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Abstract

For the analysis of longitudinal biomedical data in which the timing of ob-

servations in each patient is irregular and in which there is substantial loss to

follow-up, it is important that statistical models adequately describe both the

patterns of variation within the data and any relationships between the vari-

able of interest and time, clinical characteristics and response to treatment.

We develop novel statistical models motivated by the analysis of pre- and post-

treatment CD4 cell counts from HIV-infected patients, using the UK Register of

Seroconverters and CASCADE datasets.

The addition of stochastic process components, specifically Brownian mo-

tion, to standard linear mixed effects models has previously been shown to im-

prove model fit for pre-treatment CD4 cell counts. We review and further de-

velop computational techniques for such models, and also propose the use of

a more general ‘fractional Brownian motion’ process in this setting. Residual

diagnostic plots for such models, based on a marginal multivariate normal dis-

tribution, show very heavy tails, and we address this issue by further extending

the model to allow between-patient differences in variability over time.

It is known from the literature that response to treatment in HIV-patients is

dependent on their baseline CD4 level at initiation. In order to further investi-

gate the factors that determine the characteristics of recovery in CD4 counts, we

develop a framework for the combined modelling of pre- and post-treatment

CD4 cell counts in which key features of the response to treatment for each

patient are dependent on a latent variable representing the unobserved ‘true’

baseline value, conditioned on all pre-treatment data for each patient. We fur-

ther develop the model structure to account for uncertainty in the exact time

of seroconversion for each patient, by integration of the log-likelihood function

over all possible dates.
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INTRODUCTION

1 Introduction

Longitudinal data, in which repeated observations have been recorded over time for

each individual, require specialised statistical techniques that account for the result-

ing lack of independence between measurements. This increases the required com-

plexity of any statistical analysis, but has the advantage that patterns of between-

and within-patient variability can be investigated and quantified. In this thesis, we

propose extensions to existing methodologies for the analysis of longitudinal data

and apply these to CD4 cell count data from human immunodeficiency virus type-1

(HIV) positive patients. More specifically we analyse CD4 cell count data from ‘HIV

seroconverters’, patients in whom the timing of HIV seroconversion (the appearance

of HIV-specific antibodies in the blood) can be well estimated, providing a natural

zero time-point for statistical models.

Linear mixed effects models are particularly common for the analysis for longitu-

dinal data. These models represent an extension of the linear regression framework,

in which model coefficients for predictive variables are permitted to vary randomly

between individuals or groups. The use of linear mixed effects models for the analy-

sis of longitudinal data was proposed and formalised by Laird and Ware1, and thor-

ough reviews of this topic are given by Verbeke and Molenberghs2 and Diggle et al.3

among others. Non-linear mixed effects models, in which the function for the expec-

tation of the outcome variable may be non-linear in both the fixed effect parameters

and the random effect terms, are also widely used in biomedical research4–7.

Mixed effects models, both linear and non-linear, have a number of appealing

characteristics: they account for the dependency in datasets that results from multi-

ple observations being obtained from each individual over time, they can be fitted to

unbalanced datasets in which there are missing data or in which each individual has

been observed at irregular time-points, and the theoretical basis of the model can be

easily reported, understood and interpreted. One additional practical benefit is that

linear mixed effects models can now be readily implemented in any of the major sta-

tistical software packages, and non-linear mixed effects models can also be imple-

mented in most. However, the software implementations of these modelling frame-

works nonetheless impose restrictions on the structures of the statistical models that

can be fitted, necessitating statistical assumptions that may be questionable in some

situations relating to the analysis of biomedical data. The use of more complex mod-

els to account for patterns of variability in the data may allow more information to

be gained and more accurate statistical inference regarding model parameters.

In the context of analysing CD4 T-cell counts in HIV patients Taylor et al.8 found

that the addition of non-stationary stochastic process components to linear mixed

effects models for pre-treatment data led to a substantial improvement in model fit,

13



INTRODUCTION

but this extension is not available as an option in any of the major statistical software

packages and these types of models have not gained widespread use in practice. The

mixed effects modelling framework has also been extended to allow for differences

in the overall level of variability between patients, for example Wang and Fan9 used

a linear mixed model generalised to follow a multivariate-t distribution to analyse

CD4 counts in HIV patients. In this thesis we explore these augmented mixed effects

models, discussing and developing computational approaches to the maximum like-

lihood estimation of model parameters and proposing and applying further novel

extensions.

We also consider the analysis of a longitudinally monitored biomarker following

treatment initiation, for which the characteristics of response to treatment are de-

pendent on the value of the biomarker at initiation. In this setting, there has been

debate in the literature as to whether the baseline measurement should be included

as an outcome variable within a parametric model10;11 or whether it should be in-

cluded as an independent predictive variable12. In this thesis we develop a novel

modelling framework in which the ‘true’ baseline value is treated as a latent vari-

able, with a distribution conditioned on all available pre-treatment data, with post-

treatment observations modelled as following a distribution that is dependent on

this baseline value. We incorporate the potential for non-stationary stochastic pro-

cesses and heavy-tailed distributions within this framework.

The combined modelling framework is applied to pre- and post-treatment CD4

cell count data from ‘HIV seroconverters’, allowing the time interval from serocon-

version to treatment initiation to be considered as a factor in the analysis of post-

treatment characteristics. However, the definition of ‘well estimated date of sero-

conversion’ for the datasets concerned includes patients with an interval between

last negative and first positive test for HIV of up to 3 years, with the estimated date of

seroconversion in most cases set to be the mid-point between these tests. Although

we retain this simplifying assumption in some of the analyses presented, we also de-

velop a model for pre- and post-treatment data in which uncertainty in the exact

date of seroconversion is taken into account.

The motivation for the work presented in this thesis is to develop statistical mod-

els that better reflect the structure and the patterns of within- and between-patient

variability that are observed in the data under investigation. The implementation of

models that more fully describe the data has the potential firstly to allow more robust

inferences regarding questions of clinical interest and secondly to allow investigation

of characteristics of the data that are otherwise ignored.

The array of techniques available for the analysis of longitudinal data has ex-

panded greatly in recent years, and so there is a need to place some restrictions on

the scope of the thesis. We focus on statistical models for continuous outcome vari-
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ables, and so do not consider the ‘generalised linear mixed model’ framework13 that

allows for Bernoulli or other non-normal conditional distributions for the outcome

variable. We extend mixed effects models based on parametric functions rather than

differential equations, and so the literature relating to ‘dynamic’ or pharmacokinet-

ic/ pharmacodynamic (PKPD) modelling14 is not reviewed except where this over-

laps with that for function-based non-linear mixed effect models. We consider only

parametric models, rather than semi-/non-parametric modelling techniques15 that

have been developed for longitudinal data. We employ maximum likelihood estima-

tion for the parameters of the models developed, and Bayesian approaches to model

fitting are not considered other than as a point for discussion.

In Chapter 2, we review the characteristics of linear mixed models that incorpo-

rate stochastic processes in addition to the random effect terms and propose effi-

cient methods for obtaining maximum likelihood estimates of model parameters.

We also review both the characteristics of models based on the multivariate-t dis-

tribution and the computational approaches available for maximum likelihood esti-

mation of more complex non-linear statistical models.

In Chapter 3, we review the available methods for using residual diagnostics of

linear mixed models to evaluate the plausibility of modelling assumptions. We re-

view and critique the ways in which these techniques have been generalised for mixed

effects models based on the multivariate-t distribution, and propose novel residual

diagnostic plots that could be used in this setting; the methodology developed is ap-

plied in later chapters.

In Chapter 4, a novel extension of the linear mixed model combining a frac-

tional Brownian motion process and a multivariate-t distribution is applied to a large

dataset of pre-treatment CD4 counts in HIV-positive patients from the Concerted Ac-

tion on SeroConversion to AIDS and Death in Europe (CASCADE)16 collaboration of

seroconverter cohorts. In addition, a patient cohort simulation is presented to as-

sess the implications of the model, and a separate simulation study is reported that

demonstrates the potential for substantial biases in parameter estimates when overly

simplistic models are used in the presence of missing data.

In Chapter 5 a new framework is developed for the combined modelling of pre-

and post-treatment longitudinal data, which is demonstrated through application to

CD4 counts before and after initiation of highly active antiretroviral therapy (HAART)

using data from the UK Register of Seroconverters Cohort. As in Chapter 4, frac-

tional Brownian motion processes and multivariate-t distributions are included in

the model to capture the patterns of within- and between-patient variation that can

be observed in the raw data. Simulations are presented to explore the potential for

biases in the observed baseline value of a biomarker at treatment initiation relative

to the true underlying value and to demonstrate that the modelling framework pro-
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posed is capable of identifying non-linear relationships between the true baseline

value and the characteristics of response to treatment.

The model structure developed in Chapter 5 is then applied to a larger dataset of

pre- and post-treatment CD4 counts from the CASCADE collaboration in Chapter 6,

with the additional inclusion of patient and drug regimen characteristics that could

potentially predict response to HAART. This work is further developed in Chapter

7, in which the models are extended to allow for uncertainty in the exact timing of

seroconversion in the patients included. Chapter 8 comprises a discussion of the

statistical methodology developed in this thesis, including an exploration of how this

could influence further work.

1.1 Disclaimer regarding collaborative work

Following the requirements for applied research using data from the CASCADE co-

hort, the analysis in Chapters 6 and 7 was planned and interpreted in collaboration

with external investigators. A consensus decision was made regarding the inclusion

criteria for the analysis and other specific contributions are noted where relevant.

The modelling framework for the analysis was developed entirely by myself, and I

also carried out all programming tasks and processing and presentation of results.
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2 Computational issues for mixed effects models

In this chapter we explore potential problems and solutions in the maximum likeli-

hood estimation of extensions to the standard mixed effects models for longitudinal

data. This is done in order to allow subsequent chapters to provide a more focused

discussion of methodological developments and novel applications. This chapter

therefore mostly comprises a review of existing computational techniques, although

the development and implementation of a novel computational strategy for the max-

imum likelihood estimation of linear mixed models that incorporate stochastic pro-

cess components is described in Section 2.2.2 and we also explain how Brownian

motion can be incorporated using existing software for iterative generalised least

squares (IGLS) estimation in Section 2.2.3. We do not consider restricted maximum

likelihood estimation (REML) in detail, this is because it would present considerable

additional technical challenges for the non-linear models developed in later chap-

ters and also because we aim to apply the modelling framework developed to rela-

tively large datasets containing thousands of individuals, for which the differences

between maximum likelihood and REML estimates tend to be small.

We begin by reviewing the properties of some Gaussian processes in Section 2.1,

and discuss their incorporation into the linear mixed model framework in Section

2.2. We then review the properties and use of the multivariate-t distribution in Sec-

tion 2.3. We discuss the available options for maximum likelihood estimation of non-

linear mixed effects models and other latent variable models that lack a closed form

for the marginal likelihood in Section 2.4, and consider estimation for models involv-

ing a combination of multivariate normal and multivariate-t distributions in Section

2.5. A brief summary discussion is presented in Section 2.6.

2.1 Properties of Brownian motion and related processes

2.1.1 Scaled Brownian motion

Scaled Brownian motion has been incorporated into linear mixed effects models by

a number of researchers8;17. When considered in terms of a given set of observation

points, a scaled Brownian motion process Wt is defined by the properties18:

W0 = 0

Wt −Ws ∼ N (0,κ(t − s)) for 0 ≤ s < t .

The process starts at zero at time (t ) zero, and increments of the process are

stationary, independent (for disjoint periods of time) and normally distributed with

mean zero and variance equal to the difference in time between observation points
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scaled by a constant factor κ (κ > 0). The following characteristics arise from these

conditions:

E[Wt ] = 0

Var[Wt ] = κt

Cov[Ws ,Wt ] = κ∗min(s, t ).

The distribution of a set of n observations relating to a given series of time points

therefore follows a multivariate normal distribution with a mean vector of n zeros

and covariance matrix defined by the formulae given above. As such, scaled Brown-

ian motion meets the definition of a Gaussian process, and can be readily incorpo-

rated into the theoretical framework of linear mixed models. For brevity, we refer to

‘scaled Brownian motion’ as just ‘Brownian motion’ in later chapters.

2.1.2 Scaled fractional Brownian motion

Fractional Brownian motion represents a generalisation of a Brownian motion pro-

cess in which increments for disjoint time periods are not constrained to be inde-

pendent, although they do remain stationary. The process was introduced by Man-

delbrot and van Ness19. The characteristics of a fractional Brownian motion process

are determined by an additional parameter, referred to as H or ‘the Hurst index’, that

may take a value in the range (0,1). Standard Brownian motion represents a special

case of fractional Brownian motion, corresponding to H = 1
2 . As for standard Brown-

ian motion, the expectation of the value of the process is zero for all points in time.

When H < 1
2 , successive increments of the process are negatively correlated. This

has the consequence, firstly, that the path of the trajectory appears ‘jagged’ and, sec-

ondly, that realisations of the process tend to revert towards the mean of zero. For

H > 1
2 , successive increments of the process are positively correlated. This means

that the path of the process has a relatively ‘smooth’ appearance, and also that real-

isations of the process tend to diverge away from zero. Illustrative simulated reali-

sations of fractional Brownian motion processes generated with varying values of H

are shown in Figure 2.1.

As for Brownian motion, a scale parameter (κ, κ > 0) can be added to the stan-

dard definition of fractional Brownian motion20, corresponding to the variance of

the process at t = 1. We may then characterise the properties of the process as fol-

lows:

W0 = 0

E[Wt ] = 0
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Var[Wt ] = κ |t |2H

Cov[Ws ,Wt ] = κ

2

(|s|2H +|t |2H −|t − s|2H )
.

As for Brownian motion, fractional Brownian motion is defined as a continuous-

time stochastic process. However, as we are concerned with modelling biomedical

measurements obtained at specific time points, we focus here on the properties of

the process relating to a finite set of observations. Fractional Brownian motion has

been used for mathematical modelling in fields including hydrology21, computer

network traffic22 and finance23. However, this Gaussian process has not previously

been incorporated into the linear mixed effects model framework. For brevity, we

refer to ‘scaled fractional Brownian motion’ as just ‘fractional Brownian motion’ in

later chapters.
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Figure 2.1. Simulated realisations of fractional Brownian motion processes with varying
values of H and scale parameter �xed at 1. A �nite set of 1000 observations was generated
in each case.

2.1.3 Integrated Ornstein–Uhlenbeck process

The integrated Ornstein–Uhlenbeck process (IOU) process is another non-stationary

Gaussian stochastic process that has also been used to model CD4 counts in HIV-
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positive patients, a full description is provided by Taylor et al.8. The process has the

following characteristics:

W0 = 0

E[Wt ] = 0

Var[Wt ] = κ

α3

(
αt +e−αt −1

)
Cov[Ws ,Wt ] = κ

2α3

(
2α∗min(s, t )+e−αt +e−αs −1−e−α|t−s|) .

We have used the symbol κ (κ> 0) to denote the variance scaling parameter (σ2

was used by Taylor et al.8). The α (α> 0) parameter determines the extent to which

the process reverts towards its mean value. For values of α approaching infinity, the

process is equivalent to scaled Brownian motion, whereas for values of α approach-

ing zero the process is equivalent to a random slopes model (without a random in-

tercept)8.

2.2 Maximum likelihood estimation

2.2.1 Marginal distribution and likelihood function

For models incorporating Gaussian processes such as Brownian motion, the fact that

the marginal distribution of the full vector of observations of the outcome variable

is multivariate normal (MV N ) means that parameter estimation can be achieved

through adjustment of the methods used for standard linear mixed models. Ignoring

the potential for grouping factors beyond that of each individual in a dataset (e.g.

those of hospitals or geographical regions), the linear mixed model for longitudinal

data can be expressed in the form1:

yi = Xiβ+Zi bi +ei (1)

bi ∼ MV N (0,Ψ)

ei ∼ MV N (0, Ri ).

Here, yi represents the vector of ni observations for the ith individual, Xi repre-

sents their design matrix for the ‘fixed effects’ parameters β, Zi represents the subset

of the columns of the design matrix associated with the ‘random effects’ for each in-

dividual bi and ei is the vector of residual errors for each measurement occasion.

The vectors of random effects b1,b2...bN and residual errors e1,e2...eN for each of

the N individuals are independent of one another. It can be easily shown that this
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formulation leads to the following marginal distribution for yi :

yi ∼ MV N (Xiβ, ZiΨZT
i + Ri ).

Using the notation Vi = ZiΨZT
i + Ri ,α is defined as the parameters that are used

to calculate Vi , with θ = (βT,αT)T representing the vector of all parameters in the

marginal model. If Θβ and Θα are defined as the parameter spaces for the fixed ef-

fects and random effects/variance parameters, then Θβ = Rp and Θα is equal to the

set of values for α for which Ψ and all Ri are positive definite3. Maximum likeli-

hood estimation of the model parameters is achieved through maximisation of the

marginal likelihood function:

L(θ|y) =
N∏

i=1

{
(2π)−

ni
2 |Vi |−

1
2 exp

(
−1

2
(yi −Xiβ)TV−1

i (yi −Xiβ)

)}
. (2)

In practice, this is usually achieved through maximisation of the log-likelihood func-

tion:

`(θ|y) =
N∑

i=1

{
−ni

2
log(2π)− 1

2
log|Vi |− 1

2
(yi −Xiβ)TV−1

i (yi −Xiβ)

}
. (3)

When linear mixed models are fitted to longitudinal data, it is common to assume

that the residual errors for each observation within each individual, ei , are indepen-

dent and with constant variance, σ2, i.e. Ri as defined in (1) is equal to σ2Ini . How-

ever, other forms for Ri are widely used, particularly for the analysis of longitudinal

or spatial data. An example is provided by the exponential correlation structure6, for

which the elements (r j k ) of Ri are calculated as a function of the ‘distance’ s between

each pair of observations (in the context of longitudinal data this would be the time

difference) and a ‘range’ parameter η, which is constrained to be greater than zero:

r j k =σ2 exp

(
− s j k

η

)
.

The remaining variability in the model, once the random effects have been ac-

counted for, can also be subdivided into a component relating to a Gaussian process

(independent of other model components) with expectation zero for all time points

and an independent residual error for each observation (here assumed to have con-

stant variance); this effectively just creates a class of parameterisations for Ri . Defin-

ing Σi as the covariance matrix resulting from the chosen Gaussian process and set

of time points ti for the ith individual, the linear mixed model can then be expressed
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as:

yi = Xiβ+Zi bi +Wi [ti ]+ei (4)

bi ∼ MV N (0,Ψ)

Wi [ti ] ∼ MV N (0,Σi )

ei ∼ MV N (0, σ2Ini ),

with marginal distribution:

yi ∼ MV N (Xiβ, ZiΨZT
i + Σi + σ2Ini ).

Diggle24 observed that ". . . the correlation between measurements on the same

unit usually depends on their separation in time, typically as a monotone decreas-

ing function", and therefore proposed the use of a stationary Gaussian process to

account for serial correlation. However, there is no mathematical barrier to the use

of a non-stationary Gaussian process for this formulation of the linear mixed model.

Indeed, this is what has been implemented by researchers who have incorporated

Brownian motion and IOU processes into linear mixed effects models8;17;25–27. A

naïve approach to parameter estimation for a linear mixed model incorporating any

Gaussian process is therefore to use a general-purpose optimising program to max-

imise the log-likelihood function as expressed in (3) with respect to the full set of

parameters θ, with a choice of parameterisation for α that constrainsΨ and Σi (for

all individuals) to be positive definite. Whether or not this approach is effective is

dependent on the specific model and dataset considered, and on the characteristics

of the optimisation algorithm employed. At present, the fitting of such models is not

available through easily implemented default routines for most statistical software,

although an R package ‘lmenssp’ that can be used to fit linear mixed effects mod-

els that include Brownian motion or IOU processes using this approach has been

recently developed28;29.

A number of different methods of parameterisation for random effect variance–

covariance matrices have been proposed that ensure that they remain positive def-

inite during estimation procedures, including use of Cholesky decompositions and

matrix logarithms. A review of these methods is provided by Pinheiro and Bates30. If

a scaled Brownian motion process is added to a random effects model being fitted to

a dataset of longitudinal measurements in a set of individuals for which t ≥ 0 for all

observations, thenΣi can be constrained to be positive semi-definite by constraining

the scale parameter κ to be ≥ 0; hence, assuming an appropriate parameterisation of

Ψ, optimisation can be performed in terms of log(κ).

General-purpose optimising programs, which often form the core of maximum
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likelihood estimation routines in statistical software, usually make use of a New-

ton– Raphson-type approach in which a set of working values for each parameter

(θi ) in a model is updated at each iteration (to θi+1) using a function of the gradi-

ent vector g(θi ) and the matrix of second derivatives H(θi ) (or some approximation

of these) of the objective function, evaluated at θ = θi . Iterations are repeated un-

til some specified convergence criteria are achieved. A concise review of the use of

Newton–Raphson type algorithms for maximum likelihood estimation is provided in

Chapter 1 of Gould et al.31. The vectors of first and second derivatives required for

optimisation can either be computed exactly or approximated by finite differencing.

The latter technique is still widely employed, but can lead to problems in the speed

and stability of optimisation.

Expectation–maximisation (EM)-type approaches, as outlined by Dempster et

al.32, have also been widely used for maximum likelihood parameter estimation of

linear mixed models. Indeed, an EM-type algorithm treating the random effects bi

as a missing data problem was proposed by Laird and Ware1 in the paper that for-

malised this class of models. Liu and Rubin further extended the EM-type approach

for linear mixed models, terming their new algorithm ECME, for ‘expectation/con-

ditional maximisation either’33, for which they reported improvements in the speed

of convergence. They note that the ‘EM’ approach suggested by Laird and Ware is

in fact not a true EM-algorithm, but could be described as an ECME algorithm. Al-

though the ECME approach provides a flexible framework for obtaining maximum

likelihood estimates of parameters in the linear mixed model, existing implementa-

tions do not allow for arbitrary structures of the residual error covariance matrix, i.e.

Ri in (1).

2.2.2 Profile likelihood methods

A number of specialised computational techniques have been developed for linear

mixed models in order to optimise the speed and stability of maximum likelihood

estimation. These methods include profiled likelihood techniques, in which expres-

sions for the conditional estimates of a subset of the model parameters (obtained in

terms of and conditional on the remaining model parameters) are substituted into

the expression used to calculate the log-likelihood. This has the effect of reduc-

ing the dimensionality of the optimisation problem, as the log-likelihood is subse-

quently calculated as a function of a reduced set of unknown parameters that need

to be included in the iterative optimization process. For linear mixed effects models

with independent residual errors with constant variance, e.g. following the form of

(1) with Ri = σ2Ini , Pinheiro and Bates6 demonstrate that the log-likelihood can be

efficiently calculated as a function of only the parameters that define a form of the
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variance–covariance matrixΨ for the random effects scaled by the residual variance

σ2:

D = Ψ

σ2
.

As such, optimisation can be performed only in terms of the parameters that de-

fine D, with the fixed effects parameters β and residual variance σ2 calculated at

their estimates conditional on D̂ once convergence has been achieved. The meth-

ods of Pinheiro and Bates are also valid for more complex models in which there is

more than one grouping factor, but we shall concentrate on single-level models. The

profile likelihood method is implemented in the ‘nlme’ package34 for the R statistical

computing environment (R Foundation, Vienna, Austria). It is worth noting that the

fact that optimisation is carried out with the covariance terms parameterised rela-

tive to σ2 facilitates the use of heuristic algorithms to choose starting values for the

parameters being entered into the iterative optimisation procedure.

Pinheiro and Bates6 point out that any linear mixed effects model of the form of

(1), with Ri = σ2R′
i , can be re-expressed as a transformed model that has indepen-

dent residual errors with constant variance. Ri and hence R′
i is positive-definite for

all cases, R′
i is calculated in each case as a function of the individual’s covariates (typ-

ically the time variable when considering longitudinal data) and parameter vectorλ,

and σ2 is factored out in order to allow this parameter to be eliminated from the ex-

pression for calculation of the profiled log-likelihood. Following from the properties

of being positive definite, an invertible symmetric square root can be calculated for

R′
i . However, an alternative and computationally efficient transformation is provided

by the Cholesky decomposition:

R′
i =ΛiΛ

T
i

R′−1
i = (

ΛT
i

)−1
Λ−1

i .

WhereΛi is an invertible lower triangular matrix with positive diagonal elements (we

have chosen to depart from the notation used by Pinheiro and Bates6 in this context).

Applying the inverse Cholesky root transformation to each term of the linear mixed

model:

y∗
i =Λ−1

i yi e∗i =Λ−1
i ei

X∗
i =Λ−1

i Xi Z∗
i =Λ−1

i Z,

the form of the model can be rewritten as:

y∗
i = X∗

i β+Z∗
i bi +e∗i
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bi ∼ MV N (0,Ψ)

e∗i ∼ MV N (0, σ2Ini ).

The transformed model therefore constitutes a linear mixed model that has inde-

pendent errors with constant variance, allowing computational methods developed

for such models to be applied. The likelihood for the full model being fitted can be

evaluated using the standard rules for a transformation of variables, incorporating

the Jacobian determinant:

dy∗
i

dyi
=Λ−1

i

∣∣∣∣dy∗
i

dyi

∣∣∣∣= ∣∣Λ−1
i

∣∣

L(θ|y) =
N∏

i=1
p

(
yi |θ

)
=

N∏
i=1

p
(
y∗

i |θ
)∣∣Λ−1

i

∣∣ = L(θ|y∗)
N∏

i=1

∣∣Λ−1
i

∣∣ .

Although we have written the likelihood function here in terms of the full parame-

ter vector θ, in practice β and σ2 are profiled out of the likelihood calculations for

y∗
i and hence the dimensionality of the optimisation problem is only increased by

the number of parameters inλ. The same form of transformation can be used when

considering maximisation of the REML function, meaning that REML parameter es-

timates can also be obtained using this strategy.

Pinheiro and Bates6 propose the use of this computational technique in com-

bination with a decomposition of the within-group covariance structure into a di-

agonal matrix Si that determines the residual variance for each observation and a

correlation matrix Ci :

R′
i = Si Ci Si ,

such that:

Var[ei j ] =σ2(Si )2
j j Cor[ei j ,ei k ] = (Ci ) j k .

This decomposition is flexible in allowing a wide range of structures for R′
i , but

does not allow for models that incorporate a scaled Brownian motion component

with a residual error term or those that include an IOU or fractional Brownian mo-

tion component, as in such models the parameters that determine the variance and

correlation of ei cannot be separated into distinct sets. However, we propose an al-
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ternative structure for R′
i in such cases:

R′
i = Ini +

1

σ2
Σi

= Ini +Σ′
i .

This formulation can be used to fit linear mixed models that incorporate any Gaus-

sian process in addition to a constant residual error term. Σ′
i is constructed at each

stage of the iterative optimisation process, following the forms described in Section

2.1, using the current values of λ and each individual’s covariates (in this context

their set of times for each observation). Owing to the factoring out of σ2, when using

scaled Brownian motion or fractional Brownian motion processes the scale param-

eter ξ used in the optimisation represents the variance of the Gaussian process at

t = 1 relative to the residual error variance, i.e. ξ= κ/σ2 where κ is the natural scale

parameter representing variance at t = 1. The scale parameter relative to the resid-

ual error variance is similarly used for optimisation for an IOU process, although

this does not correspond to the variance at t = 1. Once convergence of the optimisa-

tion procedure has been achieved, the estimate of the scale parameter on the natural

scale can be calculated as κ̂= σ̂2 ∗ ξ̂.

We have implemented the incorporation of a scaled Brownian motion, scaled

fractional Brownian motion or IOU process component into linear mixed models

based on the functionality provided by the ‘nlme’ package34 for R. Parameter esti-

mation for such models in terms of ξ can be achieved using the package’s existing

framework by loading functions to create ‘user-defined correlation structures’ that

generate R′
i for each subject as described. However, the package’s default functions

for estimating the approximate distributions of parameter estimates need to be ad-

justed in order to create confidence intervals for estimates of the natural scale pa-

rameter κ. We provide functions to achieve this in the new R package ‘covBM’, which

is available for download from the Comprehensive R Archive Network (CRAN)35. The

package vignette is provided in Appendix A.

Pinheiro36 demonstrated that, under certain regularity conditions, maximum like-

lihood parameter estimates for the general linear mixed model are asymptotically

consistent and normally distributed. In addition, the estimates of the fixed effects

parameters (β) and those of the parameters that define the covariance structure (α)

are asymptotically independent. The approximate covariance matrix of the param-

eter estimates is given by the inverse of the information matrix of the log-likelihood

function.

Given the asymptotic independence between estimates of the fixed effects and

covariance parameters, one option for creating confidence intervals for parameter

estimates when fitting a linear mixed model is to calculate (or approximate) the ob-
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served information matrix only for the estimates of the covariance parameters α̂ and

λ̂, and to approximate the sampling distribution of the fixed effects parameters con-

ditional on α̂ and λ̂. Such a strategy is suggested by Pinheiro and Bates6, and fits

naturally with the use of the profile log-likelihood expressed solely in terms of co-

variance parameters. However, if the form of the log-likelihood is used in which the

residual variance parameter σ2 is also profiled, then an alternative form of the log-

likelihood function is required at convergence following optimisation; the parame-

terisation must be altered so thatσ2 is no longer factored out of the other covariance

parameters before estimation of the observed information matrix for α̂ and λ̂. In the

‘nlme’ package, the parameterisation used to generate confidence intervals for the

parameters of the variance components of the model is in terms of the log(SD) of

each random effect and log(σ). However, for any user-defined correlation structure

the variance-covariance matrix for parameter estimates is approximated in terms of

the parameters used for optimisation.

If a scaled Brownian motion, fractional Brownian motion or IOU process is in-

cluded in the model then the estimate and standard error of the log of the scale

parameter used in the optimisation procedure (log(ξ)) need to be converted to val-

ues for the log of the natural scale parameter (log(κ)). In the ‘covBM’ package, this

is done by the wrapper functions lmeBM and nlmeBM after the default approximate

variance-covariance matrix for the parameter estimates has been generated by the

original ‘nlme’ functions. The default ‘nlme’ behaviour is to provide Var
[
log

(
ξ̂
)]

, but

the ‘covBM’ wrapper functions convert this to Var[log(κ̂)] as follows:

Var[log(κ̂)] = Var[log
(
σ̂2ξ̂

)
]

= Var[2log(σ̂)+ log
(
ξ̂
)
]

= 4Var[log(σ̂)]+4Cov[log(σ̂) , log
(
ξ̂
)
]+Var[log

(
ξ̂
)
].

Similarly, the covariance of log(κ̂) with each other variance parameter α̂i is calcu-

lated as:

Cov[log(κ̂) , α̂i ] = Cov[2log(σ̂)+ log
(
ξ̂
)

, α̂i ]

= 2Cov[log(σ̂) , α̂i ]+Cov[log
(
ξ̂
)

, α̂i ].

2.2.3 Iterative generalised least squares

The use of an IGLS algorithm for the estimation of hierarchical linear mixed models

was described by Goldstein37, this technique is very efficient for models in which

grouping factors for random effects are hierarchically nested. In brief, the algorithm

consists of two steps at each stage. First the estimates of the fixed effects parameters
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β̂ j+1 are updated by a generalised least squares calculation conditional on the overall

marginal covariance matrix V̂ j as defined by the current estimates of the parameters

that define the random effects and variance structure α̂ j :

β̂ j+1 =
(
XTV̂−1

j X
)−1

XTV̂−1
j Y,

where X is the entire design matrix for the mean response, and Y is the full vector

of the outcome variable. The second step is to carry out a generalised least squares

calculation to update the values of α̂ j conditional on the current estimates for the

fixed effects parameters β̂ j+1:

α̂ j+1 =
(
X∗TV̂∗−1

j X∗
)−1

X∗TV̂∗−1
j Y∗,

where Y∗ is the vector of the stacked upper triangular elements of:

(Y−Xβ̂ j+1)(Y−Xβ̂ j+1)T,

X∗ is the design matrix relating the parameters of the covariance structure α to Y∗,

and V∗ is the covariance matrix of Y∗.

These two steps are repeated until convergence of both the fixed effects and vari-

ance parameter vectors is achieved. Goldstein showed that this algorithm provides

maximum likelihood estimates of the parameters for models in which the marginal

distribution of the response vector is multivariate normal37. Goldstein also described

a modified version of this algorithm, termed restricted iterative generalised least

squares (RIGLS), that produces REML estimates of the model parameters38.

One limitation of this estimation procedure is that the parameterisation of each

element of the covariance structure V needs to be linear in terms of the unknown

parameters in order for the generalised least squares calculation to be constructed

for the step in which variance parameters are updated. For example, this means that

it is not possible to use the technique to fit linear mixed models in which there is

an exponential correlation structure for the observation-specific residuals. In the

context of modelling non-stationary stochastic processes, the technique cannot be

used for incorporating fractional Brownian motion or IOU processes into models, as

the construction of each term of the resulting covariance matrix is not linear in terms

of the parameters to be estimated.

However, it is possible to use the IGLS or RIGLS algorithm for linear mixed models

that incorporate a scaled Brownian motion process. In this case, the form of each

element of the covariance structure is linear in terms of the scale parameter to be

estimatedκ. The additional contribution to element r j k of an individual’s covariance

matrix Vi is given by κ∗min(s, t ), where s is the time at the jth observation and t is
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the time at the kth observation. This use of IGLS to fit a linear mixed model including

a Brownian motion component has not been previously described in the literature. A

macro to add a Brownian motion component to a linear mixed model in the MLwiN

software package (Version 2.28; Centre for Multilevel Modelling, University of Bristol,

Bristol, UK), which implements IGLS and RIGLS, is given in Appendix B. This method

of estimation is very fast compared to others available, fitting a model to around

90 000 observations in less than 30 seconds using a standard PC (2.4 GHz processor,

2 GB RAM).

2.3 Multivariate-t distribution for longitudinal data

A common finding when assessing the goodness of fit of a statistical model based on

the normal distribution is the observation of heavier tails than expected on diagnos-

tic plots of residuals. This remains the case in the context of using linear mixed mod-

els for the analysis of longitudinal data. Verbeke and Lesaffre found that estimation

of fixed effects parameters using linear mixed models is robust to non-normal distri-

butions of the random effects, although they suggested a correction to the estimated

covariance matrix for the parameter estimates when non-normality of random ef-

fects is suspected39. Jacqmin-Gadda et al. used simulations to show that inference

for fixed effects is robust to misspecification of the error distribution when using lin-

ear mixed models in some situations40. However, these analyses did not take into

account the potential for missing or unbalanced data where this is dependent on the

observed values of the outcome variable.

Furthermore, in some situations the structure of the covariance of observations

within individuals is of direct interest to the investigator, rather than just a factor in

ensuring correct inference regarding the fixed effects parameters in a model. This

is the case when constructing models relating to growth curves, or when attempt-

ing to make predictions regarding sequential observations of biomedical variables

in individual patients. When standard linear mixed models do not appear to ade-

quately describe the variation observed in the data in such cases, the options for fit-

ting extended models that account for this are limited using the currently available

statistical software.

As later discussed in Chapter 3, it is not straightforward to separate the variabil-

ity due to the random effects included in a linear mixed model from that associated

with the residual error terms (whether or not these are independent and with con-

stant variance) when evaluating diagnostic plots to assess the adequacy of fit to the

data. Nonetheless, when data appear over-dispersed with respect to normality, one

potential first step would be to specify that either the distribution of the random ef-

fects or that of the residual error terms follows a heavy-tailed distribution. However,
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the combination of normally distributed and non-normally distributed components

leads to a model for which the likelihood cannot be expressed in closed form, mak-

ing the challenge of maximum likelihood estimation substantially harder. Numerical

techniques, as discussed in Section 2.4, can be applied to approximate the likelihood

and allow optimisation in such cases. However, we first consider a model in which

the set of observations for each individual as a whole follows a multivariate-t distri-

bution, as maximum likelihood estimation for such models is computationally sim-

pler. The use of such a model for multivariate regression analysis was proposed by

Lange et al.41, and was further developed as an extension of the linear mixed model

by Welsh and Richardson42 and Pinheiro et al.43. We review here the characteristics

of the multivariate-t distribution, and in Chapter 4 we present an analysis of pre-

treatment CD4 counts that applies the multivariate-t distribution to linear mixed ef-

fects models that also include stochastic process components, a combination that

had not previously been reported. In Chapters 5, 6 and 7 we also consider novel

extensions to mixed effects models that involve combinations of multivariate-t and

multivariate normal distributions, and estimation for such models is discussed in

Section 2.5.

2.3.1 Characteristics of multivariate-t distribution

There are a number of multivariate generalisations of the univariate t-distribution,

and a thorough review of this topic is provided by Kotz and Nadarajah44. However,

we shall refer to the multivariate-t distribution as that with the probability density

function:

Γ ((v +ni )/2)

Γ (v/2) vni /2πni /2 |Vi |1/2
(
1+ 1

v

(
yi −µi

)T V−1
i

(
yi −µi

))(v+ni )/2
,

where ni represents the length of the random vector yi (∈Rni ), Vi is a ni ×ni positive-

definite scale matrix, µi is a ni ×1 location vector and v is a degrees of freedom pa-

rameter. The mean of the distribution is µi if v > 1 and otherwise undefined, and

the variance of the distribution is v
v−2 Vi if v > 2 and otherwise undefined. This is the

most commonly used definition of the multivariate-t distribution.

In the present context, the mean vector µi will be represented as Xiβ, i.e. a func-

tion of a design matrix Xi and vector of parameters β. As for linear mixed models

based on the normal distribution, the scale matrix Vi can be divided into compo-

nents relating to a random effects structure and a residual error structure, i.e. ZiΨZT
i

and Ri , respectively. Pinheiro et al. consider the situation in which the degrees of

freedom parameter may vary between subgroups of individuals, but we shall assume

that this is a single constant43.
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If a vector of observations yi follows a multivariate-t distribution:

yi ∼ tni

(
Xiβ, Vi , v

)
,

then this can alternatively be represented as a hierarchical model in which yi follows

a multivariate normal distribution conditional on a gamma-distributed variable γi

(with parameters given for ‘shape’ and ‘rate’, respectively)43:

yi |γi ∼ MV N

(
Xiβ,

1

γi
Vi

)
(5)

γi ∼ gamma
(v

2
,

v

2

)
.

As noted by Pinheiro et al.43, it directly follows that:

γi |yi ∼ gamma

(
v +ni

2
,

v +δ2
i (θ)

2

)
where, δ2

i (θ) = (
yi −Xiβ

)T V−1
i

(
yi −Xiβ

)
.

Here, θ represents the parameter vector that includes β and determines the con-

struction of Vi . From the standard properties of a gamma distribution, it can be seen

that:

E
(
γi |yi

)= v +ni

v +δ2
i (θ)

.

The hierarchical form as shown in (5) also provides a route by which a single variance

component of a mixed effects model can be specified as following a multivariate-t

distribution, through conditioning of only the relevant covariance parameters on a

latent variable that follows a gamma distribution.

2.3.2 Maximum likelihood estimation for the multivariate-t distribution

A series of EM-type algorithms for maximum likelihood estimation of parameters

for the multivariate-t distribution generalisation of the linear mixed effects model

are provided by Pinheiro et al.43. Most of the algorithms provided require that the

structure of the residual error covariance matrix Ri be known up to a scalar factor

σ2, but one ECME algorithm is reported for which only the γi are treated as missing

data, with the bi integrated out of the complete data likelihood. Using this approach,

parameter estimation can be achieved for multivariate-t distribution models that in-

clude non-stationary stochastic components such as Brownian motion. However,

the algorithm requires maximum likelihood estimation of the parameter vector θ

conditional on γ̂ for the conditional maximisation step of every iteration, meaning
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that this approach is computationally very time-consuming. This issue is particu-

larly problematic when attempting to analyse large datasets. An R package ‘tlmec’45

exists for fitting models generalised from a normal linear mixed effects model with

independent error terms of constant variance using an ECME approach46.

As the likelihood function for the multivariate-t linear mixed effects model has

a closed form, whatever the structure of Vi , it is possible to directly apply Newton–

Raphson-type optimisation procedures. Lange et al. provide some useful results for

the derivation of gradient functions41. However, the only currently available soft-

ware package to implement linear mixed models that incorporate stochastic pro-

cess components and allow a marginal multivariate-t distribution is ‘lmenssp’ for R28

(this feature was added to ‘lmenssp’ after the submission of our paper on the topic

to Statistics in Medicine 47), which uses finite differencing to obtain the gradients re-

quired for optimisation. Lin reports a hybrid maximisation algorithm, combining an

initial ECME approach and subsequent Fisher scoring method, to fit a multivariate-t

linear mixed effects model including autoregressive correlation for the residual er-

ror terms48. However, for the analysis in Chapter 4 we will use direct application of

Newton–Raphson-type optimisation implemented in the ADMB software, using the

parameter estimates from the equivalent normal linear mixed model and a moder-

ate value for the degrees of freedom parameter (i.e. v = 10) as starting values for

the iterative procedure. An advantage of using a Newton–Raphson-type procedure

for parameter estimation is that the asymptotic multivariate normal estimate of the

sampling distribution of the parameters can be readily obtained upon convergence.

Although finite differencing can be employed, the use of exactly calculated gra-

dients (with respect to the model parameters) in Newton–Raphson-type procedures

can greatly improve stability and speed of convergence. However, in some situa-

tions, such as incorporating stochastic process components into the multivariate-t

linear mixed effects model, the analytic derivation of the gradients is not trivial. In

addition, once an analytic form for each of the gradient terms has been derived, it

is required that this be programmed into the computational procedure for the op-

timisation in an efficient manner. An alternative method is provided by automatic

differentiation, whereby a computer program is structured in such a way that it can

automatically calculate the derivatives of a mathematical function to the same de-

gree of accuracy as analytical derivatives (to machine precision)49. In essence, this

is achieved through application of the chain rule to each of the elementary opera-

tions that comprise the calculation of the objective function (i.e. the log-likelihood

function). The open source Automatic Differentiation Model Builder (ADMB) soft-

ware (ADMB Foundation, Honolulu, HI, USA) allows optimisation for any statistical

model in which a differentiable log-likelihood function can be written in the C++

language50; additional statistical and mathematical functions (including matrix and

32



COMPUTATIONAL ISSUES

vector functions and operations) are provided by the software to facilitate this. This

software is used for the analyses presented throughout this thesis.

2.4 Estimation for non-linear latent variable models

Up until now in this chapter we have only considered models for which the marginal

log-likelihood can be expressed in closed form. However, there is often a motivation

to consider models for which this is not the case, and which therefore require use of

an approximation to the marginal log-likelihood at each iteration of an algorithm for

maximum likelihood estimation. Certain classes of such models are well supported

by current statistical software packages, but the potential for flexible model develop-

ment outside of the standardised options provided is usually limited.

The use of ‘non-linear mixed effects models’ is well established in biomedical

research4–7. In these models, the distribution of the outcome variable is normal

conditional on the random effect terms, but the function for the expectation of the

outcome variable may be non-linear in both the fixed effect parameters and the ran-

dom effect terms. Ignoring the potential for grouping factors beyond that of each

individual in a dataset, as previously in this chapter, the non-linear mixed model for

longitudinal data can be expressed in the form4:

yi = g
(
Xi ,β,bi

)+ei

bi ∼ MV N (0,Ψ)

ei ∼ MV N (0, Ri ),

where yi is the outcome vector for the i th individual, Xi is a matrix of covariate data

relating to the ni observations for that individual, β is a vector of parameters relat-

ing to the expectation for each observations — some of which are associated with

subject-specific random effects denoted by the vector bi , ei is a vector of residuals

and g () is a vectorised non-linear function. As for the linear mixed effects model, bi

and ei each follow independent multivariate normal distributions with covariance

matrices Ψ and Ri , respectively. The matrix Ri is often assumed to comprise inde-

pendent error terms with constant variance (i.e. Ri = σ2Ini ), but as for the linear

mixed effects model the structure of Ri can be specified to reflect correlated error

terms or the incorporation of Gaussian process components into the model. The

marginal likelihood function for each individual can be expressed as:

f
(
yi |β,α

)= ∫ ∞

−∞
fcond

(
yi |b,β,α

)
fb (b|α)db, (6)

for which the right-hand side is a multidimensional integral if there is more than one
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random effect term per individual. We use α here to denote a vector containing all

variance parameters, relating to both Ψ and Ri . Unless g () is linear in the random

effect terms, this integral does not have a closed form solution.

An in-depth review of methods to approximate integrals of this form was pub-

lished by Pinheiro and Bates5, and we do not provide a full account of the history of

this topic here but rather outline key features of the algorithms that are currently in

use. The simplest method available to approximate an integral as that in (6) is to use

a first-order Taylor series expansion of the model function g () around the expected

value of the random effect terms51, termed the ‘first order’ (FO) method in the NON-

MEM software52. An alternative option proposed by Lindstrom and Bates4 is to use

a first-order Taylor expansion of the model function around the current parameter

estimates and the conditional (on current parameter values) modes of the random

effects; maximum likelihood estimation using this approach requires alternation be-

tween a penalised least squares step to calculate the conditional modes of the ran-

dom effects and a ‘linear mixed effects’ step, in which updated parameter estimates

are obtained using the resulting linear approximation to the non-linear model. This

approach is implemented in the ‘nlme’ package34 for R, and so our ‘covBM’ pack-

age can be used to incorporate stochastic process components in non-linear mixed

effects models using this methodology. However, there exist other methods that pro-

vide a more accurate approximation to the marginal likelihood, at the cost of higher

computational complexity.

The next available method, in terms of increasing accuracy, is the Laplace ap-

proximation. Before formalisation of non-linear mixed effects models, the Laplace

approximation had been used to obtain approximate marginal posterior densities

and predictive distributions in the context of Bayesian analyses (e.g. Tierney and

Kadane53), and Wolfinger54 noted that the Laplace approximation of the integral

could be used to derive the linear expansion of the model for the REML form of

the Lindstrom and Bates algorithm, assuming flat prior distributions for the fixed ef-

fect parameters. It was subsequently observed by Pinheiro and Bates5 and Vonesh55

that the Laplace approximation of the integral only with respect to the random ef-

fect terms could be used to carry out maximum likelihood estimation. The Laplace

approximation is based on a second-order Taylor expansion with respect to the vari-

ables that are being integrated out of the expression, but both Pinheiro and Bates5

and Vonesh55 proposed a first-order approximation to the required matrix of second-

order derivatives in order to simplify calculations; this is also the basis for the first-

order conditional estimation method (FOCE) implemented in NONMEM52. How-

ever, in Chapters 5, 6 and 7 we will make use of the full Laplace approximation to

integrals as shown in (6), and to integrals of a more complex form, and so we provide

an outline of its derivation here56.
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We consider the need to integrate a joint probability density function of vectors of

outcome and latent variables conditional on a full parameter vector ( f j
(
yi ,b|θ)

, with

joint penalized log-likelihood l j
(
yi ,b|θ)

) in order to obtain the marginal probability

density for the outcome variable alone ( f
(
yi |θ

)
):

f
(
yi |θ

)= ∫ ∞

−∞
f j

(
yi ,b|θ)

db

=
∫ ∞

−∞
exp

(
l j

(
yi ,b|θ))

db. (7)

The joint probability density functions for the outcome and latent variables often

takes the factorised form as shown in (6) (i.e. fcond
(
yi |b,θ

)
fb (b|θ)), and some soft-

ware packages place this restriction on the user in their dedicated non-linear mixed

model functions with the condition that the random effects follow a normal distri-

bution (e.g. PROC NLMIXED in SAS or the ‘nlme’ package in R). However, this par-

ticular factorisation is not required in order for the Laplace approximation to the

marginal likelihood to be used, and indeed we develop models that do not follow

this form in Chapters 5, 6 and 7. The Laplace approximation to (7) results from a

second-order Taylor expansion of l j
(
yi ,b|θ)

about the conditional modes (b̂) of the

latent variables, i.e. the values of the latent variables that maximise the penalised

log-likelihood conditional on the data and the current parameter values:

b̂ = argmax
b

l j
(
yi ,b|θ)

.

Because the Taylor series is evaluated at the conditional maximum of the function,

the first-order derivatives are zero and as such the joint penalised log-likelihood can

be approximated as:

l j
(
yi ,b|θ)≈ l j

(
yi , b̂|θ)+ 1

2

(
b− b̂

)T
H (θ)

(
b− b̂

)
,

where H (θ) is the matrix of second-order derivatives, i.e. the Hessian:

H (θ) = δ2

δb2
l j

(
yi ,b|θ)∣∣∣∣

b=b̂
.

H (θ) is negative-definite, again because it is evaluated at the conditional maximum

of the latent variable terms, and so the integral in (7) can be approximated as:∫ ∞

−∞
exp

(
l j

(
yi ,b|θ))

db ≈ exp
(
l j

(
yi , b̂|θ))∫ ∞

−∞
exp

(
−1

2

(
b− b̂

)T
(−H (θ))

(
b− b̂

))
db

= exp
(
l j

(
yi , b̂|θ))

(2π)
d
2 |det(H (θ))|− 1

2 ,

where d is the dimension of the integral, i.e. the number of latent variables terms.
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This approach effectively approximates the posterior distribution of the latent vari-

able terms, conditional on the model parameters and data, as a multivariate normal

distribution. As for the Lindstrom and Bates4 approach, obtaining maximum likeli-

hood estimates of the parameters for a given model requires an algorithm that alter-

nates between finding the modes of the latent variables conditional on the current

parameter vector and then updating the parameter estimates based on the result-

ing Laplace approximation to the marginal (log)-likelihood. An automated compu-

tational approach to achieve this is reported by Skaug and Fournier57; this is im-

plemented in the ADMB software50, using which the user needs only to specify the

function l j
(
yi ,b|θ)

with respect to the relevant data, parameters and latent variables.

The use of Gauss–Hermite quadrature to approximate the marginal likelihood

for non-linear models was proposed by Davidian and Gallant58 in conjunction with

a smooth non-parametric distribution for the random effect terms. Pinheiro and

Bates5 described the use of Gauss–Hermite quadrature for models in which the ran-

dom effects follow a multivariate normal distribution, involving evaluation of the

joint likelihood function at a grid of values for the random effect terms determined

by their modelled marginal distribution. Pinheiro and Bates5 also proposed an im-

proved technique in this setting that they termed ‘adaptive Gaussian quadrature’, in

which the grid of evaluation points is determined by the approximate multivariate

normal posterior distribution of the random effect terms. We make use of this tech-

nique in Chapters 5 and 6 and so provide an outline of the method here, although we

use the term ‘adaptive Gauss–Hermite quadrature’ to refer to this method through-

out as this nomenclature is more specific.

Both Davidian and Gallant58 and Pinheiro and Bates5 demonstrated that Gauss–

Hermite quadrature for d-dimensional integrals could be simplified by transforma-

tion into a series of 1-dimensional integrals. As we make use of adaptive Gauss–

Hermite quadrature, this transformation takes the form b = b̂ + (−H (θ))−
1
2 z, and

leads to the following approximation:

f
(
yi |θ

)= ∫ ∞

−∞
φ

(
b; b̂, (−H (θ))−1) exp

(
l j

(
yi ,b|θ))

φ
(
b; b̂, (−H (θ))−1)db

=
∫ ∞

−∞
φ (z;0,I)

∣∣∣det
(
(−H (θ))−

1
2

)∣∣∣ exp
(
l j

(
yi , b̂+ (−H (θ))−

1
2 z|θ

))
φ (z;0,I)

dz

=
∫ ∞

−∞
φ (z;0,I) |det(H (θ))|− 1

2 (2π)
d
2 exp

(
zTz

2

)
exp

(
l j

(
yi , b̂+ (−H (θ))−

1
2 z|θ

))
dz

≈
NGQ∑
j1=1

. . .
NGQ∑
jd=1

|det(H (θ))|− 1
2 (2π)

d
2 exp

(
zT

j zj

2

)
exp

(
l j

(
yi , b̂+ (−H (θ))−

1
2 zj|θ

)) d∏
k=1

w jk ,
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where NGQ is the number of quadrature points in each dimension (d) and zj (=
(
z j1 , . . . , z jd

)T)

and w j ( j = 1, . . . , NGQ ) denote the abscissa and weight values for the (one-dimensional)

Gauss–Hermite quadrature rule for NGQ points based on the standard normal ker-

nel5. Adaptive Gauss–Hermite quadrature requires function evaluation at N d
GQ points

to approximate the marginal likelihood, and so is often not computationally feasible

when the number of latent variable terms per individual cluster is more than one

or two. However, when it can be applied, the number of quadrature points can be

gradually increased until a stable value for the marginal likelihood is achieved, en-

suring that it has been calculated accurately. This method is also implemented in the

ADMB software, with the user only required to define the function l j
(
yi ,b|θ)

, as for

the Laplace approximation, and the number of quadrature points.

Pinheiro and Bates5 note that one-point adaptive quadrature (i.e. NGQ = 1) is

equal to the Laplace approximation, as z j = 0 and w j = 1 for all j . They also note

that the method is equivalent to the use of importance sampling to estimate the

marginal likelihood, with sampling performed using the approximate normal poste-

rior of the latent variables, but with a pre-specified set of sample points and weights.

Importance sampling provides a potential alternative technique for maximum like-

lihood estimation when adaptive Gauss–Hermite quadrature is not feasible and is

implemented in the ADMB software using a randomly generated (but then fixed) set

of standard normal sample points for each optimisation, which are transformed to

the approximate posterior distribution of the latent variables at each iteration of the

algorithm. However, computational problems can arise when the total number of

latent variables in the model is high.

An alternative approach to maximum likelihood estimation in non-linear mixed

effects models is the stochastic approximation expectation-maximization (SAEM)

algorithm developed by Kuhn and Lavielle59 and implemented in the MONOLIX

software60. This algorithm involves stochastic approximation of the latent variable

terms in a model (updated at each iteration based on their posterior distribution) fol-

lowed by updating of the conditional parameter estimates. It has only been proven

to provide convergence to the maximum likelihood estimates of parameters when

the joint model for the data and latent variable terms follows a distribution from

the exponential family59, which would make interpretation of parameter estimates

difficult for models in which this condition is not met. Additionally, current imple-

mentations are restricted to the factorised form for the marginal likelihood as shown

in (6).
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2.5 Estimation for combinations of multivariate normal and

multivariate-t distributions

In some settings, it may be desirable to fit statistical models that involve a mix-

ture of components that follow multivariate normal and multivariate-t distributions.

For example, Wakefield proposed the use of bivariate-t distributed subject-specific

random effects in combination with normally distributed measurement error terms

in the development of pharmacokinetic models61. Wakefield employed a Bayesian

model fitting approach, and made use of the hierarchical form of the multivariate-t

distribution in order to structure the desired model. Song et al. proposed the use of

linear mixed effects models in which either the subject-specific random effects fol-

low a multivariate-t distribution and the residual error terms follow a multivariate

normal distribution or vice versa62; maximum likelihood estimation of these mod-

els was performed using a ‘maximization by parts’ algorithm63, which has not been

incorporated into software for general use.

In Chapters 5, 6 and 7 we consider novel extensions to mixed effects models in

which only the stochastic process component follows a multivariate-t distribution

whilst the random effect and residual error terms remain multivariate normal. Fol-

lowing the model structure as in (4) (page 22) and employing the hierarchical form

of the multivariate-t distribution as in (5) (page 31), this gives a model of the form:

yi = Xiβ+Zi bi +Wi +ei

bi ∼ MV N (0,Ψ)

Wi |γi ∼ MV N (0,
1

γi
Σi )

ei ∼ MV N (0, σ2Ini )

γi ∼ gamma
(v

2
,

v

2

)
.

The marginal likelihood function for the model can be found by integrating out the

latent variables on the standard normal scale, for which the Laplace approximation

is optimally accurate64, and so we fit such models using the following form for the

marginal likelihood:

f
(
yi

)= ∫ ∞

−∞
f
(

yi |γi = F−1 (Φ (a))
)

fφ (a)d a,

where fφ and Φ are the probability density and cumulative probability functions for

a standard normal distribution and F−1 is the inverse of the cumulative distribution

function for a gamma distribution with ‘shape’ and ‘rate’ parameters both equal to
v
2 .
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2.6 Discussion

For linear mixed effects models, even with extensions to include Gaussian stochastic

process components or generalisation of the framework to the multivariate-t dis-

tribution, the marginal likelihood function is available in closed form and this al-

lows direct application of optimisation algorithms to obtain maximum likelihood

estimates of the model parameters. For conventional linear mixed effects models,

methodological researchers have exploited the properties of the multivariate normal

distribution to improve the computational efficiency of the optimisation, such as by

profiling out a subset of the models parameters from the likelihood function. We

have demonstrated a novel strategy for implementing the profile likelihood methods

of Pinheiro and Bates6 for mixed effects models that also include Gaussian process

components. We have also noted that a Brownian motion component can be added

to linear mixed effect models using existing software for IGLS estimation.

For non-linear mixed effects models, and for other latent variable models that do

not fall within standard categories, the marginal likelihood is not in general available

in closed form, and so approximations of varying degrees of accuracy and compu-

tational complexity are required in order to perform maximum likelihood estima-

tion of model parameters. We note that although many software packages are re-

strictive in the structure of non-linear mixed effects models that can be fitted, open

source software is available that can be used to fit latent variable models for which

the structure can be flexibly defined by the user. This functionality allows the de-

velopment and implementation of models for longitudinal data that are tailored to

both the structure of the data under investigation and to the key questions of inter-

est that we hope to answer. In Chapters 5, 6 and 7 we make use of this flexibility

to develop and apply novel statistical models for the combined analysis of pre- and

post-treatment CD4 counts in HIV patients.
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3 Residual diagnostics for mixed effects models

In this chapter we provide a brief review of the methods available for generating and

evaluating residual diagnostic plots for fitted mixed effects models. We then review

the methods that have been described for mixed effects models that make use of the

multivariate-t distribution, and propose additional plots that could be used to assess

model fit in this setting.

Several different approaches have been proposed for assessing the goodness of

fit of linear mixed models with respect to their implicit assumptions, including the

use of diagnostic plots for model residuals that have been generalised from those

used in the standard linear regression framework. It is worth noting, as pointed out

by Haslett and Haslett65, that inconsistent terminology has been used in the litera-

ture regarding the different types of ‘residuals’ that can be obtained for linear mixed

models; as such we have italicised the definitions that we have chosen to use in this

discussion. The set of marginal residuals 2 for a fitted linear mixed effects model is

given by:

r̂ mar g
i = yi −Xi β̂.

We use mathematical notation as defined in Chapter 2.

As the linear mixed model does not assume that residual error terms are inde-

pendent and identically distributed, the marginal residuals alone cannot be used to

assess the adequacy of model fit. However, their distribution conditional on known

parameter values will always be multivariate normal. For non-linear mixed effects

models, the marginal residuals can be calculated as:

r̂ mar g
i = yi −g

(
Xi , β̂,bi = 0

)
.

However, the distribution of these marginal residuals conditional on the model pa-

rameters will not follow a multivariate normal distribution unless the function g is

linear in any random effect terms4.

3.1 Division of random effects and residual error for linear mixed

effects models

When the fitted model contains a constant residual error term and no stochastic pro-

cess component, one option is to calculate subject-specific residuals2 based on the

predicted values of the random effects for each individual (or other grouping of fac-
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tors):

r̂ ss
i = yi −Xi β̂−Zi b̂i

where, b̂i = Ψ̂ZT
i V̂−1

i (yi −Xi β̂).

The random effects in a linear mixed model are assumed to be unobserved variables

arising from a normal distribution. This method of prediction for the random effects

corresponds to the mean of the posterior distribution of bi given the observed data

yi and taking the parameter estimates for the linear mixed model as fixed. As such,

the resulting predictions for bi are referred to as ‘empirical Bayes’ estimates1.

This approach is appealing as it may initially seem, given that a standard lin-

ear mixed model has been correctly specified, that the calculated subject-specific

residuals should be approximately independent and normally distributed with con-

stant variance; this would be the case if all of the realisations of random effects in

the model could be predicted very accurately, and would allow standard techniques

for residual diagnostics such as quantile–quantile (Q–Q) plots to be employed. Such

an approach is described by Pinheiro and Bates6, who also propose a further gener-

alisation of this technique for use with models that include a non-constant residual

variance by transforming the subject-specific residuals using the inverse Cholesky

root of the estimated covariance structure additional to that induced by the random

effects (i.e. Ri as in (1), page 20, with decomposition: R̂i = σ̂2R̂′
i = σ̂2Λ̂i Λ̂

T
i ):

r̂ ss∗
i = σ̂−1Λ̂−1

i

(
yi −Xi β̂−Zi b̂i

)
.

However, as reported by Jacqmin-Gadda et al.40, it can be shown that if Ri = σ2I

then the subject-specific residuals can be expressed as:

r̂ ss
i = σ̂2V̂−1

i

(
yi −Xi β̂

)
.

Hence, even if all of the parameters in the model were known, then the subject-

specific residuals would be distributed as:

r ss
i ∼ MV N

(
0,σ4V−1

i

)
,

which means that interpretation of such residual plots is not straightforward.

In addition to their use for the calculation of subject-specific residuals, the b̂i

themselves are often used to detect outlying groups or individuals or to assess the

goodness of fit of the model with respect to its implicit assumptions. For example,

DeGruttola et al. reported the use of ‘random slopes’ models for the progression of

T-cell counts in HIV-positive men and used histograms and Q–Q plots of the pre-
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dicted values of the random effects to evaluate whether the assumption of a normal

distribution was met66. This type of analysis is widely facilitated by currently avail-

able software, including the ‘nlme’ package for R and MLwiN. However, the use of

diagnostic methods that rely on the prediction of random effects requires caution, as

the predictions b̂i of bi will always show ‘shrinkage’ towards zero (i.e. the population

average)67. A related result, as noted by Verbeke and Molenberghs2(page 81), is that

for any linear combination of the random effects, a, the following inequality holds:

Var
(
aTb̂i

)≤ Var
(
aTbi

)
.

This complicates any interpretation of diagnostic procedures for model fit that

make use of the predicted values of random effects, whether to create subject-specific

residuals or for analysis in themselves. Furthermore, it was demonstrated by Verbeke

and Lesaffre that the assumed distribution of the random effects strongly affects the

results of such analyses, and that even when data are generated with random inter-

cept terms from a distinctly bimodal normal distribution the predicted values from a

fitted model may appear unimodal68. Verbeke and Lesaffre also note that the distri-

bution of b̂i will only be identical across subjects if Zi is the same for every subject;

this condition will be met in some situations, but in the biomedical setting there will

very often be subjects with missing or irregularly collected data and highly unbal-

anced datasets are common in the case of observational studies.

Attempts have been made to address these difficulties in assessing the goodness

of fit of linear mixed models. For example, Hilden-Minton suggested finding a linear

transformation of the subject-specific residuals that minimises the influence of the

random effects in the model, terming these the least confounded residuals 69. No-

bre and Singer used simulation to show that a standardised form of the least con-

founded residuals could be used in combination with Q–Q plots to correctly indicate

a normally distributed residual error term when an associated random error term

was generated from a non-normal distribution70. This technique has the inherent

limitations that the transformed residuals no longer correspond to individual obser-

vations, making interpretation more difficult, and that the distribution of the ran-

dom effects themselves are not assessed.

Another approach to the problem of confounding between different components

of the residuals in linear mixed models is to generate tolerance bands for diagnostic

plots of subject-specific residuals and predictions of random effects using a paramet-

ric bootstrap-type technique, as proposed by Schützenmeister and Piepho71. Using

this method, data are resampled using the parameter estimates obtained and the

model is refitted and corresponding residual diagnostics calculated for each of the

generated datasets; these are then used to calculate tolerance bands under the as-
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sumption of a correctly specified model for the residual values obtained from the

original data. Schützenmeister and Piepho acknowledge that the simulation-based

approach that they present can take a long period of time to run using standard com-

puters, which will limit its use, certainly for models fitted to large datasets.

3.2 Transformation of marginal residuals

Instead of attempting to divide the observed marginal residuals of linear mixed mod-

els into components related to the random effects in the model and a residual error

term, an alternative method is to transform them directly. In the context of analysis

of longitudinal data, Fitzmaurice, Laird and Ware propose the use of a Cholesky de-

composition of the estimated marginal covariance matrix for each individual for this

purpose72. This suggestion followed previous work by Waternaux, Laird and Ware in

which an equivalent transformation was generated following the fitting of a model

for longitudinal data and used to transform the outcome and predictive variables,

leading to an ordinary least squares optimisation in terms of the fixed effects param-

eters only that could be fitted and evaluated using standard linear regression proce-

dures73. If Li is a lower triangular matrix such that:

V̂i = Li LT
i .

Then we will term the Cholesky-transformed residuals as follows:

r̂ C hol
i = L−1

i

(
yi −Xi β̂

)
.

This transformation creates a standardised residual for the first observation in each

individual and has the effect of standardising each subsequent observation for each

individual conditional on all preceding observations, for the kth observation in the

ith individual providing an estimate of:

yi k −E
(
yi k |yi 1, . . . ,yi k−1

)√
Var

(
yi k |yi 1, . . . ,yi k−1

) .

Given a correct model specification, these transformed residuals are asymptoti-

cally independent, each following a standard normal distribution. As such, the ade-

quacy of model fit can be assessed by generating Q–Q plots of the transformed resid-

uals, and by plotting them against Cholesky-transformed predicted mean values (i.e.

L−1
i Xi β̂) or covariates such as time. Haslett and Haslett65 note that the Cholesky de-

composition of the marginal covariance matrix for each individual is not the only

decomposition available for the purpose of standardising the marginal residuals.
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Houseman et al. propose the use of a transformation resulting from the Cholesky

decomposition of the inverse of the marginal covariance matrix for each individual,

and present a derivation of the standard error of an empirical cumulative distribu-

tion function for the transformed residuals, facilitating interpretation of Q–Q plots74,

while Louis made use of symmetric square-root of the covariance matrix75.

An advantage of using a direct transformation of the marginal residuals in a lin-

ear mixed model is that the values obtained, under a correctly specified model, are

not dependent on the number of observations or the covariate values of each indi-

vidual in the dataset. This is particularly beneficial in the presence of missing data

that are thought to be ‘missing at random’, with the probability of data being miss-

ing only dependent on the observed data and covariates. The Cholesky-transformed

residuals only depend on the previous observations for that individual, and so are

not influenced by the fact that later observations may be missing.

3.3 The semivariogram function

The semivariogram function is used to describe the spatial and/or temporal depen-

dence in random fields and stochastic processes. The technique has its roots in the

analysis of geological and geographical data, but was introduced in the context of

longitudinal data by Diggle24. The function is of the form:

ζ (s, t ) = 1

2
Var

((
ys −µ(s)

)− (
yt −µ(t )

))
= 1

2
E

(∣∣(ys −µ(s)
)− (

yt −µ(t )
)∣∣2

)
,

where ys and yt denote the observed response variables at times s and t and µ(·)

is a function giving the expected value. If the observations under consideration are

assumed to arise from a stationary process Y(t ) of deviations from the mean, or from

a stochastic process in which the increments are stationary, then the function can be

expressed in terms of time lag u:

ζ (u) = 1

2
E

(|Y(t )−Y(t −u)|2) .

If Y(t ) is stationary, then the semivariogram function is directly related to the auto-

correlation function, ρ (u), of the process3:

ζ (u) =σ2 (
1−ρ (u)

)
.

As such, sample semivariograms can be used to suggest plausible structures for

the correlation of residual errors under this assumption. These are produced as a

smoothed plot of the half-squared-differences between marginal residuals (vi j k ) for
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each pair of observations in each individual, plotted against the time difference be-

tween observations (ui j k ) in each pair3:

vi j k = 1

2

(
r̂i j − r̂i k

)2

ui j k = ti j − ti k .

Whilst this technique can be useful in some circumstances, the required assump-

tion that the underlying process is stationary can be limiting. One approach to this

problem when dealing with more complex linear mixed models is to use the subject-

specific residuals (based on the predicted values of the random effects for each in-

dividual) for calculation of the empirical semivariogram, with the aim of evaluating

the correlation between residual variation once the random effects have been taken

into account; this is suggested by Pinheiro and Bates6, and is implemented in the

‘nlme’ package for R. However, we demonstrate in Section 3.3.1 that this approach

can lead to potentially misleading results even when the statistical model is correctly

specified.

Another approach to allow the use of the semivariogram to evaluate residual cor-

relation in linear mixed models was described by Verbeke et al.76. These authors

propose the use of a transformation of the ordinary least squares (OLS) residuals that

creates a projection of the residuals that is orthogonal to the random effects design

matrix for each subject (i.e. Zi ), and which can be used to obtain a semivariogram

plot that does not depend on the random effects part of the model. One problem

with this approach is that it is based on the OLS estimates of the fixed effects param-

eters being consistent, which may not be the case in the presence of missing data.

Another limitation is that this approach is not implemented in any statistical soft-

ware packages.

Alternatively, Fitzmaurice, Laird and Ware72 propose the use of the sample semi-

variogram to check the independence of Cholesky-transformed residuals. Under a

correctly specified model, these residuals are asymptotically normally and indepen-

dently distributed with variance 1 and so a sample semivariogram should show ran-

dom scatter around 1 as a function of time lag between observations. However, a

limitation of this approach is that it is not obvious how to interpret systematic devia-

tions from the expected pattern, other than to conclude that the covariance structure

of the model does not perfectly describe that observed in the data.

3.3.1 Semivariogram for subject-specific residuals

We consider here the use of a sample semivariogram to assess the distribution of

subject-specific residuals in a correctly specified ‘random slopes’ linear mixed model,
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with independent residual errors of constant variance. To simplify matters, we con-

sider the model parameters to be known. We denoteσ2 as the residual variance, with

random effects following a bivariate normal distribution:(
b0

b1

)
∼ MV N

((
0

0

)
,Ψ

)
,

where,

Ψ=
(
σ00 σ01

σ01 σ11

)
.

In this context, the theoretical semivariogram function for observations of subject-

specific residuals at time points s and t , with t − s = u, is given by:

2ζ∗ (s, t ) = Var
((

yt −µ(t )− b̂0 − t b̂1
)− (

ys −µ(s)− b̂0 − sb̂1
))

= Var
((

yt −µ(t )
)− (

ys −µ(s)
)−ub̂1

)
= Var

(
yt

)−2Cov
(
yt , ys

)+Var
(
ys

)−2uCov
(
yt , b̂1

)+2uCov
(
ys , b̂1

)+u2Var
(
b̂1

)
= 2σ2 + (

s2 + t 2 −2st
)
σ11 −2uCov

(
yt , b̂1

)+2uCov
(
ys , b̂1

)+u2Var
(
b̂1

)
.

If we let y be the vector of outcome variables, B be a row vector of zeros with a single

‘1’ corresponding to the position of time point ti , Z be the design matrix for the ran-

dom effects and V be the marginal covariance matrix of y, then the term Cov
(
yti

, b̂1

)
is given by the second element of:

Cov
(
ΨZTV−1y, By

)=ΨZTV−1Cov
(
y, y

)
BT

=Ψ
(

1 . . . 1 . . . 1

t1 . . . ti . . . tn

)


0
...

1
...

0


=Ψ

(
1

ti

)
.

Therefore

Cov
(
yti

, b̂1

)
=σ01 + tiσ11.
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Using this expression, we have:

2ζ∗ (s, t ) = 2σ2 + (
s2 + t 2 −2st

)
σ11 −2(t − s)(σ01 + tσ11)+2(t − s)(σ01 + sσ11)+u2Var

(
b̂1

)
= 2σ2 − (

s2 + t 2 −2st
)
σ11 +u2Var

(
b̂1

)
= 2σ2 −u2 (

σ11 −Var
(
b̂1

))
.

Following from the fact that Var
(
aTb̂

) ≤ Var
(
aTb

)
for any linear combination a, and

hence Var
(
b̂1

)≤σ11, it can be seen that the semivariogram function in this situation

quadratically decreases with respect to the time difference between observations.

This characteristic of the semivariogram approach when using subject-specific resid-

uals is not discussed by Pinheiro and Bates6.

3.4 Residual diagnostics for multivariate-t linear mixed effects

models

The evaluation of diagnostic plots of the residuals resulting from fitted statistical

models forms an important part of model criticism and development. Such plots

can be used to check the adequacy of fitted models to describe the data under in-

vestigation and, when problems are observed, to suggest how further improvements

might be made. This is particularly important when there is interest in understand-

ing patterns of variability within and between individuals as well as ensuring correct

inference for fixed effects parameters.

3.4.1 Subject-level residuals

Much of the focus regarding the use of multivariate-t linear mixed effects models has

been with respect to providing robust inference for the fixed effects; this follows from

the fact that individuals with observations that are further from the mean in each

case are down-weighted in the estimation of the fixed effects parameters. Lange et

al. were concerned with achieving robust multivariate regression, and suggested the

use of diagnostic residual plots that indicated whether the fitted model adequately

reflected the presence of outlying sets of measurements (i.e. each set corresponding

to the various measurements conducted on a single individual)41. They point out

that for a normal linear mixed model, the statistic:

δ̂2
i (θ) = (

yi −Xi β̂
)T

V̂−1
i

(
yi −Xi β̂

)
for each individual would asymptotically follow a χ2 distribution with ni degrees of

freedom. However, under a multivariate-t model, the statistic
δ̂2

i (θ)
ni

would asymptot-

ically follow an F-distribution with ni and v̂ degrees of freedom. Lange et al. trans-
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form these statistics to standard normal deviates, and then use Q–Q plots to assess

model fit.

Pinheiro et al.43 suggest direct plotting of the standardised sum of squares for

each individual
δ̂2

i (θ)
ni

, alongside a decomposition of the standardised sum of squares

into that predicted to be due to the random effects terms:

δ̂2
bi

(θ)

q
= b̂i

T
Ψ̂−1b̂i

q
,

where q is the length of the random effects vector, and that predicted to be due to

residual error:

δ̂2
ei

(θ)

ni
=

(
yi −Xi β̂−Zi b̂i

)T
R̂−1

i

(
yi −Xi β̂−Zi b̂i

)
ni

.

In the example given by Pinheiro et al.43, these statistics for each individual are cal-

culated using the parameter estimates from a multivariate-t model, but are com-

pared to their asymptotic expected value of 1 under the equivalent Gaussian model.

This technique may be of use in identifying unusual individuals in a dataset, but does

not seem to directly address the adequacy of the multivariate-t model to describe the

data. In addition, as described in Section 3.1, any method that relies on the predicted

values of the random effects in each individual may result in misleading findings.

Wang and Fan report the use of a hybrid ECME–scoring approach to fit a multivariate-

t model for joint modelling of longitudinal observations of CD4 and CD8 cell counts

in a sample of 30 HIV-positive individuals9. Their model included random inter-

cept and random slope components, with autoregressive correlation for the resid-

ual error terms. To assess model fit, Wang and Fan provide Q–Q plots equivalent

to those suggested by Lange et al.41, summarizing the distribution of the standard-

ised distance from the expected mean values for the set of observations obtained

from each individual as a whole. As demonstrated by Lange et al.41 and Wang and

Fan9, these plots can demonstrate the inadequacy of the normal linear mixed ef-

fects model to describe the observed data. However, the plots do not directly show

whether the multivariate-t model correctly describes variability between individual

measurements.

Wang and Fan9 also propose plotting quantiles of the empirical conditional dis-

tributions of theγi for each individual, with those for which the 95 % credible interval

does not include the mean of 1 suggested as potential outliers in the population. In

their sample dataset this technique flags up 9 out of 30 patients as potential outliers,

suggesting that this method may not perform ideally. Indeed, use of the multivariate-

t model is making the assumption that the γi values differ between individuals, and
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the more data is gathered per individual the narrower (and less likely to contain 1)

the empirical credible interval for each individual will be; this would be a particular

problem for interpretation when analysing unbalanced datasets with varying num-

bers of observations per individual.

3.4.2 Measurement-level residuals

We propose that the gamma–normal formulation of the multivariate-t linear mixed

model, as given in (5) (page 31), can be also used to assess whether the multivariate-t

distribution fully describes the patterns of variability observed for all individual mea-

surements in a dataset. This would be important when the motivation for an anal-

ysis is to be able to make predictions regarding future individual measurements or

to simulate datasets in which the exact pattern of values within each individual is

important. As the observations for the ith individual are assumed to follow a multi-

variate normal distribution conditional on γi , one option is to use empirical Bayes

estimates (i.e. the mean of the predicted posterior distribution) of the γi :

γ̂i = v̂ +ni

v̂ + δ̂2
i (θ)

to estimate the normal covariance matrix (V̂′
i ) for each individual:

V̂′
i =

1

γ̂i
V̂i

= L′
i L′T

i .

This could then be used to transform the marginal residuals for the ith individual

as for a normal linear mixed model (i.e. using the inverse of a Cholesky decompo-

sition), with the transformed residuals for all individuals displayed in a Q–Q plot.

However, assuming the empirical Bayes estimates of the γi to be correct for all in-

dividuals might result in misleading conclusions in a similar manner to that which

can be observed when evaluating the empirical Bayes estimates of random effects

in a normal linear mixed model (e.g. as reported by Verbeke and Lesaffre68). An

alternative would be to draw a number of repeated samples from the predicted pos-

terior distribution of the full vector of γ, using each sample to generate a full set of

V̂′
i matrices and corresponding Cholesky-transformed marginal residuals. The sets

of transformed marginal residuals could then be used individually to generate mul-

tiple Q–Q plots, or used together to derive a single Q–Q plot showing the distribu-

tion of ‘observed quantiles’ over multiple realisations of the γ. The sets of Cholesky-

transformed marginal residuals based on the simulated values of γ could also be

used to produce other standard diagnostic plots.
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We also note that the strategies proposed could be used to generate plots of resid-

uals for models that include a combination of multivariate-t and multivariate normal

distributed components, as described in Section 2.5. In such cases, the posterior pre-

dictive distribution of the latent scaling variables γ is not available in closed form.

However, the ADMB software that we use provides the mean and covariance matrix

of the multivariate normal approximation to the posterior distribution of any latent

variable terms included in a fitted model.

The concept of using multiple simulated samples of missing data and/or latent

variables to assess the fit of Bayesian and/or hierarchical models has been particu-

larly promoted by Gelman, for example in Gelman (2004)77 and Gelman et al. (2005)78.

Gelman et al.78 point out that the concepts of ‘missing’ and ‘latent’ variables are

closely connected, as illustrated by the way in which they are treated in EM-type

approaches, and that the distinction between them can be seen to depend on their

structural relation to the observed data included in the model; missing data have the

same structure as observed data when imputed whereas latent variables do not.

The examples provided by Gelman77 and Gelman et al.78 focus on the use of

graphical plots to compare observed sets of data with either fully simulated sets of

data or ‘completed’ datasets based on the fitted model, with each imputation plotted

as a separate graph or with summary statistics from multiple imputations displayed

in a single graph. The examples given do not include the use of multiple imputations

of latent variables to evaluate the possible distribution of standardised residuals as

we propose, but this is a natural use of the model-checking framework, whereby the

use of multiple imputations allows for an intuitive assessment of model fit.

The gamma–normal formulation of the marginal multivariate-t model provides

another route to model-checking through the separate evaluation of each individual

in the dataset. Assuming that the model parameters are known, then it can be seen

that the distribution of the transformed marginal residuals using the inverse of the

Cholesky decomposition of the scale matrix for each individual (Vi , not adjusted for

γ̂i ) are normally and independently distributed with mean 0 and variance 1
γi

, condi-

tional on the value of γi :

Vi = Li LT
i

L−1
i

(
yi −Xiβ

) |γi ∼ MV N

(
0,

1

γi
Ini

)
.

Hence, for a model that correctly describes the data, separate Q–Q plots (with re-

spect to the standard normal distribution) of these transformed residuals for each

individual should each indicate a normal distribution (with differing variance). For

small datasets, it may be possible to create faceted graphics that simultaneously dis-

play the Q–Q plots for all individuals, but for larger datasets it would be necessary
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to select a random sample of individuals for inspection. This approach will be more

effective when there are a greater number of observations per individual, as it is dif-

ficult to assess the assumption of normality for very small samples. This reflects the

fact that the presence of a greater number of observations per individual in a dataset

will provide more information as to whether there truly is a difference in underlying

variability between individuals, as represented by the values of γi .

3.5 Discussion

For linear mixed effects models, a range of techniques for the use of residuals to eval-

uate model fit have been developed. However, the best practice for the evaluation of

model residuals has not been firmly established and the relevant terminology has not

been fully standardised65. The options available for non-linear mixed effects models

are more limited, due to the greater complexity of model structure.

Some techniques have been proposed to evaluate the residuals from models that

make use of a marginal multivariate-t distribution, but we argue that the existing

methods do not fully assess the fit of the model to the data. We propose two alterna-

tive methods for assessing the residuals from such models, one of which could also

be generalised to models that combine components relating to both multivariate-t

and multivariate normal distributions; these methods are applied in Chapters 4 and

5.
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4 Application of the multivariate-t distribution with

stochastic processes to pre-treatment CD4 counts

In this chapter we demonstrate a novel extension to the linear mixed effects mod-

els available for longitudinal biomedical data, combining the addition of a fractional

Brownian motion component with generalisation of the model to follow a multivariate-

t distribution. The model developed is applied to pre-treatment CD4 count data in

HIV (type 1) patients, and background regarding the disease area and the develop-

ment of statistical methods in this context is given in Section 4.1. The motivating

dataset of pre-treatment CD4 counts from a multinational cohort collaboration used

for analysis is introduced in Section 4.2, some further technical details of the model

fitting process are given in Section 4.3 and the results of model-fitting and residual di-

agnostic procedures are presented in Section 4.4. Simulation studies informed by the

results are described in Section 4.5, demonstrating differences in predictions made

by the more complex models regarding the timing of treatment initiation in popu-

lation cohorts and showing that the application of simpler models can lead to sub-

stantial bias in parameter estimates when there is censoring dependent on observed

values of the outcome variable. Practical and methodological implications of the

work are discussed in Section 4.6. The contents of this chapter form the basis for a

publication in Statistics in Medicine 47, which is provided as Appendix C (reproduced

under CC BY 4.0 license). We include here some additional residual diagnostic plots

that are not included in the published paper.

4.1 Background

4.1.1 Monitoring of CD4 counts in HIV patients

CD4 cells are a type of white blood cell for which counts are monitored over time both

before and after treatment initiation in HIV patients in order to evaluate the progress

of the disease and state of the immune system79. Although the CD4 counts within an

individual can vary erratically over time, on average the counts decline steadily from

normal levels following HIV infection. A small minority of patients maintain high

CD4 counts up to and beyond 10 years from the date of seroconversion80 without

initiating treatment.

Over the last 20 years, effective regimens of HAART have been developed for

the treatment of HIV, allowing long-term management of the condition and greatly

improving the life expectancy and quality of life of affected individuals, at least for

those with the condition diagnosed in a resource-rich country. In most patients CD4

counts recover after the initiation of HAART, reaching levels within the normal range

for non-infected people for the majority of patients with a baseline CD4 count of
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≥ 350 cells/µL after a number of years on constant therapy81. The CD4 cell count

is a strong predictor of subsequent progression to AIDS in both untreated HIV pa-

tients82;83 and in patients initiating HAART84;85.

Until recently, clinical guidelines regarding the initiation of treatment varied be-

tween countries. In the USA, the Health and Human Services Panel on Antiretroviral

Guidelines for Adults and Adolescents have for a number of years recommended im-

mediate initiation of antiretroviral therapy (ART) for most patients newly diagnosed

with HIV86, whereas in Europe guidelines recommended monitoring of CD4 count

in most patients, with treatment initiated once this dropped below 350 cells/µL87.

However, a recent randomised controlled trial (RCT) has provided definitive evi-

dence of the benefit of immediate initiation of HAART on diagnosis of HIV88, leading

to a shift in clinical guidelines towards early treatment initiation in all well-resourced

countries, including the UK89. Although CD4 counts will no longer be routinely

monitored prior to the initiation of HAART in developed countries, there remains

a motivation to better understand their pre-treatment dynamics in HIV-patients as

for many patients there is a delay from infection to diagnosis and an improved un-

derstanding may also facilitate investigation of post-treatment recovery.

4.1.2 Estimation of seroconversion date in HIV patients

The term ‘seroconversion’ describes the appearance of HIV antibodies in a patient’s

blood. After the infection event there is a delay of 1–3 weeks before detectable vi-

ral RNA appears in the plasma, and following this it takes approximately another 2

weeks for HIV antibodies to reach a detectable level90. However, the interval from in-

fection to a detectable level of antibodies was several weeks longer for the first gener-

ation of assays that were developed91. Some HIV-infected patients develop ‘serocon-

version illness’, flu-like symptoms that occur during the period of seroconversion92.

In a minority of patients, the timing of seroconversion can be accurately dated

because they either presented with seroconversion illness or they underwent labora-

tory tests during the seroconversion period that definitively revealed a recent infec-

tion. However, in most patients diagnosed with HIV the exact timing of infection and

subsequent seroconversion is not known. In order to enable modelling of the natu-

ral progression of HIV infection in larger cohorts of patients, many analyses make

an assumption that seroconversion occurred at the mid-point between last negative

and first positive diagnostic tests among those patients who were undergoing regular

testing. The range of potential dates may cover an interval of months or years, de-

pending on the frequency of testing in the population under investigation and on the

inclusion criteria specified for any given analysis. As well as providing a larger sam-

ple size, the inclusion of patients with ‘mid-point’ estimation of seroconversion date
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means that a less selective group of patients can be analysed, as those presenting

with seroconversion illness may show differences in the progression of their disease.

In this chapter, the estimated date of seroconversion is treated as fixed and known

for each patient. However, models that do not make this assumption are developed

later in the thesis in Chapter 7.

4.1.3 Models for pre-treatment CD4 counts

The study in which Taylor et al.8 first proposed the addition of a Brownian motion

component to a ‘random slopes’ linear mixed model found that this led to a signifi-

cant improvement in model fit for a dataset of 722 measurements obtained from 87

seroconverters, patients who had been observed to transition from an HIV-negative

to HIV-positive state (with the midpoint of the interval between these observations

taken as the time of infection, t = 0). Taylor et al.8 also investigated the use of an IOU

process, of which Brownian motion is a special case, in this context, but did not find

a further improvement in model fit. In this paper, CD4 counts were modelled on a

fourth-root scale to better match the assumptions of normality made.

Sy et al.25 further developed the Brownian motion and IOU process models re-

ported in Taylor et al.8, using data from a nearly identical set of patients, by fitting a

bivariate model incorporating these stochastic process components to both fourth-

root transformed CD4 count and beta-2-microglobulin measurements. In another

study, again using a similar patient population, Taylor and Law26 used models fitted

to fourth-root transformed CD4 data up to a given calendar cut-off and used these to

predict the value of subsequent measurements for individuals in which these were

available. They found that a random intercept model incorporating an IOU process

gave a better combination of mean squared error and prediction interval coverage

than did a linear (random slopes) or quadratic mixed effects model in terms of t .

This study also compared the goodness of fit of these models for the log, square-root,

cube-root, fourth-root and untransformed CD4 data. Accounting for the Jacobian of

the transformation, they found that square-root, cube-root or fourth-root transfor-

mations provided similar optimal log-likelihood values for each of the models con-

sidered, and these transformations also performed similarly in terms of their mean

squared error and coverage of predictions for future measurements.

Wolbers et al.17 fitted a model including a random intercept and a Brownian mo-

tion component to a dataset of pre-treatment CD4 counts of 2820 HIV patients from

the multinational CASCADE cohort collaboration study16, and found that this had

the optimal AIC of a set of models considered. Again using data from the CASCADE

study, Babiker et al.27 subsequently applied a model also including a random slope

component to nearly 90 000 CD4 count observations, using a square root scale, in

54



MVT WITH STOCHASTIC PROCESSES

over 15 000 seroconverters prior to the occurrence of any AIDS-defining events or

the initiation of any ART, reporting a substantial improvement in model fit in com-

parison to a random slopes model. Additionally, Babiker et al.27 analysed post-ART

CD4 counts obtained from the same patients using a similar model, but with linear

splines with a break at t = 1year in order to enable drop-off in treatment response to

be assessed. The pre-ART fitted model was used to simulate series of CD4 measure-

ments following HIV infection from a large cohort of patients in order to estimate

the proportion that would initiate ART as a function of time according to various

follow-up and treatment regimens, and the post-ART model was used to simulate

the response to treatment that would be observed. The motivation for the analyses

of Babiker et al.27 was to enable power and sample size calculations for a RCT to in-

vestigate whether immediate or delayed ART treatment of patients newly diagnosed

with HIV leads to better overall outcomes.

The multivariate-t distribution was used by Wang and Fan9 to model CD4 counts

in a small sample of 30 HIV-positive patients taken from a historic trial of ART med-

ication. Here observations were recorded on a regular schedule, and Wang and Fan

used a random slopes structure with an additional first-order autoregression param-

eter for the residual error. The same authors have also reported the fitting of a similar

multivariate-t model with a second-order autoregressive structure to a sample of 50

patients from the same historic dataset using a Bayesian approach93. In the con-

text of HIV, Matos et al.46 have also reported the use of a multivariate-t model for

right-censored HIV RNA assays in untreated patients with acute infection using a

non-linear random effects model for the mean with independent error terms; their

model was fitted to 830 observations in 320 individuals. However, there were no pub-

lications prior to Stirrup et al.47 in which multivariate-t models have been fitted to

CD4 data with the addition of Brownian motion or other stochastic process compo-

nents, and multivariate-t models have not been used to analyse large-scale datasets

containing tens of thousands of observations.

4.2 Dataset

We present here a reanalysis of the dataset of pre-ART CD4 counts described by

Babiker et al.27. The total dataset includes 89 176 CD4 count observations in 15 274

individuals whose date of HIV seroconversion is well documented; comprising all

available measurements prior to the occurrence of AIDS-defining illness or initiation

of ART up to December 2007 from 26 cohorts participating in the CASCADE study16.

The CASCADE cohort includes patients in whom there was a maximum interval be-

tween negative and positive HIV antibody tests of 3 years or in whom there was lab-

oratory evidence of seroconversion; for the first of these groups the date of reported
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seroconversion illness is used, if it is recorded, as the estimated date of seroconver-

sion, otherwise the ‘mid-point’ estimate is used.

Only 3955 (4.4 %) measurements from 789 (5.2 %) patients were recorded at a

time of more than 10 years, and so we chose to model only those CD4 measurements

obtained up to 10 years from the estimated date of seroconversion. This resulted in

a dataset of 85 221 measurements in 15 164 individuals. A further 365 observations

were excluded for which an identical CD4 measurement was recorded only 1 day af-

ter the previous count for that patient, as these were found to cause problems with

model estimation and were assumed to result from data-entry errors, resulting in a

dataset of 84 856 measurements for analysis.

CD4 cell counts are measured as cells per microlitre, and we followed established

practice in modelling the counts on a square root scale27. As an illustrative exam-

ple, the CD4 measurements were modelled only in terms of time from seroconver-

sion, expressed as continuous in years, although it would be possible to include other

predictive variables. The median number of CD4 observations per individual in the

analysed dataset was 4, with a range of 1–57 and an interquartile range (IQR) of 2–

8. There was no rigid pattern to the timing of observations in each patient, with a

median interval between measurements of 112 (IQR, 70–182) days. The highly un-

balanced nature of the dataset and the irregular observation schedule necessitate the

use of flexible modelling strategies that can accommodate such features. Visual in-

spection of the CD4 data suggests that the trajectories over time for each individual

do not follow predictable paths and that there may be between-patient differences in

variability over time, motivating the combination of stochastic process components

and the multivariate-t distribution, respectively, as presented in this chapter. A total

of 9831 (64.8 %) patients were censored from the dataset at initiation of ART, 1111

(7.3 %) because of a recorded AIDS event and 318 (2.1 %) at death, 2444 (16.1 %) pa-

tients can be considered lost to follow-up (with no clinic visit recorded for 12 months

and no censoring event) and the remaining 1460 (9.6 %) were in follow-up at the time

that the data were gathered.

4.3 Model fitting

The initial model fitted was a standard linear mixed effects model including corre-

lated random intercept and slope terms and independent measurement error terms

of constant variance. An exponential decay correlation structure was considered for

the error terms of this model, and the initial model was then extended to also include

either a scaled Brownian motion process or a scaled fractional Brownian motion pro-

cess. The equivalent set of four models was then fitted using a marginal multivariate-

t distribution, i.e. with the scale matrix Vi structured in the same manner but assum-
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ing an unobserved scaling variable for each individual as described in Section 2.3.

For all models, maximum likelihood estimates of the parameters were obtained

using the ADMB software (ADMB Foundation)50. The ‘R2admb’ package94 was used

to run analyses and manage results through the R statistical computing environ-

ment. Starting values are required for all parameters when using ADMB. These were

obtained by using approximate values from a ‘nlme’ model fit for the initial ‘random

slopes’ linear mixed model, and subsequent models were fitted using parameter es-

timates from the previous simpler model as the initial value. When fitting models

with a Brownian motion component, an initial value of 1 was used for the scale pa-

rameter, and for models with fractional Brownian motion, an initial value of 0.5 was

used for the H index. For models based on the multivariate-t distribution, an initial

value of 10 was used for the degrees of freedom parameter.

The ‘fixed effects’ for each model included an intercept (β0) and a slope (β1) pa-

rameter. For the ‘random effects’ covariance/scale matrix (Ψ) for each model, U00

and U11 represent the variance of the random intercepts and random slopes, respec-

tively, for each individual, with ρ representing the correlation between them. For the

multivariate-t models, this interpretation holds conditional on the vector of unob-

served latent variablesγ. Optimisation was performed in terms of log-transformations

of U00 and U11 and a generalised logistic transformation of ρ. For all models, the

residual error term was optimised in terms of log(σ) (i.e. the log of the residual stan-

dard deviation). The exponential correlation structure was optimised in terms of the

log of the range parameter (η), and Brownian motion models (including fractional)

used the log of the scale parameter (κ). Fractional Brownian motion was parame-

terised in terms of the logistic transformation of H . A log-transformation was used

for the degrees of freedom parameter (v) in multivariate-t models. For all model pa-

rameters, confidence intervals are reported derived from the estimated asymptotic

multivariate normal distribution on the transformed scales.

Nested models are compared using the likelihood ratio test; as only a single pa-

rameter is being added to the model in each of the comparisons presented, the crit-

ical value for change in 2×log-likelihood (2∆`) at the 5 % significance level is only

3.84. Non-nested models are compared using the BIC statistic, using the total num-

ber of observations in the dataset for the calculation of the penalty term; this is sup-

ported by the derivation of Cavanaugh and Neath95. The AIC statistic is also provided

for each model.
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4.4 Results and diagnostic checks

Summaries of the linear mixed models, with marginal multivariate normal distribu-

tion, fitted to the pre-ART CASCADE data are provided in Table 4.1. The addition

to the initial random slopes model of an exponential correlation structure for the

residual variance resulted in a significant improvement in model fit, with change in

2×log-likelihood (2∆`) of 460 for 1 parameter (P<0.001). However, the addition of a

Brownian motion component to the random slopes model led to a greater increase in

log-likelihood (2∆` 4940 for 1 parameter, P<0.001), with a subsequently lower value

of BIC for this model. A further improvement in model fit was observed when the

Brownian motion component was generalised to a fractional Brownian motion pro-

cess (2∆` 160 for 1 parameter, P<0.001). As such, the ‘random slopes + fractional

Brownian motion + measurement error’ model was found to have the lowest BIC of

the fitted linear mixed models. A ‘random slopes + IOU process’ model was also con-

sidered, but was found to return the special case of a Brownian motion process (i.e.

with a very large estimate for the α parameter8).

Table 4.1. Summaries of linear mixed models (with marginal multivariate normal distribu-
tion) �tted to square-root transformed pre-antiretroviral therapy CD4 measurements from
the CASCADE dataset

Random slopes +
measurement error

Random slopes +
exp. cor. +

measurement error

Random slopes +
Brownian motion+
measurement error

Random slopes +
fBM +

measurement error

β0 24.13 (24.02 to 24.24) 24.12 (24.01 to 24.23) 23.81 (23.70 to 23.92) 23.82 (23.71 to 23.92)
β1 -1.36 (-1.40 to -1.33) -1.35 (-1.38 to -1.31) -1.15 (-1.18 to -1.11) -1.15 (-1.19 to -1.12)
U00 33.68 (32.65 to 34.73) 33.22 (32.20 to 34.27) 28.69 (27.72 to 29.70) 27.46 (26.46 to 28.51)
ρ -0.39 (-0.41 to -0.36) -0.38 (-0.41 to -0.35) -1 (—) -0.59 (-0.63 to -0.54)
U11 1.62 (1.54 to 1.71) 1.54 (1.46 to 1.62) 0.20 (0.16 to 0.24) 0.58 (0.49 to 0.68)
σ 2.76 (2.74 to 2.77) 2.79 (2.77 to 2.81) 2.28 (2.26 to 2.29) 2.01 (1.94 to 2.07)
η — 0.03 (0.03 to 0.03) — —
κ — — 7.00 (6.78 to 7.22) 9.32 (8.78 to 9.91)
H — — — 0.30 (0.27 to 0.33)
` -232 579 -232 349 -230 109 -230 029
AIC 465 170 464 712 460 232 460 074
BIC 465 226 464 777 460 297 460 149

Parameter estimates are given with 95 % confidence intervals in parentheses. AIC, Akaike’s
information criterion; BIC, Bayesian information criterion; exp. cor., exponential correlation
structure for residual error term; fBM, fractional Brownian motion.

It is of particular interest that the estimate of the H parameter for the model in-

corporating a fractional Brownian motion process is below 0.5, indicating that suc-

cessive increments of the process are negatively correlated and hence that the pro-

cess will tend to revert towards its mean. The mean in this case would include the

subject-specific random effects for the intercept and slope. The correlation between

the random intercept and random slope for each individual for the model incorpo-

rating a standard Brownian motion process is estimated to be −1.00, which seems
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rather unnatural. However, when the process is generalised to a fractional Brownian

motion, an estimate of -0.59 (95 % CI, -0.63 to -0.54) is obtained for this correlation.

The Cholesky-transformed residuals of the commonly used random slopes model

and of the best-fitting linear mixed model, incorporating a fractional Brownian mo-

tion component, were analysed to assess the goodness of fit (as described in Section

3.2). For the ‘random slopes’ model, a plot of mean Cholesky residuals against time

(Figure 4.1a) indicates that for times above 5 years the observed value is on average

lower than that expected conditioning on the previous observations for each individ-

ual. The Q–Q plot of the Cholesky residuals indicates that their distribution is heavy-

tailed in comparison to the expected standard normal under a correctly specified

model (Figure 4.1c). A semivariogram plot of the Cholesky residuals also indicates a

lack of independence between them (Figure 4.1d), with apparent residual correlation

at time lags of less than 2.5 years.

For the ‘random slopes + fractional Brownian motion’ linear mixed model, the

plot of mean Cholesky-transformed residuals against time (Figure 4.2a) shows an ac-

ceptable scatter around zero, and the semivariogram plot is relatively close to the ex-

pected value (under a correct model) of 1 for all time lags up to 8 years (Figure 4.2d)

with little data available beyond this. However, the plot of mean squared Cholesky

residuals shows a systematic downward trend with time (Figure 4.2b) and the Q–Q

plot still shows heavier tails than expected (Figure 4.2c), indicating that the fit of the

model to the data is not perfect.

Summaries of the multivariate-t distribution models fitted to the pre-ART CAS-

CADE data are provided in Table 4.2. The addition to the initial random slopes model

of an exponential correlation structure for the residual variance resulted in a signif-

icant improvement in model fit (2∆` 1032 for 1 parameter, P<0.001). However, as

for the normal model, the addition of a Brownian motion component to the random

slopes model led to a greater increase in log-likelihood (2∆` 4412 for 1 parameter,

P<0.001). A further improvement in model fit was observed when the Brownian

motion component was generalised to a fractional Brownian motion process (2∆`

270 for 1 parameter, P<0.001). As such, the ‘random slopes + fractional Brownian

motion + measurement error’ model was found to have the lowest BIC of the fit-

ted multivariate-t distribution models. Furthermore, all of the multivariate-t models

were found to have lower BIC values than all of the normal linear mixed models.

The difference in 2` between the normal and the multivariate-t ‘random slopes +

fractional Brownian motion + measurement error’ models is 8298, indicating a sig-

nificant and substantial improvement in model fit (1 parameter, P<0.001).

The degrees of freedom parameter (v̂) was found to be between 5 and 6 for all

of the fitted multivariate-t models, in accordance with the heavy tails observed in

the Q–Q plots for the normal linear mixed models. However, the heavy tails could
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Figure 4.1. Plots of Cholesky-transformed residuals from the `random slopes + measure-
ment error' linear mixed model �tted to the pre-antiretroviral therapy CD4 counts from the
CASCADE dataset. In (a) and (b) mean values are plotted grouped by nearest multiple of
6 months, with size of points approximately proportional to the number of observations in
each group and n values shown. (c) Quantile�quantile plot for Cholesky-transformed resid-
uals with respect to a standard normal distribution, with line of equality. (d) Semivariogram
of Cholesky-transformed residuals with respect to di�erence in time between observations,
grouped by nearest multiple of 6 months, with size of points approximately proportional to
the number of observation pairs in each group and n values shown.
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Figure 4.2. Plots of Cholesky-transformed residuals from the `random slopes + fractional
Brownian motion + measurement error' linear mixed model �tted to the pre-antiretroviral
therapy CD4 counts from the CASCADE dataset. In (a) and (b) mean values are plotted
grouped by nearest multiple of 6 months, with size of points approximately proportional to
the number of observations in each group and n values shown. (c) Quantile�quantile plot
for Cholesky-transformed residuals with respect to a standard normal distribution, with line
of equality. (d) Semivariogram of Cholesky-transformed residuals with respect to di�erence
in time between observations, grouped by nearest multiple of 6 months, with size of points
approximately proportional to the number of observation pairs in each group and n values
shown.
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Table 4.2. Summaries of multivariate-t distribution models �tted to square-root transformed
pre-antiretroviral therapy CD4 measurements from the CASCADE dataset

Random slopes +
measurement error

Random slopes +
exp. cor. +

measurement error

Random slopes +
Brownian motion+
measurement error

Random slopes +
fBM +

measurement error

β0 23.77 (23.67 to 23.87) 23.76 (23.66 to 23.86) 23.57 (23.47 to 23.67) 23.59 (23.49 to 23.69)
β1 -1.27 (-1.31 to -1.24) -1.23 (-1.27 to -1.20) -1.10 (-1.13 to -1.07) -1.11 (-1.14 to -1.07)
U00 23.82 (22.99 to 24.69) 22.83 (22.00 to 23.68) 20.30 (19.5 to 21.14) 18.82 (17.98 to 19.7)
ρ -0.37 (-0.4 to -0.34) -0.36 (-0.39 to -0.33) -1 (—) -0.51 (-0.55 to -0.47)
U11 1.17 (1.10 to 1.23) 1.01 (0.95 to 1.08) 0.12 (0.10 to 0.15) 0.49 (0.43 to 0.55)
σ 2.25 (2.23 to 2.27) 2.32 (2.30 to 2.35) 1.88 (1.86 to 1.90) 1.45 (1.35 to 1.55)
η — 0.07 (0.06 to 0.07) — —
κ — — 5.17 (4.98 to 5.36) 8.02 (7.44 to 8.64)
H — — — 0.23 (0.21 to 0.26)
v 5.64 (5.40 to 5.88) 5.34 (5.12 to 5.57) 5.83 (5.58 to 6.09) 5.76 (5.52 to 6.02)
` -228 221 -227 705 -226 015 -225 880
AIC 456 456 455 426 452 046 451 778
BIC 456 521 455 501 452 121 451 862

Parameter estimates are given with 95 % confidence intervals in parentheses. AIC, Akaike’s
information criterion; BIC, Bayesian information criterion; exp. cor., exponential correlation
structure for residual error term; fBM, fractional Brownian motion.

be due to distributional structures other than the marginal multivariate-t distribu-

tion employed, for example the random effects and any Gaussian processes included

could follow multivariate normal distributions with the residual error terms follow-

ing independent-t distributions. As such, there is a need for further investigation to

assess the goodness of fit of the chosen multivariate-t model with respect to the data.

For the ‘random slopes + fractional Brownian motion + measurement error’ multivariate-

t model, 1000 simulations of the vector of latent variablesγwere generated, based on

the predicted posterior distribution in each individual, and used to calculate sets of

Cholesky- transformed residuals for the model (as described in Section 3.4.2). Sum-

maries of the distributions of these residuals are displayed in Figure 4.3. Although the

presence of unobserved latent variables leads to uncertainty in the exact values of

the residuals, plots of the distributions of the mean residuals, mean squared residu-

als and semivariogram calculations show similar patterns to those for the equivalent

normal linear mixed model. The Q–Q plot of the Cholesky residuals derived using the

empirical Bayes estimate (γ̂i ) for each individual shows a near perfect fit to the stan-

dard normal distribution. However, taking quantiles over multiple simulations of γ

indicates the presence of slightly heavier tails than expected. A subject-level residual

plot for this model, as proposed by Lange et al.41 (described in Section 3.4.1), is also

presented in Figure 4.4. This plot does not indicate any major problems with model

fit.

The goodness of fit of the ‘random slopes + fractional Brownian motion + mea-

surement error’ multivariate-t model was further investigated by inspection of Q–Q
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plots of residuals for individual patients transformed by the inverse of the Cholesky

decomposition of their estimated scale matrix (V̂i ) without any correction for γi . As

little would be gained by evaluating patients with very few observations, only those

with greater than 15 measurements in the dataset were considered; 1044 (6.9 %) of

individuals in the dataset met this criterion. Q–Q plots for 25 randomly selected in-

dividuals are shown in Figure 4.5. Under a correctly specified model, each of the

plots should approximately show a straight line of points, with differing slopes be-

tween individuals; for the ith individual the expected slope is a function of their un-

observed scale variable: γ−1/2
i , where γi ∼ gamma

( v
2 , v

2

)
, with v being the degrees of

freedom parameter in the multivariate-t model. From these plots, it seems plausible

that there are indeed differences in overall variability between individuals as implied

by the marginal multivariate-t model, for example Plot 9 shows a clearly steeper slope

than Plot 3. However, some of the plots, for example number 24, appear to show a

heavy-tailed rather than a normal distribution for that particular patient, implying

that the multivariate-t model (in which each individual follows a multivariate normal

distribution conditional on an unobserved scale variable) does not wholly account

for the heavy-tailed nature of the residuals observed. This evidence is consistent

with that provided by the overall Q–Q plot in Figure 4.3c, the standardised residuals

using simulated values of γ are much closer to fitting a standard normal distribu-

tion in comparison to those from the equivalent normal linear mixed model, but still

appear to be slightly heavy-tailed.
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Figure 4.3. Plots of the distribution of Cholesky-transformed residuals from the `random
slopes + fractional Brownian motion + measurement error' multivariate-t distribution model
�tted to the pre-antiretroviral therapy CD4 counts from the CASCADE dataset, based on
1000 simulations of the vector of latent variables γ. In (a) and (b) box plots of mean values for
each simulation are plotted grouped by nearest multiple of 6 months. (c) Quantile�quantile
plot for Cholesky-transformed residuals with respect to a standard normal distribution; the
dotted lines show the 2.5th, 50th and 97.5th percentiles of the sample quantiles for each
theoretical quantile corresponding to the total number of observations, the solid black line
shows the sample quantiles derived using the empirical Bayes estimate (γ̂i ) for each individual,
with the line of equality also displayed in grey. (d) Box plots of the distribution of mean
semivariogram values, over multiple simulations of γ, of Cholesky-transformed residuals with
respect to di�erence in time between observations, grouped by nearest multiple of 6 months.
The numbers of observations contributing to the mean at each time point per simulation of
γ is not shown, but match those given in Figures 4.1 and 4.2.
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Figure 4.4. Plot of subject-level residuals, as proposed by Lange et al.41, for the `random
slopes + fractional Brownian motion + measurement error' multivariate-t distribution model
�tted to the pre-antiretroviral therapy CD4 counts from the CASCADE dataset. As described

in Section 3.4.1, δ̂2
i (θ) = (

yi −Xi β̂
)T

V̂−1
i

(
yi −Xi β̂

)
was calculated for each patient, and the

cumulative probability function of an F-distribution with ni and v̂ degrees of freedom was ap-

plied to
δ̂2

i (θ)
ni

; these values were then converted to quantiles of a standard normal distribution,
which are displayed in a Q�Q plot.

65



MVT WITH STOCHASTIC PROCESSES

Figure 4.5. Quantile�quantile plots for the residuals under the `random slopes + fractional
Brownian motion + measurement error' multivariate-t model of 25 randomly selected indi-
viduals with greater than 15 observations. The residuals for individual patients have been
transformed by the inverse of the Cholesky decomposition of their estimated scale matrix
(V̂i ) without any correction for the unobserved scale variable γi . Theoretical quantiles in
each case are those from the standard normal distribution.
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4.5 Simulation study

4.5.1 Impact of model choice on treatment initiation predictions

Until recently, the initiation of ART for asymptomatic HIV-positive patients in Eu-

ropean countries was commonly based on the observations of a CD4 count below

a given threshold, with the most appropriate cut-off (or whether treatment should

be given immediately upon diagnosis) for any given setting a matter of evolving de-

bate96. As such, there was interest in determining the proportion of patients that

will cross any given threshold and initiate ART as a function of time from serocon-

version, as this would have had an impact on clinical practice and on the cost of

different healthcare strategies. Lodi et al.97 used random slopes linear mixed mod-

els fitted to over 175 000 CD4 measurements from the CASCADE cohort (including

the data analysed in this chapter) to predict the proportion of untreated patients

reaching thresholds of <500, <350 and <200 cells/µL with respect to time from se-

roconversion, reflecting the cut-offs used in various versions of official guidelines.

In their analysis, the distribution of subject-specific slopes was used to estimate the

proportion of patients with ‘true’ CD4 count below each threshold value.

Babiker et al.27 describe simulations performed for the planning of the Strate-

gic Timing of Antiretroviral Treatment (START) trial, which randomised HIV patients

with CD4 cell counts ≥ 500 cells/µL to either initiate treatment immediately or for

this to be delayed until their count had dropped to <350 cells/µL. Using their fitted

linear mixed model including a Brownian motion component, Babiker et al.27 in-

vestigated the proportion of patients reaching a threshold of <350 cells/µL through

simulation of sets of longitudinal measurements for tens of thousands of individuals.

This approach has the advantage of allowing realistic assessment of the characteris-

tics of a cohort in practice, and several regimes for the scheduling of measurements

and initiation of ART were considered in their simulations. However, the predictions

made from the simulations were not directly compared to those that would have

been obtained using a normal random slopes model.

The START trial was ended earlier than planned following an interim analysis in

May 2015 by the independent data and safety monitoring board, which found that

early initiation of treatment led to statistically and clinically significant reductions

in both serious AIDS-related and serious non-AIDS-related events88. The results

of the trial led to changes to the World Health Organisation98 and UK89 guidelines

on initiation of ART in HIV patients, which now state that ART should be started in

all patients regardless of CD4 count. In developed countries, patients will therefore

no longer undergo monitoring of CD4 counts before initiation of ART. However, we

present here a comparison of predictions regarding treatment initiation patterns fol-

lowing the previous CD4 cut-offs that have been used, based on several of the fitted
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models described in Section 4.4. Although this is no longer of direct clinical rele-

vance, it illustrates how the use of more complex models for longitudinal data could

have impacted on an important medical problem.

Simulated cohorts of individuals were generated based on three multivariate nor-

mal models: the random slopes model, the Brownian motion model and the frac-

tional Brownian motion model (with the latter two also including a random slopes

structure and all including measurement error). In addition, a cohort was generated

using the fitted multivariate-t fractional Brownian motion model (again, including

a random slopes structure and measurement error). For each of these models, data

for 5 million individual patients were simulated based on scheduled measurements

being obtained every 4 months for up to 10 years. Data were also generated for mea-

surements 1 month after the scheduled observation in each case for use in the anal-

ysis, corresponding to a confirmatory test. CD4 thresholds of <500, <350 and <200

cells/µL for ART initiation were investigated. If a scheduled measurement was ob-

served below a given threshold then the value 1 month later was assessed, to mimic

the conduct of an additional confirmatory test as commonly performed in clinical

practice. The patient was considered to initiate ART if this second value was also

below the threshold.

The results of the analysis of the simulated cohorts are presented in Figure 4.6.

The differences in predictions made by each of the fitted models are large enough to

have had practical implications were CD4 cell cut-offs still used for the initiation of

treatment, particularly within a public health or health economics context, for exam-

ple using the <500 cells/µL threshold the proportion of patients on ART 2 years after

seroconversion is predicted to be 57 % by the normal random slopes model and to

be 62 % by the multivariate-t model with fractional Brownian motion. The planning

of the START trial described by Babiker et al.27 made use of predictions of the pro-

portion of patients initiating ART at the 350 cells/µL threshold, for which we found

only small differences between each of the models that included a stochastic pro-

cess component (i.e. excluding the standard random slopes model). It is interesting

to note that for the 500 and 350 cells/µL cut-offs the predictions for the models in-

corporating stochastic process components converge as time increases towards 10

years, separate to the lower predictions made by the standard random slopes model.

4.5.2 Parameter bias in slope estimates

One interesting feature of the various models fitted to the CASCADE pre-ART CD4

data is that the mean slope (β1) of CD4 decline is substantially less negative for the

linear mixed models that include standard or fractional Brownian motion compo-

nents (both –1.15) than for the random slopes model (–1.36). The estimated slopes
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500

350

200

Figure 4.6. The proportion of HIV-positive patients predicted to have initiated antiretroviral
therapy (ART) as a function of time since seroconversion, based on simulation from the �tted
normal random slopes model ( ), Brownian motion model ( ) and fractional Brownian
motion model ( ) and the multivariate-t fractional Brownian motion model ( ). Results
are presented using CD4 thresholds for ART initiation of <500, <350 and <200 cells/µL,
as indicated at top right of the graph. Simulations are based on CD4 measurements being
obtained every 4 months, with initiation of ART conditional on an additional observation
below the cut-o� concerned 1 month after the `scheduled' measurement.
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for the equivalent multivariate-t models were also less steep in each case (see Tables

4.1 and 4.2). We performed a simulation study to assess the impact of model choice

and missing data patterns on this difference, which may indicate apparent bias from

the use of simpler models.

For a given observation schedule, it follows from Liang and Zeger99 that a linear

mixed model analysis of longitudinal data will give consistent estimates of the fixed

effects given that either there is no missing data or that data is ‘missing completely

at random’ (MCAR) (following the terminology of Rubin100). This also requires the

structure of the fixed effects to be correctly specified in the model, but not the exact

distribution of observations or covariance between them. If the observation sched-

ule is instead considered to result from a random process, then maximum likelihood

estimation of a model for the outcome variable alone is consistent, without the need

for specification of a model for the distribution of follow-up times, on the condi-

tion that the timing of observations is dependent only on previously observed out-

comes101; however, this result requires a correctly specified model for the outcome

variable (including covariance structure). Hence it seems that the substantial dif-

ferences in slope estimates between different models fitted to pre-ART CD4 data are

due to the presence of missing data for which the missingness is not MCAR, or to

a dependency of the observation schedule on the observed values of the outcome

variable.

It is often postulated that the missingness of observations in pre-ART datasets

can be treated as ‘missing at random’ (MAR)102, i.e. that it is independent of the

unobserved outcome variable conditional on the observed values of the outcome

variable and other covariates included in the model, and that as such the missing-

ness can be ignored under maximum likelihood estimation such as the use of linear

mixed models. Although less often explicitly stated, it is also common to assume that

the timing of observations can be ignored in the statistical model101. If the missing

data in a study can be considered monotone, i.e. if a scheduled observation is missed

by a patient then they also miss all further scheduled observations, then the ‘ignor-

able timing of observation’ and the MAR assumptions are very similar in form. Fur-

thermore, if observations are only considered to occur at a set of discrete time points

(e.g. within a finite set of days or months), then any statistical analysis of longitudi-

nal data can be considered in terms of Rubin’s missing data framework100, without

consideration of a model for the timing of observations. Hence, further discussion

on this topic is framed in terms of the MAR assumption.

The MAR assumption is plausible if patients are thought to mainly drop out of

the dataset upon initiation of ART, and if this is entirely dependent on their observed

CD4 counts. However, the beneficial properties of maximum likelihood-based infer-

ence (i.e. consistency and asymptotic normality and efficiency of estimates) with

70



MVT WITH STOCHASTIC PROCESSES

respect to MAR data are dependent on a correctly specified model for the likeli-

hood. The fact that adding stochastic process components and/or generalising to a

multivariate-t distribution leads to a very substantial improvement in BIC indicates

that the standard random slopes model does not correctly describe the covariance

structure or probability model for pre-ART CD4 data.

To further investigate bias in parameter estimates resulting from overly simplistic

models, the best-fitting model (i.e. multivariate-t with fractional Brownian motion)

was assumed to be ‘correct’ and cohorts of patient data simulated from it. CD4 cell

count observations were generated from 0 to 5 years, for groups of either 100 or 200

patients and with an annual observation frequency of 1 or 3; 500 cohorts were gener-

ated for each combination. For each simulated cohort, models were first fitted to the

complete uncensored data (although this would include impossible negative values),

and subsequently to the data following censoring corresponding to ART initiation at

CD4 cut-off values of 200, 350 and 500 cells/µL. The ‘correct’ multivariate-t model

and three normal linear mixed models (the random slopes model, the Brownian mo-

tion model and the fractional Brownian motion model) were applied to each simu-

lated cohort under each condition. For the analyses involving censoring, additional

confirmatory measurements were generated 1 month after the ‘scheduled’ observa-

tions; these were only considered to be observed when the scheduled measurement

was below the cut-off value, and the patient was only censored when the confirma-

tory value was also below the cut-off. The censored datasets could therefore be con-

sidered to correspond to observations being MAR but not MCAR. As the MAR con-

dition holds for any possible realisation, this scenario meets the ‘everywhere MAR’

definition provided by Seaman et al.103, allowing valid frequentist likelihood infer-

ence. Model fitting was considered to have failed when parameter estimates were

not returned or when the covariance matrix of parameter estimates was not positive-

definite.

Limited bias was observed in the estimation of the intercept term when using

simplified models, and so the results of this analysis are only presented for estima-

tion of the slope parameter β1. Bias in the estimation of β1 and the coverage of 95 %

confidence intervals for this parameter are presented in Table 4.3. As expected, a lack

of bias (or only very minimal bias) and appropriate coverage intervals were observed

when the correctly specified model was fitted, even in the presence of censoring. In-

terestingly, no or only minimal bias was observed when the equivalent normal linear

mixed model (including a fractional Brownian motion component) was used. Linear

mixed models including a Brownian motion component showed some downward

bias in the presence of censoring, with this most marked when censoring was ap-

plied using the CD4 cut-off of 500 cells/µL. Substantial downward biases and poor

coverage of confidence intervals were observed when a standard random slopes lin-

71



MVT WITH STOCHASTIC PROCESSES

ear mixed model was applied in the presence of censoring, with the degree of bias

clearly linked to the extent of censoring.

A summary of the standard deviations of point estimates for the mean slope and

the average estimated standard error for this parameter in the simulations is also

provided in Table 4.4. There were not large discrepancies between these two mea-

sures of the standard error. The mean slope estimates from the correctly defined

model showed slightly lower variance than the estimates from the incorrectly de-

fined models in any given situation, but the scale of these differences seems relatively

small compared to the large biases observed.

The differences in slope estimates observed between models under the censoring

conditions in this simulation study correspond to the differences observed between

the models when applied to the real dataset. This provides supporting evidence that

special attention should be given to the probability model used, and in particular the

covariance structure, when analysing a dataset for which there is substantial missing

data that is not MCAR. These simulations imply that an analysis using a wrongly

specified model might incorrectly indicate differences between two groups in their

average rate of decline if they have been subject to different censoring mechanisms.

We carried out an additional investigation in which two groups of either 100 or 200

patients each were simulated with three observations per year, with the first group

subject to censoring at the ‘200 cut-off’ while the ‘500 cut-off’ was applied for the

second group. Other details of the simulation and model-fitting were as previously

described, but two additional ‘fixed effects’ parameters were added to the models to

allow the mean intercept (δ0) and slope (δ1) of the second group to differ from the

first group (with the true value of these parameters being zero). These simulations

confirmed that bias could occur in the estimation of between-group differences in

slope within a single model (estimated bias for random slopes model with 200 pa-

tients per group: –0.163, see Table 4.5).
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Table 4.4. Summary of the standard deviation of slope estimates obtained (SD(β̂1)) and mean
of standard error estimates (µ( �SEβ1 )) from the simulation analyses to assess bias in the estimate of
mean slope (β1) when models that are simpler than the data-generating process are applied in the
presence of `missing at random' censoring. For each combination of number of simulated patients
(N) and annual frequency of observation (freq), 500 cohorts were generated and analysed under
di�erent censoring regimes, corresponding to treatment initiation at CD4 cut-o�s of 200 (ART200),
350 (ART350) or 500 (ART500). All cohorts were simulated with a follow-up of 5 years, including
an observation at time zero for each patient. Data were generated according to a multivariate-t
distribution (MVT) incorporating random slopes (RS), a fractional Brownian motion (fBM) process
and measurement error (ME) and, alongside a model of the correct form, normal linear mixed models
were �t with a RS structure alone and with RS in combination with Brownian motion (BM) and fBM
processes (all with ME).

RS+ME RS+BM+ME RS+fBM+ME MVT: RS+fBM+ME

SD(β̂1) µ( �SEβ1 ) SD(β̂1) µ( �SEβ1 ) SD(β̂1) µ( �SEβ1 ) SD(β̂1) µ( �SEβ1 )

N=100, freq=1
Uncensored 0.131 0.131 0.131 0.132 0.131 0.130 0.110 0.115
ART200 0.147 0.146 0.137 0.144 0.135 0.139 0.116 0.122
ART350 0.201 0.184 0.177 0.188 0.179 0.181 0.156 0.158
ART500 0.347 0.292 0.297 0.317 0.311 0.301 0.273 0.268

N=100, freq=3
Uncensored 0.133 0.132 0.129 0.138 0.130 0.129 0.107 0.110
ART200 0.165 0.153 0.140 0.153 0.137 0.143 0.118 0.121
ART350 0.205 0.203 0.187 0.213 0.178 0.200 0.154 0.168
ART500 0.383 0.340 0.372 0.391 0.363 0.353 0.310 0.304

N=200, freq=1
Uncensored 0.096 0.093 0.095 0.093 0.094 0.092 0.083 0.081
ART200 0.111 0.103 0.099 0.101 0.100 0.099 0.088 0.086
ART350 0.142 0.130 0.121 0.131 0.126 0.127 0.113 0.111
ART500 0.228 0.207 0.213 0.220 0.211 0.212 0.189 0.189

N=200, freq=3
Uncensored 0.094 0.093 0.095 0.097 0.091 0.092 0.078 0.077
ART200 0.106 0.103 0.101 0.106 0.094 0.099 0.084 0.084
ART350 0.145 0.130 0.135 0.146 0.131 0.127 0.110 0.118
ART500 0.270 0.207 0.263 0.268 0.268 0.212 0.213 0.215
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Table 4.5. Summary of simulation study to assess bias in the estimation of between-group di�er-
ences in intercept (δ0) and slope (δ1) within a single model when di�erent patterns of censoring are
applied to the two groups. Using the probability distribution of the `random slopes (RS) + fractional
Brownian motion (fBM) + measurement error (ME)' multivariate-t (MVT) model �tted to the real
dataset, two groups of either 100 or 200 patients each were simulated with three observations per
year up to 5 years, with the �rst group subject to censoring at the `200 cut-o�' while the `500 cut-
o�' was applied for the second group (with corresponding `con�rmatory' observations in each case).
Alongside a model of the correct form, normal linear mixed models were �t with a RS structure alone
and with RS in combination with Brownian motion (BM) and fBM processes (all with ME). 500
iterations of the simulation were performed for each group size. The true value of both δ0 and δ1

was set to zero, and were estimated as the di�erence in mean intercept and slope parameter for the
second group relative to the �rst.

RS+ME RS+BM+ME RS+fBM+ME MVT:RS+fBM+ME

Group size=100 each
Bias: δ̂0 0.091 0.027 0.022 0.020
SD(δ̂0) 0.806 0.771 0.758 0.651
Mean(�SEδ0 ) 0.805 0.765 0.754 0.655
Coverage: δ0 95.0 94.8 94.5 94.6
Bias: δ̂1 -0.143 -0.108 0.004 0.004
SD(δ̂1) 0.275 0.270 0.271 0.230
Mean(�SEδ1 ) 0.278 0.294 0.268 0.237
Coverage: δ1 92.0 95.6 94.5 95.6
Failed (%) 0.0 0.6 2.2 3.8

Group size=200 each
Bias: δ̂0 0.04 -0.020 -0.014 -0.007
SD(δ̂0) 0.576 0.554 0.547 0.471
Mean(�SEδ0 ) 0.572 0.544 0.536 0.465
Coverage: δ0 95.0 95.0 94.6 94.6
Bias: δ̂1 -0.163 -0.128 -0.016 -0.013
SD(δ̂1) 0.197 0.192 0.189 0.164
Mean(�SEδ1 ) 0.197 0.208 0.190 0.168
Coverage: δ1 87.0 92.4 95.0 94.8
Failed (%) 0.0 0.0 0.8 0.2
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4.6 Discussion

In this chapter we have further developed the statistical modelling of longitudinal

biomarker data, through application to pre-treatment CD4 counts in patients with

HIV, in which we have shown that the combination of a fractional Brownian motion

component and generalisation of the normal linear mixed model to a multivariate-t

distribution leads to substantial improvements in model fit. This novel combina-

tion of model features provides additional information regarding the between- and

within-patient variability in observations over time. Evidence is provided for the ap-

propriateness of using a multivariate-t distribution in the studied dataset through

evaluation of novel diagnostic plots. Furthermore, simulation studies are presented

to demonstrate the impact of model choice on cohort-level predictions and on bias

in mean slope estimates when data are MAR.

The presence of non-stationary stochastic process components in models for

longitudinal data imply that the progress of the state of the underlying biological

system for each individual does not follow a deterministic relationship with time,

but rather follows an unpredictable path. This finding seems intuitive in the context

of the extremely complex interactions between viral replication and immune system

response that influence the CD4 count series that are observed in HIV-positive pa-

tients. When using a fractional Brownian motion component the H values obtained

were less than 0.5, indicating that the process is erratic but displays some reversion

towards an underlying mean. The estimates of the degrees of freedom parameter for

the multivariate-t models of between 5 and 6 indicate substantial between-patient

differences in variability over time.

Through simulations based on generating data from the more complex fitted

model, we have demonstrated that the use of a normal random slopes model is as-

sociated with substantial bias in the estimation of the mean slope parameter in the

presence of censoring, with the degree of bias strongly dependent on the choice of

censoring regime. This is important, as estimates of this parameter are often used

as a proxy for rate of decline in health and compared between groups. As initiation

of ART was historically dependent on observed CD4 values, the MAR condition has

been invoked to argue that likelihood-based model estimation will lead to valid infer-

ences (e.g. Lodi et al.97), but this only holds conditional on the correct specification

of the likelihood-model. It can therefore be argued that in this context greater ef-

fort should be made to make use of statistical models that adequately describe the

distributional and covariance patterns present in the data.

Diagnostic Q–Q plots of Cholesky-transformed marginal residuals from multi-

variate normal models fitted to square-root CD4 counts show very heavy tails, indi-

cating clear violation of the modelling assumptions. We have demonstrated that the
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use of a multivariate-t distribution in combination with a non-stationary stochas-

tic process component leads to a very substantial improvement in BIC, with diag-

nostic Q–Q plots that only indicate relatively mild violation of the model’s assump-

tions. Such models can be fit efficiently and to large datasets using the open-source

ADMB software50, with this task made easier by the fact that the log-likelihood of the

multivariate-t distribution is available in closed form. It is of interest to investigate

whether models comprised of different combinations of multivariate-t and normal

distributions could provide a better fit to the data, such models have been previously

discussed by Song et al.62. For example, it may be considered more biologically plau-

sible to fit a statistical model in which the variability of the stochastic process com-

ponent differs between individuals (i.e. follows a multivariate-t distribution) but the

random effects and measurement error terms do not (i.e. they follow normal distri-

butions); we did attempt to fit this model to the dataset analysed in this chapter, but

maximum likelihood estimation failed when Gauss–Hermite quadrature was used —

for such models the likelihood function is not available in closed form, making the

computations required for parameter estimation substantially more complex. How-

ever, we do make use of models combining multivariate-t and multivariate normal

distributions in Chapters 5, 6 and 7.

Our research has been focused on CD4 cell counts in HIV-positive patients, but

the modelling framework developed may be of use for the analysis of longitudinal

data in other biomedical applications. For example, Diggle et al. recently described

the use of an extended linear mixed model including another non-stationary stochas-

tic process, integrated Brownian motion, for the analysis of estimated glomerular

filtration rates in patients at risk for renal failure29. The authors provide plots of

‘Cholesky-standardised’ residuals produced from the application of the model, which

show very heavy-tails. The multivariate-t distribution implies differences in the volatil-

ity of observations between patients, which may by useful in planning and interpret-

ing the monitoring of biomarkers in HIV and other disease areas.

Whilst it is arguably impossible to claim that any statistical model exactly rep-

resents the data-generating mechanism under investigation, it seems that both the

addition of stochastic process components to the standard linear mixed model and

the use of a multivariate-t distribution can be used to gain a greater understanding

of longitudinal biomedical data. Such models provide greater flexibility, but require

only a small number of additional parameters and follow a model specification that

can be interpreted in terms of the underlying biological process; as such, the po-

tential gains in inference and understanding through their use are likely to greatly

outweigh any drawbacks of increased model complexity. There is therefore a moti-

vation to continue to develop more efficient methods of fitting such models and to

make these more widely available.

77



COMBINED MODEL DEVELOPMENT

5 Development of a combined model for pre- and

post-treatment data

In this chapter, we develop a novel modelling framework for the combined analysis

of pre- and post-treatment data. The work is motivated by the ambition to better un-

derstand the factors that predict recovery in CD4 counts after the initiation of HAART

in HIV patients, and we illustrate the methodology through application to data from

the UK Register of HIV Seroconverters cohort104. This chapter serves to explain the

framework developed and to discuss the methodology primarily in the context of the

relevant statistics literature. Following the development of models for pre-treatment

CD4 counts as described in Chapter 4, we also incorporate stochastic process com-

ponents and between-patient differences in variability over time. The approach de-

veloped is applied to a larger dataset in Chapters 6 and 7, in which patient and drug

regimen characteristics are also included in the analysis and in which the results are

discussed in more depth with reference to previous research on this topic within the

field of HIV. The contents of this chapter form the basis for a publication in BMC

Medical Research Methodology 105, which is provided as Appendix D (reproduced un-

der CC BY 4.0 license). We include here some additional residual diagnostic plots

and simulations that are not included in the published paper. The simulation anal-

yses in Section 5.13 serve to firstly provide a check that the statistical methodology

is functioning as intended, and secondly to further explore the potential problems

with existing approaches.

5.1 Background

In medical research, there is often interest in evaluating response to treatment con-

ditional on the baseline value at initiation of the biomarker under investigation. In

the setting of RCTs, designed primarily to assess the difference between treatment

conditions, some authors have argued that optimal efficiency is gained by treating

the baseline measurement as an outcome variable within a parametric model10;11,

whilst Senn has argued that conditioning estimation of treatment effect on the base-

line observation through the use of ANCOVA is preferable in most trial situations12

and Kenward et al. demonstrated that with correct adjustments for sample size the

two approaches have nearly identical properties106. However, both of these approaches

can be problematic when applied to the estimation of response to treatment using

longitudinal observational datasets, in which the timing and choice of treatment

have not been randomised and in which baseline observations immediately prior

to treatment may not be available for all patients. Furthermore, there is often sub-

stantial interest in the influence of the baseline value of the biomarker itself in de-
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termining the level of response to treatment, rather than just using this to provide

a better estimate of the differences between treatment choices. In this chapter we

describe the development of flexible parametric models for this situation, providing

a combined analysis of pre- and post-treatment data in which the response of the

biomarker to treatment is dependent on a ‘true’ baseline value that is not directly

observed; this combines elements of previous approaches in that the pre-treatment

data are modelled as ‘response variables’, but the trajectory of the biomarker after

treatment initiation can also be modelled using flexible functions of the baseline

value.

Tango recently proposed a format for RCTs in which multiple observations for

both the pre- and post-treatment periods are included in the analysis107, demon-

strating that this would lead to a reduction in the required sample size in some cir-

cumstances. Tango considered models in which a random intercept term is shared

by pre- and post-treatment observations, or in which an additional random effect

allows response to treatment to be correlated with the pre-treatment random effect

term. However, given the RCT setting, Tango did not consider models for a progres-

sive disease in which the timing of treatment could vary between individuals; in this

case specifying the combined model only in terms of correlated random effects pro-

vides limited flexibility in modelling the dependency of response to treatment con-

ditional on the state of the patient at initiation.

The models that we develop in this chapter are applied to CD4 cell counts in HIV-

positive patients who initiate HAART. Although the CD4 counts within an individual

can vary erratically over time, on average the counts decline steadily from normal

levels following HIV infection97 and then in most cases recover towards normal lev-

els following initiation of HAART81;108–111. In observational datasets, the timing of

recorded CD4 measurements can be highly variable between patients. In much of

the existing literature about the long-term response of CD4 counts to HAART, the

investigators have avoided any associated complications in their analyses by con-

verting the available data into a set of discrete time points, typically correspond-

ing to annual or 6-monthly observations. This has been done by linear interpola-

tion (Kaufmann et al.)108, selecting only the observation closest to the chosen time

point (Moore and Keruly)109 or taking the mean measurement within intervals (Lok

et al.)110. Each of these studies included an analysis stratified by intervals of base-

line CD4 count and, although the statistical methodology varied between studies,

each found that higher baseline CD4 counts were associated with higher values after

several years of ART.

An alternative approach, which can make use of all post-treatment data on its

original time-scale, is to fit linear mixed effects models to the post-treatment data

with stratification based on pre-treatment observations. This has been done using
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linear splines (Gras et al.81) or fractional polynomial functions (Hughes et al.)111 for

the post-treatment model. These modelling approaches find similar conclusions but

again discard most pre-treatment data and involve conditioning of the model on

pre-treatment observations that are subject to measurement error, which can lead

to substantial biases in the estimation of treatment effects in some situations112.

A study by Le et al. suggested that the long-term response to ART in HIV-positive

patients is improved if it is initiated within the first few months after infection, with

this effect independent of the CD4 count at baseline113. Le et al.113 also relied on

stratification of patients into groups, and used a generalised estimating equation

analysis with exchangeable correlation structure (equivalent to a random intercept

linear mixed model) and splines for the mean (the exact methodology used is not

fully specified in the paper, but visual inspection of the Figures indicates the use of

cubic splines). Ding et al. also found a more rapid initial increase in CD4 count,

assessed by absolute increase at 6 months, and a higher probability of attaining a

CD4 count ≥ 600 or ≥ 900 cells/µL within 3 years of treatment, for patients in whom

treatment was initiated within 2 months of diagnosis of a recent infection114.

We now also know that early treatment of HIV leads to a substantial reduction

in the occurrence of both AIDS-defining conditions and serious non-AIDS events88,

but there nonetheless remains clinical interest in understanding the factors that are

predictive of the recovery in CD4 counts upon HAART initiation as for many patients

there is a substantial delay between infection and diagnosis and suboptimal CD4 re-

covery remains a concern for patients and clinicians115. The principal aim of the

research described in this chapter is the development of a flexible parametric frame-

work for the combined modelling of pre- and post-treatment CD4 data in HIV posi-

tive individuals. This is motivated by the clinical interest in investigating the factors

that determine the characteristics of long-term response to HAART, in particular the

influences of baseline CD4 count and the time elapsed from infection to treatment

initiation. However, the modelling strategy developed could also be used in other

settings in which a biomarker is monitored prior to some treatment initiation or clin-

ical intervention.

The modelling strategy described in this chapter represents a flexible extension

of established non-linear mixed effects models, fitted through maximum likelihood

estimation based on all observed data using time as a continuous variable. As well

as allowing inclusion of all available data in its original format (other than global

transformations for normalisation) and the combined assessment of multiple pre-

dictive factors, the approach will have the advantage that the characteristics of CD4

trajectories of individual patients over time will be quantified, creating a complete

framework for epidemiological simulations or patient-specific predictions, whereas

previously this has been done using separate models for pre- and post-treatment
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data27. We also incorporate stochastic process components and between-patient

differences in variability over time into the models developed, with the aim of defin-

ing models that are as realistic as possible in representing the structure of the biolog-

ical measurements under investigation. This is particularly important when consid-

ering analyses for datasets in which missing data and irregular follow-up times are a

substantial concern.

5.2 Dataset

The UK Register of HIV Seroconverters is an observational cohort study of patients

whose date of infection can be reliably estimated104, which contributes to the CAS-

CADE collaboration. Recruitment to the cohort began in 1994, but, as we are inter-

ested in modelling the response to modern HAART regimens, we restrict our anal-

ysis to patients with an estimated date of HIV (type 1) seroconversion during or af-

ter 2003. Data are included up until January 2014. Patients who started a subopti-

mal regimen of antiretroviral drugs prior to HAART were excluded, as were patients

without at least one post-treatment CD4 count recorded. Patients without any pre-

treatment CD4 counts were, however, included in the analysis. HAART is defined

by a regimen of at least three antiretroviral drugs from at least two different classes

(unless abacavir or tenofovir is used in a regimen with three nucleoside/nucleotide

analog reverse-transcriptase inhibitors (NRTIs)).

Application of these conditions resulted in a study population of 852 patients,

with a total of 5805 pre-HAART and 7302 post-HAART CD4 observations recorded.

The median (IQR) number of pre-HAART CD4 counts was 5 (3–10), whilst that for

post-HAART observations was 6 (3–12). There were a total of 39 patients without

any pre-HAART CD4 counts recorded. The median (IQR) time from estimated date

of seroconversion to initiation of HAART was 1.3 (0.6–2.8) years, with 192 patients

starting HAART within 6 months and 149 starting between 6 months and 1 year from

seroconversion.

As in Chapter 4, CD4 cell counts are measured as cells/µL and we followed es-

tablished practice in modelling the counts on a square-root scale27;47. For the pre-

treatment part of the model, time is measured in years from date of HIV seroconver-

sion (the estimate of which is treated as fixed in each patient), whilst for the post-

treatment part of the model it is measured in years from HAART initiation. We have

censored patients at recorded interruption of HAART (including switch to subopti-

mal treatment) for more than 1 week, but have not censored according to viral load

(VL) status or change to HAART regimen. Treatment interruption was recorded in

124 (14.6 %) patients, and there were a total of seven deaths recorded (three of which

occurred after censoring due to interruption of HAART). Data from a random subset
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of 100 of the patients analysed are shown in Figure 5.1.
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Figure 5.1. `Spaghetti plot' of the square root of CD4 counts from a random sample of
100 patients. Patients are from the UK Register of HIV Seroconverters dataset. Lines are
semi-translucent to aid visualisation. Time has been centred at the date of highly active
antiretroviral therapy (HAART) initiation for each patient.

5.3 Baseline state as a latent variable

It can be shown that in situations in which the initiation of treatment is conditional

on a biomarker that is monitored over time, and which is measured with error, the

observed value of the biomarker at the start of treatment provides a biased estimate

of the ‘true’ underlying value27. This presents a problem when attempting to model

treatment response conditional on the baseline value. We propose that one option in

this situation is to build a combined model for both the pre- and post-treatment data,

allowing the response to treatment to be conditional on all available pre-treatment

data rather than on just a single baseline value. Such an approach would also have

the advantage that patients could be included for whom no measurement close to

the start of treatment had been obtained. Additionally, fewer assumptions regarding

the marginal distribution of ‘true’ baseline values of any given population would be

required. For example, such an approach could appropriately deal with a set of dis-

tinct treatment initiation guidelines applied across different periods of time or sub-

populations, which might lead to a multimodal distribution of baseline values in the

total study population, whereas a standard mixed model approach would generally

assume the observed baseline values to follow a normal distribution for the popu-
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lation as a whole. The methodology recently proposed by Tango107 allows response

to treatment to be modelled in combination with multiple pre-treatment observa-

tions, but nonetheless assumes a fixed distributional form for the baseline prior to

treatment (represented by the population mean plus a random intercept term).

As described in Chapter 2, any linear mixed effects model implies a marginal

multivariate normal distribution1, for which the log-likelihood function can be ex-

pressed in closed form. However, this is not true (except for some special cases) for

non-linear mixed effects models4 and for such models some approximation of the

log-likelihood is required. Among the available options, adaptive Gauss–Hermite

quadrature is particularly attractive as an increasing number of quadrature points

can be used for each random effect to ensure that the log-likelihood is evaluated to

an adequate degree of accuracy. However, adaptive Gauss–Hermite quadrature is

not generally used when there are more than one or two random effects terms per

individual defined in a model, and the computational requirements to attain high

accuracy in calculation of the log-likelihood function are lowest when there is only

one random effect term per individual.

Because of these computational issues, to undertake the combined modelling of

pre- and post-treatment CD4 data we focus on the use of non-linear latent variable

models that require numerical integration only over the unobserved ‘true’ CD4 count

at treatment initiation (which we will term u). The rationale of this approach is that

it will allow adequate flexibility in model structure without increasing the computa-

tional requirements to a level that will prevent application to the dataset available. In

order to achieve this, we will specify linear mixed models for the pre-treatment data

(ypr e ) and non-linear models for the post-treatment data (ypost ), conditioned on the

‘true’ baseline CD4 count, that are linear in any other random effects terms (allow-

ing a closed form expression for each of these two parts of the model). Under such a

scheme, the likelihood function for the combined pre- and post-treatment data for

each individual can therefore be expressed as:

f
(
ypr e ,ypost

)= ∫ ∞

−∞
fpr e,post ,u

(
ypr e ,ypost ,u

)
du

=
∫ ∞

−∞
fpr e

(
ypr e

)
fpost ,u

(
ypost ,u|ypr e

)
du

=
∫ ∞

−∞
fpr e

(
ypr e

)
fpost

(
ypost |ypr e ,u

)
fu

(
u|ypr e

)
du.

For simplicity above, we suppress notation to indicate that each element of the

likelihood function is dependent on model parameters. However, we now consider

calculation of the likelihood function dependent on the values of a parameter vector

relating to the pre-treatment part of the model ‘θpr e ’, a parameter vector relating to
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the post-treatment part of the model ‘θpost ’ and a shared measurement error vari-

ance parameter ‘σ2’. If we assume that the post-treatment response depends on the

pre-treatment data only though the true baseline value at treatment initiation, i.e.

that ypost is independent of ypr e given u, then we may write:

f
(
ypr e ,ypost

)= ∫ ∞

−∞
fpr e

(
ypr e |θpr e ,σ2) fpost

(
ypost |u,θpost ,σ2) fu

(
u|ypr e ,θpr e ,σ2)du.

This follows a similar form to the likelihood expression for standard random ef-

fects models but here the distribution of the latent variable u, which is integrated

out to obtain the marginal likelihood, is conditioned on the pre-treatment data for

each individual rather than following a pre-specified distribution across the popula-

tion. For those patients in whom no pre-treatment observations were obtained, the

likelihood contribution can be calculated solely for the post-treatment observations:

f
(
ypost

)= ∫ ∞

−∞
fpost

(
ypost |u,θpost ,σ2) fu

(
u|θpr e ,σ2)du.

In Section 5.7, we describe the addition of two further latent variables to the

model for each individual in order to allow for between-patient differences in vari-

ability over time.

5.4 Pre-treatment model structure

At present we consider only linear mixed model formulations for the likelihood of

ypr e:i , representing the observed vector of npr e:i pre-treatment observations for the

ith individual. However, this is inclusive of stochastic Gaussian process components,

such as Brownian motion8;17 or fractional Brownian motion19, as these do not pre-

vent the use of a (multivariate normal) closed form for the pre-treatment likelihood

function fpr e (as described in Chapter 2). Denoting the vector of values of the stochas-

tic process Wpr e:i at times tpr e:i , and defining Σpr e:i as the covariance matrix result-

ing from the chosen Gaussian process for the ith individual, the linear mixed model

can then be expressed as:

ypr e:i = Xiβ+Zi bi +Wpr e:i +epr e:i

bi ∼ MV N (0,Ψ)

Wpr e:i ∼ MV N (0,Σpr e:i )

epr e:i ∼ MV N (0, σ2Inpr e:i ).

Here, Xi represents the pre-treatment design matrix for the ‘fixed effects’ param-
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eters β, Zi represents the subset of the columns of the design matrix associated with

the pre-treatment ‘random effects’ for each individual bi and epr e:i is the vector of

residual errors for each pre-treatment measurement occasion. The vectors of ran-

dom effects b1,b2...bN , residual errors epr e:1,epr e:2...epr e:N and stochastic process

realisations Wpr e:1,Wpr e:2...Wpr e:N for each of the N individuals are independent

of one another. It can be easily shown that this formulation leads to the following

marginal distribution for ypr e:i :

ypr e:i ∼ MV N (Xiβ, ZiΨZT
i + Σpr e:i + σ2Inpr e:i ).

We shall use Vpr e:i to denote the marginal covariance matrix for ypr e:i .

In this analysis, we shall consider only a ‘random intercepts and slopes’ structure

for the fixed and random effects parts of the pre-treatment model. We shall also

include fractional Brownian motion as a Gaussian process component, along with an

independent residual error term, following the optimal multivariate normal model

for pre-treatment data as found in Chapter 4.

5.5 Conditional distribution of ‘true’ baseline

The use of a pre-treatment model with marginal multivariate normal distribution

means that the conditional distribution of the ‘true’ baseline value (ui ) at treatment

initiation for each individual given their observed pre-treatment data can be readily

obtained. We denote the time of treatment initiation from the start of observation

(HIV seroconversion in this case) as ttr t :i . We shall assume that ui is formed by the

sum of the fixed effects parameter vector (β) multiplied by a row vector (Xtr t :i ) cor-

responding to an extension of the design matrix (Xi ) for that individual relating to

variable values (e.g. time) at ttr t :i , the equivalent term for the subject-specific ran-

dom effects (i.e. Ztr t :i bi ) and the realisation of the subject’s stochastic process at

ttr t :i :

ui = Xtr t :iβ+Ztr t :i bi +Wtr t :i .

As such, the joint distribution ypr e:i and ui is multivariate normal:

(
ypr e:i

ui

)
∼ MV N

((
Xiβ

Xtr t :iβ

)
,

(
Vpr e:i ZiΨZT

tr t :i +Cov
[
Wpr e:i ,Wtr t :i

]
Ztr t :iΨZT

i +Cov
[
Wtr t :i ,Wpr e:i

]
Ztr t :iΨZT

tr t :i +Var[Wtr t :i ]

))
.

The variance and covariance terms for the stochastic component of the model

can be calculated for any given Gaussian process based on tpr e:i , ttr t :i and any pre-

treatment model parameters relating to the process. The conditional probability
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density function of ui given ypr e:i , fu
(
ui |ypr e:i ,θpr e ,σ2

)
, can therefore be obtained

using the standard result for a partitioned multivariate normal distribution. Using a

simplified notation: (
ypr e:i

ui

)
∼ MV N

((
Xiβ

Xtr t :iβ

)
,

(
Vpr e:i v12:i

v21:i v22:i

))
,

it is known that:

ui |ypr e:i ∼ N
(
µ′, v ′) ,

where µ′ = Xtr t :iβ+v21:i V−1
pr e:i

(
ypr e:i −Xiβ

)
and v ′ = v22:i −v21:i V−1

pr e:i v12:i .

If a patient has no pre-treatment observations, then the probability density func-

tion for the baseline value is simply that for a normal distribution with mean Xtr t :iβ

and variance v22:i . We note that in forming the conditional distribution for u, we

assume that it is independent of the decision to initiate treatment at ttr t given the

value of ttr t and the observed ypr e for each patient.

The conditional distribution of each ui is normal and so will include potential

negative realisations, even if the probability of this is vanishingly small for most in-

dividuals. As such, we use the notation u+
i to indicate a latent variable for which all

probability mass for values ui < 0 is assigned instead to ui = 0, i.e. u+
i = M ax (0,ui ).

5.6 Post-treatment model structure

5.6.1 Mean response to treatment

Although a range of models could be considered for the post-treatment observa-

tions, we focus on the use of an asymptotic regression model for the underlying mean

structure. Such models have been used to describe CD4 recovery over several years

from treatment initiation in children116;117. In our definition of this model, the mean

value for the ith individual at time after initiation of treatment tpost , conditional on

the ‘true’ baseline value u+
i , is given by the function:

g
(
tpost ,u+

i

)=φ1:i +
(
u+

i −φ1:i
)

exp
(−exp

(
φ2:i

)
tpost

)
. (8)

This function takes the value u+
i when tpost = 0 (i.e. at the exact time of treatment

initiation), and it has a horizontal asymptote at φ1:i as tpost →∞. The value of φ2:i

determines the speed of transition from u+
i toφ1:i , i.e. from the value of the response

variable at baseline to its long-term mean, as tpost increases. The shape of the func-

tion is illustrated in Figure 5.2. It is useful to note that, as this function involves a

86



COMBINED MODEL DEVELOPMENT

change from a baseline value to a long-term maximum that follows an ‘exponential

decay’-type curve, the ‘half life’ of this transition can be calculated as log(2)
exp(φ2:i ) ; this

facilitates interpretation of the estimated values of parameters that define φ2:i .

φ1:i = 25

ui = 15

log(2)
exp(φ2:i)

= 1

10

15

20

25

30

0 1 2 3 4 5
t post (years)

g
i(t

p
o

s
t)

Figure 5.2. Illustrative plot of an asymptotic regression curve. Here the baseline (ui ) is set
to 15, the asymptotic maximum (φ1:i ) is set to 25 and the rate of recovery parameter (φ2:i )
is set to log(log(2)), leading to a `half-life' of 1.

In models of this type, the place of u+
i in this function is usually taken by a single

parameter (or a linear function of a set of parameters) to be estimated, potentially

with an associated subject-specific random effect term. However, we instead make

use of the fact that a subject-specific distribution for u+
i can be included in the model

conditioned on the observed pre-treatment data for that individual. Similarly, we will

consider φ1:i and φ2:i as potentially being determined as a function of u+
i , alongside

other variables, i.e. we will investigate whether the long-term average value of the

response variable and the speed at which this is attained are predicted by the ‘true’

value of the variable at treatment initiation.

5.6.2 Long-term maximum response to treatment

The simplest potential model for the long-term maximum response to treatment in

each individual, i.e. the horizontal asymptote φ1:i , is to assume that this is equal to a

single constant for the entire population:

φ1:i = A1, for all i .
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The implication of this model is that the long-term response to treatment does not

depend on the value of the variable in any given patient at treatment initiation, or on

any other factors. This formulation also assumes that there is no random variation

in the long-term maximum response between patients, but we will include a subject-

specific random-effect term ‘τi ’, alongside any deterministic function (φ1 (...)), through-

out:

φ1:i =φ1 (...)+τi , where τi ∼ N (0,Ω) ,

with the variance parameter Ω to be estimated. Although the post-treatment model

defined in Equation (8) is non-linear in terms of the parameters, using this formula-

tion it is linear in terms of the subject-specific random effect. As such fpost
(
ypost |u,θpost ,σ2

)
can be expressed in closed form as a multivariate normal distribution (assuming no

further random effect terms are added to the model), even though it does not consti-

tute a linear mixed effects model conditioned on the unobserved baseline variable.

Further details are given in Section 5.6.5.

The next model considered is that the expected long-term maximum (working

on the square-root scale for CD4 counts) for any given patient follows a linear de-

pendence on their ‘true’ value at treatment initiation:

φ1
(
u+

i

)= A1 + A2u+
i ,

where A1 and A2 are parameters to be estimated.

We then wish to investigate whether φ1 is a more complex, non-linear, function

of u+
i . One option would be to specify that φ1 is some specific non-linear function

of u+
i . However, the fact that the relationship between φ1:i and u+

i cannot be directly

visualised using the raw data means that there is no obvious way to go about select-

ing the functional form. Another option is the use of cubic splines defined in terms

of u+
i , this approach has the advantage of allowing consideration of a wide variety

of possible relationships between the predictive and outcome variable. In order to

restrict the total number of model parameters and improve stability of optimisation,

we make use of natural cubic splines derived from a truncated power series basis as

described by Hastie, Tibshirani and Friedman118. We use knots at 15.5, 17.5, 19.5 and

22 in terms of square-root CD4, corresponding to approximately the 20th, 40th, 60th

and 80th centiles of the last observed CD4 count before treatment initiation, when

available, in the UK Register of HIV Seroconverters dataset. The use of natural cu-

bic splines in this context was suggested by Ronald Geskus (pers. com.) following

circulation of an early draft report on this work to investigators from the CASCADE

collaboration.
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We also consider models in which the relationship between the long-term max-

imum response and the baseline value (u+
i ) can vary according to the time elapsed

between seroconversion and treatment initiation for each patient (ttr t :i ). Although

ideally this would be done using a smooth function of u+
i and ttr t :i , in this chapter for

computational stability and simplicity of exposition we fit separate functions of u+
i

stratified by ttr t :i (in years) as follows: 0 ≤ ttr t :i ≤ 0.5, 0.5 < ttr t :i ≤ 1.0 and 1.0 < ttr t :i .

These grouping were chosen based on a combination of findings reported previously

in the literature, the level of uncertainty in terms of estimated dates of seroconver-

sion in our study population and the need to ensure that an adequate number of

patients were included in each group to allow parameter estimates to be obtained

for the model.

Were patient characteristics (i.e. age, gender etc.) to be included in the model for

φ1:i , and assuming a linear function in terms of u+
i for simplicity of exposition, we

would have an extended function for φ1 of the form:

φ1
(
u+

i ,xi
)= A1 + A2u+

i +xT
i βφ1 ,

where xi is the patient-specific vector of data specifying relevant characteristics and

βφ1 is the associated vector of parameters that determines their effects.

5.6.3 Speed of response to treatment

As for the function for the long-term maximum value, we consider first a constant

value for φ2:i across the population (φ2:i = B1) and secondly a linear dependence on

u+
i :

φ2:i = B1 +B2u+
i ,

where B1 and B2 are parameters to be estimated. We then consider a natural cubic

spline function of u+
i , including an analysis with stratification according to groups

defined by the time elapsed from seroconversion to treatment. The addition of a

subject-specific random effect to this function was also considered, this required in-

tegration of the log-likelihood function over an additional latent variable for each

patient and so the Laplace approximation was used.

5.6.4 Residual variance structure

We propose the following model for the vector of post-treatment observations (ypost :i )

for the i th individual, conditioned on their ‘true’ baseline value at treatment initia-
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tion (u+
i ):

ypost :i |u+
i
= g

(
tpost :i ,u+

i ,τi
)+Wpost :i +epost :i

τi ∼ N (0,Ω)

Wpost :i ∼ MV N (0,Σpost :i )

epost :i ∼ MV N (0, σ2Inpost :i ).

The vector of observation times tpost :i relates to time since treatment initiation,

with npost :i post-treatment observations for the i th subject. The function g here rep-

resents a vectorised version of g in equation (8), i.e.:

g
(
tpost :i ,u+

i ,τi
)=


g

(
tpost :i 1,u+

i ,τi
)

g
(
tpost :i 2,u+

i ,τi
)

...

g
(
tpost :i npost :i ,u+

i ,τi

)

 .

For the stochastic process component Wpost :i , we include a ‘new’ fractional Brow-

nian motion process with value zero at time of treatment initiation and separate pa-

rameters to the pre-treatment process. The vector epost :i represents independent

residual measurement errors (or very short-term physiological variation), with a vari-

ance parameter (σ2) that is shared with the pre-treatment model.

5.6.5 Marginal distribution for post-treatment model

Although the models that we have defined for the post-treatment data are non-linear

in their parameters, they are all linear in their random terms conditional on the value

of u+
i :

ypost :i |u+
i
=g

(
tpost :i ,u+

i ,τi
)+Wpost :i +epost :i

=


φ1:i +

(
u+

i −φ1:i
)

exp
(−exp

(
φ2:i

)
tpost :i 1

)
...

φ1:i +
(
u+

i −φ1:i
)

exp
(
−exp

(
φ2:i

)
tpost :i npost :i

)
+Wpost :i +epost :i

=


φ1

(
u+

i

)+τi +
(
u+

i − (
φ1

(
u+

i

)+τi
))

exp
(−exp

(
φ2

(
u+

i

))
tpost :i 1

)
...

φ1
(
u+

i

)+τi +
(
u+

i − (
φ1

(
u+

i

)+τi
))

exp
(
−exp

(
φ2

(
u+

i

))
tpost :i npost :i

)


+Wpost :i +epost :i
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τi ∼N (0,Ω)

Wpost :i ∼MV N (0,Σpost :i )

epost :i ∼MV N (0, σ2Inpost :i ).

As such, for the models defined, the post-treatment data follows a marginal multi-

variate normal distribution conditional on the value of u+
i , with mean vector given

by:

E
[
ypost :i

]
|u+

i
=


φ1

(
u+

i

)+ (
u+

i −φ1
(
u+

i

))
exp

(−exp
(
φ2

(
u+

i

))
tpost :i 1

)
...

φ1
(
u+

i

)+ (
u+

i −φ1
(
u+

i

))
exp

(
−exp

(
φ2

(
u+

i

))
tpost :i npost :i

)
 ,

and covariance matrix given by:

Var
[
ypost :i

]
|u+

i
= Qi +Σpost :i +σ2Inpost :i ,

where the j kth element of Qi , qi j k , is given by:

qi j k = Cov
[(

1−exp
(−exp

(
φ2

(
u+

i

))
tpost :i j

))
τi ,

(
1−exp

(−exp
(
φ2

(
u+

i

))
tpost :i k

))
τi

]
= (

1−exp
(−exp

(
φ2

(
u+

i

))
tpost :i j

))× (
1−exp

(−exp
(
φ2

(
u+

i

))
tpost :i k

))×Ω.

5.7 Differences in variability between patients

In Chapter 4 we demonstrated that generalisation of the model structure for pre-

treatment CD4 counts as described in Section 5.4 to a multivariate-t distribution

leads to a substantial improvement in model fit in terms of the log-likelihood and

residual diagnostic plots. However, the application of a marginal multivariate-t dis-

tribution is not possible in the current setting, in which a combined model is de-

fined for pre- and post-treatment data. We instead consider models in which the

stochastic process components before and after treatment each follow a marginal

multivariate-t distribution, with correlated scaling variables. We checked that this

was the optimal model structure using only the pre-treatment CD4 data from the UK

Register of HIV Seroconverters cohort, as this allowed the use of high-dimensional

(15-point) adaptive Gauss–Hermite quadrature for maximum likelihood estimation

(with integration only required for one latent scaling variable per patient). For a

marginal multivariate-t model the log-likelihood was −14221.5, whilst for models in

which the stochastic process component (i.e. fractional Brownian motion) alone was

multivariate-t it was −14220.1 and for the measurement error alone it was −14229.8;
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for all of these models the number of parameters was nine, and so the model with

between-patient differences in variability of the stochastic process component was

indeed optimal in terms of AIC or BIC. We note that maximum likelihood estimation

of this model did not converge when tested on the dataset analysed in Chapter 4 and

we speculate that the later cut-off relating to date of seroconversion for inclusion and

the use of data from only a single cohort in the present analysis may be associated

with higher data quality (in terms of data-entry errors etc.). This is supported by the

fact that for the analysis in Chapter 4 we deleted observations when an identical CD4

count was recorded 1 day after an initial observation as likely data-entry errors, but

there were no such records for the data included in the present analysis.

The desired model structure for a combined analysis of pre- and post-treatment

data requires the use of a bivariate gamma distribution, of which a number are avail-

able (as reviewed by Balakrishna and Lai119). Such models will include three latent

variables per patient, and as such a Laplace approximation to the log-likelihood5;50;57

rather than adaptive Gauss–Hermite quadrature will be used. Because of this, Moran’s

bivariate gamma distribution119;120 makes a natural choice. This distribution is de-

fined by first transforming random variables (A and B) from the standard normal

bivariate distribution with correlation ρMor an into a copula C (Φ (a) ,Φ (b)), where

Φ is the standard normal cumulative distribution function, and secondly using the

inverse cumulative distribution functions of univariate gamma distributions (Γ1 =
F−1 (Φ (A)), Γ2 =G−1 (Φ (B))) to find the joint distribution function of Γ1 and Γ2 (each

of which has a marginal univariate gamma distribution). F is here defined as the cu-

mulative distribution function for gamma distribution with ‘shape’ and ‘rate’ param-

eters both equal to v1
2 , whilst G is that for the gamma distribution with parameters

both equal to v2
2 .

The model for pre-treatment CD4 counts is then defined as:

ypr e:i = Xiβ+Zi bi +Wpr e:i +epr e:i

bi ∼ MV N (0,Ψ)

Wpr e:i |γ1:i ∼ MV N (0,
1

γ1:i
Σpr e:i )

epr e:i ∼ MV N (0, σ2Inpr e:i ),

whilst, the model for post-treatment data is:

ypost :i |u+
i
= g

(
tpost :i ,u+

i ,τi
)+Wpost :i +epost :i

τi ∼ N (0,Ω)

Wpost :i |γ2:i ∼ MV N (0,
1

γ2:i
Σpost :i )
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epost :i ∼ MV N (0, σ2Inpost :i ),

with the scaling factors jointly following Moran’s bivariate gamma distribution:(
γ1:i

γ2:i

)
∼ Mor an

(
ρMor an ;

v1

2
,

v1

2
;

v2

2
,

v2

2

)
.

The v1 and v2 parameters equate to the degrees of freedom for the pre- and post-

treatment parts of the model, respectively.

This specific bivariate gamma distribution is a natural choice because the marginal

log-likelihood function for the model can be found by integrating out the latent vari-

ables on the standard normal scale, for which the Laplace approximation is opti-

mally accurate64, as follows (omitting indexing for each individual and dependence

on model parameters):

f
(
ypr e ,ypost

)= ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fpr e

(
ypr e |γ1 = F−1 (Φ (a))

)
fpost

(
ypost |u,γ2 =G−1 (Φ (b))

)
fu

(
u|ypr e ,γ1 = F−1 (Φ (a))

)
fab (a,b)du d a db,

where fab is the probability density function for a standard bivariate normal distri-

bution with correlation ρMor an . The ρMor an parameter can be estimated from the

data through maximum likelihood estimation as for other model parameters.

5.8 Overall model structure and interpretation

A directed acyclic graph depicting the proposed model structure is shown in Figure

5.3. For simplicity, we omit here the extension to the basic model in which further

latent variables are added to the model to allow between-patient differences in vari-

ability over time as described in Section 5.7. This diagram illustrates the fact that

in the model, response to treatment is linked to pre-treatment data only through

the ‘true’ baseline value u and the time from seroconversion to treatment initiation.

These links are mediated through variables representing the long-term maximum re-

sponse to treatment (φ1) and the speed at which this is attained (φ2) in each patient.

When fitted to the dataset under investigation, this structure should allow estimates

of individual parameters of the model to be interpreted in a meaningful way. It is be

relatively straightforward to extend the model to assess whether patient characteris-

tics such as age and gender or drug regimen choice are independently predictive of

response to treatment, and such extensions are considered in Chapters 6 and 7.

The primary interpretation of our models as presented is the prediction of the

response to HAART in terms of prior CD4 counts and time from seroconversion. It
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u

t at treatment

ypre

φ1

φ2

ypost

Figure 5.3. Directed acyclic graph depicting the proposed model structure for each patient.
Observed variables are shown within ellipses, whilst unobserved latent variables are shown
within rectangles.

has been argued that causal effects can only be estimated from observational studies

with respect to clearly defined interventions121. Whilst interventions with regard to

the monitoring of CD4 counts and guidelines for treatment initiation can be defined

within the present context, it is not possible to begin treatment conditional on the

‘true’ value of a patient’s CD4 count, as this cannot be observed directly. Furthermore

it is not possible to define a treatment policy in terms of a specific simultaneous

combination of ‘time from seroconversion’ and ‘true CD4 count’, when in a certain

period a patient may only experience a limited range of CD4 counts. Hence, the links

in Figure 5.3 show dependencies in the fitted probability model rather than direct

causal effects.

As we have censored patients at recorded interruption of HAART but not accord-

ing to VL status, the fitted models can be taken to represent treatment response for

all patients were they all to remain on HAART (regardless of success or failure of viro-

logical suppression). All included patients had at least one post-HAART CD4 obser-

vation, but beyond this the number and timing of CD4 cell counts recorded for each

individual were highly variable. We have assumed that the missingness of observa-

tions can be treated as MAR (following the terminology of Rubin100), i.e. that the

‘missingness’ of any observation is independent of the unobserved data conditional

on the observed values of the outcome variable and any other covariates included in

the model. Similarly we assume that the timing of observations is dependent only

on previously observed outcomes, under which condition maximum likelihood es-

timation of a model for the outcome variable alone is consistent, without the need
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for specification of a model for the distribution of follow-up times101. As noted in

Chapter 4, a correct model specification is required to guarantee consistency of pa-

rameter estimates under both of these assumptions, and the ‘timing of observations

assumption’ can be subsumed into the MAR assumption given that observations are

recorded at discrete days.

5.9 Maximum likelihood estimation

All models presented have been fitted by direct maximum likelihood estimation us-

ing the open source AD Model Builder software (Version 11.2; ADMB Foundation)50.

The ‘random effects’ mode was used for ADMB, allowing optimisation of a log-likelihood

function with automated integration over latent variables57, as described in Section

2.4. The log-likelihood function for each individual (for their complete pre- and post-

treatment data) was defined using the ‘separable function’ utility, allowing compu-

tational efficiency to be gained from the modelled independence of each individual.

15-point adaptive Gauss–Hermite quadrature was used to obtain the maximum like-

lihood estimates for all models described in this chapter for which only one latent

variable was included per individual (i.e. the ‘true’ baseline). However, for the mod-

els including additional latent variables associated with between-patient differences

in variability over time, and for those tested with an additional random effect for the

speed of post-treatment recovery, Gauss–Hermite quadrature was not feasible and

the Laplace approximation was used.

Models were parameterised using logarithmic, logistic and generalised logistic

transformations where appropriate such that parameter estimates could be obtained

using unrestricted optimisation (e.g. maximum likelihood estimation was carried

out using log-transformed variance parameters, with a parameter space of (−∞,+∞)

rather than [0,+∞)). For all model parameters, confidence intervals are reported

derived from the estimated asymptotic multivariate normal sampling distribution

based on the observed information on the transformed scales. The ‘R2admb’ pack-

age94 was used to output data files in the necessary format through the R statistical

computing environment (R Foundation, Vienna, Austria).The ggplot2 package for

R122 was used for statistical graphics. All maximum likelihood estimates reported

in this chapter were obtained using a computer cluster running with Linux operat-

ing systems (UCL Legion High Performance Computing Facility). Fitting each of the

models presented to the UK Register of HIV Seroconverters dataset took between 1

and 2 1
2 hours (using a core with 4GB RAM), whereas fitting one of the models using a

mid–low specification personal laptop (4GB RAM, Celeron Dual-Core CPU T3500 @

2.1 GHz) required around 10 hours.

When considering only a single latent variable per patient, nested models are
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compared using the generalised likelihood ratio test, comparing the change in 2×log-

likelihood (∆2`) to aχ2 distribution. Non-nested models are compared using the BIC

statistic, using the total number of observations in the dataset for the calculation of

the penalty term. It is worth noting that these methods are only valid because adap-

tive Gauss–Hermite quadrature can be used to calculate the log-likelihood of the fit-

ted models to a high degree of accuracy5; this is not the case for less computationally

intensive approximations of the log-likelihood.

5.10 Model fitting

Summaries of the set of models fitted to the UK Register of HIV Seroconverters dataset

are presented in Table 5.1, and to facilitate their interpretation Table 5.2 provides a

description of each model parameter. The most basic model considered included

constant parameters for the mean long-term maximum CD4 count (on square-root

scale) and the rate of recovery from baseline at treatment initiation, without division

of patients according to time from seroconversion to initiation of HAART (Model1 in

Table 5.1). Modelling the long-term maximum (φ1) and speed of response to treat-

ment (φ2) as linear functions of the baseline value in each individual (u+
i ) led to a

significant improvement in model fit (Model2 vs Model1, ∆2` 460.4 for 2 parame-

ters; P < 0.0001). A model equivalent to Model2 but without pre- and post-treatment

stochastic process components was also fitted for comparison and was found to have

a much higher BIC value (64 398); correspondingly the model including stochas-

tic processes showed a significant improvement in fit (∆2` 844.8 for 4 parameters;

P < 0.0001). The extension of Model2 to allow natural cubic spline functions to de-

fine the relationships between u+
i andφ1 andφ2 led to a further significant improve-

ment in model fit (Model3 vs Model2, ∆2` 31.4 for 4 parameters; P < 0.0001).
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COMBINED MODEL DEVELOPMENT

Fitting a model with separate linear relationships between u+
i and φ1 and φ2 ac-

cording to timing of HAART subgroup (Model4) led to a reduction in BIC relative to

the single-group natural cubic spines model. It was not possible to obtain a model

fit for natural cubic spline functions defined separately for each subgroup (due to

lack of convergence), but allowing linear functions in the early start subgroups in

combination with natural cubic spline functions for the remaining patients led to a

further improvement in model fit (Model5 vs Model4, ∆2` 16.0 for 4 parameters;

P = 0.003). However, Model4, with linear link functions for all subgroups, retained

the lowest BIC value and so we have focused on interpretation of this model.

It is harder to make a direct comparison for Model6, which matches Model4

with the addition of jointly distributed latent scaling variables for the pre- and post-

treatment fractional Brownian motion processes. Because of the need to integrate

the log-likelihood function over multiple latent variables, parameter estimates for

Model6 were obtained using the Laplace approximation, meaning that generalised

likelihood ratio tests or comparisons of the BIC statistic are not appropriate. How-

ever, the low values obtained for the estimates of the pre- and post-treatment degrees

of freedom parameters (which are effectively fixed at +ve∞ for the other models

considered) indicate that this model may better reflect the structure of the observed

data. Convergence of parameter estimates was not achieved when the same exten-

sion was made to Model5.

Convergence of parameter estimates also failed when a subject-specific random

effect was added to the speed of response to treatment function (φ2) for Model4,

Model5 or Model6. We also attempted to extend each of these models to allow an

independent linear effect of the patient-specific slope of pre-HAART decline (requir-

ing an additional two latent variable per patient for their random intercept and slope

terms), but convergence of parameter estimates was not achieved in each case. Us-

ing Model4, we checked the assumption that the pre- and post-HAART measure-

ment error variance can be treated as constant, and no significant improvement in

model fit was observed when separate parameters were fitted for the two periods

(∆2` 0.6 for 1 parameter; P = 0.44).

5.11 Model interpretation

All models fitted (other than Model1 by definition) showed a positive association

between baseline CD4 count at HAART and the long-term maximum; this finding

was consistent across subgroups of patients defined by timing of treatment initia-

tion with only relatively small differences in the fitted functions for each group in

models 4–6 (Figures 5.4, 5.5 and 5.6). When modelled as a linear function across all

patients (i.e. Model2), the speed of response to treatment also showed a positive as-

98



COMBINED MODEL DEVELOPMENT

Table 5.2. Description of parameters for combined models of pre- and post-treatment data.
Some of the parameters relate to the link functions between the `true' value of the response
variable at treatment initiation, u+

i , and the post-treatment model.

Model
parameter

Description

β0 Pre-treatment mean intercept.
β1 Pre-treatment mean slope.
U00 Pre-treatment intercept subject-specific random effect variance.
ρ Correlation between pre-treatment intercept and slope subject-specific

random effects.
U11 Pre-treatment slope subject-specific random effect variance.
σ Standard deviation of residual error term for each measurement, shared

by pre- and post-treatment parts of model.
κpr e Scale parameter for pre-treatment fBM process.
Hpr e Hurst index for pre-treatment fBM process.
φ1 model These parameters relate to the long-term maximum value of the

response variable after treatment initiation.
At11, At12 Intercept and slope terms in relationship with u+

i for patients treated
within 6 months of seroconversion.

At21, At22 Intercept and slope terms in relationship with u+
i for patients treated

beyond 6 months but within 1 year of seroconversion.
A1, A2 Intercept and slope terms in relationship with u+

i for linear or NCS
models*.

A3, A4 Third and fourth coefficients for NCS models*.
φ2 model These parameters relate to the rate of recovery of the response variable

after treatment initiation.
B t11,B t12 Intercept and slope terms in relationship with u+

i for patients treated
within 6 months of seroconversion.

B t21,B t22 Intercept and slope terms in relationship with u+
i for patients treated

beyond 6 months but within 1 year of seroconversion.
B1,B2 Intercept and slope terms in relationship with u+

i for linear or NCS
models*.

B3,B4 Third and fourth coefficients for NCS models*.
Ω Residual variance for long-term maximum (φ1:i ) not explained by u+

i .
κpost Scale parameter for post-treatment fBM process.
Hpost Hurst index for post-treatment fBM process.
v1 Degrees of freedom parameter for pre-treatment stochastic process.
v2 Degrees of freedom parameter for post-treatment stochastic process.
ρMor an Correlation parameter for latent scaling variables of pre- and

post-treatment stochastic processes.

*Only applicable to patients with treatment initiation more than 1 year after seroconversion when
separate terms are included for earlier groups. fBM, fractional Brownian motion; NCS, natural cubic
spline.
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COMBINED MODEL DEVELOPMENT

sociation with baseline CD4 count at HAART. However, when the link function was

defined by HAART-timing subgroup, the speed of response to treatment was found

to be substantially higher at moderate and lower baseline CD4 counts (below around

25 on the square-root scale) in those patients who started treatment within 6 months

of seroconversion, with an intermediate difference observed for the subgroup who

started treatment after 6 months but within 1 year. This overall pattern of findings

was consistent across models 4–6, although the exact shape of the link functions

showed some differences.
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Figure 5.4. Plots of φ1
(
u+

i

)
(a�c, relating to long-term maximum) and φ2

(
u+

i

)
(d�f, relating

to speed of response) for Model4. Graphs on the left of each row (a,d) show the �tted
functions for patients initiating treatment within 6months of seroconversion, those in the
centre (b,e) show the functions for patients initiating treatment beyond 6months but within
1 year and those on the right (c,f) show the functions for patients who started treatment
beyond 1 year. Pointwise 95% con�dence intervals for the functions are shown ( ).

As the full vector of pre- and post-treatment data and ui for each individual do

not jointly follow a multivariate normal distribution, it is not possible to derive a

closed form for the posterior predictive distribution of the ui conditioned on the

observed data in the way that would be done for the realizations of the random ef-

fects in a linear mixed model. However, the values of ui for each individual that

maximise f
(
ypr e:i ,ypost :i ,ui

)
, ûi , conditional on the current values of the model pa-

rameters, are calculated at each iteration of the adaptive Gauss–Hermite quadra-

ture algorithm. The values of ûi corresponding to the final parameter estimates for

each model are returned by ADMB, and these correspond to the posterior mode of

fu|Ypr e=ypr e ,Ypost=ypost (u) for each individual. Kernel density plots for the ui values for
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Figure 5.5. Plots of φ1
(
u+

i

)
(a�c, relating to long-term maximum) and φ2

(
u+

i

)
(d�f, relating

to speed of response) for Model5. Graphs on the left of each row (a,d) show the �tted
functions for patients initiating treatment within 6months of seroconversion, those in the
centre (b,e) show the functions for patients initiating treatment beyond 6months but within
1 year and those on the right (c,f) show the functions for patients who started treatment
beyond 1 year. Pointwise 95% con�dence intervals for the functions are shown ( ).

each subgroup in Model4 are presented in Figure 5.7, approximating the distribu-

tion for fu|Ypr e=ypr e ,Ypost=ypost (u) as normal and making use of subject-specific stan-

dard deviation estimates also resulting from the adaptive Gauss–Hermite quadrature

algorithm. Equivalent plots for Model5 and Model6 did not show substantial differ-

ences. Histograms of the last observed square-root CD4 count before treatment for

those individual in whom this was recorded within 6 months of treatment initiation

are also presented in Figure 5.7 for comparison, showing a similar shaped distribu-

tion in each subgroup. As expected given the results of previous simulations regard-

ing treatment initiation based on observed CD4 cell counts27, for more than half

of patients (63 %) the mode of the posterior predictive distribution (ûi ) was greater

than the last observed CD4 count (where available within 6 months); the median dif-

ference for C D4l ast_obs − ûi was −18 cells/µL when transformed back to the original

measurement scale.

Predicted post-treatment ranges for CD4 cell counts based on Model4 are shown

in Figure 5.8 for patients with a ‘true’ CD4 counts at initiation of HAART of 200, 350

and 500 cells/µL. These charts further illustrate the model predictions that, in gen-

eral, patients with a higher CD4 cell count at treatment initiation will go on to show

a higher long-term maximum and will attain higher values more quickly after the
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Figure 5.6. Plots of φ1
(
u+

i

)
(a�c, relating to long-term maximum) and φ2

(
u+

i

)
(d�f, relating

to speed of response) for Model6. Graphs on the left of each row (a,d) show the �tted
functions for patients initiating treatment within 6months of seroconversion, those in the
centre (b,e) show the functions for patients initiating treatment beyond 6months but within
1 year and those on the right (c,f) show the functions for patients who started treatment
beyond 1 year. Pointwise 95% con�dence intervals for the functions are shown ( ).

start of treatment, but that response to treatment is rapid if it is initiated within 6

months of seroconversion regardless of baseline CD4. These charts also illustrate

that the model predicts considerable variability in response to treatment between

patients at any given baseline CD4 value. However, in the models presented in this

chapter we have not included variables such as patient age, gender and mode of in-

fection that may also be predictive of response to treatment, and so it is possible

that more fully developed models would include less unexplained variance in the

long-term response to treatment. The inclusion of such potential confounding vari-

ables may also affect estimates of the influence of baseline value of CD4 at treatment

initiation on each patient’s response to treatment. Equivalent plots for Model6 are

presented in Figure 5.9, showing a very similar overall pattern of predictions. One

interesting difference is that the inclusion of between-patient differences in variabil-

ity in Model6 leads to a more stable overall variance beyond around 2 years after

initiation of HAART, this is due to the much lower estimate of the H index (0.13 for

Model6 vs 0.38 for Model4) for the fractional Brownian motion process, which indi-

cates stronger reversion towards the mean level for each patient over time.

For Model6, estimates of the pre- and post-treatment degrees of freedom param-

eters (3.84 (95 % CI, 3.06–4.82) and 4.28 (3.4–5.38), respectively) indicate that there
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Figure 5.7. Kernel density plots (a�c) for the `true' baseline square root CD4 counts based on
Model4 and (d�f) histograms of the last observed square-root CD4 count before treatment.
(a�c) Kernel density plots for the `true' baseline square root CD4 counts for each individual
(ui ), approximating the posterior distribution of each as normal (with subject-speci�c stan-
dard deviation as estimated during model �tting), and (d�f) histograms of the last observed
square-root CD4 count before treatment for those individual in whom this was recorded within
6months of treatment initiation (n = 170, n = 141 and n = 486, respectively). Graphs in the
top row (a,d) relate to patients initiating treatment within 6months of seroconversion, those
in the centre row (b,e) relate to patients initiating treatment beyond 6months but within
1 year and those on the lower row (c,f) are for patients who started treatment beyond 1 year.
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Figure 5.8. Predictions for hypothetical patients made from �tted model. Plots of the
median ( ) and 5th and 95th centiles ( ) of CD4 counts predicted by Model4 for a
population of patients initiating highly active antiretroviral therapy (HAART) either within
6 months (a�c) or more than 1 year (d�f) from seroconversion, with `true' CD4 counts at
treatment initiation of: (a,d) 200, (b,e) 350 and (c,f) 500 cells/µL. The predicted ranges
include measurement error (alongside the stochastic process component and variance in the
subject-speci�c long-term maximum), explaining the variance present at time zero. The
ranges shown have been back-transformed from the model predictions generated on the
square-root scale.

are considerable between-patient differences in the variability of observations over

time. It is interesting to note that the correlation parameter between the pre- and

post-treatment latent scaling variables was positive, but only of moderate magni-

tude (ρ̂Mor an = 0.37 (0.19–0.52)), i.e. the degree of variability over time before and

after treatment for each patient shows a moderate positive correlation. It is also of

interest that the estimated H-index for the post-treatment fractional Brownian mo-

tion process in this model was much lower than that for the equivalent model with-

out the latent scaling variables (0.13 (0.11–0.16) vs 0.38 (0.29–0.48)), indicating that

although some patients show high variability in CD4 observations over time, suc-

cessive increments of the stochastic process are strongly negatively correlated and

there is an associated reversion of the process towards the underlying mean in each

patient. It is possible to use the modes of the posterior predictive distributions of the

latent scaling variables for each patient to identify those individuals with particularly

smooth or erratic patterns of CD4 counts over time; observations for the two patients

with the most extreme values obtained for the post-treatment latent scaling variable

are plotted in Figure 5.10.

104



COMBINED MODEL DEVELOPMENT

0

250

500

750

1000

1250

0 2 4 6
Time since HAART (years)

C
D

4 
co

un
t (

/µ
L)

(a)

0

250

500

750

1000

1250

0 2 4 6
Time since HAART (years)

C
D

4 
co

un
t (

/µ
L)

(b)

0

250

500

750

1000

1250

0 2 4 6
Time since HAART (years)

C
D

4 
co

un
t (

/µ
L)

(c)

0

250

500

750

1000

1250

0 2 4 6
Time since HAART (years)

C
D

4 
co

un
t (

/µ
L)

(d)

0

250

500

750

1000

1250

0 2 4 6
Time since HAART (years)

C
D

4 
co

un
t (

/µ
L)

(e)

0

250

500

750

1000

1250

0 2 4 6
Time since HAART (years)

C
D

4 
co

un
t (

/µ
L)

(f)

Figure 5.9. Predictions for hypothetical patients made from �tted model. Plots of the
median ( ) and 5th and 95th centiles ( ) of CD4 counts predicted by Model6 for a
population of patients initiating highly active antiretroviral therapy (HAART) either within
6 months (a�c) or more than 1 year (d�f) from seroconversion, with `true' CD4 counts at
treatment initiation of: (a,d) 200, (b,e) 350 and (c,f) 500 cells/µL. The predicted ranges
include measurement error (alongside the stochastic process component and variance in the
subject-speci�c long-term maximum), explaining the variance present at time zero. The
ranges shown have been back-transformed from the model predictions generated on the
square-root scale. The marginal distribution is assumed for the latent scaling variable for the
fractional Brownian motion process, i.e. without conditioning on any potential pre-treatment
information, and the combination of multivariate normal and t distributions is approximated
through averaging over 1000 draws from the relevant gamma distribution.
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Figure 5.10. Plots of CD4 counts (�) observed in the two patients with the most (a)
and least (b) erratic response to highly active antiretroviral therapy (HAART). Variability of
response was assessed as indicated by the modes of the posterior predictive distributions of
the post-treatment latent scaling variables (γ̂2:i ) obtained from Model6. The mode of the
posterior predictive distribution for the `true' baseline value (ûi ) is also shown in each case
(◦).
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5.12 Residual diagnostics and model checks

We present plots of residuals obtained from the fit of Model6 to the UK Register of

Seroconverters dataset. The approach taken is as described in Section 3.4.2. Firstly

we note that, for pre-treatment CD4 cell counts, the distribution for the full set of

observations for each patient is multivariate normal conditional on the value of the

latent scaling variable associated with the pre-treatment fractional Brownian motion

process:

ypr e:i = Xiβ+Zi bi +Wpr e:i +epr e:i

bi ∼ MV N (0,Ψ)

Wpr e:i |γ1:i ∼ MV N (0,
1

γ1:i
Σpr e:i )

epr e:i ∼ MV N (0, σ2Inpr e:i ).

We can therefore obtain an estimate of the pre-treatment marginal covariance

matrix specific to each patient based on the posterior predictive mode of their latent

scaling variable, γ̂1:i :

V̂pr e:i = Zi Ψ̂ZT
i + 1

γ̂1:i
Σ̂pr e:i + σ̂2Inpr e:i ,

or alternatively generate covariance matrices based on samples from the posterior

predictive distribution of γ1.

As discussed in Section 3.4.2, if the model parameters and the value of the scaling

variable were known, then the distribution of the transformed marginal residuals

using the inverse of the Cholesky decomposition of the covariance matrix for each

individual, Vpr e:i , would be normally and independently distributed with mean 0

and variance 1:

Vpr e:i = Li LT
i

L−1
i

(
ypr e:i −Xiβ

)∼ MV N
(
0, Ini

)
.

For post-treatment observations, the distribution for the full set of observations

for each patient is multivariate normal conditional on the value of both the true base-

line CD4 value and the latent scaling variable associated with the post-treatment

fractional Brownian motion process:

ypost :i |u+
i
= g

(
tpost :i ,u+

i ,τi
)+Wpost :i +epost :i

τi ∼ N (0,Ω)
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Wpost :i |γ2:i ∼ MV N (0,
1

γ2:i
Σpost :i )

epost :i ∼ MV N (0, σ2Inpost :i ).

As noted in Section 5.6.5 this forms a multivariate normal distribution conditional

on u+
i and γ2:i , given that g

(
tpost :i ,u+

i ,τi
)

is linear in τi . As such, a covariance matrix

can be constructed for the post-treatment observations of each patient based on the

posterior predictive modes of u+
i and γ2:i , or from samples from their joint posterior

predictive distribution, and Cholesky-transformed residuals can be calculated as for

the pre-treatment data.

We present plots summarising Cholesky-residuals conditional on multiple sam-

ples from the joint posterior predictive distribution of the latent variables using the

approximate multivariate normal distribution, as returned by the ADMB software.

For the latent scaling variables relating to the pre- and post-treatment stochastic

process components of the model, sampling was based on the bivariate normal a

and b variables as used for the Laplace approximation of the integral, with transfor-

mation to the necessary gamma variates as described in Section 5.7. Plots based on

1000 sets of samples are shown in Figures 5.11 and 5.12. These plots of residuals de-

rived from Model6 do not indicate substantial problems with the fitted model. For

the pre-treatment data (Figure 5.11), the appearance of the plots is very similar to

those obtained for the marginal multivariate-t distribution model fitted in Chapter

4. For the post-treatment data (Figure 5.12) the plot of mean squared residuals and

the Q–Q and semivariogram plots indicate near perfect fit of the model to the data,

whilst the mean residual plot (Figure 5.12a) does show a regular pattern in relation

to post-treatment time of minor deviations from the expected value of zero, suggest-

ing that some further fine-tuning of the shape of the post-treatment response curve

might be possible.

As a further check of the model structure developed, the fitted Model6 was used

to simulate pre- and post-treatment CD4 counts of a cohort of 100 patients. As we

have not developed a probabilistic model for the timing of initiation of treatment,

and in order to generate a range of different conditions, these patients were ran-

domised to initiate treatment either: (1) immediately at the time of seroconversion,

(2) 1 year after seroconversion or at the first observation below (3) 500, (4) 350 or (5)

200 cells/µL. Data were generated on the square-root(CD4) scale, and cut-off points

for initiation of treatment were accordingly transformed to this scale. Each patient,

up until the point of treatment initiation, was scheduled to be observed at 4-month

intervals from seroconversion; treatment was initiated at 8 years if the threshold for

a specific patient had not been triggered before this point. Following treatment ini-

tiation, observations were simulated after 1, 2, 3 and 4 months, and at 4-month in-
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Figure 5.11. Plots of the distribution of Cholesky-transformed residuals for pre-treatment
CD4 counts derived from Model6, based on 1000 simulations of the vector of latent vari-
ables γ1. In (a) and (b) box plots of mean values for each simulation are plotted grouped by
nearest multiple of 6 months. (c) Quantile�quantile plot for Cholesky-transformed residuals
with respect to a standard normal distribution; the dotted lines show the 2.5th, 50th and
97.5th percentiles of the sample quantiles for each theoretical quantile corresponding to the
total number of observations, the solid black line shows the sample quantiles derived using
the empirical Bayes estimate (γ̂1:i ) for each individual, with the line of equality also displayed
in grey. (d) Box plots of the distribution of mean semivariogram values, over multiple sim-
ulations of γ1, of Cholesky-transformed residuals with respect to di�erence in time between
observations, grouped by nearest multiple of 6 months.
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Figure 5.12. Plots of the distribution of Cholesky-transformed residuals resulting for post-
treatment CD4 counts derived from Model6, based on 1000 simulations of the vector of latent
variables u+ and γ2. In (a) and (b) box plots of mean values for each simulation are plotted
grouped by nearest multiple of 6 months. (c) Quantile�quantile plot for Cholesky-transformed
residuals with respect to a standard normal distribution; the dotted lines show the 2.5th, 50th

and 97.5th percentiles of the sample quantiles for each theoretical quantile corresponding to
the total number of observations, the solid black line shows the sample quantiles derived using
the empirical Bayes estimates (û+

i and γ̂2:i ) for each individual, with the line of equality also
displayed in grey. (d) Box plots of the distribution of mean semivariogram values, over multiple
simulations of u+ and γ2, of Cholesky-transformed residuals with respect to di�erence in time
between observations, grouped by nearest multiple of 6 months.
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tervals thereafter up until a maximum of 5 years. A plot of CD4 counts from the

simulated cohort is provided in Figure 5.13. This plot is visually consistent with the

equivalent plot of 100 randomly selected patients from the real dataset (Figure 5.1,

page 82), although in the artificial dataset no allowance has been made for irregular

timing of observations or of loss-to follow-up or administrative censoring of patients.

This comparison could be described as a posterior predictive check77.
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Figure 5.13. Plot of CD4 counts relative to the initiation of HAART for a simulated cohort
of 100 patients based on Model6.

5.13 Simulation study

In this section we present simulation analyses based on the fitted models. In Sub-

section 5.13.1 we refit combined models to simulated pre- and post-treatment data,

providing a check that the statistical methodology proposed can be used to draw ap-

propriate inferences regarding the association between the true baseline value of a

biomarker and its trajectory after initiation of treatment. In Subsection 5.13.2 we

use simulated data to further explore potential problems in analysing response to

treatment conditional on an observed baseline value. The results obtained are later

discussed in Chapter 6 in relation to inconsistent findings reported in the applied

literature regarding the association between observed baseline CD4 count and the

absolute increases observed after initiation of treatment.
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5.13.1 Model fitting to simulated data

In order to check that the use of natural cubic splines would be able to recover non-

linear functions for φ1
(
u+

i

)
and φ2

(
u+

i

)
, we simulated cohorts of patients based on

a modified version of Model6. The point estimates of parameters were used as ob-

tained from the UK Register of Seroconverters dataset, but to simplify the analysis

the recovery of CD4 counts after initiation of treatment was assumed to depend only

on the ‘true’ CD4 value at baseline and not on the time elapsed from seroconversion

to initiation. Furthermore, φ1
(
u+

i

)
and φ2

(
u+

i

)
were modified to follow non-linear

sigmoidal functions:

φ1
(
u+

i

)= 15+ 15

1+exp(−0.5(u+
i −15))

φ2
(
u+

i

)= 2

1+exp(−0.5(u+
i −20))

.

Twelve cohorts of 250 patients were generated, using the observation and treat-

ment initiation schedule as described in Section 5.12 with reference to Figure 5.13,

and Model3 was fitted to each cohort — i.e. with a natural cubic spline function to

approximate φ1
(
u+

i

)
and φ2

(
u+

i

)
, without any dependence on the time from sero-

conversion to treatment initiation and without accounting for between-patient dif-

ferences in variability over time. The latter discrepancy with the model used to gen-

erate the data was decided because we were not able to fit link functions using nat-

ural cubic splines and account for between-patient differences in variability within

the same model when analysing the real data, likely because of the need to rely on

the less accurate Laplace approximation to the marginal likelihood for such models,

but we wanted the simulated data to reflect the characteristics of the observed data.

The results of this simulation are relevant to the analyses presented in Chapters 6 and

7, in which we largely focus on inferences from statistical models for CD4 counts in

which between-patient differences in variability were not taken into account. The

number of simulated cohorts was chosen for convenience as the maximum number

of separate processes that could be initiated from R using the cluster system avail-

able, and also as a number that would allow simultaneous visual inspection of the

fitted models.

Convergence of maximum likelihood estimates of the model parameters was achieved

for 10/12 of these simulated cohorts. The fitted functions for φ1
(
u+

i

)
and φ2

(
u+

i

)
in

each case are shown in Figures 5.14 and 5.15, respectively. A histogram of the ‘true’

CD4 values at treatment initiation for each patient in the first cohort is shown in Fig-

ure 5.16.

The plots of the fitted functions for φ1
(
u+

i

)
and φ2

(
u+

i

)
indicate that natural cu-

bic splines can be used to approximate non-linear relationships between latent vari-
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ables, even if the probability model as a whole is not completely correctly specified.

However, the natural cubic splines are constrained to a linear function beyond the

upper and lower boundary knots, and this clearly affects the ability of the approach

to model response to treatment in patients with very high or very low baseline CD4

at treatment initiation. Adding more knots to the natural cubic spline basis would

allow more flexibility in the fitted function, but at the cost of reduced computational

stability. Hence these plots indicate that caution is required when interpreting pre-

dictions or attempting to draw inferences regarding patients with unusually high or

low CD4 values at treatment initiation, and reinforce the general principle that fitted

relationships should not be extrapolated beyond the range of values observed in the

dataset under analysis.
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Figure 5.14. Plots of estimates of φ1
(
u+

i

)
(black curved line, with dotted 95% CI) obtained

by �tting Model3 to 12 simulated cohorts of 250 patients. The function speci�ed as used
to generate the data is shown in red. The vertical black lines show the positions of knots for
restricted natural cubic spline basis.
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Figure 5.15. Plots of estimates of φ2
(
u+

i

)
(black curved line, with dotted 95% CI) obtained

by �tting Model3 to 12 simulated cohorts of 250 patients. The function speci�ed as used
to generate the data is shown in red. The vertical black lines show the positions of knots for
restricted natural cubic spline basis.

5.13.2 Measurement errors at treatment initiation

As noted in Section 5.3, Babiker et al.27 have demonstrated that if treatment is initi-

ated conditionally on the observed value of a biomarker that is monitored over time,

then the observation at treatment initiation can provide a biased estimate of the

‘true’ underlying value. In this section, we use simulations based on the structure

and fitted parameters of Model6 to explore how this could affect inferences regard-

ing the associations between the baseline value of the biomarker, time from infection

to treatment initiation and the characteristics of post-treatment recovery. To simplify

this investigation, we assume that time from seroconversion to treatment initiation

does not affect the characteristics of response to treatment and use the fitted link
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Figure 5.16. Histogram of `true' CD4 values at treatment initiation for each patient in the
�rst cohort of the simulation study described in Section 5.13.1.

functions for treatment initiation beyond 1 year from seroconversion for all patients.

We use the combination of observation and treatment initiation rules as specified

in Section 5.12. For convenience, we repeat here that simulated patients were ran-

domised to initiate treatment either: (1) immediately at the time of seroconversion,

(2) 1 year after seroconversion or at the first observation below (3) 500, (4) 350 or (5)

200 cells/µL.

For those patients that initiate treatment without reference to their CD4 observa-

tions (i.e. following rule (1) or (2)), the observed CD4 count will provide an unbiased

estimate of the true underlying value (without measurement error). However, for pa-

tients in which treatment is initiated based on their CD4 count observations (i.e. fol-

lowing rule (3), (4) or (5)), the observed CD4 cell count will show a negative bias. Un-

der the simulation set-up described here, all patients who initiate treatment at more

than 1 year from the date of seroconversion will therefore be expected to exhibit a

negative bias in their baseline observed CD4 count, whereas for the majority of pa-

tients initiating treatment within 1 year from seroconversion, the observed baseline

CD4 count will be unbiased with respect to the true underlying value. Although this

simulation represents a simplification of the complex combination of clinical and

historical factors that have influenced the timing of treatment initiation for the pa-

tients in real observational datasets, it provides an illustration of how measurement

errors could affect inferences in this setting.
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We created a simulated dataset of 240 000 patients, and compared the last ob-

served CD4 count before treatment initiation to the ‘true’ value (without any mea-

surement error) in each individual (on the square root scale on which the model was

fitted). When simulated patients were stratified by their time from seroconversion

to treatment initiation, those with an interval of ≤ 6 months showed a small neg-

ative bias in their observed baseline CD4 count (median difference=-0.26 , IQR: -

1.15 to 0.63, n=96 324) as did those with an interval to treatment of >6 months but

≤ 1 year (median difference=-0.22 , IQR: -1.13 to 0.69, n=64 621) whereas those that

initiated treatment beyond 1 year showed a more substantial negative bias (median

difference=-0.85 , IQR: -1.70 to -0.02, n=79 055). Boxplots of the differences between

observed baseline CD4 counts and the underlying true value (according to the model

used for simulation) stratified by timing of treatment initiation are shown in Figure

5.17. These simulated data can also be used to demonstrate a general ‘regression to

the mean’ effect, regardless of treatment initiation rule, in that those patients with a

particularly low observed CD4 count at treatment initiation (i.e. around <15 on the

square-root scale) are likely to in fact have a higher true baseline value, whilst the op-

posite is true for patients with a particularly high observed baseline CD4 count (i.e.

around >25 on the square-root scale), this is demonstrated in Figure 5.18.

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●
●●

●●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●●●

●●●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●●
●

●

●
●

●

●●
●

●
●

●

●

●

●
●
●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●
●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●
●
●

●

●●

●
●
●

●
●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●
●
●●●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●
●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●
●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●●

●●
●●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−6

−3

0

3

6

Within 6 months Between 6 months and 1 year Beyond 1 year
Time of treatment initiation

O
bs

er
ve

d 
ba

se
lin

e 
C

D
4 

co
un

t −
 T

ru
e 

va
lu

e 
(S

Q
R

T
 s

ca
le

)

Figure 5.17. Boxplots of di�erences between observed baseline CD4 counts and the under-
lying true value strati�ed by timing of treatment initiation for the simulation study described
in Section 5.13.2.

In Figure 5.19, average post-treatment CD4 counts (on the square-root scale)

from this simulation are shown with stratification by baseline CD4 observation (150 –
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Figure 5.18. Scatter plot of di�erences between observed baseline CD4 count and the under-
lying true value against the observed baseline CD4 count for the simulation study described
in Section 5.13.2. Datapoints are shown for a random selection of 10 000 of the simulated
patients.

250 vs 450–550 cells/µL) and by time from seroconversion to treatment initiation. In

the simulation, the characteristics of response to treatment were dependent on the

‘true’ baseline CD4 count but not on timing of initiation itself. However, stratification

by timing of treatment leads to differences in the distributions of both true and ob-

served baseline CD4 counts between the groups defined within each stratum of base-

line CD4. For the lower CD4 stratum considered (i.e. 150 – 250 cells/µL), there are

differences in the mean observed CD4 count at baseline between the groups defined

by timing of initiation that persist throughout the post-treatment period, whereas

for the higher CD4 stratum considered (i.e. 450 – 550 cells/µL) there are differences

at baseline that disappear after treatment initiation. The scale of the observed differ-

ences between groups in this simulation (in which no effect is assigned to the timing

of treatment initiation, conditional on ‘true’ CD4) are modest, but the simulation

nonetheless illustrates some of the problems faced in unpicking factors associated

with treatment response conditional on the baseline value of the variable under in-

vestigation.

A number of studies in the literature investigating response to HAART have anal-

ysed the change from the observed CD4 count at baseline to the value observed

after a given number of months, for example Smith et al.123 report factors associ-

ated with the observed change at 3 months. However, as we have discussed, the ob-
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Figure 5.19. Mean observed CD4 counts following initiation of treatment resulting from
the simulation study described in Section 5.13.2. Plots are shown for patients with a last
observed CD4 count of (a) 150 � 250 or (b) 450�550 cells/µL, and each plot is strati�ed by
treatment initiation: within 6months of seroconversion ( ), beyond 6months but within
1 year ( ) and beyond 1 year ( ). Whiskers show the 95%CI of the mean for each group
at each point in time (re�ecting sampling variability in the simulation as de�ned).

served baseline CD4 count can provide a biased estimate of the true underlying value

because of the combined influence of selective treatment initiation and regression

to the mean, and the extent of the bias for any given observed baseline value will

depend on the pre-treatment observation and treatment initiation schedules for a

given population. For the simulated cohort described in this section, we present

in Figure 5.20 plots of observed changes in CD4 count at 3 months and the equiva-

lent change that would have been observed had the true baseline value been known.

For this model and set of treatment initiation rules, a maximum median change of

around 115 cells/µL is observed for an observed baseline value of 425 cells/µL (Fig-

ure 5.20a). However, were it possible to assess the observed change from the true

baseline value, a maximum increase would be observed from a baseline value of 625

cells/µL (Figure 5.20b). This shows that caution is required in interpreting changes

from observed baseline values in such a situation.
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Figure 5.20. Plots of the change from (a) observed baseline CD4 count and (b) true
baseline CD4 count at 3months after initiation of treatment resulting from the simulation
study described in Section 5.13.2. Individual datapoints are shown for a random selection of
10 000 of the simulated patients (�), and a smoothed graph of the median change (based on
all simulated patients) is also shown ( ).

5.14 Discussion

The statistical methodology developed in this chapter provides a novel framework

for the combined analysis of pre- and post-treatment longitudinal biomarker data.

The approach proposed has the advantage of making use of all available data, does

not require an a priori assumption regarding the distribution of baseline values at

treatment across the studied population as a whole and allows a flexible choice of

functions to link the pre- and post-treatment trajectories of the biomarker under in-

vestigation for each patient. When applied to CD4 data from the UK Register of Se-

roconverters cohort, the resulting fitted models provide evidence of a positive asso-

ciation between baseline CD4 count at initiation of HAART and the long-term max-

imum achieved by each patient, which is consistent with previous published liter-

ature on this topic81;108–111. In addition the fitted models suggest that initiation of

HAART closer to the date of HIV seroconversion is associated with a more rapid re-

sponse to treatment, regardless of the baseline CD4 value. This finding warrants

further investigation with inclusion of additional factors that are thought to be as-

sociated with response to treatment into the modelling framework; this extension is

straightforward using the methodology developed and is implemented using a larger

dataset in Chapter 6.

The standard non-linear mixed effects model approach in this situation, ignoring

observations before the start of treatment, would require rigid assumptions regard-
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ing the distribution of the biomarker variable at treatment initiation and its relation-

ship to subsequent post-treatment observations, i.e. typically that baseline values

and the long-term maximum value for each patient follow a bivariate normal dis-

tribution. The modelling strategy that we have developed allows greater flexibility

in the link between baseline and post-treatment maximum values of the biomarker,

and does not restrict the shape of the overall marginal distribution of baseline values

in the studied population.

Alternatively, the standard use of baseline observations as a predictive variable

also discards any information from measurements obtained prior to this point in

time and would require a separate imputation model for missing values of the base-

line measurement, which would not be straightforward to define for observational

data with highly irregular number and timing of measurements for each patient.

Furthermore, it is not obvious how the primary model for multiple post-treatment

observations should be structured in this context, as it would be overly restrictive

to assume a constant fixed effect coefficient for the baseline observation for all time

points after the initiation of treatment. One option is to stratify the modelled mean

according to intervals of baseline observations81;111, but this discards some of the

information provided by the baseline value as a continuous variable. Geng et al.124

addressed this issue by fitting a linear mixed model for post-treatment CD4 counts

that included a combination of linear splines with knots at 4 and 12 months for post-

treatment time, a restricted cubic spline basis for the effect of pre-treatment CD4

count and an interaction between these parts of the model. However, baseline ob-

servations at treatment initiation are subject to measurement error, with the distri-

bution of these errors dependent on both the treatment initiation rules that have

been implemented and on the value of the observation relative to the underlying

distribution, which further complicates model fitting and interpretation.

The proposed model for the analysis of pre- and post-treatment CD4 data has

been structured so that the estimated parameters of the different components of

the model each have a clear practical interpretation, i.e. it is of direct interest to

clinicians to know how baseline CD4 and time from seroconversion at initiation of

HAART are associated with the speed and maximal level of treatment response that

can be expected. If further patient variables were added to the functions that deter-

mine the characteristics of response to treatment then the modelled effects would

be independent of the influence of the true baseline value of the biomarker, making

interpretation of estimated coefficients relatively simple. If a mixed effects model is

fitted to only baseline and post-treatment measurements, then assessment of the in-

fluence of a covariable on treatment response conditional on a baseline observation

requires an additional stage of statistical adjustment125.

The cost of using a combined model for pre- and post-treatment data is that we
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are required to assume that the proposed model structure provides an adequate de-

scription of the data under analysis. The requirement for strong assumptions regard-

ing the correctness of model structure has been used as an argument against the use

of integrated models for baseline and treatment response data12. In the present anal-

ysis, the motivation for the inclusion of pre- and post-treatment stochastic process

components in the models and for the use of natural cubic spline functions to link

baseline CD4 and characteristics of the treatment response trajectory was to max-

imise model flexibility and therefore provide an optimal fit to the data. The residual

plots produced indicate a good fit of the final model to the data.

An advantage of the extension of the non-linear mixed effects modelling approach

as developed in this chapter is that the nature of the variability in biomarker obser-

vations over time within each patient can be investigated, whereas this is often lost

when using approaches that only consider population mean values or the marginal

distribution of observations across the population at each point in time. A focus on

realistic modelling of the patterns of variation in the data is also required in order to

provide valid inference under the ‘missing at random’ assumption for missing data

and when the timing of observations is dependent on previous outcomes101. A lim-

itation of the present analysis is that we have not considered the possibility of cen-

soring being related to underlying latent variable terms rather than just the observed

CD4 counts. Such joint modelling of longitudinal and event time data126;127 would

provide useful information regarding the patterns of drop-out from the cohort, but

would add further to the computational complexity of estimation.

The fitted models in the present analysis show that there is considerable unex-

plained variance in the long-term asymptotic maximal response to treatment for

each patient, even after accounting for baseline CD4 and time from seroconversion

to initiation of HAART, although this might be reduced by the inclusion of additional

patient and drug regimen variables into the model. There is also considerable er-

ratic post-treatment variability over time, represented by the fractional Brownian

motion process as introduced for the analysis of pre-treatment CD4 data in Chapter

4. The parameter estimates for the model in which the stochastic process compo-

nents were generalised to follow marginal multivariate-t distributions indicate sub-

stantial between-patient differences in their variability over time, with a moderate

positive association between the degree of pre- and post-treatment variability within

each patient, which are novel findings in this context. The fact that the models fitted

follow a structure that can accommodate any combination of number and timing

of observations in each patient means that they can be readily used for simulation

studies of patient cohorts.

The methodology developed in this chapter could also be applied to other medi-

cal settings in which an intervention is triggered following monitoring of a biomarker
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of interest, and in which the response to treatment may be conditional on the state

of the patient (as indicated by the value of the biomarker) at the time of treatment

initiation. Seroconverter cohorts have a special status in HIV research, and in other

disease settings the ‘zero time’ for pre-treatment observations might be time of diag-

nosis or another clinically significant event. The framework proposed could be ap-

plied with different choice of pre- and post-treatment model components, but those

demonstrated may be a natural choice in many settings.
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6 Application of combined model to CASCADE dataset

6.1 Disclaimer regarding collaborative work

Following the requirements for applied research using data from the CASCADE co-

hort, the analyses in this chapter and in Chapter 7 were planned and interpreted

in collaboration with the following external investigators: Andrew Phillips, M. John

Gill, Ronald Geskus, Giota Touloumi, James Young and Heiner Bucher. A consen-

sus decision was made regarding the inclusion criteria for the analysis and for the

specification and coding of potential predictive factors. However, I completed all of

the work relating to the development of the modelling framework, programming and

processing and presentation of the results. The collaborators suggested relevant pa-

pers from the literature for consideration, but I alone have written the discussion of

the results obtained presented in this thesis.

6.2 Dataset and estimation

We now apply the modelling framework developed in Chapter 5 to the full CASCADE

dataset of seroconverters. As in Chapter 5 we restrict our analysis to patients with an

estimated date of HIV seroconversion during or after 2003, and patients who started

a suboptimal regimen of antiretroviral drugs prior to HAART were excluded as were

patients without at least one post-treatment CD4 count recorded. Data were in-

cluded up to March 2014 (with the analysis using a more recently updated CASCADE

dataset than that in Chapter 4).

HAART is defined by a regimen of at least three drugs, with at least two different

classes (unless abacavir or tenofovir is used in a ‘3N’ regimen with three NRTIs). The

non-nucleoside reverse-transcriptase inhibitors (NNRTI) regimen includes at least

one NNRTI and at least one NRTI. The ‘PI’ regimen includes at least one ritonavir-

boosted protease inhibitor (PI) with at least one NRTI. The integrase strand transfer

inhibitor (INSTI) category includes at least one integrase inhibitor with any combi-

nation of NRTI, NNRTI and PI.

Applying these conditions results in a cohort of 8175 patients. We are interested

in modelling response to HAART as a function of multiple patient characteristics

and so we also exclude patients in whom no VL measurement was recorded within

6 months before the start of HAART (n = 818) and those for whom the mode of in-

fection is unknown (n = 326). Because there is some overlap between these groups,

the resulting cohort for analysis includes a total of 7065 patients, with 37 728 pre-

treatment and 55 961 post-treatment CD4 count observations. Ideally the missing

data would be imputed rather than these patients being excluded, but doing this

appropriately in the present setting would be very challenging and the number of
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exclusions represents a reasonably small proportion of the total number of patients

(13.6 %). However, a further analysis in which the patients with missing pre-treatment

VL are included is presented in Chapter 7. Where the recorded pre-treatment VL

measurement is below the lower limit of detection for the assay used we impute the

value as a half of the lower limit, assuming this limit to be 50 copies/mL (the most

common value) if this is itself not recorded.

We are also interested in whether a diagnosis of hepatitis C virus (HCV) prior to

initiation of HAART is predictive of recovery in CD4 counts. However, there was no

HCV test recorded prior to HAART in a substantial proportion of patients in the co-

hort (1202/7065) and as such it was decided not to exclude these patients but rather

to treat them as a separate grouping in the analysis along with those with a positive

(n = 387) or negative (n = 5476) HCV test. Patient characteristics are summarised in

Table 6.1.

As in Section 5.2, we have censored patients at recorded interruption of HAART

(including switch to suboptimal treatment) for more than 1 week, but have not cen-

sored at change to HAART regimen. Analyses are first conducted without censoring

due to virological failure (as in Chapter 5). However, we also conducted analyses

in which post-treatment observations are censored at the observation of detectable

VL beyond 6 months after the initiation of HAART. The rationale for this was to pro-

vide an estimate of CD4 recovery conditional on perfect adherence to treatment, un-

der the assumption that most occurrences of virological failure in patients who have

initiated HAART are due to imperfect adherence to their regimen. Due to the re-

quirement for at least one post-treatment CD4 count, this censoring led to a slightly

smaller total number of 7015 patients for analysis, with 37 526 pre-treatment and

40 921 post-treatment CD4 count observations. Of these patients, 2275 (32.4 %) had

virological failure observed at some point in time, at a median of 0.90 years (IQR,

0.65–1.57 years).

The primary analysis relates to models fitted with a latent variable for each pa-

tient only for the ‘true’ baseline CD4 value (on the square-root scale) at initiation

of HAART, with maximum likelihood estimation carried out using 10-point adaptive

Gauss–Hermite quadrature; this is used rather than the 15-point adaptive Gauss–

Hermite quadrature as in Chapter 5 in order to make the analysis feasible using the

larger dataset (refitting of models in Chapter 5 using 10-point quadrature showed

only negligible differences). Model fitting was also attempted with inclusion of between-

patient differences in variability over time as described in Section 5.7, with the Laplace

approximation used in such cases. As in Chapter 5, maximum likelihood estimation

was carried out using the random effects mode of the ADMB software, run on the

UCL Legion High Performance Computing Facility.

123



APPLICATION OF COMBINED MODEL

Table 6.1. Demographic and treatment characteristics of patients included in the primary
analysis (n=7065)

Characteristic n (%) or median (IQR)

Calendar date of SC 15 Sep 2007 (3 Jul 2005 – 17 Jan 2010)
SC date estimated by:

SC illness 232 (3.3)
lab evidence 1371 (19.4)
mid-point 5462 (77.3)

Interval between HIV-1 tests (years)* 0.84 (0.44–1.5)
Infection group:

Male homosexual 5443 (77.0)
Male heterosexual 667 (9.4)
Male IDU 151 (2.1)
Female heterosexual 758 (10.7)
Female IDU 46 (0.7)

Pre-HAART VL (log10(copies/mL)) 4.82 (4.25–5.32)
Age at HAART initiation (years) 36.1 (29.9–43.5)
Pre-HAART AIDS Dx 204 (2.9)
Pre-HAART HCV test:

+ve 387 (5.5)
–ve 5476 (77.5)
not available 1202 (17.0)

Time from SC to HAART (years) 1.45 (0.67–2.82)
0≤ttr t≤ 0.5 1366 (19.3)
0.5<ttr t≤ 1.0 1170 (16.6)
1.0< ttr t 4529 (64.1)

HAART regimen:
NNRTI 2998 (42.4)
rb-PI 2485 (35.2)
INSTI 438 (6.2)
other 1144 (16.2)

3N 862 (75.3)
other PI 226 (19.8)
fusion inhibitor 43 (3.8)
other classification 13 (1.1)

n pre-HAART CD4 counts 4 (2–7)
n post-HAART CD4 counts 6 (3–11)
Time to last recorded post-HAART CD4 count (years)† 1.79 (0.74–3.41)

Mid-point estimates of seroconversion date are used for data shown in this table. *Of those
used for mid-point estimates of SC date. †From date of HAART initiation, of those
observations included in the analysis. 3N, triple nucleoside analog reverse-transcriptase
inhibitors; AIDS, acquired immune deficiency syndrome; Dx, diagnosis; HAART, highly
active antiretroviral therapy; HCV, hepatitis C virus; IDU, injecting drug user; INSTI,
integrase strand transfer inhibitor; IQR, interquartile range; NNRTI, non-nucleoside
reverse-transcriptase inhibitor; PI, protease inhibitor; rb-PI, ritonavir-boosted PI; SC,
seroconversion; ttr t , time from SC to HAART (years).
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6.3 Model structure and hypothesis tests

Given the much larger cohort of patients in this analysis in comparison to that pre-

sented in Chapter 5, we allow greater flexibility in the shape of the asymptotic recov-

ery curve. This adjustment was made in response to feedback from a collaborator on

the analysis (Andrew Phillips) who felt that CD4 counts continue to slowly improve,

on average, many years after the initiation of HAART, rather than levelling off as im-

plied by the recovery curve used in Chapter 5. We use an extension to the asymptotic

growth curve attributed to Janoshek and Sager128–130:

g
(
tpost ,u+

i

)=φ1:i +
(
u+

i −φ1:i
)

exp
(
−exp

(
φ2:i

)
t D

post

)
.

This function matches that given in Section 5.6.1 with an additional power transfor-

mation of the post-treatment time variable tpost by exponent D , a parameter to be

estimated with value D > 0. For values of D > 1 the growth curve is sigmoidal, for

D = 1 growth follows a standard asymptotic curve and for D < 1 growth is more rapid

at time points closer to zero. The φ1:i and φ2:i terms still reflect long-term maximum

and speed of recovery, respectively, but parameter estimates may not be straightfor-

ward to interpret directly if recovery does not reach the modelled asymptotic maxi-

mum within the time-frame under consideration (i.e. if substantial recovery in CD4

counts is still ongoing beyond around 5 years after initiation of HAART).

Given the accurate approximation to the marginal log-likelihood for each fitted

model in the primary analysis (with a latent variable term only included for the ‘true’

baseline), statistical hypothesis tests for comparison of nested models are carried

out using generalised likelihood-ratio tests. We initially fit a model in which the post-

treatment recovery in CD4 count follows a standard asymptotic curve, for which the

long-term maximum and speed of response are each linearly dependent on the ‘true’

baseline CD4 value (u+) but not on any other patient or treatment characteristics. We

then test whether the Janoshek–Sager curve provides a better fit to the data. Follow-

ing Chapter 5, we subsequently stratify the functions that specify the dependence of

φ1:i and φ2:i on u+
i according to whether treatment was initiated within 6 months,

beyond 6 months and within 1 year or beyond 1 year from the estimated date of se-

roconversion.

We consider whether VL before treatment initiation is predictive of the speed of

recovery in CD4 counts or long-term maximum; VL (in copies/mL) is transformed to

the log10 scale and used to generate a natural cubic spline basis with boundary and

internal knots at (3,4,4.7,5,6), no intercept is included (as this would not be identi-

fiable) and the basis is centred at 4.7 (i.e. log10 (50000)), which results in four model

parameters relating to φ1:i and an additional four relating to φ2:i . Sets of parame-

ters relating to groupings of patients determined by gender and mode of infection
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are then added to the model; we have combined these characteristics into a single

step in model development because of the inherent dependence between gender

and mode of infection (i.e. the majority of the cohort are homosexual men, but there

is not an equivalent group of women) and the potential for gender differences to vary

according to whether the patient is an injecting drug user (IDU). Male homosexual

patients were treated as the reference group (n = 5443), with parameters added to

the models for φ1:i and φ2:i for heterosexual men and women (n = 667 and n = 758,

respectively) and male and female IDUs (n = 151 and n = 46, respectively).

Patient age at treatment (in years) is then added to the models forφ1:i andφ2:i us-

ing a natural cubic spline basis and knots at (25,31,36,41,51), approximately equiv-

alent to the 10th, 30th, 50th, 70th and 90th centiles. As for VL there is no intercept,

and so four parameters are added to the model for both φ1:i and φ2:i , and the ba-

sis is centred at 36 years. Parameters relating to the diagnosis of an AIDS-defining

illness prior to initiation of HAART (n = 204) are then added, followed by parame-

ters linked to either a positive test for HCV (n = 387) or no record of a test for HCV

(n = 1202) prior to HAART. The predictive value of HAART regimen classification at

initiation was then assessed, with patients grouped with NNRTI regimen as reference

(n = 2998), and parameters added relating to ritonavir-boosted PI (n = 2485), INSTI

(n = 438) or other treatment regimens (n = 1144).

After the addition of the specified patient and treatment characteristics to the

model, the functions linking (square-root) baseline CD4 value and the speed and

long-term maximum of recovery were generalised (from a linear relationship) using

a natural cubic spline basis with knots at 15.5, 17.5, 19.5 and 22 (stratified by time

from estimated date of seroconversion to treatment initiation, as in Chapter 5). This

was done after the addition of the patient characteristics to the model because the

combination of a large number of additional parameters (12) and the use of natural

cubic splines applied to a latent variable term increased the required computation

time to fit the model up to a level that was close to the maximum available (72 hours).

6.4 Results without censoring due to virological failure

The models fitted to the full CASCADE dataset (without censoring related to VL) are

summarised in Table 6.2. Generalising the baseline model (Mod1) so that CD4 recov-

ery followed a Janoshek–Sager curve (Mod2) led to a highly significant improvement

in model fit (2∆`2422 for 1 parameter, P < 0.0001), and so this extension to the model

was maintained. As was found in Chapter 5, stratifying the functions linking base-

line CD4 to recovery by the time elapsed from estimated date of seroconversion to

treatment initiation also led to a highly significant improvement in model fit (Mod3;

2∆`608 for 8 parameters; P < 0.0001). A further highly significant improvement in
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model fit was found when VL prior to treatment initiation was added as a predictor

(Mod4; 2∆`578 for 8 parameters; P < 0.0001). Adding each of the remaining patient

and drug regimen characteristics to the model as predictors (Mod5–Mod9) led to sta-

tistically significant improvements in model fit (with P < 0.01 in all cases, and cor-

responding reductions in AIC); however, the improvement in log-likelihood for each

of these models was modest relative to the size of the dataset under investigation,

and no further improvements in BIC were seen. Similarly, the use of natural cubic

splines to create more flexible link functions between baseline CD4 and the nature

of post-treatment recovery led to a statistically significant improvement in model fit

(Mod10 v s Mod9; 2∆`68 for 12 parameters; P < 0.0001), but not a reduction in BIC.

Table 6.2. Summary of �tted combined models for CD4 cell counts before and after the
initiation of highly active antiretroviral therapy (HAART) in patients from the CASCADE
cohort. All models shown are nested within that described in the row below.

Model Predictors Curve npar s ` AIC BIC 2∆`

Mod1 Linear-u Asym. 15 -229390 458810 458952 N A
Mod2 Linear-u JS 16 -228179 456390 456541 2422
Mod3 As above + trt-time grp JS 24 -227875 455798 456025 608
Mod4 As above + baseline VL JS 32 -227586 455236 455538* 578
Mod5 As above + gender/inf grp JS 40 -227571 455222 455600 30
Mod6 As above + age JS 48 -227556 455208 455661 30
Mod7 As above + AIDS Dx JS 50 -227543 455186 455658 26
Mod8 As above + HCV Dx JS 54 -227534 455176 455686 18
Mod9 As above + trt regimen JS 60 -227505 455130 455697 58
Mod10 As above + NCS-u JS 72 -227471 455086* 455766 68

The ‘Predictors’ field lists variables included in the functions to determine both long-term
maximum (φ1) and speed of recovery (φ2), and ‘Curve’ gives shape of expected recovery
following HAART. ‘trt-time grp’ denotes stratification of functions for long-term maximum
and speed of recovery in terms of baseline CD4 at treatment initiation according to time
elapsed from seroconversion to treatment. *Lowest value of AIC/BIC for set of models. ‘2∆`’
denotes differences in 2×log-likelihood in comparison to model described in the row above
in each case. AIC, Akaike information criterion; AIDS, acquired immune deficiency
syndrome; Asym., asymptotic; BIC, Bayesian information criterion; Dx, diagnosis prior to
HAART; grp, group; HCV, hepatitis C virus; inf, mode of infection; JS, Janoshek–Sager; `,
log-likelihood of model fit; NA, not applicable; NCS, natural cubic spline; npar s , number of
parameters in model; trt, treatment; VL, viral load.

Although it seems therefore that Mod4 might provide a more parsimonious model

for response to treatment, we further investigate the implications of the fitted Mod10

to evaluate the role of patient and drug regimen characteristics to predict response

to HAART. Parameter estimates for Mod10 are given in Table 6.3. Direct interpreta-

tion of the parameter estimates is complicated for many of the patient characteris-

tics by the fact that the sign (i.e.+/−) of the effect on long-term maximum CD4 is

opposite for that on speed of recovery, and so it is not immediately obvious whether
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or not an associated benefit is predicted. This problem is compounded by the fact

that the D parameter for the Janoshek–Sager curve was estimated to be less than one

(D̂=0.42 for Mod10), indicating a rapid early response to treatment but with a very

gradual later response; this has the effect that the modelled long-term maximum for

any given patient is not attained within the time-frame for the available data for this

analysis, and so the parameters relating to ‘long-term maximum’ and ‘speed of re-

covery’ cannot be interpreted in isolation. As such, evaluation of the fitted model

is focused on generating and comparing predicted recovery curves for hypothetical

patients. However, we start by inspecting the fitted natural cubic spline functions for

baseline CD4, VL prior to treatment initiation and patient age.

The link functions for φ1 and φ2 in terms of baseline CD4 (u+
i ), and stratified

by elapsed time from estimated date of seroconversion to initiation of HAART fitted

in Mod10 are shown in Figure 6.1. As found in the more limited analysis in Chap-

ter 5, both the long-term maximum and speed of recovery were positively associated

with the baseline ‘true’ CD4 count, and those patients that initiated treatment within

6 months of seroconversion were found to show a more rapid recovery for a given

baseline CD4 count. The effect of pre-treatment VL on φ1 and φ2 is plotted in Figure

6.2, VL does not appear to predict the long-term maximum CD4 count after treat-

ment initiation, but higher than average VL values do seem to predict a substantially

higher speed of recovery. Patient age at treatment initiation was estimated to have

little effect on long-term maximum CD4, and greater age was found to be associated

with a small reduction in the speed of recovery (Figure 6.3).

The predicted median recovery in CD4 counts following initiation of HAART for

a series of hypothetical patients is presented in Figures 6.4 and 6.5. In Figure 6.4 pre-

dictions are shown according to ‘true’ baseline CD4 and time elapsed from estimated

date of seroconversion to treatment initiation, again demonstrating the link between

baseline CD4 and long-term maximum. The plots also demonstrate that the use of

the Janoshek–Sager curve results in a model that predicts (on average) gradual in-

creases in CD4 beyond 5 years from the initiation of HAART, even amongst those pa-

tients with a high baseline value. The gain in speed of recovery associated with early

initiation of HAART appears to be only moderate, but high VL prior to treatment is

also strongly predictive of a rapid response as shown in Figure 6.5a. VL shows a peak

close to the date of seroconversion (e.g. Pantazis et al.127), and so high VL measure-

ments might be acting as a marker that any given patient is close to their date of

seroconversion. The CASCADE dataset includes patients with up to 3 years between

their last negative and first positive test for HIV, and so this might be the case even for

those patients assigned to the group with greater than 1 year between estimated date

of seroconversion and treatment initiation. This is further investigated in Chapter 7.

For the remaining patient and treatment characteristics the estimated effect sizes
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Figure 6.1. Plots of φ1
(
u+

i

)
(a�c, relating to long-term maximum) and φ2

(
u+

i

)
(d�f, relating

to speed of response) for Mod10. Graphs on the left of each row (a,d) show the �tted
functions for patients initiating treatment within 6months of seroconversion, those in the
centre (b,e) show the functions for patients initiating treatment beyond 6months but within
1 year and those on the right (c,f) show the functions for patients who started treatment
beyond 1 year. Pointwise 95% con�dence intervals for the functions are shown ( ).

were only moderate (Figure 6.5), which makes interpretation difficult given the po-

tential for residual unmeasured confounding factors. Recovery is predicted to be

slightly worse for male heterosexuals or female IDUs, but the sample size in the lat-

ter group was very small and the 95 CIs of parameter estimates for the effect on φ1

and φ2 both included zero. As also demonstrated in Figure 6.3, recovery is predicted

to be better on average in younger patients. A surprising finding is that an AIDS

diagnosis prior to treatment initiation was associated with slightly better recovery,

although the sample size of such patients was small. A positive HCV test prior to

treatment initiation was associated with slightly worse recovery. Of the HAART regi-

men regimens, the INSTI category was associated with improved recovery, with the

‘other’ category showing the next best performance. However, it is possible that the

use of newer drugs is associated with confounding factors such as earlier treatment

initiation (as this is only partially controlled for in the current model), and so caution

is required in the interpretation of this finding.

The estimates of variance parameters relating to unexplained variation in post-

treatment CD4 recovery were large, representing clinically meaningful differences in

response to treatment that could not be attributed to the combination of patient and

drug characteristics included in the model. This can be seen in both the estimated
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Figure 6.2. Plots of e�ect on φ1 (a, relating to long-term maximum) and φ2 (b, relating to
speed of response) of pre-treatment viral load (VL, expressed using log10 scale on x-axis) as
estimated in Mod10. Pointwise 95% con�dence intervals for the functions are shown ( ).
The model is parameterised such that the e�ect at log10(VL)=4.7 is zero.

variance of the random effect term relating to asymptotic maximum (Ω̂= 9.7) and to

a lesser extent in the parameters relating to the post-treatment fractional Brownian

motion process (κ̂post = 4.6 and Ĥpost = 0.23). The residual variation is also illus-

trated in Figure 6.6, in which the 5th and 95th centiles of post-treatment CD4 counts

are plotted for hypothetical patients in addition to the median.

6.5 Results with censoring due to virological failure

When the set of models were fitted to the processed dataset with censoring of post-

treatment CD4 counts at any occurrence of detectable VL beyond 6 months after

treatment initiation, the same pattern was observed of statistically significant im-

provements in model fit but with optimal BIC for the inclusion of only VL (Table

6.4). Furthermore, predictions generated from the fitted model including all patient

and drug characteristics (i.e. Mod10) are nearly identical to those for the equivalent

model without censoring due to detectable VL (Figure 6.7). The parameter estimates

for Mod10 fitted to the two versions of the dataset were correspondingly very sim-

ilar, as can be seen in Table 6.3. There are some apparent differences between the

parameter estimates relating to natural cubic spline functions, but plotting of the fit-

ted functions reveals them to be similar within the range of values well represented

in the data, for example the estimated functions linking baseline CD4 to recovery

characteristics resulting from the model fitted to the censored dataset are plotted in

Figure 6.8.
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Figure 6.3. Plots of e�ect on φ1 (a, relating to long-term maximum) and φ2 (b, relating to
speed of response) of patient age at treatment initiation as estimated in Mod10. Pointwise
95% con�dence intervals for the functions are shown ( ).The model is parameterised such
that the e�ect at 36 years is zero.
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Figure 6.4. Plots of predicted median recovery in CD4 counts, based on Mod10, for patients
with a `true' baseline value of 200 (a), 350 (b) or 500 (c) cells/µL. Predictions are shown
for patients initiating treatment within 6months of seroconversion ( ), patients initiating
treatment beyond 6months but within 1 year ( ) and for patients who started treatment
beyond 1 year ( ). For this plot, all patients are assumed to be male homosexual, aged
36 years, with negative test for hepatitis C virus, no prior AIDS diagnosis and starting on a
non-nucleoside reverse-transcriptase inhibitor (NNRTI) regimen. Viral load prior to treatment
is also �xed at the overall log10 median of 4.825.
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Figure 6.5. Plots of predicted median recovery in CD4 counts, based on Mod10, for patients
with a `true' baseline value of 350 according to: (a) viral load (VL) prior to treatment initiation
( , log10(VL) = 2.7; , log10(VL) = 4.7; , log10(VL) = 5.7); (b) gender and infection
groups ( , male homosexual; , male heterosexual; , male injecting drug user;

, female heterosexual; , female injecting drug user ); (c) patient age at treatment
initiation ( , ag e = 20 years; , ag e = 60 years); (d) AIDS diagnosis prior to treatment
( , yes; , no); (e) hepatitis C virus (HCV) status ( , no test; , +ve test; ,
-ve test); and (f) HAART regimen ( , integrase strand transfer inhibitor; , ritonavir-
boosted protease inhibitor; , other; , non-nucleoside reverse-transcriptase inhibitor
(NNRTI)). All patients are assumed to be male homosexual, aged 36 years, with negative
test for HCV, no prior AIDS diagnosis, baseline log10(VL)=4.825 and starting on a NNRTI
regimen at more than 1 year since estimated date of seroconversion unless stated otherwise.
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Figure 6.6. Plots of predicted median ( ) and 5th and 95th centiles ( ) for recovery
in CD4 counts, based on Mod10, for patients with a `true' baseline value of 200 (a), 350
(b) or 500 (c) cells/µL. For this plot, all patients are assumed to be male homosexual, aged
36 years, with negative test for hepatitis C virus, no prior AIDS diagnosis and starting on
a non-nucleoside reverse-transcriptase inhibitor (NNRTI) regimen beyond 1 year from sero-
conversion. Viral load prior to treatment is also �xed at the overall log10 median of 4.825.
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Table 6.4. Summary of �tted combined models for CD4 cell counts before and after the
initiation of highly active antiretroviral therapy (HAART) in patients from the CASCADE
cohort, with censoring of post-treatment CD4 counts at the observation of detectable viral
load beyond 6months after treatment initiation. All models shown are nested within that
described in the row below.

Model Predictors Curve npar s ` AIC BIC 2∆`

Mod1 Linear-u Asym. 15 -192644 385318 385457 N A
Mod2 Linear-u JS 16 -191634 383300 383448 2020
Mod3 As above + trt-time grp JS 24 -191336 382720 382942 596
Mod4 As above + baseline VL JS 32 -191037 382138 382435* 598
Mod5 As above + gender/inf grp JS 40 -191023 382126 382497 28
Mod6 As above + age JS 48 -191008 382112 382557 30
Mod7 As above + AIDS Dx JS 50 -190992 382084 382548 32
Mod8 As above + HCV Dx JS 54 -190982 382072 382573 20
Mod9 As above + trt regimen JS 60 -190951 382022 382578 62
Mod10 As above + NCS-u JS 72 -190915 381974* 382641 72

The ‘Predictors’ field lists variables included in the functions to determine both long-term
maximum (φ1) and speed of recovery (φ2), and ‘Curve’ gives shape of expected recovery
following HAART. ‘trt-time grp’ denotes stratification of functions for long-term maximum
and speed of recovery in terms of baseline CD4 at treatment initiation according to time
elapsed from seroconversion to treatment. *Lowest value of AIC/BIC for set of models. ‘2∆`’
denotes differences in 2×log-likelihood in comparison to model described in the row above
in each case. AIC, Akaike information criterion; AIDS, acquired immune deficiency
syndrome; Asym., asymptotic; BIC, Bayesian information criterion; Dx, diagnosis prior to
HAART; HCV, hepatitis C virus; grp, group; inf, mode of infection; JS, Janoshek–Sager; `,
log-likelihood of model fit; NA, not applicable; NCS, natural cubic spline; npar s , number of
parameters in model; trt, treatment; VL, viral load.

6.6 Results including between-patient differences in variability

We also attempted to fit models in which between-patient differences in variability

were accounted for, using linked multivariate-t distributions for the pre- and post-

treatment fractional Brownian motion components of the model as described in Sec-

tion 5.7. This was done using the full dataset without censoring due to virological

failure, given that such censoring had little effect on the results obtained. Conver-

gence was not achieved when the extension was applied to the model including all

patient and drug regimen characteristic, i.e. Mod10. However, maximum likelihood

estimates were obtained when the extension was applied to the model with opti-

mal BIC, i.e. Mod4 including linear effects for baseline CD4 count stratified by time

to treatment initiation and additional effects of baseline VL, using a natural cubic

spline basis, on the characteristics of response to treatment. The relationships be-

tween these predictive factors and response to treatment indicated by the resulting

model were nearly identical to those described for Mod10; this is illustrated by Fig-
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Figure 6.7. Plots of predicted median recovery in CD4 counts, based on Mod10 �tted to
the dataset with censoring at detectable viral load (VL) after 6months of treatment, for
patients with a `true' baseline value of 350 according to: (a) VL prior to treatment initiation
( , log10(VL) = 2.7; , log10(VL) = 4.7; , log10(VL) = 5.7); (b) gender and infection
groups ( , male homosexual; , male heterosexual; , male injecting drug user;

, female heterosexual; , female injecting drug user ); (c) patient age at treatment
initiation ( , ag e = 20 years; , ag e = 60 years); (d) AIDS diagnosis prior to treatment
( , yes; , no); (e) hepatitis C virus (HCV) status ( , no test; , +ve test; ,
-ve test); and (f) HAART regimen ( , integrase strand transfer inhibitor; , ritonavir-
boosted protease inhibitor; , other; , non-nucleoside reverse-transcriptase inhibitor
(NNRTI)). All patients are assumed to be male homosexual, aged 36 years, with negative
test for HCV, no prior AIDS diagnosis, baseline log10(VL)=4.825 and starting on a NNRTI
regimen at more than 1 year since estimated date of seroconversion unless stated otherwise.

ures 6.9 and 6.10. As found in Chapter 5, the spread of the 5th and 95th centiles of

predictions was also similar to the models that did not take between-patient differ-

ences in variability into account.

The parameter estimates for the extended Mod4 indicated a substantial level of
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Figure 6.8. Plots of φ1
(
u+

i

)
(a�c, relating to long-term maximum) and φ2

(
u+

i

)
(d�f, relating

to speed of response) for Mod10 �tted to the dataset with censoring at detectable viral load
(VL) after 6months of treatment. Graphs on the left of each row (a,d) show the �tted
functions for patients initiating treatment within 6months of seroconversion, those in the
centre (b,e) show the functions for patients initiating treatment beyond 6months but within
1 year and those on the right (c,f) show the functions for patients who started treatment
beyond 1 year. Pointwise 95% con�dence intervals for the functions are shown ( ).

between-patient differences in variability, with low values obtained for the pre- and

post-treatment degrees of freedom parameters for the multivariate-t distributions

fitted to the stochastic process components of the model (v̂1 = 3.59 (95% CI 3.26–

3.96); v̂2 = 3.80 (95% CI 3.50–4.12)). There was a low positive correlation estimated

between the levels of pre- and post-treatment variability within each patient (ρ̂Mor an

= 0.18 (95% CI 0.14–0.21)).

6.7 Discussion

In this chapter, we have applied the framework developed in Chapter 5 for the com-

bined modelling of pre- and post-treatment data to CD4 counts from the CASCADE

cohort of HIV seroconverters, with the inclusion of potential predictive factors for

the characteristics of post-treatment recovery. We discuss here the findings in rela-

tion to those previously reported in the literature. However, as this thesis is focused

on the development of statistical methodology, we include only minimal discussion

regarding how the results obtained might link to the underlying biology of HIV infec-

tion.

The analyses presented indicate that the primary factors that predict recovery
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Figure 6.9. Plots of predicted median ( ) and 5th and 95th centiles ( ) for recovery in
CD4 counts, based on Mod4 with the model extended using linked multivariate-t distributions
for the pre- and post-treatment stochastic process components, for patients with a `true'
baseline value of 200 (a), 350 (b) or 500 (c) cells/µL. For this plot, viral load prior to
treatment is �xed at the overall log10 median of 4.825 and treatment initiation is set to be
beyond 1 year from seroconversion. The marginal distribution is assumed for the latent scaling
variable for the fractional Brownian motion process, i.e. without conditioning on any potential
pre-treatment information, and the combination of multivariate normal and t distributions is
approximated through averaging over 1000 draws from the relevant gamma distribution. The
pattern of predictions is very close to those resulting from Mod10 as displayed in Figure 6.6.
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Figure 6.10. Plots of predicted median recovery in CD4 counts, based on Mod4 with
the model extended using linked multivariate-t distributions for the pre- and post-treatment
stochastic process components, for patients with a `true' baseline value of 350 according
to: (a) treatment initiation within 6months of seroconversion ( ), beyond 6months but
within 1 year ( ) and for patients who started treatment beyond 1 year ( ) and (b) with
viral load (VL) prior to treatment initiation ( , log10(VL) = 2.7; , log10(VL) = 4.7; ,
log10(VL) = 5.7). For (a) VL prior to treatment is �xed at the overall log10 median of 4.825
and for (b) treatment initiation is set to be greater than 1 year from seroconversion. The
pattern of predictions is very similar to those resulting from Mod10 as displayed in Figures
6.4b and 6.5a.
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in CD4 counts following the initiation of HAART are the baseline CD4 count before

the start of treatment and the pre-treatment VL. The strong positive association of

baseline CD4 count with the long-term maximum of post-treatment recovery was

expected given the findings of previous research on this topic81;108–111, as discussed

in Chapter 5. There is less of a consensus in the literature regarding the relation-

ship between baseline CD4 count and the initial speed of recovery. Smith et al.123

reported that higher baseline values were associated with both lower observed post-

treatment increases at 3 months and a lower rate of increase beyond this point in

time, and Hunt et al.131 also reported greater gains in patients with lower baseline

values, particularly within the first 2 years after initiation of treatment. However,

Florence et al.132 reported that lower baseline CD4 counts were predictive of a poor

response within 6–12 months of HAART initiation, and Moore et al.133 also found

greater increases in CD4 cell count at 6 months post-treatment for higher baseline

values up to 350 cells/µL.

In the framework that we have developed, the model term relating to ‘speed of

recovery’ following treatment initiation represents the speed of transition from the

baseline state to the long-term maximum for any given patient, rather than the rate

of increase in terms of the CD4 count itself. As such, the models that we have fitted

indicate that the absolute rate of increase in CD4 count will be lower for patients with

‘true’ baseline CD4 counts above around 600 cells/µL, due to the fact that there is

less of a difference between the baseline value and the long-term maximum in such

cases (this is illustrated by Figure 5.20b in Chapter 5, and equivalent plots for Mod10

as described in the present chapter showed a similar pattern). However, this cannot

wholly explain the inconsistency in papers in the literature regarding this topic as

these have largely described patients with lower CD4 counts at initiation of HAART,

for example Smith et al.123 report a median (IQR) pre-treatment CD4 count of 194

(75–314) cells/µL, with very similar values of 195 (118–274) cells/µL reported by Flo-

rence et al.132. For ‘true’ baseline CD4 counts below 600 cells/µL, our models predict

a positive relationship between the baseline value and the rate of post-treatment in-

crease in absolute terms. As such, we suggest that the inconsistencies observed could

be due to the fact that lower observed baseline CD4 counts are likely to be more

strongly downwardly biased as a result of selective treatment initiation and ‘regres-

sion to the mean’-type effects as explored in Section 5.13.2, which will result in an

increase in the apparent response to treatment, particularly at the first observation

for each patient; the degree of bias is dependent on the observation and treatment

initiation schedules applied to any given cohort, and so this could explain the ob-

served differences in findings between studies.

Higher VL prior to HAART, conditional on the baseline CD4 count, was found to

be associated with faster recovery and a higher long-term maximum. This finding is
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consistent with previous reports in the literature, for example Smith et al.123 found

positive relationships with both the increase in CD4 count observed at 3 months

post-treatment and with the rate of increase thereafter, Florence et al.132 found that

higher baseline VL was associated with lower odds of a poor response to HAART and

Gras et al.81 found that patients with a baseline VL ≥ 4.5 on the log10 scale demon-

strated better long-term response to HAART conditional on their baseline CD4 value.

There is some evidence that higher plasma VL levels are associated with sequestra-

tion of CD4 cells in lymphoid tissue134;135, and it has been suggested that this is

associated with a more rapid initial increase in circulating CD4 cells following the

initiation of HAART136;137. However, given the uncertainty in the exact date of sero-

conversion for many of the patients included in the analysis, we hypothesised that

this finding might also be at least partially due to the fact that high VL is a marker

that a patient might be close to their true date of seroconversion (as shown by e.g.

Pantazis et al.127). Investigation of this possibility constitutes a motivating factor for

further developments to the modelling framework presented in Chapter 7. An alter-

native explanation for the fact that low pre-treatment VL predicts lower CD4 recov-

ery is that this may reflect previous exposure to antiretroviral treatment that has not

been recorded in the cohort database. However, as only patients with well-estimated

date of seroconversion were included in the analysis, hence all patients were under

continuous observation and inclusion in the various cohort studies from the time of

HIV diagnosis, it could be argued that this is not likely to be the main true cause of

this finding.

Initiation of treatment close to the estimated date of seroconversion, within 6 months

according to the stratification used, was also associated with a more rapid initial im-

provement in post-treatment CD4 counts, with the fitted models indicating an addi-

tional benefit (beyond that associated with higher baseline CD4) over the first 2 years

from the start of treatment and a moderate longer term benefit for those patients

with a baseline CD4 count below around 350 cells/µL. This is in line with the find-

ings by Le et al.113. The potential benefit of early treatment initiation, beyond that

associated with a higher baseline CD4 count, and the time interval from seroconver-

sion in which this can be observed is further investigated in Chapter 7.

The other patient and drug regimen characteristics that were included in the

models developed only showed small to moderate associations with the characteris-

tics of post-treatment recovery in CD4 counts, adjusting for baseline CD4. Because

this is an analysis of an observational dataset, small estimated effect sizes need to be

interpreted with caution. Increasing patient age at date of treatment initiation was

found to be associated with a moderate reduction in CD4 recovery, which is consis-

tent with previous research on this topic81;131;132. Pre-treatment diagnosis of HCV

was also found to be associated with a moderate reduction in recovery; although

140



APPLICATION OF COMBINED MODEL

statistically significant differences in CD4 recovery have not always been found for

cases of HCV (for example no differences were reported by Hunt et al.131 or Florence

et al.132), this is a finding that has been observed in other studies, for example Greub

et al.138, and a meta-analysis has supported the conclusion that HCV infection is as-

sociate with a lower CD4 recovery following initiation of HAART139.

The finding that a pre-treatment AIDS diagnosis was associated with an improve-

ment in the post-treatment recovery is surprising, but it should be noted that the es-

timated effect size was small and that this is conditional on baseline CD4 count. It

is possible that the difference observed could be explained by greater sequestration

of CD4 cells in the lymphoid tissue in such cases, leading to a greater increase on

initiation of HAART, as suggested for cases with higher pre-treatment VL134;135.

Comparison of recovery amongst gender and infection groups in the present anal-

ysis is hampered by the fact that sample sizes are very uneven between the groups,

and the potential for a wide range of unmeasured confounding factors. Recovery

appeared to be slightly worse on average amongst heterosexual men, which is not

something that has been reported previously. However, it seems likely that this dif-

ference could be due to confounding factors such as ethnicity. Some previous studies

have observed better post-treatment CD4 recovery in women, for example those of

Hunt et al.131 and Gras et al.81, but we did not find such an association.

Of the classifications of drug regimens included in the analysis, the INSTI regi-

men at initiation of HAART was found to be associated with a moderate improve-

ment in post-treatment recovery in CD4 relative to the NNRTI regimen, with the

mixed ‘other’ regimen showing a similar performance. These findings warrant fur-

ther investigation, but are not conclusive on their own given the potential for resid-

ual confounding and the moderate effect sizes found. There is evidence that the

use of regimens including an integrase inhibitor is associated with more rapid viral

suppression than regimens that do not include a drug of this class, but the evidence

regarding potential differences in CD4 recovery is less clear. The FLAMINGO trial

showed more rapid viral suppression for a regimen including an integrase inhibitor

(dolutegravir) in comparison to a ritonavir-boosted protease inhibitor (darunavir) in

addition to an NRTI ‘backbone’140, but found no difference in the change in CD4 cell

count from baseline at 48 weeks. The NEAT trial randomised patients to an NRTI-

sparing regimen (including an integrase inhibitor and ritonavir-boosted protease in-

hibitor) or a standard NRTI + ritonavir-boosted protease inhibitor regimen, finding

that the regimen including an integrase inhibitor was associated with more rapid vi-

ral suppression and shorter times to achieve a CD4 count above 500, but with no dif-

ference between groups in their change in CD4 count from baseline at 96 weeks141.

No substantial differences were observed when the models were refitted to a pro-

cessed dataset with censoring of post-treatment CD4 counts following the observa-
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tion of a detectable VL beyond 6 months from initiation of HAART. This is surprising

given that the observation of a detectable VL on HAART could be taken to indicate

poor adherence and so the exclusion of such data might be expected to lead to a fit-

ted model that provides more optimistic predictions of CD4 count recovery. The fact

that no difference was observed following censoring could be explained by high lev-

els of drug adherence within the studied cohort or by effective recording of treatment

interruptions (at which patients were censored for all fitted models). Another possi-

ble explanation is that the variance terms in the fitted models might already account

for between-patient differences in adherence prior to censoring, in which case the

censoring event would provide limited information regarding the future CD4 trajec-

tory of any given patient given their prior CD4 count observations.

As noted in Chapter 5, a disadvantage of the approach that has been used for this

analysis is that strong assumptions are required regarding the probability model for

pre- and post-treatment CD4 cell counts. However, we have aimed to ensure that the

model is as flexible as possible in order to allow it to reflect the structure and pat-

terns of variation observed in the data under investigation. A further limitation of

this analysis is that we have not included patient characteristics in the pre-treatment

part of the model; this would be straightforward to achieve in principle, but the total

number of parameters in the most fully developed models that we have fitted were

close to the maximum possible within the time and memory constraints of the com-

puting resources available and so the pre-treatment part of the model was not fully

developed. We do not believe that this further extension would have a major impact

on the conclusions drawn regarding the factors that predict post-treatment recovery

in CD4 counts, although it would further refine the distribution of the ‘true’ baseline

value in each patient and so might allow the link functions between these values and

the characteristics of response to treatment to be more precisely estimated. It should

also be mentioned that there are additional potential predictive factors, such as eth-

nicity and HIV subtype, that were not available for inclusion in the present analysis.

For all of the models fitted, the residual variation in post-treatment recovery in

CD4 cell count not explained by predictive factors was substantial. It is possible

that the addition of further potential predictive factors might lead to a reduction in

the total residual variance, but it does not seem likely that a substantial reduction

could be achieved without an in-depth analysis of immunological and virological

factors specific to each patient. As such, although the models developed provide in-

formation regarding CD4 response to HAART that will be of interest to researchers

and clinicians, they do not offer enough predictive power to confidently identify

those patients who are likely to demonstrate a suboptimal immunological response

to HAAART — beyond the established finding that the baseline CD4 count is a very

important predictor of the level of long-term recovery.
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As found in Chapter 5, extending the model to allow between-patient differences

in variability over time appeared to provide a better fit to the data, as indicated by

low estimates for the degrees of freedom parameters, although statistical compari-

son of these models is made difficult by the need to use the less accurate Laplace

approximation for maximum likelihood estimation. This fitted model provided no

substantial differences in inferences regarding the primary predictive factors for CD4

recovery, i.e. baseline CD4 count, baseline VL and time from seroconversion to treat-

ment initiation, and the overall predicted 90 % ranges for post-treatment observa-

tions were also similar to the models based only on the multivariate normal distribu-

tion. It was not possible to obtain maximum likelihood estimates for such extended

models that also included the other patient and drug regimen characteristics as po-

tential predictive factors, and this may be due to the small effect sizes observed for

these factors.

For the analysis in this chapter we have retained the assumption that the esti-

mated date of seroconversion for the included patients is fixed and known, even

though in some cases it is only known to fall within an interval between last nega-

tive and first positive HIV tests of up to 3 years. This is a problem when attempting

to investigate the association between early initiation of treatment and recovery, in

order to establish whether there is an additional benefit that is not mediated by base-

line CD4 cell count, and it also makes it difficult to interpret the results relating to

baseline VL measurements as the observation of a high baseline VL might indicate

that the patient concerned is in fact closer to their true date of seroconversion than

is suggested by their estimated date based on the mid-point approximation. With

the aim of addressing these concerns, in Chapter 7 we present further developments

to the modelling framework in which a probability model is also included for pre-

treatment VL measurements and the uncertainty in exact dates of seroconversion is

taken into account.
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7 Modelling uncertainty in seroconversion date

7.1 Background

In previous chapters, we have developed models based on the assumption that the

estimated date of seroconversion in each patient is correct. However, the uncertainty

in exact date of seroconversion for those patients with a ‘mid-point’ estimate, set at

the halfway point between last negative and first positive HIV tests, raises questions

regarding the interpretation of any fitted models, particularly when trying to deter-

mine whether treatment initiation close to the date of seroconversion might lead to

substantial improvements in CD4 recovery as we have done in Chapters 5 and 6.

There has been development of statistical methodology to address the problem

of uncertainty in seroconversion dates, both in order to provide more accurate es-

timation of infection time in ‘seroconverters’ and to allow modelling of the delay to

diagnosis in ‘seroprevalent’ patients. Early work on this issue was motivated by the

need to estimate the survival function for the progression from seroconversion to

AIDS (before the availability of effective treatment)142;143, while more recent research

has focused on the need for accurate estimation of infection dates for monitoring

of the incidence of new HIV cases in different countries and communities144;145.

One approach to dealing with the problem is to define a time-to-event regression

model for the interval between seroconversion and first observation of a patient,

with biomarkers at presentation used as predictive variables; for example, Muñoz

et al.142 used a truncated Weibull regression model for the time elapsed since se-

roconversion among ‘seroconverters’ with CD4 % as a predictive variable, and then

used the results to impute dates for seroprevalent patients. Geskus143 proposed a

non-parametric approach in which the estimated distribution of the timing of se-

roconversion, conditional on observed CD4 counts, is empirically derived based on

data from patients with well estimated date of seroconversion (including patients

with an interval of up to 1 year between negative and positive tests).

Taffé et al.144 developed a joint model incorporating time from seroconversion

to diagnosis, differences between serial CD4 count measurements following diag-

nosis and drop-out from the analysis due to either ART or death. Estimation of the

parameters for this model requires integration over correlated subject-specific ran-

dom effect terms for the intercept and slope of CD4 trajectory as well as an inde-

pendent measurement error term (the latter resulting from the fact that the model

for CD4 counts is defined in terms of differences from the first observation) in order

to obtain the marginal log-likelihood. In this model, the time from seroconversion

to diagnosis is treated as a time-to-event outcome variable, the model for which is

defined conditional on the random effect terms. Conditional imputation of the date
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of seroconversion for any given patient therefore requires calculations based on the

empirical Bayes estimates of their random effects.

A different approach to this problem was proposed by Sommen et al.145, who de-

veloped longitudinal models for virological markers of recent infection in which the

time elapsed from seroconversion to diagnosis for each patient is itself treated as a

latent variable. This has the advantage that the models for the biomarkers under in-

vestigation can be defined in terms of the true time since seroconversion, with the

marginal log-likelihood obtained by integration over the range of possible serocon-

version dates for any given patients as well as any subject-specific random effects. A

similar approach was independently described by Drylewicz et al.146, who developed

dynamic models for pre-treatment CD4 cell counts and VL measurements in HIV pa-

tients with integration of the likelihood function over possible infection dates. The

markers under investigation by Sommen et al. were antibodies to the immunodom-

inant epitope of gp41 (IDE) and a mixture of five V3 peptides; their model for each

comprised an asymptotic increase from zero and independent Brownian motion and

measurement error terms, and a uniform prior distribution was assumed for the oc-

currence of seroconversion between last negative and first positive HIV tests (or over

an interval of 70 days prior to signs of symptomatic primary infection or 30 days prior

to incomplete Western blot).

In this chapter, we develop a model for pre-treatment CD4 counts and VL mea-

surements and for the recovery in CD4 counts following initiation of HAART condi-

tional on the true date of seroconversion for each patient. We follow the principle

proposed by Sommen et al.145 and Drylewicz et al.146 of obtaining the marginal log-

likelihood by integration over a prior distribution of the true date for each patient

informed by the interval between negative and positive tests, although beyond this

the model structure that we develop differs from their work. Our work is novel in that

we also model response to HAART in terms of the true time elapsed from serocon-

version to initiation of treatment.

7.2 Exact seroconversion date as a latent variable

If a distribution can be assigned for the true seroconversion date t ′ for each patient,

with probability density function ft ′ , then the marginal likelihood for an extension of

the combined model for pre- and post-treatment data as described in Chapter 5 can

be expressed as follows:

f
(
ypr e ,ypost

)= ∫ t ′max

t ′mi n

∫ ∞

−∞
fpr e

(
ypr e |T ′ = t ′

)
fpost

(
ypost |u,T ′ = t ′

)
fu

(
u|ypr e ,T ′ = t ′

)
ft ′

(
t ′

)
du d t ′.
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This integral is of a form similar to that used by Sommen et al.145.

As noted in Section 5.7, the Laplace approximation to the marginal likelihood is

optimally accurate for latent variables integrated out over a normal scale64, and so

for maximum likelihood estimation we instead express this integral as:

f
(
ypr e ,ypost

)= ∫ ∞

−∞

∫ ∞

−∞
fpr e

(
ypr e |T ′ = F−1

t ′ (Φ (a))
)

fpost
(
ypost |u,T ′ = F−1

t ′ (Φ (a))
)

fu
(
u|ypr e ,T ′ = F−1

t ′ (Φ (a))
)

fφ (a)du d a,

where fφ is the probability density function for a standard normal distribution

and F−1
t ′ is the inverse of the cumulative distribution function corresponding to ft ′ .

The expression used by ADMB for the gradient of the Laplace approximation to

an integral involves third order partial derivatives of the integrand with respect to the

latent variable terms, which means that the response to treatment cannot be mod-

elled according to arbitrary divisions of the time from ‘true date of seroconversion’ to

treatment initiation; for such models the integrand would not be differentiable with

respect to t ′ across its range of potential values. For this extension to the model, we

hypothesise that the response in CD4 count to HAART follows distinct relationships

with the baseline value ‘u+’ according to whether treatment is initiated very close to

the date of seroconversion or after a long period of time has elapsed. As described

in Chapter 5, the response to treatment is modelled as being dependent on the base-

line CD4 value through functions that determine the expected long-term maximum

and speed of recovery, with separate functions defined for ‘early’ and ‘late’ treatment

initiation (denoted φ1:ear l y (u+), φ2:ear l y (u+), φ1:l ate (u+) and φ2:l ate (u+)). However,

unlike in previous chapters, we incorporate a smooth transition from the ‘early’ to

the ‘late’ functions according to the exact value of t ′, by weighting their respective

contributions towards the expected long-term maximum φ1:i or speed of response

φ2:i for any given patient according to the functions:

wei g htear l y :i = 2−2/
(
1+exp(−S ∗ ttr t :i )

)
wei g htl ate:i = 2/

(
1+exp(−S ∗ ttr t :i )

)−1,

here S is a parameter to be estimated that determines the balance between ‘early’ and

‘late’ treatment response characteristics according to the time elapsed between true

date of seroconversion and initiation of HAART ‘ttr t :i ’. These two weighting func-

tion sum to 1 for any value of ttr t :i , for ttr t :i = 0 the functions return 1 and 0, and

wei g htear l y :i → 0 and wei g htl ate:i → 1 as ttr t :i increases. A plot of these functions

with the S parameter estimated from the data is presented later in this chapter in

Figure 7.3 (page 154).
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The terms for the expected long-term maximum (φ1:i ) and speed of response to

treatment (φ2:i ) conditional on the timing of treatment and true baseline value in

each patient are therefore given by the following expressions:

φ1:i = wei g htear l y :i ×φ1:ear l y (u+)+wei g htl ate:i ×φ1:l ate (u+)

φ2:i = wei g htear l y :i ×φ2:ear l y (u+)+wei g htl ate:i ×φ2:l ate (u+).

7.3 Incorporating viral load into the model

Following our aim of investigating the separate contributions of baseline CD4 count,

time from seroconversion to treatment initiation and baseline VL in predicting the

characteristics of CD4 recovery on HAART, we also extend the model to include pre-

treatment VL as an outcome variable. This development is necessary in order to al-

low information from VL observations to contribute to the posterior distribution of

the true date of seroconversion for each patient, and it also means that patients for

whom no VL observations were obtained close to the start of treatment can be in-

cluded in the analysis. Viral load is analysed on the log10 scale, and we make use of

the non-linear model for the mean in terms of time from seroconversion as reported

by Pantazis et al.127:

gV L (tV L) =β0V L +β1V L tV L +β2V L exp
(−β3V L tV L

)
, (9)

where tV L is the time of VL observation from date of seroconversion and β0V L–β3V L

are parameters to be estimated.

However, a patient-specific random effect is only included for the intercept and

not for the long-term slope, as we were unable to successfully fit models that also

included the latter term (the program crashed or convergence failed). The patient-

specific random intercept is modelled as following a joint multivariate normal distri-

bution with the random-intercept and -slope terms of the pre-treatment CD4 part of

the model, and there is also an examination-specific independent normal error term

for the pre-treatment VL:

vi = gV L (tV L:i )+1bV L:i +eV L:i

ypr e:i = Xiβ+Zi bi +Wpr e:i +epr e:i(
bV L:i

bi

)
∼ MV N

(
0,

(
ψV L Cov(bV L:i ,bi )

Cov(bi ,bV L:i ) Ψ

))
eV L:i ∼ MV N (0, σ2

V LInV L:i )

Wpr e:i ∼ MV N (0,Σpr e:i )

epr e:i ∼ MV N (0, σ2Inpr e:i ).
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Here, vi is the vector of nV L:i pre-treatment VL observations for the ith patient at

times tV L:i , gV L is a vectorised version of the function in (9), 1 is a vector of ‘1’s of

length nV L:i , bV L:i is the subject-specific random intercept for VL with varianceψV L ,

eV L:i is a vector of examination-specific residuals for VL with varianceσ2
V L , and other

terms are as defined in Chapters 5 and 6. The time values in this model are defined

with respect to the true date of seroconversion for each patient through conditioning

on the corresponding latent variable term.

A further complication is that the VL measurements recorded in the CASCADE

dataset are truncated at lower and upper limits of detection, with these limits de-

pending on the equipment used at each examination and ranging from 1–500 copies/mL

for the lower limit and 50000–108 copies/mL for the upper limit. Following Thiébaut

et al.147;148, we account for this issue by making use of the fact that the likelihood

contribution for such an observation below a lower limit of detection, conditional

on the subject-specific random intercept, is independent of other observations and

can be expressed using the cumulative normal distribution function (Φ)149 and the

lower limit of detection in that case (l i mL
i j ):

L(vi j |bV L:i ) =Φ
((

l i mL
i j −

(
gV L

(
tV L:i j

)+bV L:i
))

/σV L

)
,

while the likelihood contribution for observations above the upper limit of detection

can be expressed using the upper limit (l i mU
i j ) in that case:

L(vi j |bV L:i ) = 1−Φ
((

l i mU
i j −

(
gV L

(
tV L:i j

)+bV L:i
))

/σV L

)
.

This has the consequence that approximation of the marginal log-likelihood re-

quires integration over the VL random intercept term for each patient. If there were

no lower limits of detection, then it would be possible to form a joint multivariate

normal distribution (with associated closed form probability density function) for

both the CD4 count and VL observations in the pre-treatment part of the model.

However, we may still express the probability density function for the pre-treatment

CD4 count observations in closed form conditional on the VL random intercept term

in each patient, making use of standard expressions for conditional normal distri-

butions. If we express the joint distribution for the VL and CD4 random effects as

follows: (
bV L:i

bi

)
∼ MV N

(
0,

(
ψV L ψ12

ψ21 Ψ

))
,

148



UNCERTAINTY IN SEROCONVERSION DATE

then the conditional model for the pre-treatment CD4 counts can be expressed as:

ypr e:i |bV L:i = Xiβ+Zi bi +Wpr e:i +epr e:i

bi |bV L:i ∼ MV N

(
ψ21bV L:i

ψV L
,Ψ−ψ21ψ12

ψV L

)
Wpr e:i ∼ MV N (0,Σpr e:i )

epr e:i ∼ MV N (0, σ2Inpr e:i ).

We also allow the post-treatment recovery in CD4 cell counts to be dependent on

the realisation of bV L , and the marginal log-likelihood for the complete model can

therefore be expressed as:

f
(
ypr e ,v,ypost

)= ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fpr e

(
ypr e |T ′ = F−1

t ′ (Φ (a)) ,bV L
)

(10)

fpost
(
ypost |u,T ′ = F−1

t ′ (Φ (a)) ,bV L
)

fV L
(
v|T ′ = F−1

t ′ (Φ (a)) ,bV L
)

fu
(
u|ypr e ,T ′ = F−1

t ′ (Φ (a)) ,bV L
)

fbV L (bV L) fφ (a)du d a dbV L .

A directed acyclic graph to demonstrate the structure of this model is presented in

Figure 7.1. As for Figure 5.3 in Chapter 5, links in this graph represent dependencies

in the defined probability model rather than direct causal effects.

In the models that we present, the patient-specific random intercept for VL is

included as a linear predictor for the long-term maximum (φ1) and speed of recovery

(φ2) of post-treatment CD4 counts. As described in Section 7.2, parameters are fitted

corresponding to early and late treatment initiation, with the weighting of the two for

each patient dependent on the exact time elapsed from seroconversion to treatment

initiation (which is itself defined in terms of a latent variable for those patients in

whom date of seroconversion is known to fall within an interval between positive

and negative tests). The use of the patient-specific VL intercept as a predictor of

CD4 recovery (rather than the absolute VL level) means that the parameter estimates

can be interpreted in terms of the patient’s VL relative to the distribution across the

population at any given point in time following seroconversion.

In approximating the marginal likelihood for this model, using the integral as

shown in (10), greatest weight is placed on the values for the true date of seroconver-

sion that maximise the joint penalised likelihood function that forms the integrand;

this includes the probability density function for the pre-treatment VL observations,

as well as the prior distribution for the true date of seroconversion and the proba-

bility density functions corresponding to the pre- and post-treatment and baseline
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u

t at treatment

ypre

v

φ1

φ2

bV L

t′

ypost

Figure 7.1. Directed acyclic graph depicting the proposed model structure for each patient,
accounting for uncertainty in true date of seroconversion (t ′) and incorporating a probability
model for pre-treatment viral load (VL). The distributions for both viral load observations
(v) and pre-treatment CD4 counts (ypr e) are conditioned on the value of a random intercept
variable for VL (bV L), which also in�uences the long-term maximum (φ1) and speed of
recovery (φ2) of post-treatment CD4 counts (ypost ). The distribution of the `true' CD4
count at treatment initiation (u) is conditional on the pre-treatment observations and the
timing of treatment, and the value of bV L also a�ects the joint distribution of ypr e and u.
Observed variables are shown within ellipses, whilst unobserved latent variables are shown
within rectangles.

CD4 counts. All of these aspects of the model as a whole can influence the posterior

distribution of the true date of seroconversion for each patient, and so the compo-

nent of the model relating to pre-treatment VL measurements could affect estimates

of how the post-treatment recovery in CD4 counts varies according to other factors

such as time elapsed from seroconversion to treatment initiation.

7.4 Prior distribution for true date of seroconversion

We define the ‘prior distribution’ of true seroconversion dates as that expected before

consideration of any CD4 count or VL data. For those patients in whom seroconver-

sion date has been estimated as the midpoint between the last negative and first pos-

itive HIV tests, an obvious choice for the prior distribution is a uniform distribution

over the interval between tests. However, we found that models using a uniform dis-

tribution would not converge, and so instead use a beta distribution scaled to match

the duration of the interval between tests with alpha and beta parameters both fixed
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at 6. The use of this distribution makes the assumption that seroconversion is most

likely to have occurred close to the midpoint between negative and positive tests.

This assumption may not be completely justified, but the model nonetheless rep-

resents an improvement over the common assumption that seroconversion date is

fixed at the midpoint. Plots illustrating these different assumptions for the prior dis-

tribution of true seroconversion dates are shown in Figure 7.2. For those patients

in whom the date of seroconversion illness or lab evidence of seroconversion (real-

time polymerase chain reaction positivity or incomplete Western blot) is recorded,

the date of seroconversion was considered to be fixed and known.
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Figure 7.2. Plots illustrating di�erent assumptions for the prior distribution of true sero-
conversion dates in a patient with their date of seroconversion estimated according to the
interval between last negative and �rst positive HIV tests: (a) mid-point assumption, (b)
uniform distribution and (c) beta distribution with alpha=beta=6. An interval between tests
of 1 year is shown here, with the x-axis representing the true date of seroconversion within
this period (i.e. 0 denotes date of last negative test).

For computational reasons, we also shift the distribution of possible seroconver-

sion dates back in time by 1 day for all patients. This is required because ADMB-

generated programs return ‘not a number’ when asked to return ‘0c ’ for any value

of ‘c’, which causes problems when calculating the covariance terms relating to frac-

tional Brownian motion processes for each patient (involving ‘t 2H ’ terms). When

time is fixed the issue can be avoided by defining a new function that checks that the

base is not zero before attempting to calculate a power term, but this is not possible

when time is allowed to vary within patients.

7.5 Dataset and estimation

The CASCADE dataset includes patients with a gap between last negative and first

positive test of up to 3 years. For this analysis, we apply the same inclusion criteria

as specified in Chapter 6, except that patients are not excluded if they lack any VL
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observations within 6 months before treatment initiation; this is because VL is be-

ing included as a modelled outcome variable and so can be effectively imputed for

patients in whom no measurements are available. This leads to a higher number of

patients for potential inclusion in the analysis (n = 7849). However, to ensure the

coherence of the proposed model we also exclude patients in whom the date of se-

roconversion was estimated according to the mid-point method but who initiated

HAART before their first positive HIV test is recorded in the database (n = 60), lead-

ing to a study population of 7789 patients. Similarly, we remove from the analysis

any CD4 counts that are recorded before the first positive HIV test. This results in a

dataset of 39 854 pre-treatment CD4 counts, 61 057 post-treatment CD4 counts and

36 808 pre-treatment VL measurements.

Of the patients included in this analysis, 6082 (78.1 %) had an estimated date of

seroconversion based on the mid-point between last negative and first positive HIV

tests, for 1454 (18.7 %) it was based on laboratory evidence of seroconversion and in

253 (3.3 %) it was based on the reported date of seroconversion illness. For those pa-

tients in whom a ‘mid-point’ estimate of seroconversion date was used, the median

interval between tests was 308 days and the IQR was 162–548 days.

As in Chapters 5 and 6, maximum likelihood estimation was carried out using

the random effects mode of the ADMB software, run on the UCL Legion High Perfor-

mance Computing Facility. The Laplace approximation to the marginal log-likelihood

was used for all models fitted in this chapter. The correlations between random ef-

fect terms were parameterised using the Cholesky factor to ensure that the covari-

ance matrix for the joint distribution of bi and bV L:i would remain positive-definite

during optimisation, because of this indirect parameterisation confidence intervals

are not presented for the estimated correlations.

7.6 Results

The models fitted to the full CASCADE dataset (without censoring related to post-

treatment VL) are summarised in Table 7.1. The base-model (Mod ′
1) for this sec-

tion of the analysis includes baseline CD4 and the patient-specific VL random inter-

cept as linear predictors, with ‘early’ and ‘late’ parameters weighted as described in

Section 7.2, for long-term maximum and speed of recovery of post-treatment CD4

counts; recovery follows a Janoshek–Sager curve with constant D parameter (as de-

fined in Section 6.3). Although it should be noted that use of the Laplace approxima-

tion for the marginal log-likelihood means that assessment of AIC and BIC statistics

requires caution, the addition of further patient and drug regimen characteristics in

Mod ′
2–Mod ′

6 led to only moderate improvements in model fit, as was found in Chap-

ter 6. Convergence of maximum likelihood estimates of model parameters was not

152



UNCERTAINTY IN SEROCONVERSION DATE

achieved when natural cubic spline functions were used to provide more flexible link

functions between baseline CD4 and VL and the characteristics of post-treatment re-

covery in CD4, and so all of the results presented in this chapter follow from models

in which these variables are treated as linear predictors. In the final model listed

in Table 7.1, Mod ′
7, the D parameter relating to the Janoshek–Sager curve was also

allowed to vary according to the time elapsed from seroconversion to treatment ini-

tiation, with weighting of ‘early’ and ‘late’ parameters on the natural-log scale used

for optimisation. We interpret this model in order to provide a comparison with the

‘fixed estimate of seroconversion’ analysis in Chapter 6.

Table 7.1. Summary of �tted combined models for CD4 cell counts before and after the
initiation of highly active antiretroviral therapy (HAART) in patients from the CASCADE
cohort, incorporating pre-treatment viral load measurements and uncertainty in the timing of
seroconversion. All models shown are nested within that described in the row below.

Model Predictors npar s ` † AIC† BIC† 2∆`†

Mod ′
1 Linear-u + VL by trt-time 33 −284281 568628 568952* NA

Mod ′
2 As above + gender/inf grp 41 −284265 568612 569015 32

Mod ′
3 As above + age 49 −284253 568604 569086 24

Mod ′
4 As above + AIDS Dx 51 −284247 568596 569097 12

Mod ′
5 As above + HCV Dx 55 −284240 568590 569131 14

Mod ′
6 As above + trt regimen 61 −284219 568560 569160 42

Mod ′
7 As above + D by trt-time 62 −284206 568536* 569146 26

The ‘Predictors’ field lists variables included in the functions to determine both long-term maximum
(φ1) and speed of recovery (φ2). ‘trt-time’ denotes weighting of functions for long-term maximum
and speed of recovery, in terms of baseline CD4 and VL at treatment initiation, according to time
elapsed from seroconversion to treatment; the D parameter is treated as a function of time to
treatment in Mod ′

7. *Lowest value of AIC/BIC for set of models. †All calculations using the
log-likelihood for each model are based on the Laplace approximation. ‘2∆`’ denotes differences in
2×log-likelihood in comparison to model described in the row above in each case. AIC, Akaike
information criterion; AIDS, acquired immune deficiency syndrome; BIC, Bayesian information
criterion; Dx, diagnosis prior to HAART; HCV, hepatitis C virus; grp, group; inf, mode of infection; `,
log-likelihood of model fit; NA, not applicable; npar s , number of parameters in model; trt, treatment.

In the models in this chapter, the characteristics of CD4 recovery on HAART fol-

low a smooth function of the time elapsed from seroconversion to initiation of treat-

ment with a transition from an ‘early treatment’ to a ‘late treatment’ response con-

ditional on baseline CD4 and VL random intercept. The transition as estimated for

Mod ′
7 is plotted in Figure 7.3, resulting from the estimate of the S parameter as de-

fined in Section 7.2 (Ŝ = 6.67, 95 % CI 5.35 – 8.32). This plot indicates that predictions

for CD4 recovery on HAART will depend on the time elapsed from seroconversion

up until around 4 months, but that the response conditional on baseline CD4 and

VL will be stable beyond this point. The fitted functions linking baseline CD4 and

the long-term maximum and speed of recovery for both ‘early treatment’ and ‘late

treatment’ response are plotted in Figure 7.4, and the corresponding influence of the

VL random intercept is plotted in Figure 7.5. When treatment is initiated close to the
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date of seroconversion, the predicted long-term maximum CD4 count for a given

baseline value is slightly lower, but the speed of recovery is substantially higher. This

is further illustrated through the plotting of predicted median recovery for hypothet-

ical patients in Figure 7.6.
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Figure 7.3. Plot of the transition from an `early treatment' to a `late treatment' response as
estimated for Mod ′

7. The weights for the `early' ( ) and `late' ( ) parameters linking
baseline CD4 and viral load random intercept to CD4 recovery are plotted as a function of the
time elapsed from `true' date of seroconversion to initiation of treatment. 95% con�dence
intervals are also plotted ( ).

The patient-specific VL random intercept was positively associated with speed of

recovery regardless of the time elapsed from seroconversion to treatment initiation,

although its relationship with the predicted long-term maximum did differ accord-

ing to the time to treatment (Figure 7.5). This is further explored through the plotting

of predicted median recovery for hypothetical patients in Figure 7.7. Higher VL, con-

ditional on the baseline CD4 at treatment initiation, consistently predicted a better

recovery in CD4 counts following treatment initiation. It should be noted that the

VL random intercept term was found to be negatively correlated both with the CD4

count at seroconversion random intercept (r̂ = −0.27) and with the slope of CD4

change with respect to time from seroconversion (r̂ = −0.48), indicating that a high

VL is associated with a worse prognosis without treatment. For other patient and

drug combination characteristics, the predictions from the model (Figure 7.8) were

very similar to those from the model in which the estimated date of seroconversion

in each patient was treated as fixed (as shown in Figure 6.5).

The parameters relating to pre-treatment VL measurements fitted in Mod ′
7 were

consistent with previous research on this topic (e.g. Pantazis et al.127), with a high

average VL (on the log10 scale) close to the date of seroconversion that drops down
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Figure 7.4. Plots of functions linking `true' baseline CD4 (u+
i ) to post-treatment recov-

ery, φ1
(
u+

i

)
(a�b, relating to long-term maximum) and φ2

(
u+

i

)
(c�d, relating to speed of

response), for Mod ′
7. Graphs on the left of each row (a,c) show the �tted functions for `early

treatment' and those on the right (b,d) show the functions `late treatment'. Pointwise 95%
con�dence intervals for the functions are shown ( ).
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Figure 7.5. Plots of estimated e�ect of patient-speci�c viral load random intercept bV L:i

on predicted characteristics of post-treatment recovery, φ1
(
bV L:i

)
(a�b, relating to long-term

maximum) and φ2
(
bV L:i

)
(c�d, relating to speed of response), for Mod ′

7. Graphs on the left
of each row (a,c) show the �tted functions for `early treatment' and those on the right (b,d)
show the functions `late treatment'. Pointwise 95% con�dence intervals for the functions
are shown ( ).
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Figure 7.6. Plots of predicted median recovery in CD4 counts, based on Mod ′
7, for patients

with a `true' baseline value of 200 (a), 350 (b) or 500 (c) cells/µL. Predictions are shown
for patients initiating treatment immediately at time of seroconversion ( ), at 3months
( ) and at 1 year ( ). For this plot, all patients are assumed to be male homosexual,
aged 36 years, with negative test for hepatitis C virus, no prior AIDS diagnosis and starting
on a non-nucleoside reverse-transcriptase inhibitor (NNRTI) regimen. They are also assumed
to have the population median viral load conditional on time from seroconversion.
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Figure 7.7. Plots of predicted median recovery in CD4 counts, based on Mod ′
7, for patients

with a `true' baseline value of 350 cells/µL and a patient-speci�c viral load random intercept
(on the log10 scale) corresponding to the 2.5th centile ( , −1.44), 50th centile ( , 0) or
the 97.5th centile ( , 1.44). Plots are shown of predictions for patients initiating treatment
immediately at time of seroconversion (a), at 3months (b) and at 1 year (c). For this plot, all
patients are assumed to be male homosexual, aged 36 years, with negative test for hepatitis C
virus, no prior AIDS diagnosis and starting on a non-nucleoside reverse-transcriptase inhibitor
(NNRTI) regimen.
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Figure 7.8. Plots of predicted median recovery in CD4 counts, based on Mod ′
7, for patients

with a `true' baseline value of 350 according to: (a) patient speci�c viral load (VL) random
intercept ( , 2.5th centile; , 50th centile; , 97.5th centile); (b) gender and infection
groups ( , male homosexual; , male heterosexual; , male injecting drug user; ,
female heterosexual; , female injecting drug user ); (c) patient age at treatment initiation
( , ag e = 20 years; , ag e = 60 years); (d) AIDS diagnosis prior to treatment ( ,
yes; , no); (e) hepatitis C virus (HCV) status ( , no test; , +ve test; , -ve
test); and (f) HAART regimen ( , integrase strand transfer inhibitor; , ritonavir-
boosted protease inhibitor; , other; , non-nucleoside reverse-transcriptase inhibitor
(NNRTI)). All patients are assumed to be male homosexual, aged 36 years, with negative
test for HCV, no prior AIDS diagnosis, median VL and starting on a NNRTI regimen at 1 year
since estimated date of seroconversion unless stated otherwise.
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to a more stable level after 2–3 months and a gradual increase over time thereafter

(Figure 7.9). The estimate of variance for the patient-specific random intercept term

(φ̂V L = 0.542) was larger than the estimate of variance for the examination-specific

measurement error (σ̂2
V L = 0.333), indicating the presence of consistent differences

between patients that were used to link their pre-treatment VL level to the character-

istics of CD4 recovery following treatment initiation.
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Figure 7.9. Plot of �tted mean viral load (VL, on the log10 scale; ), as a function of time
elapsed since seroconversion in the absence of treatment, resulting from Mod ′

7. 5
th and 95th

percentiles for individual measurements ( ) are plotted, and the equivalent percentiles are
also shown for the 90% range of `true' VL ( ; i.e. including between-patient di�erence
relating to the random intercept term in the model, but not examination-speci�c measurement
error).

Mod ′
7 was also fitted to a dataset in which CD4 counts were censored if a de-

tectable VL was observed beyond 6 months after the start of treatment. As shown

in Figure 7.10, the predictions made were very similar, although a pre-treatment

AIDS diagnosis was no longer associated with any substantial relative improvement

in post-treatment recovery. The parameter estimates for Mod ′
7 as fitted to the full

dataset and to the processed dataset with censoring at detectable VL observations

are presented in Table 7.2.
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Figure 7.10. Plots of predicted median recovery in CD4 counts, based on Mod ′
7 �tted to

the dataset with censoring at detectable viral load (VL) after 6months of treatment, for
patients with a `true' baseline value of 350 according to: (a) patient speci�c viral load (VL)
random intercept ( , 2.5th centile; , 50th centile; , 97.5th centile); (b) gender
and infection groups ( , male homosexual; , male heterosexual; , male injecting
drug user; , female heterosexual; , female injecting drug user ); (c) patient age at
treatment initiation ( , ag e = 20 years; , ag e = 60 years); (d) AIDS diagnosis prior to
treatment ( , yes; , no); (e) hepatitis C virus (HCV) status ( , no test; , +ve
test; , -ve test); and (f) HAART regimen ( , integrase strand transfer inhibitor; ,
ritonavir-boosted protease inhibitor; , other; , non-nucleoside reverse-transcriptase
inhibitor (NNRTI)). All patients are assumed to be male homosexual, aged 36 years, with
negative test for HCV, no prior AIDS diagnosis, median VL and starting on a NNRTI regimen
at 1 year since estimated date of seroconversion unless stated otherwise.
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7.7 Checks of model performance

In this section we investigate the posterior predictive modes of the latent variables

relating to the timing of seroconversion for each patient in whom this is known to

lie in an interval between last negative and first positive HIV tests (n = 6082). This

is done using Mod ′
7 as fitted to the whole dataset (without censoring linked to post-

treatment observations of detectable VL). As described in Section 7.4, the prior dis-

tribution of seroconversion times for such patients was assumed to follow a beta-

distribution (with both shape parameters set to 6) scaled over the time interval be-

tween tests. A histogram of the posterior predictive modes for the timing of serocon-

version on a standardised interval between negative and positive tests, along with

the specified prior distribution, is shown in Figure 7.11. This plot shows substantial

‘shrinkage’ to the mean for the posterior predictive modes, with most clustered very

close to 0.5, indicating that only a limited amount of information regarding the exact

timing of seroconversion was conveyed by the CD4 counts and VL measurements as

modelled. Indeed, for the vast majority of patients the posterior mode for the date of

seroconversion was between the 40 % and 60 % marks of the intervals between tests

(6058/6082 (99.6 %)).
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Figure 7.11. Histogram of posterior predictive modes relating to the timing of seroconversion
for each patient in whom this is known to lie in an interval between last negative and �rst
positive HIV tests, following from the �t of Mod ′

7 to the full dataset. In this plot the timing
of seroconversion between negative and positive tests has not been scaled by the observed
interval of potential dates for each patient, i.e. `0' indicates the time of last negative test, `1'
is the time of �rst positive test and `0.5' is the mid-point between tests for all patients. The
curved black line shows the probability density function for the speci�ed prior beta distribution
(with shape parameters both equal to 6).

Although the total is small, a greater number of patients had moderate evidence
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that their true date of seroconversion was closer to their first positive test (n = 23

with posterior mode >60 % of the interval from negative to positive test) than had ev-

idence that it was closer to their last negative test (n = 1 with posterior mode <40 %

of the interval from negative to positive test). Plots of pre-treatment CD4 cell counts

and VL measurements of the four patients with strongest evidence of a serocon-

version date closer to their first positive test are shown in Figure 7.12. These plots

demonstrate that, in principle, the model is functioning as intended in adjusting for

any uncertainty in the exact date of seroconversion for these patients; the patients

shown all have at least one high VL measurement (≥6 on the log10 scale) close to the

date of their first positive HIV test followed by a drop in levels over the subsequent

months, and the initial high values were likely because the patients was observed

close to their true date of seroconversion as this provides the best match to the fitted

model for pre-treatment VL measurements as shown in Figure 7.9.

The 95 % credible intervals of the approximate posterior predictive distribution

of the true date of seroconversion for each of the patients shown in Figure 7.12 (and

listed in the Figure caption) included the mid-point between negative and positive

HIV tests, indicating that even for these patients the fitted model could not substan-

tially narrow down the interval for their true date of seroconversion. This provides

one explanation for the fact that the use of models accounting for uncertainty in

the true date of seroconversion in this chapter did not lead to substantially different

conclusions from the use of the fixed mid-point estimates of seroconversion date in

Chapter 6. The use of a uniform prior distribution for the true date of seroconversion

in each patient would have allowed greater deviations from the mid-point estimate,

but was not successfully implemented within the structure developed.

7.8 Further sensitivity analyses

In order to check the finding that VL appears to be an important predictor of post-

treatment CD4 recovery independent of the time elapsed from seroconversion, Mod ′
1

was refitted to only those patients with recorded date of seroconversion illness or lab

evidence of seroconversion (npati ent s = 1707) and to a dataset also including patients

with an interval between last negative and fist positive HIV tests of up to 6 months

(npati ent s = 3479). The resulting parameter estimates are shown in Table 7.3 and

these do not demonstrate an major discrepancies between the models fitted to the

full and restricted datasets, notably higher VL was found to predict a more rapid re-

sponse to treatment whether initiation was early (V Bt1) or late (V Bt2) for all of the

model fits. This provides further evidence that the finding of a high predictive value

of VL for post-treatment recovery in CD4 counts is not just a consequence of high VL

being a marker for the acute period of infection.
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Figure 7.12. Pre-treatment (a) CD4 cell counts (on square-root scale) and (b) viral load
measurements (on log10 scale) for the patients with strongest evidence of a seroconversion
date closer to their �rst positive test, plotted against time prior to initiation of highly active
antiretroviral therapy (HAART), following from the �t of Mod ′

7 to full dataset. Last negative
and �rst positive HIV tests for each patient are shown as vertical dotted black lines, the
midpoint between tests is shown as a vertical solid black line and the posterior predictive
mode of time of seroconversion is shown as a vertical solid red line. The position of the
predicted times of seroconversion (with approximate 95% credible intervals) relative to last
negative test (0) and �rst positive test (1) are: 1, 0.68 (0.38�0.90); 2, 0.71 (0.43�0.90); 3,
0.67 (0.39�0.88); 4, 0.70 (0.29�0.94).
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Table 7.3. Parameter estimates for Mod ′
1 as applied to the full CASCADE dataset, and

to versions restricted to those patients with recorded date of seroconversion (SC) illness or
lab evidence of SC without or with patients with an interval between last negative and �rst
positive HIV tests of ≤ 6months.

Parameter Full dataset SC illness or lab evidence
SC illness or lab evidence,
or test interval ≤ 6 months

npati ent s 7789 1707 3479
β0 22.236 (22.113 to 22.36) 22.254 (22.015 to 22.492) 22.469 (22.303 to 22.635)
β1 -1.598 (-1.662 to -1.533) -1.789 (-1.942 to -1.637) -1.711 (-1.81 to -1.613)

U00 20.963 (20.045 to 21.923) 21.265 (19.641 to 23.023) 19.537 (18.41 to 20.733)
ρ -0.518 -0.390 -0.449

U11 0.65 (0.532 to 0.793) 0.949 (0.676 to 1.332) 0.842 (0.662 to 1.072)
κpr e 5.845 (5.532 to 6.175) 5.106 (4.463 to 5.842) 5.742 (5.281 to 6.243)
Hpr e 0.294 (0.266 to 0.321) 0.283 (0.222 to 0.345) 0.25 (0.214 to 0.285)
σ 1.753 (1.718 to 1.79) 1.885 (1.811 to 1.961) 1.802 (1.748 to 1.858)

At11 14.981 (12.286 to 17.677) 16.937 (12.099 to 21.775) 14.415 (11.003 to 17.828)
At12 0.545 (0.432 to 0.657) 0.457 (0.265 to 0.649) 0.562 (0.416 to 0.708)
At21 21.637 (19.656 to 23.619) 24.222 (18.526 to 29.918) 22.806 (18.982 to 26.63)
At22 0.479 (0.398 to 0.561) 0.415 (0.201 to 0.629) 0.469 (0.31 to 0.628)
B t11 -1.352 (-2.141 to -0.562) -1.131 (-2.168 to -0.094) -1.467 (-2.39 to -0.544)
B t12 0.123 (0.085 to 0.16) 0.105 (0.062 to 0.148) 0.126 (0.082 to 0.17)
B t21 -1.133 (-1.322 to -0.944) -1.25 (-1.751 to -0.749) -1.107 (-1.487 to -0.727)
B t22 0.025 (0.015 to 0.036) 0.026 (0.002 to 0.049) 0.018 (-0.002 to 0.038)
Ω 9.596 (8.24 to 11.175) 12.446 (9.59 to 16.153) 9.456 (7.517 to 11.895)

κpost 4.872 (4.59 to 5.172) 3.853 (3.259 to 4.555) 4.826 (4.396 to 5.298)
Hpost 0.216 (0.2 to 0.232) 0.222 (0.179 to 0.266) 0.212 (0.188 to 0.236)

D 0.433 (0.417 to 0.449) 0.407 (0.375 to 0.442) 0.419 (0.397 to 0.443)
V At1 0.841 (-0.168 to 1.85) 0.61 (-1.369 to 2.589) 1.245 (0.011 to 2.479)
V At2 -1.768 (-2.556 to -0.981) -3.639 (-5.856 to -1.421) -2.215 (-3.579 to -0.85)
V Bt1 0.944 (0.576 to 1.313) 1.20 (0.684 to 1.716) 0.843 (0.455 to 1.23)
V Bt2 0.628 (0.552 to 0.704) 0.751 (0.587 to 0.915) 0.648 (0.526 to 0.769)

S 7.29 (5.954 to 8.926) 14.374 (6.678 to 30.938) 8.072 (6.418 to 10.153)
β0V L 4.502 (4.48 to 4.524) 4.579 (4.534 to 4.624) 4.553 (4.52 to 4.587)
β1V L 0.052 (0.046 to 0.058) 0.057 (0.044 to 0.069) 0.054 (0.045 to 0.063)
β2V L 1.294 (1.227 to 1.362) 1.408 (1.328 to 1.488) 1.327 (1.257 to 1.398)
β3V L 10.959 (9.783 to 12.277) 16.708 (14.913 to 18.72) 12.891 (11.617 to 14.304)
φV L 0.541 (0.519 to 0.564) 0.469 (0.428 to 0.515) 0.542 (0.509 to 0.578)
σV L 0.577 (0.573 to 0.582) 0.612 (0.602 to 0.623) 0.608 (0.601 to 0.615)

ρV L:C D40 -0.277 -0.376 -0.327
ρV L:C D41 -0.482 -0.411 -0.452

95% CIs are given in parentheses. Parameters are defined as in Table 7.2.
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As in Chapter 6, we also attempted to fit models in which between-patient differ-

ences in variability were accounted for, using linked multivariate-t distributions for

the pre- and post-treatment fractional Brownian motion components of the model

as described in Section 5.7. This was carried out using the full dataset as described

in Section 7.5. Convergence was not achieved when the extension was applied to the

model including all patient and drug regimen characteristic, i.e. Mod ′
7. However,

maximum likelihood estimates were obtained when the extension was applied to the

model with optimal BIC, i.e. Mod ′
1 including linear effects for baseline CD4 count

and additional linear effects of baseline VL, varying by time since seroconversion,

on the characteristics of response to treatment. A plot illustrating the associations

between VL at treatment initiation, timing of treatment initiation and the character-

istics of response from the resulting model is shown in Figure 7.13, showing a similar

pattern to those obtained from Mod ′
7 (as shown in Figure 7.7).
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Figure 7.13. Plots of predicted median recovery in CD4 counts, based on Mod ′
1 with

the addition of between-patient di�erences in variability, for patients with a `true' baseline
value of 350 cells/µL and a patient-speci�c viral load random intercept (on the log10 scale)
corresponding to the 2.5th centile ( , −1.44), 50th centile ( , 0) or the 97.5th centile
( , 1.44). Plots are shown of predictions for patients initiating treatment immediately at
time of seroconversion (a), at 3months (b) and at 1 year (c).

7.9 Discussion

In this chapter we have further developed the framework for the combined mod-

elling of pre- and post-treatment data described in Chapters 5 and 6 in order to in-

corporate a second pre-treatment biomarker and also to allow for uncertainty in the

pre-treatment ‘zero’ timepoint for each patient. The modelling strategy has been

applied to the full CASCADE dataset as analysed in Chapter 6, with inclusion of a

pre-treatment model for VL measurements and accounting for uncertainty in the

true date of seroconversion for those patients in whom it is known to fall within
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an interval between last negative and first positive tests for HIV. In this setting, the

combined modelling framework allows maximum likelihood estimation to be car-

ried out with integration over the range of possible seroconversion dates for each

individual, which would be difficult to achieve using established statistical meth-

ods for analysing response to treatment. The modelling of pre-treatment biomarker

with maximum likelihood estimates obtained by integration over possible dates of

seroconversion was described by Sommen et al.145 and Drylewicz et al.146, but this

technique has not previously been extended to the analysis of response to treatment.

The modelling strategy described in this chapter was developed with the aim of

allowing the distinct factors that predict CD4 response to HAART to be better under-

stood. By accounting for uncertainty in the true date of seroconversion for each pa-

tient, we hoped to be able to isolate the predictive value of pre-treatment VL level and

to identify a time-interval within which early treatment initiation is associated with

an improved CD4 cell recovery beyond that predicted by the baseline CD4 cell count

alone, as indicated by the findings reported in Chapter 6. We have been partially suc-

cessful in achieving these goals, but the high level of model complexity meant that

not all desired features could be included within a single analysis of the data.

As found in the analysis reported in Chapter 6, the most important factor in

predicting response to treatment was the CD4 count at initiation. Higher VL pre-

treatment was found to predict more rapid recovery in CD4 counts with sustained

higher values over the time-frame considered, whether or not HAART was initiated

close to the date of seroconversion, in these analyses in which uncertainty in the ex-

act timing of seroconversion was taken into account. This provides evidence that

this association, which has been reported previously in the literature (e.g. Smith et

al.123, Florence et al.132, Gras et al.81), is not an artefact resulting from the VL peak

observed close to the time of seroconversion. In the present analyses, we found that

initiation of HAART within around 4 months of seroconversion was associated with

a more rapid initial improvement in CD4 counts, with the fitted models indicating

an additional benefit (beyond that associated with higher baseline CD4 counts) over

the first 2 years from the start of treatment. This is consistent with the findings re-

ported by Le et al.113. However, the estimated benefit of early treatment (beyond

that conveyed by higher baseline CD4 counts) was only moderate. The fitted mod-

els actually predict lower long-term CD4 counts beyond 2–3 years, for a given CD4

baseline value, for patients in whom HAART is initiated immediately at the time of

seroconversion; this may be an artefact of the limitation in the modelling of recovery

characteristics in terms of only linear functions of baseline CD4 and VL.

A previous study by Mussini et al.136 analysing the CASCADE dataset found that,

controlling for both baseline CD4 count and VL, steeper pre-treatment declines in

CD4 count were associated with more rapid recovery once treatment was initiated.
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Similarly Jarrin et al.137, again using the CASCADE data, found that initial recovery at

1 month after treatment initiation was increased in ‘rapid progressors’ (patients with

at least one CD4 count < 200 cells/µL within 12 months of seroconversion). It would

have been interesting to have also tested for an independent effect of rate of pre-

treatment CD4 decline in the present analysis, but this was not attempted following

the failure to achieve convergence of parameter estimates for such models in the

pilot investigation described in Chapter 5. The findings of Mussini et al.136 and Jarrin

et al.137 are consistent with our findings that higher baseline VL and early treatment

initiation are predictive of a more rapid recovery in the CD4 counts, as both factors

are associated with a steeper pre-treatment decline. The correlation between these

factors makes it difficult to separate out which is most important in predicting the

characteristics of post-treatment recovery. It is also possible that ‘regression to the

mean’ effects, as explored in Section 5.13.2, could have contributed to the findings of

Mussini et al.136 and Jarrin et al.137.

A further limitation of the analyses that we have presented in this chapter is that

we were not able to obtain maximum likelihood estimates for models that used a

uniform prior distribution for the true date of seroconversion for those patients in

whom this is not known, and instead implemented a beta distribution with a peak at

the mid-point estimate. This contributed towards a clustering of posterior predictive

modes for the true dates of seroconversion in these patients around the mid-point

estimate, and thus it is not surprising that the results of the analyses in this chapter

do not show any major discrepancies with those obtained using fixed mid-point es-

timates for the date of seroconversion as reported in Chapter 6. It was also necessary

to limit the model for pre-treatment VL measurements to a relatively simple random

intercept variance structure, and to limit the link between this part of the model and

the model for pre-treatment CD4 counts to correlations between the random effect

terms. It is possible that the use of a uniform prior distribution and/or a more fully

developed model for pre-treatment VL could lead to different results to those ob-

tained in the present analysis; achieving these goals might require a switch to a dif-

ferent technique for obtaining maximum likelihood estimates or to a fundamental

change to a Bayesian modelling framework, which is further discussed in Chapter 8.

167



DISCUSSION

8 Discussion

In this thesis, we have developed several novel extensions to the statistical models

available for longitudinal biomarker data. The work was been motivated by the anal-

ysis of CD4 cell counts before and after treatment in HIV patients but aspects of the

modelling framework developed could be adapted for applications in other disease

areas. When applied to CD4 cell count datasets, the use of models that combine

stochastic process components with the multivariate-t distribution enabled novel

observations regarding the patterns of between- and within-patient variability over

time. The methodology developed for the combined analysis of pre- and post-treatment

data produces inferences that are largely consistent with the existing literature, but

provides a refined understanding of the predictive value of patient and drug regi-

men variables for the short- and long-term characteristics of response to treatment

initiation. The combined model also provides a unified framework for simulation

of patient cohorts. Furthermore the models that account for uncertainty in the ex-

act timing of seroconversion allow estimation of the time period within which ‘early

treatment initiation’ appears to have an additional benefit beyond that conferred by

higher baseline CD4 counts, which has not previously been achieved.

The incorporation of fractional Brownian motion processes within the structure

of the mixed effects model allows a mathematical description and quantification of

the highly erratic nature of CD4 cell count trajectories over time within each patient.

We have developed and published an R package, ‘covBM’35, that allows such models

to be fitted within the familiar ‘nlme’6;34 framework, which we hope will facilitate

its use in other settings. In Chapter 4, we showed that the use of overly simplistic

covariance structures for longitudinal data can lead to biases in inferences when the

attrition of patients from a dataset is dependent on observed values of the outcome

variable for each individual; this is not a new finding in itself, but demonstrates the

motivation for fitting statistical models that match the data under investigation as

closely as possible.

When the multivariate-t distribution was also used for either the full pre-treatment

model or for the fractional Brownian motion component of the model, substantial

between-patient differences in variability were identified. Furthermore, for these

models the estimated value of the H-index parameter was substantially lower, indi-

cating a more substantial negative correlation between successive increments of the

process and stronger reversion towards the underlying mean value for each patient.

These are features that can be identified on visual inspection of the raw data, but

which are not captured by standard mixed effects models. The use of the multivariate-

t distribution was shown to provide a good description of the variability observed in

the data through the use of novel diagnostic residual plots.
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Interestingly, the use of the multivariate-t distribution for longitudinal data seemed

to have a limited effect on inferences regarding the ‘fixed effects’ components of the

models. In the simulations carried out in Chapter 4, with patient data generated

using the full multivariate-t distribution model, estimation of the population mean

slope showed no bias and appropriate confidence interval coverage when based on

the equivalent model simplified to follow a marginal multivariate normal distribu-

tion. Similarly, in Chapter 5 when data were simulated from a combined pre- and

post-treatment model using multivariate-t distributions for the stochastic process

components, fitted models that did not incorporate the resulting between-patient

differences in variability over time nonetheless provided appropriate estimation of

the link between baseline values at treatment initiation and the characteristics of

response to treatment. However, we note here again that the substantial between-

patient differences in variability over time observed in CD4 cell counts of HIV pa-

tients represent an interesting finding in itself.

8.1 Alternative approaches and potential future research

8.1.1 Parameter estimation

For the combined analysis of pre- and post-treatment data developed in Chapters 5,

6 and 7, we found that it was not possible to obtain maximum likelihood estimates if

too many features were added to a single model. For example, in Chapter 6 it was not

possible to fit a model that included the full set of patient characteristics and the po-

tential for between-patient differences in variability over time, whilst in Chapter 7 it

was only possible to use linear functions to link the baseline CD4 count to treatment

response characteristics for models in which uncertainty in the true date of serocon-

version was taken into account. These problems result, at least partially, from the

need to use the less accurate Laplace approximation to the marginal log-likelihood

for the parameter estimation of models in which there are more than one latent vari-

able term per patient, as described in Chapter 2. In Chapter 7 we were not able to fit

models for which the prior distribution of the true date of seroconversion followed

a uniform distribution, and it would be of interest to pursue this goal using different

computational approaches in order to check whether this had a substantial impact

on the inferences obtained from the fitted models.

An alternative approach to the maximum likelihood estimation employed through-

out this thesis would be to fit equivalent models using a Bayesian framework. Such

an approach can make complex models more computationally tractable, by avoid-

ing the need to approximate the value of the marginal likelihood throughout the es-

timation procedure, and has the advantage that full posterior distributions can be

obtained for latent variables of interest. However, the use of a Bayesian approach
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requires specification of prior distributions for all model parameters, which is not

straightforward for complex non-linear models, and also requires decisions to be

made regarding the number of sample iterations and criteria to judge successful con-

vergence to a posterior distribution150. The computational performance of Bayesian

model fitting can be highly dependent on the way in which the statistical model is

coded and incorporated within a sampling algorithm151, and some of the expres-

sions used for calculation of the marginal maximum likelihood in this thesis may

also be of use within a Bayesian context.

8.1.2 Dynamic models

In this thesis, we have developed models based on the existing framework of para-

metric linear and non-linear mixed effects models. This approach has the advan-

tages that the structure of the models can be clearly understood in terms of time

elapsed since either infection or treatment initiation. In developing the combined

models for pre- and post-treatment data we structured the models in such a way

that the estimated parameters linked to response to treatment could be defined in

terms of the important characteristics of speed of recovery and long-term maximum,

although when the response model was generalised to a Janoshek–Sager curve inter-

pretation was made more difficult due to the fact that maximal response was not

achieved within the timeframe considered. However, an alternative approach is the

use of dynamic models (sometimes also described as mechanistic models) based on

systems of differential equations. When dynamic models include patient-specific

random effect terms, they effectively form a subclass of non-linear mixed effects

models152.

The use of dynamic models for longitudinal data in a biomedical context was

first developed for the analysis of PKPD data153, for which this approach provided a

natural framework for the estimation of drug absorption and clearance rates. Early

application of such techniques in the context of HIV infection focused on estima-

tion of viral replication rates and the lifespans of infected cells154;155. Subsequent

research has involved more detailed investigation of both short- and long-term re-

sponses to antiretroviral treatments14;156 using dynamic models. As well as provid-

ing estimates of parameters with direct biological interpretation, such as rates of vi-

ral replication, these models allow the influence of drug dosing, administration fre-

quency and treatment interruptions157 to be modelled directly; this has led some

to suggest that dynamic models could be used to develop and implement person-

alised treatment regimes14. However, the dynamic approach to modelling longitudi-

nal data does also have some disadvantages. The computational complexity for the

estimation of dynamic models is greater than that for conventional non-linear mixed
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effects models because, in most cases, the system of differential equations that de-

fines the model cannot be solved exactly but rather requires numerical approxima-

tion in order to obtain the marginal likelihood (in addition to the integration over

random effect terms required for all non-linear mixed effects models). There can

also be problems regarding the identifiability of parameters even for relatively sim-

ple dynamic models158. The dynamic model defined in any situation, particularly

for the complex virus–host interactions that are present in HIV infection, will always

represent a substantial simplification of the biological system under investigation,

and may not identify key features of the underlying biology.

We believe that the construction of ‘empirical’ models for longitudinal data (also

sometimes termed ‘descriptive’ models), in which the structure is based on the pat-

terns observed in the raw data rather than idealised mathematical relationships, can

play a complementary role to the use of dynamic models. As we have done in this

thesis, ‘empirical’ models can be structured to explore and answer key questions of

interest, whilst retaining computational tractability for the dataset under investiga-

tion. There is the potential for the findings obtained using one approach to inspire

further developments using the other; for example many functions derived from sys-

tems of differential equations can be used for non-linear regression modelling on

the basis of empirical fit rather than an appeal to underlying mathematical relation-

ships130 whilst the implementation of joint models for longitudinal biomarker ob-

servations and time-to-event outcomes was first achieved for ‘empirical’ linear and

non-linear mixed effects models before being extended to dynamic models159.

In Chapter 7, we developed a model that included a bivariate random effects sub-

model for VL and CD4 cell counts measurements prior to treatment initiation based

on that described by Pantazis et al.127. However, we were only able to achieve conver-

gence of maximum likelihood estimation when the sub-model was restricted to only

include a random intercept term for the VL measurements, and we did not attempt to

fit a bivariate stochastic process component for CD4 cell counts and VL as has been

described by Sy et al.25. One criticism of the use of ‘empirical’ models for bivariate (or

multivariate) longitudinal data is that it is difficult to adequately capture the interac-

tions between multiple biomarkers14, and this limitation does indeed apply for the

model presented in Chapter 7. However, with existing software and available com-

putational resources, it may not have been possible to build a dynamic model that

would allow investigation of the effects of a large number of patient characteristics

on response to treatment and to fit this to the full CASCADE dataset.
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8.1.3 Methods for time-dependent confounding

For the past three decades, there has been a great deal of methodological develop-

ment for the estimation of causal effects in the presence of time-dependent con-

founding variables160–162. These methods allow estimation of causal effects of in-

terventions with adjustment for variables that are both influenced by past treatment

history and influence future treatment decisions. In the context of HIV research, the

uses of such techniques have included estimation of the net effect of HAART on the

risk of AIDS or death163 and estimation of the effectiveness of different treatment ini-

tiation rules164. In the combined analyses of pre- and post-treatment data presented

in this thesis, we avoided the problem of time-dependent confounding by consider-

ing only predictive factors at the time of treatment initiation for the recovery of CD4

cell counts of patients on continuous HAART. The framework that we used allowed

for a rich description of the patterns of CD4 cell count trajectories over time and also

allowed for uncertainty in the exact date of seroconversion to be incorporated into

the model. However, the fact that techniques for dealing with time-dependent con-

founding were not employed meant that it was necessary to censor post-treatment

observations at the occurrence of interruption of HAART, and it would not have been

possible to assess the effects of changes to treatment regimes after the initiation of

HAART.

Inverse probability of censoring weighting is a statistical technique related to the

methods developed to adjust for time-dependent confounding. This technique was

used by Lok et al.110 to estimate median CD4 recovery in response to treatment

stratified by baseline value. This methodology has the advantage that the median

response can be estimated either on the condition that all patients were to receive

continuous treatment, or for all patients averaged over the pattern of adherence ob-

served in the studied population. It is also possible within this framework to con-

duct sensitivity analyses under different ‘missing not at random’100 (MNAR) scenar-

ios, such as reduced access to treatment and increased levels of mortality in patients

who are lost to follow-up165. In our analyses, response to HAART was estimated only

for patients in care and receiving continuous treatment.

8.1.4 Joint modelling of time-to-event outcomes

A limitation of the analysis in this thesis of both pre- and post-treatment data is that

the modelling of time-to-event outcomes was not considered. For the analysis of

pre-treatment data alone in Chapter 4, the data for most patients were censored at

treatment initiation and it is reasonable to make the MAR assumption, i.e. that the

missingness of each potential observation is independent of its value conditional on

the data that were observed, given that treatment initiation was largely conditional
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on the observed CD4 counts. For the combined analyses of pre- and post-treatment

data described in Chapters 5, 6 and 7 a similar assumption was made, but attrition

from the dataset was due to treatment interruption, loss to follow-up, administrative

censoring or death.

In effect the combined models presented represent response to HAART in a pop-

ulation of patients that remain in care and on continuous treatment and it seems

reasonable to make the pragmatic assumption that in those patients who drop out

of care or who have their treatment interrupted, the subsequent trajectory of CD4

counts that would have been observed had this event not occurred can be predicted

by the observed data for that patient. The rate of death for patients on HAART in

developed countries is low, and so although the MAR assumption is harder to inter-

pret or justify for this outcome, the effect on the analysis is likely to be negligible.

Sensitivity analyses were carried out in Chapters 6 and 7 in which patients were also

censored at the observation of virological failure once on HAART. The motivation for

this analysis was the assumption that most cases of virological failure result from

imperfect adherence to treatment, and so the results obtained can be interpreted as

representing the predicted recovery on HAART for patients with perfect adherence.

Although the MAR assumption used in relation to censoring can be defended in

each case, it would be of interest to further investigate the links between longitudinal

biomarker observations and the occurrence of clinical events within the framework

developed. As noted in Section 8.1.3, other methods for MNAR sensitivity analyses

have been developed, but the joint modelling of longitudinal biomarker data and

time-to-event data would provide a more natural fit to the parametric probability

models investigated in this thesis.

Much of the development of methods for the joint modelling of longitudinal biomarker

data and time-to-event data has been conducted within the context of HIV research.

We focus our discussion here on ‘shared parameter’ models166, for which the sub-

models for both the longitudinal and time-to-event outcomes are conditioned on a

shared set of patient-specific latent variable terms. This class of models was intro-

duced by De Gruttola and Tu167 for the joint modelling of serial CD4 cell counts and

death in HIV patients treated with zidovudine monotherapy (which has only limited

efficacy), who found a strong association between the patient-specific slope of CD4

trajectory and survival time (those with a steeper decline had lower expected sur-

vival time). This statistical approach is now widely accessible for situations in which

the longitudinal data sub-model can be expressed as a linear mixed model, with well

developed packages available for both R168 and STATA169;170 that allow a range of

options for the time-to-event sub-model.

‘Shared parameter’ joint models can be implemented for non-linear mixed ef-

fects models and for models that include a multivariate longitudinal outcome127;148
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without a substantial increase in the computational complexity of maximum likeli-

hood estimation. However, the incorporation of stochastic process components into

the longitudinal data model does lead to computational challenges if realisations of

the process are thought to be associated with the hazard of the event. Henderson

et al.171 considered a joint model in which a stationary stochastic process could in-

fluence both the longitudinal data and survival models, noting that for a fixed set of

d time points for observations this would require integration over d latent variables

(representing the sum of patient-specific random effects and stochastic process real-

isation at each time point) per patient. They addressed this problem using a combi-

nation of numerical integration through importance sampling and an EM algorithm.

The authors note that the same approach could also be used for the inclusion of

non-stationary stochastic processes. However, the requirement for integration of the

maximum likelihood function over latent variable terms corresponding to every sin-

gle observation in a dataset could lead to impossible computational requirements for

a large dataset and would also likely be associated with poor computational stability

in some settings. The use of a semi-parametric Cox regression model for the event

outcome would also be highly problematic if the timings of events were recorded

as continuous rather than only at predefined points, as the value of the stochastic

process for every individual patient would have to be considered at all distinct event

times in the dataset.

Wang and Taylor172, using HIV cohort data that pre-dates the availability of ef-

fective treatment, described the implementation of a joint model for CD4 cell counts

and the occurrence of AIDS incorporating both a subject-specific random intercept

and either an IOU or Brownian motion process. Model fitting was conducted with

a Bayesian approach using Markov chain Monte Carlo techniques to obtain an esti-

mate of the posterior distribution for each parameter. However, although stochastic

processes are defined in continuous time, in the survival model they were converted

to a step process as this was necessary to obtain a tractable form for the likelihood

of this section of the model. A similar approach was described by Struthers and

McLeish173.

In this thesis we have described the use of fractional Brownian motion, a non-

stationary stochastic Gaussian process, as a novel component of linear or non-linear

mixed effects models. It is interesting that when between-patient differences in the

variance of this model component were included, the estimated H-index for the

fractional Brownian motion process was substantially lower, indicating a stronger

tendency of reversion towards an underlying mean value within each patient. This

finding could be used as justification to fit joint models for time-to-event data that

do not include realisations of the fractional Brownian motion process in the hazard

function, which would greatly simplify model fitting; the argument being that the
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stochastic process only represents short-to-medium term variation from the under-

lying long-term mean for any given patient and so might have less of an influence on

the event outcome considered.

The latent variables used to enable patient-specific differences in variability over

time could also themselves be included within the hazard function of a joint model

for time-to-event data. For HIV patients on HAART, the rates of AIDS events and

death are low, which makes it difficult to fit complex models for the risks of such

events. However, the occurrence of a detectable VL for patients on HAART is a more

common clinically relevant event, termed ‘virological failure’. We propose that it

would be interesting to investigate whether there is a link between CD4 cell count

variability and the risk of virological failure for patients on HAART, as this could add

to our scientific understanding of virological suppression and could also influence

clinical monitoring strategies.

8.2 Publication plan

As noted earlier in the thesis, the contents of Chapter 4 form the basis for a publi-

cation in Statistics in Medicine 47 and the contents of Chapter 5 form the basis for

a publication in BMC Medical Research Methodology 105, which are provided in Ap-

pendix C and Appendix D, respectively. We plan to submit a third article to an ap-

plied HIV research journal based on the analyses presented in Chapters 6 and 7; we

are currently in the final stages of drafting this manuscript.

8.3 Conclusions

In the statistical analysis of longitudinal biomedical data there are competing pres-

sures for conceptual and computational simplicity on the one hand and for adequate

description of the structure and characteristics of the data under investigation on the

other. Linear mixed effects models have gained widespread use because they pro-

vide a framework that reflects the dependency between observations in longitudinal

datasets whilst being readily understood as an extension of linear regression. Fur-

thermore, the marginal multivariate normal distribution provided by linear mixed

effects models has formed the basis for the development of computationally efficient

techniques for maximum likelihood estimation which have been implemented in all

major statistical software packages. However, there are situations in which the data

justify the implementation of more complex statistical models, and this has been fa-

cilitated in recent years by the development of very flexible statistical software tools

such as ADMB for maximum likelihood estimation50 and BUGS151 and Stan174 for

Bayesian analyses.
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In this thesis we have contributed to the development of statistical models that

reflect the characteristics of CD4 cell count observations before and after treatment

initiation in patients with HIV, allowing a richer description of within and between-

patient patterns of variability over time and enabling a novel approach to the in-

vestigation of factors that predict the characteristics of response to HAART. In this

setting the additional computational and conceptual complexity of the modelling

framework proposed is justified by the features of the data under investigation, as

it is particularly important for statistical models to reflect the structure of the data

when observation schedules, timings of treatment initiation and attrition from the

dataset are all highly variable between patients. We have also made some progress

in addressing the problem of uncertainty in seroconversion dates for the analysis of

response to treatment. Our findings relating to the recovery of CD4 cell counts in

response to HAART are largely consistent with those that have been previously re-

ported, but we provide evidence regarding the additional benefit of early initiation

of HAART beyond that conveyed by the associated higher baseline CD4 count that

constitutes a novel contribution to the applied literature.

Whilst the motivation for methodological developments and the applied analy-

ses throughout the thesis have been focused on the HIV setting, we hope that the

work will provide useful ideas for the development of models for biomarkers in other

fields of research. Longitudinal biomedical data often has a highly complex struc-

ture, and in most cases it is not possible to incorporate all desirable features of inter-

est within a single statistical model. However, the continuing development of statis-

tical methodology for the analysis of longitudinal data, coupled with the availability

of more flexible software, will allow researchers to more closely tailor their methods

of analysis to the data and the research questions under investigation.
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‘nlme’ models

Oliver Stirrup
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1 Introduction

Longitudinal data are now widely analysed using linear mixed models, with ‘random slopes’
models particularly common. These models can successfully account for the dependency that
arises when repeated observations are made over time on each individual in a dataset, but make
strong assumptions regarding the nature of this dependency. In the context of modelling CD4 cell
counts over time in human immunodeficiency virus (HIV)-positive patients, it has been shown that
the incorporation of non-stationary stochastic processes such as Brownian motion or integrated
Ornstein–Uhlenbeck (IOU) processes into the modelling framework can lead to a very substantial
improvement in model fit1;2. Recently, the use of a fractional Brownian motion component has
been shown to provide a further improvement3. However, these extensions to the standard linear
mixed model have not been widely used in practice, and are not readily implemented in current
statistical software programs. The presence of such a component in a model for longitudinal data
implies that the progress of the state of the underlying biological system for each individual does
not follow a deterministic relationship with time, but rather follows an unpredictable stochastic
path.

The nlme package4 for R allows the user to fit a wide range of linear and non-linear mixed effects
models, with in-depth documentation and a wealth of examples provided in the accompanying book
by Pinheiro and Bates5. As well as incorporating within-subject dependence resulting from the
inclusion of ‘random effects’ in a specified model, nlme also allows for a correlation structure to
be imposed on the residual error terms (with estimation of any associated parameters) and for the
residual error variance to be modelled as a function of variables in the data under consideration.
It is even possible for the user to create their own correlation structures or variance functions for
inclusion in the estimation of models in nlme.

It is possible to implement user-defined correlation structures in nlme to obtain point estimates
of the parameters in linear and non-linear mixed effects models incorporating Brownian motion
or IOU processes. However, some further additions to the original nlme code are required to
obtain confidence intervals for the natural model parameters and to return a fitted model object
that reports the natural parameters upon use of print or summary. The covBM package provides
wrappers for the standard nlme functions in order to achieve these goals.

In Section 2, the characteristics of the statistical models under consideration are specified, and
in Section 3, examples are provided to illustrate use of the functions provided in covBM to fit such
models.

2 Model description

2.1 Scaled Brownian motion

Brownian motion (also known as a Wiener process) is a non-stationary stochastic process that
constitutes a continuous-time generalisation of a simple random walk6, in which successive incre-
ments are independent of the history of the process. When considered in terms of a given set of
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observation points, a scaled Brownian motion process, denoted Wt at time t, is defined by the
properties:

W0 = 0

Wt −Ws ∼ N(0, κ(t− s)) for 0 ≤ s < t.

The process starts at zero at time (t) zero, and increments of the process are stationary,
independent (for disjoint periods of time) and normally distributed with mean zero and variance
equal to the difference in time between observation points scaled by a constant factor κ. These
conditions lead to the following characteristics:

E[Wt] = 0

Var[Wt] = κt

Cov[Ws,Wt] = κ ∗min(s, t).

The distribution of a set of n observations relating to a given series of time points therefore
follows a multivariate normal distribution with a mean vector of n zeros and covariance matrix
defined by the formulae given above.

2.2 Scaled fractional Brownian motion

Fractional Brownian motion represents a generalisation of a Brownian motion process in which
increments for disjoint time periods are not constrained to be independent, although they do
remain stationary. The process was introduced by Mandelbrot and van Ness7. The characteristics
of a fractional Brownian motion process are determined by an additional parameter, referred to
as H or ‘the Hurst index’, that may take a value in the range (0,1). Standard Brownian motion
represents a special case of fractional Brownian motion, corresponding to H = 1

2 . As for standard
Brownian motion, the expectation of the value of the process is zero for all points in time.

When H < 1
2 , successive increments of the process are negatively correlated. This has the

consequence, firstly, that the path of the trajectory appears ‘jagged’ and, secondly, that realisations
of the process tend to revert towards the mean of zero. For H > 1

2 , successive increments of the
process are positively correlated. This means that the path of the process has a relatively ‘smooth’
appearance, and also that realisations of the process tend to diverge away from zero.

As for Brownian motion, a scale parameter (κ) can be added to the standard definition of
fractional Brownian motion, corresponding to the variance of the process at t = 1. We may then
characterise the properties of the process as follows:

W0 = 0

E[Wt] = 0

Var[Wt] = κ |t|2H

Cov[Ws,Wt] =
κ

2

(
|s|2H + |t|2H − |t− s|2H

)
.

2.3 Integrated Ornstein–Uhlenbeck process

The IOU process is another non-stationary Gaussian stochastic process that has also been used to
model CD4 counts in HIV-positive patients, a full description is provided by Taylor et al.1. The
process has the following characteristics:

W0 = 0

E[Wt] = 0

Var[Wt] =
κ

α3

(
αt+ e−αt − 1

)

Cov[Ws,Wt] =
κ

2α3

(
2α ∗min(s, t) + e−αt + e−αs − 1− e−α|t−s|

)
.
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We have used the symbol κ to denote the variance scaling parameter (σ2 was used by Taylor et
al.1). The α parameter determines the extent to which the process reverts towards its mean value.
For values of α approaching infinity, the process is equivalent to scaled Brownian motion, whereas
for values of α approaching zero the process is equivalent to a random slopes model (without a
random intercept)1.

2.4 Marginal distribution

For models incorporating Gaussian processes such as Brownian motion, the fact that the marginal
distribution of the full vector of observations of the outcome variable is multivariate normal
(MVN) means that parameter estimation can be achieved through adjustment of the methods
used for standard linear mixed models. The linear mixed model for longitudinal data can be
expressed in the form8:

yi = Xiβ + Zibi + ei (1)

bi ∼MVN(0, Ψ)

ei ∼MVN(0, Ri).

Here, yi represents the vector of ni observations for the i th individual, Xi represents their
design matrix for the ‘fixed effects’ parameters β, Zi represents the subset of the columns of the
design matrix associated with the ‘random effects’ for each individual bi and ei is the vector of
residual errors for each measurement occasion. The vectors of random effects b1,b2...bN and
residual errors e1, e2...eN for each of the N individuals are independent of one another. It can be
easily shown that this formulation leads to the following marginal distribution for yi:

yi ∼MVN(Xiβ, ZiΨZT
i + Ri).

When linear mixed models are fitted to longitudinal data, it is common to assume that the
residual errors for each observation within each individual, ei, are independent and with constant
variance, σ2, i.e. Ri as defined in (1) is equal to σ2Ini

. However, other forms for Ri are widely
used, particularly for the analysis of longitudinal or spatial data, for example the exponential
correlation structure5.

The remaining variability in the model, once the random effects have been accounted for, can
also be subdivided into a component relating to a Gaussian process (independent of other model
components) with expectation zero for all time points and an independent residual error for each
observation. Defining Σi as the covariance matrix resulting from the chosen Gaussian process and
set of time points ti for the i th individual, the linear mixed model can then be expressed as:

yi = Xiβ + Zibi +Wi[ti] + ei (2)

bi ∼MVN(0, Ψ)

Wi[ti] ∼MVN(0, Σi)

ei ∼MVN(0, σ2Ini
),

with marginal distribution:

yi ∼MVN(Xiβ, ZiΨZT
i + Σi + σ2Ini).

Although here we have focused on the marginal distribution for linear mixed models that
incorporate a stochastic process, similar adjustment of the multivariate normal residual error
distribution (i.e. Ri) can also be made for non-linear mixed effects models.

3 Examples

3.1 lmeBM function

The lmeBM function is a wrapper for the lme.formula function from the nlme package, i.e. the
lme function as used with a formula argument to specify the desired model; and the various
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arguments can be used in exactly the same way as the original nlme function. However, lmeBM
allows Brownian motion, fractional Brownian motion or IOU process components to be added to
a model.

Included in the covBM package is a dataset of serial CD4 counts obtained in HIV-positive
children. This dataset is discussed in Data Analysis Using Regression and Multilevel/Hierarchical
Models by Andrew Gelman and Jennifer Hill9, and the original is available online from the home
page of this book. In the present package, rows with missing values of ‘CD4CNT’ (CD4 count on
original scale), ‘visage’ (age of child in years at given visit) or ‘baseage’ (age of child in years at
initial visit) have been removed.

> library(covBM)

> head(cd4)

newpid visage treatmnt CD4CNT baseage sqrtcd4 t

1 1 5.330833 1 626 3.910000 25.019992 1.4208333

2 1 5.848333 1 220 3.910000 14.832397 1.9383333

3 2 3.565000 2 30 3.565000 5.477226 0.0000000

4 2 3.778333 2 4 3.565000 2.000000 0.2133333

5 3 6.124167 1 714 6.124167 26.720778 0.0000000

6 3 6.354167 1 523 6.124167 22.869193 0.2300000

We will consider models for square root-transformed CD4 counts ‘sqrtcd4’, as this provides a
better approximation to the normal distribution, in terms of the time elapsed in years since the
initial visit ‘t’. The variable ‘newpid’ provides unique patient identifiers. The ‘treatmnt’ variable
indicates whether that child was a control (==1) or given a zinc supplment (==2). However, this
variable is not considered below.

First, we fit a standard ‘random slopes’ linear mixed model, using the lme function from the
nlme package. We choose here to obtain the maximum likelihood parameter estimates throughout,
although restricted maximum likelihood estimation could also be implemented using the argument
method=="REML".

> RS_model<-lme(sqrtcd4~t, data=cd4, random=~t|newpid, method="ML")

> RS_model

Linear mixed-effects model fit by maximum likelihood

Data: cd4

Log-likelihood: -3424.766

Fixed: sqrtcd4 ~ t

(Intercept) t

30.664754 -5.556963

Random effects:

Formula: ~t | newpid

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 12.606187 (Intr)

t 5.792576 -0.375

Residual 5.354330

Number of Observations: 976

Number of Groups: 226

We then fit a ‘random slopes’ linear mixed model with additional inclusion of a scaled Brownian
motion process. This requires the covariance=covBM argument using the lmeBM function, which
exactly follows the lme syntax. The parameter estimates for the model do not converge when
using the default optimiser in this dataset, but the model can be successfully fitted using the
control=list(opt="optim") argument.
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> BM_model<-lmeBM(sqrtcd4~t, data=cd4, random=~t|newpid,

+ covariance=covBM(form=~t|newpid), method="ML",

+ control=list(opt="optim"))

> BM_model

Linear mixed-effects model fit by maximum likelihood

Data: cd4

Log-likelihood: -3421.276

Fixed: sqrtcd4 ~ t

(Intercept) t

30.726746 -5.505073

Random effects:

Formula: ~t | newpid

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 12.675137 (Intr)

t 3.362038 -0.732

Residual 4.850621

Stochastic process component: covBM

Formula: ~t | newpid

Parameter estimate(s):

Kappa

34.92393

Number of Observations: 976

Number of Groups: 226

A further generalisation of the model to incorporate a fractional Brownian motion process can
also be considered:

> fBM_model<-lmeBM(sqrtcd4~t, data=cd4, random=~t|newpid,

+ covariance=covFracBM(form=~t|newpid), method="ML",

+ control=list(opt="optim"))

> fBM_model

Linear mixed-effects model fit by maximum likelihood

Data: cd4

Log-likelihood: -3420.997

Fixed: sqrtcd4 ~ t

(Intercept) t

30.763016 -5.479037

Random effects:

Formula: ~t | newpid

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 12.727100 (Intr)

t 3.272245 -0.83

Residual 4.551875

Stochastic process component: covFracBM

Formula: ~t | newpid

Parameter estimate(s):

Kappa Hurst index

5
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40.8411823 0.3776367

Number of Observations: 976

Number of Groups: 226

The fitted model objects created using the lmeBM function are of class "lme", and so all the
usual nlme Methods can be used to extract and view useful information. For example, anova.lme
can be used to compare a set of fitted models:

> anova(RS_model, BM_model, fBM_model)

Model df AIC BIC logLik Test L.Ratio p-value

RS_model 1 6 6861.531 6890.832 -3424.766

BM_model 2 7 6856.552 6890.736 -3421.276 1 vs 2 6.979464 0.0082

fBM_model 3 8 6857.993 6897.061 -3420.997 2 vs 3 0.558621 0.4548

Both the likelihood ratio tests and a comparison of Akaike’s information criterion (AIC) values
suggest that the model including a Brownian motion process should be chosen above a standard
random slopes model, but that there is not evidience to support the generalisation to a fractional
Brownian motion process. This conclusion is also supported by inspection of the approximate
95 % confidence intervals of parameter estimates for the fractional Brownian motion model, as the
confidence interval for the H-index is inclusive of 0.5 (the value for a standard Brownian motion
process).

> intervals(fBM_model)$corStruct

lower est. upper

Kappa 18.92012487 40.8411823 88.160210

Hurst index 0.06491599 0.3776367 0.841357

attr(,"label")

[1] "Correlation structure:"

The random slopes model incorporating an IOU process returns a high estimate of the α
parameter, and does not show an improvement in fit relative to the scaled Brownian motion
model.

> IOU_model<-lmeBM(sqrtcd4~t, data=cd4, random=~t|newpid,

+ covariance=covIOU(form=~t|newpid), method="ML",

+ control=list(opt="optim"))

> IOU_model

Linear mixed-effects model fit by maximum likelihood

Data: cd4

Log-likelihood: -3421.164

Fixed: sqrtcd4 ~ t

(Intercept) t

30.721825 -5.490878

Random effects:

Formula: ~t | newpid

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 12.655067 (Intr)

t 2.879292 -0.877

Residual 4.886538

Stochastic process component: covIOU
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Formula: ~t | newpid

Parameter estimate(s):

Kappa Alpha

23758.19550 24.62635

Number of Observations: 976

Number of Groups: 226

> anova(BM_model, IOU_model)

Model df AIC BIC logLik Test L.Ratio p-value

BM_model 1 7 6856.552 6890.736 -3421.276

IOU_model 2 8 6858.327 6897.395 -3421.164 1 vs 2 0.2243718 0.6357

3.2 nlmeBM function

The nlmeBM function is a wrapper for the nlme.formula function from the nlme package. As for
lmeBM, nlmeBM allows Brownian motion or fractional Brownian motion components to be added
to a non-linear mixed effects model.

As an illustrative example, we consider the Milk dataset available in the nlme package. This
dataset is discussed in Chapter 5 of Diggle et al.10, and contains measurements of the protein
concentration of the milk of a number of cows assessed weekly following calving. The cows are
divided into groups according to diet, but we ignore this for the sake of simplicity. We fit an
asymptotic regression function, using SSasmyp from nlme, with three fixed effects parameters:
Asym representing the horizontal asymptote for large values of the time variable, R0 representing
the response at time zero and lrc representing the natural logarithm of the rate constant (see
Pinheiro and Bates5 for further details). We consider an initial model with independent errors of
constant variance and a second model with correlated errors following a continuous autoregressive
process, both fit using the nlme function. Thirdly, we consider a model including a fractional
Brownian motion process within each cow in addition to independent residual errors, using the
covariance=covFracBM argument for nlmeBM. A subject-specific ‘random effect’ is assigned to the
asymptote parameter in each of the models.

> Model_1<-nlme(protein ~ SSasymp(Time, Asym, R0, lrc), data=Milk,

+ fixed = Asym + R0 + lrc ~ 1, random = Asym ~ 1|Cow,

+ start = c(Asym = 3.5, R0 = 4, lrc = -1))

> Model_2<-nlme(protein ~ SSasymp(Time, Asym, R0, lrc), data=Milk,

+ fixed = Asym + R0 + lrc ~ 1, random = Asym ~ 1|Cow,

+ correlation=corCAR1(form=~Time|Cow),

+ start = c(Asym = 3.5, R0 = 4, lrc = 0))

> Model_3<-nlmeBM(protein ~ SSasymp(Time, Asym, R0, lrc), data=Milk,

+ fixed = Asym + R0 + lrc ~ 1, random = Asym ~ 1|Cow,

+ covariance=covFracBM(form=~Time|Cow),

+ start = c(Asym = 3.5, R0 = 4, lrc = -1))

> AIC(Model_1)

301.4711

> AIC(Model_2)

-18.96245

> AIC(Model_3)

-23.20265

> Model_3
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Nonlinear mixed-effects model fit by maximum likelihood

Model: protein ~ SSasymp(Time, Asym, R0, lrc)

Data: Milk

Log-likelihood: 18.60133

Fixed: Asym + R0 + lrc ~ 1

Asym R0 lrc

3.3489469 4.7281304 0.0381144

Random effects:

Formula: Asym ~ 1 | Cow

Asym Residual

StdDev: 2.281751e-07 0.0001115028

Stochastic process component: covFracBM

Formula: ~Time | Cow

Parameter estimate(s):

Kappa Hurst index

0.07054056 0.16214435

Number of Observations: 1337

Number of Groups: 79

On the basis of the AIC values, the model including the fractional Brownian motion component
provides the best fit to the data of those considered here.
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MLWIN MACRO FOR BROWNIAN MOTION MODEL

Appendix B MLwiN macro for Brownian motion model

Once a random effects model has been defined in MLwiN, a scaled Brownian motion

component can be added using a macro of the following form:

SUBS c1 -2 c2 c3 c10

ABSO c10 c10

SETD 2 C10

BATC 1

MAXI 50

STAR

FIXE

RAND

LIKE

Where ‘c1’ is a column containing the identification codes for each individual corre-

sponding to each observation, ‘c2’ is a column containing the time points for each

observation and ‘c3’ is a column containing the value zero for each observation. The

matrices necessary to introduce the correct terms into the iterative generalised least

squares procedure are stored in the column ‘c10’.

The command SUBSymmetric creates a set of half-symmetric matrices by sub-

tracting the time point for each observation from zero for each respective column.

This creates a negative version of the required structure, and so the command ABSOlute

values is used to make all values ≥ 0. The command SETDesign adds the covariance

structure that has been defined into the model that is going to be estimated; the value

‘2’ is used to denote that this relates to level 2 of the model (in the terminology of ML-

wiN), i.e. the first level of grouping above the residual observation-specific variance.

BATCh 1 sets batch mode on, and MAXIterations 50 sets the maximum num-

ber of iterations in the model estimation procedure to 50. STARt sets the estimation

procedure running for the specified model. Once convergence has been achieved,

the commands FIXEd, RANDom and LIKElihood print summaries of the fitted model.
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Fractional Brownian motion and
multivariate-t models for longitudinal
biomedical data, with application to CD4
counts in HIV-positive patients
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Longitudinal data are widely analysed using linear mixed models, with ‘random slopes’ models particularly
common. However, when modelling, for example, longitudinal pre-treatment CD4 cell counts in HIV-positive
patients, the incorporation of non-stationary stochastic processes such as Brownian motion has been shown
to lead to a more biologically plausible model and a substantial improvement in model fit. In this article, we
propose two further extensions. Firstly, we propose the addition of a fractional Brownian motion component,
and secondly, we generalise the model to follow a multivariate-t distribution. These extensions are biologically
plausible, and each demonstrated substantially improved fit on application to example data from the Concerted
Action on SeroConversion to AIDS and Death in Europe study. We also propose novel procedures for residual
diagnostic plots that allow such models to be assessed. Cohorts of patients were simulated from the previously
reported and newly developed models in order to evaluate differences in predictions made for the timing of
treatment initiation under different clinical management strategies. A further simulation study was performed
to demonstrate the substantial biases in parameter estimates of the mean slope of CD4 decline with time that
can occur when random slopes models are applied in the presence of censoring because of treatment initiation,
with the degree of bias found to depend strongly on the treatment initiation rule applied. Our findings indicate
that researchers should consider more complex and flexible models for the analysis of longitudinal biomarker
data, particularly when there are substantial missing data, and that the parameter estimates from random slopes
models must be interpreted with caution. © 2015 The Authors. Statistics in Medicine Published by John Wiley &
Sons Ltd.

Keywords: CD4 counts; HIV; longitudinal data; missing data; random effects models; residuals

1. Introduction

Longitudinal data are commonly analysed using linear mixed models, as formalised by Laird and
Ware [1], with ‘random slopes’ models (also including random intercepts) particularly common in the
biomedical literature. However, the standard random slopes model makes a strong assumption about the
relationship between the outcome variable and time, that is, that this follows a separate linear trajectory
for each individual with independent normally distributed errors for each observation point. This under-
lying assumption is implausible in many biomedical scenarios, and the use of more realistically complex
models to account for patterns of variability in the data may allow more information to be gained and lead
to a reduction of variance and bias in the estimation of model parameters, particularly in the presence of
missing data.

In this paper, we focus on modelling the progression of CD4 cell counts in human immunodeficiency
virus (HIV)-positive patients prior to treatment. These are a type of white blood cell for which counts
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are monitored over time in order to evaluate the progress of the disease and state of the immune system.
Statistical analyses of CD4 cell count data are used to evaluate the natural history of HIV infection and to
inform epidemiological simulations. Observational datasets of pre-treatment CD4 cell counts obtained in
clinical practice are usually subject to a high degree of attrition with increasing time from diagnosis, as
patients drop out of the cohort because of treatment initiation, loss to follow-up or death. Furthermore, the
timing of observations can be very irregular between and within patients, meaning that flexible statistical
structures are required in order to adequately describe patterns of variability in the data.

Taylor et al. [2] proposed the addition of a scaled Brownian motion component to a random slopes
linear mixed model, finding that this led to a significant improvement in model fit in terms of Akaike’s
information criterion for a dataset of 722 measurements obtained from 87 seroconverters, patients who
had been observed to transition from an HIV-negative to HIV-positive state. Babiker et al. [3] fitted such
a model to a dataset of CD4 observations from over 15 000 seroconverters and used this to generate
CD4 data for simulated cohorts of patients in order to carry out sample size and power calculations
for a clinical trial randomising subjects to different treatment initiation rules. Taylor et al. [2, 4] also
investigated the use of an integrated Ornstein–Uhlenbeck process, of which Brownian motion is a special
case, as did Wolbers et al. [5]. Fractional Brownian motion is an alternative flexible generalisation of the
standard Brownian motion process [6], but its use within the linear mixed model framework has not been
investigated. Fractional Brownian motion may be useful for modelling CD4 or other biomarker data as,
unlike the integrated Ornstein–Uhlenbeck process, it can allow more erratic variation over time than does
simple Brownian motion.

A common finding when assessing the goodness of fit of a statistical model based on the normal
distribution, including linear mixed models for the analysis of longitudinal data, is the observation of
heavier tails than expected on diagnostic plots of residuals. A natural extension to the standard linear
mixed model is to allow the set of observations for each individual as a whole to follow a multivariate-
t distribution. The use of such a model for multivariate regression analysis was proposed by Lange et
al. [7] and was further developed as an extension of the linear mixed model by Welsh and Richardson
[8] and Pinheiro et al. [9]. None of these papers included the use of non-stationary stochastic process
components for the modelling of longitudinal biomarker data.

The multivariate-t distribution was used by Wang and Fan [10] to model CD4 counts in a small sample
of 30 HIV-positive patients taken from a historic trial of antiretroviral (ART) medication. Here, obser-
vations were recorded on a regular schedule, and Wang and Fan used a random slopes structure with an
additional first-order autoregression parameter for the residual error. The same authors have also reported
the fitting of a similar multivariate-t model for both CD4 and CD8 cell counts with a second-order autore-
gressive structure to a sample of 50 patients from the same historic dataset using a Bayesian approach
[11]. Matos et al. [12] reported the use of a multivariate-t model for right-censored HIV RNA assays in
untreated patients with acute infection using a nonlinear random effects model for the mean with inde-
pendent error terms; their model was fitted to 830 observations in 320 individuals. We hypothesised that
combining the use of a multivariate-t model with the addition of a non-stationary stochastic process com-
ponent would lead to a further substantial improvement in model fit for pre-treatment CD4 data. The
inclusion of a stochastic process component in the model is important to reflect the erratic trajectories of
the CD4 counts of individual patients over time.

Verbeke and Lesaffre found that estimation of fixed effects parameters using linear mixed models is
consistent in the presence of non-normal distributions for the random effects, although they presented
a correction to the estimated covariance matrix for the parameter estimates when non-normality of ran-
dom effects is suspected [13]. Jacqmin-Gadda et al. used simulations to show that inference for fixed
effects is robust to misspecification of the error distribution when using linear mixed models in some sit-
uations [14]. However, these analyses did not take into account the potential for missing or unbalanced
data where this is dependent on the observed values of the outcome variable (i.e. data that are ‘miss-
ing at random’ (MAR) in Rubin’s terminology [15]). Gurka et al. showed that using overly simplistic
covariance structures for linear mixed models can lead to inflation of the Type I error rate even for large
samples in the absence of missing data [16]. There is therefore a motivation to further investigate biases
that may arise from the application of overly simplistic models to realistic datasets that include cen-
soring. This is an important issue for the analysis of observational pre-treatment CD4 counts in which
the timing of censoring from the dataset due to treatment initiation is likely to be strongly linked to the
preceding observed values for each individual and the statistical inferences drawn may be more dependent
on model choice.

We aimed to further develop the available statistical models for longitudinal biomedical data, incor-
porating both fractional Brownian motion processes for flexible modelling of intra-individual variation
and multivariate-t distributions to relax the assumption of multivariate normality. The motivating dataset
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of pre-ART CD4 counts used for analysis is introduced in Section 2. Theoretical characteristics of the
models fitted and methods for maximum likelihood estimation are described in Section 3. Checking of
model adequacy for the data under investigation is crucial, particularly in the presence of missing data.
Residual diagnostics for models based on the multivariate-t distribution are discussed, and novel methods
are proposed for the critical evaluation of such models in Section 4. Application of the models devel-
oped to the dataset of pre-ART CD4 counts is described in Section 5, informing simulation studies that
are presented to demonstrate differences in predictions made by the more complex models regarding the
timing of treatment initiation in population cohorts and to show that the application of simpler mod-
els can lead to substantial bias in parameter estimates when there is censoring dependent on observed
values of the outcome variable. Practical and methodological implications of the work are discussed
in Section 6.

2. Dataset

We demonstrate the use of the statistical methods developed through a reanalysis of the dataset of pre-
ART CD4 counts described by Babiker et al. [3], comprising all available measurements prior to the
occurrence of acquired immune deficiency syndrome (AIDS)-defining illness or initiation of ART up to
December 2007 from 21 cohorts (originating from 12 countries) participating in the Concerted Action
on SeroConversion to AIDS and Death in Europe (CASCADE) study [17]. Only patients with a well-
estimated date of HIV seroconversion are included in the CASCADE study, providing a natural ‘zero’
time in each patient for statistical modelling. The total dataset includes 89 176 CD4 count observations in
15 274 individuals. However, only 3955 (4.4%) measurements from 789 (5.2%) patients were recorded
at a time of more than 10 years, and so we chose to model only those CD4 measurements obtained
up to 10 years from the time of seroconversion. This resulted in a dataset of 85 221 measurements in
15 164 individuals. A further 365 observations were excluded for which an identical CD4 measurement
was recorded only 1 day after the previous count for that patient, as these were found to cause problems
with model estimation and were assumed to result from data-entry errors, resulting in a dataset of 84 856
measurements for analysis.

The CD4 cell counts are measured as cells per microlitre, and we followed established practice in
modelling the counts on a square-root scale [3]. As an illustrative example, the CD4 measurements were
modelled only in terms of time from seroconversion, expressed as continuous in years, although it would
be possible to include other predictive variables. The median number of CD4 observations per individual
in the analysed dataset was 4, with a range of 1–57 and an interquartile range of 2–8. There was no rigid
pattern to the timing of observations in each patient, with a median interval between measurements of
112 days (interquartile range, 70–182). The highly unbalanced nature of the dataset and the irregular
observation schedule necessitate the use of flexible modelling strategies that can accommodate such
features. Visual inspection of the CD4 data suggests that the trajectories over time for each individual
do not follow predictable paths and that there may be between-patient differences in variability over
time, motivating the combination of stochastic process components and the multivariate-t distribution,
respectively, as presented in this paper. A total of 9831 (64.8%) patients were censored from the dataset at
initiation of ART, 1111 (7.3%) because of a recorded AIDS event and 318 (2.1%) at death. Two thousand
four hundred and forty-four (16.1%) patients can be considered lost to follow-up (with no clinic visit
recorded for 12 months and no censoring event), and the remaining 1460 (9.6%) were in follow-up at the
time that the data were gathered.

We hope that the models developed will form the basis for improved epidemiological simulations, as
required for the planning of clinical trials and population health analyses, and provide more accurate
estimates of the mean CD4 count over time were there to be no censoring of data. Furthermore, the char-
acterisation and quantification of within-patient and between-patient variability in CD4 count trajectories
may help develop understanding of the natural history of untreated HIV.

3. Stochastic process and multivariate-t models

3.1. Characteristics of Brownian motion and related processes

3.1.1. Scaled Brownian motion. In a mathematical sense, Brownian motion (also known as a Wiener
process) is a non-stationary stochastic process that constitutes a continuous-time generalisation of a sim-
ple random walk [18], in which successive increments are independent of the history of the process.
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When considered in terms of a given set of observation points (these may be irregularly spaced in time),
a scaled Brownian motion process, denoted Wt at time t, is defined by the following properties:

W0 = 0

Wt − Ws ∼ N(0, 𝜅(t − s)) for 0 ⩽ s < t, 0 < 𝜅.

The process starts at zero at time zero (t = 0), and increments of the process are stationary, independent
(for disjoint periods of time) and normally distributed with mean zero and variance equal to the difference
in time between observation points scaled by a positive constant factor 𝜅. The following characteristics
arise from these conditions:

E[Wt] = 0

Var[Wt] = 𝜅t

Cov[Ws,Wt] = 𝜅 × min(s, t).

The distribution of a set of n observations relating to a given series of time points therefore follows a
multivariate normal (MVN) distribution with a mean vector of n zeros and covariance matrix defined by
the formulae given. As such, Brownian motion is an example of a Gaussian process and can be readily
incorporated into the theoretical framework of linear mixed models, as will be discussed in Section 3.2.

3.1.2. Scaled fractional Brownian motion. Fractional Brownian motion represents a generalisation of a
Brownian motion process in which increments for disjoint time periods are not constrained to be indepen-
dent, although they do remain stationary. The process was introduced by Mandelbrot and van Ness[6].
The characteristics of a fractional Brownian motion process are determined by an additional parame-
ter, referred to as H or ‘the Hurst index’, that may take a value in the range (0,1). Standard Brownian
motion represents a special case of fractional Brownian motion, corresponding to H = 1

2
. As for standard

Brownian motion, the expectation of the value of the process is zero for all points in time.
When H <

1
2
, successive increments of the process are negatively correlated. This has the conse-

quence, firstly, that the path of the trajectory appears ‘jagged’ and, secondly, that realisations of the
process tend to revert towards the mean of zero. For H >

1
2
, successive increments of the process are pos-

itively correlated. This means that the path of the process has a relatively ‘smooth’ appearance, and also
that individual realisations of the process tend to diverge away from the mean of zero. Illustrative simu-
lated realisations of fractional Brownian motion processes generated with varying values of H are shown
in Figure 1.

As for Brownian motion, a positive scale parameter (𝜅) can be added to the standard definition of frac-
tional Brownian motion, corresponding to the variance of the process at t = 1. We may then characterise
the properties of the process as follows:

W0 = 0

E[Wt] = 0

Var[Wt] = 𝜅|t|2H

Cov[Ws,Wt] =
𝜅

2

(|s|2H + |t|2H − |t − s|2H) .
Fractional Brownian motion is defined as a continuous-time stochastic process. However, as we are con-
cerned with modelling biomedical measurements obtained at specific time points, we have focused here
on the properties of the process relating to a finite set of observations. As for simple scaled Brownian
motion, scaled fractional Brownian motion is a Gaussian process that follows a MVN distribution for any
given set of observation points, with expectation zero and covariance matrix as defined.

3.2. Marginal distribution for stochastic process models

For models incorporating Gaussian processes such as Brownian motion, the fact that the marginal distri-
bution of the full vector of observations of the outcome variable is MVN means that parameter estimation
can be achieved through adjustment of the methods used for standard linear mixed models. The linear
mixed model for longitudinal data can be expressed in the following form [1]:
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Figure 1. Realisations of fractional Brownian motion processes with varying values of H and scale parameter
fixed at 1. A finite set of 1000 observations was generated in each case.

𝐲i = 𝐗i𝜷 + 𝐙i𝐛i + 𝐞i

𝐛i ∼ MVN(0, 𝚿)
𝐞i ∼ MVN(0, 𝐑i).

(1)

Here, 𝐲i represents the vector of ni observations for the ith individual, 𝐗i represents their design matrix
for the ‘fixed effects’ parameters 𝜷,𝐙i represents the subset of the columns of the design matrix associated
with the ‘random effects’ for each individual 𝐛i and 𝐞i is the vector of residual errors for each measurement
occasion. The vectors of random effects 𝐛1, 𝐛2, ...,𝐛N and residual errors 𝐞1, 𝐞2, ..., 𝐞N for each of the
N individuals are independent of one another. It can be easily shown that this formulation leads to the
following marginal distribution for 𝐲i:

𝐲i ∼ MVN(𝐗i𝜷, 𝐙i𝚿𝐙T
i + 𝐑i).

When linear mixed models are fitted to longitudinal data, it is common to assume that the residual
errors for each observation within each individual, 𝐞i, are independent and with constant variance, 𝜎2,
that is, 𝐑i as defined in (1) is equal to 𝜎2𝐈ni

. However, other forms for 𝐑i are widely used, particularly for
the analysis of longitudinal or spatial data. An example is provided by the exponential decay correlation
structure [19], for which the elements (rjk) of 𝐑i are calculated as a function of the ‘distance’ s between
each pair of observations (in the context of longitudinal data this would be the time difference) and a
‘range’ parameter 𝛾 as follows:

rjk = 𝜎2 exp

(
−

sjk

𝛾

)
.

Alternatively, the remaining variability in the model, once the random effects have been accounted for,
can be subdivided into a component relating to a Gaussian process (independent of other model compo-
nents) with expectation zero for all time points and an independent residual error for each observation
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(here assumed to have constant variance); this effectively just creates a class of parameterisations for 𝐑i.
Defining 𝚺i as the covariance matrix resulting from the chosen Gaussian process and set of time points
𝐭i for the ith individual, the linear mixed model can then be expressed as follows:

𝐲i = 𝐗i𝜷 + 𝐙i𝐛i + Wi[𝐭i] + 𝐞i

𝐛i ∼ MVN(0, 𝚿)
Wi[𝐭i] ∼ MVN(0, 𝚺i)

𝐞i ∼ MVN(0, 𝜎2𝐈ni
)

(2)

with marginal distribution

𝐲i ∼ MVN(𝐗i𝜷, 𝐙i𝚿𝐙T
i + 𝚺i + 𝜎2𝐈ni

).

3.3. Multivariate-t distribution for longitudinal data

There are a number of multivariate generalisations of the univariate-t distribution, and a thorough review
of this topic is provided by Kotz and Nadarajah [20]. However, we shall refer to the multivariate-t
distribution as that with the probability density function as follows:

f
(
𝐲i;𝝁i,𝐕i, v

)
=

𝚪
((

v + ni

)
∕2

)
𝚪 (v∕2) vni∕2𝜋ni∕2 ||𝐕i

||1∕2
(

1 + 1
v

(
𝐲i − 𝝁i

)T 𝐕−1
i

(
𝐲i − 𝝁i

))(v+ni)∕2
.

Where ni represents the length of the random vector 𝐲i (∈ Rni ), 𝐕i is a ni × ni positive-definite scale
matrix, 𝝁i is a ni×1 location vector and v is a degrees of freedom parameter. The mean of the distribution
is 𝝁i if v > 1 and otherwise undefined, and the variance of the distribution is v

v−2
𝐕i if v > 2 and otherwise

undefined. This is the most commonly used definition of the multivariate-t distribution.
In the present context, the mean vector 𝝁i will be represented as 𝐗i𝜷, that is, a function of a design

matrix 𝐗i and vector of parameters 𝜷. As for linear mixed models based on the normal distribution, the
scale matrix 𝐕i can be divided into components relating to a random effects structure and a residual
error structure, 𝐙iΨ𝐙T

i and 𝐑i, respectively. Pinheiro et al. consider the situation in which the degrees of
freedom parameter may vary between subgroups of individuals, but we shall assume that this is a single
constant [9].

If a vector of observations 𝐲i follows a multivariate-t distribution

𝐲i ∼ tni

(
𝐗i𝜷, 𝐕i, v

)
,

then this can alternatively be represented as a hierarchical model in which 𝐲i follows a MVN distribution
conditional on a gamma-distributed variable 𝜏i (with parameters given for ‘shape’ and ‘rate’, respectively)
as follows [9]:

𝐲i|𝜏i ∼ MVN

(
𝐗i𝜷,

1
𝜏i
𝐕i

)
𝜏i ∼ gamma

( v
2
,

v
2

)
.

(3)

In the context of the models proposed, combining variance components related to random effects,
stochastic processes and measurement error (i.e. 𝐕i = 𝐙i𝚿𝐙T

i + 𝚺i + 𝜎2𝐈ni
), this is equivalent to

𝐲i = 𝐗i𝜷 + 𝐙i𝐛i + Wi[𝐭i] + 𝐞i

𝐛i|𝜏i ∼ MVN

(
0,

1
𝜏i
𝚿
)

Wi[𝐭i]|𝜏i ∼ MVN

(
0,

1
𝜏i
𝚺i

)
𝐞i|𝜏i ∼ MVN

(
0,

1
𝜏i
𝜎2𝐈ni

)
𝜏i ∼ gamma

( v
2
,

v
2

)
.
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As noted by Pinheiro et al. [9], it directly follows from the hierarchical form of the model that

𝜏i|𝐲i ∼ gamma

(
v + ni

2
,

v + 𝛿2
i (𝜽)

2

)
,

where 𝛿2
i (𝜽) =

(
𝐲i − 𝐗i𝜷

)T 𝐕−1
i

(
𝐲i − 𝐗i𝜷

)
.

(4)

Here, 𝜽 represents the parameter vector that includes 𝜷 and determines the construction of 𝐕i. From the
standard properties of a gamma distribution, it can be seen that

E
(
𝜏i|𝐲i

)
=

v + ni

v + 𝛿2
i (𝜽)

.

3.4. Maximum likelihood estimation and software

As the likelihood function for the multivariate-normal or multivariate-t linear mixed-effects model has
a closed form, whatever the structure of 𝐕i, it is possible to directly apply Newton–Raphson-type opti-
misation procedures. Although finite differencing can be employed, the use of analytically derived exact
gradients (with respect to the model parameters) in Newton–Raphson-type procedures typically greatly
improves stability and speed of convergence. However, in some situations, such as incorporating stochas-
tic process components into the multivariate-t linear mixed effects model, the analytic derivation of
the gradients is not trivial. In addition, once an analytic form for each of the gradient terms has been
derived, it is required that this be programmed into the computational procedure for the optimisation in an
efficient manner.

An alternative method is provided by automatic differentiation, whereby a computer program is
structured in such a way that it can automatically calculate the derivatives of a mathematical function
to the same degree of accuracy as analytical derivatives (to machine precision) [21]. In essence, this is
achieved through application of the chain rule to each of the elementary operations that comprise the
calculation of the objective function (i.e. the log-likelihood function). The open-source Automatic Differ-
entiation Model Builder (ADMB) software (ADMB Foundation, Honolulu, HI, USA) allows optimisation
for any statistical model that has a closed form differentiable log-likelihood function [22] (the software
also includes functionality for models without a closed form for the likelihood that is not employed in
this paper). For any given model, the user is required to write a ‘template’ file defining a program to cal-
culate the log-likelihood in terms of the data and the set of unknown parameters to be estimated based on
the C++ language; additional statistical and mathematical functions (including matrix and vector func-
tions and operations) are provided by the software to facilitate this. A zip file containing several example
template files and a simulated dataset is provided online (Supplementary Data File S1).

For all models presented in Section 5, maximum likelihood estimates of the parameters were obtained
using the ADMB software (Version 10.1). The ‘R2admb’ package [23] was used to run analyses and
manage results through the R statistical computing environment. Starting values are required for all
parameters when using ADMB. These were obtained by using approximate values from a model fit for
the initial ‘random slopes’ linear mixed model (including random intercepts) from the nlme package for
R, and subsequent models were fitted using parameter estimates from the previous simpler model as the
initial value. When fitting models with a Brownian motion component, an initial value of 1 was used for
the scale parameter, and for models with fractional Brownian motion, an initial value of 0.5 was used for
the H index. For models based on the multivariate-t distribution, an initial value of 10 was used for the
degrees of freedom parameter. An R package (covBM) that will allow the implementation of all MVN
models described in this paper is under development by the authors.

The ‘fixed effects’ for each model are the intercept (𝛽0) and a slope (𝛽1) parameter. For the ‘random
effects’ covariance/scale matrix (𝚿) for each model, U00 and U11 represent the variance of the ran-
dom intercepts and random slopes, respectively, for each individual, with 𝜌 representing the correlation
between them. For the multivariate-t models, this interpretation holds conditional on scaling by the vector
of unobserved latent variables 𝝉 . Models were parameterised using log-transformations of U00 and U11
and a generalised logistic transformation of 𝜌. For all models, the residual error term was parameterised
using log(𝜎) (i.e. the log of the residual standard deviation). The exponential decay correlation structure
was parameterised using the log of the range parameter (𝛾), and Brownian motion models (including
fractional) used the log of the scale parameter (𝜅). Fractional Brownian motion was parameterised using
the logistic transformation of H. A log transformation was used for the degrees of freedom parameter
in multivariate-t models. For all model parameters, confidence intervals are reported derived from the
estimated asymptotic MVN distribution based on the observed information on the transformed scales.
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4. Residual diagnostics for multivariate-t models

The evaluation of diagnostic plots of the residuals resulting from fitted statistical models forms an impor-
tant part of model criticism and development. Such plots can be used to check the adequacy of fitted
models to describe the data under investigation and, when problems are observed, to suggest how further
improvements might be made. This is particularly important in the present context in which there is inter-
est in understanding patterns of variability within and between individuals as well as ensuring correct
inference for fixed effects parameters.

4.1. Subject-level residuals

Much of the focus regarding the use of multivariate-t linear mixed effects models has been on providing
robust inference for the fixed effects; this follows from the fact that individuals with observations that
are further from the mean are down-weighted in the estimation of the fixed effects parameters. Lange
et al. were concerned with achieving robust multivariate regression and suggested the use of diagnostic
residual plots that indicated whether the fitted model adequately reflected the presence of outlying sets
of measurements (i.e. corresponding to the various measurements conducted on a single individual) [7].
They point out that for a normal linear mixed model, the statistic

𝛿2
i (𝜽) =

(
𝐲i − 𝐗i�̂�

)T �̂�−1
i

(
𝐲i − 𝐗i�̂�

)
for each individual would asymptotically follow a χ2 distribution with ni degrees of freedom. However,

under a multivariate-t model, the statistic
𝛿2

i (𝜽)
ni

would asymptotically follow an F-distribution with ni

and v̂ degrees of freedom. Lange et al. transform these statistics to standard normal deviates and then
use quantile–quantile (Q–Q) plots to assess model fit. A similar approach was used by Wang and Fan
[10]. Such plots can demonstrate the inadequacy of the normal linear mixed-effects model to describe
the observed data. However, the plots do not directly show whether the multivariate-t model correctly
describes variability between individual measurements.

4.2. Measurement-level residuals

We propose that the gamma–normal formulation of the multivariate-t model, as given in (3), can be also
used to assess whether the multivariate-t distribution fully describes the patterns of variability observed
for all individual measurements in a dataset. As the observations for the ith individual are assumed to
follow a MVN distribution conditional on 𝜏i, one option is to use empirical Bayes estimates (i.e. the mean
of the predicted posterior distribution) of the 𝜏i as follows:

𝜏i =
v̂ + ni

v̂ + 𝛿2
i (𝜽)

to estimate the normal covariance matrix (�̂�′
i) for each individual

�̂�′
i =

1
𝜏i
�̂�i.

This could then be used to transform the marginal residuals for the ith individual (i.e. 𝐲i −𝐗i𝜷) as for
a normal linear mixed model using the inverse of a Cholesky decomposition of the covariance matrix
(as suggested by Fitzmaurice, Laird and Ware [24]), with the transformed residuals for all individuals
displayed in a Q–Q plot. However, assuming the empirical Bayes estimates of the 𝜏i to be correct for
all individuals might result in misleading conclusions in a similar manner to that which can be observed
when evaluating the empirical Bayes estimates of random effects in a normal linear mixed model (e.g. as
reported by Verbeke and Lesaffre [25]). An alternative would be to draw a number of repeated samples
from the predicted posterior distribution of the full vector of 𝝉 , using each sample to generate a full
set of �̂�′

i matrices and corresponding Cholesky-transformed marginal residuals. The sets of transformed
marginal residuals could then be used individually to generate multiple Q–Q plots or used together to
derive a single Q–Q plot showing the distribution of ‘observed quantiles’ over multiple realisations of
the 𝝉 .
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The gamma–normal formulation of the multivariate-t model provides another route to model checking
through the separate evaluation of each individual in the dataset. Assuming that the model parameters
are known, then the transformed marginal residuals using the inverse of the Cholesky decomposition of
the scale matrix for each individual, 𝐕i, are normally and independently distributed with mean 𝟎 and
variance 1

𝜏i
(conditioned on 𝜏i) as follows:

𝐕i = 𝐋i𝐋T
i

𝐋−1
i

(
𝐲i − 𝐗i𝜷

) |𝜏i ∼ MVN

(
0,

1
𝜏i
𝐈ni

)
.

Hence, for a model that correctly describes the data, separate Q–Q plots (with respect to the standard
normal distribution) of these transformed residuals for each individual should each indicate a normal
distribution (with differing variance). For small datasets, it may be possible to create multipanel graphics
that simultaneously display the Q–Q plots for all individuals, but for larger datasets, it would be necessary
to select a random sample of individuals for inspection. This approach will be more effective when there
are a greater number of observations per individual, as it is difficult to assess the assumption of normality
for very small samples. This reflects the fact that the presence of a greater number of observations per
individual in a dataset will provide more information as to whether there truly is a difference in underlying
variability between individuals, as represented by the values of 𝜏i. This technique could also be used
for fitted MVN models, using a Cholesky decomposition of the marginal covariance matrix for each
individual, in order to assess whether the multivariate-t distribution might be appropriate for the data.

The assessment of measurement-level residuals is particularly important when the motivation for an
analysis is to be able to make predictions regarding future individual measurements or to simulate datasets
in which the exact pattern of values within each individual is critical. The use of subject-level residuals
may be sufficient for multivariate regression analysis (for example, a defined set of different patient
characteristics at a single time point in each individual), but for the analysis of longitudinal data we believe
that measurement-level residuals should also be investigated. Examples of the residual plots proposed are
presented in Section 5. For these plots, calculations were carried out in R, and graphics were generated
using the ggplot2 package for R (Version 0.9.3.1) [26].

5. Application and implications of modelling strategy

5.1. Set of models fitted

The initial model fitted was a standard linear mixed-effects model including correlated random intercept
and slope terms and independent measurement error terms of constant variance. An exponential delay
correlation structure was considered for the error terms of this model, and the initial model was then
extended to also include either a scaled Brownian motion process or a scaled fractional Brownian motion
process. The equivalent set of four models was then fitted using a marginal multivariate-t distribution, that
is, with the scale matrix 𝐕i structured in the same manner but assuming an unobserved scaling variable
for each individual as described in Section 3.3.

5.2. Results and diagnostic checks

Table I shows the results of linear mixed models (including stochastic process extensions), with marginal
MVN distribution, fitted to the pre-ART CASCADE data. Nested models are compared using the like-
lihood ratio test; as only a single parameter is being added to the model in each of the comparisons
presented, the critical value for change in 2×log-likelihood (2Δ𝓁) at the 5 % significance level is only
3.84. Non-nested models are compared using the Bayesian information criterion (BIC) statistic, using
the total number of observations in the dataset for the calculation of the penalty term; this is supported
by the derivation of Cavanaugh and Neath [27].

The addition to the initial random slopes model of an exponential decay correlation structure for the
residual variance resulted in a significant improvement in model fit (2Δ𝓁 460 for 1 degree of freedom
(df), P<0.001). However, the addition of a Brownian motion component to the random slopes model led
to a greater increase in log-likelihood (2Δ𝓁 4940 for 1 df, P<0.001), with a subsequently lower value
of BIC for this model. A further improvement in model fit was observed when the Brownian motion
component was generalised to a fractional Brownian motion process (2Δ𝓁 160 for 1 df, P<0.001). As
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Table I. Summaries of extended linear mixed models (with marginal multivariate-normal distribution) fit-
ted to square-root transformed pre-antiretroviral therapy CD4 measurements from the Concerted Action on
SeroConversion to AIDS and Death in Europe dataset.

Random slopes + Random slopes + Random slopes +
Random slopes + exp. cor. + Brownian motion+ fBM +

measurement error measurement error measurement error measurement error

𝛽0 24.13 (24.02 to 24.24) 24.12 (24.01 to 24.23) 23.81 (23.7 to 23.92) 23.82 (23.71 to 23.92)
𝛽1 −1.36 (−1.4 to −1.33) −1.35 (−1.38 to −1.31) −1.15 (−1.18 to −1.11) −1.15 (−1.19 to −1.12)
U00 33.68 (32.65 to 34.73) 33.22 (32.2 to 34.27) 28.69 (27.72 to 29.7) 27.46 (26.46 to 28.51)
𝜌 −0.39 (−0.41 to −0.36) −0.38 (−0.41 to −0.35) −1 (−1 to 1) −0.59 (−0.63 to −0.54)
U11 1.62 (1.54 to 1.71) 1.54 (1.46 to 1.62) 0.20 (0.16 to 0.24) 0.58 (0.49 to 0.68)
𝜎 2.76 (2.74 to 2.77) 2.79 (2.77 to 2.81) 2.28 (2.26 to 2.29) 2.01 (1.94 to 2.07)
𝛾 — 0.03 (0.03 to 0.03) — —
𝜅 — — 7.00 (6.78 to 7.22) 9.32 (8.78 to 9.91)
H — — — 0.30 (0.27 to 0.33)
𝓁 −232 579 −232 349 −230 109 −230 029
BIC 465 226 464 777 460 297 460 149

Parameter estimates are given with 95 % confidence intervals in parentheses. BIC, Bayesian information criterion;
exp. cor., exponential decay correlation structure for residual error term; fBM, fractional Brownian motion; 𝓁,
log-likelihood.

such, the fractional Brownian motion model was found to have the lowest BIC of the fitted linear mixed
models. A ‘random slopes + integrated Ornstein–Uhlenbeck process + measurement error’ model was
also considered but was found to return the special case of a Brownian motion process (i.e. with a very
large estimate for the 𝛼 parameter [2]).

It is of particular interest that the estimate of the H parameter for the model incorporating a fractional
Brownian motion process is below 0.5, indicating that successive increments of the process are nega-
tively correlated and hence that the process will tend to revert towards its mean. The mean in this case
would include the subject-specific random effects for the intercept and slope. The correlation between
the random intercept and random slope for each individual for the model incorporating a scaled standard
Brownian motion process is estimated to be −1.00, which seems rather unnatural. However, when the
process is generalised to a fractional Brownian motion, an estimate of -0.59 (95 % CI, -0.63 to -0.54) is
obtained for this correlation. The Cholesky-transformed residuals of the commonly used random slopes
model and of the best-fitting linear mixed model, incorporating a fractional Brownian motion compo-
nent, were analysed to assess the goodness of fit. For both of these models, the Q–Q plot of the Cholesky
residuals indicates that their distribution is markedly heavy-tailed in comparison to the expected standard
normal under a correctly specified model (Figure 2).

Summaries of the multivariate-t distribution models fitted to the pre-ART CASCADE data are provided
in Table II. As for the MVN models, the fractional Brownian motion model was found to have the lowest
BIC of the fitted multivariate-t distribution models. Furthermore, all of the multivariate-t models were
found to have lower BIC values than all of the normal linear mixed models. The difference in 2𝓁 between
the normal and the multivariate-t ‘random slopes + fractional Brownian motion + measurement error’
models is 8298, indicating a significant and substantial improvement in model fit (1 df, P<0.001). Note
that these models can be considered nested as the multivariate-t model is equivalent to the MVN model
as the degrees of freedom parameter tends to (positive) infinity.

The estimated degrees of freedom parameter was between 5 and 6 for all of the fitted multivariate-t
models, as expected given the heavy tails observed in the Q–Q plots for the normal linear mixed models.
However, the heavy tails could be due to distributional structures other than the multivariate-t distribution
employed, for example the random effects and any Gaussian processes included could follow MVN dis-
tributions whilst the residual error terms followed independent t-distributions. As such, there is a need for
further investigation to assess the goodness of fit of the chosen multivariate-t model with respect to the
data. As described in Section 4.2, for the ‘random slopes + fractional Brownian motion + measurement
error’ multivariate-t model, 1000 simulations of the vector of latent variables 𝝉 were generated, based on
the predicted posterior distribution in each individual and used to calculate sets of Cholesky-transformed
residuals for the model. The Q–Q plot of the Cholesky residuals derived using the empirical Bayes
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Figure 2. Quantile–quantile plots of Cholesky-transformed residuals from (a) the ‘random slopes + measure-
ment error’ and (b) the ‘random slopes + fractional Brownian motion + measurement error’ linear mixed model
fitted to the pre-antiretroviral therapy CD4 counts from the Concerted Action on SeroConversion to AIDS and
Death in Europe dataset. Plots are generated with respect to a standard normal distribution, and the line of

equality is shown.

Table II. Summaries of multivariate-t distribution models fitted to square-root transformed pre-antiretroviral
therapy CD4 measurements from the Concerted Action on SeroConversion to AIDS and Death in
Europe dataset.

Random slopes + Random slopes + Random slopes +
Random slopes + exp. cor. + Brownian motion+ fBM +

measurement error measurement error measurement error measurement error

𝛽0 23.77 (23.67 to 23.87) 23.76 (23.66 to 23.86) 23.57 (23.47 to 23.67) 23.59 (23.49 to 23.69)
𝛽1 −1.27 (−1.31 to −1.24) −1.23 (−1.27 to −1.2) −1.10 (−1.13 to −1.07) −1.11 (−1.14 to −1.07)
U00 23.82 (22.99 to 24.69) 22.83 (22 to 23.68) 20.3 (19.5 to 21.14) 18.82 (17.98 to 19.7)
𝜌 −0.37 (−0.4 to −0.34) −0.36 (−0.39 to −0.33) −1 (−1 to 1) −0.51 (−0.55 to −0.47)
U11 1.17 (1.1 to 1.23) 1.01 (0.95 to 1.08) 0.12 (0.1 to 0.15) 0.49 (0.43 to 0.55)
𝜎 2.25 (2.23 to 2.27) 2.32 (2.3 to 2.35) 1.88 (1.86 to 1.9) 1.45 (1.35 to 1.55)
𝛾 — 0.07 (0.06 to 0.07) — —
𝜅 — — 5.17 (4.98 to 5.36) 8.02 (7.44 to 8.64)
H — — — 0.23 (0.21 to 0.26)
df 5.64 (5.4 to 5.88) 5.34 (5.12 to 5.57) 5.83 (5.58 to 6.09) 5.76 (5.52 to 6.02)
𝓁 −228 221 −227 705 −226 015 −225 880
BIC 456 521 455 501 452 121 451 862

Parameter estimates are given with 95 % confidence intervals in parentheses. BIC, Bayesian information criterion;
df, degrees of freedom parameter; exp. cor., exponential decay correlation structure for residual error term; fBM,
fractional Brownian motion; 𝓁, log-likelihood.

estimate (𝜏i) for each individual shows a near perfect fit to the standard normal distribution (Figure 3).
However, taking quantiles over multiple simulations of 𝝉 indicates the presence of slightly heavier tails
than expected.

The goodness of fit of the ‘random slopes + fractional Brownian motion + measurement error’
multivariate-t model was further investigated by inspection of Q–Q plots of residuals for individual
patients transformed by the inverse of the Cholesky decomposition of their estimated scale matrix (V̂i)
without any correction for 𝜏i. As little would be gained by evaluating patients with very few observa-
tions, only those with greater than 15 measurements in the dataset were considered; one thousand and
forty-four (6.9%) individuals in the dataset met this criterion. Q–Q plots for 25 randomly selected indi-
viduals are shown in Figure 4. Under a correctly specified model, each of the plots should approximately
show a straight line of points, with differing slopes between individuals; for the ith individual, the
expected slope is a function of their unobserved scale variable: 𝜏−1∕2

i , where 𝜏i ∼ gamma
(

v
2
,

v
2

)
, with

v being the degrees of freedom parameter in the multivariate-t model. These plots suggest that there are
indeed differences in overall variability between individuals as implied by the multivariate-t model; for
example, Plot 9 shows a clearly steeper slope than Plot 11. To further illustrate this, the raw data from
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Figure 3. Composite quantile–quantile plot of the distribution of Cholesky-transformed residuals (for all measure-
ments) from the ‘random slopes + fractional Brownian motion + measurement error’ multivariate-t distribution
model fitted to the pre-antiretroviral therapy CD4 counts from the Concerted Action on SeroConversion to AIDS
and Death in Europe dataset, based on 1000 simulations of the vector of latent variables 𝝉 . The dotted lines show
the 2.5th, 50th and 97.5th percentiles of the sample quantiles for each theoretical quantile corresponding to the
total number of observations; the solid black line shows the sample quantiles derived using the empirical Bayes

estimate (𝜏i) for each individual, with the line of equality also displayed in grey.

the 25 sampled patients are shown in Figure 5, with the observations for the patients corresponding to
Plots 9 and 11 in Figure 4 made prominent. The ‘Plot 9’ patient has the lowest predicted latent scaling
variable (𝜏 = 0.29) amongst this subset, corresponding to high variability over time, whilst the ‘Plot 11’
patient has the highest predicted latent scaling variable (𝜏 = 2.33) in this group, corresponding to low
variability over time.

5.3. Simulation study: impact of model choice on treatment initiation predictions

The initiation of ART in HIV-positive patients is commonly based on the observations of a CD4 count
below a given threshold, with the most appropriate cut-off (or whether treatment should be given imme-
diately upon diagnosis) for any given setting still under debate. As such, there is interest in determining
the proportion of patients that will cross any given threshold and initiate ART as a function of time from
seroconversion, as this will impact on clinical practice and on the cost of different healthcare strate-
gies. Lodi et al. [28] used random slopes linear mixed models fitted to over 175 000 CD4 measurements
from the CASCADE cohort (including the data analysed in the present study) to predict the proportion
of untreated patients reaching thresholds of <500, <350 and <200 cells/μL with respect to time from
seroconversion, reflecting the cut-offs used in various versions of official guidelines. In this analysis, the
distribution of subject-specific slopes was used to estimate the proportion of patients with ‘true’ CD4
count below each threshold value.

Using their fitted linear mixed model including a Brownian motion component, Babiker et al. [3]
investigated the proportion of patients reaching a threshold of <350 cells/μL through simulation of sets
of longitudinal measurements for tens of thousands of individuals. This approach has the advantage of
allowing realistic assessment of the characteristics of a cohort in practice, and several regimes for the
scheduling of measurements and initiation of ART were considered in their simulations. However, the
predictions made from the simulations were not directly compared to those that would have been obtained
using a normal random slopes model. We have therefore performed a similar analysis based on several
of the fitted models in order to investigate this.

Simulated cohorts of individuals were generated based on three MVN models as follows: the random
slopes model, the Brownian motion model and the fractional Brownian motion model (with the latter two
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Figure 4. Quantile–quantile plots for the residuals under the ‘random slopes + fractional Brownian motion +
measurement error’ multivariate-t model of 25 randomly selected individuals with greater than 15 observations.
The residuals for individual patients have been transformed by the inverse of the Cholesky decomposition of their
estimated scale matrix (V̂i) without any correction for the unobserved scale variable 𝜏i. Theoretical quantiles in

each case are those from the standard normal distribution.

also including a random slopes structure and all including measurement error). In addition, a cohort was
generated using the fitted multivariate-t fractional Brownian motion model (again, including a random
slopes structure and measurement error). For each of these models, data for five million individual patients
were simulated based on scheduled measurements being obtained every 4 months for up to 10 years.
Data were also generated for measurements 1 month after the scheduled observation in each case for use
in the analysis, corresponding to a confirmatory test. CD4 thresholds of <500, <350 and <200 cells/μL
for ART initiation were investigated. If a scheduled measurement was observed below a given threshold,
then the value 1 month later was assessed to mimic the conduct of an additional confirmatory test as
commonly performed in clinical practice. The patient was considered to initiate ART if this second value
was also below the threshold.

The results of the analysis of the simulated cohorts are presented in Figure 6. The differences in pre-
dictions made by each of the fitted models are large enough to have practical implications particularly
within a public health or health economics context; for example, using the <500 cells/μL threshold, the
proportion of patients on ART 2 years after seroconversion is predicted to be 57% by the normal random
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Figure 5. Line plot of the square-root transformed CD4 counts observed in the random sample of 25 patients
with greater than 15 observations (as in Figure 4). The observations for the patients corresponding to Plot 9 (solid
black line, filled circles for individual data points) and Plot 11 (dashed black line, open triangles for individual

data points) in Figure 4 are made prominent.

Figure 6. The proportion of HIV-positive patients predicted to have initiated antiretroviral therapy (ART) as a
function of time since seroconversion, based on simulation from the fitted normal random slopes model (black
line), Brownian motion model (blue line) and fractional Brownian motion model (red line) and the multivariate-t
fractional Brownian motion model (green line). Results are presented using CD4 thresholds for ART initiation of
<500,<350 and<200 cells/μL, as indicated at top right of the graph. Simulations are based on CD4 measurements
being obtained every 4 months, with initiation of ART conditional on an additional observation below the cut-off

concerned 1 month after the ‘scheduled’ measurement.

slopes model and to be 62% by the multivariate-t model with fractional Brownian motion. The planning
of the Strategic Timing of AntiRetroviral Treatment trial described by Babiker et al. [3] made use of pre-
dictions of the proportion of patients initiating ART at the 350 cells/μL threshold for which we found
only small differences between each of the models that included a stochastic process component (i.e.
excluding the standard random slopes model). It is interesting to note that for the 500 and 350 cells/μL
cut-offs, the predictions for the models incorporating stochastic process components converge as time
increases towards 10 years, separate to the lower predictions made by the standard random slopes model.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1514–1532
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5.4. Simulation study: parameter bias in slope estimates

One interesting feature of the various models fitted to the CASCADE pre-ART CD4 data is that the mean
slope (𝛽1) of CD4 decline is substantially less negative for the linear mixed models that include standard
or fractional Brownian motion components (both –1.15) than for the random slopes model (–1.36). The
estimated slopes for the equivalent multivariate-t models were also less steep in each case (Tables I and
II). We performed a simulation study to assess the impact of model choice and missing data patterns on
this difference, which may indicate apparent bias from the use of simpler models.

It follows from Liang and Zeger [29] that a linear mixed model analysis of longitudinal data will
give consistent estimates of the fixed effects given that either there is no missing data or that data is
‘missing completely at random’ (MCAR) (following the terminology of Rubin [15]). This also requires
the structure of the fixed effects to be correctly specified in the model, but not the exact distribution
of observations or covariance between them. Hence, it seems that the substantial differences in slope
estimates between different models fitted to pre-ART CD4 data are due to the presence of missing data
for which the missingness is not MCAR, although the framework for missing data terminology is less
clear for highly unbalanced datasets without a consistent observation schedule.

It is often postulated that the missingness of observations in pre-ART datasets can be treated as MAR,
that is, that it is independent of the unobserved outcome variable conditional on the observed values of
the outcome variable and other covariates included in the model, and that as such the missingness can be
ignored under maximum likelihood estimation such as the use of linear mixed models. The MAR assump-
tion is plausible if patients are thought to mainly drop out of the dataset upon initiation of ART, and if
this is entirely dependent on their observed CD4 counts. However, the beneficial properties of maximum
likelihood-based inference (i.e. consistency and asymptotic normality and efficiency of estimates) with
respect to MAR data are dependent on a correctly specified model for the likelihood. The fact that adding
stochastic process components and/or generalising to a multivariate-t distribution leads to a very substan-
tial improvement in BIC indicates that the standard random slopes model does not correctly describe the
covariance structure or probability model for pre-ART CD4 data.

To further investigate bias in parameter estimates resulting from overly simplistic models, the best-
fitting model (i.e. multivariate-t with fractional Brownian motion) was assumed to be ‘correct’ and cohorts
of patient data simulated from it. CD4 cell count observations were generated from 0 to 5 years, for
groups of either 100 or 200 patients and with an annual observation frequency of 1 or 3; five hundred
cohorts were generated for each combination. For each simulated cohort, models were first fitted to the
complete uncensored data (although this would include impossible negative values), and subsequently
to the data following censoring corresponding to ART initiation at CD4 cut-off values of 200, 350 and
500 cells/μL. The ‘correct’ multivariate-t model and three normal linear mixed models (the random slopes
model, the Brownian motion model and the fractional Brownian motion model) were applied to each
simulated cohort under each condition. For the analyses involving censoring, additional confirmatory
measurements were generated 1 month after the ‘scheduled’ observations; these were only considered
to be observed when the scheduled measurement was below the cut-off value, and the patient was only
censored when the confirmatory value was also below the cut-off. The censored datasets could therefore
be considered to correspond to observations being MAR but not MCAR. As the MAR condition holds
for any possible realisation, this scenario meets the ‘everywhere MAR’ definition provided by Seaman
et al. [30], allowing valid frequentist likelihood inference. Model fitting was considered to have failed
when parameter estimates were not returned or when the covariance matrix of parameter estimates was
not positive-definite.

Limited bias was observed in the estimation of the intercept term when using simplified models and
so the results of this analysis are only presented for estimation of the slope parameter 𝛽1. Bias in the esti-
mation of 𝛽1 and the coverage of 95% confidence intervals for this parameter are presented in Table III.
As expected, a lack of bias (or only very minimal bias) and appropriate coverage intervals were observed
when the correctly specified model was fitted, even in the presence of censoring. Interestingly, no or
only minimal bias was observed when the equivalent normal linear mixed model (including a fractional
Brownian motion component) was used. Linear mixed models including a Brownian motion component
showed some downward bias in the presence of censoring, with this most marked when censoring was
applied using the CD4 cut-off of 500 cells/μL. Substantial downward biases and poor coverage of con-
fidence intervals were observed when a standard random slopes linear mixed model was applied in the
presence of censoring, with the degree of bias clearly linked to the extent of censoring.
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A summary of the standard deviations of point estimates for the mean slope and the average estimated
standard error for this parameter in the simulations is also provided as supplementary material (Table S1).
There were not large discrepancies between these two measures of the standard error. The mean slope
estimates from the correctly defined model showed slightly lower variance than the estimates from the
incorrectly defined models in any given situation, but the scale of these differences seems relatively small
compared with the large biases observed.

The differences in slope estimates observed between models under the censoring conditions in this
simulation study correspond to the differences observed between the models when applied to the real
dataset. This provides supporting evidence that special attention should be given to the probability model
used, and in particular the covariance structure, when analysing a dataset for which there are substantial
missing data that are not MCAR. These simulations imply that an analysis using a wrongly specified
model might incorrectly indicate differences between two groups in their average rate of decline if they
have been subject to different censoring mechanisms. We carried out an additional investigation in which
two groups of either 100 or 200 patients each were simulated with three observations per year, with the
first group subject to censoring at the ‘200 cut-off’ whilst the ‘500 cut-off’ was applied for the second
group. Other details of the simulation and model fitting were as previously described, but two additional
‘fixed effects’ parameters were added to the models to allow the mean intercept (𝛿0) and slope (𝛿1) of the
second group to differ from the first group (with the true value of these parameters being zero). These
simulations confirmed that bias could occur in the estimation of between-group differences in slope within
a single model (estimated bias for random slopes model with 200 patients per group: –0.163, Table S2).

6. Discussion

In this study, we have further developed the statistical modelling of longitudinal biomarker data, through
application to pre-treatment CD4 counts in patients with HIV, in which we have shown that the combi-
nation of a fractional Brownian motion component and generalisation of the normal linear mixed model
to a multivariate-t distribution leads to substantial improvements in model fit. This novel combination
of model features provides additional information regarding the between-patient and within-patient vari-
ability in observations over time. Evidence is provided for the appropriateness of using a multivariate-t
distribution in the studied dataset through evaluation of novel diagnostic plots. Furthermore, simulation
studies are presented to demonstrate the impact of model choice on cohort-level predictions and on bias
in mean slope estimates when data are MAR.

The presence of non-stationary stochastic process components in models for longitudinal data implies
that the progress of the state of the underlying biological system for each individual does not follow a
deterministic relationship with time, but rather follows an unpredictable path. This finding seems intu-
itive in the context of the extremely complex interactions between viral replication and immune system
response that influence the CD4 count series that are observed in HIV-positive patients. When using a frac-
tional Brownian motion component, the H values obtained were less than 0.5, indicating that the process
is erratic but displays some reversion towards an underlying mean. The estimates of the degrees of free-
dom parameter for the multivariate-t models of between five and six indicate substantial between-patient
differences in variability over time.

Through simulations based on generating data from the more complex fitted model, it is demonstrated
that the use of a normal random slopes model is associated with substantial bias in the estimation of the
mean slope parameter in the presence of censoring, with the degree of bias strongly dependent on the
choice of censoring regime. This is important, as estimates of this parameter are often used as a proxy
for rate of decline in health and compared between groups. As initiation of ART is usually dependent
on observed CD4 values, the MAR condition is often invoked to argue that likelihood-based model esti-
mation will lead to valid inferences, but this only holds conditional on the correct specification of the
likelihood model. It can therefore be argued that in this context, greater effort should be made to make
use of statistical models that adequately describe the distributional and covariance patterns present in
the data.

Diagnostic Q–Q plots of Cholesky-transformed marginal residuals from MVN models fitted to square-
root CD4 counts show very heavy tails, indicating clear violation of the modelling assumptions. We have
demonstrated that the use of a multivariate-t distribution in combination with a non-stationary stochastic
process component leads to a very substantial improvement in BIC with diagnostic Q–Q plots that only
indicate relatively mild violation of the model’s assumptions. Such models can be fit efficiently and to
large datasets using the open-source ADMB software [22], with this task made easier by the fact that the
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log-likelihood of the multivariate-t distribution is available in closed form. It would be of inter-
est to investigate whether models comprised of different combinations of multivariate-t and normal
distributions could provide a better fit to the data; such models have been previously discussed by Song
et al. [31]. For example, it may be considered more biologically plausible to fit a statistical model in
which the variability of the stochastic process component differs between individuals (i.e. follows a
multivariate-t distribution) but the random effects and measurement error terms do not (i.e. they follow
normal distributions). For such models, the likelihood function is not available in closed form, making
the computations required for parameter estimation substantially more complex. The implementation and
evaluation of such models will be the topic of further research.

Normal linear mixed models including simple or fractional Brownian motion processes cannot be fitted
using standard routines in existing statistical software packages, and this is probably responsible for the
fact that they have not been widely adopted in practice (at least in the setting of HIV-research). However,
an R package (covBM) that will allow the implementation of such models is under development by
the authors. Most software does not offer any standard function for fitting mixed models based on the
multivariate-t distribution, although an R package ‘tlmec’ does exist for fitting models generalised from
a normal model with independent error terms of constant variance [12].

Our research has been focused on CD4 cell counts in HIV-positive patients, but the modelling frame-
work developed may be of use for the analysis of longitudinal data in other biomedical applications.
For example, Diggle et al. recently described the use of an extended linear mixed model including
another non-stationary stochastic process, integrated Brownian motion, for the analysis of estimated
glomerular filtration rates in patients at risk for renal failure [32]. The authors provide plots of ‘Cholesky-
standardised’ residuals produced from the application of the model, which show very heavy tails. The
multivariate t-distribution implies differences in the volatility of observations between patients, which
may by useful in planning and interpreting the monitoring of biomarkers in HIV and other disease areas.

Whilst it is arguably impossible to claim that any statistical model exactly represents the data-
generating mechanism under investigation, it seems that both the addition of stochastic process compo-
nents to the standard linear mixed model and the use of a multivariate-t distribution can be used to gain a
greater understanding of longitudinal biomedical data. Such models provide greater flexibility, but require
only a small number of additional parameters and follow a model specification that can be interpreted in
terms of the underlying biological process; as such, the potential gains in inference and understanding
through their use are likely to greatly outweigh any drawbacks of increased model complexity. There is
therefore a motivation to develop more efficient methods of fitting such models and to make these more
widely available.
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Abstract

Background: There has been some debate in the literature as to whether baseline values of a measurement of
interest at treatment initiation should be treated as an outcome variable as part of a model for longitudinal change or
instead used as a predictive variable with respect to the response to treatment. We develop a new approach that
involves a combined statistical model for all pre- and post-treatment observations of the biomarker of interest, in
which the characteristics of response to treatment are treated as a function of the ‘true’ value of the biomarker at
treatment initiation.

Methods: The modelling strategy developed is applied to a dataset of CD4 counts from patients in the UK Register of
HIV Seroconverters (UKR) cohort who initiated highly active antiretroviral therapy (HAART). The post-HAART recovery
in CD4 counts for each individual is modelled as following an asymptotic curve in which the speed of response to
treatment and long-term maximum are functions of the ‘true’ underlying CD4 count at initiation of HAART and the
time elapsed since seroconversion. Following previous research in this field, the models developed incorporate
non-stationary stochastic process components, and the possibility of between-patient differences in variability over
time was also considered.

Results: A variety of novel models were successfully fitted to the UKR dataset. These provide reinforcing evidence for
findings that have previously been reported in the literature, in particular that there is a strong positive relationship
between CD4 count at initiation of HAART and the long-term maximum in each patient, but also reveal potentially
important features of the data that would not have been easily identified by other methods of analysis.

Conclusion: Our proposed methodology provides a unified framework for the analysis of pre- and post-treatment
longitudinal biomarker data that will be useful for epidemiological investigations and simulations in this context. The
approach developed allows use of all relevant data from observational cohorts in which many patients are missing
pre-treatment measurements and in which the timing and number of observations vary widely between patients.

Keywords: CD4, HAART, HIV, Longitudinal data, Mixed effects models, Statistical methodology

Background
In medical research, there is often interest in evaluat-
ing response to treatment conditional on the baseline
value at initiation of the biomarker under investigation.
In the setting of randomised controlled trials (RCTs),
designed primarily to assess the difference between treat-
ment conditions, some authors have argued that optimal

*Correspondence: oliver.stirrup.13@ucl.ac.uk
MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology,
University College London, 125 Kingsway, WC2B 6NH London, UK

efficiency is gained by treating the baseline measure-
ment as an outcome variable within a parametric model
[1, 2], whilst Senn has argued that conditioning esti-
mation of treatment effect on the baseline observation
through the use of ANCOVA is preferable in most trial
situations [3] and Kenward et al. demonstrated that with
correct adjustments for sample size the two approaches
have nearly identical properties [4]. However, both of
these approaches can be problematic when applied to the
estimation of response to treatment using longitudinal
observational datasets, in which the timing and choice of

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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treatment have not been randomised and in which base-
line observations immediately prior to treatment may not
be available for all patients. Furthermore, there is often
substantial interest in the influence of the baseline value of
the biomarker in itself in determining the level of response
to treatment, rather than just using this to provide a bet-
ter estimate of the differences between treatment choices.
In this article we describe the development of flexible
parametric models for this situation, providing a com-
bined analysis of pre- and post-treatment data in which
the response of the biomarker to treatment is dependent
on a ‘true’ baseline value that is not directly observed; this
combines elements of both previous approaches in that
the pre-treatment data are modelled as ‘response vari-
ables’, but the trajectory of the biomarker after treatment
initiation can also be modelled using flexible functions of
the baseline value. The models developed are applied to
CD4 cell counts in human immunodeficiency virus (HIV)-
positive patients who initiate highly active antiretroviral
therapy (HAART).
CD4 cells are a type of white blood cell for which counts

are monitored over time both before and after treatment
initiation in HIV patients in order to evaluate the progress
of the disease and state of the immune system. Although
the CD4 counts within an individual can vary erratically
over time, on average the counts decline steadily from
normal levels following HIV infection and then in most
cases recover towards normal levels following initiation
of HAART. Over the last 20 years, effective regimens of
HAART have been developed for the treatment of HIV,
allowing long-term management of the condition and
greatly improving the life expectancy and quality of life of
affected individuals, at least for those with the condition
diagnosed in a resource-rich country. Until recently, clin-
ical guidelines regarding the initiation of treatment varied
between countries. In the USA, the Health and Human
Services Panel on Antiretroviral Guidelines for Adults and
Adolescents have for a number of years recommended
immediate initiation of HAART for most patients newly
diagnosed with HIV [5], whereas in Europe guidelines
recommended monitoring of CD4 in most patients, with
treatment initiated once this dropped below 350 [6]. How-
ever, a recent RCT has provided definitive evidence of the
benefit of immediate initiation of HAART on diagnosis of
HIV [7], leading to a shift in clinical guidelines towards
early treatment initiation in all well-resourced countries,
including the UK [8].
In observational datasets, the timing of recorded CD4

measurements can be highly variable between patients.
In much of the existing literature about the long-term
response of CD4 counts to HAART, the investigators have
avoided any associated complications in their analyses by
converting the available data into a set of discrete time
points, typically corresponding to annual or 6-monthly

observations. This has been done by linear interpolation
(Kaufmann et al.) [9], selecting only the observation clos-
est to the chosen time point (Moore and Keruly) [10]
or taking the mean measurement within intervals (Lok
et al.) [11]. Each of these studies included an analysis strat-
ified by intervals of baseline CD4 count and, although
the statistical methodology varied between studies, each
found that higher baseline CD4 counts were associated
with higher values after several years of HAART. A study
by Le et al. suggested that the long-term response to
HAART in HIV-positive patients is improved if it is ini-
tiated within the first few months after infection, with
this effect independent of the CD4 count at baseline [12].
This analysis also relied on stratification of patients into
groups.
We now also know that early treatment of HIV leads to

a substantial reduction in the occurrence of both acquired
immune deficiency syndrome (AIDS)-defining conditions
and serious non-AIDS events [7], but there nonethe-
less remains clinical interest in understanding the factors
that are predictive of the recovery in CD4 counts upon
HAART initiation as for many patients there is a sub-
stantial delay between infection and diagnosis and subop-
timal CD4 recovery remains a concern for patients and
clinicians [13]. The principal aim of this research is the
development of a flexible parametric framework for the
combined modelling of pre- and post-treatment CD4 data
in HIV positive individuals. This is motivated by the clini-
cal interest in investigating the factors that determine the
characteristics of long-term response to HAART, in par-
ticular the influences of baseline CD4 count and the time
elapsed from infection to treatment initiation. However,
the modelling strategy developed could also be used in
other settings in which a biomarker is monitored prior to
some treatment initiation or clinical intervention.
The modelling strategy described in this article repre-

sents a flexible extension of established non-linear mixed
effects models, fitted through maximum likelihood esti-
mation based on all observed data using time as a con-
tinuous variable. As well as allowing inclusion of all
available data in its original format (other than global
transformations for normalisation) and the combined
assessment of multiple predictive factors, the approach
will have the advantage that the characteristics of CD4
trajectories of individual patients over time will be quan-
tified, creating a complete framework for epidemiolog-
ical simulations or patient-specific predictions, whereas
previously this has been done using separate models for
pre- and post-treatment data [14]. The models developed
are applied to CD4 data from the UK Register of HIV
Seroconverters cohort [15]. Following previous work on
the modelling of pre-treatment CD4 counts [16], we also
incorporate stochastic process components and between-
patient differences in variability over time into the models
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developed. This is done with the aim of defining models
that are as realistic as possible in representing the struc-
ture of the biological measurements under investigation,
which is particularly important when considering analyses
for datasets in which missing data and irregular follow-up
times are a substantial concern.

Methods
Dataset
The UK Register of HIV Seroconverters is an observa-
tional cohort study of patients whose date of infection can
be reliably estimated [15]. The UK Register of HIV Sero-
converters has research ethics approval (MRC MREC:
04/Q2707/155). Recruitment to the cohort began in 1994,
but, as we are interested in modelling the response to
modern HAART regimens, we restrict our analysis to
patients with an estimated date of HIV-1 seroconversion
during or after 2003. Patients who started a suboptimal
regimen of antiretroviral drugs prior to HAART were
excluded, as were patients without at least one post-
treatment CD4 count recorded. Patients without any pre-
treatment CD4 counts were, however, included in the
analysis. HAART is defined by a regimen of at least three
antiretroviral drugs from at least two different classes
(unless abacavir or tenofovir is used in a regimen with
three nucleoside analog reverse-transcriptase inhibitors
(NRTIs)).
Application of these conditions resulted in a study pop-

ulation of 852 patients, with a total of 5805 pre-HAART
and 7302 post-HAART CD4 observations recorded.
The median (interquartile range (IQR)) number of pre-

HAART CD4 counts was 5 (3–10), whilst that for post-
HAART observations was 6 (3–12). There were a total
of 39 patients without any pre-HAART CD4 counts
recorded. The median (IQR) time from estimated date
of seroconversion to initiation of HAART was 1.3 (0.6–
2.8) years, with 192 patients starting HAART within 6
months and 149 starting between 6 months and 1 year
from seroconversion.
CD4 cell counts aremeasured as cells permicrolitre, and

we followed established practice in modelling the counts
on a square-root scale [14, 16]. For the pre-treatment part
of the model, time is measured in years from date of HIV
seroconversion, whilst for the post-treatment part of the
model it is measured in years from HAART initiation.
We have censored patients at recorded interruption of
HAART (including switch to suboptimal treatment) for
more than 1week, but have not censored according to
viral load status or change to HAART regimen. Treatment
interruption was recorded in 124 (14.6%) patients, and
there were a total of seven deaths recorded (three of which
occurred after censoring due to interruption of HAART).
Data from a random subset of 100 of the patients analysed
are shown in Fig. 1.

Baseline state as a latent variable
It can be shown that in situations in which the initiation of
treatment is conditional on a biomarker that is monitored
over time, and which is measured with error, the observed
value of the biomarker at the start of treatment provides
a biased estimate of the ‘true’ underlying value [14]. This
presents a problem when attempting to model treatment
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Fig. 1 ‘Spaghetti plot’ of the square root of CD4 counts from a random sample of 100 patients. Patients are from the UK Register of HIV
Seroconverters dataset. Lines are semi-translucent to aid visualisation. Time has been centred at the time of highly active antiretroviral therapy
(HAART) initiation for each patient
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response conditional on the baseline value. We propose
that one option in this situation is to build a combined
model for both the pre- and post-treatment data, allowing
the response to treatment to be conditional on all available
pre-treatment data rather than on just a single baseline
value. Such an approach would also have the advantage
that patients could be included for whom no measure-
ment close to the start of treatment had been obtained.
Additionally, fewer assumptions regarding the marginal
distribution of ‘true’ baseline values of any given popula-
tion would be required. For example, such an approach
could appropriately deal with a set of distinct treatment
initiation guidelines applied across different periods of
time or sub-populations, which might lead to a multi-
modal distribution of baseline values in the total study
population, whereas a standard mixed model approach
would generally assume the observed baseline values to
follow a normal distribution for the population as a whole.
Any linear mixed effects model implies a marginal mul-

tivariate normal distribution [17] (MVN), for which the
log-likelihood function can be expressed in closed form.
However, this is not true (except for some special cases)
for non-linear mixed effects models [18]. For such mod-
els, numerical integration or analytical approximation of
the log-likelihood is required at each iteration of any opti-
misation algorithm [19]. Among the available options,
adaptive Gauss–Hermite quadrature is particularly attrac-
tive as an increasing number of quadrature points can
be used for each random effect to ensure that the log-
likelihood is evaluated to an adequate degree of accuracy.
However, if more than one random effect is included in
the model for each independent individual in the analysis
then the number of points that need to be evaluated in the
adaptive Gauss–Hermite quadrature algorithm increases
exponentially with the number of random effects terms
per individual. As such, adaptive Gauss–Hermite quadra-
ture is not generally used when there are more than two
or three random effects terms defined in a model, and
the computational requirements to attain high accuracy in
calculation of the log-likelihood function are lowest when
there is only one random effect term per individual.
Because of the computational issues described, to

undertake the combined modelling of pre- and post-
treatment CD4 data we focus on the use of non-linear
latent variable models that require numerical integration
only over the unobserved ‘true’ CD4 count at treatment
initiation (which we will term u). The rationale of this
approach is that it will allow adequate flexibility in model
structure without increasing the computational require-
ments to a level that will prevent application to the dataset
available. In order to achieve this, we will specify lin-
ear mixed models for the pre-treatment data (ypre) and
non-linear models for the post-treatment data (ypost),
conditioned on the ‘true’ baseline CD4 count, that are

linear in any other random effects terms (allowing a closed
form expression for each of these two parts of the model).
Under such a scheme, the likelihood function for the com-
bined pre- and post-treatment data for each individual can
therefore be expressed as:

f
(
ypre, ypost

)
=

∫ ∞

−∞
fpre,post,u

(
ypre, ypost ,u

)
du

=
∫ ∞

−∞
fpre

(
ypre

)
fpost,u

(
ypost ,u|ypre

)
du

=
∫ ∞

−∞
fpre

(
ypre

)
fpost

(
ypost |ypre,u

)
fu

(
u|ypre

)
du.

For simplicity above, we suppress notation to indicate
that each element of the likelihood function is dependent
on model parameters. However, we now consider calcu-
lation of the likelihood function dependent on the values
of a parameter vector relating to the pre-treatment part of
the model ‘θpre’, a parameter vector relating to the post-
treatment part of the model ‘θpost ’ and a shared measure-
ment error variance parameter ‘σ 2’. If we assume that the
post-treatment response depends on the pre-treatment
data only though the true baseline value at treatment ini-
tiation, i.e. that ypost is independent of ypre given u, then
we may write:

f
(
ypre, ypost

)
=

∫ ∞

−∞
fpre

(
ypre|θpre, σ 2

)

fpost
(
ypost |u, θpost , σ 2

)
fu

(
u|ypre, θpre, σ 2

)
du.

This follows a similar form to the likelihood expression
for standard random effects models but here the distri-
bution of the latent variable u, which is integrated out
to obtain the marginal likelihood, is conditioned on the
pre-treatment data for each individual rather than fol-
lowing a pre-specified distribution across the population.
For those patients in whom no pre-treatment observa-
tions were obtained, the likelihood contribution can be
calculated solely for the post-treatment observations:

f
(
ypost

)
=

∫ ∞

−∞
fpost

(
ypost|u, θpost , σ 2

)
fu

(
u|θpre, σ 2) du.

It should be pointed out here that, in practice,
optimisation algorithms to obtain maximum likelihood
estimates operate on the log-likelihood scale. In Sub-
section “Differences in variability between patients”, we
describe the addition of two further latent variables to the
model for each individual in order to allow for between-
patient differences in variability over time.

Pre-treatment model structure
At present we consider only linear mixed model formula-
tions for the likelihood of ypre:i, representing the observed
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vector of npre:i pre-treatment observations for the ith indi-
vidual. However, this is inclusive of stochastic Gaussian
process components, such as Brownian motion [20, 21] or
fractional Brownian motion [16], as these do not prevent
the use of a (multivariate normal) closed form for the pre-
treatment likelihood function fpre. Denoting the vector of
values of the stochastic process Wpre:i at times tpre:i, and
defining �pre:i as the covariance matrix resulting from the
chosen Gaussian process for the ith individual, the linear
mixed model can then be expressed as:

ypre:i = Xiβ + Zibi + Wpre:i + epre:i
bi ∼ MVN(0, �)

Wpre:i ∼ MVN(0, �pre:i)

epre:i ∼ MVN(0, σ 2Inpre:i).

Here, Xi represents the pre-treatment design matrix for
the ‘fixed effects’ parameters β , Zi represents the subset
of the columns of the design matrix associated with the
pre-treatment ‘random effects’ for each individual bi and
epre:i is the vector of residual errors for each pre-treatment
measurement occasion. The vectors of random effects
b1,b2 · · ·bN , residual errors epre:1, epre:2 · · · epre:N and
stochastic process realisations Wpre:1,Wpre:2 · · ·Wpre:N
for each of the N individuals are independent of one
another. It can be easily shown that this formulation leads
to the following marginal distribution for ypre:i:

ypre:i ∼ MVN
(
Xiβ , Zi�ZT

i + �pre:i + σ 2Inpre:i
)
.

We shall use Vpre:i to denote the marginal covariance
matrix for ypre:i.
In this analysis, we shall consider only a ‘random inter-

cepts and slopes’ structure for the fixed and random
effects parts of the pre-treatment model. We shall also
include fractional Brownian motion as a Gaussian pro-
cess component, along with an independent residual error
term [16]. A Brownian motion process represents an
unpredictable ‘random walk’, and it has been found that
adding this as a further component to linear mixed mod-
els for pre-treatment CD4 counts in HIV patients leads to
an improvement in model fit [20, 21]. Fractional Brown-
ian motion is a generalisation of the standard Brownian
motion process [22]. The characteristics of a fractional
Brownianmotion process are determined by an additional
parameter, termed H or ‘the Hurst index’, that can take
a value in the range (0,1). Standard Brownian motion
represents a special case of fractional Brownian motion,
corresponding to H = 1

2 . When H < 1
2 , successive incre-

ments of the process are negatively correlated. This leads
to the path of the trajectory appearing ‘jagged’ and reali-
sations of the process tend to revert towards the mean of
zero.
As for standard Brownian motion, the expectation of a

fractional Brownian motion process is zero for all points

in time (0, s, t . . . ). A positive scale parameter (κ) can
be added to the standard definition of fractional Brown-
ian motion, corresponding to the variance of the process
at t = 1. Fractional Brownian motion is a Gaussian pro-
cess, with the following properties (which determine the
structure of �pre:i and �post:i):

W0 = 0
E[Wt] = 0

Var[Wt] = κ |t|2H

Cov[Ws,Wt] = κ

2
(|s|2H + |t|2H − |t − s|2H)

.

Conditional distribution of ‘true’ baseline
The use of a pre-treatment model with marginal mul-
tivariate normal distribution means that the conditional
distribution of the ‘true’ baseline value (ui) at treatment
initiation for each individual given their observed pre-
treatment data can be readily obtained. We denote the
time of treatment initiation from the start of observa-
tion (HIV seroconversion in this case) as ttrt:i. We shall
assume that ui is formed by the sum of the fixed effects
parameter vector (β) multiplied by a row vector (Xtrt:i)
corresponding to an extension of the design matrix (Xi)
for that individual relating to variable values (e.g. time)
at ttrt:i, the equivalent term for the subject-specific ran-
dom effects (i.e. Ztrt:ibi) and the realisation of the subject’s
stochastic process at ttrt:i:

ui = Xtrt:iβ + Ztrt:ibi + Wtrt:i.

As such, the joint distribution ypre:i and ui is multivariate
normal:
(
ypre:i
ui

)
∼ MVN

((
Xiβ

Xtrt:iβ

)
,

(
Vpre:i Zi�ZT

trt:i+Cov
[
Wpre:i,Wtrt:i

]
Ztrt:i�ZT

i +Cov
[
Wtrt:i,Wpre:i

]
Ztrt:i�ZT

trt:i+Var [Wtrt:i]

))
.

The variance and covariance terms for the stochas-
tic component of the model can be calculated for any
given Gaussian process based on tpre:i, ttrt:i and any pre-
treatment model parameters relating to the process. The
conditional probability density function of ui given ypre:i,
fu

(
ui|ypre:i, θpre, σ 2

)
, can therefore be obtained using the

standard result for a partitioned multivariate normal dis-
tribution. Using a simplified notation:

(
ypre:i
ui

)
∼ MVN

((
Xiβ
Xtrt:iβ

)
,
(
Vpre:i v12:i
v21:i v22:i

))
,

it is known that:

ui|ypre:i ∼ N (μ′, v′) ,
whereμ′ = Xtrt:iβ + v21:iV−1

pre:i
(
ypre:i − Xiβ

)

and v′ = v22:i − v21:iV−1
pre:iv12:i.
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If a patient has no pre-treatment observations, then the
probability density function for the baseline value is sim-
ply that for a normal distribution with mean Xtrt:iβ and
variance v22:i.
The conditional distribution of each ui is normal and

so will include potential negative realisations, even if the
probability of this is vanishingly small for most individu-
als. As such, we use the notation u+

i to indicate a latent
variable for which all probability mass for values ui < 0
is assigned instead to ui = 0, i.e. u+

i = Max (0,ui). The
coding used to achieve this is given in Additional file 1.

Post-treatment model structure
Mean response to treatment
Although a range of models could be considered for the
post-treatment observations, we focus on the use of an
asymptotic regression model for the underlying mean
structure. Such models have been used to describe CD4
recovery over several years from treatment initiation in
children [23, 24]. In our definition of this model, the mean
value for the ith individual at time after initiation of treat-
ment tpost , conditional on the ‘true’ baseline value u+

i , is
given by the function:

g
(
tpost ,u+

i
) = φ1:i +

(
u+
i − φ1:i

)
exp

(− exp (φ2:i) tpost
)
.

(1)

This function takes the value u+
i when tpost = 0 (i.e. at

the exact time of treatment initiation), and it has a hori-
zontal asymptote at φ1:i as tpost → ∞. The value of φ2:i
determines the speed of transition from u+

i to φ1:i, i.e.
from the value of the response variable at baseline to its

long-term mean, as tpost increases. The shape of the func-
tion is illustrated in Fig. 2. It is useful to note that, as this
function involves a change from a baseline value to a long-
term maximum that follows an ‘exponential decay’-type
curve, the ‘half life’ of this transition can be calculated
as log(2)

exp(φ2:i)
; this facilitates interpretation of the estimated

values of parameters that define φ2:i.
In models of this type, the place of u+

i in this func-
tion is usually taken by a single parameter (or a linear
function of a set of parameters) to be estimated, poten-
tially with an associated subject-specific random effect
term. However, we instead make use of the fact that a
subject-specific distribution for u+

i can be included in the
model conditioned on the observed pre-treatment data
for that individual. Similarly, we will consider φ1:i and φ2:i
as potentially being determined as a function of u+

i , along-
side other variables, i.e. we will investigate whether the
long-term average value of the response variable and the
speed at which this is attained are predicted by the ‘true’
value of the variable at treatment initiation.

Long-termmaximum
The simplest potential model for the long-termmaximum
response to treatment in each individual, i.e. the horizon-
tal asymptote φ1:i, is to assume that this is equal to a single
constant for the entire population:

φ1:i = A1, for all i.

The implication of this model is that the long-term
response to treatment does not depend on the value of
the variable in any given patient at treatment initiation,
or on any other factors. This formulation also assumes

φ1:i = 25

ui = 15

log(2)
exp(φ2:i)

= 1

10
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Fig. 2 Illustrative plot of an asymptotic regression curve. Here the baseline (ui) is set to 15, the asymptotic maximum (φ1:i) is set to 25 and the rate of
recovery parameter (φ2:i) is set to log(log(2)), leading to a ‘half-life’ of 1
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that there is no random variation in the long-term max-
imum response between patients, but we will include
a subject-specific random-effect term ‘τi’, alongside any
deterministic function (φ1 (. . .)), throughout:

φ1:i = φ1 (. . .) + τi, where τi ∼ N (0,P) ,

with the variance parameter P to be estimated. Although
the post-treatment model defined in Eq. (1) is non-linear
in terms of the parameters, using this formulation it is lin-
ear in terms of the subject-specific random effect. As such
fpost

(
ypost|u, θpost , σ 2

)
can be expressed in closed form

as a multivariate normal distribution (assuming no fur-
ther random effect terms are added to the model), even
though it does not constitute a linear mixed effects model
conditioned on the unobserved baseline variable. Further
details are given in Additional file 1.
The next model considered is that the expected long-

term maximum (working on the square-root scale for
CD4 counts) for any given patient follows a linear depen-
dence on their ‘true’ value at treatment initiation:

φ1
(
u+
i
) = A1 + A2 × u+

i .

Where A1 and A2 are parameters to be estimated.
We then wish to investigate whether φ1 is a more com-

plex, non-linear, function of u+
i . One option would be to

specify that φ1 is some specific non-linear function of u+
i .

However, the fact that the relationship between φ1:i and
u+
i cannot be directly visualised using the raw data means

that there is no obvious way to go about selecting the func-
tional form. Another option is the use of cubic splines
defined in terms of u+

i , this approach has the advantage of
allowing consideration of a wide variety of possible rela-
tionships between the predictive and outcome variable. In
order to restrict the total number of model parameters
and improve stability of optimisation, we make use of nat-
ural cubic splines derived from a truncated power series
basis as described by Hastie, Tibshirani and Friedman
[25]. We use knots at 15.5, 17.5, 19.5 and 22 in terms
of square-root CD4, corresponding to approximately the
20th, 40th, 60th and 80th centiles of the last observed CD4
count before treatment initiation, when available, in the
UK Register of HIV Seroconverters dataset.
We also consider models in which the relationship

between the long-term maximum response and the base-
line value (u+

i ) can vary according to the time elapsed
between seroconversion and treatment initiation for each
patient (ttrt:i). Although ideally this would be done using
a smooth function of u+

i and ttrt:i, for computational sta-
bility we fit separate functions of u+

i stratified by ttrt:i (in
years) as follows: 0 ≤ ttrt:i ≤ 0.5, 0.5 < ttrt:i ≤ 1.0 and
1.0 < ttrt:i. These grouping were chosen based on a com-
bination of findings reported previously in the literature,

the level of uncertainty in terms of estimated dates of sero-
conversion in our study population and the need to ensure
that an adequate number of patients were included in each
group to allow parameter estimates to be obtained for the
model.
Were patient characteristics (i.e. age, gender etc.) to be

included in the model for φ1:i, and assuming a linear func-
tion in terms of u+

i for simplicity of exposition, we would
have an extended function for φ1 of the form:

φ1
(
u+
i , xi

) = A1 + A2 × u+
i + xTi βφ1 ,

where xi is the patient-specific vector of data specifying
relevant characteristics and βφ1 is the associated vector of
parameters that determines their effects.

Speed of response to treatment
As for the function for the long-term maximum value, we
consider first a constant value for φ2:i across the popu-
lation (φ2:i = B1) and secondly a linear dependence on
u+
i :

φ2:i = B1 + B2 × u+
i

where B1 and B2 are parameters to be estimated. We then
consider a natural cubic spline function of u+

i , including
an analysis with stratification according to groups defined
by the time elapsed from seroconversion to treatment.
The addition of a subject-specific random effect to this
function was also considered, this required integration of
the log-likelihood function over an additional latent vari-
able for each patient and so the Laplace approximation
was used.

Residual variance structure
We propose the following model for the vector of post-
treatment observations (ypost:i) for the ith individual,
conditioned on their ‘true’ baseline value at treatment
initiation (u+

i ):

ypost:i|U+
i =u+

i
= g

(
tpost:i,u+

i , τi
) + Wpost:i + epost:i

τi ∼ N (0, P)

Wpost:i ∼ MVN
(
0, �post:i

)

epost:i ∼ MVN
(
0, σ 2Inpost:i

)
.

The vector of observation times tpost:i relates to time
since treatment initiation, with npost:i post-treatment
observations for the ith subject. The function g here rep-
resents a vectorised version of g in Eq. (1), i.e.:

g
(
tpost:i,u+

i , τi
) =

⎛
⎜⎜⎜⎝

g
(
tpost:i1,u+

i , τi
)

g
(
tpost:i2,u+

i , τi
)

...
g
(
tpost:inpost:i ,u

+
i , τi

)

⎞
⎟⎟⎟⎠ .

For the stochastic process component Wpost:i, we
include a ‘new’ fractional Brownian motion process with
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value zero at time of treatment initiation and separate
parameters to the pre-treatment process. The vector epost:i
represents independent residual measurement errors (or
very short-term physiological variation), with a variance
parameter (σ 2) that is shared with the pre-treatment
model.

Differences in variability between patients
Previous work on pre-treatment CD4 counts in HIV
patients has found that the generalisation of the model
structure as described in “Pre-treatment model structure”
to a multivariate-t distribution leads to a substantial
improvement in model fit in terms of the log-likelihood
and residual diagnostic plots [16]. However, the appli-
cation of a marginal multivariate-t distribution is not
possible in the current setting, in which a combinedmodel
is defined for pre- and post-treatment data. We instead
consider models in which the stochastic process compo-
nents before and after treatment each follow a marginal
multivariate-t distribution, with correlated scaling vari-
ables.
There are a number of multivariate generalisations of

the univariate t-distribution, and a thorough review of this
topic is provided by Kotz and Nadarajah [26]. However,
we refer to themultivariate-t distribution as that with the
probability density function:

f
(
yi;μi,Vi, v

)= � ((v + ni) /2)

�(v/2)vni/2πni/2|Vi|1/2
(
1+ 1

v
(
yi−μi

)TV−1
i

(
yi−μi

))(v+ni)/2
,

where ni represents the length of the random vector yi
(∈ R

ni ), Vi is a ni × ni positive-definite scale matrix, μi
is a ni × 1 location vector and v is a degrees of freedom
parameter. The mean of the distribution is μi if v > 1 and
otherwise undefined, and the variance of the distribution
is v

v−2Vi if v > 2 and otherwise undefined.
If a vector of observations yi follows a multivariate-t

distribution:

yi ∼ tni (Xiβ , Vi, v) ,

then this can alternatively be represented as a hierarchical
model in which yi follows a multivariate normal distribu-
tion conditional on a gamma-distributed variable wi (with
parameters given for ‘shape’ and ‘rate’, respectively) [27]:

yi|Wi=wi ∼ MVN
(
Xiβ ,

1
wi

Vi

)
(2)

Wi ∼ gamma
( v
2
,
v
2

)
.

The desired model structure for a combined analysis of
pre- and post-treatment data requires the use of a bivari-
ate gamma distribution, of which a number are available
(as reviewed by Balakrishna and Lai [28]). Such mod-
els will include three latent variables per patient, and

as such a Laplace approximation to the log-likelihood
[19, 29, 30] rather than adaptive Gauss–Hermite quadra-
ture will be used. Because of this, Moran’s bivariate
gamma distribution [28, 31] makes a natural choice.
This distribution is defined by first transforming random
variables (A and B) from the standard normal bivari-
ate distribution with correlation ρMoran into a copula
C (	(a),	(b)), where 	 is the standard normal cumula-
tive distribution function, and secondly using the inverse
cumulative distribution functions of univariate gamma
distributions (W1 = F−1 (	(A)), W2 = G−1 (	(B))) to
find the joint distribution function of W1 and W2 (each
of which has a marginal univariate gamma distribution).
F is here defined as the cumulative distribution function
for gamma distribution with ‘shape’ and ‘rate’ parame-
ters both equal to v1

2 , whilst G is that for the gamma
distribution with parameters both equal to v2

2 .
Analogous to our previous work [16], the model for

pre-treatment CD4 counts is then defined as:

ypre:i = Xiβ + Zibi + Wpre:i + epre:i
bi ∼ MVN(0, �)

Wpre:i|W1:i=w1:i ∼ MVN
(
0,

1
w1:i

�pre:i

)

epre:i ∼ MVN
(
0, σ 2Inpre:i

)
,

whilst, the model for post-treatment data is:

ypost:i|U+
i =u+

i
= g

(
tpost:i,u+

i , τi
) + Wpost:i + epost:i

τi ∼ N (0, P)

Wpost:i|W2:i=w2:i ∼ MVN
(
0,

1
w2:i

�post:i

)

epost:i ∼ MVN
(
0, σ 2Inpost:i

)
,

with the scaling factors jointly following Moran’s bivariate
gamma distribution:

(
W1:i
W2:i

)
∼ Moran

(
ρMoran;

v1
2
,
v1
2
;
v2
2
,
v2
2

)
.

This specific bivariate gamma distribution is a natural
choice because the marginal log-likelihood function for
the model can be found by integrating out the latent vari-
ables on the standard normal scale, for which the Laplace
approximation is optimally accurate [32], as follows (omit-
ting indexing for each individual and dependence on
model parameters):

f
(
ypre, ypost

)
=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fpre

(
ypre|w1=F−1(	(a))

)
fpost

(
ypost |u,w2=G−1(	(b))

)

fu
(
u|ypre,w1=F−1(	(a))

)
fab (a, b) du da db,

where fab is the probability density function for a standard
bivariate normal distribution with correlation ρMoran.
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The ρMoran parameter can be estimated from the data
through maximum likelihood estimation as for other
model parameters.

Overall model structure and interpretation
A directed acyclic graph depicting the proposed model
structure is shown in Fig. 3. For simplicity, we omit here
the extension to the basic model in which further latent
variables are added to the model to allow between-patient
differences in variability over time as described in Sub-
section “Differences in variability between patients”. This
diagram illustrates the fact that in the model, response
to treatment is linked to pre-treatment data only through
the ‘true’ baseline value u and the time from serocon-
version to treatment initiation. These links are mediated
through variables representing the long-term maximum
response to treatment (φ1) and the speed at which this is
attained (φ2) in each patient. When fitted to the dataset
under investigation, this structure should allow estimates
of individual parameters of the model to be interpreted
in a meaningful way. Although in this article we do not
consider further potential predictive variables, it would be
relatively straightforward to extend the model to assess
whether patient characteristics such as age and gender
or drug regimen choice are independently predictive of
response to treatment.
The primary interpretation of our models as presented

is the prediction of the response to HAART in terms of
prior CD4 counts and time from seroconversion. It has
been argued that causal effects can only be estimated
from observational studies with respect to clearly defined
interventions [33].Whilst interventions with regard to the
monitoring of CD4 counts and guidelines for treatment
initiation can be defined within the present context, it is
not possible to begin treatment conditional on the ‘true’

value of a patient’s CD4 count, as this cannot be observed
directly. Furthermore it is not possible to define a treat-
ment policy in terms of a specific simultaneous combina-
tion of ‘time from seroconversion’ and ‘true CD4 count’,
when in a certain period a patient may only experience a
limited range of CD4 counts.
As we have censored patients at recorded interrup-

tion of HAART but not according to viral load status,
the fitted models can be taken to represent treatment
response for all patients were they all to remain on
HAART (regardless of success or failure of virological
suppression). All included patients had at least one post-
HAART CD4 observation, but beyond this the number
and timing of CD4 cell counts recorded for each indi-
vidual were highly variable. We have assumed that the
missingness of observations can be treated as ‘missing at
random’ (following the terminology of Rubin [34]), i.e. that
the ‘missingness’ of any observation is independent of the
unobserved data conditional on the observed values of
the outcome variable and any other covariates included in
themodel. Similarly we assume that the timing of observa-
tions is dependent only on previously observed outcomes,
under which condition maximum likelihood estimation
of a model for the outcome variable alone is consistent,
without the need for specification of a model for the
distribution of follow-up times [35].

Maximum likelihood estimation
All models presented have been fitted by direct maxi-
mum likelihood estimation using the open source AD
Model Builder software (Version 11.2; ADMB Founda-
tion) [30]. This requires the user to write out the log-
likelihood function for the model in terms of the data
and unknown parameters to be estimated in the C++
language, with additional statistical and mathematical

Fig. 3 Directed acyclic graph depicting the proposed model structure for each patient. Observed variables are shown within ellipses, whilst
unobserved latent variables are shown within rectangles
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functions (including matrix and vector functions and
operations) provided by the software to facilitate this.
The ‘random effects’ mode was used for ADMB, allowing
optimisation of a log-likelihood function with automated
integration over latent variables [29]. The log-likelihood
function for each individual (for their complete pre- and
post-treatment data) was defined using the ‘separable
function’ utility, allowing computational efficiency to be
gained from the modelled independence of each indi-
vidual. 15-point adaptive Gauss–Hermite quadrature was
used to obtain the maximum likelihood estimates for all
models described in this report for which only one latent
variable was included per individual (i.e. the ‘true’ base-
line). However, for the models including additional latent
variables associated with between-patient differences in
variability over time, Gauss–Hermite quadrature was not
feasible and the Laplace approximation was used.
Models were parameterised using logarithmic, logistic

and generalised logistic transformations where appropri-
ate such that parameter estimates could be obtained using
unrestricted optimisation (e.g. maximum likelihood esti-
mation was carried out using log-transformed variance
parameters, with a parameter space of (−∞,+∞) rather
than [ 0,+∞]). For all model parameters, confidence
intervals are reported derived from the estimated asymp-
totic multivariate normal sampling distribution based
on the observed information on the transformed scales.
The ‘R2admb’ package [36] was used to output data
files in the necessary format through the R statistical
computing environment (R Foundation, Vienna, Austria).
The ggplot2 package for R [37] was used for statisti-
cal graphics. All maximum likelihood estimates reported
in this document were obtained using a computer clus-
ter running with Linux operating systems. The authors
acknowledge the use of the University College London
(UCL) Legion High Performance Computing Facility
(Legion@UCL), and associated support services, in the
completion of this work. Fitting each of the models pre-
sented to the UK Register of HIV Seroconverters dataset
took between 1 and 21

2 hours (using a core with 4GB
RAM), whereas fitting one of the models using a mid–
low specification personal laptop (4GB RAM, Celeron
Dual-Core CPU T3500 @ 2.1 GHz) required around
10 h.
When considering only a single latent variable per

patient, nestedmodels are compared using the generalised
likelihood ratio test, comparing the change in 2×log-
likelihood (
2�) to a χ2 distribution. Non-nested models
are compared using the Bayesian information criterion
(BIC) statistic, using the total number of observations in
the dataset for the calculation of the penalty term. It is
worth noting that these methods are only valid because
adaptive Gauss–Hermite quadrature can be used to calcu-
late the log-likelihood of the fitted models to a high degree

of accuracy; this is not the case for less computationally
intensive approximations of the log-likelihood.

Results
Model fitting
Summaries of the set of models fitted to the UK Register
of HIV Seroconverters dataset are presented in Table 1,
and to facilitate their interpretation Table 2 provides a
description of each model parameter. The most basic
model considered included constant parameters for the
mean long-term maximum CD4 count (on square-root
scale) and the rate of recovery from baseline at treat-
ment initiation, without division of patients according
to time from seroconversion to initiation of HAART
(Model1 in Table 1). Modelling the long-term maximum
(φ1) and speed of response to treatment (φ2) as linear
functions of the baseline value in each individual (u+

i )
led to a significant improvement in model fit (Model2
vs Model1, 
2� 460.4 for 2 parameters; P < 0.0001). A
model equivalent to Model2 but without pre- and post-
treatment stochastic process components was also fitted
for comparison and was found to have a much higher
BIC value (64398); correspondingly the model includ-
ing stochastic processes showed a significant improve-
ment in fit (
2� 844.8 for 4 parameters; P < 0.0001).
The extension of Model2 to allow natural cubic spline
functions to define the relationships between u+

i and
φ1 and φ2 led to a further significant improvement in
model fit (Model3 vs Model2, 
2� 31.4 for 4 parameters;
P < 0.0001).
Fitting a model with separate linear relationships

between u+
i and φ1 and φ2 according to timing of HAART

subgroup (Model4) led to a reduction in BIC relative to
the single-group natural cubic spines model. It was not
possible to obtain a model fit for natural cubic spline
functions defined separately for each subgroup (due to
lack of convergence), but allowing linear functions in the
early start subgroups in combination with natural cubic
spline functions for the remaining patients led to a further
improvement in model fit (Model5 vs Model4, 
2� 16.0
for 4 parameters; P = 0.003). However, Model4, with lin-
ear link functions for all subgroups, retained the lowest
BIC value and so we have focused on interpretation of this
model.
It is harder to make a direct comparison for Model6,

which matches Model4 with the addition of jointly dis-
tributed latent scaling variables for the pre- and post-
treatment fractional Brownian motion processes. Because
of the need to integrate the log-likelihood function over
multiple latent variables, parameter estimates for Model6
were obtained using the Laplace approximation, mean-
ing that generalised likelihood ratio tests or comparisons
of the BIC statistic are not appropriate. However, the
low values obtained for the estimates of the pre- and
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Table 2 Description of parameters for combined models of pre- and post-treatment data

Model parameter Description

β0 Pre-treatment mean intercept

β1 Pre-treatment mean slope

U00 Pre-treatment intercept subject-specific random effect variance

ρ Correlation between pre-treatment intercept and slope subject-specific random effects

U11 Pre-treatment slope subject-specific random effect variance

σ Standard deviation of residual error term for each measurement, shared by pre- and post-treatment parts of model

κpre Scale parameter for pre-treatment fBM process

Hpre Hurst index for pre-treatment fBM process

φ1 model These parameters relate to the long-term maximum value of the response variable after treatment initiation

At11, At12 Intercept and slope terms in relationship with u+
i for patients treated within 6months of seroconversion

At21, At22 Intercept and slope terms in relationship with u+
i for patients treated beyond 6months but within 1 year of seroconversion

A1, A2 Intercept and slope terms in relationship with u+
i for linear or NCS modelsa

A3, A4 Third and fourth coefficients for NCS modelsa

φ2 model These parameters relate to the rate of recovery of the response variable after treatment initiation

Bt11, Bt12 Intercept and slope terms in relationship with u+
i for patients treated within 6months of seroconversion

Bt21, Bt22 Intercept and slope terms in relationship with u+
i for patients treated beyond 6months but within 1 year of seroconversion

B1, B2 Intercept and slope terms in relationship with u+
i for linear or NCS modelsa

B3, B4 Third and fourth coefficients for NCS modelsa

P Residual variance for long-term maximum (φ1:i) not explained by u+
i

κpost Scale parameter for post-treatment fBM process

Hpost Hurst index for post-treatment fBM process

dfpre Degrees of freedom parameter for pre-treatment stochastic process

dfpost Degrees of freedom parameter for post-treatment stochastic process

ρMoran Correlation parameter for latent scaling variables of pre- and post-treatment stochastic processes

aOnly applicable to patients with treatment initiation more than 1 year after seroconversion when separate terms are included for earlier groups. fBM, fractional Brownian
motion; NCS, natural cubic spline
Some of the parameters relate to the link functions between the ‘true’ value of the response variable at treatment initiation, u+

i , and the post-treatment model

post-treatment degrees of freedom parameters (which are
effectively fixed at+ve∞ for the other models considered)
indicate that this model may better reflect the structure
of the observed data. Convergence of parameter estimates
was not achieved when the same extension was made to
Model5.
Convergence of parameter estimates also failed when a

subject-specific random effect was added to the speed of
response to treatment function (φ2) for Model4, Model5
or Model6. We also attempted to extend each of these
models to allow an independent linear effect of the
patient-specific slope of pre-HAART decline (requiring
an additional two latent variable per patient for their
random intercept and slope terms), but convergence
of parameter estimates was not achieved in each case.
Using Model4, we checked the assumption that the pre-
and post-HAART measurement error variance can be
treated as constant, and no significant improvement in
model fit was observed when separate parameters were

fitted for the two periods (
2� 0.6 for 1 parameter;
P = 0.44).
Plots of residuals derived from Model6 are provided in

Additional file 1 (based on Fitzmaurice et al. [38] and
Stirrup et al. [16]), and these do not indicate substantial
problems with the fitted model. As a further check of the
model structure developed, the fitted Model6 was used to
simulate pre- and post-treatment CD4 counts for a cohort
of 100 patients. The plot of these simulated data is visu-
ally consistent with the equivalent plot of 100 randomly
selected patients from the real dataset. This comparison
could be described as a posterior predictive check [39].
Additionally, a small simulation study was carried out to
demonstrate that the use of a natural cubic spline basis for
baseline CD4 count would be able to provide approxima-
tions to non-linear functions for the long-term maximum
and speed of recovery following initiation of HAART, even
if specification of the probability model as a whole is not
completely correct; this is presented in Additional file 1.
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An R script and ADMB template files are also provided in
Additional file 2 to simulate data based on the structure
and point estimates of Model6, and to then refit Model4
and Model6 to these data.

Model interpretation
All models fitted (other than Model1 by definition)
showed a positive association between baseline CD4
count at HAART and the long-term maximum; this find-
ing was consistent across subgroups of patients defined
by timing of treatment initiation with only relatively small
differences in the fitted functions for each group inmodels
4–6 (Figs. 4, 5 and 6). When modelled as a linear function
across all patients (i.e. Model2), the speed of response to
treatment also showed a positive association with baseline
CD4 count at HAART. However, when the link func-
tion was defined by HAART-timing subgroup, the speed
of response to treatment was found to be substantially
higher at moderate and lower baseline CD4 counts (below
around 25 on the square-root scale) in those patients who
started treatment within 6months of seroconversion, with
an intermediate difference observed for the subgroup who
started treatment after 6months but within 1 year. This

overall pattern of findings was consistent across models
4–6, although the exact shape of the link functions showed
some differences.
As the full vector of pre- and post-treatment data and

ui for each individual do not jointly follow a multivari-
ate normal distribution, it is not possible to derive a
closed form for the posterior predictive distribution of
the ui conditioned on the observed data in the way that
would be done for the realizations of the random effects
in a linear mixed model. However, the values of ui for
each individual that maximise f

(
ypre:i, ypost:i,ui

)
, ûi, con-

ditional on the current values of the model parameters,
are calculated at each iteration of the adaptive Gauss–
Hermite quadrature algorithm. The values of ûi corre-
sponding to the final parameter estimates for each model
are returned by ADMB, and these correspond to the pos-
terior mode of fu|Y pre=ypre,Y post=ypost (u) for each individual.
Kernal density plots for the ui values for each subgroup
in Model4 are presented in Fig. 7, approximating the dis-
tribution for fu|Y pre=ypre,Y post=ypost (u) as normal and mak-
ing use of subject-specific standard deviation estimates
also resulting from the adaptive Gauss–Hermite quadra-
ture algorithm. Equivalent plots for Model5 and Model6
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Fig. 4 Plots of φ1
(
u+
i

)
(a–c, relating to long-term maximum) and φ2

(
u+
i

)
(d–f, relating to speed of response) for Model4. Graphs on the left of each

row a, d show the fitted functions for patients initiating treatment within 6months of seroconversion, those in the centre b, e show the functions
for patients initiating treatment beyond 6months but within 1 year and those on the right c, f show the functions for patients who started
treatment beyond 1 year. Pointwise 95% confidence intervals for the functions are shown as dashed lines
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Fig. 5 Plots of φ1
(
u+
i

)
(a–c, relating to long-term maximum) and φ2

(
u+
i

)
(d–f, relating to speed of response) for Model5. Graphs on the left of each

row a, d show the fitted functions for patients initiating treatment within 6months of seroconversion, those in the centre b, e show the functions
for patients initiating treatment beyond 6months but within 1 year and those on the right c, f show the functions for patients who started
treatment beyond 1 year. Pointwise 95% confidence intervals for the functions are shown as dashed lines

did not show substantial differences. Histograms of the
last observed square-root CD4 count before treatment
for those individual in whom this was recorded within
6months of treatment initiation are also presented in
Fig. 7 for comparison, showing a similar shaped distribu-
tion in each subgroup. As expected given the results of
previous simulations regarding treatment initiation based
on observed CD4 cell counts [14], for more than half of
patients (63%) the mode of the posterior predictive distri-
bution (ûi) was greater than the last observed CD4 count
(where available within 6months); the median difference
for CD4last_obs − ûi was −18 cells/μL when transformed
back to the original measurement scale.
Predicted ranges for CD4 cell counts based on Model4

are shown in Fig. 8 for patients with a ‘true’ CD4 counts at
initiation of HAART of 200, 350 and 500 cells/μL. These
charts further illustrate themodel predictions that, in gen-
eral, patients with a higher CD4 cell count at treatment
initiation will go on to show a higher long-termmaximum
and will attain higher values more quickly after the start
of treatment, but that response to treatment is rapid if
it is initiated within 6 months of seroconversion regard-
less of baseline CD4. These charts also illustrate that

the model predicts considerable variability in response
to treatment between patients at any given baseline CD4
value. However, in the models presented we have not
included variables such as patient age, gender and mode
of infection that may also be predictive of response to
treatment, and so it is possible that more fully developed
models would include less unexplained variance in the
long-term response to treatment. The inclusion of such
potential confounding variables may also affect estimates
of the influence of baseline value of CD4 at treatment
initiation on each patient’s response to treatment. Equiv-
alent plots for Model5 and Model6 showed similar overall
patterns of predictions.
For Model6, estimates of the pre- and post-treatment

degrees of freedom parameters (3.84 (95% CI, 3.06–4.82)
and 4.28 (3.4–5.38), respectively) indicate that there are
considerable between-patient differences in the variabil-
ity of observations over time. It is interesting to note
that the correlation parameter between the pre- and post-
treatment latent scaling variables was positive, but only
of moderate magnitude (ρ̂Moran0.37 (0.19–0.52)), i.e. the
degree of variability over time before and after treatment
for each patient shows a moderate positive correlation.
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Fig. 6 Plots of φ1
(
u+
i

)
(a–c, relating to long-term maximum) and φ2

(
u+
i

)
(d–f, relating to speed of response) for Model6. Graphs on the left of each

row a, d show the fitted functions for patients initiating treatment within 6months of seroconversion, those in the centre b, e show the functions
for patients initiating treatment beyond 6months but within 1 year and those on the right c, f show the functions for patients who started
treatment beyond 1 year. Pointwise 95% confidence intervals for the functions are shown as dashed lines

It is also of interest that the estimated H-index for the
post-treatment fractional Brownian motion process in
this model was much lower than that for the equivalent
model without the latent scaling variables (0.13 (0.11–
0.16) vs 0.38 (0.29–0.48)), indicating that although some
patients show high variability in CD4 observations over
time, successive increments of the stochastic process are
strongly negatively correlated and there is an associated
reversion of the process towards the underlying mean in
each patient. It is possible to use the modes of the poste-
rior predictive distributions of the latent scaling variables
for each patient to identify those individuals with particu-
larly smooth or erratic patterns of CD4 counts over time;
observations for the two patients with the most extreme
values obtained for the post-treatment latent scaling vari-
able are plotted in Fig. 9.

Discussion
The statistical methodology developed in this article pro-
vides a novel framework for the combined analysis of
pre- and post-treatment longitudinal biomarker data. The
approach proposed has the advantage of making use of
all available data, does not require an a priori assumption

regarding the distribution of baseline values at treatment
across the studied population as a whole and allows a flex-
ible choice of functions to link the pre- and post-treatment
trajectories of the biomarker under investigation for each
patient. When applied to CD4 data from the UK Regis-
ter of Seroconverters cohort, the resulting fitted models
provide evidence of a positive association between base-
line CD4 count at initiation of HAART and the long-term
maximum achieved by each patient, which is consistent
with previous published literature on this topic [9–11].
In addition the fitted models suggest that initiation of
HAART closer to the date of HIV seroconversion is asso-
ciated with a more rapid response to treatment, regardless
of the baseline CD4 value. This finding warrants fur-
ther investigation in larger datasets, with inclusion of
additional factors that are thought to be associated with
response to treatment into the modelling framework; this
extension would be straightforward using the methodol-
ogy developed.
The standard non-linear mixed effects model approach

in this situation, ignoring observations before the start
of treatment, would require rigid assumptions regarding
the distribution of the biomarker variable at treatment

BMC MED RES METH PAPER

235



Stirrup et al. BMCMedical ResearchMethodology  (2016) 16:121 Page 17 of 21

0.000

0.025

0.050

0.075

0.100

0 10 20 30 40

ui

D
en

si
ty

 fu
nc

tio
n

a

0.0

2.5

5.0

7.5

10.0

12.5

0 10 20 30 40

Last observed SQRT(CD4)

F
re

qu
en

cy
 d

en
si

ty

d

0.000

0.025

0.050

0.075

0.100

0 10 20 30 40

ui

D
en

si
ty

 fu
nc

tio
n

b

0

2

4

6

8

0 10 20 30 40

Last observed SQRT(CD4)

F
re

qu
en

cy
 d

en
si

ty

e

0.00

0.05

0.10

0.15

0 10 20 30 40

ui

D
en

si
ty

 fu
nc

tio
n

c

0

10

20

30

40

0 10 20 30 40

Last observed SQRT(CD4)

F
re

qu
en

cy
 d

en
si

ty

f

Fig. 7 Kernel density plots (a–c) for the ‘true’ baseline square root CD4 counts and (d–f) histograms of the last observed square-root CD4 count
before treatment. a–c Kernel density plots for the ‘true’ baseline square root CD4 counts for each individual (ui), approximating the posterior
distribution of each as normal (with subject-specific standard deviation as estimated during model fitting), and d–f histograms of the last observed
square-root CD4 count before treatment for those individuals in whom this was recorded within 6months of treatment initiation (n = 170, n = 141
and n = 486, respectively). Graphs in the top row a, d relate to patients initiating treatment within 6months of seroconversion, those in the centre
row b, e relate to patients initiating treatment beyond 6months but within 1 year and those on the lower row c, f are for patients who started
treatment beyond 1 year
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Fig. 8 Predictions for hypothetical patients made from fitted model. Plots of the 90% range of CD4 counts predicted by Model4 for a population of
patients initiating highly active antiretroviral therapy (HAART) either within 6 months (a–c) or more than 1 year (d–f) from seroconversion, with ‘true’
CD4 counts at treatment initiation of: a, d 200, b, e 350 and c, f 500 cells/μL. The predicted ranges include measurement error (alongside the
stochastic process component and variance in the subject-specific long-term maximum), explaining the variance present at time zero. The ranges
shown have been back-transformed from the model predictions generated on the square-root scale

initiation and its relationship to subsequent post-
treatment observations, i.e. typically that baseline values
and the long-term maximum value for each patient fol-
low a bivariate normal distribution. The modelling strat-
egy that we have developed allows greater flexibility in
the link between baseline and post-treatment maximum

values of the biomarker, and does not restrict the shape
of the overall marginal distribution of baseline values in
the studied population. Alternatively, the standard use of
baseline observations as a predictive variable would also
discard any information from measurements obtained
prior to this point in time and would require a separate

a b

Fig. 9 Plots of CD4 counts (•) observed in the two patients with the most (a) and least (b) erratic response to highly active antiretroviral therapy
(HAART). Variability of response was assessed as indicated by the modes of the posterior predictive distributions of the post-treatment latent scaling
variables (ŵ2:i) obtained fromModel6. The mode of the posterior predictive distribution for the ‘true’ baseline value (ûi) is also shown in each case (◦)
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imputation model for missing values of the baseline mea-
surement, which would not be straightforward to define
for observational data with highly irregular number and
timing of measurements for each patient. Furthermore,
it is not obvious how the primary model for multiple
post-treatment observations should be structured in this
context, as it would be overly restrictive to assume a con-
stant fixed effect coefficient for the baseline observation
for all time points after the initiation of treatment.
The proposed model for the analysis of pre- and post-

treatment CD4 data has been structured so that the
estimated parameters of the different components of the
model each have a clear practical interpretation, i.e. it is
of direct interest to clinicians to know how baseline CD4
and time from seroconversion at initiation of HAART
are associated with the speed and maximal level of treat-
ment response that can be expected. If further patient
variables were added to the functions that determine the
characteristics of response to treatment then the mod-
elled effects would be independent of the influence of the
true baseline value of the biomarker, making interpreta-
tion of estimated coefficients relatively simple. If a mixed
effects model is fitted to only baseline and post-treatment
measurements, then assessment of the influence of a
covariable on treatment response conditional on a base-
line observation requires an additional stage of statistical
adjustment [40].
The cost of using a combined model for pre- and post-

treatment data is that we are required to assume that the
proposed model structure provides an adequate descrip-
tion of the data under analysis. The requirement for strong
assumptions regarding the correctness of model struc-
ture has been used as an argument against the use of
integrated models for baseline and treatment response
data [3]. In the present study, the motivations for the
inclusion of pre- and post-treatment stochastic process
components in the models and for the use of natural
cubic spline functions to link baseline CD4 and char-
acteristics of the treatment response trajectory were to
maximise model flexibility and therefore provide an opti-
mal fit to the data. However, we plan to investigate further
extensions of the model structure using larger datasets,
which would be able to support a greater number of
parameters in model-fitting. As such, the scientific results
from the present study can only be taken as preliminary
findings.
An advantage of the extension of the non-linear mixed

effects modelling approach as developed in this paper is
that the nature of the variability in biomarker observa-
tions over time within each patient can be investigated,
whereas this is often lost when using approaches that only
consider population mean values or the marginal distri-
bution of observations across the population at each point
in time. A focus on realistic modelling of the patterns of

variation in the data is also required in order to provide
valid inference under the ‘missing at random’ assumption
for missing data and when the timing of observations
is dependent on previous outcomes [35]. A limitation
of the present analysis is that we have not considered
the possibility of censoring being related to underly-
ing latent variable terms rather than just the observed
CD4 counts. Such joint modelling of longitudinal and
event time data [41, 42] would provide useful informa-
tion regarding the patterns of drop-out from the cohort,
but would add further to the computational complexity of
estimation.
The fitted models in the present analysis show that

there is considerable unexplained variance in the long-
term asymptotic maximal response to treatment for each
patient, even after accounting for baseline CD4 and time
from seroconversion to initiation of HAART, although
this might be reduced by the inclusion of additional
patient and drug regimen variables into the model. There
is also considerable erratic post-treatment variability over
time, represented by the fractional Brownian motion pro-
cess as previously introduced for the analysis of pre-
treatment CD4 data [16]. The parameter estimates for the
model in which the stochastic process components were
generalised to follow marginal multivariate t-distributions
indicate substantial between-patient differences in their
variability over time, with a moderate positive association
between the degree of pre- and post-treatment variabil-
ity within each patient, which are novel findings in this
context. The fact that the models fitted follow a struc-
ture that can accommodate any combination of number
and timing of observations in each patient means that
they can be readily used for simulation studies of patient
cohorts.

Conclusions
We have developed a framework for the combined analy-
sis of pre- and post-treatment longitudinal biomarker data
and have successfully applied the novel methodology to
CD4 data from a cohort of HIV-positive patients with
well estimated date of seroconversion. The methodology
developed could also be applied to other medical settings
in which an intervention is triggered following monitor-
ing of a biomarker of interest, and in which the response
to treatment may be conditional on the state of the patient
(as indicated by the value of the biomarker) at the time
of treatment initiation. Seroconverter cohorts have a spe-
cial status in HIV research, and in other disease settings
the ‘zero time’ for pre-treatment observations might be
time of diagnosis or another clinically significant event.
The framework proposed could be applied with differ-
ent choice of pre- and post-treatment model components,
but those demonstrated may be a natural choice in many
settings.

BMC MED RES METH PAPER

238



Stirrup et al. BMCMedical ResearchMethodology  (2016) 16:121 Page 20 of 21

Additional files

Additional file 1: Appendices containing (1) details of marginal distribution
for post-treatment model and coding for positive-only latent variable, (2)
residual plots for Model6 and (3) results of a simulation study demonstrating
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