but broadening the emphasis and introducing interdisciplinarity early on in med-

ical education could reap bigger rewards.

In addition to providing a new classification of evolving medical disciplines, network analy-

sis can also shed light on novel concepts within medical networks at the micro, meso and

macro scales. At the microscopic end, the concept of a word is altered as its local network

evolves. New disciplines with a different vision can modify even the practical meaning of a

word (i.e. a disease or a drug), which in turn can result in emerging novel concepts. For exam-

ple aspirin, which was originally discovered as an anti-inflammatory drug, eventually became

a key player in the hemostasis community (light green community in Fig 2) due to its anti-

platelet effect. From 2005 till 2015, aspirin has been shared within the hemostasis, cardiovascu-

lar and metabolic communities, most likely due to its protective effect against heart attack. In

turn, emerging evidence that aspirin may prevent colon cancer [9] could facilitate the merger

of communities in future that seem apart today.

At the mesoscopic view, geographic borders of different fields appear to have plasticity

with respect to the growth of connectivity, and this plasticity is followed by emergence and

annihilation of some fields. Apart from merging and splitting which was discussed above, a
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community may contract and eventually disappear from the Medical Words Network. A clear

example is the evolution of Autonomic Nervous System community (# in Fig 2) from 1980

until 2015. Although this community was one of the main building blocks of the Network in

1980–1985, it contracted and eventually disappeared from the Network by 2000. In addition, a

new community may emerge with potential to solve a healthcare problem: Although some rel-

atively new fields such as emergency medicine or geriatrics are known entities, there are still

some fields that are practiced in the real world, but do not have an official branch–or a recog-

nized name. This matters, because it is difficult to follow, foster and fund a field that has no

name: names confer legitimacy and status. Finally, in the macroscopic view, aggregation of

connections among different field could be inferred as a signal of the end of organ-based spe-

cialism. Future medicine might be better practiced in multidisciplinary clinics that are run by

practitioners with a more panoramic view and training.

Materials and Methods

Text-mining approach has been used previously for construction of networks [10–13]. In the

present study network analysis was used to explore how the medical sciences have evolved

between 1980 and 2015 based on the shared words contained in more than 9 million PubMed

abstracts.

Source of Data: All abstracts in PubMed until January 2015 inclusive were uploaded using

contact with Application Programming Interface (API) of the National Library of Medicine

(http://www.nlm.nih.gov/api/). We only included entities with English abstracts for the analy-

sis (9,592,193 in total) which consisted of 522195, 779545, 1028478, 1163947, 1407614,

1827149 and 2429399 items for 1980–1985, 1985–1990, 1990–1995, 1995–2000, 2000–2005,

2005–2010 and 210–2015 time-intervals respectively.

Development of the Medical Words Network: The software was developed in MATLAB for

analysis of the network (see S1 File for codes in MATLB). Words that were used more than

2000 times were considered for further analysis and the pointwise mutual information

between all permutations of two words were calculated based on the following formula [2]:

Pointwise mutual information ðA;BÞ ¼ log2

pðA;BÞ
pðAÞ:pðBÞ

¼ log2

f ðA;BÞ
N

f ðAÞ
N :

f ðBÞ
N

Where p(A, B) is the joint probability of the co-occurrence of both words A and B in the

abstracts, and p(A) is the probability of observing word A among the abstracts. p(A, B) is calcu-

lated by dividing the frequency of abstracts containing both A and B (f(A, B)) by total number

of abstracts (N) in a given time interval. Likewise, p(A) is calculated by dividing the frequency

abstracts containing A (f(A)) by N.

To consider the most important nodes, a threshold was selected for each node (words used

more than 2000 times in each time-interval). Likewise a threshold was selected for the edges.

Changing the threshold is like changing the resolution with which the network structure is

investigated. In this study pointwise mutual information more than 4 and 2.8 bits were selected

for Figs 1 and 2 respectively. The graph embedding (GEM) algorithm was embedded for net-

work visualization [3]. This algorithm minimizes edge crossings, allows uniform edge lengths

and doesn’t allow nodes to overlap with edges that are not incident on them. The pointwise

mutual information between all permutations of two words in each time interval is shared at

https://dx.doi.org/10.6084/m9.figshare.4233722.

Community detection within a network: A variety of different methods have been developed

for detection of communities within a network [14]. In this study we employed the k-clique

percolation method to extract local clusters within a network. As expected in natural networks,
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we used a method that allows share nodes among the communities [6,7,8,14]. In brief, k-clique

is a set of k nodes which all are connected directly. Two k-cliques are neighbor if they share k-

1 nodes. A set of k-cliques that are all connected through at least one neighboring path com-

prise a community. Optimized k for extraction of local network communities was selected by

calculating the percolation threshold as described [6,7]. Open source software for finding and

visualizing overlapping communities in networks, based on the k-clique percolation method

can be found at http://www.cfinder.org/.

Supporting Information

S1 Fig. The evolution of the Medical Words Network in 1980–2015. Each node represents a

medical term that has been used more than 2000 time in PubMed in each time-interval and

the links indicate significant mutual information between two separate words.

(PNG)

S2 Fig. The connectivity of the Medical Words Network increases significantly through

time from 1980 to 2015. (A) Size of the giant component, (B) Average distance in the largest

component, (C) Number of connected components.

(PNG)

S3 Fig. Identification of communities within the Medical Words Network based on k-cli-

que percolation method (k = 4). Each extracted community is shown with a distinct color.

The diameter of each node and the thickness of the links are proportionate to the number of

abstracts (for each node) and the weight (mutual information) of the link respectively.

(PNG)

S1 File. The software developed in MATLAB for calculation of pointwise mutual informa-

tion and construction of the Medical Words Network. Please rename the file to PMINet-

work.m before using is as a function. PMINetwork is a function that calculates the pairwise

mutual information between two words based on their co-occurrence in the abstracts.

(M)

S1 Table. The frequencies of the words that were used more than 2000 times in 1980–1985,

1985–1990, 1990–1995, 1995–2000, 2000–2005, 2005–2010 and 210–2015 time-intervals.

(XLSX)
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