
A machine-learning approach to

exoplanet spectroscopy

High-precision data analysis of spectrophometric observations of

exoplanetary transits and eclipses

Giuseppe Morello

Submitted for the degree of Doctor of Philosophy

Department of Physics and Astronomy

University College London



I, Giuseppe Morello, confirm that the work presented in this Thesis

is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the Thesis.

1



Abstract

The characterization of exoplanetary atmospheres is the new frontier in the field of exoplanets.

Transit and eclipse spectroscopy are invaluable sources of information, as they may reveal the

chemical composition, the presence of clouds, and the temperature and pressure profiles of the

atmospheres of exoplanets. A photometric precision of about one part in 104 is necessary to

make statistically significant inferences. The native calibration of current observatories, except

Kepler, is not sufficient to reach this precision. In the past, parametric models have been used

extensively by most teams to remove instrumental systematics. This approach has caused many

debates regarding the use of different parametric choices for the removal of systematic errors.

Parametric models decorrelate the systematic noise with the aid of auxiliary information on

the instrument: the so-called optical state vectors (OSVs). Such OSVs can include inter- and

intra-pixel position of the star or its spectrum, instrument temperatures and inclinations, and/or

other parameters. The choice of the parameters to include in the OSVs is somewhat arbitrary,

as is the choice of the functional forms to approximate the dependence of systematic noise on

those parameters.

The solution to many of the issues deriving from the use of OSVs lies in the use of ‘blind’,

non-parametric techniques. Such methods do not require a model for the systematics, and for

this reason, they can be applied to any instrument with few changes (if any). In this Thesis, I

focus on the Independent Component Analysis (ICA) of multiple time series, which performs a

linear transformation of those series into maximally independent components. The use of ICA

to detrend instrument systematics in exoplanetary light-curves was first proposed by Waldmann

(2012). They experimented with spectroscopic light-curves taken with HST/NICMOS and se-

quential Kepler observations as input light-curves for the ICA. In this Thesis, I present two novel

approaches to detrend single photometric observations in a self-consistent way (pixel-ICA), and

scanning-mode spectroscopic observations without mixing the signals at different wavelengths

(stripe-ICA). The two techniques that I pioneered extend the applicability of ICA to single

observations with different instrument design. Some unsupervised preprocessing steps are also

tested. The better performances of these algorithms compared to other ones in the literature

are demonstrated over a series of Spitzer and Hubble observations, and synthetic data sets.

The (re)analysis of archive and new data with similar techniques will cast new light on the

characterization of exoplanets.
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Chapter 1

Introduction

“Of all objects, the planets are those which appear to us under the

least varied aspect. We see how we may determine their forms, their

distances, their bulk, and their motions, but we can never known any-

thing of their chemical or mineralogical structure; and, much less, that

of organized beings living on their surface ...”

— Auguste Comte, The Positive Philosophy, 1842

The pessimistic statement of the philosopher August Comte reported above has been spec-

tacularly overcome with the rapid scientific and technological progress of the last two centuries.

The predicted limit was motivated by the impossibility, with any foreseeable technology, of trav-

eling to other planets and collecting samples to analyze in a laboratory. Neil Armstrong’s step

onto the Moon in 1969 officially opened the era of space exploration, followed by a long list

of unmanned missions to other objects in our Solar System, e.g. the Mars Rovers (Spirit and

Opportunity landed in 2004, Curiosity in 2012), Cassini-Huygens (also Titan’s landing in 2005)

and Rosetta (comet’s landing in 2014) among the most famous ones. In the last two decades,

the recent discovery of more than 3,000 extrasolar planets (or exoplanets), i.e. planets orbiting

stars other than our Sun, has raised interest in the characterization of these new worlds and rein-

vigorated the search for alien life. While interstellar travels are now off-limits, remote-sensing

spectroscopy enables understanding the exoplanetary composition and environments.

1.1 A steady stream of surprises

The first uncontroversial detection of planet-sized bodies out of the Solar System was reported in

a paper entitled “A planetary system around the millisecond pulsar PSR1257 +12” (Wolszczan
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and Frail, 1992). Pulsars are rapidly rotating neutron stars, dense remnants of stars which

exploded as supernovae, which emit a tremendous amount of high-energy radiation. Such an

extreme environment was certainly not the place where astronomers were expecting to discover

the first exoplanet.

Three years after this first exoplanet discovery, Michael Mayor and Didier Queloz detected

the first exoplanet orbiting around a main-sequence star (Mayor and Queloz, 1995). The planet,

51Peg b, is a gas giant (minimum mass of 0.5 MJ) in a small orbit (semi-major axis of 0.052 AU,

orbital period of 4.23 days) around a solar-type star. As a comparison, its orbital semi-major

axis is 100 times smaller than Jupiter’s (5.2 AU) and 7.4 times smaller than Mercury’s (0.387

AU) one. 51Peg b is the prototype of a new class of planets, named hot-Jupiters by the scientific

community, which was not predicted by models of giant planet formation.

Successive discoveries have revealed an unexpectedly large variety of exoplanetary types, cov-

ering wide ranges in mass, size, density, temperature and orbital parameters. This variety breaks

the dichotomy between rocky (silicate) and gaseous (hydrogen) planets observed in our Solar

System, and suggests the existence of planets with different compositions, such as ocean planets

(e.g. GJ1214 b; Charbonneau et al., 2009), diamond planets (e.g. 55 Cnc e; Madhusudhan

et al., 2012), iron planets (e.g. KOI 1843.03; Rappaport et al., 2013) and helium planets (e.g.

GJ436 b; Hu et al., 2015).

Some planets have highly eccentric orbits, e.g., HD20782 b (e = 0.97; O’Toole et al., 2009),

HD80606 b (e = 0.93; Naef et al., 2001), which cause extreme seasonal variations. Other pecu-

liarities include planets with significant stellar spin-orbit misalignment (e.g., Kepler 56 d; Huber

et al., 2013), circumbinary planets (e.g., HD202206 b; Correia et al., 2005), and even planets in

triple-star systems (e.g., HD188753 Ab; Konacki, 2005).

1.2 Thesis outline

The focus of this Thesis is the development of new data analysis algorithms that allow investigat-

ing the nature of exoplanets, and in particular their atmospheres, through the well-established

transit and eclipse spectroscopy techniques. The pipelines that I wrote make use of Independent

Component Analysis (ICA), a statistical tool which is largely adopted in several contexts, and

it was used for the first time in the field of exoplanets by Waldmann (2012). The pipelines

are original as they are specifically designed for different types of observations and instruments

compared to the other pipelines that make use of ICA in the previous literature. An additional

advantage is that they do not mix information from multiple wavelengths to detrend the transit

signal, so that they are not affected by the wavelength-dependence of stellar limb darkening.
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In Chapter 2, I will introduce to the various detection and characterization methods for

exoplanets and present a brief history of the transit/eclipse spectroscopy technique and the

current need of objective and effective algorithms for the data analysis.

Chapter 3 reports technical details relative to the transit/eclipse spectroscopy.

In Chapter 4, I describe Independent Component Analysis.

Chapter 5 is dedicated to the pixel-ICA algorithm and the results of its application over

Spitzer/IRAC observations of the transits of two exoplanets, HD189733b and GJ436b.

Chapter 6 shows further results obtained by applying the same technique over simulated

observations with a list of instrument behaviours that I generated, in order to test the strenghts

and the limits of the pixel-ICA technique in a general context.

In Chapter 7, the wavelet pixel-ICA variant is introduced, with extended applicability to

lower signal-to-noise observations and faint exoplanet signals. The results obtained for a set

of Warm Spitzer/IRAC observations of eclipses of the exoplanet XO3b and a similar set of

synthetic data created by the Spitzer Science Center are discussed, in comparison with other

state-of-the-art detrending pipelines adopted by other teams. These results are part of the IRAC

Data Challenge 2015.

In Chapter 8, I describe the stripe-ICA algorithm, designed to detrend HST/WFC3 scanning-

mode data, and present the preliminary results obtained for the transit of HAT-P 32b.

Chapter 9 is a brief summary of the work discussed in this Thesis and discusses future

projects.

23



Chapter 2

Detection and characterization

methods

“... when you have eliminated all which is impossible, then what-

ever remains, however improbable, must be the truth.”

— Sherlock Holmes –The blanched soldier (A. Conan

Doyle)

2.1 Detection and characterization methods

2.1.1 Doppler spectroscopy

Better known as the radial velocity method, this was the most productive exoplanet detection

technique, at least until 2014. To date, 670 planets1, including 51Peg b, have been discovered

using the Doppler spectroscopy method. It relies on the star’s orbital motion induced by planets’

gravity. The projected velocity of the star along the observer’s line-of-sight (the radial velocity)

is measured from the displacement of the star’s spectral lines due to the Doppler effect. In the

case of a star with one planet, the radial velocity curve is a periodic function with semi-amplitude

K given by

K =

(
2πG

P

) 1
3 Mp sin i

(M∗ +Mp)
2
3

1√
1− e2

(2.1)

whereMp andM∗ are the mass of the planet and star respectively, G is the gravitational constant,

i is the orbital inclination and e is the eccentricity. The eccentricity also affects the shape of

the periodic signal (see Figure 2.2). The inclination, i, cannot be constrained with this method,

but, assuming Mp � M∗ and an independent estimate for M∗ (usually from spectroscopic

1Number taken from the online catalog exoplanet.eu (Schneider et al., 2011) on July 27, 2016.
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Figure 2.1: Doppler spectroscopy of the star’s spectrum due to the gravitational wobble. Top
left panel: redshifted spectrum due to the star moving away from the observer. Bottom left
panel: blueshifted spectrum due to the star moving towards the observer. Right panels: no
spectral shift, as the star’s velocity is perpendicular to the observer’s line-of-sight.

Figure 2.2: Radial velocity curves of the exoplanet host stars 51Peg (orbital eccentricity e ≈0)
and HD20782 (orbital eccentricity e =0.97). Images from Mayor and Queloz (1995) and O’Toole
et al. (2009).

observations and stellar models), it is possible to estimate the minimum mass of the planet as

Mp sin i. The orbital semi-major axis can be calculated using Kepler’s third law.

Instrumental precision has significantly improved from the ∼20 m/s of the first discovery to

the ∼1 m/s of the HARPS spectrograph on the 3.6 m telescope in La Silla, Chile (Mayor et al.,

2003; Lovis et al., 2006), and HIRES on the 10 m Keck telescope in Mauna Kea, Hawaii (Howard

et al., 2010), leading to the detection of less massive planets, down to 1.9 Earth masses (Mayor

et al., 2009). Further technical improvements expected in future instruments such as CODEX

(Pasquini et al., 2010) and ESPRESSO (Pepe et al., 2014) will push the accuracy down to ∼3–10

cm/s, allowing the detection of Earth-like planets .
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2.1.2 Transits and eclipses

Some exoplanets are transiting, i.e., they pass between the host star and the observer for a

portion of their orbit. Five years after the discovery of 51Peg b, the first observation of the

transit of an exoplanet, HD209458 b, was announced almost simultaneously by two teams (Henry

et al., 2000; Charbonneau et al., 2000). Transits were mainly observed after radial velocity

detections, until the Kepler mission, launched in 2009, inverted this trend. With 2,624 transiting

planets confirmed so far2, and a similar number of candidate planets, the transit method is the

one with the highest number of planet discoveries and/or follow up observations, surpassing

Doppler spectroscopy since 2014. The next generation of transiting planet hunters, TESS (Ricker

et al., 2014) and PLATO (Rauer et al., 2014), are expected to be launched in 2017 and 2024,

respectively. A transit is detected through a drop in the stellar light-curve, as the star is partially

obscured by the planet. Roughly modeling the star as a uniform emitting disc and the planet

as a dark disc, the amplitude of the signal relative to the stellar flux equals the area ratio:

∆F

F∗
∼
πR2

p

πR2
∗

(2.2)

where Rp and R∗ are the planetary and stellar radii, respectively. The transit duration is function

of the orbital velocity and inclination. Having both transit and radial velocity measurements

allows a complete determination of the orbital parameters, mass, size and mean density of the

planet. I refer to Section 3.3 for details about the morphology of a transit light-curve and the

parameter derivations.

If an atmosphere surrounds the planet, a fraction of the star’s light will pass through the

annulus created by the atmosphere. Part of this light can be absorbed by the chemical species

present in the planet’s atmosphere. Given that the absorption cross-section is a wavelength-

dependent function for each species, the atmosphere is more or less transparent at different

wavelengths, depending on the species which are present, on their quantities, and on the physical

conditions (e.g., temperature and pressure). By accurately measuring the transit depths over

multiple phometric bands, a “transmission spectrum” of the atmosphere is obtained, which can

be used to infer some of the atmospheric properties, and in particular, to reveal the presence of

atomic, ionic and molecular species.

Planetary eclipses are also observed when the planet is occulted by the star for a portion of

the orbit; the first detection was reported almost simultaneously by Charbonneau et al. (2005)

and Deming et al. (2005). During the eclipse, only the light emitted by the star reaches the

2Number taken from the online catalog exoplanet.eu (Schneider et al., 2011) on July 27, 2016.
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observer, while before and after the eclipse there is also the contribution of the planet. As the

surface brightness of the planet is (typically) fainter than the host star, the corresponding eclipse

depth is smaller than the transit depth. A collection of eclipse depth measurements over multiple

phometric bands is an “emission+reflection spectrum” of the planet, as it contains the thermal

emission from the planet, which is typically higher in the IR, but also the stellar reflected light,

higher in the optical and UV. Such emission+reflection spectra are mainly used to characterize

the thermal profile of planets and to measure the albedo.

I refer to Section 2.2 for some historical highlights of exoplanet trasmission and emission

spectroscopy.

2.1.3 Imaging

Conceptually the easiest approach to search for exoplanets, direct imaging turned out to be

one of the hardest in practice, as exoplanets tend to be lost in the brilliant glare of their host

stars. This happens because of the high contrast ratio between the two objects (&104) and the

small angular separation. Coronagraphic and interferometric techniques are used to enhance

the images of planets. To date, 69 planets in 64 systems, and 3 multiple systems, have been

directly imaged3. A new generation of instruments such as the ground-based Gemini/GPI

(Macintosh et al., 2006) and VLT /SPHERE (Beuzit et al., 2008) are providing high-quality

images of planets over multiple photometric bands, which are used to detect the main chemical

species in the atmospheres, the presence of clouds and hazes in the upper atmospheric layers, and

to constrain the temperature and the surface gravity (e.g. Vigan et al., 2016; Maire et al., 2016;

Zurlo et al., 2016; Bonnefoy et al., 2016). They are also expected to detect tens of new targets.

The future space missions JWST (Gardner et al., 2006) and perhaps WFIRST (Content et al.,

2011, 2013) will provide images of exoplanets at wavelengths not accessible from the ground.

Directly imaged planets are typically in larger orbits than the transiting ones (see Figure

2.4), hence they probe a different sample of the exoplanet population.

2.1.4 Microlensing

A microlensing event occurs when the gravitational field of an object deflects the light from a

background star, magnifying it. In the case of star–star microlensing, the two stars must be

almost perfectly aligned with the observer. The timescale of a microlensing event may range

from days to weeks, as the two stars and Earth are all moving relative to each other. If the

foreground star has a planet, it may cause a peak in the magnification (see Figure 2.3). A

3Numbers taken from the online catalog exoplanet.eu (Schneider et al., 2011) on July 27, 2016.
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Figure 2.3: Microlensing signal observed from Spitzer and ground-based telescopes. Image credit:
NASA/JPL-Caltech/Warsaw University (modified).

microlensing detection is more likely if the projected star–planet distance is between 1 and 4 AU

(Bennett and Rhie, 1996). Microlensing is more sensitive to low-mass planets and to planets at

larger distances from Earth than other detection methods, hence it may enable measuring the

Galactic distribution of planets. However, the detection rate is low, i.e. 47 discoveries over 12

years4, as microlensing events are rare and non-repeatable. Several ground-based surveys are

constantly monitoring crowded areas in the Galactic disk searching for such events (OGLE, MOA,

PLANET, LCOGT and KMTNet). The Spitzer Microlens Parallax program (Udalski et al., 2015;

Calchi Novati et al., 2015) consists of simultaneous ground- and space-based observations from

significantly different points of view, enabling distance estimates for each lens. Unfortunately,

this method allows only a poor characterization of the planets themselves, as the only measurable

parameters are its mass (broad estimate) and the projected star–planet separation at the moment

of the event.

2.1.5 Timing

Pulsar timing was the method adopted to discover the first two exoplanets (Wolszczan and

Frail, 1992). Similarly to the Doppler spectroscopy method, timing of pulsating variable stars

is used to measure their radial velocities. This method is very sensitive to small planets around

pulsars, for which the pulsation is extremely regular. However, with only 23 discoveries to date4,

astronomers believe that pulsar planets are rare (e.g. Kerr et al., 2015).

4Number taken from the online catalog exoplanet.eu (Schneider et al., 2011) on July 27, 2016.
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Figure 2.4: Mass vs semimajor axis of exoplanets detected with (yellow squares) Doppler spec-
troscopy, (blue circles) transits, (red upward triangles) direct imaging, (black downward trian-
gles) microlensing, (purple crosses) timing and (red stars) transit timing variations. Data taken
from exoplanet.eu on July 27, 2016.

2.1.6 Astrometry

Astrometry aims to measure directly the projected orbital motion of a star caused by its planet.

Given the many intricacies with this method, we register only one unambiguous detection, i.e.

HD176051 b (Muterspaugh et al., 2010). The GAIA mission (Gilmore et al., 2012), launched

in December 2013, is expected to find every Jupiter-sized planet with an orbital period of 1.5–9

years within a distance of approximately 150 light-years from the Sun, totaling 10,000–50,000

new exoplanet discoveries (Perryman et al., 2014).

2.1.7 Transit/eclipse timing

If the orbit of a transiting exoplanet is strictly periodic, the intervals between consecutive transits

or eclipses, as well as their durations, are constant over time. Slight deviations from perfect

regularity may be caused by external perturbers, such as other planets (Holman and Murray,

2005) or moons (Kipping, 2009a,b), or by tidal or relativistic effects (Jordán and Bakos, 2008; Pál

and Kocsis, 2008). Transit Timing Variations (TTVs) refer to the differences between the actual

mid-transit points and their predicted times, according to an adopted periodic law. Transit

Duration Variations (TDVs) refer to changes in the time interval between the beginning and

the end of a transit event. Analogous quantities are defined for eclipses (ETVs and EDVs).

Typical amplitudes for these signals are of the order of minutes or less, but the record is held

by KOI 142.01 with ∼12 hour TTV amplitude (Nesvorny et al., 2013). So far, 7 confirmed

exoplanets5 have TTV measurements.

5Number taken from the online catalog exoplanet.eu (Schneider et al., 2011) on July 27, 2016.
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Figure 2.5: Left: (top) visible transmission spectrum of the exoplanet HD209458b, (middle) with
a narrow bandpass, (bottom) with a medium bandpass. Image from Charbonneau et al. (2002).
Right: near infrared emission spectrum of the exoplanet HD189733b compared with theoretical
models (top) including H2O only, H2O + CO, H2O + CO2, H2O + CH4, and (bottom) H2O +
CO + CO2 + CH4. Images from Swain et al. (2009b).

2.2 Brief history of transit/eclipse spectroscopy

Charbonneau et al. (2002) reported the detection of atomic sodium in the atmosphere of the hot-

Jupiter HD209458b, through the absorption feature in the region of the sodium resonance doublet

at 589.3 nm observed with HST/STIS during the transit, relative to simultaneous observations in

adjacent bands. This was the first detection of a chemical element in an exoplanetary atmosphere.

In the following years, other atomic and ionic species have been detected in different exoplanets

through their sharply peaked absorption features in the UV and visible, both from space- and

ground-based telescopes, e.g. hydrogen Lyman-α (Vidal-Madjar et al., 2003; Lecavelier Des

Etangs et al., 2010; Jensen et al., 2012), carbon II and oxygen I (Vidal-Madjar et al., 2004),

magnesium II (Fossati et al., 2010), silicon III (Linsky et al., 2010), silicon IV (Schlawin et al.,

2010) and potassium I (Sing et al., 2011a). Molecules are best detected through smooth infrared

modulations over several microns, associated with their rovibrational transitions. Tinetti et al.

(2007) announced the presence of water vapour in the atmosphere of the hot-Jupiter HD189733b

based on the differential transit depths measured simultaneously with Spitzer/IRAC at 3.6 and

5.8 µm (Beaulieu et al., 2008), together with a previous measurement at 8.0 µm (Knutson et al.,
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Figure 2.6: The transmission spectrum of the exoplanet HD189733b, combining measurements
from different authors and comparing with some theoretical models. Image from Danielski et al.
(2014).

2007a). Barman (2007) proposed water-vapour absorption to explain the modulation at ∼1 µm

in the transmission spectrum of HD209458b measured with HST/STIS (Knutson et al., 2007b).

The first exoplanetary emission spectra were reported by Richardson et al. (2007); Grillmair et al.

(2007); Swain et al. (2008a), with no conclusive evidence of modulations. The presence of carbon

molecules in the atmospheres has been inferred from IR transmission and emission spectra, e.g.

methane (CH4, Swain et al., 2008b; Agol et al., 2010; Tinetti et al., 2010), carbon dioxide (CO2,

Swain et al., 2009a) and carbon monoxide (CO, Swain et al., 2009b; Madhusudhan and Seager,

2009; Snellen et al., 2010). The first spectral measurements were limited to the brightest hot-

Jupiters; now similar measurements are available for tens of exoplanets. Recently, the new

HST/WFC3 camera allowed investigation of the atmospheres of super-Earths (Kreidberg et al.,

2014; Knutson et al., 2014b; Tsiaras et al., 2016).

Despite these successes, some controversial results are debated in the literature. Here, I list

three kinds of controversial result:

1. discrepant results from reanalyses of the same data sets using different parameterizations

to detrending the instrument systematics;

2. variability between repeated observations of the same target, potentially due to the stellar

activity or uncorrected instrument systematics;

3. difficulties in the interpretation of the spectra, e.g., because of model degeneracies, unex-
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pected features, the presence of clouds, etc.

Examples of famous controversies in the previous literature relate to the presence of water and

methane in the atmosphere of HD189733b (Ehrenreich et al., 2007; Tinetti et al., 2007; Beaulieu

et al., 2008; Charbonneau et al., 2008; Grillmair et al., 2008; Swain et al., 2008b, 2009b, 2010;

Pont et al., 2008, 2013; Désert et al., 2009, 2011; Sing et al., 2009, 2011b; Mandell et al., 2011;

Waldmann et al., 2012, 2013; Danielski et al., 2014; Morello et al., 2014); the dominant carbon

molecule in the atmosphere of HD209458b (Knutson et al., 2008; Beaulieu et al., 2010; Diamond-

Lowe et al., 2014; Zellem et al., 2014; Evans et al., 2015); and of the warm-Neptune GJ436b

(Gillon et al., 2007; Deming et al., 2007; Demory et al., 2007; Alonso et al., 2008; Coughlin

et al., 2008; Cáceres et al., 2009; Pont et al., 2009; Ballard et al., 2010b; Stevenson et al., 2010;

Beaulieu et al., 2011; Knutson et al., 2011, 2014a; Morello et al., 2015).

The main effort, in this Thesis, is to address the first two kinds of controversy by developing

and using objective data detrending techniques, in order to obtain robust results for the transit

and eclipse depth measurements.
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Chapter 3

Transit/eclipse spectroscopy –

technical details

3.1 The three-dimensional orbit

In this section, I introduce the parameters which are used to describe the orientation of an

exoplanet orbit relative to the observer and the position of the planet. A representation is given

in Figure 3.1. The nomenclature and the symbols introduced in this Section will be adopted

throughout this Thesis.

I refer to the sky as the plane perpendicular to the line-of-sight to where the star lies. The

two points where the planet’s orbit crosses the sky are called nodes. In particular, the ascending

node is where the planet is moving to the observer and the descending node is where the planet

is moving away from the observer. To expedite the following explanations, I hereby anticipate

that all angles defined in this section will have their vertex at the star’s center. The longitude

of the ascending node, Ω, is the angle between the ascending node and a reference line in the

sky. The inclination, i, is the smaller of the two angles between the orbital plane and the sky

(0 ≤ i ≤ π/2). The argument of periapsis, ω, is the angle, in the orbital plane, between the

ascending node and the periapsis. The three angles, Ω, i and ω, are used to fully describe the

orientation of the orbit.

The true anomaly, f , is the angular coordinate of the planet along the orbit, referred to the

periapsis. Inferior conjunction is the instant when f = π/2 − ω. Superior conjunction is the

opposite point, i.e. when f = 3π/2− ω.
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Figure 3.1: Orbital elements of an exoplanet orbiting a star. Figure from Murray and Correia
(2011).

3.2 Geometric transit probability

The transit of an exoplanet in front of its host star is determined by the geometric orientation

of the star–planet system relative to the observer. From the schematic representation in Figure

3.2, the following condition, for a transit to occur, can be derived for a point-like planet in a

circular orbit:

cos i ≤ R∗
a

(3.1)

where a is the orbital radius, i is the inclination and R∗ is the stellar radius. Using the knowledge

that, for an isotropic distribution of planetary orbits, cos i is uniformly distributed between 0

and 1, we note that R∗/a is the geometric transit probability for a system with given R∗ and a.

The bottom panel in Figure 3.2 shows the transit probability as a function of the orbital radius

for a Sun-sized star.
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A general formula for the transit probability of a planet in an eccentric orbit is (Winn, 2014;

Kipping, 2014)

p(transit|R∗, a, e) =
R∗
a

1

1− e2
(3.2)

being e the eccentricity.

If Rp is the planet’s radius, we can replace R∗ in Equations 3.1 and 3.2 with R∗+Rp to account

for all transits, no matter how grazing, or with R∗ −Rp to account only for the full transits.
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Figure 3.2: Top panel: bidimensional scheme of a star-planet system and observer, showing the
limiting condition to have a transit. Bottom panel: geometric transit probability as a function
of the orbital radius for a Sun-sized star.

Note that the probability of observing a transit for a planet in a Mercury’s orbit (a = 0.387

AU) is already as low as 1.2%. This suggests that a hypothetical Solar System twin would

be unlikely to be detectable with transits. Even in the case of an extremely lucky alignment,

another challenge would be represented by the low frequencies of transits for the external planets,

i.e. once every 12, 29, 84 and 165 years for Jupiter, Saturn, Uranus and Neptune, respectively.

The success of exoplanet transit surveys is due to the existence of many different systems with

planets in smaller orbits and periods from fractions to tens of days.
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3.3 The transit light-curve morphology

3.3.1 The fundamental model

In a full transit, the sky-projected stellar and planetary disks are tangent at four contact times

tI–tIV, illustrated in Figure 3.3. The external contacts, tI and tIV, delimit the total transit event,

i.e. when the star is partially occulted by the planet. The internal contacts, tII and tIII, delimit

the full part of the transit, i.e. when the planet’s disk lies entirely inside the star’s disk. In a

grazing transit, the planet’s disk never lies entirely inside the star’s disk, then tI and tIV are

the only contact points. The two intervals, tI–tII and tIII–tIV, during which the planet’s disk

intersects the edge of the star’s disk are called ingress and egress, respectively.

Figure 3.3: Rationale of the transit light-curve. The top part represents the (approximately
linear) projected path of the planet in proximity of the transit event and the four contact points
(labelled below) in particular. The bottom part shows the corresponding light-curve in the ideal
case of uniformly emitting, constant star’s disk and totally opaque, dark planet.

In an ideal case, where the surface brightness of the stellar disk is uniform, and the planet is

dark, totally opaque and in a circular orbit, the following observables can be measured:

• the transit depth,

δtr =
Fout − Fin

Fout
=

(
Rp

R∗

)2

, (3.3)

where Fout is the measured flux before tI and after tIV, i.e. the unperturbed stellar flux

(Fout = F∗), Fin is the constant flux in the interval between tII and tIII.
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• the total transit duration,

Ttot = tIV − tI =
P

π
arcsin


√(

1 +
Rp

R∗

)2

−
(
a
R∗

)2

cos2 i

a
R∗

sin i

, (3.4)

where P is the orbital period.

• the full transit duration,

Tfull = tIII − tII =
P

π
arcsin


√(

1− Rp

R∗

)2

−
(
a
R∗

)2

cos2 i

a
R∗

sin i

. (3.5)

Given the assumption of a circular orbit, the light-curve is symmetric with respect to the mid-

transit point, defined as the instant of inferior conjunction (see Section 3.1), which is, in this

case, halfway between the two external or the two internal contact points. The ingress and egress

times are both equal to (Ttot− Tfull)/2, hence they do not add useful information. If the orbital

period is known, e.g. from radial velocity measurements or consecutive transit observations,

the set of Equations 3.3–3.5 can be inverted to estimate the following parameters (Seager and

Mallén-Ornelas, 2003):

• the planet’s radius in units of the stellar radius,

p =
Rp

R∗
=
√
δtr (3.6)

• the impact parameter, b, defined as the sky-projected planet–star separation in units of

the stellar radius at the instant of inferior conjunction,

b =
a

R∗
cos i =

 (1− p)2 −
sin2

(
πTfull
P

)
sin2 (πTtotP )

(1 + p)2

1−
sin2

(
πTfull
P

)
sin2 (πTtotP )


1
2

(3.7)

• the orbital semi-major axis in units of the stellar radius,

aR =
a

R∗
=

[
(1 + p)2 − b2

(
1− sin2

(
πTtot

P

))
sin2

(
πTtot

P

) ] 1
2

(3.8)

• the orbital inclination,

i = arccos

(
b

aR

)
(3.9)
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An independent estimate of the stellar radius, usually obtained from spectroscopic observations

and stellar models, is needed to determine the absolute sizes of the planet’s radius and semi-major

axis.

3.3.2 Eccentric orbits

The main effect of a non-zero orbital eccentricity is to break the system symmetry. In general,

the mid-transit point (conjunction), the central point of the total transit, (tI + tIV)/2, and the

central point of the full transit, (tII + tIII)/2, are three distinct instants. The exact shape of the

light-curve, normalized to the out-of-transit flux, is uniquely determined by 6 parameters: p,

aR, i, e, ω and tmid. The definitions of the first three parameters are identical to the case of a

circular orbit; in particular, p = Rp/R∗, aR = a/R∗, and i is the angle between the orbital plane

and the sky. The new parameters are the orbital eccentricity, e; the argument of periapsis, ω;

and the mid-transit time, tmid (see Section 3.1).

The inverse problem, i.e. determining the 6 parameters above from the light-curve, is virtually

impossible for a number of reasons:

• there are only 4 independent observables, i.e. the transit depth and 3 interval durations

between contact points, to determine 6 parameters;

• there are (not simple) analytic expressions for the durations (Kipping, 2008);

• different sets of parameters may generate very similar light-curves, that cannot be distin-

guished with the precision of current instruments.

Even if e and ω are known, e.g. from radial velocity measurements, Equations 3.4–3.5 and

3.7–3.9 cannot be used for e > 0. I refer to Kipping (2010) for an approximate solution to the

problem of the ‘eccentric fundamental model’ and a critical comparison of several approximate

formulas adopted in the literature. The approach adopted in this Thesis is different, as it does

not use a set of observables to derive the physical and orbital parameters (see Section 3.3.4), for

reasons that will be clear from the next Section (3.3.3).

3.3.3 Stellar limb darkening

In a real situation the stellar disk is not uniform, because of the thermal stratification of the

star’s atmosphere and the effect of optical depth. In particular, the radiation reaching us from

the center of the disk includes the contributions from deeper layers than the radiation reaching

us from the limb, and there being a negative gradient of temperature vs radius of the star from

the center to the surface, the center of the disk appears brighter than the limb. This is the
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Figure 3.4: Left panel: geometry of the stellar limb darkening. The section of the sky-projected
stellar disk is yellow, θ is the angle between the line-of-sight and the perpendicular to the stellar
surface, µ = cos θ, r =

√
1− µ2 is the radial coordinate. Right panel: representation of a limb

darkened transit.

so called “limb darkening” effect. The main consequence for the transit light-curve is that the

flux is not constant between the contact points tII and tIII, as the decrement in flux depends on

which part of the stellar disk is occulted by the planet.

Figure 3.5: Transit shapes of HD209458b at dif-
ferent wavelengths. Image adapted from Knut-
son et al. (2007b).

The resulting limb-darkened light-curve

strongly deviates from the approximately

trapezoidal shape towards a U-shape, partic-

ularly in the UV and visible (see Figure 3.5).

The U-shape makes it hard, if not impossi-

ble, to identify the internal contact points,

and hence the duration Tfull. No matter how

we re-define the transit depth for the limb-

darkened case, the information about the size

of the planet relative to the star is coupled

with the intensity distribution over the stellar

disk.

Determining the unknown physical and orbital parameters through some basic observables

of the transit light-curve, as illustrated for the fundamental model in Section 3.3.1, is, at best,

impractical in real cases. Instead, the standard approach is to compare the observed light-curve
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with a parameterized model: best estimates for the unknown parameter values are obtained by

minimizing the residuals between the observation and the model (typically in the least-squares

sense).

3.3.4 Transit light-curve models

In the work presented in this Thesis, I made the following assumptions when modeling a transit

light-curve, unless otherwise specified:

1. the planet’s disk is circular, totally opaque and dark, i.e. its only effect is to block the

light from the geometrically occulted part of the stellar disk;

2. the star’s disk is limb-darkened, symmetric with respect to its center;

3. the unit of length is the stellar radius, i.e. R∗ = 1.

With these assumptions, the observed flux at a given instant is a function of the planet’s radius,

p, and the sky-projected star–planet separation at the given instant, z.

If I(r) is the intensity emitted by the stellar disk at a radial coordinate r (such that r = 0

at the center and r = 1 at the limb), the instantaneous flux, in units of stellar flux, is given by:

F (p, z) = 1− Λ(p, z) (3.10)

with

Λ(p, z) =

[∫ 1

0

I(r) 2πr dr

]−1 ∫ 1

0

I(r) 2πr fp,z(r) dr (3.11)

The first integral in Equation 3.11 gives the unperturbed stellar flux, F∗, and acts as a nor-

malization factor. The second integral differs for the term fp,z(r), which is the fraction of the

circumference with radius r covered by the planet’s disk:

fp,z(r) =



1
π arccos r

2+z2−p2
2zr |z − p| < r < z + p

0 r ≤ z − p or r ≥ z + p

1 r ≤ p− z

∣∣∣∣∣∣∣∣∣∣∣∣
0≤r≤1

(3.12)

Several functional forms have been proposed in the literature to approximate the intensity profile

of the stellar disk (e.g. Howarth, 2011a for a review). The two most popular ones in the field of

transiting exoplanets are:

• the quadratic law

Iλ(µ) = Iλ(1)[1− γ1(1− µ)− γ2(1− µ)2]; (3.13)
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• the Claret’s four-coefficients law (Claret, 2000)

Iλ(µ) = Iλ(1)

[
1−

4∑
n=1

cn
(
1− µn2

)]
(3.14)

where µ = cos θ =
√

1− r2, being θ the angle of incidence (see Figure 3.4). Mandel and

Agol (2002) calculated analytical solutions for the integral in Equation 3.11 with I(r) expressed

according to Equations 3.13 and 3.14, providing a fast code for the quadratic case, which I

adopted. Recently, my colleague Angelos Tsiaras provided our group with a similarly fast code for

the four-coefficients law (https://github.com/ucl-exoplanets/pylightcurve), which I adopted in

my latest work. I computed ad hoc stellar limb darkening coefficients for each target analyzed, to

replace in Equation 3.13 or 3.14, by using the modified version of the ATLAS9 code presented in

Howarth (2011b), and, in some cases, from models obtained with the PHOENIX Web Simulator

(Allard and Hauschildt, 1995; Allard et al., 2001).

The instantaneous star–planet separation, z, is determined by the orbital parameters aR, i,

e, ω, and the time of inferior conjunction, tmid. Because of the orbital periodicity, it is possible

to define Φ, i.e. a sort of normalized time, also called “phase”, so that each position of the planet

in its orbit is associated to a value of Φ. Conventions in transit studies are:

• Φ(tmid) = 0;

• Φ values are in the range [−0.5, 0.5].

The “angular phase” is defined as:

Θ = 2πΦ (3.15)

In the case of circular orbit:

z = aR
√

1− cos2 Θ sin2 i (3.16)

For an eccentric orbit, z is obtained through the following steps:

1. Calculate the mean anomaly

M =
(π

2
− ω

)
+ Θ (3.17)

2. Solve the Kepler’s Equation for the eccentric anomaly (E)

M = E − e sinE (3.18)
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3. Calculate the true anomaly

f = 2 arctan

(√
1 + e

1− e
tan

E

2

)
(3.19)

4. Then the sky-projected star-planet separation is given by

z =
aR(1− e2)

1 + e cos f

√
1− sin2 (f + ω) sin2 i (3.20)

3.3.5 Transit parameter fitting

In the previous Section 3.3.4, I explained how a light-curve model is calculated if the parameters

p, aR, i, e, ω, P , tmid and the stellar limb darkening coefficients are given.

For the targets that I analyzed in this Thesis, the orbital period, P , and the so-called “Epoch

of Transit”, E.T., i.e. the mid-transit point of a reference transit, are reported in the literature

with high accuracy, as many transits have been observed, and also radial velocity measurements

have been taken. I use them to transform time into phase:

Φ =
t− E.T.

P
− n (3.21)

where n is an integer number, corresponding to the number of periods elapsed from the Epoch

of Transit (rounded to the nearest integer).

I also assume the eccentricity, e, and the argument of periapsis, ω, reported in the literature,

typically obtained with radial velocity measurements.

For the limb darkening coefficients, I take the basic stellar parameters from the literature, in

particular the effective temperature, Teff , surface gravity, log g, and metallicity, [M/H], which

are sufficient to generate a complete stellar model, with some typical assumptions about the spe-

cific chemical abundances, with ATLAS9 or the PHOENIX Web Simulator (Allard and Homeier,

2014), as discussed in Section 3.3.4. An optional output of the stellar models is a grid of inten-

sities at multiple angles of incidence, in order to fit a limb darkening law (Equations 3.13 and

3.14).

I often find discrepant values for aR and i in the literature, hence I fit for them, rather than

assuming their values. Also, most of the targets show potential TTVs of up to tens of seconds,

hence I include tmid as free parameter in the fits.

The other fitting parameters are p, which is the diagnostic parameter for the atmospheric stud-

ies, a normalization factor for the flux (as models and observations are not in the same units),

and other coefficients related to the instrument systematics which are present in observations.
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Details about the correction of instrument systematics and some experiments with different sets

of fitting parameters are described for specific cases in the following Chapters.

Here I describe the general fitting algorithm that I adopted in this Thesis.

First, I use a Nelder-Mead optimization algorithm (Lagarias et al., 1998) to obtain point esti-

mates of the parameters which minimize the sum of squared residuals between the real light-curve

and the model. Then, I assume uninformative priors for the same parameters, i.e. typically uni-

form prior over a wide range, and run an Adaptive Metropolis algorithm with delayed rejection

(Haario et al., 2006), starting from the point estimates, in order to sample the posterior prob-

ability distributions of the fitting parameters. The likelihood function is the standard e−χ
2

,

where χ2 is originally set as the variance of the residuals, then sampled together with the other

parameters. Mean values and standard deviations of the sampled chains are used to estimate the

best parameter values and error bars, being the posterior distributions approximately gaussian.

The error bars are re-scaled to include the potential uncertainties related with the method

adopted to detrend the instrument systematics, as it will be discussed for the specific cases in

the following Chapters.

3.4 The eclipse light-curve morphology

The morphology of the planetary eclipse light-curve is analogous to the idealized transit model

with four contact points, t′I–t
′
IV, corresponding to the instants at which the sky-projected star’s

and planet’s disks are tangent.

3.4.1 Eclipse light-curve models

In the case of a circular orbit, the eclipses occur half-way between consecutive transits, i.e. at

phase Φ = 0.5. In general, the eclipse phasing depends on the orbital eccentrity and the argument

of periapsis. Conventionally, in eclipse studies, the Φ values are in the range [0, 1]. Stellar limb

darkening has no effect, because the star is not occulted during the eclipse. Therefore, the flux

observed between the internal contact points, t′II and t′III, is the stellar flux, which is usually

constant within the eclipse timescale. If the planet is dark, no flux variations are observed during

the eclipse. If the planet emits a flux Fp, uniformly distributed over its surface, the instantaneous

flux, in units of stellar flux, is given by:

F (p, z) = 1 +
Fp
F∗

(
1− Λ(p, z)

p2

)
(3.22)
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where Λ(p, z) is the same as in Equation 3.11 with a constant I(r), as there is no limb darkening.

The assumptions of dark planet for the case of transit and non-dark for the eclipse are not

contradictory. In fact, during the transit the planet shows its night-side to the observer, i.e. the

part not irradiated by the star, while before and after the eclipse it shows its day-side, i.e. the

part irradiated by the star, which is typically brighter than the respective night-side (Showman

et al., 2008a,b, 2009; Knutson et al., 2009). In general, the brightness of the planet is a function

of the orbital phase; the observed star+planet flux during one orbit is called “phase-curve”

(Langton and Laughlin, 2008; Showman et al., 2009; Cowan and Agol, 2011; Kataria et al.,

2013). Figure 3.6 shows an example of exoplanetary phase-curve.

Figure 3.6: Top panel: illustration of the phase-curve of an exoplanet transiting its host star.
Image from Winn (2014). Bottom panel: phase-curve of the exoplanet 55 Cnc e observed with
Spitzer/IRAC at 4.5 µm. Image from Demory et al. (2016).

In this Thesis, I approximate the planet’s phase-curve in the region of the eclipse as a linear

function of the time, the slope is called “phase constant”, adopting the same terminology found

in the relevant literature. The slope is only due to planet’s flux variations. While the planet

is completely occulted by the star, the flux is constantly 1. The eclipse depth is defined as the

(unseen) planet’s flux at the mid-eclipse point, i.e. superior conjunction, in units of stellar flux.

Figure 3.7 shows the generic transit and eclipse models adopted in this Thesis. The use of a

more complex model for the eclipse is motivated by the following points:
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Figure 3.7: Left panel: generic transit model adopted in this Thesis (see Section 3.3.4). Right
panel: generic eclipse model adopted in this Thesis (see Section 3.4.1).

1. the higher planetary brightness in proximity of the eclipses than transits;

2. the possibility to measure directly the unperturbed stellar flux during the eclipse;

3. the higher eccentricity of the specific planet analysed, which may cause a higher phase-

curve slope in proximity of the eclipse event, according to models.

3.4.2 Eclipse parameter fitting

As for the analysis of transits, the first step is to transform time into phase by using Equation

3.21. I assume the parameters p, aR, i, e, ω and P from the literature, as they are loosely

constrained by the eclipse alone and the eclipse depth is independent on these parameters. The

three fitting parameters are the eclipse depth, the mid-eclipse point and the phase constant (see

Section 3.4.1).

3.5 Spectroscopy of transiting exoplanets

3.5.1 Atmospheric transmission spectra

The transit depth is a measure of the optically thick radius of an exoplanet, which is a wavelength-

dependent function. In fact, planets are typically surrounded by an atmosphere, i.e. a gaseous

envelope that can be more or less transparent to the stellar radiation at different wavelengths,

depending on the absorption from the chemical species present in the atmosphere. While the

distinction between the solid/liquid core and the gaseous atmosphere is conceptually clear for

the rocky planets, the atmosphere of a gaseous planet can be thought of as the part which is

not totally opaque at all wavelengths. Figure 3.8 illustrates the stellar light filtered through an

exoplanet’s atmosphere. According to Beer-Lambert’s law, the observed intensity at a geometric

atmospheric height z is

Iλ(z) = Iλ(0)e−τλ(z), (3.23)
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Figure 3.8: Stellar light filtered through an exoplanet’s atmosphere.

where Iλ(0) is the incident stellar intensity and τλ(z) is the optical depth of the atmosphere

at height z and wavelength λ. The total optical depth is the sum of the optical depths due to

different absorbing species:

τλ(z) =
∑
i

τλ,i(z) (3.24)

τλ,i(z) = 2

∫ l(z)

0

ζi(λ)χi(z)ρN (z)dl. (3.25)

Here, l(z) is half the geometric path through the atmosphere at height z, ζi(λ) is the absorption

cross-section of the species denoted with the index i at wavelength λ, χi(z) is the relevant column

density and ρN (z) is the total number density. The resulting transit depth is

p2(λ) =
R2

p,cor +
∫ zmax

0
2 (Rp,cor + z)

(
1− eτλ(z)

)
dz

R2
∗

(3.26)

3.5.2 Atmospheric emission+reflection spectra

The eclipse depth is a direct measure of the planet’s flux relative to the stellar flux, before and

after eclipse. In general, the planetary flux is a function of the orbital phase. The collection of

eclipse depths over multiple bandpasses is called an “emission+reflection spectrum”. The two

main contributions to the planet’s flux are the stellar reflected light, normally dominating in the

visible and UV, and the intrinsic thermal emission, normally dominating in the infrared.

Examples of codes to generate models of exoplanet spectra and the inverse atmospheric

retrieval are reported in Terrile et al. (2008); Madhusudhan and Seager (2009); Lee et al. (2012);
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Benneke and Seager (2012); Line et al. (2012); Barstow et al. (2013); Griffith (2014); Waldmann

et al. (2015b,a).
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Chapter 4

Independent Component Analysis

“We all see only that which we are trained to see.”

— R. A. Wilson - Masks of the Illuminati

4.1 The “Cocktail Party Problem”

Imagine a room where n people are speaking simultaneosly, as happens in cocktail parties. Each

person emits a speech signal, here denoted by sj(t), j being an integer index running from 1 to

n. Suppose also that m microphones are placed in the room recording the received signals. Each

recorded signal xi(t), with i integer between 1 and m, is a weighted sum of the speech signals:

xi(t) =

n∑
j=1

aijsj(t) (4.1)

where the aij are called mixing coefficients, and depend on the distances of the microphones

from the speakers (Hyvärinen and Oja, 2000).

Is it possible to extract the original speech signals from only the recorded signals? If the

mixing coefficients are known, it becomes a simple algebraic question, that is, if a system of m

linear equations with n unknowns is solvable:



x1(t) = a11s1(t) + a12s2(t) + ...+ a1nsn(t)

x2(t) = a21s1(t) + a22s2(t) + ...+ a2nsn(t)

...

xm(t) = am1s1(t) + am2s2(t) + ...+ amnsn(t).

(4.2)

The system is solvable when the number of independent equations is equal to the number of
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unknowns (m = n). If m > n it is solvable, in principle, using just a subset of n independent

equations. A more compact notation for Equation 4.2 is:

x = As (4.3)

where, x and s are the column vectors of the observed and source signals respectively, and A

is the matrix of the mixing coefficients, also called mixing matrix. If m = n, A is a squared

invertible matrix, so the source signals are given by:

s = A−1x = Wx (4.4)

The problem arises when neither the matrix A nor the source signals s are known. This is the

classic “Cocktail Party Problem”. This type of problem is found in several applications, for

different kinds of signals involved, such as separation of artifacts in magneto-encephalography

(e.g. Vigário et al., 1998), reducing noise in natural images (e.g. Bell and Sejnowski, 1997),

finding hidden factors in financial data (e.g. Kiviluoto and Oja, 1998), and separation of coa-

lesced signals and instrument systematics in astrophysics (e.g. Stivoli et al., 2006; Maino et al.,

2002, 2007; Aumont and Maćıas-Pérez, 2007; Wang et al., 2010). The rationale for the case of

exoplanetary light-curves is presented in Section 4.4.

4.2 ICA: statistical independence

The claim to obtain the source signals from a number of independent observations, without

knowledge of the mixing coefficients, can be accomplished through some assumptions about the

signals or the mixing matrix or both. Independent Component Analysis is a method to solve

problems with the same structure as the “Cocktail Party Problem”, assuming only statistical

independence of the source signals. This is a very reasonable assumption in many cases, where the

sources are separate, non-interacting physical systems. Moreover, it can be a good approximation

even if it is not exactly true in practice (Hyvärinen et al., 2001b).

4.2.1 Definition of statistical independence

The concept of statistical independence is defined for random variables, i.e. variables that are

associated with a probability density function (pdf). The conjunction of two or more random

variables is a new random variable with a joint pdf. The variables are statistically independent
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if and only if the joint pdf equals the product of the single variables’ pdfs:

px,y(x, y) = px(x)py(y) (4.5)

where x and y are two random variables, px and py are the respective pdfs, px,y is their joint

pdf. Equation 4.5 generalises in a natural way for more than two random variables.

Statistical independence is a much stronger property than uncorrelatedness. Two or more

variables are uncorrelated if and only if the expectation for their product equals the product of

the individual expectations:

E{xy} = E{x}E{y} (4.6)

where x and y are random variables, and E{·} indicates the expectation value1 of the variable

in parenthesis. Equation 4.6 naturally generalises for more than two variables.

It is possible to show that a definition of statistical independence equivalent to the definition

given in Equation 4.5, in terms of expectation values, is (Hyvärinen et al., 2001a):

E{g(x)h(y)} = E{g(x)}E{h(y)} (4.7)

for all possible choices of the functions g(x) and h(y). Comparing Equation 4.6 and 4.7, it is ev-

ident that independent variables are uncorrelated, but not vice versa. However, it is noteworthy

that, if the random variables have gaussian distributions, uncorrelatedness implies independence

(Hyvärinen et al., 2001a).

4.2.2 Visualising statistical independence

An elementary way to visualise whether two variables are independent or not is to plot one as a

function of the other. Consider two sets of n values generated through successive extractions of

independent random variables, each one with a given pdf.

First, I consider the case of two sets s1 and s2 generated with uniform pdfs between −0.5 and

0.5. Plotting the points (s1,i, s2,i), with i = 1, ..., n, yields a uniform distribution of points

over a square (Figure 4.1). The s1 coordinate is independent of s2 and vice versa: knowledge

of the s1 coordinate does not allow inference of the corresponding s2 value. In order to mix

the two sources, I applied an orthogonal matrix to the column vector s = (s1 s2)T , obtaining

1The expectation value of a random variable x is, intuitively, the sample mean of a large number of realizations
of the variable. Mathematically, it is E{x} =

∫
xp(x)dx, where p(x) is the random variable’s pdf.
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Figure 4.1: Plots of a random variable vector as function of another random variable vector with
the same pdf. Top: uniform pdfs; Middle: exponential pdfs; Bottom: gaussian pdfs; Left: plot
of the original vectors; Right: plot of the vectors after an orthogonal transformation.
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x = (x1 x2)T as in Equation 4.3:

x1

x2

 = A

s1

s2

 (4.8)

A =

√3/2 −1/2

1/2
√

3/2

 . (4.9)

The signals x1 and x2 are linear combinations of s1 and s2. Note that the plot of x2 as a

function of x1 is a rotated square (see Figure 4.1, top panels). The rotated variables are no

longer independent. For example, note that knowledge of x1,i constrains the range of possible

values for x2,i.

The case represented in the middle panels in Figure 4.1 is less obvious than the previous one

but, again, the two original variables (left panel) are (generated) independent(ly) and the most

striking indication is the alignment of the distribution along the axes. The rotation introduces a

strong degree of dependence: moving x1 away from zero, the conditional probability distribution

for x2 is bimodal, and the two peaks depend on the specific x1 value.

Non-orthogonal transformations in general introduce a deformation, apart from the rotation;

for example, if A in Equation 4.9 had not been orthogonal, the plot of Figure 4.1 top right

would have been a parallelogram instead of a rotated square and the transformed variables

would have been correlated. In practical applications, to find independent components from

non-independent ones, it is convenient to first “remove the deformation” , then “rotate” to

align the “main directions” with the axes. The discussion in this section makes use of heuristic

concepts such as “main directions”. More precise and advanced mathematical techniques, mostly

used in practical applications, are described in Section 4.2.3.

Finally, I maintain the heuristic approach to make another point. The bottom panels in

Figure 4.1 are relative to identical gaussian variables. In this case orthogonal transformations

maintain the radial simmetry, so that there are no “main directions” to identify and the rotated

diagram (right panel) is indistinguishable from the original one (left panel). These figures explain,

intuitively, why gaussian uncorrelated signals are also independent.
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4.2.3 Measuring statistical independence

Information entropy

Entropy is the basic concept of Information Theory. For a random vector y = (y1, y2, ..., yn) it

is defined as (Hyvärinen et al., 2001a):

H(y) = −
∫
p(y) log p(y) dy for a continuous variable (4.10)

H(y) = −
∑
k

p(yk) log p(yk) for a discrete variable (4.11)

The index k associated to the bold-font variable y in Equation 4.11 indicates possible realizations

of the multivariate variable y. It must not be confused with the index of the vector’s component,

in which case the letter is not in bold. Entropy is a measure of the uncertainty associated with

a random variable, as demonstrated, at least in part, by the following properties. For the case

of a discrete variable:

1. H is minimum, i.e. zero, if there is only one exit with probability 1 and the others have

probability 0 (no uncertainty);

2. H is maximum if all the possible exits for the variables are equally probable (maximum

uncertainty).

For a continuous variable:

1. H is small, i.e. negative with a large absolute value, if p(y) is concentrated within a strict

interval;

2. among the p(y) distributions which are non-zero over the same interval, H is maximum if

the distribution is uniform.

Mutual information

Mutual information is a measure of the information that members of a set of random variables

have on the other random variables in the set. If y = (y1, y2, ..., yn) is the set of random variables,

the mutual information is defined as

I(y1, y2, ..., yn) =

n∑
i=1

H(yi)−H(y) (4.12)

where H is the entropy function. Note that I(y1, y2, ..., yn) = 0 if the variables are statistically

independent, i.e. the joint pdf is factorizable, and I(y1, y2, ..., yn) > 0 in all other cases. For the
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source signals in Equation 4.4, the mutual information can be written as

I(s1, s2, ..., sn) =

n∑
i=1

H(si)−H(x)− log |det (W)| (4.13)

If the xi are uncorrelated and of unit variance (see Section 4.3.1), then det (W) is constant

and it does not affect the search for the minimum mutual information or maximum indepen-

dence. Because mutual information is hard to compute, different estimators are used in practical

contexts.

Negentropy

Among all the distributions with fixed mean and covariance, the gaussian distribution has

the maximum entropy. This property suggests defining negentropy as an estimator of non-

gaussianity:

J(y) = H(ygauss)−H(y) (4.14)

where ygauss is a random gaussian vector with the same covariance matrix as y. Its entropy is

H(ygauss) =
1

2
log |det (Cy)|+ n

2
[1 + log(2π)] (4.15)

where Cy is the covariance matrix and n is the dimension of y. The elements of the covariance

matrix are the covariances between the components of the multivariate variable:

Cij = cov(yi, yj) = E{(yi − yi)(yj − yj)}. (4.16)

Note that, from Equation 4.6, if yi and yj are uncorrelated, the covariance matrix is diagonal.

Negentropy is a measure of non-gaussianity, being J(y) = 0 if y is gaussian, and J(y) > 0 in

other cases.

The Central Limit Theorem states that the distribution of the sum (or any linear combina-

tion) of n independent random variables converges to a gaussian distribution in the limit n→∞.

Generalising from this theorem, it can be inferred that, in most cases, a finite linear combination

of independent random variables is “more gaussian” than both the original variables, where the

(non-)gaussianity is a mathematically defined quantity. According to this theorem, in the ICA

problem, the independent components are less gaussian than any linear combination, therefore

can be obtained by maximising the sum of their non-gaussianities, e.g. their negentropies.

Because negentropy is also hard to compute, other estimators are typically used.
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Kurtosis

Kurtosis is a fourth-order function of the moments of the pdf. In the zero-mean case it is defined

by

kurt(y) = E{y4} − 3E{y2}2 (4.17)

or, in the normalised form, by

˜kurt(y) =
E{y4}
E{y2}2

− 3 (4.18)

Gaussian random variables have zero kurtosis, those with positive kurtosis are called super-

gaussian (or leptokurtic), and are more peaked, those with negative kurtosis are called sub-

gaussian (or platykurtic), and are flatter. There exist also non-gaussian random variables with

zero kurtosis, but they are very rare. For these reasons kurtosis, or rather its absolute value,

is used as a measure of non-gaussianity. For two scalar random variables, y1 and y2, and a

numerical constant, α, the following linearity properties are valid:

kurt(y1 + y2) = kurt(y1) + kurt(y2) (4.19)

kurt(αy1) = α4kurt(y1) (4.20)

The major advantage of kurtosis is its simplicity, but it is not an optimal estimator, because its

range, i.e. [−2,+∞[, is not symmetric. In addition, it is very sensitive to outliers.

Negentropy approximations: contrast functions

Hyv̈arinen (1999) developed a formula to approximate negentropy:

J(y) ≈
p∑
i=1

ki[E{Gi(y)} − E{Gi(ν)}]2 (4.21)

where ki are some positive constants, and ν is a random gaussian variable of zero mean and unit

variance, the variable y is assumed to be of zero mean and unit variance, and the functions Gi

are not quadratic. The Gi functions are called “contrast functions”. Often, only one contrast

function is used, so that Equation 4.21 becomes

J(y) ∝ [E{G(y)} − E{G(ν)}]2 (4.22)
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Examples of contrast functions commonly adopted are:

G1(y) =
1

a1
log[cosh(a1y)] (4.23)

G2(y) = −exp(−y2/2) (4.24)

G3(y) =
1

4
y4 (4.25)

The choice of the contrast functions is important to optimise the performances of the algorithm.

This point is discussed in Section 4.3 for specific algorithms.

Temporal correlations

The definitions of uncorrelatedness and independence for time series are:

E{(yi(t)− yi)(yj(t)− yj)} = ρiδij (uncorrelatedness) (4.26)

E{(yi(t+ τ)− yi)(yj(t+ τ)− yj)} = ρi(τ)δij (independence) (4.27)

where ρi(τ) is the so-called time-lagged covariance of the i-th component, δij is Kronecker’s

delta, i.e. δii =1 and δij =0 if i 6= j. The time covariances in Equation 4.26 differ from the

covariances in Equation 4.16, as the time covariances only use the products at corresponding

times, while the covariances include all the possible products between two variable’s realizations.

A non-zero time covariance between two time series indicates that they have a similar temporal

structure, at least in part. In some cases, two identical signals with a relative time shift can have

also a zero time covariance, but they are clearly not independent. Equation 4.27 states that, for

independent signals, the time-lagged covariances are all equal to zero.

4.3 ICA: algorithm

Many algorithms have been written with different implementations of the ICA technique. I will

not discuss all the existing algorithms, but I will present a list of algorithms which are propaedeu-

tic to the code that I adopted in this Thesis, i.e. MULTICOMBI (Tichavsky et al., 2008), and,

of course, the MULTICOMBI code itself. The code can be downloaded from Tichavsky’s home

page (http://si.utia.cas.cz/downloadPT.htm). The descriptions of the algorithms will not in-

clude the derivations of all the formulas, which are beyond the scope of this Thesis and, in most

cases, they would require tens of pages filled with mathematical formulas. I refer to the relevant

literature for technical and mathematical details about the algorithms presented.
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4.3.1 Whitening

Whitening is useful pre-processing step common to many ICA algorithms, though it is not

strictly necessary. It is a transformation of the input signals into mean-subtracted uncorrelated

(according to Equation 4.6) components with unit variances:

x̃ = V (x− x̄) (4.28)

where x̄ = (x̄1 x̄2 . . . x̄n)
T

. A simple and fast method to calculate a possible whitening matrix,

V, is by using the eigenvalue decomposition of the covariance matrix:

Cx = EDET (4.29)

where Cx denotes the covariance matrix of x, E is the orthogonal matrix of eigenvectors and D

is the diagonal matrix of its eigenvalues. Then:

V = ED−
1
2 ET = C

− 1
2

x (4.30)

The D and E matrices can be obtained through a Principal Component Analysis (Hyvärinen

et al., 2001b; Jolliffe, 2002).

The whitening matrix is not unique. If O is an orthogonal matrix, V’ = VO is also a valid

whitening matrix. Being uncorrelated is a necessary condition for independence, so the inverse

mixing matrix for the problem with whitened data,

s̃ = W̃x̃, (4.31)

must be orthogonal. This reduces the number of coefficients to determine from n2 to n(n−1)/2.

How to find W̃ to obtain the independent components is the argument of the following Sections

4.3.3–4.3.8.

The two-step process of whitening followed by an appropriate orthogonal transformation

is the mathematical equivalent of the heuristic “remove the deformation” and then “rotate”

described in Section 4.2.2.

4.3.2 Interference-to-Signal Ratio

Before describing the ICA algorithms, I introduce the concept of Interference-to-Signal Ratio

(ISR) matrix. If the source signals s̃i and the mixing matrix Ã are known, it is possible to
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evaluate the quality of the separation, via the so-called gain matrix G̃ :

G̃ = ˆ̃WA ≈ I (4.32)

where ˆ̃W is the estimated demixing or inverse matrix. In case of perfect demixing, the gain

matrix G̃ is the identity. Non-diagonal terms G̃ij indicate the residual contamination of the i-th

component in the estimated j-th one. The Interference-to-Signal Ratio (ISR) matrix is defined

by:

ISRij =
G̃

2

ij

G̃
2

ii

≈ G̃
2

ij (4.33)

The interference-to-signal ratio for the i-th estimated component is:

isri =

∑n
j=1,j 6=i G̃

2

ij

G̃
2

ii

(4.34)

In a real case, where the source signals and the mixing matrix are not known, Equation 4.32

cannot be used. However, for specific algorithms, it is possible to compute theoretical estimates

of the ISR matrix (Yeredor, 2000; Koldovsky et al., 2006; Tichavsky et al., 2006, 2008).

4.3.3 Iterative FastICA

Iterative FastICA is one of the oldest and simplest ICA algorithms (Hyvärinen and Oja, 2000).

It sequentially extracts the independent components by maximising the negentropies of the

projections J(w̃T
i x̃), where w̃i is the i-th row of the inverse mixing matrix W̃. Assuming that i

components have been extracted, the (i+ 1)-th is computed by the following iteration scheme:

1. Choose an initial weight vector w̃i+1;

2. Increment:

w̃i+1 = E{x̃g(w̃T
i+1x̃)} − E{g′(w̃T

i+1x̃)}w̃i+1; (4.35)

3. Decorrelate:

w̃i+1 = w̃i+1 −
i∑

j=1

w̃T
i+1w̃jw̃j ; (4.36)

4. Normalise:

w̃i+1 =
w̃i+1

||w̃i+1||
(4.37)

5. If not converged, i.e. condition on the distance between the updated w̃i+1 and the one at

the previous iteration, go back to 2.
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The g function in Equation 4.35 is the derivative of a non-linearity G (see Equations 4.22–4.25).

A disadvantage of the iterative scheme is that the estimation errors build up in the process.

4.3.4 Parallel FastICA

Parallel FastICA uses a similar iteration scheme (Hyvärinen and Oja, 2000), but the components

are estimated simultaneously, so that the estimation errors are uniformly distributed:

1. Choose an initial orthogonal matrix W̃;

2. Increment:

W̃ = g
(
W̃x̃

)
x̃T − diag

[
g′
(
W̃x̃

)
1n

]
W̃ (4.38)

(here 1n is a column vector of ones);

3. Symmetric orthogonalisation:

W̃ =
(
W̃W̃

T
)− 1

2

W̃ (4.39)

The performance of the FastICA algorithms depends on the choice of the non-linearity g and

the statistical properties of the independent random variables.

4.3.5 EFICA

EFICA stands for Efficient FastICA. It is an evolution of the FastICA algorithm with an adaptive

choice of the non-linearity g (Koldovsky et al., 2006). It consists of the following three steps:

1. running the parallel FastICA algorithm with a predetermined non-linearity, e.g. g(s) =

tanh s;

2. adaptive choice of the non-linearities gi for each component;

3. running a modified FastICA algorithm with the optimal non-linearities.

The non-linearities in step 2 are assigned according to the following scheme, based on the fourth

moment of the component’s distribution:

gi(s) =


s e−η1|s|, for

〈
s4
i

〉
> 3

sign(s) · |s|min(αi−1,14), for 1.8 <
〈
s4
i

〉
≤ 3

sign(s) · |s|14, for
〈
s4
i

〉
≤ 1.8

(4.40)

where η1 = 3.348 and αi is the index of the Generalized Gaussian distribution (Koldovsky et al.,

2006) with fourth moment equal to
〈
s4
i

〉
.
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4.3.6 SOBI and WASOBI

SOBI is a popular algorithm to separate gaussian auto-regressive signals, i.e. when the output

variable is linearly dependent on the previous values and a stochastic term (Belouchrani et al.,

1997). It adopts the definition of independence from Equation 4.27, leading to the equation

W̃E
{
x̃(t+ τ)x̃T (t)

}
W̃

T
= I (4.41)

for any time-lag τ . The matrix W̃ is estimated as an approximate joint diagonaliser for a set of

lagged-covariance matrices

R̃x̃(τk) = E
{
x̃(t+ τk)x̃T (t)

}
(4.42)

The approximate joint diagonaliser is obtained by minimising an estimator of non-diagonality

for the W̃R̃x̃(τk)W̃
T

matrices in a least-squares sense. WASOBI is a Weights-Adjusted SOBI

algorithm (Yeredor, 2000), which incorporates proper weighting, inversely proportional to the

covariance in the correlation estimates, in the fitting of the joint diagonaliser.

4.3.7 COMBI

EFICA and WASOBI are complementary algorithms, as the former is designed to separate

mixtures of non-gaussian signals, while the latter is designed to separate gaussian auto-regressive

signals. Typically, real data are mixtures of both non-gaussian and gaussian signals. The COMBI

algorithm includes the EFICA and WASOBI algorithms for a better separation of such data

(Tichavský et al., 2006). It proceeds as follows:

1. Apply both EFICA and WASOBI to x̃; let the estimated source signals s̃EF and s̃WA re-

spectively, the interference matrices ISREF and ISRWA, the corresponding vectors isrEF

and isrWA;

2. Let E = minkisr
EF
k and W = minkisr

WA
k ;

3. If E < W , accept those signals sEF for which isrEFk < W , else those sWA for which

isrWA
k < E; reject the other signals;

4. If there is more than one rejected signal, start again from step 1.

4.3.8 MULTICOMBI

It is possible to have sets of signal components well separable from the others in the mixture

but difficult to separate one from another in the same set. It might be the case of nearly
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gaussian distribution signals for EFICA, and signals with similar power spectra for WASOBI.

The algorithm MULTICOMBI is a sort of hierarchical multistep COMBI, in order to separate

clusters of signals in subclusters until all clusters are singletons (Tichavsky et al., 2008). The

interference-to-signal ratio for clusters of signals is defined as:

isr(ζ) = αζ
∑

i∈ζ,j /∈ζ

ISRij (4.43)

where ζ denotes a cluster and αζ is a normalization coefficient:

αζ =
d− 1

|ζ|(d− |ζ|)
(4.44)

being d the number of signals and |ζ| the dimension of the cluster ζ.

The algorithm MULTICOMBI runs as follows:

1. Pick any cluster in x that is not a singleton; let z be a generic cluster;

2. Apply both EFICA and WASOBI to each cluster, obtaining the separated signals sEF and

sWA, the estimated matrices ISREF and ISRWA;

3. Consider any subcluster ζ, and compute isrEF (ζ) and isrWA(ζ);

4. Let E = minζisr
EF (ζ) and W = minζisr

WA(ζ);

5. If E < W pick up the best EFICA-separated clusters, one to one until there are no EFICA-

separated clusters remaining or the best of them is worse than the best WASOBI-separated

cluster and extract the new subclusters and related signals from sEF ; else extract similarly

the new subclusters and related signals from sWA;

6. Repeat the same procedure until all signals extracted are singletons.

4.3.9 Rescaling the signals

After extracting the independent components from the whitened data, the subtracted mean can

be reinstated by combining Equations 4.31 and 4.28, then readjusting to obtain

s = s̃ + W̃Vx̄ = W̃Vx, (4.45)

which is equivalent to Equation 4.4 with the identification

W = W̃V (4.46)
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However, it must be noted that the source signals can be retrieved up to a scaling factor. This can

be seen because multiplying one source signal by a scalar factor and dividing the corresponding

column of the mixing matrix by the same factor, as shown in Equation 4.47, produces the same

mixed signals without affecting the statistical independence of the sources:

x =

(
. . .

aj
αj

. . .

)
(. . . αjsj . . . )

T
(4.47)

where αj is a scalar factor and aj is the i-th column of A. This ambiguity is not problematic in

many contexts, including the study of transits, for two reasons:

1. the scaling factors can be retrieved by fitting the source signals to the observed light-curves

(see Section 5.2.1);

2. the information about the planet is contained in the observed flux decrement relative to

the stellar flux.

4.4 Rationale

An exoplanetary transit or eclipse light-curve is the sum of more than one signal. It contains at

least three contributors:

1. the astrophysical signal;

2. the systematic noise component, mostly instrumental effects;

3. stochastic noise.

These are mutually independent, originating from independent sources, which makes it possible

to separate them using ICA. It is possible to decompose further both the astrophysical and

systematic signals, if they are sums of several independent effects. For example, in the case of an

exoplanetary transit, the main astrophysical signal is given by the partial obscuration of the star

due to the planet, but there might be also stellar variability effects, especially for active stars. As

discussed in Section 4.1, in order to disentangle n components, an equal number of observations

(light-curves, in the context of interest) is required. The number of physical components is

not known a priori, but it can be determined a posteriori, if enough lightcurves (more, or as

numerous as, the components) have been used.
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Chapter 5

Application to Spitzer/IRAC

transit observations

“To acquire knowledge, one must study; but to acquire wisdom, one

must observe.”

— Marilyn Vos Savant

5.1 Spitzer Space Telescope

The Spitzer Space Telescope is an infrared space-borne observatory launched in 2003. It is one

of the four NASA Great Observatories, each one dedicated to cover a specific region of the

electromagnetic spectrum. It follows a heliocentric orbit, trailing and drifting away from Earth’s

orbit at approximately 0.1 AU per year, a so-called “earth-trailing” orbit. The telescope has an

aperture of 85 cm diameter. Since it is designed to detect infrared radiation, its detectors and

telescope were cooled to less than 5.5 K to avoid that its own thermal emission interferes with

its observations, using liquid helium as a cryogen. There are three infrared detectors:

• the InfraRed Array Camera (IRAC), which performs photometry in four bands at nominal

wavelengths 3.6 µm (channel 1), 4.5 µm (channel 2), 5.8 µm (channel 3) and 8.0 µm

(channel 4);

• the InfraRed Spectrograph (IRS), with low spectral resolution in the ranges 5.3–14 µm

and 14–40 µm and high spectral resolution in the ranges 10–19.5 µm and 19–37 µm;

• the Multiband Imaging Photometer (MIPS), working at 24 µm, 70 µm, 160 µm and able

to perform spectroscopy.
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Figure 5.1: Observational bands of the three infrared detectors of Spitzer: IRAC, IRS and MIPS.
In order to put Spitzer bands in context, the figure also shows the blackbody spectrum of a sun-
like star and the dust spectral emission along with standard photometric bands in the optical
(B, G, R) and infrared (J, H, K) bands.

Since depletion of liquid helium supply in May 2009, most of the instruments are no longer

usable, except the two IRAC channels at 3.6 and 4.5 µm, which are now operating in the so-

called “Spitzer Warm Mission”.

5.1.1 The InfraRed Array Camera (IRAC)

Overview

IRAC is a four-channel camera that has four detectors, each with a small bandpass around its

nominal wavelength (see Figure 5.2). The detectors are square arrays of 256×256 pixels in size.

Their mounting is such that channels 1 and 3 observe the same field of view (within a few pixels),

and the other two channels observe another field of view simultaneously. The two fields of view

are 5.2′×5.2′ and are separated by ∼1.52′, with no overlap. The spatial scale is ∼1.2′′/pixel.

Table 5.1 reports basic properties of the detectors “Point Response Function”, on which I will

comment in Section 5.2.

Readout modes and frame times

In full-array readout mode, there were four selectable frame times during the cryogenic mission:

2, 12, 30, and 100 s. The warm mission added the 0.4 and 6 s frame times.

Stellar photometry mode was available for observations of objects much brighter in channels 1

and 2 than in 3 and 4 (typically stars) in the cryogenic mission. This mode took short exposures
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Figure 5.2: Spectral response (throughput) curves for all four IRAC channels, in particular,
(black) the full-array average curve, (green) the sub-array average curve. Also shown the trans-
mission curves of two individual pixels having (blue) the minimum and (red) the maximum
average wavelength. Figure from the IRAC Instrument Handbook.

channel FWHM (mean,′′) FWHM (centered PRF, ′′) central pixel flux (peak, %)
1 1.66 1.44 42
2 1.72 1.43 43
3 1.88 1.49 29
4 1.98 1.71 22

Table 5.1: Properties of the Point Response Function for the four IRAC detectors. The first
column reports the Full Width at Half Maximum of the Point Response Functions averaged over
the detectors. The second column is for a source well-centered in a pixel. The third column is
the percentage of flux in the central pixel for a source well-centered in the pixel. Table from the
IRAC Instrument Handbook.

65



in channels 1 and 2, and longer exposures in channels 3 and 4. Three framesets were available.

The shortest set took a single 0.4 s frame in channels 1 and 2, and a 2 s frame in channels 3 and

4. The next set took two undithered 2 s frames in channels 1 and 2, and a 12 s frame in channels

3 and 4. The longest frame time combination took two undithered 12 s frames in channels 1

and 2, and a 30 s frame in channels 3 and 4.

For very bright sources, a sub-array mode is available. In this mode, only a 32×32 pixel

portion of the array is read. There were three selectable frame times: 0.02, 0.1, and 0.4 s.

The warm mission added the 2 s frame time. For each repeat in sub-array mode, a set of 64

consecutive frames is taken.

Basic Calibrated Data

The Spitzer Science Center performed routine calibrations of IRAC, using observations of stan-

dard stars and other astronomical objects. The IRAC Level 1 pipeline is designed to take a single

Level 0 image, i.e. the raw output, from a single IRAC detector and produce a flat-fielded, cos-

mic ray-corrected and flux-calibrated image with all well known instrumental systematic effects

(systematics) removed. These are called Basic Calibrated Data (BCD), and are identified by

the final part of their names and extension: “bcd.fits”. They are used as starting point in my

analyses.

Other systematics

The data analysed in this Thesis have been observed with the IRAC channels 1 and 2. The

systematic effects present in data sets from these two detectors are mostly caused by spacecraft-

induced motions coupled with intra-pixel sensitivity variations. This can be inferred from the

correlations between the measured flux and the source’s centroid positions on the detector array.

The most notable effect is a sawtooth modulation (Fazio et al., 2004; Reach et al., 2005;

Morales-Calderón et al., 2006). This originally had a period of ∼1 hr, an amplitude of ∼0.15′′

in the centroid position, corresponding to 1/8 the pixel size, and up to 5% in flux variations.

It is believed to be due to thermo-mechanical expansions and contractions of many spacecraft

components, caused by the periodic on-off cycling of a battery heater within the spacecraft bus

(Grillmair et al., 2012; Krick et al., 2015). After the cycling range was reduced on 17 October

2010, the period changed to ∼39 min and the amplitude of the centroid oscillation reduced by

a factor 2.

Some observations show an initial pointing drift, also called settling drift, of up to 0.5′′

over 30–60 min, which appears to be caused by thermal heating due to the incident solar light,
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depending on the orientation of the spacecraft (Grillmair et al., 2012; Krick et al., 2015).

A long-term drift of ∼0.34′′ per day is probably due to small inconsistencies in the velocity

aberration corrections (Grillmair et al., 2012; Krick et al., 2015).

Higher-frequency jitter is detected with periods ranging from 0.02 s to 3 min, potentially

caused by many effects (Grillmair et al., 2012; Krick et al., 2015).

Systematics detrending pipelines

Because of the known coupling between the centroid position and the intra-pixel sensitivity,

the earliest methods for correcting the instrument systematics in Spitzer/IRAC observations

at 3.6 and 4.5 µm used either a simple radial function from a pixel’s center (Reach et al.,

2005; Morales-Calderón et al., 2006) or a polynomial function of the x and y coordinates (e.g.,

Charbonneau et al., 2005; Stevenson et al., 2010; Beaulieu et al., 2011; Knutson et al., 2011).

Multiple reanalyses of the same data sets with the polynomial method show that, in some cases,

results can be sensitive to some specific options/variants, such as the degree of the polynomial

adopted, partial data rejection, including temporal or other decorrelations (e.g. Beaulieu et al.,

2008, 2011; Désert et al., 2009; Stevenson et al., 2010; Knutson et al., 2011). The necessity of more

objective and effective techniques to achieve the precision for characterising the exoplanetary

atmospheres became clear. Several alternative methods have been proposed by different teams

to decorrelate Spitzer/IRAC data: gain mapping (Ballard et al., 2010a; Cowan et al., 2012;

Knutson et al., 2012; Lewis et al., 2013; Zellem et al., 2014), bilinearly interpolated sub-pixel

sensitivity mapping (BLISS, Stevenson et al., 2012), Independent Component Analysis using

pixel time series (pixel-ICA; Morello et al., 2014, 2015), pixel-level decorrelation (PLD; Deming

et al., 2015), and Gaussian Process models (Evans et al., 2015).

5.2 Pixel-ICA

The algorithm that I have developed to decorrelate Spitzer/IRAC data is called “pixel-ICA”, as

it uses the time series registered by individual pixels, so-called “pixel light-curves”, as input for

the ICA. This is possible because, even if stars are approximate point sources of light which are

not resolved by detectors, they are typically detected with a spatial distribution of intensity on

a finite region of the detector, which contains or intersects more than one pixel. The intensity

profile immediately before the light reaches the detector is the so-called “Point Spread Function”

(PSF), and it is determined by the optics; the measured intensity profile also depends on the

response of the detector, and it is called “Point Response Function” (PRF) 1. Table 5.1 reports

1The distinction between PSF and PRF is not important in this discussion.
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the Full Width at Half Maximum for the IRAC detectors (showing that is larger than the pixel

size of 1.2′′), and the maximum percentage of flux in the central pixel relative to the total flux

(showing that a significant amount of stellar flux is spread over the surrounding pixels). Since

Figure 5.3: Representation of a Spitzer/IRAC frame showing the stellar source spread in more
than one pixel and two examples of pixel light-curves.

the star’s centroid is stable to within 1 pixel during a typical transit observation, i.e. few hours,

there will be multiple pixels detecting the same astrophysical signals at all times, but with

different scaling factors, depending on their sensitivity and the instrument PSF. The diversity

of the signals registered by the pixels allows extraction of the various components.

After extracting the independent components from a selected set of pixel light-curves, differ-

ent approaches to obtain the transit signal can be considered.

Method 1: direct identification of the transit component. If one of the independent compo-

nents has the morphology of the transit signal, it can be identified with the transit signal itself,

up to an undetermined scaling factor. This component can be normalised by the mean value

calculated on the out-of-transit part, so that the out-of-transit level is unity, then fitted with

a transit model. Alternatively, the normalisation factor can be fitted simultaneously with the

transit model. This method is not applicable to the ICA extraction from spectroscopically re-

solved observations at different wavelengths because of the wavelength dependence of the stellar

limb darkening effect. This is not a problem in our case, because all the pixels record the same

wavelengths.

Method 2: non-transit components subtraction. Another approach to estimating the transit
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signal is to remove all the other effects from an observed light-curve, i.e., by subtracting all the

components other than the transit one, properly scaled. The scaling factors can be determined

by fitting a linear combination of the components, plus a constant term, to the out-of-transit part

of the light-curve. After subtraction, the detrended transit signal is normalised and model-fitted.

These two methods were implemented in the original version of the pixel-ICA algorithm,

which I adopted for the data analyses discussed in this Chapter. Recently, I have considered a

third method.

Method 3: non-transit components + transit model fitting. Similar to method 2, but the

non-transit components are fitted over the whole time series, not just out-of-transit, simultane-

ously with the transit model and its normalisation factor. No constant term is needed in this

configuration.

According to the mixing model, the pixel light-curves are linear combinations of the same

components, so that any of them can be potentially chosen as reference light-curve to apply

methods 2 and 3. Under this hypothesis, the spatially integrated light-curve, obtained by sum-

ming all the individual pixel light-curves, is also a linear combination of the same components.

I found that using the integrated light-curve as the reference is advantageous, because it is less

noisy than the individual pixel light-curves. The validity and the limits of the ICA model have

been assessed with several tests and analysis of the residuals over a long list of real and simulated

datasets, as discussed in the next sections of this chapter, in the following chapters and in the

relevant peer-reviewed publications.

5.2.1 Light-curve fitting and error bars

When applying method 2, i.e. sequential detrending and astrophysical model-fitting, I used

a Nelder-Mead optimisation algorithm (Lagarias et al., 1998) to obtain point estimates of the

coefficients of the non-transit components to subtract from the reference light-curve. Then, I

used the same algorithm to find point estimates of the free parameters in the transit model,

followed by a MCMC calculation (Haario et al., 2006), as described in Section 3.3.5. When

applying method 3, the coefficients of the components are included as free parameters in the

MCMC fitting.

Let σpar,0 be the standard deviation of a parameter chain. This would be the parameter error

bar based on the fitting residuals, assuming no bias is introduced by the detrending method

and the model adopted. For the ICA detrending, it is possible to estimate the uncertainty on

the components extracted using the ISR matrix (see Section 4.3.2). I represented this as an

additional term, σICA, on each point in the time series. If σ2
0 is the sampled likelihood’s variance,
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approximately equal to the variance of the residuals, then the total likelihood’s variance is

σ2
like = σ2

0 + σ2
ICA (5.1)

The MCMC fitting should be repeated with the updated likelihood’s variance to determine the

final parameter error bars, σpar. I found that, in the cases analysed, this approach is equivalent

to rescaling the error bars as

σpar =

√
σ2

0 + σ2
ICA

σ2
0

. (5.2)

The formulas adopted for σICA are:

σ2
ICA =


f2ISRi method 1

f2
(∑

j o
2
jISRj + σ2

ntc−fit

)
method 2∑

j o
2
jISRj method 3

(5.3)

where

ISRi =

n∑
j=1,j 6=i

ISRij , (5.4)

is the interference-to-signal ratio for the i-th component, i.e. a sort of theorical root-mean-square

error associated with the i-th component. If method 1 is adopted, with i the index of the transit

component, this term is a direct estimate of the uncertainty in the transit component. If it is

normalised prior to fitting the transit model and σ0 is relative to the normalised component,

then σICA also needs to be rescaled by the same factor, f . If method 2 is adopted, oj are the

coefficients associated with the non-transit components, and σntc−fit is the standard deviation

of residuals for the non-transit components out-of-transit. The first term is the sum of the

uncertainties associated with the components included in the fit, while the second term accounts

for the remaining variance. The first term increases with the number of components, while the

second term should decrease. Similarly to method 1, if the detrended transit signal is normalised

prior to fitting the astrophysical model, the σICA term must be scaled accordingly. The formula

for method 3 derives from the one for method 2. The σntc−fit term disappears because all the

residuals are included in σ0, being the non-transit components’ coefficients and the astrophysical

parameters fitted simultaneously.
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5.3 Transits of HD189733b

5.3.1 The exoplanetary system around HD189733

The exoplanet HD189733b is a hot-Jupiter with mass ∼1.15 MJ and radius ∼1.2 RJ , orbiting

a main-sequence K star at a distance of ∼0.0312 AU with a period of ∼2.2 days (Bouchy et al.,

2005). The host star has an apparent magnitude of ∼5.5 in the infrared K band. The transit

depth is of the order of 2–3% relative to the stellar flux. These properties make HD189733b

one of the most favorable targets for extensive atmospheric examination. Tinetti et al. (2007)

announced the detection of water vapour in its atmosphere, based on differences in transit depth

measured with Spitzer/IRAC at 3.6 and 5.8 µm (Beaulieu et al., 2008). A subsequent reanalysis

of the same observations with a different parameterization of the instrument systematics (Désert

et al., 2009) does not confirm the detection. Désert et al. (2011) report the analysis of a second

Spitzer/IRAC dataset at 3.6 µm using the same detrending technique. The new parameter

estimates are significantly different, e.g. 4 σ between the transit depths at the two different

epochs. The authors attributed such discrepancies to the effects of stellar variability.

5.3.2 Observations

I reanalysed the two transit observations at 3.6 µm with the pixel-ICA technique. The two

observations were performed on 2006 October 31 (ID 30590) and 2007 November 25 (ID 40732).

The first observation consists of 1,936 data points using the stellar readout mode with a

frame time of 0.4 s. The interval between consecutive exposures is 8.4 s. The total duration was

4.5 hr: 1.8 hr on the primary transit of the planet, 1.6 hr before, and 1.1 hr after transit.

The second observation consists of 122,880 exposures using the sub-array readout mode with

a frame time of 0.1 s. Each set of 64 consecutive frames is followed by a reset time of 2 s. The

total duration was 4.5 hr: 1.8 hr on the primary transit of the planet, 1.7 hr before, and 1 hr after

transit. For this observation, I binned over 64 frames, in order to have a manageable number

of data points, to reduce the random scatter, and to have the same sampling as observation ID

30590.

5.3.3 Analysis

Fixed and free parameters

I assumed the orbital period from Collier Cameron et al. (2010), a circular orbit, and calculated

the quadratic limb darkening coefficients for the star (Equation 3.13), using the modified version

of ATLAS9 code described in Howarth (2011b). The values of the fixed parameters are reported
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in Table 5.2. The other astrophysical parameters, i.e. p, aR, i and tmid, were kept free in the

fitting process, as explained in Section 3.3.5.

P 2.218573 days
e 0
γ1 7.82118×10−2

γ2 2.00656×10−1

Table 5.2: Values of the parameters fixed while generating the transit models. The limb dark-
ening coefficients, γ1 and γ2, were computed for a star with effective temperature Teff =5000 K,
gravity log g =4.5, mixing-length parameter l/h =1.25, solar abundances.

Choice of the pixel-array

The first step in the analysis is the choice of the pixel light-curves to analyse. This may be

influenced by:

• the instrument point response function (PRF), i.e. the measured intensity profile of the

star on the detector;

• the noise level of the detector;

• the effective number of significant components to disentangle.

The number of significant components is not known a priori. The ICA code extracts a number

of components equal to the number of light-curves that it receives as input. Apart from the

collective behaviour common to all the pixel light-curves, each pixel introduces an individual

signature. Only if the individual signatures are negligible compared to the collective behaviour

it is possible to select enough light-curves to disentangle the significant components. The PRF

and the noise level of the detector limit the number of pixels containing potentially useful astro-

physical information.

In practice, I considered several arrays of pixels with the stellar centroid at their centers,

having dimensions 3×3, 5×5, 7×7, 9×9 and 11×11 pixels. Figure 5.4 shows the corresponding

integrated light-curves. The light-curves observed in sub-array mode appear to be less affected

by the instrument systematics and less noisy. Within the same observations, the light-curves

from different arrays are similar in shape, the 3×3 showing slightly larger systematics. Note that

3 pixels is about the size of the Airy diameter. The mean flux over the 3×3, 5×5, 7×7 and 9×9

light-curves are, respectively, ∼83%, ∼92%, ∼96% and ∼98% of the mean flux over the 11×11

light-curve. As the interest is on the relative flux variation during the transit and not on the

absolute stellar photometry, it is not necessary to select an array that fully contains the PSF.

Larger arrays may be disfavoured, because they include noisier pixels. Figure 5.5 reports the
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Figure 5.4: Raw integrated light-curves from several squared arrays of pixels: (black) 3×3, (blue)
5×5, (green) 7×7, (orange) 9×9 and (red) 11×11.

transit depth estimates obtained from the different arrays and the corresponding σ0 and σICA

values for the two observations, using method 2 (see Section 5.2). The results indicate that:

3X3 5X5 7X7 9X9 11X11
0.0236

0.0238

0.024

0.0242

0.0244
ID 30590

p
2

3X3 5X5 7X7 9X9 11X11
0.0236

0.0238

0.024

0.0242

0.0244
ID 40732

p
2

3X3 5X5 7X7 9X9 11X11
6

7

8

9

x 10
−4

array size

N
o
rm

lis
e
d
 f
lu

x

 

 

3X3 5X5 7X7 9X9 11X11
1.4

1.6

1.8

2
x 10

−4

array size

N
o
rm

a
lis

e
d
 f
lu

x

 

 

σ
0

σ
ICA

σ
0

σ
ICA

Figure 5.5: Top panels: transit depths obtained from the five arrays considered, using method
2 (see Section5.2), for the observations (left) ID 30590 and (right) ID 40732. Bottom panels:
corresponding values of σ0 and σICA.

1. the choice of the array is not crucial for these observations, as the parameter results are

consistent well within 1 σ and with similar error bars;

2. the 3×3 arrays appear to be less photometrically stable, as revealed by the higher σ0;

3. larger arrays tend to have higher σICA values, probably due to the inclusion of noisier pixel

light-curves in the mixing model;

4. the 5×5 array appears to be the optimal choice.
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Outlier rejection

Outliers were identified as points more than 5 σ away from a first transit model (fitted on the

original data), and replaced with the mean values of the points immediately before and after.

Only one outlier has been found in the observation ID30590, nine in the ID40732.

Choice of the components

Figure 5.6 shows the independent components extracted from the two observations using the

5×5 array. By inspection, a few of the components clearly present time structures, while others

Figure 5.6: Top panel: independent components extracted from observation ID 30590 using the
5×5 array. Bottom panel: the same for observation ID 40732.

appear to be high-frequency components or white noise. I created a ranking of the components,

inversely related to the residuals of the single-component fits on the out-of-transit part of the

integrated light-curve, then I performed all the fits with the first n components, with 1≤ n ≤24.

The results are shown in Figures 5.7 and 5.8. Most systematics are contained in one major

component, but the use of multiple components increases the detrending accuracy, up to a

saturation point. There is no evidence of an inversion of this trend. For this reason, I decided
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Figure 5.7: Top: standard deviations of the residuals of the single-component fits, normalised to
out-of-transit level; 5×5 array. Bottom: the same, zooming on the topmost part of the curve.

to include all the non-transit components in the fitting process.

Other tests: method 1 vs method 2, subdatasets

The results obtained using method 1, i.e. direct identification of the transit component, are

consistent with the results obtained using method 2, i.e. subtracting the non-transit components.

However, method 1 led to larger error bars by a factor 3–4, mainly due to the σICA term.

I tested the effect of considering shorter observations, which I called subdatasets, with dif-

ferent starting and ending times. The scatter in the transit parameters obtained from a long list

of subdatasets is .1 σ. This test also confirmed that the results obtained using method 1 are

less robust, as suggested by the larger error bars.

5.3.4 Results

Figure 5.9 shows the normalised transit signals extracted using the 5×5 arrays, considering

all the independent components; the relative best light-curve fits to the binned and detrended

data; and the residuals. The standard deviations of the residuals are σID30590
0 =6.4×10−4 and

σID40732
0 =1.45×10−4. Note that the signal extracted from observation ID 40732 has a dispersion

smaller by a factor ∼4.4. The final parameter results are reported in Table 5.3.

5.3.5 Discussion

The planetary, orbital and stellar parameters derived separately from the two observations,

reported in Table 5.3, are all consistent within 1 σ. The difference in transit depth is further

decreased by injecting the orbital parameters obtained from the best-quality observation into

the other one, with a negligible impact on the fitting residuals, showing that part of the apparent
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Figure 5.8: Top: standard deviations of the residuals of the fits with multiple components,
normalised to out-of-transit level, 5×5 array. Middle: standard deviations of the residuals
between the transit signals estimated using method 2 with the n most important components,
and the corresponding best model fits, i.e. σ0. Bottom: σICA values using method 2 with the n
most important components.

discrepancy was due to the parameter degeneracies. This reanalysis does not support the claims

of stellar variability reported in the previous literature (Désert et al., 2009, 2011) and puts an

upper limit of one part in ∼104 on the overall instrument+astrophysical variability between

the two observations one year apart. For the first observation (ID 30590), I obtained larger

parameter error bars by a factor ∼1.6 compared to the ones reported in Désert et al. (2009).

This factor comes from adding the ICA errors to the MCMC error bars based on the fitting

residuals only. Désert et al. (2009, 2011) applied parametric corrections for data detrending,

without attributing any uncertainties to the detrending processes. I obtained smaller error
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Figure 5.9: Top panel: transit time series extracted using the 5×5 array, method 2 subtracting
all the independent components. Middle panel: (blue) the same series, binned by nine points,
(red) relative best model fit. Bottom panel: residuals between the extracted time series and the
model. Dashed black lines indicate the standard deviations of the residuals.

ID 30590 ID 40732
p 0.1547±0.0005 0.15534±0.00011

(0.1551±0.0004)
aR 9.05±0.16 8.92±0.03
i 85.93±0.15 85.78±0.03
p2 0.02394±0.00017 0.02413±0.00003

(0.02405±0.00014)
b 0.64±0.03 0.657±0.005
T 5170±200 s 5157±34 s

Table 5.3: Final best parameter values for the exoplanet HD189733b at 3.6 µm. The values in
parenthesis are obtained by assuming the same orbital parameters of the best quality observation.
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bars for the second observation (ID40732), even including the uncertainties associated with the

detrending process. This suggests that, in that context, the blind extraction performed much

better than their parametric correction. Finally, I checked that the estimated orbital parameters

are consistent within 1 σ with newer measurements at 8 µm reported by Agol et al. (2010).

Figure 5.10 compares the various results discussed in this Section.
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Figure 5.10: Comparison of the parameters p2, aR and i, (blue) obtained for HD189733b with
the pixel-ICA technique, with the ones reported in (green) Désert et al. (2009, 2011), (yellow)
Beaulieu et al. (2008) and (red) observations at 8 µm by Agol et al. (2010). Images from Morello
et al. (2014).
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5.4 Transits of GJ436b

5.4.1 The exoplanetary system around GJ436

GJ436b is a Neptune-sized planet orbiting around an M dwarf with radius ∼0.46R� at a distance

∼0.03 AU. The apparent magnitude of the host star is ∼6.1 in the infrared K band. This planet

is interesting for several reasons. It is one of the smallest (radius ∼4.3R⊕) and coolest (∼ 700K)

exoplanets for which optical–to–IR spectra have been measured (Gillon et al., 2007; Deming

et al., 2007; Demory et al., 2007; Alonso et al., 2008; Coughlin et al., 2008; Cáceres et al., 2009;

Pont et al., 2009; Ballard et al., 2010b; Stevenson et al., 2010; Beaulieu et al., 2011; Knutson

et al., 2011, 2014a). The primary transit depth is ∼0.7%. Another peculiarity of GJ436b is its

high orbital eccentricity (e ∼0.16), inferred from radial velocity measurements (Maness et al.,

2007) and from secondary eclipse phasing (Deming et al., 2007). Both the physical and dynamical

properties of GJ436b are debated in the literature.

Maness et al. (2007) and Demory et al. (2007) investigated the origin of the high orbital

eccentricity of GJ436b, concluding that the circularization timescale (∼108 yr) is significantly

smaller than the age of the system (&6×109). Maness et al. (2007) also found a long-term

trend in radial velocity measurements; they suggested the presence of an external perturber in

a wider orbit to explain both the high eccentricity of GJ436b and the trend in radial velocity

measurements. Ribas et al. (2008) hypothesized a super-Earth in a close orbit to explain the

data, but later retracted. Transit timing variations (TTVs) reported by Alonso et al. (2008) and

by Cáceres et al. (2009) do not provide any evidence of external perturbers. Stevenson et al.

(2012) claimed the possible detection of two sub-Earth-sized exoplanets transiting in the GJ436

system; according to the authors, the dynamics of the proposed system is consistent with the

current non-TTV-detections.

Based on multiwavelength infrared eclipse measurements, Stevenson et al. (2010) proposed a

high CO–to–CH4 ratio compared to thermochemical equilibrium models for hydrogen-dominated

atmospheres. Their atmospheric model includes non-equilibrium processes, such as vertical

mixing and polymerization of methane, to explain the observed deficiency of CH4. Beaulieu et al.

(2011) suggested strong CH4 absorption in the 3.6, 4.5, and 8.0 µm Spitzer/IRAC passbands

from primary transit observations, and their reanalysis of secondary eclipse data is consistent

with this detection. Knutson et al. (2011) measured significant time variations of the transit

depths at the same wavelengths, which strongly affect the inferred transmission spectrum. They

attributed such variations to the stellar activity and found that different results are obtained

depending on the observations considered. By rejecting those observations that they believe to be
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most strongly affected by stellar activity, their final results support CO as the dominant carbon

molecule, with very little, if any, CH4. More recent HST/WFC3 observations in the 1.2–1.6

µm wavelength interval, analyzed by Knutson et al. (2014a), indicate a featureless transmission

spectrum, which is consistent with an atmosphere with a high cloud or haze layer.

5.4.2 Observations

I reanalysed two 3.6 and two 4.5 µm transits of GJ436b (program ID 50051) with the pixel-ICA

technique. The dates of the observations are detailed in Table 5.4. Each observation consists of

Obs. Number Detector Wavelength (µm) UT Date Orbit Number
1a IRAC, ch1 3.6 2009 Jan 9 234
1b IRAC, ch1 3.6 2009 Jan 28 241
2a IRAC, ch2 4.5 2009 Jan 17 237
2b IRAC, ch2 4.5 2009 Jan 31 242

Table 5.4: Spitzer observations of primary transits of GJ436b.

1,829 exposures using IRAC’s sub-array mode, taken over 4.3 hr: 0.8 hr on the primary transit

of the planet, the remaining 3.5 hr before and after transit. The interval between consecutive

exposures is 8.4 s. Each exposure includes 64 consecutive frames integrated over 0.1 s. I replaced

the 64 reads of each exposure with their mean values, in order to have a manageable number of

data points and to reduce the random scatter.

5.4.3 Analysis

Fixed and free parameters

I assumed the orbital period from Cáceres et al. (2009), the eccentricity and argument of periapsis

from Maness et al. (2007). I tested two different sets of quadratic limb darkening coefficients

(Equation 3.13), one generated with the modified version of ATLAS9 code (Howarth, 2011b),

the other set obtained from a Phoenix stellar model (Allard and Hauschildt, 1995; Allard et al.,

2001). The values of the fixed parameters are reported in Table 5.5. The stellar limb darkening

coefficients for the two models at the two wavelengths are reported in Table 5.6. The other

astrophysical parameters, i.e. p, aR, i and tmid, were kept free in the fitting process, as explained

in Section 3.3.5.

P 2.6438986 days
e 0.16
ω 351◦

Table 5.5: Values of the parameters fixed while generating the transit models.
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ATLAS 3.6 µm 4.5 µm
γ1 5.489×10−2 1.331×10−2

γ2 3.0653×10−1 2.8396×10−1

PHOENIX 3.6 µm 4.5 µm
γ1 3.87×10−3 3.27×10−3

γ2 2.3615×10−1 1.8193×10−1

Table 5.6: Limb darkening coefficients for a star with effective temperature Teff =3,680 K, gravity
log g =4.78 and solar abundances.

Choice of the pixel-array

As in the analysis of HD189733b, I adopted a 5×5 array of pixels; the choice of the array is not

critical.

Outlier rejection

No outliers have been found in the four datasets.

Choice of the components

As in the analysis of HD189733b, I included all the non-transit components when fitting for the

instrument systematics.

New test: subdatasets and test of pixel-phase correlations

To investigate the effectiveness of the data detrending I measured the correlations of the signals

with the pixel-phase position, before and after the corrections. The pixel-phase is defined as

the distance of the centroid position from the center of the pixel containing the centroid (Fazio

et al., 2004; Morales-Calderón et al., 2006). The centroid coordinates are measured using a

simple flux-weighted center-of-light method, which is accurate at the level of 0.05 pixels (Ingalls

et al., 2014). I refer to the Pearson product–moment correlation coefficient (PCC), defined as:

PCC =
cov(X,Y )

σXσY
(5.5)

where cov(X,Y ) is the covariance of the signals X and Y , σX and σY are the standard deviations.

In this context, X and Y are temporal series of fluxes and pixel-phases, shown in Figures 5.11

and 5.12. The PCCs are measured over three intervals, i.e. pre-, in-, and post-transit, where

the astrophysical signals are expected to be almost flat 2. In general −1≤PCC≤+1, where +1

2I used the following definitions: pre-transit (φ < −0.0082); in-transit (-0.00433 < φ <0.00416); post-transit
(φ >0.0082). These have been chosen so that all the transit models obtained during the analysis, modified with
no limb darkening, are flat in these three intervals. I checked that other reasonable choices of the limits do not
affect this analysis.
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is total positive correlation, −1 is total negative correlation, and 0 is no correlation. I found

that the data detrending is more effective if the first 450 data points are removed, as shown in

Figures 5.13 and 5.14. This corresponds to a time interval of ∼1 hr, which is consistent with the

(case-dependent) settling time of the Spitzer telescope (see Section 5.1.1).
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Figure 5.11: Raw integrated light-curves of the four primary transit observations. Data points
on the left of the black vertical lines have been discarded for the analysis. Note that the transit
depth is comparable with the amplitude of systematics.

5.4.4 Results

Figure 5.15 shows the normalised transit signals, ICA detrended with method 2 (see Section

5.2.1), the relevant best transit models and the residuals. The standard deviations of residuals

are∼2×10−4 for the observations at 3.6 µm (1a and 1b) and 2.6–2.9×10−4 for the first and second

observations at 4.5 µm (2a and 2b), respectively. The transit models obtained with the two sets

of limb darkening coefficients are very similar, with average standard deviations .1.9×10−5

and maximum discrepancies .10−4, while the relevant transit parameters are systematically

shifted by about ∼1 σ (see Figure 5.16). The ATLAS model is limited by a lower number

of molecular linelists compared to the PHOENIX model, which are relatively important for

stars with Teff .4,000 K, as it is the case for GJ436. Hence I select the results obtained with

the PHOENIX limb darkening coefficients. In addition to the individual model-fits for each

observation, I performed simultaneous fits over the two observations at the same wavelengths

with common orbital parameters, to remove the effect of parameter correlations. All the results
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Figure 5.12: Time series of the pixel-phase values for the four observations. Data points on the
left of black vertical lines have been discarded for the analysis; dashed green lines delimit the
ends of pre-transits and the begins of post-transits; dashed red lines delimit the in-transits.
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Figure 5.13: PCCs between fluxes and pixel-phases for pre-, in-, and post-transits of the four
light-curves; (blu circles) raw data, (green rightwards triangles) ICA detrended data with no
rejections, (red upwards triangles) ICA detrended data after rejecting the first 450 points.

are reported in Tables 5.7 and 5.8.
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Figure 5.14: Significance level of correlation between fluxes and pixel-phases for the four ob-
servations; (green rightwards triangles) ICA detrended data with no rejections, (red upwards
triangles) ICA detrended data after rejecting the first 450 points.

1a 1b 1a+1b
p 0.0828±0.0006 0.0831±0.0005 0.0825±0.0005 / 0.0834±0.0005
aR 14.0±0.4 13.7±0.3 13.8±0.3
i 86.54±0.15 86.47±0.12 86.49±0.09
p2 0.00686±0.00010 0.00690±0.00008 0.00681±0.00008 / 0.00696±0.00008
b 0.845±0.011 0.844±0.008 0.845±0.007
T 2805±24 s 2884±20 s 2845±16 s

Table 5.7: Final best parameter values for the exoplanet GJ436b at 3.6 µm.

2a 2b 2a+2b
p 0.0830±0.0005 0.0836±0.0006 0.0833±0.0005 / 0.0833±0.0005
aR 14.0±0.4 13.2±0.4 13.6±0.3
i 86.55±0.12 86.27±0.14 86.40±0.09
p2 0.00688±0.00008 0.00699±0.00010 0.00694±0.00008 / 0.00694±0.00008
b 0.841±0.009 0.861±0.009 0.852±0.006
T 2850±19 s 2832±26 s 2840±16 s

Table 5.8: Final best parameter values for the exoplanet GJ436b at 4.5 µm.

5.4.5 Discussion

Even in this case, the pixel-ICA reanalysis shows more consistent results over the multiple epochs

at the same wavelengths compared to the previous results reported in the literature (see Figure

5.16), which were obtained using parametric detrending techniques. All parameters at the mul-
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Figure 5.15: Left panels: (blue) detrended light-curves for the four observations with (red) best
transit models overplotted, binned over 7 points; best transit models are calculated with p, aR,
and i as free parameters, and Phoenix quadratic limb darkening coefficients (see Section 5.4.3).
Right panels: Residuals between detrended light-curves and best transit models; black horizontal
dashed lines indicate the standard deviations of residuals.

tiple epochs are consistent within 1 σ, except for the transit durations between the observations

1a and 1b, which are consistent within 2 σ. Although it is a low-significance detection, it may be

caused by the presence of an external perturber, as hypothesised by several studies (see Section

85



5.4.1). The simultaneous fit with common orbital parameters, which forces the transit duration

to be the same, gives slightly worse results in the case 1a+1b. The simultaneous fit 2a+2b, in-

stead, strengthens the lack of variations between these two epochs at 4.5 µm. The transit depth

variations are below 1 part in 104 at both wavelengths, independent on the potential duration

variation. Also, no significant differences are detected between the transit depths at 3.6 and
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Figure 5.16: From top to bottom: Comparisons of the parameters p, aR, and i (left side), p2,
b, and T (right side), obtained for GJ436b with the pixel-ICA technique by using Atlas stellar
model (cyan, empty circles), Phoenix stellar model (blue, full circles), in Knutson et al. (2011)
(red triangles), and in Beaulieu et al. (2011) (yellow squares).

4.5 µm, nor with the recent measurements in the range 1.2–1.6 µm reported in Knutson et al.

(2014a), supporting the hypothesis of a flat transmission spectrum (see Figure 5.17).
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Figure 5.17: Transit depth values obtained in this paper at 3.6 and 4.5 µm (blue circles); values
at 1.2–1.6 µm reported by Knutson et al. (2014a) (red triangles).
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Chapter 6

Application to simulated

photometric data

In this Chapter, I investigate the limits and advantages of pixel-ICA on a series of simulated

datasets with different instrument properties, and a range of jitter timescales and shapes, non-

stationarity, sudden change points, etc. The content of this chapter has been published in

Morello (2015).

6.1 Instrument simulations

6.1.1 Instrument jitter only
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Figure 6.1: Reference transit light-
curve adopted in simulations.

I consider an ideal transit light-curve with parameters

reported in Table 6.1, sampled at 8.4 s over 4.7 hours,

totaling 2001 data points, symmetric with respect to

the transit minimum. Figure 6.1 shows the ideal light-curve. To each data point I associate a

Table 6.1: Transit parameter values adopted in all simulations: p = rp/Rs is the ratio of
planetary to stellar radii, a0 = a/Rs is the orbital semimajor axis in units of stellar radius, i is
the orbital inclination, e is the eccentricity, P is the orbital period, γ1 and γ2 are quadratic limb
darkening coefficients (see Equation 3.13).

p 0.15500
a0 9.0
i 85.80
e 0.0
P 2.218573 days

γ1, γ2 0.0, 0.0
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Figure 6.2: Left: Representation of one simulated frame onto the focal plane. Right: simulated
time series, in absence of instrument systematics, associated to (top, blue and red)selected
individual pixels, (middle, green) a centered 5×5 array, and (bottom, black) a centered 9×9
array. The centroid is assumed oscillating in the direction indicated by the double-headed arrow,
with a sinusoidal pattern (sin1, see Tab. 6.2).

number of photons proportional to the expected flux, in particular 50,000 photons in the out-

of-transit. I generate random gaussian coordinates for each photon, representing their positions

on the detector plane. Finally, I add a grid on this plane: each square of the grid represents a

pixel, and the number of photons into a square at any time is the read of an individual pixel in

absence of pixel systematics. To simulate the effect of instrumental jitter, I move the gridlines

from one data point to another (equivalent to shifting the coordinates of the photons).

Figure 6.2 shows the effect of pure jitter, in absence of other instrument systematics, at

different levels, i.e. individual pixels, and small and large clusters. Pixel flux variations are

related to the changing position of the PSF: the flux is higher when the center of the PSF is

closer to the center of the pixel. The same is valid for the flux integrated over a small aperture,

compared to the width of the PSF. Also note that short time-scale fluctuations are present as a

sampling effect. Neither of these variations are observed with a large aperture that includes all

the photons at any time.
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6.1.2 Source Poisson noise

In a real-case scenario, the detected photons from the astrophysical source are distributed ac-

cording to a Poisson function with fluctuations proportional to the square root of the expected

number of photons. The value of the proportionality factor is specific to the instrument. Poisson

noise in the source is a natural limitation to the photometric precision that can be achieved for

any astrophysical target. To include this effect in the simulations, I added a random time series

to the astrophysical model, multiplied by different scaling factors, then generated frames with

total number of photons determined by these noisy models.

6.1.3 The effect of pixel systematics

As discussed in Section 5.1.1, Spitzer/IRAC datasets for channels 1 and 2 show temporal flux

variations correlated to the centroid position, independently of the aperture selected (Fazio

et al., 2004; Morales-Calderón et al., 2006). Here I consider two effects that, combined to the

instrument jitter, can produce this phenomenon:

1. inter-pixel quantum efficiency variations, simulated by multiplying the photons in a pixel

by a coefficient to get the read, the coefficients not being identical for all the pixels;

2. intra-pixel sensitivity variations, simulated by assigning individual coefficients dependent

on the position of the photon into the pixel.

6.1.4 Description of simulations

I performed simulations for two values of (gaussian) PSF widths, σPSF :

• σPSF =1 p.u. (pixel side units);

• σPSF =0.2 p.u.

The two sets of frames differ only in the scaling factor in photon coordinates, therefore no relative

differences are attributable to the random generation processes. As a comparison, the nominal

PSF widths for Spitzer/IRAC channels are in the range 0.6–0.8 p.u. (Fazio et al., 2004). By

comparing two more extreme cases, I study the impact of the PSF width on pixel systematics

and their detrending. I also tested eleven Poisson noise amplitudes, linearly spaced between 0

and
√

50, 000. I simulated several jitter time series as detailed in Table 6.2 and Figure 6.3. For

each case, I adopted:

1. randomly generated quantum efficiency maps with standard deviations of ∼10−2, to sim-

ulate the inter-pixel variations;
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Table 6.2: List of jitter time series adopted in simulations and their properties. Six armonics
are used to test the ability of detrending periodic signals with different timescales and phasing
relative to the transit. The sawtooth time series is more similar to the jitter observed with
Spitzer, and its variants test the effects of non-periodicity and monotonic trends. The last
configuration test a case of a sudden discontinuity, such as re-pointing of the telescope.

Abbr. Shape Peak-to-peak amplitude (p.u.) Period (s)
sin1 sinusoidal 0.6 4014.6
cos1 cosinusoidal 0.6 4014.6
sin2 sinusoidal 0.6 3011.0
cos2 cosinusoidal 0.6 3011.0
sin3 sinusoidal 0.6 2007.3
cos3 cosinusoidal 0.6 2007.3
saw1 ∼sawtooth 0.6 2990.4

saw1v1 ∼sawtooth variable 2990.4
saw1v2 ∼sawtooth variable 2990.4
saw1v3 ∼sawtooth decreasing 2990.4
saw1vf1 ∼sawtooth 0.6 variable
saw1vf2 ∼sawtooth 0.6 decreasing
jump04c Heaviside step 0.4 mid-transit discontinuity

2. a non-uniform response function for each pixel, i.e. 1−0.1d, where d is the distance from

the center of the pixel, to simulate the intra-pixel variations.

These values are of the same order as the nominal pixel-to-pixel accuracy of flat-fielding and

sub-pixel response for Spitzer/IRAC channels 1 and 2 (Fazio et al., 2004), but slightly larger

to visualize better their effects. Finally, I add white noise time series at an arbitrary level of 5

counts/pixel/data point for most cases, to simulate high-frequency pixel noise (HFPN), such as

dark current and readout noise. It is worth noting that the same quantum efficiency maps and

noise time series have been adopted for all the simulations with pixel arrays of the same size, to

minimize possible stochastic effects when comparing the results.
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Figure 6.3: Top panel: jitter time series saw1 (black), saw1v1 (ecru, cross markers), saw1v2
(green, triangles), and saw1v3 (cyan, empty circles); markers are represented every 20 data
points for reasons of visibility. Bottom panel: jitter time series saw1vf1 (orange), and saw1vf2
(grey). The other jitter time series are not reported, since their representations are obvious (see
Table 6.2).
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6.2 Results

After having generated the simulated raw datasets, I applied both pixel-ICA and polynomial

centroid detrending (PCD) techniques, largely adopted in the literature (e.g. Reach et al., 2005;

Charbonneau et al., 2005, 2008; Beaulieu et al., 2008; Knutson et al., 2011), to evaluate their

reliability and robustness in those contexts. More specifically, the polynomial decorrelating

function adopted by default is:

p(x, y) = a1 + a2(x− x̄) + a3(y − ȳ) + a4(x− x̄)2 + a5(y − ȳ)2 (6.1)

where x and y are the centroid coordinates, calculated as weighted means of the counts per pixel;

x̄ and ȳ are the mean centroid coordinates on the out-of-transit; and ai coefficients are fitted on

the out-of-transit. In several cases, I tested some variants of PCD, i.e. higher-order polynomials,

cross terms, etc.

6.2.1 Zero poissonian noise

Since the main purpose of this Chapter is to test the ability of the pixel-ICA method to detrend

instrumental systematics, I first report the detailed results for all the configurations obtained

in the limit of zero photon noise. This limit is approximately valid for bright targets such that

the variations due to the statistical fluctuations in the number of collected photons are much

smaller than the effects of the instrumental systematics. I show in particular:

• the simulated raw light-curves and the corresponding detrended ones;

• the root mean square (rms) of residuals from the theoretical transit light-curve, before and

after the detrending processes;

• the residual systematics in the detrended light-curves;

• the planetary, orbital and stellar parameters estimated by fitting the light-curves;

• for a subsample of cases, the results of full parameter retrieval, including error bars.

Case I: inter-pixel effects, large PSF

Figure 6.4 shows the raw light-curves simulated with σPSF =1 p.u., and inter-pixel quantum

efficiency variations over 9×9 array of pixels, and the corresponding detrended light-curves ob-

tained with the pixel-ICA and PCD methods. This array is large enough that the observed
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Table 6.3: Root mean square of residuals between the light-curves and the theoretical model for
simulations with σPSF = 1 p.u., and inter-pixel quantum efficiency variations over 9×9 array of
pixels; in particular they are calculated for the raw light-curves, light-curves detrended with the
pixel-ICA and PCD methods, binned over 10 points.

Jitter rms (raw − theoretical) rms (ICA − theoretical) rms (PCD − theoretical)
sin1 6.5×10−4 2.0×10−4 3.0×10−4

cos1 6.9×10−4 2.1×10−4 3.2×10−4

sin2 6.7×10−4 2.0×10−4 3.0×10−4

cos2 6.5×10−4 2.1×10−4 3.1×10−4

sin3 6.6×10−4 2.0×10−4 3.0×10−4

cos3 6.6×10−4 2.0×10−4 3.1×10−4

saw1 5.4×10−4 2.1×10−4 3.1×10−4

saw1v1 6.0×10−4 2.1×10−4 3.0×10−4

saw1v2 5.6×10−4 2.1×10−4 3.1×10−4

saw1v3 5.9×10−4 2.1×10−4 3.1×10−4

saw1vf1 5.5×10−4 2.1×10−4 3.0×10−4

saw1vf2 5.3×10−4 2.0×10−4 3.0×10−4

jump04c 6.9×10−4 1.9×10−4 3.0×10−4

modulations are only due to the pixel effects (see Section 6.1.1). Table 6.3 reports the discrep-

ancies between the detrended light-curves and the theoretical model. The amplitude of residuals

after PCD detrending, i.e. 3.0×10−4 for the selected binning, slightly larger than the HFPN

level, i.e. 2.8×10−4 for this configuration (see also Section 6.1.4), while for pixel-ICA detrended

data it is smaller by a factor ∼1/3. It is possible to partially correct for the HFPN, because, after

detrending the common non-gaussian components, the individual pixel effects appear as compo-

nents with mixing coefficients equal to zero for all pixels but one. I note that two independent

components are enough to correct for the main instrumental systematics within the HFPN level,

the other components slightly correct for the residual pixel systematics. Interestingly, a similar

behaviour has been observed for real Spitzer datasets (Morello et al., 2014), but with the best-fit

model instead of the (unknown) theoretical one. Figure 6.5 shows how the residuals scale with

binning over n points, with 1≤ n ≤10. This behaviour suggests a high level of temporal structure

in the raw data, which is not present in the ICA-detrended light-curves. Some systematics are

still detected in residuals obtained with the parametric method. I checked that the empirical

centroid coordinates are accurate to within 0.006 p.u. on average, and higher-order polynomial

corrections lead to identical results. Figure 6.6 shows the transit parameters retrieved from the

detrended light-curves; in a few representative cases, I calculated the error bars as detailed in

Morello et al. (2015), and Section 5.2 in this Thesis. Numerical results are reported in Table

6.7.
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Figure 6.4: Left panels: (blue) raw light-curves simulated with σPSF = 1p.u., and inter-pixel
quantum efficiency variations over 9×9 array of pixels. Right panels: detrended transit light-
curves obtained with (green ‘x’) polynomial centroid fitting method, and (red dots) pixel-ICA
method. All the light-curves are binned over 10 points, except those in the bottom right, to
show a clearer visualization of the systematic effects.
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Figure 6.5: Root mean square of residuals for light-curves binned over 1 to 10 points, scaled
to their non-binned values. The simulations were obtained with σPSF =1 p.u., 9×9 array, and
inter-pixel effects. The dashed black line indicates the expected trend for white residuals, blue
dots are for normalized raw light-curves, red ‘∗’ are for pixel-ICA detrendend light-curves, and
green ‘x’ for PCD detrended light-curves. The spread in points of a given colour represents
different jitter models.
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Figure 6.6: Top panel: best estimates of the planet-to-star radii ratio, p = rp/Rs, for detrended
light-curves with (red dots) pixel-ICA, and (green x) PCD method (σPSF =1 p.u., inter-pixel
effects over 9×9 array). Error bars are reported for a few representative cases of jitter signal,
i.e. sin1, cos1 (chosen as examples of periodic functions with different phasing), saw1v3 (exam-
ple with non-stationary amplitude), saw1vf2 (non-stationary frequency), and jump04c (sudden
change). Middle panel: the same for the orbital semimajor axis in units of the stellar radius,
a0 = a/Rs. Bottom panel: the same for the orbital inclination, i.
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Table 6.4: Root mean square of residuals between the light-curves and the theoretical model for
simulations with σPSF = 1 p.u., and inter-pixel quantum efficiency variations over 5×5 array of
pixels; in particular they are calculated for the raw light-curves, light-curves detrended with the
pixel-ICA and PCD methods, binned over 10 points.

Jitter rms (raw − theoretical) rms (ICA − theoretical) rms (PCD − theoretical)
sin1 1.5×10−3 3.1×10−4 2.6×10−4

cos1 1.4×10−3 3.4×10−4 8.1×10−4

sin2 1.5×10−3 3.2×10−4 2.8×10−4

cos2 1.5×10−3 3.2×10−4 6.2×10−4

sin3 1.5×10−3 3.1×10−4 2.7×10−4

cos3 1.4×10−3 3.2×10−4 4.9×10−4

saw1 1.7×10−3 3.1×10−4 3.5×10−4

saw1v1 1.7×10−3 2.9×10−4 2.5×10−4

saw1v2 1.6×10−3 3.6×10−4 3.7×10−4

saw1v3 1.7×10−3 3.1×10−4 4.0×10−4

saw1vf1 1.7×10−3 3.1×10−4 2.9×10−4

saw1vf2 1.6×10−3 3.2×10−4 2.6×10−4

jump04c 3.3×10−3 2.6×10−4 2.6×10−4

For the same configuration, i.e. σPSF =1 p.u., inter-pixel effects, I investigated the conse-

quences of considering a smaller array (5×5), which does not include the whole PSF. Figure

6.7 shows the raw light-curves, and the corresponding detrended ones, obtained with the two

methods. Table 6.4 reports the discrepancies between those light-curves and the theoretical

model. The discrepancies are higher than for the larger pixel-array by a factor & 2 (for the raw

light-curves), because of the additional effect. After pixel-ICA detrending, the discrepancies are

reduced by a factor ∼5 (for the selected binning) in most cases, and ∼13 for the ‘jump04c’ (mid-

transit discontinuity), while the performances of the parametric method are case-dependent, and

discrepancies are reduced by a factor between 2 and 7 in most cases, and also ∼13 for ‘jump04c’.

In all cases, the final discrepancies are higher than the HFPN level, i.e. ∼1.7×10−4 for the 5×5

array. Figure 6.8 shows how the residuals scale for binning over n points, with 1≤ n ≤10. The

temporal structure due to jitter effects is dominant in raw data, but little traces of this behaviour

are present after pixel-ICA detrending. Even for this aspect, the performances of the parametric

method are case-dependent. Figure 6.9 shows the transit parameters retrieved from detrended

light-curves; in a few representative cases, I calculated the error bars. Numerical results are re-

ported in Table 6.8. In conclusion, the choice of a non-optimal pixel array introduces additional

systematics that worsen the parameter retrieval, but it is quite remarkable that the pixel-ICA

technique gives consistent results in most cases, whereas the parametric technique appears to be

less robust. In general, the photometric aperture is not necessarily an array of pixels. In fact,

it is possible to integrate the flux, e.g., over a circular aperture and use the time series from the

pixels at least partially contained within the aperture as input for the ICA. Such options can be

96



−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Raw 5x5, sin1, inter, PSF = 1

Φ

N
o

rm
a

li
z
e

d
 f

lu
x

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Detrended

Φ

 

 

PCD

ICA

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Raw 5x5, cos1, inter, PSF = 1

Φ

N
o

rm
a

li
z
e

d
 f

lu
x

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Detrended

Φ

 

 

PCD

ICA

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Raw 5x5, sin2, inter, PSF = 1

Φ

N
o

rm
a

li
z
e

d
 f

lu
x

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Detrended

Φ

 

 

PCD

ICA

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Raw 5x5, cos2, inter, PSF = 1

Φ

N
o

rm
a

li
z
e

d
 f

lu
x

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Detrended

Φ

 

 

PCD

ICA

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Raw 5x5, sin3, inter, PSF = 1

Φ

N
o

rm
a

li
z
e

d
 f

lu
x

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Detrended

Φ

 

 

PCD

ICA

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Raw 5x5, cos3, inter, PSF = 1

Φ

N
o

rm
a

li
z
e

d
 f

lu
x

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Detrended

Φ

 

 

PCD

ICA

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Raw 5x5, saw1, inter, PSF = 1

Φ

N
o

rm
a

li
z
e

d
 f

lu
x

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Detrended

Φ

 

 

PCD

ICA

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Raw 5x5, saw1v1, inter, PSF = 1

Φ

N
o

rm
a

li
z
e

d
 f

lu
x

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Detrended

Φ

 

 

PCD

ICA

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Raw 5x5, saw1v2, inter, PSF = 1

Φ

N
o

rm
a

liz
e

d
 f

lu
x

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Detrended

Φ

 

 

PCD

ICA

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Raw 5x5, saw1v3, inter, PSF = 1

Φ

N
o

rm
a

liz
e

d
 f

lu
x

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Detrended

Φ

 

 

PCD

ICA

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Detrended

Φ

 

 

PCD

ICA

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Raw 5x5, saw1vf1, inter, PSF = 1

Φ

N
o

rm
a

liz
e

d
 f

lu
x

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Raw 5x5, saw1vf2, inter, PSF = 1

Φ

N
o

rm
a

liz
e

d
 f

lu
x

−0.05 0 0.05
0.97

0.98

0.99

1

1.01

Detrended

Φ

 

 

PCD

ICA

−0.05 0 0.05
0.97

0.98

0.99

1

1.01
Raw 5x5, jump04c, inter, PSF = 1

Φ

N
o

rm
a

liz
e

d
 f

lu
x

−0.05 0 0.05
0.97

0.98

0.99

1

1.01
Detrended

Φ

 

 

PCD
ICA

Figure 6.7: Left panels: (blue) raw light-curves simulated with σPSF = 1p.u., and inter-pixel
quantum efficiency variations over 5×5 array of pixels. Right panels: detrended transit light-
curves obtained with (green ‘x’) polynomial centroid fitting method, and (red dots) pixel-ICA
method. All the light-curves are binned over 10 points to show a clearer visualization of the
systematic effects.
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Figure 6.8: Root mean square of residuals for light-curves binned over 1 to 10 points, scaled
to their non-binned values. The simulations were obtained with σPSF =1 p.u., 5×5 array, and
inter-pixel effects. The dashed black line indicates the expected trend for white residuals, blue
dots are for normalized raw light-curves, red ‘∗’ are for pixel-ICA detrendend light-curves, and
green ‘x’ for PCD detrended light-curves.

important in cases where the choice of the aperture is critical to maximize the Signal-to-Noise

ratio. A detailed analysis of different methods to select an optimal aperture is beyond the scope

of this study.
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Figure 6.9: Top panel: best estimates of the planet-to-star radii ratio, p = rp/Rs, for detrended
light-curves with (red dots) pixel-ICA, and (green ‘x’) PCD method (σPSF =1 p.u., inter-pixel
effects over 5×5 array). Error bars are reported for representative cases of jitter signal, i.e. sin1,
cos1, saw1v3, saw1vf2, and jump04c. Middle panel: the same for the orbital semimajor axis in
units of the stellar radius, a0 = a/Rs. Bottom panel: the same for the orbital inclination, i.
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Table 6.5: Root mean square of residuals between the light-curves and the theoretical model for
simulations with σPSF =0.2 p.u., and inter-pixel quantum efficiency variations over 5×5 array
of pixels; in particular they are calculated for the raw light-curves, light-curves detrended with
the pixel-ICA and PCD methods, binned over 10 points.

Jitter rms (raw − theoretical) rms (ICA − theoretical) rms (PCD − theoretical)
sin1 7.2×10−4 7.2×10−5 1.9×10−4

cos1 7.0×10−4 7.7×10−5 2.8×10−4

sin2 7.1×10−4 7.4×10−5 1.8×10−4

cos2 7.4×10−4 7.4×10−5 2.4×10−4

sin3 7.1×10−4 7.8×10−5 1.8×10−4

cos3 7.0×10−4 7.5×10−5 2.0×10−4

saw1 2.6×10−4 6.7×10−5 1.5×10−4

saw1v1 2.3×10−4 6.8×10−5 1.5×10−4

saw1v2 2.3×10−4 6.6×10−5 1.5×10−4

saw1v3 2.3×10−4 6.8×10−5 1.5×10−4

saw1vf1 2.3×10−4 6.6×10−5 1.5×10−4

saw1vf2 2.4×10−4 6.8×10−5 1.5×10−4

jump04c 7.6×10−4 7.4×10−5 1.5×10−4

Case II: inter-pixel effects, narrow PSF

Figure 6.10 shows the raw light-curves simulated with σPSF =0.2 p.u., and inter-pixel quan-

tum efficiency variations over 5×5 array of pixels, and the corresponding detrended light-curves

obtained with the pixel-ICA and PCD techniques. The array is large enough that observed

modulations are due only to the pixel effects. Table 6.5 reports the discrepancies between those

light-curves and the theoretical model. Again, the discrepancies after pixel-ICA detrending are

below the HFPN level, i.e. 1.5×10−4 for the selected binning, outperforming the parametric

method by a factor 2 to 3. I also note that the empirical centroid coordinates may differ from

the “true centroid coordinates” up to 0.15–0.33 p.u., which is an error comparable with the jitter

amplitude. This is not surprising, given that the PSF is undersampled, being much narrower

than the pixel size. Despite the large errors in empirical centroid coordinates, in some cases, the

discrepancies between PCD detrended light-curves and the theoretical model are at the HFPN

level, and slightly larger in other cases. Figure 6.11 shows how the residuals scale for binning over

n points, with 1≤ n ≤10. A significant temporal structure is present in the raw data, but not

in the pixel-ICA detrended light-curves, while the performances of the parametric method are

case-dependent. Figure 6.12 shows the transit parameters retrieved from detrended light-curves;

in representative cases, I calculated the error bars. Numerical results are reported in Table 6.9.
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Figure 6.10: Left panels: (blue) raw light-curves simulated with σPSF =0.2 p.u., and inter-pixel
quantum efficiency variations over 5×5 array of pixels. Right panels: detrended transit light-
curves obtained with (green ‘x’) polynomial centroid fitting method, and (red dots) pixel-ICA
method. All the light-curves are binned over 10 points to show a clearer visualization of the
systematic effects.
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Figure 6.11: Root mean square of residuals for light-curves binned over 1 to 10 points, scaled to
their non-binned values. The simulations were obtained with σPSF =0.2 p.u., 5×5 array, and
inter-pixel effects. The dashed black line indicates the expected trend for white residuals, blue
dots are for normalized raw light-curves, red ‘∗’ are for pixel-ICA detrendend light-curves, and
green ‘x’ for PCD detrended light-curves.
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Figure 6.12: Top panel: best estimates of the planet-to-star radii ratio, p = rp/Rs, for detrended
light-curves with (red dots) pixel-ICA, and (green ‘x’) PCD method (σPSF =0.2 p.u., inter-pixel
effects over 5×5 array). Error bars are reported for representative cases of jitter signal, i.e. sin1,
cos1, saw1v3, saw1vf2, and jump04c. Middle panel: the same for the orbital semimajor axis in
units of the stellar radius, a0 = a/Rs. Bottom panel: the same for the orbital inclination, i.
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Case III: intra-pixel effects

For simulations with σPSF =1 p.u., the effect of intra-pixel sensitivity variations is negligible,

i.e. ∼10−5, unless we consider unphysical or very unlikely cases, where the quantum efficiency

can assume both positive and negative values in a pixel, or is zero for a significant fraction of

the area of the pixel. Intra-pixel effects become significant when the PSF is narrower; therefore,

I analyzed only the relevant simulations with σPSF =0.2 p.u.

Figure 6.13 shows the raw light-curves simulated with σPSF =0.2 p.u. and intra-pixel quan-

tum efficiency variations over 5×5 array of pixels, and the corresponding detrended light-curves.

The array is large enough that the observed modulations are only due to the pixel effects. Table

6.6 reports the discrepancies between those light-curves and the theoretical model. The pixel-

ICA technique reduces the dicrepancies by a factor 4 to 8 (for the selected binning) for the first

12 jitter series, and by a factor 83 for the case ‘jump04c’, outperforming the parametric method

by a factor 2 to 4. Figure 6.14 shows how the residuals scale for binning over n points, with

1≤ n ≤10. In this case, the temporal structure is preserved in all detrended light-curves, except

for the case ‘jump04c’, which means that both methods have some troubles to decorrelate intra-

pixel effects. Figure 6.15 shows the transit parameters retrieved from detrended light-curves;

in representative cases, I calculated the error bars. Detailed numerical results are reported in

Table 6.10. While in some cases the parametric method may perform better than pixel-ICA if

adopting higher order polynomials, in some other cases higher order polynomials lead to worse

results than lower order polynomials. Higher-order polynomials might approximate better the

out-of-transit baseline, but the residuals to the theoretical light-curve are not necessarily im-

proved, hence the correction can bias the astrophysical signal. The pixel-ICA method is less

case-dependent. It is quite remarkable that, although the systematics are not well decorrelated,

the parameter retrieval gives the correct results within the error bars.
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Figure 6.13: Left panels: (blue) raw light-curves simulated with σPSF =0.2 p.u., and intra-pixel
quantum efficiency variations over 5×5 array of pixels. Right panels: detrended transit light-
curves obtained with (green ‘x’) polynomial centroid fitting method, and (red dots) pixel-ICA
method. All the light-curves are binned over 10 points to show a clearer visualization of the
systematic effects.
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Table 6.6: Root mean square of residuals between the light-curves and the theoretical model for
simulations with σPSF = 0.2 p.u., and intra-pixel quantum efficiency variations over 5×5 array
of pixels; in particular they are calculated for the raw light-curves, light-curves detrended with
the pixel-ICA and PCD methods, binned over 10 points.

Jitter rms (raw − theoretical) rms (ICA − theoretical) rms (PCD − theoretical)
sin1 3.5×10−3 5.1×10−4 1.2×10−3

cos1 3.5×10−3 5.1×10−4 1.8×10−3

sin2 3.4×10−3 4.9×10−4 1.2×10−3

cos2 3.5×10−3 5.0×10−4 1.5×10−3

sin3 3.4×10−3 5.0×10−4 1.2×10−3

cos3 3.4×10−3 5.0×10−4 1.4×10−3

saw1 3.4×10−3 7.4×10−4 1.8×10−3

saw1v1 3.8×10−3 7.3×10−4 1.7×10−3

saw1v2 3.6×10−3 6.8×10−4 1.7×10−3

saw1v3 3.7×10−3 7.3×10−4 1.7×10−3

saw1vf1 3.2×10−3 6.6×10−4 1.7×10−3

saw1vf2 3.0×10−3 6.1×10−4 1.5×10−3

jump04c 6.8×10−3 8.2×10−5 1.6×10−4
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Figure 6.14: Root mean square of residuals for light-curves binned over 1 to 10 points, scaled to
their non-binned values. The simulations were obtained with σPSF =0.2 p.u., 5×5 array, and
intra-pixel effects. The dashed black line indicates the expected trend for white residuals, blue
dots are for normalized raw light-curves, red ‘∗’ are for pixel-ICA detrendend light-curves, and
green ‘x’ for PCD detrended light-curves. The only case of jitter for which the residuals are close
to white noise is the sudden change (‘jump04c’ in Table 6.2).
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Figure 6.15: Top panel: best estimates of the planet-to-star radii ratio, p = rp/Rs, for detrended
light-curves with (red dots) pixel-ICA, and (green ‘x’) PCD method (σPSF =0.2 p.u., intra-pixel
effects over 5×5 array). Error bars are reported for representative cases of jitter signal, i.e. sin1,
cos1, saw1v3, saw1vf2, and jump04c. Middle panel: the same for the orbital semimajor axis in
units of the stellar radius, a0 = a/Rs. Bottom panel: the same for the orbital inclination, i.

106



Additional tables

Table 6.7: Retrieved transit parameters for simulations with σPSF =1, 9×9 array, inter-pixel
effects (see Sec. 6.2.1). In representative cases, I report the partial error bars obtained by the
residuals and the final error bars (see Section 5.2).

Jitter Parameters Best values 1- σ errors 1- σ errors
(residual scatter only) (final)

p 0.15505 9×10−5 1.4×10−4

sin1 a0 8.99 0.02 0.03
i 85.78 0.03 0.04
p 0.15501 1.0×10−4 1.5×10−4

cos1 a0 9.05 0.03 0.04
i 85.85 0.03 0.04
p 0.15507

sin2 a0 8.98
i 85.78
p 0.15510

cos2 a0 8.94
i 85.74
p 0.15505

sin3 a0 8.99
i 85.79
p 0.15503

cos3 a0 9.02
i 85.82
p 0.15506

saw1 a0 8.98
i 85.78
p 0.15506

saw1v1 a0 8.99
i 85.79
p 0.15511

saw1v2 a0 9.02
i 85.81
p 0.15508 1.0×10−4 1.5×10−4

saw1v3 a0 8.99 0.03 0.04
i 85.79 0.03 0.05
p 0.15509

saw1vf1 a0 8.98
i 85.77
p 0.15506 1.0×10−4 1.5×10−4

saw1vf2 a0 8.99 0.03 0.04
i 85.79 0.03 0.05
p 0.15503 1.0×10−4 1.4×10−4

jump04c a0 9.00 0.03 0.04
i 85.80 0.03 0.04
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Table 6.8: Retrieved transit parameters for simulations with σPSF =1, 5×5 array, inter-pixel
effects (see Sec. 6.2.1). In representative cases, I report the partial error bars obtained by the
residuals and the final error bars (see Section 5.2).

Jitter Parameters Best values 1- σ errors 1- σ errors
(residual scatter only) (final)

p 0.15524 1.5×10−4 2.2×10−4

sin1 a0 8.97 0.04 0.06
i 85.76 0.05 0.07
p 0.15505 1.6×10−4 2.2×10−4

cos1 a0 9.18 0.05 0.07
i 85.99 0.05 0.07
p 0.15510

sin2 a0 9.08
i 85.88
p 0.15536

cos2 a0 8.89
i 85.66
p 0.15528

sin3 a0 8.99
i 85.79
p 0.15516

cos3 a0 9.07
i 85.86
p 0.15519

saw1 a0 8.97
i 85.77
p 0.15517

saw1v1 a0 9.02
i 85.81
p 0.15494

saw1v2 a0 8.92
i 85.74
p 0.15527 1.5×10−4 2.4×10−4

saw1v3 a0 8.98 0.04 0.07
i 85.77 0.05 0.07
p 0.15524

saw1vf1 a0 9.00
i 85.78
p 0.15531 1.6×10−4 2.2×10−4

saw1vf2 a0 8.99 0.04 0.06
i 85.79 0.05 0.07
p 0.15508 1.3×10−4 2.6×10−4

jump04c a0 9.04 0.04 0.07
i 85.83 0.04 0.08
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Table 6.9: Retrieved transit parameters for simulations with σPSF =0.2, 5×5 array, inter-pixel
effects (see Sec. 6.2.1). In representative cases, I report the partial error bars obtained by the
residuals and the final error bars (see Section 5.2).

Jitter Parameters Best values 1- σ errors 1- σ errors
(residual scatter only) (final)

p 0.15507 3×10−5 6×10−5

sin1 a0 9.010 0.010 0.018
i 85.808 0.010 0.020
p 0.15505 4×10−5 6×10−5

cos1 a0 9.018 0.010 0.016
i 85.815 0.011 0.017
p 0.15508

sin2 a0 9.009
i 85.806
p 0.15505

cos2 a0 9.004
i 85.801
p 0.15510

sin3 a0 9.001
i 85.798
p 0.15507

cos3 a0 9.015
i 85.812
p 0.15506

saw1 a0 8.993
i 85.791
p 0.15506

saw1v1 a0 9.000
i 85.798
p 0.15506

saw1v2 a0 8.997
i 85.795
p 0.15506 3×10−5 5×10−5

saw1v3 a0 8.998 0.009 0.015
i 85.796 0.010 0.016
p 0.15508

saw1vf1 a0 8.999
i 85.797
p 0.15506 3×10−5 5×10−5

saw1vf2 a0 9.001 0.009 0.015
i 85.798 0.010 0.016
p 0.15508 4×10−5 6×10−5

jump04c a0 9.00 0.011 0.017
i 85.80 0.011 0.018

109



Table 6.10: Retrieved transit parameters for simulations with σPSF =0.2, 5×5 array, intra-pixel
effects (see Sec. 6.2.1). In representative cases, I report the partial error bars obtained by the
residuals and the final error bars (see Section 5.2).

Jitter Parameters Best values 1- σ errors 1- σ errors
(residual scatter only) (final)

p 0.1551 3×10−4 4×10−4

sin1 a0 9.05 0.07 0.10
i 85.84 0.08 0.11
p 0.1550 2×10−4 3×10−4

cos1 a0 9.12 0.07 0.08
i 85.92 0.08 0.08
p 0.1550

sin2 a0 9.13
i 85.93
p 0.1551

cos2 a0 9.10
i 85.89
p 0.1551

sin3 a0 9.01
i 85.81
p 0.1551

cos3 a0 9.02
i 85.82
p 0.1548

saw1 a0 9.10
i 85.93
p 0.1555

saw1v1 a0 8.92
i 85.71
p 0.1546

saw1v2 a0 9.27
i 86.11
p 0.1555 4×10−4 4×10−4

saw1v3 a0 8.95 0.10 0.11
i 85.77 0.11 0.12
p 0.1555

saw1vf1 a0 8.78
i 85.54
p 0.1550 3×10−4 3×10−4

saw1vf2 a0 8.99 0.09 0.10
i 85.79 0.10 0.11
p 0.15508 4×10−5 3×10−4

jump04c a0 9.001 0.011 0.10
i 85.796 0.012 0.10
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6.2.2 The effect of Poisson noise

I tested the effect of Poisson noise associated with the astrophysical source at different levels. It

is well explained by the results obtained with:

1. σPSF =1 p.u., inter-pixel variations over 9×9 array, jitter ‘sin1’;

2. σPSF =0.2 p.u., intra-pixel variations over 5×5 array, jitter ‘sin1’ and ‘cos1’;

Figure 6.16 shows the raw and detrended light-curves obtained for the listed cases with two finite

values of Signal-to-Noise Ratio, SNR = 447 (intermediate) and SNR = 224 (lowest). Figure 6.17

shows how the residuals scale for binning over n points, with 1 ≤ n ≤ 10, in one of the most

problematic case of intra-pixel variations (jitter ‘sin1’). As expected, binning properties depend

on the amplitude of the white noise relative to systematic noise; therefore, for cases with lower

SNR it may superficially appear that systematics are better removed in the detrending process

(Figure 6.14 shows much higher deviations from the white noise behaviour for the case with

zero poissionian noise). Figure 6.18 reports the transit parameters retrieved from detrended

light-curves; in representative cases, I calculated the error bars.

Figure 6.19 shows the amplitude of discrepancies between the detrended light-curves and the

theoretical model as a function of astrophysical Poisson noise, for pixel-ICA and PCD method

with different polynomial orders:

1. For the inter-pixel effects the efficiency of the two methods is limited by the astrophysical

Poisson noise level, except when it is smaller than the instrument HFPN, in which cases

pixel-ICA slightly outperforms PCD.

2. For the intra-pixel effects, residual systematics are clearly present in high-SNR cases, while

for lower SNR the limit is the Poissonian threshold. The second-order PCD method is far

from optimal, while higher-order polynomials in some cases can do better than pixel-ICA,

but they do not always improve the results, as already mentioned in Section 6.2.1.
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Figure 6.16: Top panels: (blue) raw light-curves simulated with σPSF =1 p.u., inter-pixel quan-
tum efficiency variations over 9×9 array of pixels, jitter ‘sin1’, and poissonian noise with (left)
SNR = 447, and (right) SNR = 224; (red) corresponding detrended light-curves with pixel-ICA.
Middle panels: the same for raw light-curves simulated with σPSF =0.2 p.u., intra-pixel quan-
tum efficiency variations over 5×5 array of pixels, and jitter ‘sin1’. Bottom panels: the same for
light-curves simulated with σPSF =0.2 p.u., intra-pixel quantum efficiency variations over 5×5
array of pixels, and jitter ‘cos1’. All the light-curves are binned over 10 points, as in previous
figures.
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Figure 6.17: Top panel: Root mean square of residuals for binning over 1 to 10 points, scaled to
their non-binned values, obtained for simulations with σPSF =0.2 p.u., intra-pixel effects over a
5×5 array, jitter ‘sin1’, and poissonian noise with SNR = 447. The dashed black line indicates
the expected trend for white residuals, blue dots are for normalized raw light-curves, and red ‘∗’
are for pixel-ICA detrendend light-curves. Bottom panel: the same, but with SNR = 224.
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Figure 6.18: Top panel: best estimates of the planet-to-star radii ratio, p = rp/Rs, for some
detrended light-curves with Poissonian noise at different levels. Error bars are reported for
representative cases. Middle panel: the same for the orbital semimajor axis in units of the
stellar radius, a0 = a/Rs. Bottom panel: the same for the orbital inclination, i. The parameter
estimates appear to be biased in the same direction because the same realization of poissonian
noise is adopted for all cases, only with different scaling factors.
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Figure 6.19: Top panel: Root mean square of discrepancies between detrended light-curves
with (red circles) pixel-ICA, and (green) PCD method, and the theoretical model, obtained for
simulations with σPSF =1 p.u., inter-pixel effects over a 9×9 array, jitter ‘sin1’, and poissonian
noise at different levels. Black ‘+’ along dashed line indicate the root mean square of the
poissonian signal. Middle panel: The same for simulations with σPSF =0.2 p.u., intra-pixel
effects over a 5×5 array, jitter ‘sin1’. Green ‘+’ refer to light-curves detrendend with a 4th order
polynomial, and green rhomboids with a 6th order one. Bottom panel: The same for simulations
with σPSF =0.2 p.u., intra-pixel effects over a 5×5 array, jitter ‘cos1’.
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6.2.3 Inter-pixel effects without noise

In Section 6.2.1 I state that inter-pixel effects are well detrended with pixel-ICA method, based

on the binning properties of residuals (and consistent results). Given that binning properties can

only prove that systematics are negligible compared to the actual white noise level, I performed

a last test for a simulation with inter-pixel effects (σPSF =1, 9×9 array, jitter sin1) and a white

noise level reduced by a factor 10. Note that the white noise level is an extremely low value of

0.5 photon counts/pixel/data point1. Figure 6.20 shows the raw and detrended light-curves for

this simulation, and the binning properties of their residuals. The time structure is very high

for the raw light-curve, but it is again well detrended by pixel-ICA. I also checked that all the

retrieved parameters are consistent with the original values within 1 σ.
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Figure 6.20: Left panels: (blue) raw light-curve simulated with σPSF =1 p.u., inter-pixel
sensitivity variations over 9×9 array of pixels, jitter ‘sin1’, and white noise at 0.5 photon
counts/pixel/frame; (red) corresponding detrended light-curve with pixel-ICA. Right panel:
Root mean square of residuals for binning over 1 to 10 points, scaled to their non-binned values.

6.2.4 Comparison with different detrending methods

I have tested the pixel-ICA algorithm over the simulations using method 2 and method 3 in

Equation 5.3; the results have been reported for method 2. The results obtained with method

3 were identical, except for some of the configurations obtained with ‘cos1’ jitter (unfortunate

timescale and phasing), for which the results obtained with the two approaches are not identical,

but consistent within 1 σ.

I also tested a modified version of the PLD algorithm for data detrending (Deming et al.,

2015). The modification was necessary for the algorithm to converge (Morello, 2015). A possible

explanation is that they adopt a first-order approximation which is fine for the eclipses, but not

for the much deeper transit considered in this work. The results obtained with the modified

PLD algorithm are practically indistinguishable from the ones obtained with pixel-ICA.

1I do not set this noise exactly to 0, because pixel time series with many zeroes would negatively affect the
ICA detrending.
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6.3 Conclusion

I have tested the pixel-ICA algorithm to detrend simulated datasets. Systematics similar to the

ones present in Spitzer/IRAC datasets are obtained by combining instrumental jitter with inter-

or intra-pixel sensitivity variations. A variety of jitter time series is used to test the pixel-ICA

method with:

1. periodic signals with different frequencies, phasing and shape;

2. non-stationary signals with varying amplitudes or frequencies;

3. sudden change.

The detrending performances of pixel-ICA method have been compared to a division by a poly-

nomial function of the centroid, in this chapter PCD method, and the PLD method (Deming

et al., 2015). Here I summarize the main results found:

1. Pixel-ICA algorithm can detrend non-stationary signals and sudden changes, as well as

periodic signals with different frequencies and phasing, relative to the transit.

2. Inter-pixel effects are well-detrended with pixel-ICA method.

3. Even if the instrument PSF is not entirely within the array of pixels, pixel-ICA leads to

results which are consistent at ∼1 σ with the input parameters.

4. In most cases, pixel-ICA outperforms the PCD method, especially if the instrument PSF

is narrow, or it is not entirely within the photometric aperture.

5. Intra-pixel effects are only detectable if the PSF is relatively small.

6. Intra-pixel effects cannot be totally detrended by any of the three methods, but pixel-ICA,

in most cases, outperforms the PCD method, which is largely case-dependent. Also, the

pixel-ICA method provides consistent results within the error bars.

7. It is possible to fit the astrophysical signal after detrending or together with the other

components. Differences are registered only if at least one of the non-transit components

has a similar shape at the time of transit, in which case the first approach is preferable,

but the two results were consistent within 1 σ.

8. The PLD method, updated to include cross-terms between pixel fluctuations and the astro-

physical signals, leads to very similar results as pixel-ICA, particularly if the astrophysical

signal is fitted together with the other components.
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In conclusion, I have found thar in a variety of simulated cases pixel-ICA performs as well or

better than other methods used in the literature, in particular polynomial centroid corrections

and pixel-level decorrelation (Deming et al., 2015). The main advantage of pixel-ICA over other

methods relies on its purely statistical foundation without the need to impose prior knowledge

of the instrumental systematics, therefore avoiding a potential source of error. The results of

this study, together with previous analyses of real Spitzer/IRAC datasets (Morello et al., 2014,

2015), suggest that photometric precision and repeatability at the level of one part in 104 can

be achieved with current infrared space instruments.
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Chapter 7

Application to Warm Spitzer

eclipse observations

7.1 Wavelet ICA

7.1.1 Motivation

The ability of ICA to decorrelate non-gaussian signals is inherently limited to cases where the

gaussian noise amplitude is low relative to the other signals. This poses a limit on the quality

of the data that can be successfully detrended with ICA. Wavelet ICA algorithms have been

proposed to outperform the standard ICA in detrending low signal-to-noise data in a variety of

contexts, such as medical sciences (e.g. La Foresta et al., 2006; Inuso et al., 2007; Mammone et al.,

2012), engineering (e.g. Lin and Zhang, 2005), acoustics (e.g. Moussaoui et al., 2006; Zhao et al.,

2006), image denoising (e.g. Karande and Talbar, 2014) and astrophysics (e.g. Waldmann, 2014).

Other preprocessing steps for denoising, e.g. Wiener filters, have been tested, but preliminary

results were less promising and they have not been further investigated. A possible explanation

is that Wiener filters, differently from a wavelet or Fourier decomposition, introduce a distortion

in the original signals.

7.1.2 Continuous Wavelet Transform (CWT)

The wavelet transform (WT) decomposes a given signal, x(t), into its frequency components.

This is done by convolving the time signal with a basis of highly localized impulses or “wavelets”.

To fix the ideas, I assume that x(t) is a time series, although this is not necessary, as the WT

can be applied to different kinds of signals. The individual wavelet functions are derived from
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a single “mother wavelet”, ψ(t), through translation and dilation of the mother wavelet. The

mathematical definition of the CWT is

cτ,ϕ =

∫
R
x(t)ψτ,ϕ(t) dt (7.1)

ψτ,ϕ(t) =
1√
2
ψ

(
t− τ
ϕ

)
(7.2)

where ψτ,ϕ is the mother wavelet for a given scaling ϕ and translation τ , and cτ,ϕ is the wavelet

coefficient with respect to τ and ϕ.

If the wavelet basis is orthogonal, the inverse wavelet transform can be used to reconstruct the

original time series:

x(t) =
∑
ϕ∈Z

∑
τ∈Z

cτ,ϕψτ,ϕ(t), (7.3)

where Z is the set of integer numbers.

The mother wavelet can be chosen from a variety of wavelet families with different properties.

For more details I refer to the relevant literature, e.g. Daubechies (1992); Percival and Walden

(2000).

7.1.3 Discrete Wavelet Transform (DWT)

Astronomical data are usually in the form of discrete time series. For the DWT the mother

wavelet is denoted by h(t), and the scaling function, also called “father wavelet”, is denoted by

g(t). The mother and father wavelets act as high-pass and low-pass frequency filters, respectively.

They are related by

g(L− 1− t) = (−1)t h(t), (7.4)

where L is the filter length and corresponds to the number of points in the time series x(t).

The one-level DWT is defined by

cA1(τ) = (x ∗ g)(t) ↓ 2 =

+∞∑
t=−∞

x(t) g(2τ − t) (7.5)

cD1(τ) = (x ∗ h)(t) ↓ 2 =

+∞∑
t=−∞

x(t) h(2τ − t) (7.6)

The cA1 time series, so-called “average coefficients”, approximates the underlying low-frequency

trend of x(t), while the cD1 time series, so-called “detail coefficients”, represents a higher-

frequency component. They are down-sampled by a factor 2 (“↓ 2” in Equations 7.5 and 7.6)

with respect to the original time series, in recognition of the Nyquist theorem.

119



It is possible to apply the g and h filters to the cA1 time series, then obtain new sets of co-

efficients, cA2 and cD2, and iterate the process. The n-level DWT includes the cAn series of

average coefficients, down-sampled by a factor 2n, and n series cD1–cDn of detail coefficients,

representing bands of higher frequencies. The original data can be reconstructed by reversing

the process:

x(t) = cAn(τ) g(−t+ 2τ) +

n∑
i=1

+∞∑
τ=−∞

(cDi h(−t+ 2τ)) (7.7)

7.1.4 Wavelet ICA

In wavelet ICA algorithms, the DWT is applied to the observed signals:

xk(t)→ x̂k = (cAk,n, cDk,n, . . . , cDk,1) (7.8)

x(t)→ x̂ = (x̂1(t), x̂2(t), . . . , x̂m(t))T (7.9)

The ICA separation is performed with the series of coefficients:

ŝ = Ŵx̂ (7.10)

The independent component series of coefficients are:

ŝl = (cAl,n, cDl,n, . . . , cDl,1) (7.11)

They can be converted into the time domain through inverse DWT (Equation 7.7).

The DWT first separates the high-frequency components from the low-frequency trend, en-

hancing the ability of ICA to disentangle the low-frequency independent components. The

trade-off is down-sampling the signals by a factor 2n, n being the level of the DWT. This step

is particularly important in cases where the gaussian noise is dominant. Additional processing

options/variants have been proposed in the literature to improve the ICA performance further

in specific contexts, e.g. coefficients’ thresholding (Stein, 1981; Donoho, 1995), suppression of

some frequency ranges (Lin and Zhang, 2005), or taking individual levels as input to ICA (Inuso

et al., 2007; Mammone et al., 2012). In this Thesis, I aim to provide the most objective analysis

of the datasets, with minimal prior assumptions, hence these variants are not considered. The

impact of these variants and other operations on the data will be carefully investigated in future

studies.
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7.2 Eclipses of XO3b observed with Warm Spitzer

7.2.1 The exoplanet system XO3b

XO3b is a hot Jupiter (Mp =11.7 ± 0.5 MJ , Johns-Krull et al., 2008; Hirano et al., 2011) in an

eccentric orbit (e =0.283 ± 0.003, Knutson et al., 2014a) with a period of 3.19 days and orbital

semimajor axis of a = 0.045 AU (Winn et al., 2008). The host star is F5V with T∗ = 6760 ± 80

K, and log g =4.24 ± 0.03 (Winn et al., 2008; Torres et al., 2012). The apparent magnitude is

∼8.8 in the infrared K band. A previous analysis of the 12 eclipses reported an average eclipse

depth of 1.58+0.03
−0.04× 10−3 relative to the out-of-eclipse flux (star+planet), and a phase-curve

slope of 6.0+1.3
−1.6× 10−4 days−1 (Wong et al., 2014).

7.2.2 Observations

I reanalysed twelve eclipse observations of XO3b taken with Spitzer/IRAC in the 4.5 µm band.

Ten individual eclipses were observed over six months (Nov 11, 2012 – May 24, 2013), including

two sets of three consecutive eclipses; another eclipse is contained within a full-orbit observation

on May 5, 2013 (PID: 90032). Each individual observation consists of 14,912 frames over 8.4 hr

using IRAC’s sub-array readout mode with 2.0 s integration time. In sub-array mode 64 frames

are taken consecutively, and the reset time is ∼1 s. I extracted 14,912 frames from the full-

orbit observation to analyse the light-curve of the eclipse over a time interval similar to other

observations. The last eclipse was extracted out of a 66 hr observation on April 8, 2010 (PID:

60058). Table 7.1 reports the dates in which the eclipses were observed.

Table 7.1: Eclipse observations dates and orbit numbers of XO3b.

Obs. Number UT Date Orbit Number
1 2010 Apr 8 0
2 2012 Nov 11 297
3 2012 Nov 17 299
4 2012 Nov 20 300
5 2012 Nov 23 301
6 2012 Dec 2 304
7 2012 Dec 9 306
8 2013 Apr 22 348
9 2013 May 5 352
10 2013 May 18 356
11 2013 May 21 357
12 2013 May 24 358
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7.2.3 Analysis

Here, I list the main steps of the wavelet pixel-ICA algorithm that I have developed to detrend

warm Spitzer/IRAC data, followed by a more accurate description and comments:

1. Select an array of pixels. The raw light-curve is the sum of the individual pixel time series

within the selected array.

2. Remove outliers.

3. Subtract the background from the raw light-curve.

4. Compute the wavelet transforms of the pixel light-curves.

5. Perform ICA decomposition of the wavelet-transformed pixel light-curves.

6. Compute the inverse wavelet transforms of the independent components.

7. Simultaneously fit the components (except the eclipse one) and astrophysical model to the

raw light-curve.

8. Estimate parameter error bars.

Selecting the pixel-array

The previous analyses, discussed in Chapter 5, showed that pixel-ICA performances are only

slightly dependent on the choice of the array. Larger arrays are more photometrically stable, as

they contain larger fractions of the instrument PSF and are less subject to the variable loss of

photons depending on the PSF position, but they also include more noise. Several tests favored

the choice of a 5×5 array, immediately followed by the 7×7 one. The new observations differ

from the previous ones, as the new ones are taken during the warm Spitzer era, hence they are

affected by stronger systematics and higher noise levels (Krick et al., 2015). Also, the amplitude

of the astrophysical signal is an order of magnitude smaller in the new observations. Under the

new conditions, tests confirmed that different choices of the pixel-array led to consistent results

to well within 1 σ, but the error bars are more dependent on this choice. In particular, the error

bars obtained with the 7×7 array are 1 to 1.5 times larger than those obtained with the 5×5

array, mainly because of the larger σICA term. For these reasons, I selected the results obtained

with the 5×5 array of pixels.

Outlier rejection

I flag and correct outliers in the flux time series. First, I calculate the standard deviations of any

set of five consecutive points and take the median value as the representative standard deviation.
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I define the expected value in one point as the median of the four closest points, i.e. two before

and two after. Points differing from their expected values by more than five times the standard

deviation are flagged as outliers. They are then replaced with the mean value of the points

immediately before and after, or, in case of two consecutive outliers, with a linear interpolation

between the closest points which are not outliers. I checked that the outliers replaced after

this process are coincident with outliers that would have been spotted by eye. They are less

than 0.35% the number of points in each observation. No significant differences are found if the

outliers are removed from the analysis without replacing with new values.

Background subtraction

The background is estimated by taking the mean flux over four arrays of pixels with the same

size of the selected array (5×5 or 7×7) near the corners of the sub-array area. Uncorrected

background may bias the normalized amplitude of the eclipse depth, as well as the phase-curve’s

slope, if the background is not constant over time. The typical morphology of a background time

series is either a constant or a slow monotonic drift. The lack of a distinct temporal structure and

non-gaussianity makes it difficult to disentangle it with ICA or with other statistical methods.

For this reason, I performed ad hoc background subtractions before ICA detrending. The impact

of background is potentially higher compared to the other observations analysed in this Thesis,

because XO3 is less bright than the other targets. Here I found that the impact of background

on individual measurements of the eclipse depth is at the level of ∼10−5, well below the error

bars. Instead, the phase constant is systematically larger without background subtraction, i.e., in

average, ∼13×10−4 vs ∼7×10−4 days−1. The individual error bars account for this discrepancy,

but the weighted mean is not reliable in presence of a systematic error.

Temporal binning

Given the large number of frames for each observation (14,912), binning the data is very useful,

in particular to decrease the computational time needed to run the MCMC calculations. Some

authors suggest that an optimal choice of the bin size can be useful to reduce the noise on the

timescale of interest (Deming et al., 2015; Kammer et al., 2015), provided that the theoretical

curve is similarly binned to eliminate the bias, and the bin size is not too long to cause significant

loss of astrophysical information (Kipping, 2010).

An additional choice for the pixel-ICA algorithm is whether to bin the pixel time series prior

the ICA separation, or to bin the independent components extracted from the unbinned pixel

time series. I found that the two options are almost equivalent, as the eclipse signals obtained
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after removing the systematic components from the raw light-curve are identical (discrepancies

1 to 2 order of magnitudes smaller than the fitting residuals), except in cases for which the

unbinned ICA separation fails to retrieve an eclipse component. It is worth noting that for the

unbinned case, the amplitude of the total noise plus systematics is higher than the eclipse depth.

Thus I decided to bin the pixel light-curves prior ICA retrieval.

I tested bin sizes of 32 and 64 frames, i.e. 64 and 128 s, respectively. The parameter results

obtained with the two binning choices are all consistent within 0.5 σ, and on average within

0.16 σ. The smaller bin size led to smaller error bars and standard deviations for the twelve

measurements of the eclipse depth and phase constant by factors of ∼1.4, and also whiter fitting

residuals. Based on these tests, I consider the results obtained with bin size of 32 frames as the

best ones.

Wavelet-transforms

The pixel light-curves are wavelet-transformed before performing the ICA separation. More

specifically, I adopted one-level DWT with mother wavelet Daubechies-4 (Daubechies, 1992). I

found that different choices of the mother wavelet, among different families and numbers, lead

to exactly the same results, and higher-level DWTs often appear to make it impossible for ICA

to retrieve the eclipse component. The difficulties with higher-level DWTs may arise from sub-

sampling the signals, and the fact that some of the low-frequency components may be smeared

over a higher level of detail coefficients.

ICA decomposition

It is performed on the wavelet-transformed pixel light-curves (see Equation 7.10).

Inverse wavelet transforms

The independent components are transformed back in the time domain through inverse DWTs

(see Equation 7.7).

MCMC fitting

I adopt an approach similar to method 3 in Section 5.2, i.e., in this case, simultaneous fitting

of an eclipse model (see Section 3.4.2) and a linear combination of the non-eclipse components

extracted by ICA. When fitting the eclipse models, the orbital parameters are fixed to the values

reported in Table 7.2, taken from Wong et al. (2014), while the center of eclipse, eclipse depth and

phase constant are free parameters. First estimates of the parameters and scaling coefficients are
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Table 7.2: Values of the parameters fixed while generating the eclipse models.

P 3.19153285 days
aR 7.052
i 84.11◦

e 0.2833
ω 346.8◦

Table 7.3: Individual best parameters results obtained in this work. The MCMC error bars
without the σICA contribution are reported in parenthesis next to the final error bars.

Obs. Number Depth (10−3) 1 σ error Phase constant (10−4 days−1) 1σ error
1 1.66 0.11 (0.09) -6 7 (6)
2 1.72 0.11 (0.10) 6 8 (7)
3 1.54 0.10 (0.10) 8 5 (5)
4 1.56 0.10 (0.08) 9 7 (6)
5 1.52 0.10 (0.09) -9 7 (6)
6 1.56 0.13 (0.10) 2 10 (8)
7 1.64 0.11 (0.10) 5 10 (9)
8 1.57 0.12 (0.09) 0 11 (9)
9 1.54 0.11 (0.09) 0 5 (3)
10 1.52 0.10 (0.10) 11 8 (7)
11 1.50 0.12 (0.09) 16 7 (5)
12 1.48 0.12 (0.09) 8 6 (5)

obtained through a Nelder-Mead optimization algorithm (Lagarias et al., 1998); they are then

used as optimal starting points for an Adaptive Metropolis algorithm with delayed rejection

(Haario et al., 2006), generating chains of 300,000 values. The output chains are samples of the

posterior (gaussian) distributions. I adopt the mean values of the chains as final best estimates

of the parameters, and the standard deviations as zero-order error bars, σpar,0.

Final error bars

The final error bars are calculated according to Equations 5.2 and 5.3 (method 3).

7.2.4 Results

Figure 7.1 shows the raw light-curves for the twelve observations, the corresponding detrended

eclipses and best models, obtained using the 5×5 array and binning over 32 frames, i.e. ∼64 s.

The individual measurements of eclipse depth and phase constant are reported in Figure 7.2

and Table 7.3. The results from all epochs are consistent within the error bars, suggesting the

lack of any detectable astrophysical variability for this system, and of any residual instrument

variability. By taking the weighted means of the individual measurements, I obtained global

best estimates of (1.57 ± 0.03)×10−3 for the eclipse depth, and (4.4 ± 2.0)×10−4 days−1 for the

phase constant.
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Figure 7.1: Left panels: (blue) raw light-curves obtained from 5×5 array of pixels. Right panels:
(blue) detrended eclipse light-curves obtained with wavelet pixel-ICA method, and (red) best
eclipse models. All the light-curves are binned over 32 frames, i.e. ∼64 s.
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Figure 7.2: Top panel: (green circles) individual best eclipse depth measurements obtained in
this work, and (red triangles) results from Wong et al. (2014). Bottom panel: the same for
individual measurements of the phase constant.
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Figure 7.3: Left panel: (green circle) best global eclipse depth estimate obtained in this work,
and (red triangle) in Wong et al. (2014). Right panel: the same for the global phase constant.

7.2.5 Discussion

Reduced chi-squared tests

The underlying assumption for the weighted mean to be a valid parameter estimate is that

individual measurements of that parameter are normally distributed around the same mean

value with variances σ2
i , and there are no systematic errors. The reduced chi-squared can be
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used to test, in part, this hypothesis:

χ2
0 =

1

n− k

n∑
i=1

(xi − x̄)2

σ2
i

(7.12)

where xi±σi are the individual measurements, x̄ is the weighted mean value, n =12 is the number

of measurements, and k =1 is the number of calculated parameters. Ideally, if the assumption

is valid, we should expect χ2
0 .1. Conventionally, the hypotesis is rejected if χ2

0 > Mn,k, where

Mn,k is the critical value corresponding to a probability of less than 5% for the hypothesis to be

valid. In our case, the final error bars account for potential uncorrected systematics and biases

in the detrending method, hence χ2
0 =1.0 only represents an upper limit. I found χ2

0 =0.42

for the eclipse depth, and χ2
0 =1.0 for the phase constant, confirming the non-detection of any

inter-epoch variability. By considering the MCMC error bars without the σICA contribution,

the χ2
0 values increase up to 0.56 for the eclipse depth and 1.7 for the phase constant. These

results suggest that systematics errors are present in the residuals, which do not significantly

affect the transit depth at different epochs, but they do affect the phase constant. Note that

the reduced chi-squared tests whether the actual dispersion in the measurements is consistent

within their error bars, but it is not sensitive to a uniform bias for all measurements, e.g. a

constant shift. Hence, it is not sufficient alone to justify the use of the weighted mean as global

estimate of a parameter. Additional tests, partly discussed in the previous section 7.2.4, show

that the weighted mean result is very stable for the eclipse depth. The phase constant appears

to be more depending on certain detrending options, in particular background subtraction. In

this case, the adopted weighted mean error bar of 2.0×10−4 days−1 is a lower limit, valid with

some caveats. In the worst-case scenario, the maximum error bar, calculated without scaling

when combining multiple measurements, is 7×10−4 days−1.

Comparison with a previous analysis of the same dataset

The results obtained with the wavelet pixel-ICA technique are consistent within 1 σ with the

ones from a previous analysis reported in Wong et al. (2014) (see Figures 7.2 and 7.3). I obtained,

on average, larger error bars by a factor 0.8 to 1.5 for the eclipse depth and 1.0 to 2.0 for the

phase constant compared to the ones in the literature. The factors for the weighted mean eclipse

depth and phase constant are 0.9 and 1.4, respectively. Slightly larger error bars are a worthwhile

trade-off for much higher objectivity, which derives from the lack of assumptions about the origin

of instrument systematics and their functional forms in the ICA detrending method. I also note

that, despite the larger nominal error bars, the dispersions in the best parameter estimates are

slightly smaller than the ones calculated from the results reported in Wong et al. (2014) (see
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Table 7.4).

The reduced chi-squared values inferred from their individual parameter estimates are χ2
0 =0.86

for the eclipse depth, and χ2
0 =4.3 for the phase constant. While the first χ2

0 value is consistent

with the hypothesis of a constant transit depth within the quoted error bars, the second χ2
0 value

indicates that the analogous hypothesis for the phase constant can be rejected (less than 0.1%

probability of being true). This may suggest either that they were able to detect some astrophys-

ical variability of the phase-curve’s slope, or that their individual error bars are under-estimated

by a factor ∼2. Given that the astrophysical slope is degenerate with other instrumental trends,

such as long-term position drift of the telescope and possible thermal heating, it is possible that

their individual error bars do not fully accounts for these degeneracies, as the authors themselves

state. If this is the case, I observe that their final error bar on the phase constant, derived by

a joint fit of all eclipses, could be equally under-estimated, because it is not guaranteed that

residual systematic errors cancel out over multiple observations as if they were random errors.

Note that the joint fit approach is theoretically valid under the same assumptions for which the

weighted mean is valid, and the two approaches are expected to lead to very similar results (I

checked that this happens in this case). In conclusion, the reanalysis in this Thesis confirms the

results reported in Wong et al. (2014) for the eclipse depth, and relative inter-epoch variability,

but not the 4 σ detection of a non-flat phase-curve’s slope during the eclipse, as larger error bars

are needed to account for the possible residual systematics.

Table 7.4: Weighted mean parameter results, dispersions and reduced chi-squared values ob-
tained in this Thesis and reported in Wong et al. (2014).

Eclipse depth This work Wong et al. 2014

Best estimate (1.57 ± 0.03)×10−3 1.580+0.033
−0.039×10−3

Dispersion 7.2×10−5 8.4×10−5

χ2
0 0.42 0.86

Phase constant (days−1) This work Wong et al. 2014

Best estimate (4.4 ± 2.0)×10−4 6.0+1.3
−1.6×10−4

Dispersion 7.0×10−4 11.3×10−4

χ2
0 1.0 4.3

7.3 The IRAC Data Challenge 2015

To assess the repeatability, reliability, and accuracy of post-cryogenic observations with IRAC,

the Spitzer Science Center (SSC) organized the IRAC Data Challenge 2015 (Krick et al., 2015).

The SSC made available to the public synthetic data sets containing ten simulated eclipse obser-

vation of the exoplanet XO3b generated with the IRACSIM package (Krick et al., 2015), using
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the same observing mode of the real datasets analysed in Section 7.2 (PID: 90032). The simula-

tions adopted constant astrophysical parameters and number of frames (15,232), while varying

the observing conditions, such as pointing fluctuations, drifts and phase of the first frame. All

teams working in the field and using Spitzer/IRAC data were invited to test their detrending

methods both over the synthetic and real datasets. No constraints about the data analysis, e.g.

photometric aperture, background definition, fitting strategies, other astrophysical and instru-

ment parameters to adopt, were given by the SSC, so that the full detrending pipelines were

tested. The final results are discussed by Ingalls et al. (2016), together with more technical

details relative to the simulations.

The following techniques have been tested by the teams participating to the data challenge:

BiLinearly-Interpolated Subpixel Sensitivity mapping (BLISS, Stevenson et al., 2012), Kernel

Regression (KR/Data, Wong et al., 2014, KR/PMap, Krick et al., 2016), Segmented Polynomial

K2 pipeline (SP(K2), Buzasi et al., 2015), Pixel Level Decorrelation (PLD, Deming et al., 2015),

Gaussian Process regression (GP, Evans et al., 2015) and wavelet pixel-ICA (Morello et al.,

2016). A series of statistical estimators is used to compare the results obtained with the different

techniques and to assess their robustness:

1. the weighted mean eclipse depth and relative uncertainty over the two sets of ten observa-

tions,

D =

∑10
i=1

Di
σ2
i∑10

i=1
1
σ2
i

(7.13)

σorig =
1∑10

i=1
1
σ2
i

, (7.14)

where Di ± σi are the individual eclipse depth estimates;

2. the mean eclipse depth uncertainty,

σ =
1

10

10∑
i=1

σi (7.15)

3. the dispersion factor, required to make χ2
0 = 1, if the original χ2

0 > 1,

f2
dis = max

(
10∑
i=1

(Di −D)2

9σ2
i

, 1

)
; (7.16)

4. the total uncertainty in the mean eclipse depth, after being corrected for the dispersion
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factor,

σTOT = fdisσorig; (7.17)

5. the sample standard deviation in eclipse depth,

SD =

√√√√1

9

10∑
i=1

(Di −D)2; (7.18)

6. the repeatability, R, i.e. the standard deviation in differences between pairs of eclipse

depth measurements;

7. the reliability,

r =
σphot
SD

, (7.19)

where σ2
phot is the theoretical photon noise variance;

8. the mean bias,

B = D −Dt, (7.20)

where Dt is the input eclipse depth;

9. the root mean square deviation from the input eclipse depth,

RMSE =

√√√√1

9

10∑
i=1

(Di −Dt)2; (7.21)

10. the accuracy,

a =
σphot
RMSE

. (7.22)

The last three estimators, i.e. B, RMSE and a, can be computed only for the simulations.

7.3.1 Results and discussion

The results reported in this Section are taken from Ingalls et al. (2016) and Morello et al. (2016).

Real data

Figure 7.4 compares the weighted mean results obtained for the real datasets with the different

pipelines. It shows that most of the detrending pipelines lead to consistent results within 1 σ,

according to the various definitions of σ given above. In particular, ICA, PLD and KR/Data

constitutes the triple with the smallest range in eclipse depth estimates, i.e. only 13 ppm. The
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original error bars for five of the detrending pipelines, including ICA, are well consistent with

their inter-epoch dispersions (fdis =1), the only exceptions are for BLISS (fdis =1.5) and SP(K2)

(fdis =2.8).
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Figure 7.4: Weighted mean eclipse depth results obtained with the different pipelines for the
real observations analysed for the IRAC Data Challenge 2015.

Figure 7.5 reports the repeatability and reliability estimates, sorted according to decreasing

performances. ICA is the most repeatable and the most reliable technique, closely followed by

the KR techniques. The overall standard deviations of the individual ICA measurements is

∼30% larger than the photon noise limit. It is worth noting that, at least in principle, there

might be some real variability of the planet that would prevent achieving the theoretical photon

noise limit for the repeated observations.
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Figure 7.5: Left panel: repeatability of the detrending pipelines for the real datasets analysed
for the IRAC Data Challenge 2015. Right panel: the same for reliability.

Simulated data

Figure 7.6 compares the weighted mean results obtained for the simulated datasets with the

different pipelines, and also with the input eclipse depth value. Even in this case, most detrend-

ing pipelines lead to consistent results within 1 σ. However, this time the original error bars

appear to be slightly underestimated relative to the inter-epoch dispersions, except for ICA and

BLISS, which are consistent with fdis =1 within the statistical error. The most likely cause of

this discrepancy compared to the real datasets is the use of slightly larger systematics for the

simulated ones. All measurements appear to be biased to eclipse depths smaller than the true

value, except for the PLD value, which is 5 ppm larger. The PLD pipeline differs from the other
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Figure 7.6: Weighted mean eclipse depth results obtained with the different pipelines for the
simulated observations analysed for the IRAC Data Challenge 2015.

ones in the use of a quadratic polynomial to approximate the out-of-eclipse phase-curve, while

the other ones reported results obtained with a flat or a linear approximation to the phase-curve.

By fitting the three eclipse models to a noiseless input light-curve, it has been found that the

eclipse depth is biased by −51 ppm for the flat phase-curve model, −27 ppm for the linear model

and −2 ppm for a quadratic model. This accounts for ∼60% of the bias obtained with ICA, as I

adopted a linear model. Note that this issue is specific to the nature of the input astrophysical

model for the simulations, as the real phase-curve shape is unknown. Nonetheless, it indicates

the potential error due to the phase-curve model function. Figure 7.7 reports the repeatability

and reliability estimates. Figure 7.8 reports the accuracy and the bias divided by the original

standard deviations, sorted according to decreasing performances. BLISS, PLD and ICA are the

most repeatable, reliable and accurate techniques. While the accuracy depends on the dispersion

relative to the true eclipse depth value, the latter estimator is a measure of the bias in units of

σorig. If B/σorig .1, this indicates that the error bars assessed by the pipeline are sufficiently

large to include the bias, as it is the case for PLD, ICA and GP; the B/σorig values for the other

pipelines are BLISS (1.3), KR/Data (1.4), KR/PMap (3.2) and SP(K2) (10.1).

7.3.2 Conclusions

The results of the IRAC Data Challenge 2015 indicates that, based both on the analysis of the

real and simulated datasets, the wavelet pixel-ICA pipeline performs as well or better than other

state-of-the-art detrending algorithms for Spitzer/IRAC.
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Figure 7.7: Left panel: repeatability of the detrending pipelines for the simulated datasets
analysed for the IRAC Data Challenge 2015. Right panel: the same for reliability.
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Chapter 8

Application to HST/WFC3

transit observations

8.1 Hubble Space Telescope

The Hubble Space Telescope (HST) is a space-borne observatory launched in 1990. It is one

of the four NASA Great Observatories, the one originally dedicated to cover the visible and

near-UV regions of the electromagnetic spectrum. It follows a geocentric orbit. The telescope

has an aperture of 2.4 m diameter. It is the only telescope designed to be serviced in space

by astronauts. This function allowed replacing the old instruments with new ones during its

operational time. A scheme of the HST’s equipment history is shown in Figure 8.1. Currently

operating instruments are:

• the Wide Field Camera 3 (WFC3), a versatile camera with two channels collecting light

in the 200–1,000 and 800–1,700 nm spectral ranges, each channel equipped with a variety

of broad- and narrow-band filters, prisms and grisms enabling wide-field low-resolution

spectroscopy;

• the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), which contains

three near-IR detectors in three optical channels providing high-resolution (∼0.1′′), coro-

nagraphic and polarimetric imaging, and slitless spectroscopy in the range 800–2,400 nm;

• the Space Telescope Imaging Spectrograph (STIS), with three detector arrays covering the

far-UV to the near-IR (115–170, 160–310 and 200–1,030 nm);

• the Advanced Camera for Surveys (ACS), with the Wide Field Channel (WFC) observing

an effective field of view 202′′×202′′ in the spectral range 350–1,100 nm, and the Solar Blind
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Figure 8.1: Instruments operating on the Hubble Space Telescope.

Channel (SBC) observing a smaller 25′′×25′′ field of view in the spectral range 115–170

nm;

• the Cosmic Origins Spectrograph (COS), which is designed for ultraviolet spectroscopy of

faint point sources with eight different grisms.

8.1.1 The Wide Field Camera 3 (WFC3)

Overview

Figure 8.2: HST/WFC3 G102 and G141 grism
sensitivity. Image from Varley and Tsiaras
(2015).

WFC3 is the latest and most technologi-

cally advanced instrument installed onboard

the HST. WFC3 features two UV/visible de-

tecting CCDs, each 2,048×4,096 pixels, and

a separate IR detector of 1,024×1,024 pix-

els. The optical channel covers a 164′′×164′′

(2.7′×2.7′) field of view with 0.04′′/pixel.

The near-IR channel has a field of view of

135′′×127′′ (2.3′×2.1′) and 0.13′′/pixel scale.

Scanning-mode observations

Exoplanet transit spectra were initially observed with WFC3 in HST’s traditional staring mode,

where the telescope pointing is fixed on the target star. The scanning-mode was introduced in

2011 during HST Cycle 19, and is now the preferred mode to perform exoplanet spectroscopy.

This mode slews the telescope during an exposure under the control of either the fine-guidance

sensors (FGS, for scans speeds below 1′′/s) or gyroscope-only control (for scan speeds up to
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7.84′′/s). The scanning mode has been introduced to observe bright targets that would normally

saturate the detector. It can also achieve higher signal-to-noise ratios as more photons from the

source can be collected and spread over the detector before saturation.

UCL pipeline

Tsiaras et al. (2015) developed a pipeline to analysing HST/WFC3 scanning-mode data, using

the raw data frames as input rather than the more commonly used ima frames. The following

are the main steps of the pipeline:

1. data reduction, i.e. bias drift correction, zero read subtraction, non-linearity correction,

dark current subtraction, gain variations calibration, sky background subtraction, bad

pixels and cosmic rays correction;

2. wavelength calibration and extraction of 1D spectra;

3. simultaneous fitting of the astrophysical model and instrument systematics.

The main instrument systematics are: an approximately exponential short-term ramp, with 1-

orbit duration, and an approximately linear long-term ramp. They are corrected by the pipeline

parametrically and/or using the white light-curve as a model for the systematics.

8.2 Stripe-ICA

The algorithm that I have developed to decorrelate HST/WFC3 data is called “stripe-ICA”, as

it uses the time series registered by individual stripes, rather than “pixel light-curves”, as input

for the ICA. This is possible if each spatial scan is subsampled through more than one non-

destructive read. A stripe is defined as the difference between two consecutive non-destructive

reads. By taking the corresponding stripes from each spatial scan, a set of quasi-simultaneous

stripe light-curves is obtained. One set of these light-curves can be obtained for the white

light-curve, as well as one set for each spectral bin. In this Thesis, I adopted the stripe time

series computed by Mario Damiano using the Tsiaras et al. pipeline without correction of the

instrument systematics. The ICA is applied over each set of quasi-simultaneous light-curves

separately, without mixing the information from multiple wavelengths.

One of the independent components mostly contains the transit signals, the others are simul-

taneously fitted, together with a transit model, to a reference light-curve. This is analogous to

method 3 described for the pixel-ICA pipeline (see Section 5.2). Here, I considered the following

two options:
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1. summing the relevant stripe light-curves to obtain a unique reference light-curve for each

spectral bin (in other words, summing along the spatial direction);

2. fitting each stripe light-curve alone, then taking the weighted mean for each spectral bin.

Hereafter, I refer to the two spectra as “stacked” and “weighted”, respectively.

An evolution of the simple stripe-ICA decorrelation includes the residuals obtained for the

white light-curve, summed over the stripes, as an additional component. This accounts for

possible systematics common to all wavelength bins, which were not separated by the ICA, and

it is equivalent to using the white light-curve as a model for the systematics.

The final error bars are calculated according to Equations 5.2 and 5.3 (method 3).

8.3 Transit of HAT-P 32b

I analyzed the observation of a transit of the hot-Jupiter HAT-P 32b taken with the G141 grism

of the HST/WFC3 instrument. It consists of a single visit spanning five HST orbits. The scans

are subsampled allowing the extraction of 12 stripes. The results of this analysis are as yet

unpublished.

8.3.1 Analysis

Fixed and free parameters

Each stripe has been divided in 20 spectral bins. Table 8.1 includes the wavelength limits and the

four limb darkening coefficients (Equation 3.14), computed with the modified version of ATLAS9

code described in Howarth (2011b). The orbital period, P , and the aR, i, e and ω parameters

are fixed to values reported in Gibson et al. (2013). A possible shift in the mid-transit time, tmid,

is fitted to the white light-curve, as well as the square-root transit depth, p. For the spectral

light-curves, p and the normalization factor are the only free parameters to determine.

8.3.2 Results

The stripe light-curves are noisier than the summed ones, mainly due to correlated jitter noise.

The independent components are very effective in correcting this source of noise. Independently

from the choice of the reference light-curves, for the particular observation analysed, the de-

trended light-curves are similar to the relevant sum over the stripes. This is attributable, at

least in part, to the low amplitude of the systematic effects in the raw summed light-curves. For

the same reason, the improvement caused by the inclusion of the additional component equal
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to the white light-curve residuals is hard to visualize, although it is statistically significant, as

it shrinks the error bars by an average factor ∼0.88. Figure 8.3 shows an example of two raw

light-curves, single stripe and summed, and the detrended ones, without and with the white

residuals component. Figure 8.4 reports the spectra obtained with the four methods described

in Section 8.2, i.e. stacked or weighted and ICA only or with the white residuals component.

The weighted error bars are not scaled according to the standard weighted mean formula, be-

cause their analyses are not independent, especially not the ICA decomposition. In this way,

the stacked and the weighted approaches lead to very similar error bars.
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Figure 8.3: Example of light-curves for the spectral bin 1.3657−1.3901 µm: (blue circles) raw
single stripe, (black squares) raw summed over the stripes, (orange triangles) detrended with
ICA only and (red stars) detrended with ICA and white residuals component.
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Figure 8.4: Spectra obtained with four methods: (blue, full circles) ICA plus with residuals
component, stacked, (cyan, empty circles) ICA plus with residuals component, weighted, (dark
green, full squares) ICA only, stacked, and (light green, empty squares) ICA only, weighted. An
horizontal displacement has been introduced to make easier visualization.

Table 8.1 reports the final spectrum for the case stripe ICA with white residuals component

and stacked reference light-curves.
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λ1 (µm) λ2 (µm) c1 c2 c3 c4 p2

1.1250 1.6500 0.60334 -0.22301 0.28133 -0.13986
1.1250 1.1511 0.632741 -0.481904 0.701108 -0.306091 2.246±0.018
1.1511 1.1767 0.619205 -0.434713 0.64011 -0.282483 2.239±0.018
1.1767 1.2011 0.614294 -0.41589 0.610565 -0.272242 2.256±0.018
1.2011 1.2247 0.599151 -0.360648 0.544934 -0.247917 2.266±0.019
1.2247 1.2480 0.584001 -0.29953 0.465487 -0.216442 2.243±0.018
1.2480 1.2716 0.581928 -0.282551 0.441745 -0.210655 2.236±0.024
1.2716 1.2955 0.58946 -0.229732 0.322997 -0.169253 2.247±0.019
1.2955 1.3188 0.57237 -0.227002 0.362724 -0.181489 2.241±0.020
1.3188 1.3421 0.569522 -0.202303 0.325228 -0.166816 2.269±0.020
1.3421 1.3657 0.564634 -0.163366 0.265035 -0.14235 2.288±0.019
1.3657 1.3901 0.561817 -0.127278 0.200548 -0.113503 2.279±0.024
1.3901 1.4152 0.561832 -0.0979712 0.148201 -0.0914278 2.256±0.018
1.4152 1.4406 0.572262 -0.100901 0.133369 -0.0848254 2.290±0.020
1.4406 1.4667 0.58462 -0.111943 0.124656 -0.0799948 2.263±0.020
1.4667 1.4939 0.600205 -0.136878 0.140204 -0.0874595 2.267±0.029
1.4939 1.5219 0.609784 -0.134319 0.11158 -0.0721681 2.249±0.020
1.5219 1.5510 0.626375 -0.139701 0.0839621 -0.0555132 2.246±0.020
1.5510 1.5819 0.647904 -0.193435 0.120068 -0.0635888 2.248±0.023
1.5819 16145 0.663831 -0.223633 0.124246 -0.0583813 2.239±0.017
1.6145 1.6500 0.686226 -0.267069 0.137329 -0.0557593 2.218±0.020

Table 8.1: Spectral bins, limb darkening coefficients and transit depth results

8.3.3 Discussion

Figure 8.5 compares my final spectrum with the spectrum calculated with the Tsiaras et al.

pipeline (priv. comm. of Mario Damiano). I obtained larger error bars by a factor ∼1.8,
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Figure 8.5: Comparing spectra: (blue circles) spectrum obtained with ICA + white residuals
component, stacked, and (black rhomboids) spectrum computed with the Tsiaras et al. pipeline
(priv. comm. of Mario Damiano).

in average. This is the trade-off for a higher objectivity, in this case. The robustness of the

weighted approach indicates that it might be possible to decrease the error bars. This will be

investigated in future studies and also using the Wayne simulator (Varley and Tsiaras, 2015).
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Chapter 9

Summary and Conclusion

Characterizing exoplanetary atmospheres through transit and eclipse spectroscopy requires ac-

curate measurements at the level of at least 1 part in 104 in stellar flux. Current instruments

are not designed to achieve this precision, therefore correcting for the instrument systematics is

a critical step of the data analysis. This is further complicated by the potential contamination

of other astrophysical signals, e.g. stellar activity, and the large degeneracy of interpretation.

Controversial results are reported in the literature, also based on reanalyses of the same datasets

with different systematics detrending pipelines. Most of the methods adopted by several teams

rely on some assumptions about the mechanisms causing the instrument systematics and apply

parametric corrections.

In this Thesis, I adopted blind signal–source separation (BSS) methods to detrend the ob-

served data. At the heart of these methods is the use of the Independent Component Analysis

(ICA) of simultaneous time series. In particular, I developed two algorithms specialized to de-

trending individual photometric observations, i.e. pixel-ICA and wavelet pixel-ICA, the latter be-

ing an evolution with extended applicability to faint signals and low signal-to-noise observations,

and another algorithm, i.e. stripe-ICA, specially designed to detrend spectroscopic observations

obtained with the new HST/WFC3 instrument in the scanning-mode. The two techniques are

different from previous applications of ICA proposed in the literature (e.g. Waldmann, 2012),

mainly because they can be applied to single observations taken with instruments with a dif-

ferent design, and, in particular, without mixing the information at multiple wavelengths. An

additional advantage, deriving from the use of time series at the same wavelengths to detrend

the transit signal, is that wavelength-dependent effects on the transit shape, e.g. stellar limb

darkening, are not present, allowing a more robust extraction of the signal. The pixel-ICA and

wavelet pixel-ICA are tested over a series of cryogenic and post-cryogenic Spitzer/IRAC observa-
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tions, as well as synthetic datasets, showing superior performances compared to state-of-the-art

detrending pipeline specifically designed for those datasets.

A reanalysis of the existing archive datasets with these new techniques will cast light onto

the unresolved controversies in the literature. With the advent of newer and more precise

instruments, the use of optimal detrending techniques will still be crucial to separate the various

astrophysical signals and to push the limits of detections to even smaller signals, such as the

spectroscopic signatures of the atmospheres of Earth-sized exoplanets.
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 L. Wyrzykowski, C. Han, S. Calchi Novati, and R. W. Pogge. Spitzer as a microlens par-
allax satellite: Mass measurement for the ogle-2014-blg-0124l planet and its host star. ApJ,
799:237, 2015.

154



R. Varley and A. Tsiaras. Wayne - A Simulator for HST WFC3 IR Grism Spectroscopy. ArXiv
e-prints, 1511.07796, 2015.

A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G. E. Ballester, R. Ferlet, G. Hébrard,
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